
An SQLo Front-End for Non-monotonic
Inheritance and De-referencing

Joel Oduro-Afriyie and Hasan M. Jamil(B)

Department of Computer Science, University of Idaho, Moscow, ID, USA
odur8117@vandals.uidaho.edu, jamil@uidaho.edu

Abstract. We revisit the issues of non-monotonic inheritance and struc-
ture traversal in object-relational databases with new insights to pro-
pose OO extensions of SQL and demonstrate that they are sufficient
and powerful enough for modeling classes, non-monotonic inheritance
and de-referencing. In particular, we show that simple tweaking of SQL
with tuple ID helps capture these OO features cleanly and empowers
application developers with a powerful knowledge modeling tool.

Keywords: Object-oriented modeling · Abstract relations ·
Object-relational query language · Translational semantics ·
Inheritance and overriding

1 Introduction

Numerous applications can benefit from the simple software engineering idea of
inheritance and overriding. Despite significant interests in modeling these con-
venient features in database query languages, a fully functional object-oriented
(OO) [2] or object-relational (OR) database [4] did not materialize mainly
because it was extremely difficult to combine the simplicity and declarativity
of SQL-like languages with the power of full object-orientation in a single plat-
form. Serious efforts to craft an OO SQL date back to early to late 90s [5,7], and
no similar efforts can be seen since then. Even in those early efforts, researchers
were mainly focused on supporting abstract data types (ADTs). The commu-
nity then was eager to find a query language that looks and feels like C++. Not
surprisingly, the CQL++ [3], or SQL/XNF [7] type database languages basically
attest to the reality, although a limited number of research focused on features
such as inheritance without much success [5]. The OQL [1] or O2 [2] languages
are complex to say the least, and this explains why they did not become popular.

In this paper, we propose a novel approach to class hierarchy and inheri-
tance modeling with overriding, and object de-referencing, in classical relational
database systems without the need for a new algebra based on the conviction
that minimally extending SQL to support the urgently needed OO features is
prudent. In the remainder of the paper, we mainly use an illustrative example
to expose the modeling and query mapping technique we propose without much

c© Springer Nature Switzerland AG 2019
A. H. F. Laender et al. (Eds.): ER 2019, LNCS 11788, pp. 52–60, 2019.
https://doi.org/10.1007/978-3-030-33223-5_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33223-5_6&domain=pdf
http://orcid.org/0000-0001-8912-4568
http://orcid.org/0000-0002-3124-3780
https://doi.org/10.1007/978-3-030-33223-5_6


An SQLo Front-End for Relational Databases 53

details for the sake of brevity and for expository purposes. A complete technical
discussion on the model, language and query transformation is deferred to a full
article we plan to publish elsewhere.

2 The OR Model

The object relational model, or the OR data model, we propose, has two types
of tables – traditional tables (called simply tables) and abstract tables. Tables
are defined in standard ways using create table statements. For example, the
instance Professors in Fig. 1(a) is declared by the statement

c1: create table Professors (
PiD tupleID(3) primary key,
Name string(10),
Rank string(10)
Dept string(10));

q1: select *
from Professors;

Professors is a first normal form traditional table declaration, and thus all stan-
dard SQL statements can be used on it and query q1 above returns the entire
table in Fig. 1(a). In this statement, tupleID is a special string data type discussed
in the context of objects and classes below in more detail.

PiD Name Rank Dept
p-1 Sharon Assoc CS
p-2 Pierre Full ⊥
p-3 Tanaka ⊥ Econ
p-4 Alfredo Full CS
(a) Table Professors

PiD Dept Salary
p-1 e-7 110K
p-4 e-7 ⊥
p-3 e-8 105K
(b) Table Works

TiD Name State
t-a ⊥ DC

t-b Pria ⊥
t-c Aphrodite TX
(c) Abstract table
People

TiD Name State
t-a ⊥ ⊥
t-b Pria DC
t-c Aphrodite TX
(d) View of table
People

TiD Name State SiD Par
n-a ⊥ ID s-1 t-4

n-b Clint ⊥ s-2 t-5
n-c Moira TX s-3 t-3
n-d Alex PA s-4 ⊥
(e) Abstract table Stu-
dents

