
Alberto H. F. Laender · Barbara Pernici ·
Ee-Peng Lim · José Palazzo M. de Oliveira (Eds.)

LN
CS

 1
17

88

38th International Conference, ER 2019
Salvador, Brazil, November 4–7, 2019
Proceedings

Conceptual Modeling

Lecture Notes in Computer Science 11788

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7409

http://www.springer.com/series/7409

Alberto H. F. Laender • Barbara Pernici •

Ee-Peng Lim • José Palazzo M. de Oliveira (Eds.)

Conceptual Modeling
38th International Conference, ER 2019
Salvador, Brazil, November 4–7, 2019
Proceedings

123

Editors
Alberto H. F. Laender
Universidade Federal de Minas Gerais
Belo Horizonte, Brazil

Barbara Pernici
Politecnico di Milano
Milan, Italy

Ee-Peng Lim
Singapore Management University
Singapore, Singapore

José Palazzo M. de Oliveira
Univ Federal do Rio Grande do Sul
Porto Alegre, Brazil

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-33222-8 ISBN 978-3-030-33223-5 (eBook)
https://doi.org/10.1007/978-3-030-33223-5

LNCS Sublibrary: SL3 – Information Systems and Applications, incl. Internet/Web, and HCI

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-5032-2233
https://doi.org/10.1007/978-3-030-33223-5

Preface

We are proud to present the proceedings of the 38th International Conference on
Conceptual Modeling (ER 2019), held in Salvador, Brazil, during November 4–7,
2019. The ER conference series is an annual premier forum featuring the latest research
breakthroughs in theories, models, methods, and tools for developing, communicating,
and applying conceptual models.

This year, we are very delighted to celebrate 40 years of ER and to bring the
conference back to Brazil after 10 years. We have put together a strong scientific
program consisting of keynote talks by four distinguished speakers, oral presentations
of accepted main conference papers, a doctoral consortium, seven workshops, and four
tutorials. For the keynote talks, we were extremely honored to have Veda C. Storey, the
winner of Peter Chen Award 2018 and Full Professor of Computer Information Sys-
tems and Professor of Computer Science at the Georgia State University (USA),
Marco A. Casanova, Professor of Computer Science at the Pontifical Catholic
University of Rio de Janeiro (Brazil), Barbara Weber, Professor for Software Systems
Programming and Development at the University of St. Gallen (Switzerland), and
Paul D. Nielsen, Director and CEO of the Software Engineering Institute (USA),
sharing their research and practice insights. The industrial keynote talk was delivered
by C. Mohan, an outstanding researcher from IBM Research, an IBM fellow, and a
database community leader bestowed with many awards and honors.

For the main conference, we received 142 paper submissions of which 22 were
accepted as full papers and another 22 were accepted as short papers. The overall
acceptance rate was about 31%. In our review process, each paper was reviewed by
three PC members and one senior PC member to ensure that all accepted papers were
carefully selected. All the accepted papers were given presentation timeslots distributed
into 12 paper sessions. In addition, ER 2019 hosted a Doctoral Consortium for PhD
students and academics to share their research ideas, to seek advice, and to explore
collaboration in conceptual modeling research. The conference also included an ER
Forum to cover emerging and early stage research, as well as poster and demo sessions
to increase opportunities for interaction.

Finally, we would like to thank all participants, authors, reviewers, and organizers
of the conference for their contribution to making ER 2019 a successful event. We
thank Springer for their proceedings support and EasyChair for its wonderful confer-
ence management system. Special thanks to our many sponsors and to the ER Steering
Committee for their support and advice.

November 2019 Alberto H. F. Laender
Barbara Pernici
Ee-Peng Lim

José Palazzo M. de Oliveira

Organization

Conference General Co-chairs

José Palazzo M. de Oliveira Universidade Federal do Rio Grande do Sul, Brazil
Vaninha Vieira dos Santos Universidade Federal da Bahia, Brazil

Program Committee Co-chairs

Alberto H. F. Laender Universidade Federal de Minas Gerais, Brazil
Barbara Pernici Politecnico di Milano, Italy
Ee-Peng Lim Singapore Management University, Singapore

Industrial Chair

Ana Carolina Salgado Universidade Federal de Pernambuco, Brazil

Workshop Co-chairs

Giancarlo Guizzardi Free University of Bolzano-Bozen, Italy
Frederik Gailly Ghent University, Belgium
Rita Suzana Pitangueira

Maciel
Universidade Federal da Bahia, Brazil

Poster and Tools Demonstration Co-chairs

Renata Guizzardi Universidade Federal do Espírito Santo, Brazil
Daniela Barreiro Claro Universidade Federal da Bahia, Brazil

Tutorial Co-chairs

Mirella M. Moro Universidade Federal de Minas Gerais, Brazil
Jolita Ralyté University of Geneva, Switzerland

Doctoral Symposium Chairs

Samira Si-Said Cherfi Conservatoire National des Arts et Métiers, France
Vanessa Braganholo Universidade Federal Fluminense, Brazil

Forum Chair

Ignacio Panach Navarrete Universitat de València, Spain

Publicity Chair

José Palazzo M. de Oliveira Universidade Federal do Rio Grande do Sul, Brazil

Local Arrangements Chairs

Daniela Barreiro Claro Universidade Federal da Bahia, Brazil
Fabiola Greve Universidade Federal da Bahia, Brazil
Rita Suzana Pitangueira

Maciel
Universidade Federal da Bahia, Brazil

Web Master

Gabriel Machado Lunardi Universidade Federal do Rio Grande do Sul, Brazil

Treasurer

Stephen W. Liddle Brigham Young University, USA

ER Steering Committee Liaison

Sudha Ram University of Arizona, USA

Program Committee

Jacky Akoka Conservatoire National des Arts et Métiers, France
João Paulo Almeida Universidade Federal do Espírito Santo, Brazil
Yuan An Drexel University, USA
João Araújo Universidade NOVA de Lisboa, Portugal
Paolo Atzeni Università degli Studi Roma Tre, Italy
Claudia P. Ayala Universitat Politècnica de Catalunya, Spain
Fatma Başak Aydemir Boğaziçi University, Turkey
Wolf-Tilo Balke Technische Universität Braunschweig, Germany
Zhifeng Bao RMIT University, Australia
Ladjel Bellatreche LIAS, ENSMA, France
Sourav S. Bhowmick Nanyang Technological University, Singapore
Sandro Bimonte IRSTEA, France
José Borbinha Universidade de Lisboa, Portugal
Mokrane Bouzeghoub UVSQ, CNRS, France
Shawn Bowers Gonzaga University, USA
Stephane Bressan National University of Singapore, Singapore
Robert Andrei Buchmann Babeş-Bolyai University of Cluj-Napoca, Romania
Cristina Cabanillas Vienna University of Economics and Business, Austria
Diego Calvanese Free University of Bozen-Bolzano, Italy
Maria Luiza Campos Universidade Federal do Rio de Janeiro, Brazil
Cinzia Cappiello Politecnico di Milano, Italy

viii Organization

Silvana Castano Università degli Studi di Milano, Italy
Stefano Ceri Politecnico di Milano, Italy
Luca Cernuzzi Universidad Católica, Paraguay
Reynold Cheng The University of Hong Kong, China
Samira Si-Said Cherfi Conservatoire National des Arts et Métiers, France
Meng-Fen Chiang Singapore Management University, Singapore
Roger Chiang University of Cincinnati, USA
Isabelle Comyn-Wattiau ESSEC Business School, France
Dolors Costal Universitat Politècnica de Catalunya, Spain
Altigran S. da Silva Universidade Federal do Amazonas, Brazil
Fabiano Dalpiaz Utrecht University, The Netherlands
Valeria De Antonellis Università degli Studi di Brescia, Italy
Sergio De Cesare University of Westminster, UK
Gill Dobbie The University of Auckland, New Zealand
Marlon Dumas University of Tartu, Estonia
Johann Eder Alpen-Adria-Universität Klagenfurt, Austria
Vadim Ermolayev Zaporizhzhia National University, Ukraine
Sergio España Utrecht University, The Netherlands
Ricardo A. Falbo Universidade Federal do Espírito Santo, Brazil
Hans-Georg Fill University of Fribourg, Switzerland
Xavier Franch Universitat Politècnica de Catalunya, Spain
Ulrich Frank Universität Duisburg-Essen, Germany
Frederik Gailly Ghent University, Belgium
Hong Gao Harbin Institute of Technology, China
Ming Gao East China Normal University, China
Faiez Gargouri Institut Supérieur d’Informatique et de Multimédia

de Sfax, Tunisia
Marcela Genero Universidad de Castilla-La Mancha, Spain
Aurona Gerber University of Pretoria, South Africa
Mohamed Gharzouli Constantine 2 University, Algeria
Aditya Ghose University of Wollongong, Australia
Paolo Giorgini Università di Trento, Italy
Matteo Golfarelli Università degli Studi di Bologna, Italy
Cesar Gonzalez-Perez Incipit, CSIC, Spain
Georg Grossmann University of South Australia, Australia
Nicola Guarino ISTC, CNR, Italy
Esther Guerra Universidad Autónoma de Madrid, Spain
Giancarlo Guizzardi Free University of Bolzano-Bozen, Italy
Renata Guizzardi Universidade Federal do Espiríto Santo, Brazil
Claudio Gutierrez Universidad de Chile, Chile
Sven Hartmann Clausthal University of Technology, Denmark
Martin Henkel Stockholm University, Sweden
Jennifer Horkoff University of Gothenburg and Chalmers University

of Technology, Sweden
Hao Huang Wuhan University, China
Chih-Chieh Hung Tamkang University, Taiwan

Organization ix

Shareeful Islam University of East London, UK
Matthias Jarke RWTH Aachen University, Germany
Manfred Jeusfeld University of Skövde, Sweden
Paul Johannesson Royal Institute of Technology, Sweden
Ivan Jureta University of Namur, Belgium
Hung-Yu Kao National Cheng Kung University, Taiwan
Gerti Kappel Vienna University of Technology, Austria
Dimitris Karagiannis University of Vienna, Austria
Agnes Koschmider Karlsruhe Institute of Technology, Germany
John Krogstie Norwegian University of Science and Technology,

Norway
Dongwon Lee The Pennsylvania State University, USA
Mong Li Lee National University of Singapore, Singapore
Julio Cesar Leite Pontifícia Universidade Católica do Rio de Janeiro,

Brazil
Stephen Liddle Brigham Young University, USA
Tok Wang Ling National University of Singapore, Singapore
Sebastian Link The University of Auckland, New Zealand
Jiaheng Lu University of Helsinki, Finland
Bernadette Farias Lóscio Universidade Federal de Pernambuco, Brazil
Hui Ma Victoria University of Wellington, New Zealand
Wolfgang Maass Saarland University, Germany
Heinrich C. Mayr Alpen-Adria-Universität Klagenfurt, Austria
Claudia Bauzer Medeiros Universidade de Campinas, Brazil
Lourdes Moreno Universidad Carlos III de Madrid, Spain
Regina Motz Universidad de la República, Uruguay
Haralambos Mouratidis University of Brighton, UK
John Mylopoulos University of Toronto, Canada
Wilfred Ng The Hong Kong University of Science

and Technology, China
Quoc Viet Hung Nguyen Griffith University, Australia
Selmin Nurcan Université Paris 1 Panthéon-Sorbonne, France
Antoni Olivé Universitat Politècnica de Catalunya, Spain
Andreas L. Opdahl University of Bergen, Norway
Jinsoo Park Seoul National University, South Korea
Jeffrey Parsons Memorial University of Newfoundland, Canada
Oscar Pastor Universitat Politècnica de Valencia, Spain
Zhiyong Peng State Key Laboratory of Software Engineering, China
Fabio Porto National Laboratory of Scientific Computation, Brazil
Henderik Proper Public Research Centre Henri Tudor, Luxembourg
Christoph Quix Fraunhofer, Germany
Jolita Ralyté University of Geneva, Switzerland
Sudha Ram University of Arizona, USA
Manfred Reichert University of Ulm, Germany
Hajo A. Reijers Utrecht University, The Netherlands
Iris Reinhartz-Berger University of Haifa, Israel

x Organization

Manuel Resinas Universidad de Sevilla, Spain
Daniel Riesco Universidad Nacional de San Luis, Argentina
Colette Rolland Université Paris 1 Panthéon-Sorbonne, France
Marcela Ruiz Utrecht University, The Netherlands
Antonio Ruiz-Cortés Universidad de Sevilla, Spain
Motoshi Saeki Tokyo Institute of Technology, Japan
Melike Sah Near East University, Cyprus
Klaus-Dieter Schewe Software Competence Center Hagenberger, Germany
Jie Shao University of Science and Technology of China, China
Peretz Shoval Ben-Gurion University, Israel
Pnina Soffer University of Haifa, Israel
Il-Yeol Song Drexel University, USA
Veda C. Storey Georgia State University, USA
Stefan Strecker University of Hagen, Germany
Arnon Sturm Ben-Gurion University, Israel
David Taniar Monash University, Australia
Ernest Teniente Universitat Politècnica de Catalunya, Spain
Bernhard Thalheim Christian-Albrechts-Universität zu Kiel, Germany
Juan-Carlos Trujillo Universidad de Alicante, Spain
Panos Vassiliadis University of Ioannina, Greece
Gottfried Vossen ERCIS Muenster, Germany
Chaokun Wang Tsinghua University, China
Hongzhi Wang Harbin Institute of Technology, China
Xianzhi Wang University of Technology Sydney, Australia
Xiaoli Wang Xiamen University, China
Mathias Weske University of Potsdam, Germany
Manuel Wimmer Johannes Kepler Universität Linz, Austria
Carson Woo The University of British Columbia, Canada
Robert Wrembel Poznan University of Technology, Poland
Shuichiro Yamamoto Nagoya University, Japan
Eric Yu University of Toronto, Canada
Apostolos Zarras University of Ioannina, Greece
Jelena Zdravkovic Stockholm University, Sweden
Wenjie Zhang The University of New South Wales, Australia
Xiangmin Zhou RMIT University, Australia
Xuan Zhou Renmin University of China, China

Organization xi

External Reviewers

Kevin Andrews
Kimon Batoulis
Iris Beerepoot
Mario Marcelo Beron
Robert Bill
Dominik Bork
Tsz Nam Chan
Yuxing Chen
Kelli de Faria Cordeiro
Sybren De Kinderen
Juan de Lara
Victoria Döller
Irene Bedilia Estrada Torres
Marco Franceschetti
Fáber Danilo Giraldo Velásques
Israel Gonzalez-Carrasco
Tobias Grubenmann
Wided Guédria
Stephan Haarmann
Fayçal Hamdi
Anasthasia Haryanto
Chengkun He
Leschek Homann
Klaus Kammerer
Jelmer Koorn

Robin Kraft
Vimal Kunnummel
Julius Köpke
Jens Lechtenbörger
Xiaodong Li
Xixi Lu
José Luis López-Cuadrado
Xavier Oriol
Cristhian Parra
Daniel Ramos da Silva
Simon Remy
Alejandro Sanchez
Michael Stach
Jihae Suh
Pablo Trinidad
Jan Martijn Van Der Werf
Bernhard Wally
Zhuo Wang
Sabine Wolny
Pengfei Xu
Qian Yan
Gongsheng Yuan
Chao Zhang
Zichen Zhu

Organized By

Instituto de Informática, Universidade Federal do Rio Grande do Sul, Brazil
Departamento de Ciência da Computação, Universidade Federal da Bahia, Brazil

Sponsored By

The ER Institute
Sociedade Brasileira de Computação (Brazilian Computer Society)

xii Organization

Invited Talks

Next Generation Modeling Environments

Barbara Weber1,2

1 Institute of Computer Science, University of St. Gallen, 9000 St. Gallen,
Switzerland

barbara.weber@unisg.ch
2 Software and Process Engineering, Technical University of Denmark, 2800 Kgs.

Lyngby, Denmark

Abstract. Conceptual models play an important role in many organizations.
They serve as tools for communication and documentation, are often a central
part in process improvement initiatives, and are key to the development and
evolution of information systems. Existing modeling tools typically support end
users in a rather generic and non-personalized manner. However, users not only
differ in their modeling expertise and the challenges they encounter while
modeling, but also in their preferences. Therefore, they would benefit from a
new generation of modeling environments that are highly personalized and
adapt themselves to users’ needs. This keynote presents a vision of such
modeling environments with a focus on process modeling. Next generation
process modeling environments are not limited to graphical user interfaces, but
allow end users to interact with them in their preferred modality (e.g., natural
language user interfaces like chatbots and conversational agents). For example,
recent research by [4] shows how a process model can be transformed into a
conversational agent to guide process actors through the process steps. Another
key characteristic of next generation process modeling environments is the
continuous collection of multi-modal data. Amongst others data collection may
include behavioral data (e.g., user interactions), data on how the model and its
properties change over time, and (neuro-)physiological data of the modeler
collected with biosensors. Next generation modeling environments analyze the
collected data while the system is being used to obtain insights and continuously
adapt themselves in response to the obtained insights. For example, data about
the model and how it has evolved over time can be used to predict the expertise
level of a modeler [3]. Behavioral data can be exploited not only to derive
behavioral patterns or modeling styles [1, 5], but also to automatically detect the
modeling activity a user is currently engaged in [2]. Neuro-physiological data, in
turn, can be used in a learning setting to assess the cognitive state of a user (e.g.,
identify states of high cognitive load) and to adapt the difficulty of the materials
provided accordingly [7]. With inherent data collection and analysis capabilities,
the boundaries between development and evaluation will increasingly blur and
continuous experimentation will become an integral part of system develop-
ment. Our work on Cheetah Experimental Platform is a first step towards this
direction [6]. The keynote highlights this potential with several examples from
our research and touches upon challenges that come with the development of
next generation modeling environments.

References

1. Abbad Andaloussi, A., Burattin, A., Slaats, T., Petersen, A.C.M., Hildebrandt, T.T.,
Weber, B.: Exploring the understandability of a hybrid process design artifact based on DCR
graphs. In: Reinhartz-Berger, I., Zdravkovic, J., Gulden, J., Schmidt, R. (eds.)
BPMDS/EMMSAD -2019. LNBIP, vol. 352, pp. 69–84. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-20618-5_5

2. Burattin, A., Kaiser, M., Neurauter, M., Weber, B.: Learning process modeling phases from
modeling interactions and eye tracking data. Data Knowl. Eng. 121, 1–17 (2019)

3. Burattin, A., et al.: Who is behind the model? classifying modelers based on pragmatic model
features. In: Weske, M., Montali, M., Weber, I., vom Brocke, J. (eds.) BPM 2018. LNCS,
vol. 11080, pp. 322–338. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98648-
7_19

4. López, A., Sànchez-Ferreres, J., Carmona, J., Padró, L.: From process models to chatbots. In:
Giorgini, P., Weber, B. (eds.) CAiSE 2019. LNCS, vol. 11483, pp. 383–398. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-21290-2_24

5. Pinggera, J., et al.: Styles in business process modeling: an exploration and a model. Softw.
Syst. Model. 14(3), 1055–1080 (2015)

6. Pinggera, J., Zugal, S., Weber, B.: Investigating the process of process modeling with cheetah
experimental platform. In: Mutschler, B., Recker, J., Wieringa, R.J., Ralyté, J., Plebani, P.,
(eds.) Proceedings of the 1st International Workshop on Empirical Research in
Process-Oriented Information Systems, in conjunction with the CAISE 2010,
ER-POIS@CAiSE 2010, CEUR Workshop Proceedings, Hammamet, Tunisia, 8 June 2010,
vol. 603, pp. 13–18. CEUR-WS.org (2010)

7. Weber, B., et al.: Fixation patterns during process model creation: initial steps toward
neuro-adaptive process modeling environments. In: Bui, T.X., Jr., Sprague, R.H. (eds.) 49th
Hawaii International Conference on System Sciences, HICSS 2016, Koloa, HI, USA, 5–8
January 2016, pp. 600–609. IEEE Computer Society (2016)

xvi B. Weber

https://doi.org/10.1007/978-3-030-20618-5_5
https://doi.org/10.1007/978-3-030-20618-5_5
https://doi.org/10.1007/978-3-319-98648-7_19
https://doi.org/10.1007/978-3-319-98648-7_19
https://doi.org/10.1007/978-3-030-21290-2_24

State of Permissionless and Permissioned
Blockchains: Myths and Reality

C. Mohan

IBM Almaden Research Center, San Jose, CA 95120, USA
cmohan@us.ibm.com @seemohan

Abstract. It has been a decade since the concept of blockchain was invented as
the underlying core data structure of the permissionless or public Bitcoin
cryptocurrency network. Since then, several cryptocurrencies, and associated
concepts like tokens and ICOs have emerged. After much speculation and hype,
significant number of them have become problematic or worthless, even though
some countries have embraced them! The permissionless blockchain system
Ethereum emerged by generalizing the use of blockchains to manage any kind
of asset, be it physical or purely digital, with the introduction of the concept of
Smart Contracts. Over the years, numerous myths have developed with respect
to the purported utility and the need for permissionless blockchains. The
adoption and further adaptation of blockchains and smart contracts for use in the
permissioned or private environments is what I consider to be useful and of
practical consequence. Hence, the technical aspects of only private blockchain
systems will be the focus of my ER 2019 keynote. Along the way, I will bust
many myths associated with permissionless blockchains. I will also compare
traditional database technologies with blockchain systems’ features and identify
desirable future research topics.

