
Ontology-Schema Based Query
by Example

Lucas Peres, Ticiana L. Coelho da Silva(B), Jose Macedo(B),
and David Araujo(B)

Insight Data Science Lab, Fortaleza, CE, Brazil
{lucasperes,ticianalc,jose.macedo,david}@insightlab.ufc.br

Abstract. The Web has evolved from a network of linked documents
to one where both documents and data are linked, resulting in what is
commonly known as the Web of Linked Data, that includes a large vari-
ety of data usually published in RDF from multiple domains. Intuitive
ways of accessing RDF data become increasingly important since the
standard approach would be to run SPARQL queries. However, this can
be extremely difficult for non-experts users. In this paper, we address
the problem of question answering over RDF. Given a natural language
question or a keyword search string, our goal is to translate it into a
formal query as SPARQL that captures the information needed. We pro-
pose Von-QBE which is a schema-based approach to query over RDF
data without any previous knowledge about the ontology entities and
schema. This is different from the-state-of-art since the approaches are
instance-based. However, it can be unfeasible using such approaches in
big data scenarios where the ontology base is huge and demands a large
amount of computational resource to keep the knowledge base in mem-
ory. Moreover, most of these solutions need the knowledge base triplified,
which can be a hard task for legacy bases. Von-QBE results are promis-
ing for the two real benchmarks evaluated, considering that only the
ontology schema is used to generate SPARQL queries.

1 Introduction

The Web has evolved from a network of linked documents to one where both
documents and data are linked, resulting in what is commonly known as the Web
of Linked Data, that includes a large variety of data usually published in RDF
from multiple domains. Intuitive ways of accessing RDF data become increas-
ingly important since the standard approach would be to run structured queries
in triple-pattern-based languages like SPARQL [12]. This can be extremely dif-
ficult for non-experts users.

Consider the example question, such as “Find the title of action movies pro-
duced in Eastern Asia and the name of their company”. A possible SPARQL
formulation, assuming a user familiar with the schema of the underlying knowl-
edge base, could consist of the following:

c© Springer Nature Switzerland AG 2019
A. H. F. Laender et al. (Eds.): ER 2019, LNCS 11788, pp. 204–212, 2019.
https://doi.org/10.1007/978-3-030-33223-5_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33223-5_17&domain=pdf
https://doi.org/10.1007/978-3-030-33223-5_17

Ontology-Schema Based Query by Example 205

SELECT DISTINCT ?x ?title ?company_name WHERE {
?x a mo:Movie; mo:title ?title;
mo:isProducedBy ?y; mo:belongsToGenre [a mo:Brute_Action] .

?y :companyName ?company_name .
?y :hasCompanyLocation [a mo:Eastern_Asia] . }

This complex query, which involves multiple joins, is difficult for the user to
come up with specific relations, classes and entities. This would require famil-
iarity with the knowledge base, which in general, no user should be expected to
have. In this paper, we address the problem of question answering over RDF.
Given a natural language question QN and an underlying ontology O, our goal
is to translate QN into a formal query QS as SPARQL that captures the infor-
mation need to be expressed by QN . We focus on queries that emphasize classes
and relations between them. We do not consider aggregation, disjunctive and
negation queries.

A considerable number of question answering approaches for RDF data has
been proposed, to name a few [1,8,9,11,13] and [12]. They address the same
problem of this paper. However, they present several limitations: [1,9,13] and
[11] are instance-based approaches, which can be unfeasible in big data scenarios
where the ontology base is huge and demands a large amount of computational
resource to keep the knowledge base in memory. Moreover, most of those solu-
tions need the knowledge base triplified, which can be a hard task for legacy
bases. [12] requires a pre-processing phase to constructed a phase-concept dic-
tionary as part of the knowledge base, and [8] is based on SPARQL templates. In
this paper, we propose Von-QBE (stands for Virtual Ontology Query By Exam-
ple) that overcome such limitations. Von-QBE derives from the term virtual
ontology, since it is not instance-based and it can use an ontology virtualized by
other tools like Ontop [3] instead of RDF stores.

Von-QBE is a schema-based approach to query over RDF data without any
previous knowledge about the ontology entities and schema. Von-QBE lets the
user queries using natural language questions or by using a keyword search and
translates the query into SPARQL. Furthermore, Von-QBE assists the user to
construct his/her query search interactively. The remainder of the paper is struc-
tured as follows: Sect. 2 introduces our proposal Von-QBE. Section 3 presents the
experimental evaluation, and finally Sect. 4 draws the final conclusions.