TiD Name State SiD Par
n-a ⊥ ⊥ ⊥ ⊥
n-b Clint ID s-2 t-5
n-c Moira TX s-3 t-3
n-d Alex PA s-4 ⊥
(f) View of table Students

TiD DiD Name Chair
e-6 d-0 CS p-1

e-7 d-1 ⊥ p-4
e-8 d-2 Math p-1
e-9 d-3 Econ p-3
(g) Abstract table De-
partments

TiD Name State SSN Income
t-2 ⊥ ⊥ 000 45K

t-3 Joe WA 001 ⊥
t-4 ⊥ OH 014 90k
t-5 Maria ⊥ 207 ⊥
(h) Abstract table Parents

TiD Name State SSN Income
t-2 ⊥ ⊥ ⊥ ⊥
t-3 Joe WA 001 45K
t-4 ⊥ OH 014 90k
t-5 Maria DC 207 45K
(i) View of table Parents

TiD DiD Name Chair
e-6 ⊥ ⊥ ⊥
e-7 d-1 CS p-4
e-8 d-2 Math p-1
e-9 d-3 Econ p-3
(j) View of table De-
partments

TiD Name State SiD Par Major
u-e ⊥ ⊥ s-5 ⊥ ⊥
u-f Ovro MI s-6 ⊥ e-7
u-g Abebi ID s-7 t-5 e-9
u-h Odelia ⊥ s-8 t-4 e-8
(k) Abstract table UnderGrads

TiD Name State SiD Par Major
u-e ⊥ ⊥ ⊥ ⊥ ⊥
u-f Ovro MI s-6 t-4 e-7
u-g Abebi ID s-7 t-5 e-9
u-h Odelia ID s-8 t-4 e-8
(l) View of table UnderGrads

Name CName
Sharon Alfredo
(m) Aggrega-
tion query

Fig. 1. OR model tables: traditional and abstract relations in class hierarchy.



54 J. Oduro-Afriyie and H. M. Jamil

Objects, Classes and Instances. In contrast, the abstract table People mod-
els a class object of type People and a set of instance objects of the same type
through the create abstract table declaration below.

c2: create abstract table People (
TiD tupleID(3) auto,
Name string(10),
State string(2),
default values ((⊥, ⊥, ”DC”)));

q2: select *
from People;

This create abstract table statement specifies an extended first normal form table
under the scheme People (TiD, Name, State) with several unique properties.
First, the scheme includes a distinguished attribute named TiD. This attribute
represents a domain of unique object IDs mandated by the concepts of OO
database models. In our model, all objects have an immutable ID, called the
OID, and these IDs in OR model are synonymous to the concept of tuple IDs
(denoted TiDs) first introduced by Sieg and Sciore [8]. These tuple IDs can be
created in several ways. The keywords tupleID(3) auto states that TiD is an
automatically generated string type object ID of length three. In OR model,
tupleID has a string domain that can have system generated values. Thus, it
requires a type declarations and optionally a method for generating it (e.g.,
auto). In contrast, the declaration

TiD tupleID compose(string(2)+”-”+integer(2))

says the tuple ID is a five character long string supplied by the user which has the
format first two characters, followed by a hyphen and then finally has a two digit
integer, resulting in a five character unique tuple ID. In this case too, database
wise uniqueness is preserved. Furthermore, since these IDs in TiD columns are
unique database wide in all abstract and traditional tables, they are candidate
keys by default. We call them object keys. However, tupleID, auto and compose
features can be used to type any attribute. But the uniqueness is enforced only
for the distinguished attribute TiD in ways consistent with the TiD algebra [8].