Keywords: Bitcoin • Smart contracts • Private blockchains • Hyperledger
fabric • Enterprise ethereum alliance • Quorum • R3 corda • Sawtooth •

Cryptocurrencies • Byzantine faults � Consensus

Bibliography

1. Alibaba: Blockchain as a Service. https://www.alibabacloud.com/help/product/
84950.htm

2. Alibaba Group: Alibaba Cloud Launches Global Blockchain as a Service, October
2018. https://www.alibabagroup.com/en/news/press_pdf/p181024.pdf

3. AWS: Amazon Managed Blockchain. https://aws.amazon.com/managed-
blockchain/

4. AWS: Amazon Quantum Ledger Database (QLDB). https://aws.amazon.com/
qldb/

5. Androulaki, E., et al.: Hyperledger fabric: a distributed operating system for
permissioned blockchains. In: Proceedings of 13th EuroSys Conference, Porto,
Portugal, April 2018. https://arxiv.org/pdf/1801.10228

https://www.alibabacloud.com/help/product/84950.htm
https://www.alibabacloud.com/help/product/84950.htm
https://www.alibabagroup.com/en/news/press_pdf/p181024.pdf
https://aws.amazon.com/managed-blockchain/
https://aws.amazon.com/managed-blockchain/
https://aws.amazon.com/qldb/
https://aws.amazon.com/qldb/
https://arxiv.org/pdf/1801.10228

6. Androulaki, E., Cachin, C., De Caro, A., Kokoris-Kogias, E.: Channels: horizontal
scaling and confidentiality on permissioned blockchains. In: Proceedings of
European Symposium on Research in Computer Security, Barcelona, Spain,
September 2018

7. Baidu: Blockchain Solution. https://cloud.baidu.com/solution/blockchain.html
8. Baidu: Super Chain – XuperChain. https://xchain.baidu.com/
9. Bakshi, S., Yarmosh, Y., Zhang, L., Freund, A.: Enterprise Ethereum Alliance

Off-Chain Trusted Compute Specification V0.5, October 2018. https://
entethalliance.org/wp-content/uploads/2018/11/EEA_Off_Chain_Trusted_
Compute_Specification_V0_5-1.pdf

10. BigchainDB: BigchainDB 2.0 – The Blockchain Database, May 2018. https://
www.bigchaindb.com/whitepaper/bigchaindb-whitepaper.pdf

11. Brandenburger, M., Cachin, C., Kapitza, R., Sorniotti, A.: Blockchain and Trusted
Computing: Problems, Pitfalls, and Solution for Hyperledger Fabric, May 2018.
https://arxiv.org/pdf/1805.08541

12. Brown, R.: The Corda Platform: An Introduction, May 2018. https://www.corda.
net/content/corda-platform-whitepaper.pdf

13. Burnett, D., Coote, R., Nevile, C., Noble, G. (eds.) Enterprise Ethereum Alliance –
Enterprise Ethereum Client Specification V2, October 2018. https://entethalliance.
org/wp-content/uploads/2018/11/EEA_Enterprise_Ethereum_Client_
Specification_V2.pdf

14. Buterin, V.: Ethereum: The Ultimate Smart Contract and Autonomous Corpora-
tion Platform on the Blockchain, December 2013. https://web.archive.org/web/
20131219030753/vitalik.ca/ethereum.html

15. Dinh, A., Wang, J., Chen, G., Liu, R., Ooi, B.C., Tan, K.-L.: Blockbench: a
framework for analyzing private blockchains. In: Proceedings of ACM SIGMOD
International Conference on Management of Data, Chicago, USA, June 2017.
http://www.comp.nus.edu.sg/*ooibc/blockbench.pdf

16. Dinh, A., Zhang, M., Ooi, B.C., Chen, G.: Untangling blockchain: a data
processing view of blockchain systems. IEEE Trans. Knowl. Data Eng. 30(7),
1366–1385 (2018)

17. Ethereum: A Next-Generation Smart Contract and Decentralized Application
Platform, March 2019. https://github.com/ethereum/wiki/wiki/White-Paper

18. FISCO BCOS: FISCO BCOS Featured Cases, September 2018. https://www.
fisco-bcos.org/assets/docs/FISCO%20BCOS%20-%20Featured%20Cases.pdf

19. FISCO BCOS: The Building Block of Open Consortium Chain. https://www.
fisco-bcos.org/

20. Gorenflo, C., Lee, S., Golab, L., Keshav, S.: FastFabric: Scaling Hyperledger
Fabric to 20,000 Transactions per Second, March 2019. https://arxiv.org/pdf/1901.
00910.pdf

21. Greenspan, G.: The Blockchain Immutability Myth, May 2017. https://www.
coindesk.com/blockchain-immutability-myth

22. Greenspan, G.: Three (non-pointless) permissioned blockchains in production,
November 2017. https://www.multichain.com/blog/2017/11/three-non-pointless-
blockchains-production/

xviii C. Mohan

https://cloud.baidu.com/solution/blockchain.html
https://xchain.baidu.com/
https://entethalliance.org/wp-content/uploads/2018/11/EEA_Off_Chain_Trusted_Compute_Specification_V0_5-1.pdf
https://entethalliance.org/wp-content/uploads/2018/11/EEA_Off_Chain_Trusted_Compute_Specification_V0_5-1.pdf
https://entethalliance.org/wp-content/uploads/2018/11/EEA_Off_Chain_Trusted_Compute_Specification_V0_5-1.pdf
https://www.bigchaindb.com/whitepaper/bigchaindb-whitepaper.pdf
https://www.bigchaindb.com/whitepaper/bigchaindb-whitepaper.pdf
https://arxiv.org/pdf/1805.08541
https://www.corda.net/content/corda-platform-whitepaper.pdf
https://www.corda.net/content/corda-platform-whitepaper.pdf
https://entethalliance.org/wp-content/uploads/2018/11/EEA_Enterprise_Ethereum_Client_Specification_V2.pdf
https://entethalliance.org/wp-content/uploads/2018/11/EEA_Enterprise_Ethereum_Client_Specification_V2.pdf
https://entethalliance.org/wp-content/uploads/2018/11/EEA_Enterprise_Ethereum_Client_Specification_V2.pdf
https://web.archive.org/web/20131219030753/vitalik.ca/ethereum.html
https://web.archive.org/web/20131219030753/vitalik.ca/ethereum.html
http://www.comp.nus.edu.sg/%7eooibc/blockbench.pdf
https://github.com/ethereum/wiki/wiki/White-Paper
https://www.fisco-bcos.org/assets/docs/FISCO%20BCOS%20-%20Featured%20Cases.pdf
https://www.fisco-bcos.org/assets/docs/FISCO%20BCOS%20-%20Featured%20Cases.pdf
https://www.fisco-bcos.org/
https://www.fisco-bcos.org/
https://arxiv.org/pdf/1901.00910.pdf
https://arxiv.org/pdf/1901.00910.pdf
https://www.coindesk.com/blockchain-immutability-myth
https://www.coindesk.com/blockchain-immutability-myth
https://www.multichain.com/blog/2017/11/three-non-pointless-blockchains-production/
https://www.multichain.com/blog/2017/11/three-non-pointless-blockchains-production/

23. Greenspan, G.: R3 Corda: Deep Dive and Technical Review - A Detailed Look at
the Non-Blockchain Blockchain, May 2018. https://www.multichain.com/blog/
2018/05/r3-corda-deep-dive-and-technical-review/

24. Greenspan, G.: Smart Contract Showdown: Hyperledger Fabric vs MultiChain vs
Ethereum vs Corda - There’s More than One Way to Put Code on a Blockchain,
December 2018. https://www.multichain.com/blog/2018/12/smart-contract-
showdown/

25. Greenspan, G.: Multichain 2.0 Beta Released, December 2018. https://www.
multichain.com/blog/2018/12/multichain-2-0-beta-released/

26. Hearn, M.: Corda: A Distributed Ledger, November 2016. https://www.corda.net/
content/corda-technical-whitepaper.pdf

27. Hileman, G., Rauchs, M.: Global Blockchain Benchmarking Study, The
Cambridge Center for Alternative Finance, September 2017. https://www.jbs.cam.
ac.uk/fileadmin/user_upload/research/centres/alternative-finance/downloads/2017-
09-27-ccaf-globalbchain.pdf

28. Huawei: Huawei Blockchain Whitepaper - Toward a Trusted Digital World, April
2018. https://static.huaweicloud.com/upload/files/pdf/20180416/20180416142450_
61761.pdf

29. Hyperledger: Five Hyperledger Blockchain Projects Now in Production,
November 2018. https://www.hyperledger.org/blog/2018/11/30/six-hyperledger-
blockchain-projects-now-in-production

30. Hyperledger: Case Study: How Walmart Brought Unprecedented Transparency to
the Food Supply Chain with Hyperledger Fabric, February 2019. https://www.
hyperledger.org/wp-content/uploads/2019/02/Hyperledger_CaseStudy_Walmart_
Printable_V4.pdf

31. Hyperledger Caliper: Getting Started. https://hyperledger.github.io/caliper/docs/1_
Getting_Started.html

32. IBM: IBM Blockchain Platform – Technical Overview, February 2019. https://
www-01.ibm.com/common/ssi/cgi-bin/ssialias?htmlfid=KUW12555USEN&

33. IBM: Maersk. TradeLens Documentation. https://docs.tradelens.com/
34. IEEE: IEEE Blockchain Standards. https://blockchain.ieee.org/standards
35. Intel: Intel Select Solution for Blockchain: Hyperledger Fabric, February 2019.

https://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/
select-block-chain-hyperledger-fabric-sb-final.pdf

36. ISO: ISO/TC 307 Blockchain and Distributed Ledger Technologies. https://www.
iso.org/committee/6266604.html

37. JD.com: JD Launches Blockchain Open Platform, August 2018. https://
jdcorporateblog.com/jd-launches-blockchain-open-platform/

38. JP Morgan: Quorum: Ethereum for Enterprise Applications, October 2017. https://
github.com/jpmorganchase/quorum-docs/blob/master/Quorum_Architecture_
20171016.pdf

39. JP Morgan: Quorum Whitepaper v0.2, September 2018. https://github.com/
jpmorganchase/quorum-docs/blob/master/Quorum%20Whitepaper%20v0.2.pdf

40. Microsoft: Azure Blockchain Workbench Documentation. https://docs.microsoft.
com/en-us/azure/blockchain/workbench/

State of Permissionless and Permissioned Blockchains: Myths and Reality xix

https://www.multichain.com/blog/2018/05/r3-corda-deep-dive-and-technical-review/
https://www.multichain.com/blog/2018/05/r3-corda-deep-dive-and-technical-review/
https://www.multichain.com/blog/2018/12/smart-contract-showdown/
https://www.multichain.com/blog/2018/12/smart-contract-showdown/
https://www.multichain.com/blog/2018/12/multichain-2-0-beta-released/
https://www.multichain.com/blog/2018/12/multichain-2-0-beta-released/
https://www.corda.net/content/corda-technical-whitepaper.pdf
https://www.corda.net/content/corda-technical-whitepaper.pdf
https://www.jbs.cam.ac.uk/fileadmin/user_upload/research/centres/alternative-finance/downloads/2017-09-27-ccaf-globalbchain.pdf
https://www.jbs.cam.ac.uk/fileadmin/user_upload/research/centres/alternative-finance/downloads/2017-09-27-ccaf-globalbchain.pdf
https://www.jbs.cam.ac.uk/fileadmin/user_upload/research/centres/alternative-finance/downloads/2017-09-27-ccaf-globalbchain.pdf
https://static.huaweicloud.com/upload/files/pdf/20180416/20180416142450_61761.pdf
https://static.huaweicloud.com/upload/files/pdf/20180416/20180416142450_61761.pdf
https://www.hyperledger.org/blog/2018/11/30/six-hyperledger-blockchain-projects-now-in-production
https://www.hyperledger.org/blog/2018/11/30/six-hyperledger-blockchain-projects-now-in-production
https://www.hyperledger.org/wp-content/uploads/2019/02/Hyperledger_CaseStudy_Walmart_Printable_V4.pdf
https://www.hyperledger.org/wp-content/uploads/2019/02/Hyperledger_CaseStudy_Walmart_Printable_V4.pdf
https://www.hyperledger.org/wp-content/uploads/2019/02/Hyperledger_CaseStudy_Walmart_Printable_V4.pdf
https://hyperledger.github.io/caliper/docs/1_Getting_Started.html
https://hyperledger.github.io/caliper/docs/1_Getting_Started.html
https://www-01.ibm.com/common/ssi/cgi-bin/ssialias%3fhtmlfid%3dKUW12555USEN%26
https://www-01.ibm.com/common/ssi/cgi-bin/ssialias%3fhtmlfid%3dKUW12555USEN%26
https://docs.tradelens.com/
https://blockchain.ieee.org/standards
https://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/select-block-chain-hyperledger-fabric-sb-final.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/select-block-chain-hyperledger-fabric-sb-final.pdf
https://www.iso.org/committee/6266604.html
https://www.iso.org/committee/6266604.html
https://jdcorporateblog.com/jd-launches-blockchain-open-platform/
https://jdcorporateblog.com/jd-launches-blockchain-open-platform/
https://github.com/jpmorganchase/quorum-docs/blob/master/Quorum_Architecture_20171016.pdf
https://github.com/jpmorganchase/quorum-docs/blob/master/Quorum_Architecture_20171016.pdf
https://github.com/jpmorganchase/quorum-docs/blob/master/Quorum_Architecture_20171016.pdf
https://github.com/jpmorganchase/quorum-docs/blob/master/Quorum%20Whitepaper%20v0.2.pdf
https://github.com/jpmorganchase/quorum-docs/blob/master/Quorum%20Whitepaper%20v0.2.pdf
https://docs.microsoft.com/en-us/azure/blockchain/workbench/
https://docs.microsoft.com/en-us/azure/blockchain/workbench/

41. Mohan, C.: State of public and private blockchains: myths and reality. In:
Proceedings of ACM SIGMOD International Conference on Management of Data,
Amsterdam, The Netherlands, July 2019. http://bit.ly/sigBcP

42. Mohan, C.: Permissioned/Private Blockchains and Databases. http://bit.ly/
CMbcDB

43. Murthy, C.: Blockchain DB-unked, August 2016. https://ripple.com/files/db-
unked.pdf

44. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System, 2008. https://
bitcoin.org/bitcoin.pdf

45. Narayanan, A., Clark, J.: Bitcoin’s academic pedigree. In: ACM Queue, vol. 15,
no. 4, August 2017. https://queue.acm.org/detail.cfm?id=3136559

46. Nasir, Q., Qasse, I., Talib, M.A., Nassif, A.B.: Performance analysis of hyper-
ledger fabric platforms. Secur. Commun. Netw. 2018, 14 (2018). Article ID
3976093. http://downloads.hindawi.com/journals/scn/2018/3976093.pdf

47. Natoli, C., Gramoli, V.: The blockchain anomaly. In: Proceedings of IEEE 15th
International Symposium on Network Computing and Applications, Cambridge,
USA, November 2016. https://arxiv.org/pdf/1605.05438

48. Natoli, C., Gramoli, V.: The balance attack or why forkable blockchains are
ill-suited for consortium. In: Proceedings of 47th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, Denver, USA, June 2017.
https://research.csiro.au/data61/wp-content/uploads/sites/85/2016/08/balance_
attack.pdf

49. Oracle: Oracle Cloud - Using Oracle Blockchain Platform, Release 19.1.3, March
2019. https://docs.oracle.com/en/cloud/paas/blockchain-cloud/user/using-oracle-
blockchain-platform.pdf

50. Rauchs, M. et al.: Distributed Ledger Technology Systems – A Conceptual
Framework, The Cambridge Center for Alternative Finance, August 2018. https://
www.jbs.cam.ac.uk/fileadmin/user_upload/research/centres/alternative-finance/
downloads/2018-10-26-conceptualising-dlt-systems.pdf

51. Rauchs, M. et al.: 2nd Global Cryptoasset Benchmarking Study, The Cambridge
Center for Alternative Finance, December 2018. https://www.jbs.cam.ac.uk/
fileadmin/user_upload/research/centres/alternative-finance/downloads/2019-01-
ccaf-2nd-global-cryptoasset-benchmarking.pdf

52. Ripple: Product Overview, October 2017. https://ripple.com/files/ripple_product_
overview.pdf

53. SAP: Blockchain Application Enablement. https://help.sap.com/viewer/product/
BLOCKCHAIN_APPLICATION_ENABLEMENT/BLOCKCHAIN/en-US

54. SAP: Hyperledger Fabric on SAP Cloud Platform. https://help.sap.com/viewer/
product/HYPERLEDGER_FABRIC/BLOCKCHAIN/en-US

55. Sawtooth: Hyperledger Sawtooth Documentation, V1.1.4. https://sawtooth.
hyperledger.org/docs/core/releases/latest/

56. Schuster, B.: The Ripple Currency Problem: Why Permissioned Blockchains Will
Devalue XRP, December 2017. https://hackernoon.com/the-ripple-currency-
problem-why-permissioned-blockchains-will-devalue-xrp-d79aef84c074

57. Tencent: TBaas. https://cloud.tencent.com/document/product/663

xx C. Mohan

http://bit.ly/sigBcP
http://bit.ly/CMbcDB
http://bit.ly/CMbcDB
https://ripple.com/files/db-unked.pdf
https://ripple.com/files/db-unked.pdf
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://queue.acm.org/detail.cfm?id=3136559
http://downloads.hindawi.com/journals/scn/2018/3976093.pdf
https://arxiv.org/pdf/1605.05438
https://research.csiro.au/data61/wp-content/uploads/sites/85/2016/08/balance_attack.pdf
https://research.csiro.au/data61/wp-content/uploads/sites/85/2016/08/balance_attack.pdf
https://docs.oracle.com/en/cloud/paas/blockchain-cloud/user/using-oracle-blockchain-platform.pdf
https://docs.oracle.com/en/cloud/paas/blockchain-cloud/user/using-oracle-blockchain-platform.pdf
https://www.jbs.cam.ac.uk/fileadmin/user_upload/research/centres/alternative-finance/downloads/2018-10-26-conceptualising-dlt-systems.pdf
https://www.jbs.cam.ac.uk/fileadmin/user_upload/research/centres/alternative-finance/downloads/2018-10-26-conceptualising-dlt-systems.pdf
https://www.jbs.cam.ac.uk/fileadmin/user_upload/research/centres/alternative-finance/downloads/2018-10-26-conceptualising-dlt-systems.pdf
https://www.jbs.cam.ac.uk/fileadmin/user_upload/research/centres/alternative-finance/downloads/2019-01-ccaf-2nd-global-cryptoasset-benchmarking.pdf
https://www.jbs.cam.ac.uk/fileadmin/user_upload/research/centres/alternative-finance/downloads/2019-01-ccaf-2nd-global-cryptoasset-benchmarking.pdf
https://www.jbs.cam.ac.uk/fileadmin/user_upload/research/centres/alternative-finance/downloads/2019-01-ccaf-2nd-global-cryptoasset-benchmarking.pdf
https://ripple.com/files/ripple_product_overview.pdf
https://ripple.com/files/ripple_product_overview.pdf
https://help.sap.com/viewer/product/BLOCKCHAIN_APPLICATION_ENABLEMENT/BLOCKCHAIN/en-US
https://help.sap.com/viewer/product/BLOCKCHAIN_APPLICATION_ENABLEMENT/BLOCKCHAIN/en-US
https://help.sap.com/viewer/product/HYPERLEDGER_FABRIC/BLOCKCHAIN/en-US
https://help.sap.com/viewer/product/HYPERLEDGER_FABRIC/BLOCKCHAIN/en-US
https://sawtooth.hyperledger.org/docs/core/releases/latest/
https://sawtooth.hyperledger.org/docs/core/releases/latest/
https://hackernoon.com/the-ripple-currency-problem-why-permissioned-blockchains-will-devalue-xrp-d79aef84c074
https://hackernoon.com/the-ripple-currency-problem-why-permissioned-blockchains-will-devalue-xrp-d79aef84c074
https://cloud.tencent.com/document/product/663