2 Von-QBE Framework

In this section, we introduce our proposal. Given a natural language question QN

(or a keyword search string) and an ontology base O, Von-QBE translates QN

into a SPARQL query QS that can capture the same information expressed by
QN . Beyond that, Von-QBE also helps the user to construct its keyword search
interactively. For the sake of brevity, from now on we will use QN in place of the
natural language question, and the keyword search string since each word in the
natural language question is tackled as a keyword.

206 L. Peres et al.

Person
subClassOf

Actor

has male actor

is produced by

title budget
production started year

MovieProduction Company

literal literal literal

company name

literal

birth name

literal

Fig. 1. Part of IMDB ontology schema with the highlighted fragment for the search:
movies and their actors birth name

Suppose the ontology schema in Fig. 11 represented as an RDF graph based
on [4], where the classes are graph nodes and the properties, edges. Imagine a
user that starts QN with the keyword movie. Von-QBE suggests improving QN

using concepts from the ontology schema and whenever QN represents what the
user is searching for, the user can submit QN to Von-QBE. Then, Von-QBE
transforms QN into a SPARQL query QS and returns the answers.

Von-QBE comprises three main components: (1) Fragment Extractor respon-
sible to, from QN , identify the ontology subset involved in the query. Through-
out this paper, we call such subset as fragment ; (2) Fragment Expansor which
expands the fragment with classes and properties, i.e. ontology concepts. Based
on this expansion, Fragment Expansor suggests new ontology concepts to the
user expands QN ; and finally, (3) Query Builder which transforms the fragment
into a SPARQL query QS . In what follows, we describe in details each Von-QBE
component.

Fragment Extraction. As we mentioned before a fragment from the underlying
RDF graph corresponds to the classes and properties of the ontology schema
involved on QN . The Fragment Extraction is made up by two main components:
(1) Keyword Matcher that identifies the ontology concepts mentioned on QN ,
and (2) Fragment Constructor that discovers how these concepts are related on
the ontology schema. Consider the ontology schema presented in Fig. 1 and QN

as “Give the movie actors”. The Keyword Matcher would identify the classes
Movie and Actor that yield the highest similarity value with the terms of QN .
From these classes, the Fragment Constructor would extract the fragment Movie
has male actor Actor, once the class Movie directly achieves Actor in the RDF
graph.

Now consider QN as “Find the birth name of actors from movies”. The Key-
word Matcher would identify the classes Actor and Movie, and the property
birth name. However, birth name is not a property of Actor neither a property
of Movie in the RDF graph. So Fragment Constructor identifies the class Per-
son and the property subClassOf to relate birth name with Actor. Finally, the
fragment is built by means of the relation has male actor that relates Movie and
Actor, the relation subClassOf that relates Actor and Person, and the relation

1 https://sites.google.com/site/ontopiswc13/home/imdb-mo.

https://sites.google.com/site/ontopiswc13/home/imdb-mo

Ontology-Schema Based Query by Example 207

birth name which is a property of Person. The generated fragment is highlighted
in Fig. 1.

Algorithm1 performs the Keyword Matcher. First of all, we prefer to use Jaro-
Winkler [10] as the similarity measure since it is widely used. Algorithm 1 receives
as input a list of words from QN , the ontology schema (RDFSchema) and a
similarity threshold ρ. It outputs the ontology concepts (classes and/or proper-
ties) that match with words. For each word (line 3) in QN , testWord appends
such word with the previous words (composedConcept) in QN such that they
together are similar to a concept in RDFSchema (Line 4). So, Line 5 checks if
there is any concept on RDFSchema such that the similarity between testWord
is greater than a threshold ρ. If so, the algorithm updates composedConcept
(Line 6) in order to keep in such variable a sequence of words in QN that
matches an ontology concept according to ρ. If the similarity is not greater
than ρ, the algorithm adds into elements list the highest similar ontology con-
cept with composedConcept (Lines 8 and 9), and updates the composedConcept
variable to the current analyzed word. The intuition behind is from that word
the algorithm might start a new sequence of words that match with any ontol-
ogy concepts. Algorithm1 needs to check if there is any ontology concept that
is similar to the last value assigned to composedConcept at Line 13. If so, such
concept is added into the elements list (Lines 14 and 15). Line 17 returns the
output of the algorithm.

