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Abstract. Database tuning is a complex task, involving technology-specific
concepts. Although they seem to share a commonmeaning, there are very specific
implementations across different DBMSs vendors and particular releases. Data-
base tuning also involves parameters that are often adjusted empirically based on
rules of thumb. Moreover, the intricate relationships among these parameters
often pose a contradictory impact on the overall performance improvement goal.
Nevertheless, the literature – and practice – on this topic defines a set of heuristics
followed by DBAs, which are implemented by the available tuning tools in
different ways for specific DBMSs. In this paper, we argue that a semantic support
for the implementation of tuning heuristics is crucial for providing DBAs with a
higher-level conceptualization, unburdening them from worrying about internal
implementations of data access structures in distinct platforms. Our proposal
encompasses a set of formally-defined rules based on an ontology, enabling DBAs
to define new configuration parameters and to assess the application of tuning
heuristics at a conceptual level. We illustrate this proposal with two use case
scenarios that show the advantages of this semantic support for the definition and
execution of sophisticated DB tuning heuristics, involving hypothetical indexes
and what-if situations for relational databases.
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1 Introduction

Computational systems are increasingly ubiquitous, producing and consuming large
amounts of data. As a consequence, these systems pose a demand for higher perfor-
mance, especially for lower response time and increased throughput, pushing Database
Management Systems (DBMSs) to higher levels of functionalities and control. Data-
base (DB) tuning strategies address this need by supporting the configuration of the
physical design of the DB towards improving performance. DB tuning involves
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decisions upon the creation and maintenance of indexes, materialized views, data
replication, partitioning, query rewriting, among others. These strategies constitute
heuristics for improving the performance of the applications that access this DB [1]. As
any other heuristics, DB tuning heuristics may be implemented and automated to assist
their users (in this case, the Database Administrator, or DBA) in achieving a goal (i.e.,
improving performance), and obtaining successful results in most cases [1]. The tools
that implement DB tuning heuristics can be semi-automatic (when the DBA makes the
final decision on tuning the DB based on the suggestions of the heuristics) or com-
pletely automatic (in the case of a self-tuning tool, which implements the decision
directly, without the intervention of the DBA).

However, DB tuning heuristics are typically empirically defined, and most lack a
precise definition. For example, when the DBA decides on performing a tuning action
(e.g., rewriting a query) to improve the database performance, s/he is following rea-
soning that is present in her/his mind, based on concepts, principles, and previous
experiences that only s/he is aware of. This scenario worsens in the presence of self-
tuning tools when the DBA is unaware of the rationale followed by the tool since only
the final physical design of the tuning process is available. The DBA cannot assess the
tuning actions or even backtrack an individual step taken by the tool. For example, the
DBA can conclude that a particular index created by the self-tuning tool might degrade
the performance of insertion operations in the DB and then may want to undo a tuning
action executed by the heuristic. However, the heuristic might have considered that,
even while degrading insert operations, the index was still beneficial to the database
workload as a whole (the set of all queries and data manipulation commands), as a
result of a decision rationale unknown to the DBA. In this case, the rationale and the
concepts analyzed by the tool are embedded in its source code, thus making it difficult
or even impossible for the DBA to scrutinize.

Also, semi-automatic or self-tuning tools are tailored to suggesting specific actions
for particular DBMSs, which makes heuristics experiments difficult in scenarios
including several DBMSs and their extension to different structures and parameters.
This difficulty does not only occur because the user must understand the source code of
the tool, but also because each DBMS employs distinct concepts and terminology for its
physical data structures and parameters, as well as for its implementation and syntax.

In this paper, we propose an approach to minimize these problems by explicitly
representing the elements and actions involved in the database tuning heuristics using
ontologies, as they represent an adequate means to support an accurate semantic record
of the heuristics formulation and behavior. The DBA can analyze the tuning heuristics
in more detail, as well as compare the different alternatives that each possible heuristic
proposes. Also, the DBA can perform (semi-) automatic experiments by combining
distinct heuristics. Finally, the use of ontologies also increases the heuristics under-
standing of the DBA, since they are described using higher-level concepts.