58. Thakker, P., Senthil Nathan, N., Viswanathan, B.: Performance benchmarking and
optimizing hyperledger fabric blockchain platform. In: Proceeding of 26th IEEE
International Symposium on the Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems, Milwaukee, USA, September 2018. https://
arxiv.org/pdf/1805.11390.pdf

59. Walch, A.: Open source operational risk: should public blockchains serve as
financial market infrastructure? In: Lee, D., Chuen, K., Deng, R. (eds.) Handbook
of Digital Banking and Internet Finance, vol. 2. Elsevier (2017). https://ssrn.com/
abstract=2879239

60. Walch, A.: Deconstructing ‘Decentralization’: exploring the core claim of crypto
systems. In: Crypto Assets: Legal and Monetary Perspectives January 2019. (to
appear). https://ssrn.com/abstract=3326244

61. Wang, S., et al.: An efficient storage engine for blockchain and forkable appli-
cations. In: Proceedings of International Conference on Very Large Data Bases,
Rio de Janeiro, Brazil, August 2018. http://www.vldb.org/pvldb/vol11/p1137-
wang.pdf

62. Wikipedia: Blockchain (database). https://en.wikipedia.org/wiki/Blockchain_
(database)

State of Permissionless and Permissioned Blockchains: Myths and Reality xxi

https://arxiv.org/pdf/1805.11390.pdf
https://arxiv.org/pdf/1805.11390.pdf
https://ssrn.com/abstract=2879239
https://ssrn.com/abstract=2879239
https://ssrn.com/abstract=3326244
http://www.vldb.org/pvldb/vol11/p1137-wang.pdf
http://www.vldb.org/pvldb/vol11/p1137-wang.pdf
https://en.wikipedia.org/wiki/Blockchain_(database
https://en.wikipedia.org/wiki/Blockchain_(database

Contents

Invited Talks

Data Management in the Era of Digitalization. 3
Veda C. Storey

Keyword Search over RDF Datasets (Extended Abstract) 7
Marco A. Casanova

Conceptual Modeling

OOC-O: A Reference Ontology on Object-Oriented Code 13
Camila Zacché de Aguiar, Ricardo de Almeida Falbo,
and Vítor E. Silva Souza

Relations in Ontology-Driven Conceptual Modeling 28
Claudenir M. Fonseca, Daniele Porello, Giancarlo Guizzardi,
João Paulo A. Almeida, and Nicola Guarino

Capturing Multi-level Models in a Two-Level Formal
Modeling Technique . 43

João Paulo A. Almeida, Fernando A. Musso, Victorio A. Carvalho,
Claudenir M. Fonseca, and Giancarlo Guizzardi

An SQLo Front-End for Non-monotonic Inheritance and De-referencing 52
Joel Oduro-Afriyie and Hasan M. Jamil

Big Data Technology I

Modeling Data Lakes with Data Vault: Practical Experiences, Assessment,
and Lessons Learned . 63

Corinna Giebler, Christoph Gröger, Eva Hoos, Holger Schwarz,
and Bernhard Mitschang

Requirements-Driven Visualizations for Big Data Analytics:
A Model-Driven Approach. 78

Ana Lavalle, Alejandro Maté, and Juan Trujillo

Don’t Tune Twice: Reusing Tuning Setups for SQL-on-Hadoop Queries 93
Edson Ramiro Lucas Filho, Eduardo Cunha de Almeida,
and Stefanie Scherzinger

A Graph Model for Taxi Ride Sharing Supported by Graph Databases 108
Dietrich Steinmetz, Felix Merz, Hui Ma, and Sven Hartmann

Process Modeling and Analysis

Comprehensive Process Drift Detection with Visual Analytics 119
Anton Yeshchenko, Claudio Di Ciccio, Jan Mendling,
and Artem Polyvyanyy

A Probabilistic Approach to Event-Case Correlation for Process Mining 136
Dina Bayomie, Claudio Di Ciccio, Marcello La Rosa, and Jan Mendling

DCR-KiPN a Hybrid Modeling Approach
for Knowledge-Intensive Processes . 153

Flávia Santoro, Tijs Slaats, Thomas T. Hildebrandt,
and Fernanda Baiao

Exploring the Modeling of Declarative Processes Using
a Hybrid Approach . 162

Amine Abbad Andaloussi, Jon Buch-Lorentsen, Hugo A. López,
Tijs Slaats, and Barbara Weber

Query Approaches

Negation in Relational Keyword Search . 173
Qiao Gao, Mong Li Lee, and Tok Wang Ling

Answering GPSJ Queries in a Polystore: A Dataspace-Based Approach 189
Hamdi Ben Hamadou, Enrico Gallinucci, and Matteo Golfarelli

Ontology-Schema Based Query by Example. 204
Lucas Peres, Ticiana L. Coelho da Silva, Jose Macedo,
and David Araujo

Query Rewriting for Continuously Evolving NoSQL Databases 213
Mark Lukas Möller, Meike Klettke, Andrea Hillenbrand,
and Uta Störl

Big Data Technology II

Relaxed Functional Dependency Discovery in Heterogeneous Data Lakes . . . 225
Rihan Hai, Christoph Quix, and Dan Wang

An Ontological Perspective for Database Tuning Heuristics 240
Ana Carolina Almeida, Maria Luiza M. Campos, Fernanda Baião,
Sergio Lifschitz, Rafael P. de Oliveira, and Daniel Schwabe

xxiv Contents

SkipSJoin: A New Physical Design for Distributed Big Data Warehouses
in Hadoop . 255

Yassine Ramdane, Nadia Kabachi, Omar Boussaid,
and Fadila Bentayeb

Learning k-Occurrence Regular Expressions from Positive
and Negative Samples . 264

Yeting Li, Xiaoying Mou, and Haiming Chen

Domain Specific Models I

What Rocks Are Made of: Towards an Ontological Pattern for Material
Constitution in the Geological Domain . 275

Luan Fonseca Garcia, Joel Luis Carbonera,
Fabricio Henrique Rodrigues, Cauã Roca Antunes, and Mara Abel

Role-Based Clustering for Collaborative Recommendations in
Crowdsourcing System . 287

Qiao Liao, Xiangmin Zhou, Daling Wang, Shi Feng, and Yifei Zhang

A Reference Conceptual Model for Virtual Network Function Online
Marketplaces . 302

Renata Guizzardi, Anderson Bravalheri, Giancarlo Guizzardi,
Tiago Prince Sales, and Dimitra Simeonidou

Intuitive Understanding of Domain-Specific Modeling Languages:
Proposition and Application of an Evaluation Technique 311

Dominik Bork, Christine Schrüffer, and Dimitris Karagiannis

Domain Specific Models II

A Unifying Model of Legal Smart Contracts . 323
Jan Ladleif and Mathias Weske

Formal Specification of Environmental Aspects of a Railway Interlocking
System Based on a Conceptual Model . 338

Dalay Israel de Almeida Pereira, Sana Debbech, Matthieu Perin,
Philippe Bon, and Simon Collart-Dutilleul

From a Conceptual Model to a Knowledge Graph for Genomic Datasets 352
Anna Bernasconi, Arif Canakoglu, and Stefano Ceri

Decision Making

Decision-Making in Knowledge-intensive Processes:
The Case of Value Ascription and Goal Processing 363

Pedro H. Piccoli Richetti, Fernanda Araujo Baião,
and Maria Luiza M. Campos

Contents xxv

Conceptualization, Design, and Implementation of EconBPC – A Software
Artifact for the Economic Analysis of Business Process Compliance 378

Stephan Kuehnel, Simon Thanh-Nam Trang, and Sebastian Lindner

DEMOS: A Participatory Design Approach for Democratic Empowerment
of IS Users. 387

Raphaëlle Bour, Chantal Soule-Dupuy, and Nathalie Vallès-Parlangeau

Complex Systems Modeling

Finding Preferred Objects with Taxonomies . 397
Paolo Ciaccia, Davide Martinenghi, and Riccardo Torlone

Generic Negative Scenarios for the Specification of Collaborative
Cyber-Physical Systems . 412

Viktoria Stenkova, Jennifer Brings, Marian Daun, and Thorsten Weyer

Model Unification

HIKE: A Step Beyond Data Exchange. 423
Sergio Greco, Elio Masciari, Domenico Saccà, and Irina Trubitsyna

Unified Management of Multi-model Data (Vision Paper) 439
Irena Holubová, Martin Svoboda, and Jiaheng Lu

Schema Validation and Evolution for Graph Databases 448
Angela Bonifati, Peter Furniss, Alastair Green, Russ Harmer,
Eugenia Oshurko, and Hannes Voigt

Grounding for an Enterprise Computing Nomenclature Ontology 457
Chris Partridge, Andrew Mitchell, and Sergio de Cesare

Big Data Technology III

Events as Entities in Ontology-Driven Conceptual Modeling 469
João Paulo A. Almeida, Ricardo A. Falbo, and Giancarlo Guizzardi

Parallel Clique-Like Subgraph Counting and Listing 484
Yi Yang, Da Yan, Shuigeng Zhou, and Guimu Guo

Modal Schema Graphs for Graph Databases . 498
Stephan Mennicke

A Systematic Approach to Generate Diverse Instantiations for Conceptual
Schemas . 513

Loli Burgueño, Jordi Cabot, Robert Clarisó, and Martin Gogolla

xxvi Contents

Requirements Modeling

Factors Affecting Comprehension of Contribution Links in Goal Models:
An Experiment . 525

Sotirios Liaskos and Wisal Tambosi

iStar-p: A Modelling Language for Requirements Prioritization. 540
Cinthya Flório, Maria Lencastre, João Pimentel, and João Araujo

On the Use of Requirement Patterns to Analyse Request
for Proposal Documents . 549

Dolors Costal, Xavier Franch, Lidia López, Cristina Palomares,
and Carme Quer

iStar4RationalAgents: Modeling Requirements of Multi-agent Systems
with Rational Agents . 558

Enyo Gonçalves, João Araujo, and Jaelson Castro

Author Index . 567

Contents xxvii

http://dx.doi.org/10.1007/978-3-030-33223-5_47

Invited Talks

Data Management in the Era of Digitalization

Veda C. Storey(&)

Computer Information Systems, J. Mack Robinson College of Business,
Georgia State University, Atlanta, GA 30302-4015, USA

VStorey@gsu.edu

Abstract. In an increasingly digital world, the modeling and management of
data is more important than ever as we move from the traditional management of
data through the era of big data and now to an era of digitalization. Many of the
traditional data challenges remain, which can be presented and understood in
terms of data semantics, structure, syntax, and situation. Implications are pro-
vided for continued work on these well-known challenges with respect to an
emerging technology.

Keywords: Data management � Digitalization � Data challenges � Data
representation � Syntax � Structure � Situation � Semantics � Big data �
Blockchain

1 Introduction

Research on conceptual modeling has focused on ways to model real world applica-
tions and represent them in a form that users and developers can understand [4, 13, 15].
Over time, systems are increasingly being developed for more and more complex
applications. Our society now functions in an ever-expanding digital world, with many
human activities mediated or shaped by digital information [10]. We live in an era of
digitalization, where most functions of business and society are critically dependent on
data of many different forms. As the digital revolution continues, the digitalization of
human activities generates large amounts of data, having the potential to be both
disruptive and transformative [8]. Thus, the success of digitalization is based on the
ability to manage data, whether it be traditional or big, newly generated or repurposed,
structured or unstructured data, or numeric or text data.

There are, obviously, many challenges associated with managing data of all types.
Besides dealing with the sheer volume of big data, for example, there is a need to
discover and interpret patterns. Traditional data management has always been con-
cerned with the need to capture an accurate representation of business operations. The
surge of social media and the need for its interpretation and use for customer man-
agement has led to much research on sentiment, and other types of, analysis involving
user-generated online content.

Data management has progressed from developing tools and techniques for tradi-
tional, structured data, to managing big data and creating opportunities for novel uses
of data from new, and emerging, technologies. Proper management of data is critical, as
is archiving data for future use [14]. This paper proposes that data management in the

© Springer Nature Switzerland AG 2019
A. H. F. Laender et al. (Eds.): ER 2019, LNCS 11788, pp. 3–6, 2019.
https://doi.org/10.1007/978-3-030-33223-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33223-5_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33223-5_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33223-5_1&domain=pdf
https://doi.org/10.1007/978-3-030-33223-5_1

era of digitalization faces many of the problems of traditional and big data management
which can be expressed in terms of data semantics, structure, syntax and situation.

2 Traditional Data Management

Data has long been used to support decision making, as reflected by early work in
decision support systems and business intelligence. Business intelligence existed before
the era of big data, with data being used for both descriptive and predictive purposes.
The role of data in decision-making is further reflected in the movement towards data-
driven decision making. Accurate and timely data is essential for good decision
making. Responsible and insightful decision making, in turn, is the key to organiza-
tional survival in a competitive, global environment. The availability of data is even
one of the three traditional components of information security. As the management of
data has progressed, the potential of its contribution has also increased.

Traditional challenges of data management are data semantics, structure, syntax,
and situation. Fundamentally, the data must be correct and represented properly (syntax
and structure) and reflect the real-world application being modeled (semantics for a
given situation or application domain). Application programs are needed to summarize,
classify, abstract, and present the data. The user, or decision maker, ultimately, decides
how to use the data to make decisions and inferences.

3 Big Data Management

Business intelligence and data analytics initiatives are found in all industries [2, 7]. The
big data era shepherded in a wave of creative capture and uses of data. Access to large
data sets and powerful processing capabilities, combined with situation or context-
dependent methodologies and automation of large-scale network analysis, facilitate
assessments and prediction capabilities [6]. At the heart of all this activity is data.

Big data has claims of, and experiences with, transformative decision-making
support, real-time information, and text mining advances. Big data has generally been
described by the three Vs of volume, velocity, and variety. The two best-known “ad-
ditional Vs” are veracity (accuracy) and value. Well-recognized challenges arise from
these characteristics. The volume (scale) may be so large that it is difficult for human
decision makers to understanding it, and requires advances in processing capabilities.
The velocity is practically, too fast [5]. Perhaps, most importantly, the value is difficult
to ascertain [11]. Modeling and representing big data are not straightforward activities
for specific applications. Semantic integration is required.

Many challenges of big data remain the same as traditional data management and
do not simply go away simply because the data is ‘big’. These challenges have
remained unsolved for many years, despite advances, which have continued into the
big data era. For example, when data is centralized, as in traditional data, it may be too
structured. When data is overly structured, it can be very difficult to realize its potential
value. The syntax must be correct. There is some understanding of data semantics, but
it remains both difficult [12] and dependent on the application domain (situation). The

4 V. C. Storey

traditional characteristics of big data, represented by the “Vs” of big data, can be
extended to include the data management challenges of big data, as characterized by
four “Ss” of syntax, structure, semantics and situation.

4 Blockchain Technology Data Management

The era of digitalization is a result of open environments [9] from which block chain
technology has emerged. Blockchain is a distributed network of peer to peer, encrypted
public and private ledgers, composed of data records in blocks linked into an immu-
table chain that is verified and managed using smart contracts to execute transactions
[1]. Blockchain’s architecture is intended to support immutable trust worthy records
without a trusted third party.

Blockchain is just a technology with implementation challenges, including how to
manage data effectively. Blockchain can generate large amounts of data in a short
period of time, displaying many of the characteristics and challenges of big data, even
though the data may be more structured. Data is captured from transactions recorded in
a distributed ledger. These transactions have a mixture of traditional and big data. With
digitalization, data becomes increasingly ubiquitous and its management might require
work that falls somewhere between traditional and big data management.

There are two types of semantics in blockchain: the semantics of the data; and the
semantics of the transaction. Suppose one were to draw an entity relationship diagram
[3] for the semantics of the data and data flow diagrams [16] for the semantics of the
transactions, including their associated smart contracts. This might currently be the best
effort that can be made to represent semantics. However, the semantics are still inherent
in the “labels” assigned, which is a syntactical solution.

The best way to implement blockchain applications may be by object-oriented
technology because the database is distributed, and the “trust”, decentralized. Block-
chain can make the integration (of schemas) a great deal easier, because there are no
longer silos. From a traditional data perspective, there are distributed databases. To
implement the distributed trust environment, the semantics of trust must be docu-
mented. Even if the domain is known, the transaction should also provide context
(situation). It should be related to structure (e.g., the part of the workflow the trans-
action is executing). Finally, the identification of the person who is responsible for a
transaction must be recorded.

5 Conclusion

In an increasing digital world, information systems deal with complex and diverse data
with many associated challenges for modeling, accessing, and manipulating data. This
paper has identified four characteristics of traditional data management that continue to
exist in today’s world that heavily emphasizes the digitalization of business processes
and societal operations. The results of traditional research should not be overlooked
when dealing with increasingly complex challenges, as we progress from traditional

Data Management in the Era of Digitalization 5

data management, to the era of big data, and now to an era where the digitalization of
applications and processes are having a profound impact on our world.

Acknowledgements. This research was supported by the J. Mack Robinson College of Busi-
ness, Georgia State University. Thanks to Carson Woo for his helpful comments and insights on
this paper. Special thanks to the International Conference on Conceptual Modeling for the
honour of presenting my work as a recipient of the 2018 Peter P. Chen Award.

References

1. Beck, R., Avital, M., Rossi, M., Thatcher, J.B.: Blockchain technology in business and
information systems research. Bus. Inf. Syst. Eng. 59(6), 381–384 (2017). https://doi.org/10.
1007/s12599-017-0505-1

2. Chen, H., Chiang, R.H., Storey, V.C.: Business intelligence and analytics: from big data to
big impact. MIS Q. 36(4), 1165–1188 (2012)

3. Chen, P.P.S.: The entity-relationship model—toward a unified view of data. ACM Trans.
Database Syst. (TODS) 1(1), 9–36 (1976)

4. Delcambre, L.M.L., Liddle, S.W., Pastor, O., Storey, V.C.: A reference framework for
conceptual modeling. In: Trujillo, J.C., et al. (eds.) ER 2018. LNCS, vol. 11157, pp. 27–42.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00847-5_4

5. Embley, D.W., Liddle, S.W.: Big data—conceptual modeling to the rescue. In: Ng, W.,
Storey, V.C., Trujillo, J.C. (eds.) ER 2013. LNCS, vol. 8217, pp. 1–8. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-41924-9_1

6. Goes, P.B.: Editor’s comments: big data and IS research. MIS Q. 38(3), iii–viii (2014)
7. Gupta, M., George, J.F.: Toward the development of a big data analytics capability. Inf.

Manage. 53(8), 1049–1064 (2016)
8. Larsen, H.: The crisis of public service broadcasting reconsidered: commercialization and

digitalization in Scandinavia. Crisis Journal. Reconsidered: Democ. Cult. Prof. Codes,
Digital Future 43–58 (2016)

9. Parsons, J., Wand, Y.: A foundation for open information environments. In: Proceedings of
the European Conference on Information Systems (ECIS), Tel Aviv, Israel (2014)

10. Pentland, B., Recker, J., Kim, I.: Capturing reality in flight? empirical tools for strong
process theory. In Proceedings of the International Conference on Information Systems
2017, Seoul, South Korea, pp. 1–12 (2017)

11. Storey, V.C., Song, I.Y.: Big data technologies and management: what conceptual modeling
can do. Data Knowl. Eng. 108, 50–67 (2017)

12. Storey, V.C., Thalheim, B.: Conceptual modeling: enhancement through semiotics. In:
Mayr, H.C., Guizzardi, G., Ma, H., Pastor, O. (eds.) ER 2017. LNCS, vol. 10650, pp. 182–
190. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69904-2_15

13. Storey, V.C., Trujillo, J.C., Liddle, S.W.: Research on conceptual modeling: themes, topics,
and introduction to the special issue. Data Knowl. Eng. 98, 1–7 (2015)

14. Storey, V.C., Woo, C.: Data challenges in the digitalization era. In: Proceedings of the 28th

Workshop on Information Technologies and Systems, Santa Clara, California (2018)
15. Thalheim, B.: Conceptual model notions – a matter of controversy: conceptual modelling

and its lacunas. Enterp. Model. Inf. Syst. Archit. (EMISAJ) 13, 9–27 (2018)
16. Valacich, J., George, J., Hoffer, J.: Essentials of Systems Analysis and Design, 8th edn.