The output of Algorithm 1 is given as input Fragment Constructor module,
which builds the fragment that relates the ontology concepts involved in QN

according to the RDF Schema (also given as input). First, it computes the closure

Algorithm 1. Algorithm Keyword Matcher
Data: words, RDFSchema, ρ
Result: elements //ontology elements

1 elements := {}; n :=(words.length-1); composedConcept := ”” ;
2 for i := 0 to n-1 do
3 word = words[i] ;
4 testWord = composedConcept + word ;
5 if similarConcept(testWord, RDFSchema) > ρ then
6 composedConcept = testWord ;
7 else
8 concept := RDFSchema.getMostSimilarConcept(composedConcept);
9 elements.add(concept) ;

10 composedConcept = word ;
11 end
12 end
13 if similarConcept(composedConcept, RDFSchema) > ρ then
14 concept := RDFSchema.getMostSimilarConcept(composedConcept) ;
15 elements.add(concept) ;
16 end
17 return elements

208 L. Peres et al.

graph [5] which is a subgraph constructed by using the shortest paths (obtained
by running Dijkstra algorithm) among all the pair of ontology concepts returned
by Algorithm1. This graph might have cycles which are often found on RDF
ontologies. Imagine two properties that are one inverse of another, like has male
actor that connects Movie to Actor and is male actor in, connecting Actor
to Movie. To remove these cycles, the module applies Prim’s algorithm [6] to
find the Minimum Spanning Tree(MST). Prim outputs a fragment smaller or
equal than the closure graph. This means that such a fragment contains only
the minimal number of paths to connect all the ontology concepts outputted by
Algorithm1. Of course, the closure graph might have multiple MSTs. However,
Prim only takes one of them.

After the computation of the fragment, Von-QBE starts two other compo-
nents: (1) Fragment Expansor which expands the fragment with ontology classes
and properties. Based on this expansion, Fragment Expansor suggests new ontol-
ogy concepts to the user expands QN ; (2) Query Builder which transforms the
fragment into a SPARQL query QS .

Fragment Expansor. Von-QBE suggests the user expands QN using the ontol-
ogy classes and properties that are directly connected to the fragment. The Frag-
ment Expansor expands the fragment with all edges (of course, the ones that
are not already in the fragment) that come in (or out) from the fragment nodes.
Remember that our ontology is represented as an RDF graph, and the fragment
nodes are ontology classes. Let QN be “Find the movies and their actors” and
the underlying ontology is the RDFSchema represented in Fig. 1. The fragment
nodes derived from QN are Movie and Actor. From the node Movie, Fragment
Expansor can find the following properties: title, budget, production started year,
is produced by and has male actor. However, the has male actor is already in
the fragment. So, only the other properties should be presented as a suggestion
to the user expands QN . The node Actor contains a particular case. Consider
the property has male actor is already in the fragment. In this case, Fragment
Expansor can only suggest subClassOf. However, when a class is a subclass of
another, it must inherit the properties from the parent class. So, instead of sug-
gesting subClassOf, Fragment Expansor suggests to the user birth name.

Query Builder works as follows: each edge in the fragment (output of Frag-
ment Constructor module or expanded with the suggestions outputted by Frag-
ment Expansor module and accepted by the user) is added as a clause (or triple
pattern), and the source and the target nodes are named as variables. Since
the ontology schema might have properties that present multiple domains and
ranges, Query Builder also adds a clause to inform the instance type (class) of
each variable. All the clauses (or triple patterns) are given as input to Apache
Jena library2 which generates QS according to the SPARQL syntax. Let QN be:
“Find the birth name of actors from movies” and the fragment with the follow-
ing relations: Movie has male actor Actor, Actor subClassOf Person and Person
birth name. The second edge relates to the property subClassOf. Whenever Query

2 http://jena.apache.org.

http://jena.apache.org

Ontology-Schema Based Query by Example 209

Builder finds an edge with subClassOf, it replaces such edge by other new edges
that have the parent class as a source. So considering the RDFSchema rep-
resented in Fig. 1, Query Builder generates the following edges: E1: Movie has
male actor Actor and E2: Actor birth name.