Figure 1(c) shows an instance of the abstract table People. In our model, all
abstract tables have the column TiD (but unlike TiD algebra, not all tables have
TiD columns), and thus all tuples in every abstract table have a unique object
ID. Observe also that the instance has two partitions. In the top partition, we
have the tuple 〈t-a, ⊥, DC〉, and in the bottom partition we have tuples {〈t-b,
Pria, ⊥〉, 〈t-c, Aphrodite, TX〉}. The lone tuple with TiD t-a in the top partition
is the default value of the class object People as stated in the default values clause
in the create abstract table statement. In this tuple, the first ⊥ corresponding
to the TiD column is replaced by the system generated object ID t-a. This
tuple contains the class default values for each column, e.g., State has default
class value DC, but Name does not. Finally, the bottom partition contains the
instance objects, each of which also has an object ID, e.g., t-b and t-c.



An SQLo Front-End for Relational Databases 55

Inheritance and Overriding. The consequence of having a class default value
is interesting and far reaching. For example, the query q2 above now returns
the abstract table “view” in Fig. 1(d). We make several important observations.
First, this table does not have a class default value tuple, i.e., all the values are
null (⊥) because we have closed the inheritance and the default values are no
longer useful. Also note that tuple t-b inherited the default State value DC and
replaced the null value. However, since the tuple t-c already has a local value
TX, it overrode the value DC and not inherited. This is in the spirit of dynamic
inheritance with overriding in OO systems, called non-monotonic inheritance.

Relationships and Aggregation. Being a superset of the relational data
model and SQL, the OR model and its query language SQLO supports rela-
tionships by respecting foreign keys. In the create table declaration below, the
references clause declares a foreign key in Works that references the primary key
of Departments, indicating Dept can accept null values. In contrast, the aggre-
gates clause (in the sense of SDM [6]), though similar to references, cannot accept
null values. Here too, the PiD column references a column in another table, but
not necessarily a primary key. Instead, it is an OID or tuple ID column. Note
that PiD is not a distinguished column name though it has the tuple ID domain.
Thus uniqueness is not maintained by default, but declaring it the primary key
enforces uniqueness in traditional sense, not in OO sense.

c3: create table Works (
PiD tupleID(3) primary key references Professors(PiD),
Dept tupleID(3) aggregates Departments(TiD),
Salary integer(7));

The instance table in Fig. 1(b) over the scheme Works(PiD, Dept, Salary) is
essentially a relationship between Professors and Department in ER sense. The
fundamental difference between aggregates and references is that the objects in
the former referenced tables need not be explicitly joined to access their columns
as is the case for latter reference types. The query below clarifies this distinction.

q3: select P1 →Name, Chair→Name as CName
from Works W1, Professors P1, Professors P2

where W1.PiD = P 1.PiD and Salary > 109K and W1.Dept→Chair =
P2.PiD and W1.Dept→Name = P2.Dept;

This query returns names of all professors and their chair’s who earn more than
$109K with their chair also from the same department. This query will return
the table in Fig. 1(m). Had the Professors table been declared as an abstract
table, we could have written this query in a much simpler way using OO de-
referencing features. Also note that the Department table is not referenced in
the where clause yet became accessible via de-referencing.



56 J. Oduro-Afriyie and H. M. Jamil

Class Hierarchies. Similar to classes in OO systems, abstract tables can be
organized in table hierarchies. While classes or abstract tables1 can have multi-
ple subclasses, they can only have unique superclasses. Subclasses in OR model
inherit properties and their default values, and all key and other integrity con-
straints, from their superclasses. While integrity constraints and the scheme of
a class are inherited monotonically, their class default values are inherited non-
monotonically in an overriding fashion based on specificity preference principle.

For example, consider an instance object s-1 in Students class in Fig. 1(e),
where Students is a subclass of People in Fig. 1(c). The following create abstract
table statement defines the subclass relationship between these two tables.

c4: create abstract table Students inherits People (
SiD string(3) primary key,
Par tupleID(3) aggregates Parents,
default values ((⊥, ⊥, ”ID”, ”s-0”, ⊥)) );

Being a subclass of People, not only does Students inherit the scheme of People
and the object key, it also introduces two new attributes {SiD, Parent}, a new
primary key SiD, and a new default value ID for the inherited attribute State.
In this case, all instances of Students (as well as all its subclasses) will inherit,
when appropriate, the default value ID for State, and not DC since the local or
specific value ID at Students overrides the inherited value for State in People.