Prentice Hall Press, Upper Saddle River (2016)

6 V. C. Storey

http://dx.doi.org/10.1007/s12599-017-0505-1
http://dx.doi.org/10.1007/s12599-017-0505-1
http://dx.doi.org/10.1007/978-3-030-00847-5_4
http://dx.doi.org/10.1007/978-3-642-41924-9_1
http://dx.doi.org/10.1007/978-3-319-69904-2_15

Keyword Search over RDF Datasets

(Extended Abstract)

Marco A. Casanova(&)

Department of Informatics, PUC-Rio, Rio de Janeiro, RJ, Brazil
casanova@inf.puc-rio.br

Abstract. This extended abstract first introduces the problem of keyword
search overRDF datasets. Then, it expands the discussion to cover the question
of serendipitous search as a strategy to diversify answers. Finally, it briefly
presents the entity relatedness problem, which refers to the problem of exploring
an RDF dataset to discover and understand how two entities are connected.

Keywords: Keyword search � Serendipity � Entity relatedness � RDF �
SPARQL

1 Introduction

Keyword search is typically associated with information retrieval systems, especially
those designed for the Web. The user just specifies a few terms, called keywords, and
the system must retrieve the documents, such as Web pages, that best match the list of
keywords. Keyword search over relational databases, as well as over RDF datasets, has
also been studied for some time. In particular, the adoption of RDF as the underlying
data model adds flexibility and imposes no strict distinction between data and metadata,
that is, a keyword may match the name or description of a class or of a property in the
same way that it may match a data value. An RDF management system may also offer
an inference layer so that one may expand the stored RDF data with derived data in
ways that surpass (relational) views. Thus, a keyword may match derived data as much
as stored data. Lastly, an RDF dataset is equivalent to a labeled graph, called an RDF
graph, which allows the use of graph concepts and algorithms for keyword search.

Keyword search over RDF datasets imposes distinct challenges when compared
with traditional keyword search. Indeed, in the latter case, an answer for a keyword
query is a document that matches as many keywords as possible, and the various
answers (documents) are ranked using well-known measures. By contrast, in the former
case, keywords select nodes and edges from an RDF graph, and it is up to the system to
find a connected subgraph of the RDF graph that covers these nodes and edges to create
an answer for the keyword query. Since there might be more than one such subgraph,
the system must rank them according to some reasonable measure.

This extended abstract first discusses the problem of keyword search for RDF
datasets. Then, it expands the discussion to serendipitous search as a strategy to
diversify answers. Finally, it briefly presents the entity relatedness problem, which refers
to the problem of exploring an RDF graph to discover how two entities are connected.

© Springer Nature Switzerland AG 2019
A. H. F. Laender et al. (Eds.): ER 2019, LNCS 11788, pp. 7–10, 2019.
https://doi.org/10.1007/978-3-030-33223-5_2

http://orcid.org/0000-0003-0765-9636
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33223-5_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33223-5_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33223-5_2&domain=pdf
https://doi.org/10.1007/978-3-030-33223-5_2

2 Classic Keyword Search Over RDF Datasets

An Internationalized Resource Identifier (IRI) is a global identifier that denotes a
resource. A blank node identifier is a local identifier. RDF [3] describes data as triples
of the form (s,p,o), where s is the subject, p is the predicate (or property) and o is the
object of the triple. The subject of a triple is an IRI or a blank node, the predicate is an
IRI, and the object is an IRI, a blank node or a literal. An RDF dataset is a set T of RDF
triples and is equivalent to a labeled graph GT whose nodes are the RDF terms that
occur as subject or object of the triples in T and there is an edge (s,o) in GT labeled with
p iff (s,p,o) 2 T. We will use the terms RDF dataset and RDF graph interchangeably.

RDF Schema [2] is a specific vocabulary that permits defining classes and prop-
erties, and hierarchies thereof, among other constructs. It should be noted that an RDF
dataset may not have an RDF schema. SPARQL 1.1 [6] is a query language to access
RDF datasets. The WHERE clause of a SPARQL query is a set of triple patterns, defined
like RDF triples, except that the subject, predicate or object can be a variable.

A keyword query is simply a set of literals, or keywords, K = {K1,…,Kn}. A key-
word Ki matches a triple (s,p,o) iff o is a literal and Ki and o are considered similar
(according to some criterion). An answer for K over an RDF dataset T is a subset A of
T such that there are triples in A that match some of the keywords in K. Note that this
notion of answer allows keywords to remain unmatched and permits the RDF graph
induced by A to be disconnected. However, answers that induce minimal, connected
graphs that match as many keywords as possible should be preferred. Also, note that a
keyword may match the label or the description of a class or property, which alters the
interpretation of a keyword query. For example, if C is a class with a property rdfs:label
whose value is the literal “city”, then the keyword query K = {city, Princeton} can be
interpreted as requesting an instance c of class C such that c has a property whose value
matches “Princeton”. The problem of keyword search over RDF datasets is then
defined as: “Given an RDF dataset T and a keyword query K, find a minimally
connected answer for K over T that matches as many keywords as possible”.

Given a keyword query K, an RDF keyword query processing tool first matches the
keywords in K with literals that occur in the RDF graph and then either directly crawls
the RDF graph to find answers for K or compiles a SPARQL query that returns answers
for K. Variations of this basic process may adopt an ontology to expand the keyword
matching process, and may introduce ranking strategies to order the keyword matches,
to improve the crawling or compilation processes, and to order the answers [11].

The tools also differ on the strategy adopted to compile the SPARQL query.
Schema-based tools [5] explore the RDF schema to compile a SPARQL query with a
minimal set of join clauses – and this is a key idea. In fact, the tool described in [9]
supports keyword query processing for both relational databases and RDF datasets with
schemas. To circumvent the lack of an RDF schema, graph-based tools may compile a
SPARQL query based on elementary query graph building blocks, such as entity/class
nodes and predicate edges, or graph summarizations. We also find a strategy [10] that
estimates set similarity measures using KMV-synopses [1], which in turn drive the
SPARQL query compilation process, and a strategy based on tensor calculus.

8 M. A. Casanova

3 Beyond the Basics: Serendipitous Search

Serendipity is defined as “the art of making an unsought finding”. In a seminal work,
Van Andel [12] defined a list of seventeen serendipity patterns, each one representing a
different form of serendipity. The problem of RDF serendipitous search can then be
intuitively defined as: “Given an RDF dataset T and a query Q, find additional answers
related to the original answers for Q by some serendipity pattern”.

A strategy to incorporate serendipity into query processing would then be to mimic
Van Andel’s patterns. This strategy was implemented in [4] for four patterns: analogy,
surprising observation, disturbance, and inversion. To capture the first two patterns,
the process explores the answers for a query to invoke secondary queries with the
recently acquired data. To capture the disturbance pattern, the process changes the
order of the answer list to expose items that the user would normally neglect. To
capture the inversion pattern, the process also formulates alternative queries.

When combined with keyword search, which allows considerable latitude in con-
structing answers, serendipitous search may produce interesting results that enrich the
user’s experience. For example, when processing the keyword query {Einstein, Gödel,
Princeton}, the system may return that Einstein and Gödel were neighbors at Princeton,
they died in that city and worked at the Institute for Advanced Study (IAS) at Princeton
University (which are the expected answers). But the system may expand these answers
to include that Gödel won the first Einstein Award in 1951, created by IAS to honor
Einstein, and that Gödel’s favorite movie was “Snow White” (trivia about the foremost
mathematical logician of the twentieth century).

4 An Interesting Special Case: Entity Relatedness

When a keyword query K simply selects two nodes, N1 and N2, of the RDF graph, an
answer for K reduces to a path between N1 and N2, called a relationship path. The
entity relatedness problem is then defined as: “Given an RDF graph GT and two
entities, represented by two nodes N1 and N2 of GT, compute the relationship paths that
better describe the connectivity between the given entities”. For example, DBpedia has
more than 10,000 paths between the entries for Einstein and Gödel, that is, the keyword
query {Einstein, Gödel} has, in this not infrequent case, the patently unwieldy total of
more than 10,000 answers over DBpedia, and this is a problem.

There are two basic approaches to address this problem. First, one may try to
abstract out the (large) set of relationship paths into a description meaningful to the
users [7], or one may rank the relationship paths in an order that reflects their relevance
[8], which raises additional questions. The relevance of a path p may have to do with its
coherence, measured by how similar neighboring entities (nodes) in p are, or the
relevance may be measured by how informative the labels of the edges are, similarly to
information retrieval, or by a combination of both. The work in [8] reports an extensive
comparison between different combinations of similarity and path ranking measures.

Keyword Search over RDF Datasets 9

5 Final Remarks: What Else?

RDF Keyword search is tightly related to the exploration of knowledge bases, as a goal
in itself or to complement traditional information retrieval. In this context, immediate
challenges include to implement keyword search with sub-second response time for
large RDF knowledge bases, and to fully incorporate such technology into mainstream
search engines and question-and-answer tools to enhance the overall user experience.

Acknowledgments. This work was partly funded by grants CAPES/88881.134081/2016-01,
CNPq/302303/2017-0, and FAPERJ/E-26-202.818/2017. The author gratefully acknowledges
Altigran Silva, for his inspiring work, and the contributions to the research reported here of
Bernardo Nunes, Luiz André Paes Leme, Antonio Furtado, Grettel García, Yenier Izquierdo,
Elisa Menendez, José Herrera, Jerônimo Eichler, and Ângelo Neves.

References

1. Beyer, K. et al.: On synopses for distinct-value estimation under multiset operations. In:
Proceedings 2007 ACM SIGMOD, Beijing, China, pp. 199–210 (2007)

2. Brickley, D., Guha, R.V. (eds): RDF Schema 1.1. W3C Recommendation, 25 February 2014
3. Cyganiak, R., Wood, D., Lanthaler, M. (eds.): RDF 1.1 Concepts and Abstract Syntax. W3C

Recommendation, 25 February 2014
4. Eichler, J.S.A., et al.: Searching linked data with a twist of serendipity. In: Dubois, E., Pohl,

K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 495–510. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-59536-8_31

5. García, G.M., Izquierdo, Y.T., Menendez, E., Dartayre, F., Casanova, M.A.: RDF keyword-
based query technology meets a real-world dataset. In: Proceedings of 20th International
Conference on Extending Database Technology, Venice, Italy (2017)

6. Harris, S., Seaborne, A.: SPARQL 1.1 Query Language. W3C Recommendation, 21 March
2013

7. Herrera, J.E.T., Casanova, M.A., Nunes, B.P., Lopes, G.R., Leme, L.A.P.P.: DBpedia profiler
tool: profiling the connectivity of entity Pairs in DBpedia. In: Proceedings of Intelligent
Exploration of Semantic Data - IESD, A Workshop at ISWC 2016, Kobe, Japan (2016)

8. Herrera, J.E.T., Casanova, M.A., Nunes, B.P., Leme, L.A.P.P., Lopes, G.R.: An entity
relatedness test dataset. In: d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol. 10588,
pp. 193–201. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68204-4_20

9. Izquierdo, Y.T., García, G.M., Menendez, E.S., Casanova, M.A., Dartayre, F., Levy, C.H.:
QUIOW: a keyword-based query processing tool for RDF datasets and relational databases.
In: Hartmann, S., Ma, H., Hameurlain, A., Pernul, G., Wagner, R.R. (eds.) DEXA 2018.
LNCS, vol. 11030, pp. 259–269. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
98812-2_22

10. Izquierdo, Y.T., et al.: Keyword Search over Schema-less RDF Datasets by SPARQL Query
Compilation (Submitted for publication)

11. Menendez, E.S., Casanova, M.A., Paes Leme, L.A.P, Boughanem, M.: Novel Node
Importance Measures to Improve Keyword Search over RDF Graphs. (to appear DEXA 2019)

12. Van Andel, P.: Anatomy of the unsought finding serendipity: origin, history, domains,
traditions, appearances, patterns and programmability. Br. J. Philos. Sci. 45(2), 631–648
(1994)

10 M. A. Casanova

http://dx.doi.org/10.1007/978-3-319-59536-8_31
http://dx.doi.org/10.1007/978-3-319-59536-8_31
http://dx.doi.org/10.1007/978-3-319-68204-4_20
http://dx.doi.org/10.1007/978-3-319-98812-2_22
http://dx.doi.org/10.1007/978-3-319-98812-2_22

Conceptual Modeling

OOC-O: A Reference Ontology
on Object-Oriented Code

Camila Zacché de Aguiar(B), Ricardo de Almeida Falbo(B),
and Vı́tor E. Silva Souza(B)

Ontology & Conceptual Modeling Research Group (NEMO),
Federal University of Esṕırito Santo, Vitoria, Brazil

camila.zacche.aguiar@gmail.com, {falbo,vitorsouza}@inf.ufes.br
http://nemo.inf.ufes.br/

Abstract. With the rise of polyglot programming, different program-
ming languages with different constructs have been combined in the same
software development projects. However, to our knowledge, no axioma-
tization demonstrating the existential commitments of a language have
been presented, nor is there effort to adopt a consensual conceptualiza-
tion between languages, in particular object-oriented ones. In this paper,
we propose OOC-O, a reference ontology on Object-Oriented Code whose
purpose is to identify and represent the fundamental concepts present in
OO source code. The ontology is based on UFO, was developed accord-
ing to the SABiO method, verified according to its competency questions
and validated by instantiation of concepts in OO code form and a process
of harmonization among popular object-oriented languages.

Keywords: Object-Oriented Ontology · Polyglot programming ·
Object-Oriented Programming Language

1 Introduction

A Programming Language is defined by a formal grammar, however there must
also be a meaning for each construct of the language. Programs have their mean-
ings given by the semantics of their constructs which, generally, must be pre-
served across programs. Without the semantics of constructs, it would be dif-
ficult to verify if the code represents what it was designed to do. In general, a
programming language is presented through its syntax containing some informal
explanation of its semantics [27]. To the best of our knowledge, no axiomatization
demonstrating the existential commitments of object-oriented (OO) constructs
of a language have been presented, nor is there effort to adopt a consensual
conceptualization of object-oriented constructs between languages.

Thus, in this paper we propose OOC-O, a reference ontology on Object-
Oriented Code whose purpose is to identify and represent the fundamental con-
cepts present in OO source code. This reference ontology is based on UFO [14]

c© Springer Nature Switzerland AG 2019
A. H. F. Laender et al. (Eds.): ER 2019, LNCS 11788, pp. 13–27, 2019.
https://doi.org/10.1007/978-3-030-33223-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33223-5_3&domain=pdf
https://doi.org/10.1007/978-3-030-33223-5_3

14 C. Z. de Aguiar et al.

and was developed according to the SABiO method [11], in a modular way to fos-
ter its reuse. Ontology verification was guided by competency questions, whereas
its validation consisted of both instantiating its concepts in OO code form and
by harmonizing popular OO languages using the ontology as interlanguage. The
latter resulted from the ontology capture process, whose objective was to reduce
semantic and syntactic conflicts between languages.

Although OOC-O is applicable in several contexts, it is being built in the
context of polyglot programming, i.e., different programming languages with
different constructs combined in the same software development project. If on
the one hand the combination of different programming languages with specific
responsibilities can reduce the effort to implement solutions [12], on the other
hand, the effort to implement an algorithm may differ between programming lan-
guages depending on its constructs [24]. In this context, OOC-O has been used
as support for both programmers to understand different syntaxes and seman-
tics of object-oriented constructs, as well as for integrated development tools to
interoperate different languages. The ontology has already been used to migrate
classes with object/relational mappings from one language to another [30] and
is currently being used in an effort to produce a unified solution for identify-
ing smells in OO source code. Furthermore, OOC-O is part of a larger effort of
creating an ontology network on software development frameworks.1

The remainder of this paper is organized as follows. Section 2 discusses briefly
the main concepts found in most OO programming languages as well as the
ontological foundations used for developing OOC-O. Section 3 presents OOC-
O. Section 4 addresses ontology verification and validation. Section 5 discusses
related works. Finally, Sect. 6 concludes the paper.

2 Baseline

Object-oriented (OO) programming is defined as a software implementation
method in which programs are organized as cooperative collections of objects,
each of which representing an instance of some class, and whose classes are
members of a hierarchy of classes linked by inheritance relationships. A class
serves as a template from which objects can be created. It is a defined type that
determines the data structures (attributes) and methods associated with that
type. In order for the attributes and methods of a class to be used in defining a
new class, inheritance is applied as a means of creating abstractions.

Abstraction is the mechanism of representing only the essential characteris-
tics, ignoring the irrelevant details as a way of hiding implementation. To hide
data, encapsulation applies a packaging of methods and attributes accessible
or modifiable only via the interface. Moreover, abstraction can be defined by
polymorphism, attributing the ability to take on many forms and by genericity,
attributing the ability to take several types independently of the structure.

Abstraction, encapsulation, inheritance and polymorphism are the main prin-
ciples of object orientation [7]. In other words, if any of these elements is missing,
1 https://nemo.inf.ufes.br/projects/sfwon/.

https://nemo.inf.ufes.br/projects/sfwon/

OOC-O: A Reference Ontology on Object-Oriented Code 15

you have something less than an OO language [5]. Thus, we consider an OO pro-
gramming language as a tool that supports these four fundamental principles:
Abstraction is realized in a OO code by means of classes containing attributes
and methods; Encapsulation is implemented by accessor methods hiding inter-
nal information of the class, avoiding direct access to its attributes, and by
element visibility avoiding unwanted access to these elements; Inheritance is
directly represented as a relation between a subclass that inherits characteris-
tics from a superclass; and, finally, Polymorphism takes place via the concepts
of method override, in which a method declaration in the subclass modifies
the method declared in the superclass, abstract class, whose abstract meth-
ods are implemented according to the subclass that inherits them, and generic
class/method, whose definition can be used by different data types.

Considering the range of existing languages, we selected languages that pro-
vide constructs for the basic OO principles discussed above in order to form
the baseline of our research, namely: Smalltalk, Eiffel, C++, Java and Python.
The selection took into account the first two OO programming languages ever
proposed and the three currently most popular OO languages according to the
TIOBE2 IEEE Spectrum3 and Redmonk4 indexes.

In order to build an ontology on OO source code, we followed a systematic
approach for building ontologies named SABiO [11], a method that considers
activities for the development of reference ontologies and to its implementation
as operational ontologies. In this paper, we developed only the reference ontology
and, therefore, only the early stages of SABiO were performed. In Purpose Identi-
fication and Requirements Elicitation, we identify the purpose and intended uses of
the ontology, define its functional requirements, by means of Competency Ques-
tions, and also non-functional ones (NFRs), and decompose the ontology into
appropriate modules. Ontology Capture and Formalization phase follows, aiming
at objectively recording the domain conceptualization based on an ontological
analysis using a foundation ontology and representing it in a graphic model.

In addition, SABiO suggests five support processes, applied as follows: Knowl-
edge Acquisition, to gather domain knowledge reliably through specialists and
bibliographic material; Reuse, to take advantage of conceptualizations already
established for the domain; Documentation, to record the results of the devel-
opment process by means of a Reference Ontology Specification; Configuration
Management, to control changes, versions, and delivery by means of a repos-
itory; and Evaluation, to evaluate the suitability of the ontology by means of
verification, ensuring that the ontology satisfies its requirements, and valida-
tion, ensuring that the ontology is able to represent real world situations.