Thus, we present an ontological perspective for DB tuning heuristics. Our approach
is developed on top of an ontology-driven conceptual framework1, which includes an
ontology of DB tuning heuristics and an ontology of DB tuning structural concepts.

1 https://github.com/BioBD/outer_tuning, last accessed 2019/04/07.
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These ontologies may be extended straightforwardly at the conceptual level to include
new concepts and heuristics, without requiring the understanding of the implementa-
tion code. The advantage of our approach is that it provides a transparent methodology
for tuning databases using multiple heuristics defined through rules based on semantic
reasoning. One may create new heuristics by reasoning over the ontologies. We discuss
some results of the application of our framework to two real-world case studies.

The remainder of this paper is organized as follows. In Sect. 2 we discuss state of
the art in this area; in Sect. 3 we provide an overview of our conceptual framework,
and we detail the ontology responsible for defining and executing the heuristics;
Sect. 4, we showcase an outline of a demonstration of our framework, using our
heuristic ontology. Section 5 concludes this research work.

2 State-of-the-Art

To set the context for discussing the specific contributions of this work, it is important
to present different types of initiatives that consider ways of capturing and representing
concepts involved in the tuning process, as well as those which offer any tuning support
based on the represented concepts for DB or DB Tuning heuristics. As the proposition
of specific DB tuning heuristics is not the focus of our proposal, we refrain from citing
here such related literature.

The first group of works contemplates those related to conceptual models associ-
ated with the DB domain. The Common Warehouse Metamodel (CWM) specification,
proposed by the Object Management Group (OMG) as a metadata interchange standard
[2] comprises, among others, a package to describe relational data resources, which
includes elements associated to indexes, primary keys, and foreign keys. Also sup-
porting interoperability, Aguiar, and colleagues [3] proposed RDBS-O, a well-founded
reference ontology covering high-level DB structure concepts. Both initiatives serve as
a starting point for more comprehensive efforts covering other aspects of DB physical
design, optimization and tuning. Aligned with our work, Ouared and colleagues adopt
an approach that proposes a meta-advisor repository for DB physical design [4]. They
describe a metamodel with elements dedicated to express optimization algorithms
(heuristics), their characteristics and a cost model.

The second group of initiatives addresses tools [5–10] and approaches [11–13],
which help the DBA to improve the performance of DBMSs. Considering the use of
previously represented knowledge, the research work of Bellatreche and colleagues
[14, 15] tracks the relationship between the requirements of the application and the
suggestion of physical structures for optimization of the DB in a data warehouse
environment. It uses an ontology to formalize domain concepts from data sources and
SWRL rules [16] to relate them to the application requirements. Although the strategy
supports indexes suggestions, there is no further explanation for them or the proposal of
grounded alternatives. Recently, Zhang and colleagues presented the OtterTune tool,
which leverages data collected from previous tuning efforts to train machine learning
models, and recommends new configurations that are as good as or better than ones
generated by existing tools or a human expert [17]. Among the helpful suggestions,
they highlight the selection of the best access structures and configuration parameters
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for the DBMS. Zhang and colleagues proposed the CDBTune, an end-to-end automatic
DBMS configuration tuning system that recommends superior knob settings in cloud
environments, using deep reinforcement learning (RL). Through the reward-feedback
mechanism in RL instead of traditional regression, they expect to accelerate the con-
vergence speed of their model and improve efficiency of online tuning [18]. Zheng and
colleagues presented a neural network-based algorithm for performance self-tuning
[19] based on the workload and identify key system performance parameters, sug-
gesting values to tune the DBMS. The reasoning of the algorithms proposed by these
works is hidden in the source code or in the constructed model, making it difficult for
the DBA to understand it and make adjustments to extend, add or combine heuristics.
The decisions are not explained or justified to the DBA. In certain systems, such as
Oracle DBMS, there are specific tools for suggesting tuning actions, also making the
rationale of their choices available [20, 21]. Nevertheless, they still fail to capture the
actual DBA decision process, with justifications for chosen and refused suggested
tuning alternatives. Although there are a variety of tools and strategies to support the
DBA in the DB tuning task, most works fail to make reasoning and decisions explicit.