The edge E1 is a relation connecting two classes. Since this is the first edge
to be processed, we have two new variables (one for Movie and one for Actor).
Query Builder also adds three clauses: a definition for the Movie variable, a
definition for the Actor variable and the connection of both variables using
the property has male actor. So, the edge E1 corresponds to the three following
triple patterns: TP1: ?Movie a imdb:Movie, TP2: ?Actor a imdb:Actor and TP3:
?Movie imdb:has_male_actor ?Actor. The edge E2 is a property that points to
a literal value (also called attribute or, in RDF, DataTypeProperty). This kind of
edge needs to use also two variables, but only the first one is a class instance, the
other variable is a literal value (strings, numbers, dates, among others). Since
the Actor variable is already defined, Query Builder only needs to add one more
triple pattern: TP4: ?Actor imdb:birth_name ?Actor_birth_name. Once all the
triple patterns are generated from the fragment edges, Apache Jena generates
the SPARQL query QS as follows:

SELECT ?Movie ?Actor ?Actor_birth_name WHERE{
?Movie a imdb:Movie .
?Actor a imdb:Actor .
?Movie imdb:has_male_actor ?Actor .
?Actor imdb:birth_name ?Actor_birth_name .}

3 Experiments

In this section, we provide the details about the experimentation performed
with Von-QBE. No experiments were made to compare Von-QBE to other solu-
tions previously mentioned since these works use the ontology data instances
to improve their performance, which would not be a fair comparison. From the
authors’ knowledge, OptiqueVQS [7] and Von-QBE are the only solution schema-
based, but OptiqueVQS does not accept natural language or keyword search then
we can not compare with OptiqueVQS as well. Instead, we experimented Von-
QBE with two real benchmarks. For each benchmark, we evaluate each question
is evaluated according to well-established metrics, i.e., recall and precision.

3.1 Datasets

Our experiments are based on two collections of questions: IMDB Movie Ontol-
ogy3 virtualized using Ontop [3] with questions formulated in SPARQL query4.
IMDB provides data about actors, movies, directors, and production company.
3 https://sites.google.com/site/ontopiswc13/home/imdb-mo.
4 https://raw.githubusercontent.com/wiki/ontop/ontop/attachments/Example_

MovieOntology/movieontology.q.

https://sites.google.com/site/ontopiswc13/home/imdb-mo
https://raw.githubusercontent.com/wiki/ontop/ontop/attachments/Example_MovieOntology/movieontology.q
https://raw.githubusercontent.com/wiki/ontop/ontop/attachments/Example_MovieOntology/movieontology.q

210 L. Peres et al.

Another collection of questions are the QALD5 task for question answering over
linked data. It comprises two sets of questions over DBpedia [2], annotated with
SPARQL queries and answers. We used QALDs 5, 6, 7 and 9 training ques-
tions which are provided with a SPARQL benchmark. For both benchmarks, the
questions out-of-scope for Von-QBE were not considered, like ASK type ques-
tions, aggregation, and counting. Moreover, the ones that no entities are available
(empty results).

After removing these questions, our test set consists of 12 QALD-(5, 6, 7,
9) training questions and 29 Ontop questions out of 37. The number of evalu-
ated questions in QALD-(5, 6, 7, 9) reduces by much, because these questions
comprise information about instances, like people names, country names, aggre-
gations, sorting, while Von-QBE works with conceptual questions, using classes
and properties names only.

3.2 Evaluation Results

Table 1 lists the results of each experiment using IMDB and QALD datasets.
To both benchmarks, we set 0,9 as the similarity threshold (ρ) in the Keyword
Matcher algorithm. IMDB contains some questions with low results for precision,
like the keyword search question 24: “title movies company name production
company located East Asia”, for example, demands the movie title and company
names located in East Asia. Von-QBE generates a SPARQL query that projects
all properties and entities used in the triple-patterns on the SELECT clause,
then the movies and companies URIs, titles, and names are returned. However,
there exist movies with the same title but different IDs, so Von-QBE retrieves
more answers than the benchmark. This decreases precision.

Table 1. Experiment results for IMDB and QALD-(5, 6, 7, 9) datasets.

Dataset Questions Select-project questions Answerable questions Recall (R) Precision(P)

IMDB 37 37 29 0.96 0.69

QALD-5 286 269 1 0.2 1× 10e− 4

QALD-6 335 308 5 0.55 0.001

QALD-7 215 193 2 0.39 3× 10e− 5

QALD-9 408 371 4 0.66 0.013

Weighted mean 0.53 0.0047

Another drawback is for questions that use entities to filter the results, like
question 271 from QALD-9: “Which awards did Douglas Hofstadter win?”. The
SPARQL gold standard retrieves only the awards from Douglas Hofstader while
the SPARQL generated from Von-QBE retrieves all the awards. This happens
because VON-QBE is schema-based only, and Douglas Hofstader is an entity,
5 http://qald.aksw.org.

http://qald.aksw.org

Ontology-Schema Based Query by Example 211

not a concept. This has a major impact in the QALD results, since only a really
small portion of the questions, Von-QBE can retrieve any result. Analyzing only
the queries with answers, we still get some acceptable recall results using only
the schema. We plan to enhance VON-QBE by using, for instance, Named Entity
Recognition tools to detect for each entity described in the query (like Douglas
Hofstader) its corresponding class. The evaluation data can be found at6 and a
demonstration of Von-QBE can be found at7.