For building our conceptual models, we used the OntoUML modeling lan-
guage, which is based on the UML 2.0 class diagram and incorporates impor-
tant foundational distinctions made by the Unified Foundational Ontology

2 tiobe.com, January 2019.
3 spectrum.ieee.org/at-work/innovation/the-2018-top-programming-languages, July

2018.
4 redmonk.com/sogrady/2019/03/20/language-rankings-1-19/, January 2019.

https://www.tiobe.com
http://spectrum.ieee.org/at-work/innovation/the-2018-top-programming-languages
http://redmonk.com/sogrady/2019/03/20/language-rankings-1-19/

16 C. Z. de Aguiar et al.

(UFO) [14]. Such distinctions are made explicit in the model by means of
UML class stereotypes, summarized as follows: �category�, a rigid type whose
instances share common intrinsic properties but obey different principles of iden-
tity (non-sortal, rigid entities); �kind�, a rigid sortal type that is formed by
distinct parts (functional complex) and supplies an identity principle for its
instances; �subkind�, a rigid sortal type whose instances inherit an identity
principle from a kind; �role�, an anti-rigid sortal type whose specialization con-
dition is given by extrinsic (relational) properties; �relator�, a concept connect-
ing other concepts, and thus existentially dependent on them; and �quality�,
a type whose instances represent intrinsic properties of an individual associated
with a quality structure. This choice is motivated by UFO having a modeling
language with stereotypes covering the domain studied and the availability of
an ontology network on software engineering represented in such language, facil-
itating integration and reuse.

3 Object-Oriented Code Ontology (OOC-O)

The Object-Oriented Code Ontology (OOC-O) aims to identify and represent the
semantics of the entities present at compile time in object-oriented (OO) code.
Given such scope, even though objects are the fundamental constructs in OO
programming and messages are responsible for exchanges between objects, they
are not covered by OOC-O, since they exist only at runtime. The intention is to
use the ontology to assist the understanding of different programming languages
and to support the development of tools that work with these languages, in the
context of polyglot programming and object-oriented frameworks.

We elicited the following non-functional requirements for OOC-O: NFR1 – be
modular or embedded in a modular framework to facilitate reuse of other ontolo-
gies and, consequently, its own reuse by other ontologies; and NFR2 – be based
on well-known sources from the literature. In response to NFR1 and to facilitate
viewing, we decomposed the ontology into three modules, namely: OOC-O Core
(an overview of the main concepts), OOC-O Class (detailing concepts derived
from Class) and OOC-O Class Members (detailing concepts derived from Class
Members, i.e., Methods and Attributes). Moreover, we integrated OOC-O into the
Software Engineering Ontology Network (SEON) [23], to reuse relevant concepts,
as well as SEON’s grounding in UFO. Two ontologies from SEON were reused:
the Software Process Ontology (SPO) [19] and the Software Ontology (SwO) [8].
Along the paper, fragments of these reused ontologies in OOC-O are preceded
by the corresponding acronyms (SPO:: and SwO::, respectively) and highlighted
using different colors. Regarding NFR2, ontology capture was supported by a
process of knowledge acquisition that used consolidated sources of knowledge
referring to the five programming languages selected in this research, including
books [15,17,18,22,25,28] and standards [9,13].

For functional requirements, we have iteratively defined twenty five compe-
tency questions (CQs) detailed in OOC-O’s Reference Ontology Specification
document [2], for instance: CQ1: What makes up an OO source code? CQ2:
What is the visibility of an element present in an OO source code? CQ3: How

OOC-O: A Reference Ontology on Object-Oriented Code 17

are classes logically organized in an OO source code? CQ4: What elements com-
pose a class? CQ5: Which are the parent classes of a class? CQ6: What is a root
class? CQ7: What are the variables of a method? CQ8: What is the mutability
of a variable? CQ9: What types of classes are present in an OO source code?
CQ10: What types of methods are present in an OO source code?

During ontology capture and formalization, we performed ontological anal-
ysis based on UFO, representing OOC-O in OntoUML. Such process was con-
ducted iteratively, in order to address different aspects/refinements at each iter-
ation, and interactively, so domain experts and ontology engineers could discuss
the conceptualization of the domain in OntoUML. Finally, to ensure consensual
understanding of the domain, the concepts were defined in a dictionary of terms
and mapped to the concepts of each selected programming language, detailed in
a technical report [1]. In what follows, we present the three modules of OOC-O.
More details of the ontology can be found in its specification document [2].

3.1 OOC-O Core Module

Figure 1 shows the core concepts of OOC-O and how they integrate with SEON
through the SPO and SwO ontologies.

Fig. 1. Object-Oriented Code Ontology: core module

SPO establishes a common conceptualization on the software process domain
(processes, activities, resources, people, artifacts, procedures, etc.). We reuse the
concept of software Artifact, object consumed or produced during the software
process, which is represented in a Language, a set of symbols used for encoding

18 C. Z. de Aguiar et al.

and decoding information. A software artifact can be, among other things, a
Software Item such as a piece of software produced during the software process.

SwO further specializes this concept: a Software System is a Software Item
that aims at satisfying a system specification. It is constituted of Programs,
which are Software Items that aim at producing a certain result through execu-
tion on a computer, in a particular way, given by a program specification. In
turn, Programs are constituted of Code, a Software Item representing a set of
computer instructions and data definitions which are represented in a Program-
ming Language as a Source Code.

OOC-O is anchored in the concept of Object-Oriented Source Code,
a Source Code specialization represented in an Object-Oriented Program-
ming Language. Such code is constituted of Physical Modules, i.e., phys-
ical units in which the physical files (ex: .java) are stored (e.g., a direc-
tory in the file system). Physical Modules are composed of Classes orga-
nized in Logical Modules, i.e., packages or namespaces that group classes
and allow programmers to control dependencies, visibility, etc. Both Mod-
ules (Physical or Logical) can be decomposed in their respective sub-Modules.
However, decomposition can only take place among modules of the same
type, i.e., ∀m1,m2 : Module, PhysicalModule(m1) ∧ componentOf(m1,m2) →
PhysicalModule(m2) (A1) and ∀m1,m2 : Module, LogicalModule(m1) ∧
componentOf(m1,m2) → LogicalModule(m2) (A2).

Classes are composed of Members, be it a Method (Member Function),
function that belongs to the class and provides a way to define the behavior
of an object, being invoked when a message is received by the object [18]; or
be it an Attribute (Member Variable), variable that belongs to the class and
provides a way to define the state of its objects. Classes, Methods and Variables
are Named Elements characterized by a unique Name and a Visibility, which
defines the access type to the element. Attribute is a subtype of Variable, item
of information located in the memory whose assigned value can be changed or
not according to its Mutability. Analogously, a Method has a Return Type,
whose values refer to the Types of information that the language is capable of
manipulating, whether a Primitive Type, predefined by the language through a
reserved word; or a Class, predefined or not.

3.2 OOC-O Class Module

The purpose of the OOC-O Class module is to represent the relevant concepts
present in OO programming languages with respect to classes. Hence, OOC-O
Class module, shown in Fig. 2, is centered on the Class concept already presented
in OOC-O Core earlier.

Every Class must either be a Concrete Class, implemented class that can
and intends to have instances, or an Abstract Class, incompletely implemented
class whose descendants will use as a basis for further refinement [9]. Abstract
class, in contrast to Concrete Class, should not have instances and should be
an Extendable Class. Further, every class must be either an Extendable Class,

OOC-O: A Reference Ontology on Object-Oriented Code 19

Fig. 2. Object-Oriented Code Ontology: class module

class available to be extended through Inheritance, or Non-Extendable Class,
the opposite.

An Extendable Class can assume the Superclass role when relating to a Class
that assumes the Subclass role in an Inheritance relationship: ∀c1, c2 : Class, i :
Inheritance, inheritsIn(c1, i) ∧ inheritedFrom(c2, i) → subClassOf(c1, c2)
(A3). The relationship between a Superclass and a Subclass is established mainly
by the existence of a “is-a” relation between them [26].

In this context, Inheritance Visibility can be set to limit the Subclass per-
mission on the members of the Superclass. The Extendable Class inherited by
all classes directly or indirectly in an OO code is known as Root Class [9] and
introduces several general-purpose resources. When present, the Root Class is a
common ancestor for all other existing classes, i.e., ∀c : Class, r : RootClass, c �=
r → descendantOf(c, r) (A4), where descendantOf is defined in terms of the
subClassOf predicate introduced above, according to the following axioms:
∀c1, c2 : Class, subclassOf(c1, c2) → descendantOf(c1, c2) (A5) and ∀c1, c2, c3 :
Class, subclassOf(c1, c2)∧descendantOf(c2, c3) → descendantOf(c1, c3) (A6).

Finally, a Class can also assume the Nested Class role when relating to
another Class by means of its declaration being within the body of that Class [13]
(we refer to this as Nesting). Furthermore, a Class can be a Generic Class, when
it describes a template for a possible set of types [9]. A Generic Class is composed
of Type Parameters, which are identifiers that specify generic type names whose
instances must define recognized types that will replace the Type Parameter at
runtime.

20 C. Z. de Aguiar et al.

3.3 OOC-O Class Members Module

The purpose of the OOC-O Class Members module is to represent the relevant
concepts present in OO programming languages with respect to the component
members of the classes. As methods and attributes are the key components of
a class, OOC-O Class Members module, shown in Fig. 3, is centered on the
concepts of Method (Member Function) and Attribute (Member Variable) already
presented in OOC-O Core.

Fig. 3. Object-Oriented Code Ontology: class members

Every Method of a Class must be either a Concrete Method, implemented in
its own (concrete or abstract) Class by means of Blocks; or an Abstract Method,
belonging to an Abstract Class and implemented (or “made concrete”) only in
its Subclasses. A Concrete Method can be specialized according to its execu-
tion context, either in the context of the class, invoked by the class in a Class
Method, or in the context of the object, invoked by the object in an Instance
Method. An Instance Method can be specialized in Accessor Method, which
provides an interface between the internal data of the object and the external
world [15], in Constructor Method, which specifies how an object should be cre-
ated and initialized, or in Destructor Method, which is responsible for cleaning
unusable objects. Return Type cannot characterize neither a Constructor nor a
Destructor Method: ∀rt : ReturnType,m : Method, characterization(rt,m) →
¬ConstructorMethod(m) ∧ ¬DestructorMethod(m) (A7).

Further, every Method must be either an Overridable Method, method
belonging to an Extendable Class that can be overwritten in descendant
classes [25], such as an Abstract Method declared in an Abstract Class to be
implemented by Subclasses; or a Non-Overridable Method, method that can
be inherited but is not allowed to be overwritten in descendant classes, such

OOC-O: A Reference Ontology on Object-Oriented Code 21

as Class Methods and Constructor Methods. A Method can also be a Generic
Method when describing a template for a possible set of methods composed of
one or more Type Parameters.

Variables, in turn, can be associated with methods, i.e., be a Method
Variable, or classes, i.e., an Attribute (Member Variable). In an indirect
way, Method Variable is member of a Class, since a Class is composed of
Methods. Method Variable can be a Parameter Variable declared within the
signature of a Method or Local Variable declared within a Block. Part-of
relations among Methods, Blocks and Local Variables are transitive in the
following ways: ∀v : LocalV ariable, b1, b2 : Block, componentOf(v, b1) ∧
componentOf(b1, b2) → componentOf(v, b2) (A8) and ∀v : LocalV ariable, b :
Block,m : ConcreteMethod, componentOf(v, b) ∧ componentOf(b,m) →
componentOf(v,m) (A9). An Attribute can be a Class Variable when shared by
all objects of the Class or an Instance Variable when it represents the particular
state of each object.

4 Evaluation

The evaluation of a reference ontology comprises activities of verification and
validation. For ontology verification, SABiO suggests identifying whether the
elements that make up the ontology are able to answer the competency ques-
tions raised. Table 1 presents the results for some of the raised CQs (cf. Sect. 3),
showing which concepts and relations are used to answer a CQ.

Table 1. Results for OOC-O verification.

ID Competency question Axiom

CQ1 Object-Oriented Source Code constituted of Physical Module; Class

component of Physical Module

CQ2 Named Element characterized by Element Visibility

CQ3 Class organized in Logical Module

CQ4 Member component of Class; Attribute (Member Variable) and

Method (Member Function) subtype of Member

CQ5 Subclass subtype of Class; Subclass inherits in Inheritance; Superclass

inherited in Inheritance

A3, A5, A6

CQ6 Extendable Class subtype of Class; Root Class subtype of Extendable

Class; Subclass subtype of Class; Subclass inherits in Inheritance;

Superclass inherited in Inheritance.

A3, A4, A5, A6

CQ7 Parameter Variable component of Method; Local Variable component

of Block; Block component of Block; Block component of Concrete

Method; Concrete Method subtype of Method

A8, A9

CQ8 Variable characterized by Mutability

CQ9 Generic Class subtype of Class; Concrete Class subtype of Class;

Abstract Class subtype of Class; Non-Extendable Class subtype of

Class; Extendable Class subtype of Class

CQ10 Generic Method subtype of Method; Concrete Method subtype of

Method; Abstract Method subtype of Method; Overridable Method

subtype of Method; Non-Overridable Method subtype of Method

22 C. Z. de Aguiar et al.

For ontology validation, the ontology should be instantiated to check if it
is able to represent real world situations. For this, we use the same OO code
fragment written in the selected languages to instantiate the concepts of the
ontology. Table 2 shows some results of the OOC-O instantiation. It is worthy
to say that since there are orthogonal generalization sets that are disjoint and
complete (e.g., :Implementation and :Extension in Class concept), each concept
instance (e.g., the Polygon class) is classified in at least each of these gener-
alization sets (e.g., Concrete Class or Abstract Class, and Extendable Class or
Non-Extendable Class). The complete table is available in a technical report [1].

Table 2. Results for OOC-O instantiation.

Language Code OOC-O Instance

Smalltalk Code

Object subclass: #Polygon

instanceVariableNames: ’side’

perimeter ...

Polygon = Concrete Class & Extendable Class & Subclass
Object = Superclass & Root Class
side = Instance Variable
perimeter = Instance Method & Overridable Method

Eiffel Code
class Polygon

feature{ANY}
perimeter() is do ... end

feature{NONE}
side : INTEGER

end

Polygon = Concrete Class & Extendable Class & Subclass
side = Instance Variable
INTEGER = Value Type
perimeter = Instance Method & Non-Overridable Method
NONE and ANY = Element Visibility

C++ Code
class Polygon{
private: int side;

public: void perimeter(){};
};

Polygon = Concrete Class & Extendable Class
side = Instance Variable
perimeter = Instance Method
private and public = Element Visibility
void and int = Value Type

Java Code
public class Polygon{

private int side;

public void perimeter(){};
}

Polygon = Concrete Class & Extendable Class & Subclass
side = Instance Variable & Overridable Method
perimeter = Instance Method
private and public = Element Visibility
void and int = Value Type

Python Code
class Polygon:

side = None

def perimeter(): ...

Polygon = Concrete Class & Extendable Class & Subclass
side = Instance Variable
None = Initial Variable Value
perimeter = Concrete Method & Overridable Method

From OOC-O’s instantiation we can see that the code relative to class def-
inition incorporates the semantics of concrete and extendable class in the
ontology. Most languages, explicitly (Smalltalk) or implicitly (Eiffel, Java and
Python), incorporates subclass semantics, since all classes are subclasses of
the root class of these languages such as the Object class in Smalltalk, Java
and Python, and the Any class in Eiffel (C++ does not have a root class).
Code relative to method definition in different languages incorporates a highly
variable semantics, including the semantics of instance, concrete, overrid-
able and non-overridable methods in the ontology. The element visibility

OOC-O: A Reference Ontology on Object-Oriented Code 23

is either explicitly defined with keywords (private and public in Java and
C++, and none and any in Eiffel) or is private by default (Smalltalk) or is pub-
lic by default (Python). The value type is explicitly defined in some languages
(Eiffel, C++, Java) and defined by the assigned value (Python) or defined as an
object (Smalltalk) in others.

We also performed a harmonization between the elements of the selected
languages and the concepts of OOC-O, applying equivalence relations. Table 3
shows some of these matches and the complete table is available in a technical
report [1]. Although the OO principles are well established, the way they are
handled in the programming languages is not uniform. Each language adopts
different syntax and semantics for their constructs, resulting in different levels
in which those principles are addressed. In this context, OOC-O can be used to
support interoperability among them.

Therefore, Abstraction is represented by the class concept in the languages,
being composed by members such as method in Smalltalk, Java and Python, or
routine in Eiffel, or member function in C++, and by attribute in Eiffel, or data
attribute in Python, or instance variable in Smalltalk, C++ and Java. Inheri-
tance is represented by subclass in Smalltalk, Eiffel, Java and Python, or derived
class in C++, and by superclass in Smalltalk, Eiffel, Java and Python, or base
class in C++. Encapsulation is represented by access in Smalltalk and Eiffel, or
access modifier in C++ and Java, and by the public visibility in Python. Encap-
sulation is represented also by accessor method in Smalltalk, however, the accessor
method concept in Eiffel, C++, Java and Python is not equivalent to accessor
method in the ontology because in these languages there is only a convention for
treating an instance method as an accessor method. Polymorphism is repre-
sented by routine redefinition in Eiffel or virtual function in C++. Smalltalk, Java
and Python incorporate the semantics of overridable method to the method con-
cept. Polymorphism is represented also by generic class/method in Eiffel, Java
and Python, or template in Smalltalk and C++. Polymorphism is represented
also by abstract class in Smalltalk, C++, Java and Python, or deferred class in
Eiffel.

Finally, in a separate research effort [30], the OOC-O reference ontology pre-
sented in this paper was implemented in OWL, giving rise to its operational ver-
sion OOC-OWL (also available in the aforementioned website). OOC-OWL was
then used by ORM-OWL (Object/Relational Mapping Ontology) to instantiate
source code with ORM annotations and migrate it from one language/framework
to another using the ontology as an interlingua.

5 Related Works

Concepts that were originally developed by OO programming languages have
appeared in many other areas such as database [3], development methodol-
ogy [21], data analysis [6], and others. Therefore, there are several works that dis-
cuss and formalize fundamentals of programming language, discussing semantic
theories to be applied in the definition of programming languages ontologies [27],

24 C. Z. de Aguiar et al.

Table 3. Equivalence between selected OO programming languages and OOC-O.

Lang. Language concept OOC-O concept

Smalltalk Class Concrete Class & Extendable Class

Abstract Class Abstract Class

Template Generic Class

Method Concrete Method & Overridable Method

Accessor Method Accessor Method

Instance Variable Instance Variable

Access Element Visibility

Eiffel Class Concrete Class & Extendable Class

Deferred Class Abstract Class

Frozen Class Non-Extendable Class

Generic Class Generic Class

Routine Instance Method & Non-Overridable Method

Routine Redefinition Overridable Method

Accessor Routine Instance Method

Attribute Instance Variable

Access Element Visibility

C++ Class Concrete Class & Extendable Class

Abstract Class Abstract Class

Final Class Non-Extendable Class

Template Generic Class

Member Function Instance Method

Final Member Function Non-Overridable Method

Virtual Member Function Overridable Method

Accessor Member Function Instance Method

Instance Variable Instance Variable

Access Modifier Element Visibility

Java Class Concrete Class & Extendable Class

Abstract Class Abstract Class

Final Class Non-Extendable Class

Generic Class Generic Class

Method Instance Method & Overridable Method

Abstract Method Abstract Method

Final Method Non-Overridable Method

Accessor Method Instance Method

Instance Variable Instance Variable

Access Modifier Element Visibility

Python Class Concrete Class & Extendable Class

Abstract Class Abstract Class

Generic Class Generic Class

Method Concrete Method & Overridable Method

Accessor Method Instance Method

Data Attribute Instance Variable

OOC-O: A Reference Ontology on Object-Oriented Code 25

or of the object orientation, using the ontological view to define the formal basis
of the object notion [29] or introducing a new view on the roles in OO pro-
gramming languages, such in the powerJava language extended from Java [4].
However, this research is interested in identifying and formalizing the relevant
concepts in OO programming languages, little explored as far as we know.

Evermann & Wand [10] apply semantic mapping between ontological con-
cepts of the BWW ontology and OO programming language constructs to assign
semantics and rules in the context of software modeling. The BWW concepts
(thing, property and functional schema) are mapped to UML concepts (object,
class, attribute, attribute of ‘ordinary’ class and attribute of association class).
Although the research has applied an ontological analysis to map object-oriented
constructs, it covers only a small portion of that domain.

Kouneli et al. [16] apply an operational ontology of programming language
for representing the knowledge delivered by a distance learning course on com-
puter programming. Although the ontology is built following a methodology
and sources of information of the Java language, it is not based on any founda-
tion ontology. The concepts of the ontology are anchored in the Thing concept
and hierarchically organized from Java Element (Class, Constructor, Data Type,
Exception, Interface, Method (AbstractMethod, FinalMethod, ClassMethod and
InstanceMethod), Object, Operator, Package, Statement, Thread and Variable
(ClassVariable, InstanceVariable, LocalVariable and Parameter)), Keyword and
Literal Value. Unlike OOC-O, this ontology only represents the Java program-
ming language domain and incorporates non-object-oriented concepts such as
exception, operator, statement, and thread.