Moreover, existing DB tuning tools and approaches suggest actions but do not
provide a higher level mechanism for the DBA to verify the effectiveness of their
actions and to tailor the rationale to his/her background knowledge. If the DBA dis-
agrees with something suggested by the tool or approach, it may not be feasible for the
DBA to include or change any reasoning proposed by the tool. That way, only an
experienced DBA would be able to select the best tool to assist him/her according to
the established scenario. Besides, the tools and approaches that involve more than one
technique or structure do not have enough flexibility to consider additional methods.

3 The Outer-Tuning Conceptual Framework

We have developed Outer-Tuning, an ontology-driven framework for DB Tuning.
Outer-Tuning works both in automatic (self-tuning) and in semi-automatic (human
intervention) modes, and it may be extended to address new data structures and heuristics
because all changes are expressed in the conceptual level using a declarative language.

Outer-Tuning allows the user to enable/disable a set of inference rules (SWRL rules
[16]) established by heuristics. This functionality is crucial for the DBA, as s/he can
choose, through the interface, which heuristics should be used to tune the DB. The use
of a declarative language to define heuristics allows the DBA to focus on “what” the
heuristic should do, instead of “how” it should work.

3.1 Outer-Tuning Overview

Figure 1 Illustrates the architecture and execution of the Outer-Tuning framework,
using the activity diagram (UML alternative to the BPMN Business Process diagram)2.

2 https://sparxsystems.com/enterprise_architect_user_guide/14.0/guidebooks/tools_ba_uml_activity_
diagram.html, last accessed 2019/04/07.
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Outer-Tuning monitors the DB [Step 1] in a non-intrusive and continuous way and
captures the workload submitted to the DB. Then, queries are parsed to identify query
components and data structures, whose corresponding concepts in the ontology are
needed by the tuning heuristics to estimate their processing cost (preconditions) [Step
2]. The rules engine instantiates the concepts [Step 3] and applies the tuning heuristics
specified in the ontology rules, thus inferring tuning actions [Step 4] to improve the
performance of the queries in the workload.

When the framework is set to automatic mode [Step 5], all suggested tuning actions
(e.g., creation of indexes and materialized views) are applied to the DB; in semi-
automatic mode, the suggested tuning actions are presented to the user [Step 6], who
may customize [Step 7] which tuning actions will actually be applied to the DB [Step 5].

3.2 Conceptual Models

The structural conceptual model of the Outer-Tuning framework comprises two
independent and complementary (sub)ontologies3: the DB tuning concepts ontology
(namespace: tuning) and the DB tuning heuristic ontology (namespace: heuristic).
The DB tuning heuristic ontology, which is the focus of the present work, makes
references to the concepts described in the DB tuning concepts ontology.

The ontologies are capable of answering the following competency questions:
(i) which are the DB concepts involved in the DB tuning process? (ii) what is necessary
for each heuristic to know about the DB and to make its decisions? (iii) which are the
possible actions that can be performed by a heuristic?

In this paper, we focus on the DB tuning heuristic ontology, which addresses
questions (ii) and (iii), and relies on the Unified Foundational Ontology (UFO) [22, 23]
as its semantic foundation. Using UFO allows removing the ambiguity of the concepts
used in the task of running DB tuning heuristics. This article explains the process of
development and use of the ontology.

Fig. 1. Outer-tuning execution process

3 https://www.ime.uerj.br/ontuning/, last accessed 2019/04/07.
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The heuristic ontology was designed to support the specification of DB tuning
heuristics as rules and the dynamic execution of heuristics during DB tuning, as
explained in the following Subsections.

Heuristic Specification
The DBA (which is the role played by a Person while tuning a DB) chooses and
specifies the heuristics (Fig. 2) that should be considered for DB tuning. Throughout
the tuning task, the DBA assumes more specific roles with distinct goals. For example,
when defining (and configuring) a heuristic the heuristic:DBA plays the role of a
heuristic:specifier. When configuring a heuristic, a heuristic:HeuristicSpecification
relationship arises. The heuristic:Heuristic exists independently of other concepts.