Null Closure. In a select query, the relation list in the from clause can be both
traditional and abstract tables. Since abstract tables can be subclass of another
class table, a long chain of inheritance becomes complicated. Each abstract table
has the potential to have inherited values from superclasses at arbitrary height.
Since updates in all tables are allowed, a static inheritance of all default values to
lower subclasses and instances is not a prudent choice though the approach could
make query processing substantially cheaper. But updates in class default values
have the potential to invalidate statically inherited values before the update and
leave the recovery from the state of erroneous inheritance at jeopardy. We use a
process called null closure to dynamically inherit the class default values down
to all subclasses and instances in an overriding manner.

3 Mapping SQLO to SQL

Implementation of the SQLO language is based on a translational semantics of
SQLO programs to SQL, so that we can understand the semantics in terms of the
well known meaning of SQL, and obviate the need for a native SQLO implemen-
tation, saving effort and cost. The correctness of SQLO is then established based
on the soundness and completeness properties of SQL relative to the OR data
model and its intended semantics. We argue that SQLO is sound and complete
1 In this article, we use the terms sub and superclasses interchangeably with sub and

supertables for convenience.



An SQLo Front-End for Relational Databases 57

too by showing that the translation outlined preserves the intended semantics of
SQLO. In the following sections, we only discuss translation of the SQLO specific
statements not available in SQL by way of examples.

3.1 Creating Class Tables

The People class table declaration in Sect. 2 is translated as follows. We create
two separate tables in SQL for each create abstract table statement to implement
class and instance objects in two partitions. The class tables are annotated with
subscript c and instance tables with i as follows.

c5: create table Peoplec (
TiD varchar(3) auto unique,
Name varchar(10),
State varchar(2) );

c6: create table Peoplei (
TiD varchar(3) auto unique,
Name varchar(10),
State varchar(2) );

u1: insert into Peoplec(TiD, Name, State)
values ($AutoKey, NULL, ’DC’);

In the above statements auto is a directive to create a random key that will never
be assigned to another TiD column of any tuple. Major database systems like
Oracle support similar unique primary key generation. In the insert statement
we use the $AutoKey keyword to call a function to generate the OID or the
tuple ID, and insert this tuple into Peoplec as the class default value. The
unique declaration makes TiD a candidate key, but not the primary key of the
table. The uniqueness of TiD is ensured by checking a unary system table called
UniqueKeys we maintain which logs all TiD values ever assigned and in use in
our databases. Note that the statement u1 above, implements the semantics of
the default values declaration in statement c2 in Sect. 2.

The subclass table Students in Sect. 2 is accomplished by creating the SQL
statements below. Note that for aggregation, we required that the Parent cannot
have null values, and the referenced Parents object cannot be deleted without
deleting the Students object.

c7: create table Studentsc (

TiD varchar(3) unique,

Name varchar(10),

State varchar(2),

SiD varchar(3) primary key,

Par varchar(3) not null

foreign key references Parentsi(TiD)

on update cascade

on delete restrict);

c8: create table Studentsi (

TiD varchar(3) unique,

Name varchar(10),

State varchar(2),

SiD varchar(3) primary key,

Par varchar(3) not null foreign key

references Parentsi(TiD)

on update cascade

on delete restrict );

u2: insert into Studentsc(TiD, Name, State,

SiD, Par)

values ($AutoKey, NULL, ’ID’, ’s-0’, NULL);

u3: insert into ClassHierarchy(SubClass,

SuperClass)

values (’Students’, ’People’);

We do not separately discuss the statements such as insert, delete and update,
which can be handled trivially. Finally, we enter the subtable relationship spec-
ified in the inherits keyword into the system table ClassHierarchy as a pair



58 J. Oduro-Afriyie and H. M. Jamil

〈‘Students’, ‘People’〉 to be able to create the class hierarchy for null closure
discussed next. The inherits keyword also prompts the inclusion of the attributes
in the superclass People into the current table Students.