Pastor et al. [20] elaborate the O3 reference ontology, inspired by BWW
and the FRISCO framework to semantically map the concepts of the OO pro-
gramming paradigm. The concepts of BWW (thing, property, substantial and
relation) are specialized for the concepts of the OO paradigm (class (general-
ization, specialization), domain (primitive type)), attribute (variable, constant),
interface). Although the research has applied an ontological analysis to map
object-orientation concepts, it covers only a small portion of that domain and
incorporates non-object-oriented concepts such as constraint, service, relation,
agent, server and others.

6 Final Considerations

This paper presents a reference ontology about the concepts of object-oriented
programming code based on a foundation ontology. The OOC-O ontology is built
according to an ontology engineering method and based on well-known data
sources. Verification and validation activities were successfully accomplished, by
answering competency questions, instantiating the ontology in fragments of OO
code, harmonizing between object-oriented languages (Smalltalk, Eiffel, C++,
Java and Python) and checking the coverage of the fundamental OO concepts.

The OOC-O ontology is not intended to represent principles or philosophies of
object orientation, but rather the semantic representation of OO programming

26 C. Z. de Aguiar et al.

language code. To the best of our knowledge, we have not found any related
work that covers the proposed domain in depth. Finally, in future work, we
intend to use the ontology at the foundation of tools in a polyglot programming
development environment and in the context of semantic interoperability among
different object-oriented frameworks.

References

1. Aguiar, C.Z.: Object-Oriented Code Ontology – Harmonization Document of
Object-Oriented Programming Language. Techical report, Federal University of
Esṕırito Santo (2019).http://nemo.inf.ufes.br/projects/sfwon/

2. Aguiar, C.Z.: Object-Oriented Code Ontology – Reference Ontology Specification
Document. Technical report, Federal University of Esṕırito Santo (2019). http://
nemo.inf.ufes.br/projects/sfwon/

3. Atkinson, M., Dewitt, D., Maier, D., Bancilhon, F., Dittrich, K., Zdonik, S.: The
object-oriented database system manifesto. In: Deductive and Object-Oriented
Databases, pp. 223–240. Elsevier (1990)

4. Baldoni, M., Boella, G., Van Der Torre, L.: powerjava: ontologically founded roles
in object oriented programming languages. In: Proceedings of the 2006 ACM Sym-
posium on Applied Computing, pp. 1414–1418. ACM (2006)

5. Booch, G.: Coming of age in an object-oriented world. IEEE Softw. 11(6), 33–41
(1994)

6. Brun, R., Rademakers, F.: Root-an object oriented data analysis framework. Nucl.
Instrum. Methods Phys. Res. Sect. A: Accel. Spect. Detect. Assoc. Equip. 389(1–
2), 81–86 (1997)

7. Conaway, C.F., Page-Jones, M., Constantine, L.L.: Fundamentals of Object-
Oriented Design in UML. Addison-Wesley, Boston (2000)

8. Duarte, B.B., Leal, A.L.C., Falbo, R.D.A., Guizzardi, G., Guizzardi, R.S., Souza,
V.E.S.: Ontological foundations for software requirements with a focus on require-
ments at runtime. Appl. Ontol. 13(2), 73–105 (2018). https://doi.org/10.3233/
AO-180197

9. Eiffel, E.: Eiffel: analysis, design and programming language. In: ECMA Standard
ECMA-367. ECMA (2006)

10. Evermann, J., Wand, Y.: Ontology based object-oriented domain modelling: fun-
damental concepts. Requir. Eng. 10(2), 146–160 (2005)

11. Falbo, R.A.: Sabio: Systematic approach for building ontologies. In: ONTO.
COM/ODISE@ FOIS (2014)

12. Fjeldberg, H.C.: Polyglot programming. Ph.D. thesis, Master thesis, Norwegian
University of Science and Technology, Trondheim/Norway (2008)

13. Gosling, J., Joy, B., Steele, G., Bracha, G., Buckley, A., Smith, D.: The Java
Language Specification: Java SE, 10 edn., 20 February 2018 (2018)

14. Guizzardi, G., Wagner, G.: A unified foundational ontology and some applications
of it in business modeling. In: CAiSE Workshops, no. 3, pp. 129–143 (2004)

15. Hunt, J.: Java and Object Orientation: An Introduction. Springer, Heidelberg
(2002). https://doi.org/10.1007/978-1-4471-0125-3

16. Kouneli, A., Solomou, G., Pierrakeas, C., Kameas, A.: Modeling the knowledge
domain of the java programming language as an ontology. In: Popescu, E., Li, Q.,
Klamma, R., Leung, H., Specht, M. (eds.) ICWL 2012. LNCS, vol. 7558, pp. 152–
159. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33642-3 16

http://nemo.inf.ufes.br/projects/sfwon/
http://nemo.inf.ufes.br/projects/sfwon/
http://nemo.inf.ufes.br/projects/sfwon/
https://doi.org/10.3233/AO-180197
https://doi.org/10.3233/AO-180197
https://doi.org/10.1007/978-1-4471-0125-3
https://doi.org/10.1007/978-3-642-33642-3_16

OOC-O: A Reference Ontology on Object-Oriented Code 27

17. Lafore, R.: Object-Oriented Programming in C++. Pearson Education, Prentice
Hall (1997)

18. LaLonde, W.R., Pugh, J.R.: Inside Smalltalk, vol. 2. Prentice Hall, London (1990)
19. de Oliveira Bringuente, A.C., de Almeida Falbo, R., Guizzardi, G.: Using a founda-

tional ontology for reengineering a software process ontology. J. Inf. Data Manage.
2(3), 511 (2011)

20. Pastor, O.: Diseño y Desarrollo de un Entorno de Producción Automática de Soft-
ware basado en el modelo orientado a Objetos. Ph.D. thesis, Tesis doctoral dirigida
por Isidro Ramos, DSIC, Universitat Politècnica de... (1992)

21. Pastor, O., Insfrán, E., Pelechano, V., Ramirez, S.: Linking object-oriented con-
ceptual modeling with object-oriented implementation in Java. In: Proceedings of
Database and Expert Systems Applications, 8th International Conference, DEXA
1997, Toulouse, France, 1–5 September 1997, pp. 132–141 (1997)

22. Phillips, D.: Python 3 Object-Oriented Programming. Packt Publishing Ltd.,
Birmingham (2015)

23. Borges Ruy, F., de Almeida Falbo, R., Perini Barcellos, M., Dornelas Costa, S.,
Guizzardi, G.: SEON: a software engineering ontology network. In: Blomqvist,
E., Ciancarini, P., Poggi, F., Vitali, F. (eds.) EKAW 2016. LNCS (LNAI), vol.
10024, pp. 527–542. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
49004-5 34

24. Schink, H., Broneske, D., Schröter, R., Fenske, W.: A tree-based approach to sup-
port refactoring in multi-language software applications. In: Proceedings of the
2nd International Conference on Advances and Trends in Software Engineering,
Lisbon, Portugal, pp. 3–6 (2016)

25. Sebesta, R.W.: Concepts of Programming Languages. Pearson, Boston (2012)
26. Tucker, A.B.: Programming Languages: Principles and Paradigmas. Tata McGraw-

Hill Education, New York (2007)
27. Turner, R., Eden, A.H.: Towards a programming language ontology. Citeseer (2007)
28. Tyrrell, A.J.: Eiffel Object-oriented Programming. Springer, Heidelberg (1995).

https://doi.org/10.1007/978-1-349-13875-3
29. Wand, Y.: A proposal for a formal model of objects. In: Object-Oriented Concepts,

Databases, and Applications, pp. 537–559. ACM (1989)
30. Zanetti, F., Aguiar, C.Z., Souza, V.E.S.: Representacao ontologica de frameworks

de mapeamento objeto/relacional. In: 12th Seminar on Ontology Research in Brazil
(ONTOBRAS) (2019). (to appear)

https://doi.org/10.1007/978-3-319-49004-5_34
https://doi.org/10.1007/978-3-319-49004-5_34
https://doi.org/10.1007/978-1-349-13875-3

Relations in Ontology-Driven Conceptual
Modeling

Claudenir M. Fonseca1(B), Daniele Porello2, Giancarlo Guizzardi1,3,
João Paulo A. Almeida3, and Nicola Guarino2

1 Conceptual and Cognitive Modeling Research Group (CORE),
Free University of Bozen-Bolzano, Bolzano, Italy

{cmoraisfonseca,giancarlo.guizzardi}@unibz.it
2 ISTC-CNR Laboratory for Applied Ontology, Trento, Italy

{daniele.porello,nicola.guarino}@cnr.it
3 NEMO, Federal University of Espírito Santo, Vitoria, Brazil

jpalmeida@ieee.org

Abstract. For over a decade now, a community of researchers has contributed
to the ontological foundations of Conceptual Modeling by participating to the
development of the Unified Foundational Ontology (UFO) and the UFO-based
modeling language OntoUML, which have been successfully employed in a num-
ber of different sectors. The empirical feedback from these experiences led us to
reconsider UFO’s theory of relations, proposing a new theory that has already
been applied to model subtle notions in the business domain, such as value, risk,
service, and contract. In this paper, we advance a first formal characterization of
this new theory, which is then used to design a new metamodel for OntoUML.

Keywords: Relations · Relationships · Ontology-driven conceptual modeling ·
OntoUML · UFO

1 Introduction

Applied philosophical theories have gained an increasing importance in conceptual
modeling in the past decades, supporting different modeling approaches. More specif-
ically, the notion of foundational ontologies emerged in the form of comprehensive
theories seeking to consistently define fundamental concepts in the field, e.g., types and
taxonomic structures, roles and relational properties, part-whole relations, multi-level
structures, etc. An ontology developed with the goal of providing foundations for all
these major conceptual modeling constructs is UFO (Unified Foundational Ontology)
[10,14]. Over the years, UFO has been employed for the evaluation and (re)design of
conceptual modeling languages and reference models in a variety of domains [12]. One
of the main applications of UFO has been the design of a general-purpose language
for ontology-driven conceptual modeling (ODCM) OntoUML. Following a systematic
language engineering process [10], OntoUML has been created as a revised version
of UML such that: (i) its modeling primitives reflect the ontological distinctions put
forth by UFO; (ii) its metamodel includes semantically-motivated syntactic constraints
c© Springer Nature Switzerland AG 2019
A. H. F. Laender et al. (Eds.): ER 2019, LNCS 11788, pp. 28–42, 2019.
https://doi.org/10.1007/978-3-030-33223-5_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33223-5_4&domain=pdf
https://doi.org/10.1007/978-3-030-33223-5_4

Relations in Ontology-Driven Conceptual Modeling 29

that reflect the axiomatization of UFO. Research shows that UFO and OntoUML are
among the most used foundational ontology and modeling language in the ODCM lit-
erature, respectively [24]. Moreover, empirical evidence shows that OntoUML signif-
icantly contributes to improving the quality of conceptual models without requiring
an additional effort to produce them. For instance, Verdonck’s work [23] reports on
a modeling experiment conducted with 100 participants in two countries showing the
advantages of OntoUML when compared to a classical conceptual modeling language
(EER).

The observations of the way OntoUML was applied over the years, conducted by
several groups in a variety of domains, are a fruitful empirical source of knowledge on
the language and its foundations [12]. In particular, we observed a number of different
ways in which people did slightly subvert the syntax of the language, ultimately creat-
ing what we called systematic subversions [10]. These “subversions” did (purposefully)
produce models that were grammatically incorrect, but which were needed to express
intended meanings that could not be expressed otherwise. We labeled them as “system-
atic” because they were recurring in the works of different authors that, independently
of each other, were subverting the language in the same manner and with the same
modeling intention. One of these “subversions” led us to reconsider UFO’s theory of
relations [6,7], proposing a new theory that has been applied to model a number of dif-
ferent notions, including value, risk, preference, service and contract [5,17,21], whose
(preliminary) formal characterization will be presented here for the first time.

Relations are fundamental for conceptual modeling, and, for many years,
researchers have been looking at ontological theories to account for relevant distinc-
tions among them, and provide ways to talk of them by means of reification mecha-
nisms [1,3,11,25]. In this paper, leveraging on previous revisitations of UFO’s notion
of relator [6,7,9], we present UFO’s new theory of relations as well as its OntoUML
counterpart (a suitable fragment of OntoUML 2.0 [13]). As we demonstrate, this new
theory is much richer than the existing proposals in the literature, with important con-
sequences for conceptual modeling practice.

The contributions of this paper are three-fold. First, we present a first formal char-
acterization for this new theory of relations. Second, following the same ontology-
based language engineering approach that was used to create the original version of
OntoUML [10], we employ this new formalized version of the theory to propose an
enhanced metamodel for OntoUML 2.0. Finally, we employ this metamodel to imple-
ment a model construction and verification tool for OntoUML 2.0. The remainder of
this paper is organized as follows: Sect. 2 provides the background for the paper briefly
reviewing OntoUML and UFO, including its new ontological theory of relations. The
section also briefly analyzes the limitations of the original version of OntoUML and its
underlying theory with respect to the conceptual modeling of relations; Sect. 3 presents
a rich formalization of the new theory, accounting for relators and for different kinds
of relations; Sect. 4 presents the OntoUML 2.0 relations metamodel and the modeling
patterns [9] for the various kinds of relations, incorporated into the language; Sect. 5
briefly discusses related work and presents our final considerations.

30 C. M. Fonseca et al.

2 Background: UFO, OntoUML and a New Theory of Relations

OntoUML was originally designed to represent invariant structures of endurants
(object-like entities) and their relations, reflecting the ontological distinctions in UFO.
In this foundational ontology, endurants are partitioned into substantials and moments.
Substantials are existentially independent individuals, e.g., a car, a person, or an orga-
nization. In contrast, moments are specific aspects of individuals that are existentially
dependent on them, such as (a) a flower’s color or (b) Bob’s headache, and may be also
existentially dependent on other individuals, as in the case of (c) John’s love for Mary
or (d) the marriage between John and Mary. The specific sort of existential dependence
connecting moments to their bearers is termed inherence. Each of these examples of
moments reflects a different category within UFO (Fig. 2)1: (a) is an example of a qual-
ity, a particular aspect of an individual that may be useful to compare it with other
individuals, on the basis of the value it takes in a certain quality space (for instance, a
position within the RGB spectrum) [10]; (b) and (c) are examples ofmodes, i.e., aspects
that can have their own qualities; in particular, (b) is an intrinsic mode, since it only
depends on its bearer, while (c) is an example of extrinsic mode, also called externally
dependent mode since, besides inhering in John, it is also existentially dependent on
Mary, accounting for a one-sided relationship between John and Mary; finally, (d) may
be seen as a sum of externally dependent modes accounting for reciprocal one-sided
relationships (such as John’s love for Mary, John’s obligations towards Mary, and the
reciprocal relationships on Mary’s side), which form altogether a complex two-sided
relationship. Qualities and intrinsic modes are collectively called intrinsic moments, as
they are intrinsic to their bearers. Extrinsic modes include externally dependent modes
and mereological sums of two or more externally dependent modes, which are collec-
tively called relators.

In OntoUML, an association stereotyped as «characterization» represents (at the
type-level) the existence of an inherence relation connecting the instances of those
types, i.e., connecting intrinsic moments and their bearers. Analogously, associations
stereotyped as «mediation» are used to connect relators to their relata.2 Both «charac-
terization» and «mediation» are special cases of existential dependence [10].

The original version of UFO made a fundamental distinction between formal and
material relations. Intuitively, the former were assumed to hold “directly without any
further intervening individual”, while the latter required the existence of an intervening
individual. Formally, material relations where defined as presupposing the existence
of a relator composed of externally dependent modes (each inhering in one relatum
and externally dependent on the other) all historically dependent on a common external
foundation event. Formal relations where defined as relations that are not material. Typ-
ical examples of material relations where married-with or employed-by, while formal
relations included inherence, mediation and parthood, as well as comparative relations
such as heavier-than.

1 The taxonomy we are describing, depicted in Fig. 2, has been slightly changed with respect to
UFO’s original one.

2 We stick to the term ‘mediation’ just for reasons of compatibility with previous papers. In the
past we also used ‘involvement’, which is perhaps a better terminological alternative.

Relations in Ontology-Driven Conceptual Modeling 31

Fig. 1. Example of relations in the current version of OntoUML.

Figure 1 illustrates how these relations appear in OntoUML in its current version.
Stereotypes are used to distinguish «formal» and «material» relations, as well as to
identify «characterization» and «mediation». Moreover, the derivation relation is rep-
resented by a dashed line connecting the relator type Marriage and the relation married-
with, such that we have that the tuple 〈John,Mary〉 instantiates the latter iff it is medi-
ated by an instance of the former, i.e., by a particular instance of Marriage.

2.1 Limitations of UFO/OntoUML 1.0 Regarding the Modeling of Relations

In the original version of UFO, the distinction between formal and material was exhaus-
tive, i.e., all relations that were not consider material (i.e., mediated by an external
entity) were automatically classified as formal. Take, for example, the ternary relation
of Economic Preference [18], defined between an agent and two resources. This rela-
tion is completely grounded on two modes of the agent, namely, two value ascriptions
made by that agent with respect to those resources. However, in this case, there is no
property that is acquired by these resources in virtue of being preferred (or deprecated)
by that agent! The only entity that has relational properties grounding that relation is
that agent. Now, since in UFO relators are aggregations of externally dependent modes
of all relata, the sum of the valuations of this agent is not a relator and, hence, prefer-
ence cannot be considered a material relation. As a consequence, it must be considered
a formal relation and, hence, classified together with relations as diverse as being-older
than and existential dependence.

So, the original UFO theory of relations was too restrictive (w.r.t. material rela-
tions), proscribing the existence of single-side relational moments. On the other hand,
the theory was too permissive (w.r.t. formal relations), including in the same class, for
example, relations holding directly as soon as their relata exist (e.g., existential depen-
dence, inherence, instantiation) and relations reducible to intrinsic properties of the
relata (e.g., comparative relations such as older-than), as well as the so-called mere
Cambridge relations [7], e.g., economic preference or value ascription.

A practical drawback of the aforementioned restrictive aspect is the difficulty in
modeling relations based on single-side relational qualities, which abound in prac-
tice. For example, this shortcoming of the language has caused several experienced
researchers to radically diverge regarding the modeling of standard relations in the ISO
REA framework [8]. Moreover, since relationship reification was restricted to mate-
rial relations, the modeling benefits of reifying other types of relationships would often

32 C. M. Fonseca et al.

escape modeler’s attentions. Indeed, in a previous paper [12] some of us discussed the
benefits of reifying comparative relations such as heavier-than, for example, to track
the changes in the weight variation of two physical objects in time.

A practical drawback of the permissive aspects of the original theory is that, since
relations of different sorts were grouped in the same class, the constraints in the lan-
guage for the modeling of these relations were basically non-existing, namely, the use
of standard associations with a stereotype «formal». As a consequence, for example,
when modeling comparative relations, there was nothing in the language forcing the
modeler to pay attention to the existence of particular qualities in the relata that would
ground that relation (e.g., in the way that heavier-than should be grounded in the indi-
vidual weights of the relata). Furthermore, as demonstrated by [20], after analyzing a
repository of dozens of OntoUML models, a frequent anti-pattern in ontology-driven
conceptual modeling is the use of the «formal» stereotype to model relations neglecting
a deeper analysis of their nature, exactly because of the lack of additional constraints
associated with that stereotype.

As a final limitation, we highlight that although the original OntoUML metamodel
explicitly represents different forms of existential dependence (e.g., inherence, medi-
ation), it does not provide any native support for other forms of specific dependence,
which recurrently appeared in practical domains. The most prominent of these being
external dependence (for example, in the domains of Service [5] and Risk [21]) and
historical dependence (for an example, in many ontologies of artifacts [26]).

2.2 Extending UFO’s Original Theory of Relations

In a recent series of papers [6,7,9], Guarino and Guizzardi revisited the ontological
nature of relations and relationships by focusing on the following question: if a relation
R holds for relata x and y, what is there in the world that is the truthmaker of this
relational sentence, i.e., what is responsible for its truth? What is the nature of such
truthmaker? By relying on distinctions with respect to different types of truthmakers, the
authors proposed a typology of relation types that goes beyond the original distinction
between formal and material, relying on two orthogonal distinctions: internal/external
and descriptive/non-descriptive.