A heuristic:Heuristic takes data structures of the DB schema (defined in DB tuning
concepts ontology) and cost estimates of DB operations into account to infer those
actions that we should execute for performance improvement. Thus, each precondition
of a heuristic:Heuristic references existing database concepts (heuristic:DBConcept)
(Fig. 3). The heuristic:PreconditionConcept is derived from the relationship between
heuristic:Heuristic and heuristic:Database Concept. A heuristic:DBConcept special-
izes into heuristic:TuningAssist or heuristic:DBObject. The heuristic:TuningAssist is a
database concept required by a heuristic to perform its suggested actions (for example,
a heuristic that suggests indexes needs to execute the “create index” DDL statement.
So, this heuristic requires the “create index” statement as a precondition). A heuristic:
DBObject refers to the database concept analyzed by the heuristic to make decisions
(for example, the same heuristic suggesting an index may need to examine the tuning:
Where clause of an SQL statement. So, the tuning:Where clause concept is a pre-
condition of this heuristic).

Each heuristic:DBConcept defined in the DB tuning concepts ontology needs to be
instantiated (Fig. 4) by a heuristic:Source (either a heuristic:Function or a heuristic:
Rule). A heuristic:Function is a heuristic:ConceptInstanceFunctionwhen it instantiates a

Fig. 2. Fragment of the heuristic ontology – heuristic specification
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heuristic:DBConcept (that is, when it creates a new individual in the DB tuning concepts
ontology). For example, a heuristic:ConceptInstanceFunction captures the database
workload and instantiates a heuristic:DMLcommand concept with the specific query
command captured. Analogously, a heuristic:Rule is a heuristic:ConceptInstanceRule
when it instantiates a heuristic:DBConcept.

Fig. 3. A fragment of the heuristic ontology – heuristic preconditions definition

Fig. 4. Fragment of the heuristic ontology – heuristic concepts instantiation definition
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Functions differ from rules since a heuristic:Function can interact with the DBMS,
whereas a heuristic:Rule cannot. This is important since some heuristic:DBConcepts
require accessing the database content to be instantiated, such as DML (Data Manip-
ulation Language) commands. For example, the tuning:DMLcommand concept,
defined in the domain ontology, requires a function that connects to the DBMS to
retrieve the tuning:DMLcommand from the workload submitted by the user.

A heuristic:Function or method (Fig. 5) is a collection of statements embedded in
the database that operate together in a group. It defines input and output parameters. In
theory, all these parameters are optional. In our approach, the output parameter (in-
stantiated concept or tuning action) is mandatory. For example, a heuristic:Function
that retrieves a tuning:DMLcommand from the DBMS does not need any input
parameters, while a heuristic:Function that returns information from an execution plan
requires the execution plan as its input parameter. The heuristic:Parameter is a concept
in the ontology, and its properties indicate if it plays the role of an input or of an output
parameter to a heuristic:Function. Our approach preferably instantiates concepts
through rules rather than functions, so as to make any reasoning explicit. Functions are
used in specific situations to instantiate concepts that cannot be derived by rules.

A heuristic:Rule (Fig. 6) is composed by a heuristic: condition-action pair,
meaning that when the condition is satisfied, an action is performed. They provide the
DBA with the rationale for heuristics application, by keeping track of the way concepts
are instantiated when each tuning alternative is evaluated.

A heuristic:RuleEngine represents a system that applies inference mechanisms
based on given rules, which in our case define DB tuning heuristics. The rule engine
component implements the code that selects and executes the heuristics (described in
the ontology) to suggest tuning actions (e.g., query rewriting) and the creation of access
structures (e.g., materialized views). The instance of tuning:DMLcommand comprises
the where clauses according to the SQL specification.

To perform the DB tuning task, heuristic:Heuristic defines heuristic:Rules that
must be evaluated by the inference engine. Unlike the heuristic:ConceptInstanceRule,
this kind of rule (heuristic:HeuristicDefinitionRule) corresponds to the definition of the
heuristic’s actions about the DB behavior. For example, a heuristic of indexes can

Fig. 5. Fragment of the heuristic ontology – functions definition
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simulate indexes, called hypothetical, to know if the optimizer would use it or not.
A tuning:HypotheticalIndex could exist in the DB (not physically) to improve certain
tuning:DMLcommand performance.