3.2 Computing Null Closure and Table View

Prior to processing queries, we first process null closure discussed in Sect. 2 for all
directly or implicitly referred abstract tables to ground the tables with inherited
values in real time. On analysis of the query in terms of the tables included in
the from clauses, and the cross referencing of the de-reference operators with
the schemes, a list of abstract tables is created that potentially warrant null
closures. A precedence graph of subclass-superclass relationship for each of these
tables is constructed using the ClassHierarchy system table and for every table,
a maximal scheme is created to list the attributes that all clauses will need. We
then proceed to create two sets of views – one for the class tables and one for the
instance tables, and we then use only the views corresponding to each instance
table in the rewritten queries as follows.

Let us explain the process of using the query that asks list the names of
all undergraduate non computer science majors resident in Idaho and their par-
ents’ income such that their parents earn more than $75K and their department
chairs are computer science professors. This query can be posed in SQLO as the
following expression.

q4: select Name, Par→Income
from UnderGrads, Professors
where State = ’ID’ and Par→Income > 75K and Major→Name �= ’CS’

and Major→Chair = PiD and Dept =’CS’;

This query assumes that the following DDL statement has already been defined.

c10: create abstract table UnderGrads inherits Students (
Major tupleID(3) aggregates Departments(TiD));

In this query three abstract tables UnderGrads, Departments and Parents, and
a traditional table Professors are involved. This information is derived from the
database schema definitions, i.e., Major in UnderGrads aggregates Departments
where student majors are found. Similarly, Parent aggregates Parents where their
Income is listed. The de-reference operators in the query actually give away this
information. Finally, Chair in Departments aggregates Professors where we find
their department. While UnderGrads and Persons participate in a class hierarchy
and require null closure as shown below, Departments does not.

c11: create view Peoplecv(TiD, Name, State) as
select TiD, Name, State
from Peoplec;

c12: create view Studentscv(TiD, Name, State, SiD, Par) as
select V.TiD,



An SQLo Front-End for Relational Databases 59

case when V.Name=NULL then U.Name else V.Name,
case when V.State=NULL then U.State else V.State,
case when V.Par=NULL then U.Par else V.Par

from Peoplecv as U, Studentsc as V;

c13: create view UnderGradscv(TiD, Name, State, Par, Major) as
select V.TiD,

case when V.Name=NULL then U.Name else V.Name,
case when V.State=NULL then U.State else V.State,
case when V.Par=NULL then U.Par else V.Par,
case when V.Major=NULL then U.Major else V.Major

from Studentscv as U, UnderGradsc as V;

c14: create view Parentscv(TiD, Income) as
select V.TiD,

case when V.Income=NULL then U.Income else V.Income,
from Peoplecv as U, Parentsc as V;

The above statements only close the nulls in class tables. To truly inherit the
default values, we now close the inheritance in all three instance tables as follows.

c15: create view UnderGradsiv(TiD, Name, State, Par, Major) as
select V.TiD,

case when V.Name=NULL then U.Name else V.Name,
case when V.State=NULL then U.State else V.State,
case when V.Par=NULL then U.Par else V.Par,
case when V.Major=NULL then U.Major else V.Major

from UnderGradscv as U, UnderGradsi as V;

c16: create view Parentsiv(TiD, Income) as
select V.TiD,

case when V.Income=NULL then U.Income else V.Income,
from Parentscv as U, Parentsi as V;

c17: create view Departmentsiv(TiD, Name, Chair) as
select V.TiD,

case when V.Name=NULL then U.Name else V.Name,
case when V.Chair=NULL then U.Chair else V.Chair

from Departmentsc as U, Departmentsi as V;

The script above completes the steps for computing the null closures and gen-
erates three view tables for our query – i.e., UnderGradsiv, Parentsiv and
Departmentsiv.