So far, we kept refining our own understanding of these two distinctions in an infor-
mal way, resulting in changes in the way some relations where classified. Indeed, as
discussed in [9], the philosophical terms used for such distinctions are often used in
different ways, so that it is difficult to draw an accurate picture. This is the reason why,
in this paper, we decided to aim at a rigorous axiomatic characterization, both to clarify
the ontological assumptions behind these distinctions and to allow us to formally derive
the constraints to be implemented in the new version of OntoUML (OntoUML 2.0) in
order to enforce ontologically well-founded modeling patterns (Table 1).

According to a definition originally due to Russell [19], internal relations are rela-
tions derivable in terms of the intrinsic properties of their relata. A classic example
are comparative relations. They may hold either in virtue of intrinsic moments of the
relata (e.g., John is taller than Mary because of their intrinsic height qualities) or just
in virtue of the way the relata intrinsically are, without involving their qualities (e.g.,
John’s height is greater than Mary’s height). External relations, in contrast, cannot be

Relations in Ontology-Driven Conceptual Modeling 33

just defined in terms of intrinsic properties of their relata. This means that they either:
(i) rely on at least one property of a relatum that depends on something else (typically,
the other relatum). The classic example is the marriage relation, whose truthmaker is
composed of the mutual commitments and obligations of the partners, which are modes
inhering in each of them and externally dependent on the other one; (ii) are primitive
non-analyzable relations (e.g., existential dependence and its specializations such as
inherence and mediation). In summary, in the case of an external relation connecting
x and y, there is something about x that requires the existence of y. This externally
dependent entity is either a moment of x or x itself.

In an orthogonal dimension, descriptive relations hold in virtue of some moment
(aspect) of the relata. For example, both in love with and heavier than between people
hold because of specific moments of their relata (a love mode in the first case; weight
qualities in the second case). In contrast, non-descriptive relations hold because of the
entity as a whole (e.g., greater than between two qualities, such as weight or height).
Each combination of the two distinctions (i.e., internal/external and descriptive/non-
descriptive) corresponds to an interesting class of relations. For example, in this account
of descriptiveness, a historical dependence relation such as born in turns out to be non-
descriptive (since it does not involve an intrinsic quality of its relata) and external, since
what makes it true is something external to both individuals. Unlike the cases we have
been discussing so far, such external entity is not an endurant (quality, mode, relator) but
an event, namely, a person’s birth. Moreover, comparative relations among objects are
examples of internal and descriptive and relations similar to married-with are examples
of external descriptive ones.

As discussed in depth in [6], there are important benefits, from a conceptual mod-
eling point of view, in explicitly representing truthmakers via relationships reifica-
tion, ranging from addressing ambiguity in single-tuple versus multiple-tuple cardinal-
ity constraints, clarifying the semantics of relations involving relations (e.g., relation
subsetting, relation specialization, relation redefinition), modeling n-adic relations, etc.
Guarino, Sales and Guizzardi [9], use these combinations devise a set of truthmaking
patterns designed to properly represent truthmakers in all the cases where the relation
merits reification, namely, all descriptive relations and some external non-descriptive
ones. We explore these patterns in Sect. 4 incorporating them into the language as means
to support ontology-driven conceptual modeling.

3 A Formal Theory of Relations

We present the first formalization of the aspects previously discussed. This formaliza-
tion builds upon but significantly extends UFO’s formalization for endurant types in
[13]3 and serves as the foundational layer for Sect. 4.

Our formal theory is expressed in first-order modal logic QS5 with fixed domain of
interpretation [4]. We omit the outermost necessity operator and universal quantifier, in
case their scope takes the full formula. Assuming a fixed domain of interpretation, the
elements of the domains are construed as possibilia, i.e., entities that exist at least in a

3 We only present an excerpt of the formalization here. The complete formalization is available
at https://github.com/diporello/UFO-Ontology-of-Relations/.

https://github.com/diporello/UFO-Ontology-of-Relations/

34 C. M. Fonseca et al.

Fig. 2. Taxonomy of UFO types.

possible world. UFO introduces then a non-logical existence predicate (ex) defined on
the possible entities at issue (here Thing) (a1). By means of ex, we define the relation of
existential dependence between two entities, ed(x,y) (a2), and of existential indepen-
dence, ind(x,y), (a3). These axioms serve also the formalization of the inherence rela-
tion (a4)–(a7). A moment can be defined as an endurant that inheres in some endurant,
which is the bearer of the moment (a10) (e.g. John’s courage). Moreover, a moment
cannot inhere in two separate individuals, (a8). By axiom (a10), the bearer of a moment
always exists and, by (a8), it is unique, thus the dependence is functional and we can
introduce the function symbol β (x) to indicate the unique bearer of a moment (d1).
Moments are then partitioned into intrinsic moments, which existentially depend only
on their bearer, and extrinsic moments, which depend on entities that are distinguished
from the bearers (a11). Intrinsic moments are then divided into qualities (e.g. weight,
length, color) in case the moment is measurable by a certain quality space (cf. [10]), and
intrinsic modes (e.g. courage), which may not be measurable. Extrinsic moments are
divided into externally dependent modes (edm) and relators. The former are moments
that inhere in one entity and depends on another. We shall approach relators in the
next paragraphs. Extrinsic moments do play a relational role between the entities on
which they depend, cf. [10]. E.g. John’s love for Mary inheres in John and existentially
depends on Mary. We introduce the relation of external dependence, (a12).

a1 ex(x) → Thing(x) a2 ed(x,y) ↔ �(ex(x) → ex(y))
a3 ind(x,y) ↔ ¬ed(x,y)∧¬ed(y,x)
a4 inheresIn(x,y) → Moment(x)∧Endurant(y)
a5 inheresIn(x,y) → ed(x,y) a6 ¬inheresIn(x,x)
a7 inheresIn(x,y)∧inheresIn(y,z) → ¬inheresIn(x,z)
a8 inheresIn(x,y)∧inheresIn(x,z) → y= z
d1 β (x) =de f ιy. inheresIn(x,y) a9 inheresIn(x,y) → ¬inheresIn(y,x)

a10 Moment(x) ↔ Endurant(x)∧∃yinheresIn(x,y)
a11 ExtrinsicMoment(x) ↔ Moment(x)∧ed(x,y)∧∃y.(ind(y,β (x)))
a12 externallyDepends(x,y) ↔ Moment(x)∧ed(x,y)∧ind(y,β (x)))

Relations in Ontology-Driven Conceptual Modeling 35

Finally, we assume a classical extensional mereology. For reason of space, we do not
present the related axioms, relying on [15,22]. We denote by Pxy and PPxy the relation
of part and proper part (respectively).

We present now the theory of relations. We write 〈x1, . . . ,xn〉 ::r for the instantiation
of an n-ary relation r by x1, . . . ,xn, cf. [16]. We limit ourselves to binary relations, the
case of n-ary relations is a simple generalization. Hence, we can introduce a taxonomy
of n-ary universals (i.e. relations), cf. Fig. 2. The taxonomy of relations is motivated by
the specific truthmaking patterns, which are explicit in the right-hand part of axioms
(a15) and (a16). This patterns indicate a necessary condition about the properties of the
entities that are relevant to assess the relational statement at issue. By presenting the
necessary conditions for the relational to hold (i.e. by →), we are not committing to a
characterization of the relational statement. For example, for an internal relation such
as r = heavier-than, it is necessary for classifying 〈x,y〉 ::r that two qualities of these
relata exists, namely, their weights. However, this is may not suffice, as we also need
that the weight of x is greater than the weight of y. We approach this point in Sect. 4,
where we characterize a particular subtype of internal relations.

To associate a relation (or, as we shall see, also a type) to the correct relevant proper-
ties, we assume a primitive relation of derivation, der(x,y). For instance, der associates
a comparative relation such as r = heavier-than the weight qualities of the relata (and
not e.g. the colour qualities).

An internal relation, (a15), holds in virtue of intrinsic property of the relata (e.g.
heavier-than holds because of the weights of the relata). Defining the intrinsic prop-
erties of an entity is of course a difficult endeavour, cf. [9]. Here, we approximate, by
assuming that intrinsic properties include types of intrinsic moments. Axiom (a13) does
not exclude that we may list further intrinsic properties. Notice that the constraint about
der is also required to define the relevant moment type that defines the intrinsic prop-
erty. External relations are the non-internal ones, i.e. they are not reducible to relevant
properties of the relata. As we shall discuss in the sequel, primitive relations are also
construed here as external relations.

Descriptive relations are here restricted to mention moments of the relata, i.e. to
simplify the presentation, we do not discuss moments that inhere the sum of the relata,
cf. [9]. By (a16), descriptive relational statements may hold in two cases: (i) in virtue
of a pertinent extrinsic moment m that inheres in one of the relata and depends on the
other (for external descriptive relations, e.g. John admires Mary) or (ii) in virtue of
the existence of pertinent intrinsic moments of the relata (for internal descriptive ones,
e.g., John is taller-than Mary). Theorem (t1) indeed shows that, if r is descriptive and
external, then there exists an extrinsic moment of one relatum that depends on the other.

a13 Type(p) ∧ �(x :: p↔ ∃m, t(IntrinsicMoment(m) ∧ IntrinsicMomentType(t) ∧
m :: t ∧ inheresIn(m,x)) → IntrinsicProperty(p)

a14 der(x,y) → (Relation(x)∨Type(x))∧ (Relation(y)∨Type(y))
a15 Internal(r) ↔ ∀xy.(�〈x,y〉 :: r → ∃pp′.(IntrinsicProperty(p) ∧

IntrinsicProperty(p′)∧ der(r, p) ∧ der(r, p′) ∧ x :: p ∧ y :: p′))
a16 Descriptive(r) ↔ ∀x1x2.(�〈x1,x2〉 :: r → ∃z.(MomentType(z) ∧ der(r,z)

∧ ∃m.(ExtrinsicMoment(m) ∧ m :: z ∧ ∨i �= j
i, j∈{1,2}(inheresIn(m,xi) ∧

36 C. M. Fonseca et al.

ed(m,x j)))
∨∃m1m2.((

∧
i∈{1,2}(IntrinsicMoment(mi) ∧ mi :: z ∧ inheresIn(mi,xi))))))

t1 Descriptive(r)∧External(r)∧�〈x1,x2〉 :: r → ∃xm.(MomentType(x) ∧
ExtrinsicMoment(m) ∧ der(r,x) ∧ m :: x ∧ ∨i �= j

i, j∈{1,2}(inheresIn(m,xi) ∧
ed(m,x j))

For internal relations, we have two cases of truthmaking. If they are also descriptive,
we look for moments of the relata, e.g. the weight quality of the relata in a comparative
statement between objects such as John is heavier than Paul. If they are not descriptive,
we search for intrinsic properties of the relata that are not moments. One example is the
value of the weight quality in comparative statements between qualities as in The weight
of John is greater than the weight of Paul, which is here understood as an intrinsic
property of the relata but not a quality (a moment) of the relata.

For external non-descriptive relations, we have that there is no moment of the relata
that is relevant to the truthmaking and also that there is no intrinsic properties of the
relata to which we can reduce the relational statement. For this reason, external non-
descriptive relations categorize our primitive undefined relations. For external descrip-
tive relations, we have two cases of truthmaking. For one-sided relations (e.g. John
admires Mary), the existence of the pertinent externally dependent mode suffices. For
double-sided relations (John is married to Mary), a single externally dependent mode
is not enough, we need the two modes inhering in both relata. That is, we need to intro-
duce relators. Relators are formalized as mereological sums of externally dependent
modes such that: they share the same foundation; they inhere in some entity; and, they
existentially depend on another relatum, cf. [10]. We start by defining the foundation of
an extrinsic moment as an event and we assume that the foundation is unique, cf. (a17)
and (a18). For reasons of space, we cannot fully discuss here the theory of events [7].
Axiom (a19) defines relators as objects that have at least two parts (cf. Pmx and Pnx in
(a19)), which indeed are externally dependent modes that inhere some individual, share
the same foundation, and depend on another individual.

a17 foundedBy(x,y) → (ExtrinsicMoment(x)∧Event(y))
a18 ExtrinsicMoment(x) → ∃!y foundedBy(x,y)
a19 Relator(x)↔ ∃mnyze.(Edm(m)∧inheresIn(m,y) ∧ Edm(n)∧inheresIn(n,z)∧

Pmx ∧ Pnx ∧ m�=n ∧ y �= z ∧ foundedBy(m,e) ∧ foundedBy(n,e) ∧ ed(m,z) ∧
ed(n,y))

a20 mediates(x,y) ↔ Relator(x) ∧ Endurant(y) ∧ ∃z.(Edm(z) ∧ inheresIn(z,y) ∧
Pzx)

t2 Relator(x) → ∃yz.(mediates(x,y) ∧ mediates(x,z)∧ y �= z)

Mediation links a relator x and an individual y that the relator connects (a20). A
relator is a particular type of moment, hence it has a unique bearer, which can be defined
as the mereological sum of all the individuals mediated by the relator, cf. [15,22]. By
(a19) and (a20), a relator must connect at least two individuals (t2).

Relations in Ontology-Driven Conceptual Modeling 37

4 Towards a New UML Profile for Modeling Relations

OntoUML is an ODCM language that extends UML class diagrams by defining stereo-
types that reflect UFO ontological distinctions into language constructs (e.g., classes
and associations). As discussed previously, constructs decorated with OntoUML stereo-
types carry a precise semantics grounded by UFO, and enriched by a set of semanti-
cally motivated syntactical constraints [2], reflecting UFO’s axiomatization. In addition
to ensuring ontological model consistency, the stereotyped constructs and constraints
guide the modeler into addressing ontological issues concerning the subject domain.
In particular, the OntoUML constructs for relations guide the modeler concerning the
inclusion of truthmakers of domain relations in a model.

The specification of OntoUML is presented as a UML profile (a lightweight exten-
sion) in Fig. 3. All relation types are represented as stereotypes of UML associations.
Stereotypes in gray are concrete, and, hence, are the only ones that appear in models.
These stereotypes are discussed throughout this section, which concludes with a sum-
mary of the constraints governing their use (Table 1, reflecting the formalization). The
stereotypes introduced here capture different types of domain relations that may hold
between types of endurants. We shall recall the semantics for each of the stereotypes for
endurant types used here, namely, «kind», «relatorKind», «modeKind», «qualityKind»
and «role»4. The first four stereotypes in the list identify the ontological nature of the
decorated type’s instances and serve to mark the basic ontological categories instanti-
ated by their instances. Types decorated by «kind» have object-like individuals (sub-
stantials) as instances (e.g., Person, Car or Organization); types decorated by «quali-
tyKind» have qualities as instances(e.g., Weight or Color). Types decorated by «mod-
eKind» have modes as instances (e.g., Headache or Commitment), including externally
dependent modes. Types decorated by «relatorKind» have relators as instances (e.g.,
Marriage or Enrollment). These stereotypes are used to represent the kinds of entities
in the domain, and capture essential properties of these entities, classifying them neces-
sarily. For example, a Person is essentially so, although she can contingently be a Stu-
dent, a Wife, a Client, an Employee, etc. Analogously, an Enrollment is essentially so,
although it can contingently be a suspended enrollment, an insured enrollment, grounds
for visa application, etc. The stereotype «role» decorates types that classify endurants
of a given kind dynamically according to some relational property, e.g., the case for
Husband and Wife, whose instances are instances of Person involved in a married-with
relation (see Fig. 4). Types stereotyped as «role» can specialize types decorated with
any of the other mentioned class stereotypes.

The following OntoUML stereotypes for domains relations are defined: «charac-
terization», «mediation», «external dependence», «comparative», «material», and «his-
torical». Their usage is exemplified in Fig. 4. The «characterization», «mediation» and
«external dependence» stereotypes decorate associations representing different sorts of
existential dependencies, all external and non-descriptive. An association stereotyped
with «characterization» connects a moment type (either a quality or a mode type) to the
endurant type in which its instances inhere. An association stereotyped with «media-

4 The set of stereotypes for endurant types presented here is partial, but suffices for the interpre-
tation of the discussed relations and examples. The complete list is drawn from [13].

38 C. M. Fonseca et al.

Fig. 3. OntoUML profile for relations.

Fig. 4. OntoUML patterns for the reification of relations.

tion» binds a relator type to each endurant type mediated by it. Finally, an association
stereotyped with «external dependence» binds an externally dependent mode type to
some endurant type on which its instances depend.

The «comparative» stereotype decorates associations representing comparative rela-
tions holding between endurant types. Comparative relations, such as heavier-than,
are descriptive and internal, requiring the usage of a reification pattern to reveal their
truthmakers. The truthmaker of a comparative relation is an equivalent relation hold-
ing between common qualities of the relata. For example, heavier-than holds between
instances of Person whenever their qualities of Weight are related by a special rela-
tions (e.g., greater-than relation), i.e., the heavier-than relation is derived from a pair
of weight qualities of the relata, which, in turn, are related by a greater-than relation (a
internal and non-descriptive relation). Comparative relations are captured in the models
by: (a) adding a derivation association (the dashed line in the model) connecting the
comparative relation to the quality type of their truthmakers; (b) including a derivation
rule in the model that strengthens axiom (a15) by including a condition representing
the internal relation between the values of the appropriate qualities. In general, we have
the following general derivation pattern: if a comparative relation CR is derived from

Relations in Ontology-Driven Conceptual Modeling 39

the quality type Q then 〈x,y〉 ::CR ↔ (∃qx,qy,r. (qx ::Q∧ qy ::Q∧ inheresIn(qx,x)∧
inheresIn(qy,y)∧ Internal(r)∧ ¬Descriptive(r)∧ 〈qx,qy〉 ::r)). In the example of
Fig. 4, this general pattern can take the following OCL form:

This pattern reveals not only the quality used as basis for the comparative relation,
but also the way they relate to one another that makes true the comparison. With the
addition of «comparative» and this general derivation rule pattern, we deprecate the
former «formal» stereotype.

The «material» stereotype decorates associations representing external descriptive
relations, i.e., relations that hold in virtue of some relational endurant that is bound
to the relata. The first kind of material relations acknowledged in OntoUML are those
which truthmakers are relators, in which case the relator mediates all the relata and
a derivation relation connects the material one to the relator, as it is for married-with
and Marriage. In addition to relators, externally dependent modes can play the role of
relational properties and truthmakers for one-sided material relations, in which case a
mode type is connected through derivation to the relation and it inheres in one relatum
(through characterization) and externally depends on the other, as it is for admires and
Admiration. Externally dependent modes may also compose relators, requiring that they
inhere in and externally depend on endurants mediated by the relator they are part of.
Modes and relators capture the “life” of the relations derived by them, accounting for
identity and properties of the relation that belongs not to the relata but to relation itself.

Lastly, the «historical» stereotype decorates associations representing historical
relations. Historical relations are external and non-descriptive and, even though they
may hold between endurants, their truthmakers are not endurants, but events (or com-
positions of events) responsible for the truth of the relation. This can be the case of
descent-of, captured here as the relation holding between a person and each of his/her
ancestors, all of whom participate in a chain of reproduction events. At this point,
OntoUML does not officially account for the representation of events, thus, we include
historical relations without a reification pattern for the inclusion of events as truthmak-
ers. This is feature of our proposal to be revisited as soon as OntoUML incorporates
primitives for the representation of events and event relations.

In addition to the rules presented throughout this section regarding the semantics
of relations, their possible relata and truthmaking patterns, Table 1 collects additional
constraints that emerge from our formalization. These constraints ensure the adherence
to the truthmaking patterns discussed above. This profile is implemented as an exten-
sion for a UML CASE tool that incorporates the stereotypes for OntoUML 2.0 and
syntactically verifies models for the language’s constraints, informing the modeler of
any violations or model incompleteness5.

5 https://github.com/nemo-ufes/OntoUML-2.0-for-Visual-Paradigm.

https://github.com/nemo-ufes/OntoUML-2.0-for-Visual-Paradigm

40 C. M. Fonseca et al.

Table 1. OntoUML constraints on external descriptive relations.