The heuristic may only suggests a hypothetical index, as illustrated by the fol-
lowing rule:

SingleStatement (?stat) ^ Where (?where) ^ hasClause (?stat, ?where)
^ Predicate (?pred)
^ componentOf (?pred, ?where) ^ SimpleExpression (?pred) ^ Refer-
encedColumn (?refCol) 
^ componentOf (?refCol, ?pred) ^ hasName (?refCol, ?nameCol)
^ swrlx:makeOWLThing(?hypInd, ?refCol) ^ swrlb:stringConcat (?name-
Hyp, “hi_”, ?nameCol)
->  HypotheticalIndex (?hypInd) ^ hasName (?hypInd, ?nameHyp) ^
originates (?stat, ?hypInd) 
^ acts_on (?hypInd, ?refCol) ^ IndexedColumn (?refCol) 

This rule analyzes the tuning:SingleStatement and suggests the indexes according
to the columns referenced in the tuning:Where clause. Given a tuning:SingleStatement,
if it has a tuning:Where clause predicate that is a simple expression, the rule engine
should get the referenced column and its name. As a consequence (the rule action), the
machine creates a new individual of type tuning:HypotheticalIndex with its relation-
ships with the tuning:SingleStatement that caused it (Originates) and the tuning:Col-
umn being indexed (Acts On). The tuning:IndexedColumn is the same as the tuning:
ReferencedColumn. Additional rules defined in the ontology4 were not mentioned here,
since we described only the ones relevant to the example in the article.

Fig. 6. Fragment of the heuristic ontology – rules definition

4 http://www.inf.puc-rio.br/*postgresql/conteudo/projeto4/download/OntologiaTuning.owl, last
accessed 2019/04/07.
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All the concepts referring to data structured of the DB schema are defined in the DB
tuning concepts ontology, to reflect the structures considered by common DB Tuning
heuristics [7, 24, 25], and includes tuning:DMcommand, tuning:DDLcommand, tun-
ing:Clause, tuning:AccessStructure, tuning:Index, tuning:RealIndex, tuning:Hypo-
theticalIndex, tuning:Table, tuning:Column. If a new DB tuning heuristic needs to refer
to a new concept not previously defined, it just needs to extend the DB tuning concepts
ontology, defining the semantics of this new concept according to the existing ones.

Execution of Heuristics
The subsequent moment in the DB tuning task is the heuristic execution. The heuristic:
HeuristicExecution needs the heuristic:HeuristicDefinition described in the heuristic
ontology since it is responsible for suggesting or applying tuning techniques based on
the workload analysis. The user starting the execution process does not have to be an
expert, since the heuristics have been specified by an expert (DBA). When a person
starts a heuristic execution, s/he chooses which heuristic s/he wants to execute first,
assuming the heuristic:Executor Role and performing the heuristic:HeuristicSelection.

At runtime, the preconditions concepts, defined previously, must be instantiated
(heuristic:InstantiatedConcepts) and retrieved by a software agent. The software agent
is defined since an automated self-tuning strategy (without human DBA intervention)
may be used. Then, the heuristic:Agent manages the heuristic:HeuristicExecution,
using heuristic:InstantiatedConcepts. During the heuristic:HeuristicExecution, each
heuristic:Rule is checked and evaluated by the rule engine (heuristic:RuleEvaluation).

Rule consequents represent suggested Actions, which can be either a heuristic:
TuningAction or a heuristic:RuleAction. When there is a heuristic:RuleAction, it
becomes a heuristic:VariablesControl (Relator) managed by the heuristic:RuleEngine.
We consider heuristic:VariablesControl as new instances/individuals of objects or
properties in the domain ontology according to the conditions established by the
heuristic. For example, a heuristic can add a bonus property to hypothetical indexes
each time they are mentioned in an execution plan. This action (adding bonus) cannot
be considered a tuning action because it is just a simulation. Therefore, we modeled it
as a heuristic:RuleAction, as a logical consequence of heuristic:VariablesControl
(bonus).