3.3 Inheritance and Object Traversal in SQL Using Query
Rewriting

As a final step, we rewrite the SQLO query in Sect. 3.2 as a large join query
to accommodate object traversals anticipated by the de-reference operators over
the three null closed instance views we have generated and the traditional table:



60 J. Oduro-Afriyie and H. M. Jamil

q6: select U.Name, V.Income
from UnderGradsiv as U, Parentsiv as V, Departmentsiv as W,

Professors as X
where U.State = ’ID’ and U.Par=V.TiD and V.Income > 75K

and U.Major=W.TiD and W.Name �= ’CS’ and W.Chair=X.PiD
and X.Dept = ’CS’;

In our example database, there are two potential Idaho resident undergraduate
students, Abebi and Odelia. However, Abebi’s parent Maria’s income is less than
$75K, and her department chair Tanaka is not a computer science professor,
and thus does not qualify to be in our response. However, Odelia is a Math
major, and her department chair Sharon is a computer science professor and her
parent also has income higher than $75K although the parent name is missing.
So, SQLO appropriately returns the tuple 〈Odelia, 90K〉 as a response.

4 Conclusion

Our goal in this paper was to show that complex objects, class hierarchies, inher-
itance, overriding and structure traversal can be modeled as a simple extension
of SQL. While we did not discuss a complete translation algorithm for brevity, we
have presented the overall idea behind the translation of an SQLO database and
queries to a semantically equivalent SQL database. We have shown that the two
most coveted OO features, namely inheritance with overriding and object traver-
sal, can be captured within relational model based on a translational semantics
without the need for an entirely new language or a formal foundation.

References

1. Alashqur, A.M., Su, S.Y.W., Lam, H.: OQL: A query language for manipulating
object-oriented databases. In: VLDB, pp. 433–442 (1989)

2. Bancilhon, F., Delobel, C., Kanellakis, P.C. (eds.): Building an Object-Oriented
Database System, The Story of O2. Morgan Kaufmann, Burlington (1992)

3. Dar, S., Gehani, N.H., Jagadish, H.V.: CQL++: a SQL for the Ode object-oriented
DBMS. In: Pirotte, A., Delobel, C., Gottlob, G. (eds.) EDBT 1992. LNCS, vol. 580,
pp. 201–216. Springer, Heidelberg (1992). https://doi.org/10.1007/BFb0032432

4. Feuerlicht, G., Pokorný, J., Richta, K.: Object-relational database design: can your
application benefit from SQL: 2003? In: Barry, C., Lang, M., Wojtkowski, W., Con-
boy, K., Wojtkowski, G. (eds.) ISD, Challenges in Practice, Theory, and Education,
vol. 2, pp. 975–987. Springer, Boston (2007). https://doi.org/10.1007/978-0-387-
78578-3 30

5. Fuh, Y., et al.: Implementation of SQL3 structured types with inheritance and value
substitutability. In: VLDB, pp. 565–574 (1999)

6. Hammer, M., McLeod, D.: Database description with SDM: a semantic database
model. ACM Trans. Database Syst. 6(3), 351–386 (1981)

7. Mitschang, B., Pirahesh, H., Pistor, P., Lindsay, B.G., Südkamp, N.: SQL/XNF -
processing composite objects as abstractions over relational data. In: ICDE, pp.
272–282 (1993)

8. Sieg Jr., J., Sciore, E.: Extended relations. In: ICDE, pp. 488–494 (1990)

https://doi.org/10.1007/BFb0032432
https://doi.org/10.1007/978-0-387-78578-3_30
https://doi.org/10.1007/978-0-387-78578-3_30

	An SQLo Front-End for Non-monotonic Inheritance and De-referencing
	1 Introduction
	2 The OR Model
	3 Mapping SQLO to SQL
	3.1 Creating Class Tables
	3.2 Computing Null Closure and Table View
	3.3 Inheritance and Object Traversal in SQL Using Query Rewriting

	4 Conclusion
	References