4 Conclusion and Future Work

In this paper, we propose Von-QBE to address the problem of translating a
natural language question or a keyword search over RDF data into SPARQL
query. From the authors’ knowledge, Von-QBE is the first work to address such
a problem using only the ontology schema. We believe our results are promising
for the two real benchmarks evaluated, considering that only the ontology schema
was used to generate SPARQL queries. As future work, we aim at using natural
language processing tools to detect entities described in the query and find its
corresponding concept over the ontology schema. Moreover, we aim at expanding
Von-QBE to process different types of queries, like aggregation.

Acknowledgments. This work has been supported by FUNCAP SPU 8789771/2017
research project.

References

1. Arnaout, H., Elbassuoni, S.: Effective searching of RDF knowledge graphs. J. Web
Semant. 48, 66–84 (2018)

2. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia:
a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007.
LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-76298-0_52

3. Calvanese, D., et al.: Ontop: answering SPARQL queries over relational databases.
Semant. Web 8(3), 471–487 (2017)

4. World Wide Web Consortium, et al.: RDF 1.1 concepts and abstract syntax
5. Kompella, V.P., Pasquale, J.C., Polyzos, G.C.: Multicast routing for multimedia

communication. IEEE/ACM Trans. Netw. (TON) 1(3), 286–292 (1993)
6. Prim, R.C.: Shortest connection networks and some generalizations. Bell Labs

Tech. J. 36(6), 1389–1401 (1957)
7. Soylu, A., Kharlamov, E., Zheleznyakov, D., Jimenez-Ruiz, E., Giese, M., Horrocks,

I.: OptiqueVQS: ontology-based visual querying. In: VOILA@ ISWC, p. 91 (2015)
8. Unger, C., Bühmann, L., Lehmann, J., Ngonga Ngomo, A.-C., Gerber, D., Cimiano,

P.: Template-based question answering over RDF data. In: Proceedings of the 21st
International Conference on World Wide Web (2012), pp. 639–648. ACM (2012)

6 https://github.com/InsightLab/linked-graphast/tree/evaluation.
7 https://github.com/InsightLab/von-qbe.

https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1007/978-3-540-76298-0_52
https://github.com/InsightLab/linked-graphast/tree/evaluation
https://github.com/InsightLab/von-qbe

212 L. Peres et al.

9. Usbeck, R., Ngomo, A.-C.N., Bühmann, L., Unger, C.: HAWK – hybrid question
answering using linked data. In: Gandon, F., Sabou, M., Sack, H., d’Amato, C.,
Cudré-Mauroux, P., Zimmermann, A. (eds.) ESWC 2015. LNCS, vol. 9088, pp.
353–368. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18818-8_22

10. Winkler, W.E.: The state of record linkage and current research problems. Statis-
tical Research Division, US Census Bureau, Citeseer (1999)

11. Xu, K., Zhang, S., Feng, Y., Zhao, D.: Answering natural language questions via
phrasal semantic parsing. In: Zong, C., Nie, J.Y., Zhao, D., Feng, Y. (eds.) Nat-
ural Language Processing and Chinese Computing. CCIS, vol. 496, pp. 333–344.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45924-9_30

12. Yahya, M., Berberich, K., Elbassuoni, S., Ramanath, M., Tresp, V., Weikum, G.:
Natural language questions for the web of data. In: Proceedings of the 2012 Joint
Conference on EMNLP and CoNLL, pp. 379–390. Association for Computational
Linguistics (2012)

13. Yih, S.W.-T., Chang, M.-W., He, X., Gao, J.: Semantic parsing via staged query
graph generation: question answering with knowledge base

https://doi.org/10.1007/978-3-319-18818-8_22
https://doi.org/10.1007/978-3-662-45924-9_30

	Ontology-Schema Based Query by Example
	1 Introduction
	2 Von-QBE Framework
	3 Experiments
	3.1 Datasets
	3.2 Evaluation Results

	4 Conclusion and Future Work
	References