A heuristic:TuningAction is an action to improve the DB performance, such as the
creation of an access structure. To illustrate it, the heuristic may decide to transform the
hypothetical index into a real index when it achieves a considerable bonus. Every
heuristic:TuningAction requires an interaction with the DB, that is achieved via
a heuristic:Function to perform this interaction, represented as a heuristic:
DBTuningFunction.

Moreover, every Tuning Action may have an optional Justification, so roles were
created (heuristic:Justifier and heuristic:TuningActionJustifier) to contemplate it. The
justification indicates an explanation for the fact that the DBA accepted or not an
action.

The DB tuning task can be semi-automatic or fully automatic. To address this, we
introduce the concept of heuristic:Implementer that aggregates properties from
heuristic:DBA and heuristic:Agent. When the DBA implements the action (DBA
Implementer), it means that it is semi-automatic, i.e., the DBA needs to intervene and
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indicate whether or not to accept a suggested action. The DBA will need to analyze all
the suggested action. When the agent implements the action (heuristic:AgentImple-
menter), it means that it is fully automatic, i.e. without any human intervention, and the
heuristic:Agent performs all of the suggested actions.

Whenever the heuristic ontology is instantiated it means that a given heuristic is
being performed using concept instances defined in DB tuning concepts ontology
according to the workload submitted to the DB.

4 Case Studies

We ran two scenarios in our Outer-tuning framework, using our ontologies. The first
scenario applied tuning heuristics that suggest (hypothetical and physical) index
structures, and shows the importance of visualizing all the alternatives considered by
the tuning heuristics, instead of only the implemented actions. The second scenario
illustrates the need of extending the ontologies used by the framework, adding tuning
heuristics that suggest materialized views. Ontology extension points are described in
[26].

Scenario 1. The DB has a table (EMPLOYEE) with four columns (Identifier, Name,
Gender and Salary). Figure 7 shows the query presented in the DB workload that was
analyzed by the tuning heuristics defined in the heuristic ontology.

The DBA selects two different heuristics (HEIC-A and HEIC-B) to run individually
on the same workload and DB. The two heuristics eventually recommended the cre-
ation of different indexes in the DB.

At first, the DBA executes the framework using only the rules of the HEIC-A
heuristic about hypothetical indexes. Analyzing the DB, the optimizer generates the
query execution plan that chooses to use two hypothetical indexes (over the salary
column and gender column) created by the HEIC-A heuristic. Later, on the same initial
state of the DB (i.e., with no tuning actions performed by HEIC-A), the DBA executes
the framework using only the rules of the HEIC-B heuristic. The optimizer generates
the query execution plan that does not use any index and, rather, suggests a full table
scan operation. From these outcomes, the DBA may be in doubt about which rec-
ommendation to follow, either creating the physical index or not. The DBA, then,
checks the rule conditions that generated the candidate indexes and identifies that both
heuristics consider the columns referenced in the WHERE clause. As the conditions of
the rule are the same, the DBA cannot understand why the heuristics generated different
recommendations. S/he verifies information about the candidate index suggested by
each heuristic. By analyzing the ontology instances created during the execution of

SELECT * FROM EMPLOYEE
WHERE salary in (1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000)
AND  gender = “M”’;

Fig. 7. Query presented in the analyzed workload
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Scenario 1, the DBA concludes that HEIC-B heuristic does not consider bitmap
indexes, while HEIC-A does (Table 1). The following SQWRL query [27] recovers all
hypothetical indexes suggested per heuristic:

Heuristic(?h) ^ DatabaseConcept(?dc) ^ acts (?h, ?dc) ^
TuningAssist(?tunAss) 
^ match(?tuna, ?dc) ^ CreateHypothetical(?tunAss) ^
HypotheticalIndex(?hypInd) 
^ creates(?tunAss, ?hypInd) ^ hasType(?hypInd, ?indType)  
-> sqwrl:select(?h, ?indType) 

The regular B+tree indexes created by HEIC-B leads to a higher execution cost to
the query, justifying the fact that the optimizer does not consider them. The DBA may
also assess the decision rationale followed by our proposal (i.e., all alternative con-
siderations, even for those that are not considered for suggesting tuning actions).

Scenario 2. Scenario 2 used the TPC-H benchmark for the workload. This benchmark
has analytical queries (OLAP), an opportunity for the evaluation of heuristics that
consider materialized views (MVs). We considered two types of MVs during the
analysis of the results: the beneficial and the malefic. A MV is considered beneficial
when rewritten queries that use the MV increases the performance of the workload, and
malefic when their use decreases the performance of the workload. This occurs when
the MV size is greater than the number of pages read in the original query.

We ran two additional heuristics [28] in our Framework, which have inferred
materialized views for the workload. HMV1 pointed out three beneficial materialized
views to the workload (Q01, Q05, Q09) and two malefic (Q04, Q12). HMV2 showed
four beneficial materialized views (Q01, Q05, Q06, Q09) and five malefic (Q03, Q04,
Q07, Q12, Q14). Both heuristics brought a positive gain equivalent to the workload
(12.4% and 12.2%). But the framework showed that HMV1 estimated lower costs than
HMV2 for the creation and storage of MVs. While HMV1 proposed the creation of 5
MVs, HMV2 proposed 9. This demonstrates the way the framework shows that the
same heuristic can bring benefits or losses depending on the workload received.

Regardless of the result presented by both tuning heuristics, this scenario shows
that the framework is able to work simultaneously with more than one heuristic,
compare the solutions presented and the inclusion of new heuristics. With the use of
our framework, the DBA has sufficient information to assess which heuristics are
interesting for his/her workload, in a conceptual level. An experienced DBA may even

Table 1. Hypothetical Indexes considered by heuristics HEIC-A and HEIC-B

Heuristic Index
Name Creation cost Type

HEIC-A HI_GENDER 0.5625 Bitmap
HEIC-A HI_SALARY 4 Bitmap
HEIC-B HI_GENDER 13 B+tree
HEIC-B HI_SALARY 17 B+tree
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extend the heuristics behavior based on his/her experience. For example, composing
HMV1 and HMV2 would suggest the beneficial MVs both have inferred and avoid the
malefic MVs (Q7, Q3, Q14) suggested by HMV2.

In conclusion, the scenarios show that the Framework is able to: (i) Display all
alternatives evaluated, regardless of the decision that the heuristic took. In addition to
the alternatives, the DBA may also submit SQWRL queries to view the instances of the
ontology that represent all the behavior of the heuristics; (ii) infer useful DB tuning
actions. The case studies have demonstrated useful actions to improve database per-
formance; (iii) compare tuning heuristics described with the ontology. The case studies
show that the comparison of heuristics is possible through the interpretation of
ontology instances, and (iv) support the DBA in the DB tuning task with relevant
information which s/he can match the heuristics to the workload or insert new
heuristics in the tuning ontology.

5 Conclusion and Future Works

We presented an ontological perspective for DB tuning heuristics execution. Existing
proposals hinder both the extension to new heuristics and the transparency of the
reasoning used for decision-making. We described a conceptual model (heuristic
ontology) to address these points. The extension to new heuristics is facilitated because
the user only needs to instantiate the heuristic ontology defining new rules. Although
not all database tuning strategies are covered by our ontology, the DB tuning concepts
ontology (not detailed in this present paper) can be easily extended (without changing
the framework) to include concepts and properties for memory tuning (e.g.: share-
d_buffers, checkpoint_segments), query tuning (e.g.: rewriting) and transactions tuning
(e.g.: locks, isolation levels). The transparency of the reasoning is obtained by defining
the rationale described in rules. As the rules are defined in terms of familiar concepts, it
becomes easier for the DBA to understand the heuristics proposed behavior. We argue
that representing database tuning activities with more formalism through our ontologies
allows a more precise discussion and study of the issues behind database tuning—for
example, the different ways of working with tuning heuristics (add new structures to
existing heuristics, work with different heuristics that suggest the same type of struc-
ture)—that are not possible if the concepts involved were not explained through a high-
level model.

Future work will address new DB tuning heuristics and how we can compose or
combine them, identifying conflicts of the rules (semi) automatically and solving them.
Besides, we can create a repository for DB tuning decisions rationale.
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