Constraints
From (a16) and (a19), associations decorated as «material» must have a derivation association
towards a class decorated as «modeKind», for one-sided relations, and «relatorKind», for others.
From (a16) and (t1), classes decorated as «modeKind» and connected, through derivation, to
some «material» relation must have a «characterization» relation towards one of the relata and
an «external dependence» relation towards the other.
From (a19) and (t2), classes decorated as «relatorKind» and connected, through derivation, to
some «material» relation must have a «mediation» relation towards each relata.
From (a19) and (a20), classes decorated «modeKind» and connected, through part-of relation, to
some «relatorKind» must have a «characterization» relation towards one of the classes mediated
(i.e., «mediation») by the relator.
From (a19), classes decorated «modeKind» and connected, through part-of relation, to some
«relatorKind» must have a «external dependence» relation towards at least one of the classes
mediated (i.e., «mediation») by the relator.
From (a15) and (a16), associations decorated as «comparative» must have a derivation associa-
tion towards a class decorated as «quality».
From (a15) and (a16), classes decorated as «qualityKind» and connected, through derivation, to
some «comparative» relation must have a «characterization» relation towards a class specialized
by the relata or the relata themselves.

5 Final Considerations

We contributed to the ontological foundations of conceptual modeling by proposing a
formal ontological theory of relations. We believe this theory makes an important con-
tribution advancing the state of art in the field. Relations are one of conceptual mod-
eling’s most fundamental constructs. However, most existing foundational theories for
conceptual modeling only recognize the most basic distinctions among the fundamen-
tal categories of relations. For example, the BWW ontology [25], which is the most
used foundational ontology in ODCM [23], only countenances two types of properties,
namely, intrinsic and mutual properties, and two types of relations, namely, coupling
and non-coupling relations. As discussed in [11], the former distinction is analogous
to our distinction between intrinsic and extrinsic (i.e., externally dependent) moments.
Nevertheless, in our approach properties are instantiated, with several advantages (see in
depth discussion in [10,11]). Moreover, the BWW notion of mutual properties seems to
conflate the (type-level counterpart of) our notions of externally dependent modes and
relators. The latter distinction, as discussed in [10], is similar to the former UFO/On-
toUML distinction between formal and material relations, which, as argued here, is
insufficient to address subtle modeling requirements.

Our theory was developed to address a number of empirically elicited requirements,
collected from observing the practice of the OntoUML community while using these
notions to model a variety of domains (claim to relevance). Despite the empirical ori-
gin of these requirements, they are very much in line with the philosophical literature
(claim to ontological adequacy). Additionally, following the same strategy as in [13],
our formalization has been checked for its consistency using automated theorem provers

Relations in Ontology-Driven Conceptual Modeling 41

(claim to consistency). Besides these foundations, we make a contribution to the prac-
tice of conceptual modeling by (re)designing a modeling profile based on this theory
(following a well-tested approach to ontology-based language engineering [10]), and by
providing a computational tool for model creation and verification according to this pro-
file (claim to realizability). More broadly, the work presented here is part of a research
program aimed at addressing a fuller evolution of UFO and OntoUML [13].

References

1. Bera, P., Evermann, J.: Guidelines for using UML association classes and their effect on
domain understanding in requirements engineering. Requirements Eng. 19(1), 63–80 (2014)

2. de Carvalho, V.A., Almeida, J.P.A., Guizzardi, G.: Using reference domain ontologies to
define the real-world semantics of domain-specific languages. In: Jarke, M., et al. (eds.)
CAiSE 2014. LNCS, vol. 8484, pp. 488–502. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-07881-6_33

3. Evermann, J.: The association construct in conceptual modelling – an analysis using the
bunge ontological model. In: Pastor, O., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol.
3520, pp. 33–47. Springer, Heidelberg (2005). https://doi.org/10.1007/11431855_4

4. Fitting, M., Mendelsohn, R.L.: First-Order Modal Logic, vol. 277. Springer, Heidelberg
(2012)

5. Griffo, C., et al.: From an ontology of service contracts to contract modeling in enterprise
architecture. In: Proceedings of 21st EDOC (2017)

6. Guarino, N., Guizzardi, G.: “We need to discuss the Relationship”: revisiting relationships as
modeling constructs. In: Zdravkovic, J., Kirikova, M., Johannesson, P. (eds.) CAiSE 2015.
LNCS, vol. 9097, pp. 279–294. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
19069-3_18

7. Guarino, N., Guizzardi, G.: Relationships and events: towards a general theory of reification
and truthmaking. In: Adorni, G., Cagnoni, S., Gori, M., Maratea, M. (eds.) AI*IA 2016.
LNCS, vol. 10037, pp. 237–249. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
49130-1_18

8. Guarino, N., et al.: On the ontological nature of REA core relations. In: Proceedings of 12th
VMBO (2018)

9. Guarino, N., Sales, T.P., Guizzardi, G.: Reification and truthmaking patterns. In: Trujillo,
J.C., et al. (eds.) ER 2018. LNCS, vol. 11157, pp. 151–165. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-00847-5_13

10. Guizzardi, G.: Ontological foundations for structural conceptual models. Telematica Institu-
ut/CTIT (2005)

11. Guizzardi, G., Wagner, G.: What’s in a relationship: an ontological analysis. In: Li, Q., Spac-
capietra, S., Yu, E., Olivé, A. (eds.) ER 2008. LNCS, vol. 5231, pp. 83–97. Springer, Heidel-
berg (2008). https://doi.org/10.1007/978-3-540-87877-3_8

12. Guizzardi, G., et al.: Towards ontological foundations for conceptual modeling: the unified
foundational ontology (UFO) story. Appl. Ontol. 10(3–4), 259–271 (2015)

13. Guizzardi, G., Fonseca, C.M., Benevides, A.B., Almeida, J.P.A., Porello, D., Sales, T.P.:
Endurant types in ontology-driven conceptual modeling: towards OntoUML 2.0. In: Trujillo,
J.C., et al. (eds.) ER 2018. LNCS, vol. 11157, pp. 136–150. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-00847-5_12

14. Guizzardi, G., Wagner, G., de Almeida Falbo, R., Guizzardi, R.S.S., Almeida, J.P.A.:
Towards ontological foundations for the conceptual modeling of events. In: Ng, W., Storey,
V.C., Trujillo, J.C. (eds.) ER 2013. LNCS, vol. 8217, pp. 327–341. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-41924-9_27

https://doi.org/10.1007/978-3-319-07881-6_33
https://doi.org/10.1007/978-3-319-07881-6_33
https://doi.org/10.1007/11431855_4
https://doi.org/10.1007/978-3-319-19069-3_18
https://doi.org/10.1007/978-3-319-19069-3_18
https://doi.org/10.1007/978-3-319-49130-1_18
https://doi.org/10.1007/978-3-319-49130-1_18
https://doi.org/10.1007/978-3-030-00847-5_13
https://doi.org/10.1007/978-3-030-00847-5_13
https://doi.org/10.1007/978-3-540-87877-3_8
https://doi.org/10.1007/978-3-030-00847-5_12
https://doi.org/10.1007/978-3-030-00847-5_12
https://doi.org/10.1007/978-3-642-41924-9_27

42 C. M. Fonseca et al.

15. Hovda, P.: What is classical mereology? J. Philos. Log. 38(1), 55–82 (2009)
16. Olivé, A.: Conceptual Modeling of Information Systems. Springer, Heidelberg (2007).

https://doi.org/10.1007/978-3-540-39390-0
17. Porello, D., Guizzardi, G.: Towards a cognitive semantics of types. In: Esposito, F., Basili,

R., Ferilli, S., Lisi, F. (eds.) AI*IA 2017. LNCS, vol. 10640, pp. 428–440. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-70169-1_32

18. Porello, D., Guizzardi, G.: Towards an ontological modelling of preference relations. In:
Ghidini, C., Magnini, B., Passerini, A., Traverso, P. (eds.) AI*IA 2018. LNCS, vol. 11298,
pp. 152–165. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03840-3_12

19. Russell, B.: Philosophical Essays. Routledge, Abingdon (2009)
20. Sales, T.P.: Ontology validation for managers. Master’s thesis, UFES (2014)
21. Sales, T.P., Baião, F., Guizzardi, G., Almeida, J.P.A., Guarino, N., Mylopoulos, J.: The com-

mon ontology of value and risk. In: Trujillo, J.C., et al. (eds.) ER 2018. LNCS, vol. 11157,
pp. 121–135. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00847-5_11

22. Varzi, A.: Mereology. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy, Winter
2016 edn. Metaphysics Research Lab, Stanford University (2016)

23. Verdock, M., et al.: Comparing traditional conceptual modeling with ontology-driven con-
ceptual modeling: an empirical study. Inf. Syst. 81, 92–103 (2019)

24. Verdonck, M., Gailly, F.: Insights on the use and application of ontology and conceptual mod-
eling languages in ontology-driven conceptual modeling. In: Comyn-Wattiau, I., Tanaka, K.,
Song, I.-Y., Yamamoto, S., Saeki, M. (eds.) ER 2016. LNCS, vol. 9974, pp. 83–97. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-46397-1_7

25. Wand, Y., et al.: An ontological analysis of the relationship construct in conceptual modeling.
ACM Trans. Database Syst. (TODS) 24(4), 494–528 (1999)

26. Wang, X., et al.: Towards an ontology of software: a requirements engineering perspective.
In: Proceedings of the 8th International Conference on Formal Ontology in Information Sys-
tems (FOIS), Rio de Janeiro (2014)

https://doi.org/10.1007/978-3-540-39390-0
https://doi.org/10.1007/978-3-319-70169-1_32
https://doi.org/10.1007/978-3-030-03840-3_12
https://doi.org/10.1007/978-3-030-00847-5_11
https://doi.org/10.1007/978-3-319-46397-1_7

Capturing Multi-level Models in a Two-Level
Formal Modeling Technique

João Paulo A. Almeida1, Fernando A. Musso1, Victorio A. Carvalho2,
Claudenir M. Fonseca3(B), and Giancarlo Guizzardi1,3

1 Ontology and Conceptual Modeling Research Group (NEMO),
Federal University of Espírito Santo (UFES), Vitória, Brazil
jpalmeida@ieee.org, fernandomusso14@gmail.com
2 Federal Institute of Espírito Santo (IFES), Colatina, Brazil

victorio@ifes.edu.br
3 Conceptual and Cognitive Modeling Research Group (CORE),

Free University of Bozen-Bolzano, Bolzano, Italy
{cmoraisfonseca,giancarlo.guizzardi}@unibz.it

Abstract. Conceptual models are often built with techniques that propose a strict
stratification of entities into two classification levels: a level of types (or classes)
and a level of instances. Multi-level conceptual modeling extends the conven-
tional two-level scheme by admitting that types can be instances of other types,
giving rise to multiple levels of classification. Nevertheless, the vast majority of
tools and techniques are still confined to the two-level scheme, and hence cannot
be used for multi-level models directly. We show here how a multi-level model
in ML2 can be transformed into a two-level specification in the formal modeling
technique Alloy, thereby leveraging the Alloy analyzer to multi-level models.

Keywords: Multi-level modeling ·Model transformation

1 Introduction

Conceptual modeling is usually undertaken by capturing invariant aspects of the enti-
ties in a subject domain, which is supported in most conceptual modeling approaches
through constructs such as “classes” and “types”, reflecting the use of “kinds”, “cate-
gories” and “sorts” in accounts of a subject domain by subject matter experts. In the
conventional two-level representation scheme, a conceptual model is stratified into two
levels of entities: a level of types (or classes) and a level of instances (or individuals).
The level of types captures invariants that apply exclusively to the level of instances.
In this scheme, the subject matter can be understood as consisting of individuals, and
the purpose of the conceptual model is to establish which structures of individuals are
admissible according to some (shared) conceptualization of the world [16].

The two-level scheme, however, reveals its limitations whenever we are interested
in invariants about categories themselves [8], i.e., whenever categories of categories are
part of the domain of inquiry. For example, in the biological taxonomy domain [2,6],
living beings are classified according to biological taxa (such as, e.g., Animal, Mammal,
c© Springer Nature Switzerland AG 2019
A. H. F. Laender et al. (Eds.): ER 2019, LNCS 11788, pp. 43–51, 2019.
https://doi.org/10.1007/978-3-030-33223-5_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33223-5_5&domain=pdf
https://doi.org/10.1007/978-3-030-33223-5_5

44 J. P. A. Almeida et al.

Carnivoran, Lion), each of which is classified by a biological taxonomic rank (e.g.,
Kingdom, Class, Order, Species) [22]. Cecil (the lion killed in the Hwange National
Park in Zimbabwe in 2015) is an instance of Lion, which is an instance of Species.
Species, in its turn, is an instance of Taxonomic Rank. Thus, to describe the concep-
tualization in this domain, one needs to represent entities of different (yet related) clas-
sification levels, such as specific living beings (Cecil), types of living beings (Lion),
types of types of living beings (Species, Animal Species). In fact, classification lev-
els can be added as required, e.g., Taxonomic Rank classifies the types of types of living
beings. Other examples of multiple classification levels can be found in organizational
roles, software engineering [15] and product types [23].

The need to represent entities in such domains led to what is currently termed
“multi-level modeling” [4,23]. Techniques for multi-level modeling must provide mod-
eling concepts to deal with types in various classification levels and address the relations
that may occur between those types. Moreover, they must account for types behaving
as instances and, as such, respecting invariants and holding values for properties they
exemplify (in other words, types in a multi-level model have two facets: a “class” or
type facet, and an “object” or instance facet [4]).

Despite the benefits of multi-level modeling, multi-level mechanisms pose a chal-
lenge to the reuse of existing two-level techniques and tools. In this paper, we demon-
strate how multi-level models can be accommodated in a conventional two-level lan-
guage. We propose a systematic transformation of multi-level models represented in
the ML2 Multi-Level Modeling Language [13] into conventional Alloy [17] specifica-
tions, following a transformation pattern that is based on the reification of the instance
facet of a type and its systematic linking with the type facet. This allows us to lever-
age model simulation and verification support originally designed with a conventional
two-level scheme to multi-level conceptual models.

The remainder of this paper is organized as follows: Sect. 2 discusses a classical
workaround employed when we are confined to two levels of classification, namely,
the powertype pattern. Section 3 briefly presents the multi-level modeling language we
adopt here (ML2). Section 4 discusses how multi-level models are represented in a cor-
responding two-level specification in Alloy. Section 5 presents some conclusions.

2 The Classical Two-Level Workaround – The Powertype Pattern

Let us consider the biological taxonomy domain as a paradigmatic example of a multi-
level domain [2,6]. We are interested in this domain not only in capturing features of
certain organisms (e.g., its weight), but also features of types of organisms and their
properties. For example, a Species (like other taxa) is named by a Person (the Lion
species was named by Carl Linnaeus) and can be attributed a conservation status.
Further, being a member of a certain species, an organism has certain features in virtue
of being a member of the species. For example, all lions are warm blooded, while all
frogs are cold blooded.

In the conventional two-level approach, entities in the domain have to be classified
either as classes (or types) or as instances. Strictly speaking, there is no room for meta-
types such as Species or meta-meta-types such as Taxonomic Rank. Workarounds are

Capturing Multi-level Models in a Two-Level Formal Modeling Technique 45

available as discussed in [19,20], but these often introduce accidental complexity. For
example, an early approach that has aimed to accommodate multiple domain levels
within two modeling levels is the powertype pattern proposed by [24]. In this pattern,
all types are treated as regular classes, and a “base type” (such as Organism, Taxon) is
related to a “powertype” (such as Species, Taxonomic Rank), through a user-defined
(and regular) association (such as classified by, ranked in). See Fig. 1 for a model
capturing this scenario using UML’s support for powertypes.

This workaround creates a number of difficulties, some of which are dis-
cussed in [19,20]. First of all, a modeler needs to handle explicitly two notions of
instantiation, a native one provided by the modeling technique (and thus between
classes and instances) and another that corresponds to the user-defined association
(classified by, ranked in). In the case of the latter, since it is a regular user-defined
association, no support for its instantiation semantics is provided by the modeling tech-
nique, and hence, instantiation semantics needs to be emulated manually by the mod-
eler. The pattern is based on the duplication of the instances of the powertype: this is
because they must be admitted both at the instance level (e.g., Lion as an instance of
Species, carrying values for taxonAuthor, conservation status, warmblooded)
and at the same time at the class level (e.g., Lion as a specialization of Organism).
The management of the duplicated entities—although key to the pattern—is left to the
model user.

Fig. 1. The powertype pattern with a regular user-defined association

3 The ML2 Multi-level Modeling Language

The root of the problem discussed in the previous section is that two-level languages fail
to recognize classes as instances of other (meta)classes [3,14]. This has motivated some
of us in the past to propose a Multi-Level Modeling Language (ML2) [13], following
work on theoretical foundations for Multi-Level Modeling (MLT [8,10] and MLT* [1]).

The language provides support to the specification of properties of individuals, their
types (the so-called first-order types), second-order types (whose types are first-order

46 J. P. A. Almeida et al.

types) and so on. Further, the language incorporates notions of powertype in the lit-
erature (including Odell’s [24] and Cardelli’s powertypes [7]). The language supports
a number of features typical of multi-level modeling techniques, some of which are
exemplified here; we refer the reader to [12,13] for further details.

In Listing 1.1, we employ ML2 to revisit the example from Fig. 1 presenting how a
language that is not limited to the two-level scheme captures the multi-level notions.

Individuals (entities that are not classes) are marked individual. Simple class
declarations capture first-order classes (e.g., Animal, Lion and Person), whose
instances are individuals (e.g., Cecil and CLinnaeus). Higher-order classes are
declared by using a order modifier (e.g., AnimalSpecies in Line 1 is a second-order
class).

Differently from the conventional powertype approach, rather than relying on
domain relations with no specialized semantics (such as ranked in or classified by
in Fig. 1), ML2 enables the expression of instantiation between classes, which is repre-
sented by a colon. Given the specialized semantics, constraints enforce that high-order
classes can only have as instances classes at the order immediately below. Standard
modeling features of specialization, attributes and references are also present in the lan-
guage, and both attributes and references may have values assigned for their instances.
For example, ‘Carl Linnaeus’ is the name of CLinnaeus (an individual Person) and
CLinnaeus is the taxonAuthor of Lion. In addition, regularity features are used to
represent deep instantiation [2], when the attributes of a higher-order type affect entities
at lower levels. By assigning instancesAreWarmBlooded=true in the declaration of
Lion (Line 7), the value of isWarmBlooded is regulated for all its instances, including
Cecil. The determinesValue keyword (Line 3) specifies the sort of regulation and
the regulated feature. (See [12,13] for other kinds of regulation supported in ML2.)

The powertype pattern semantics is supported with the so-called categorization
relations between classes. All instances of a class that categorizes another (in an
adjacent lower order) are (direct or indirect) specializations of the categorized class.
Thus, by declaring that AnimalSpecies categorizes Animal (Line 1), all instances
of AnimalSpecies (such as Lion) specialize Animal (a constraint enforced by ML2).

Capturing Multi-level Models in a Two-Level Formal Modeling Technique 47

4 A Systematic Two-Level Solution and Its Alloy Implementation

Similarly to the powertype pattern discussed in Sect. 2, we reify the instance facet of a
type in our two-level representation scheme. However, differently from the powertype
pattern, the instance and type facets are systematically linked to each other. The result is
that the expression of multi-level constraints becomes possible, and, at the same time,
the technique-native support for instantiation, attribute assignment and specialization
is preserved. We establish the following representation rules for a two-level scheme:
(i) each ML2 class is represented as a regular class (capturing its type facet); (ii) each
ML2 class (at any order) is reified at the instance level (capturing its instance facet);
(iii) native instantiation of a class is reflected in explicit instantiation links between a
class instance and the reified class being instantiated; (iv) in addition to instantiation,
specialization is reified as links between the reified classes. In order to ensure that the
multi-level semantics is preserved, (v) all classes specialize classes in a top-level library
corresponding to ML2 notions (Type, its ordered specializations, Individual).

The established correspondence results in the representation schema shown in
Fig. 2. The topmost layer that corresponds to ML2 notions is represented in white. It
is extended by introducing Taxonomic Rank, Animal Species, Animal and Lion cor-
responding to the classes in Listing 1.1 (Person was omitted due to space constraints).
The figure also shows a possible instance level. As required, it includes reified instances
of Type (e.g., lionReified) that correspond to the various classes on the left-hand
side of the figure (e.g., lionReified corresponds to the Lion class). It also shows
a possible instance of Lion, called cecil. The object level shows cecil linked to
lionReified through the instance of association. As discussed in Sect. 2, there is
a purposeful duplication of the Lion entity in order to reveal its instance facet at the
object level through lionReified.

Fig. 2. Reification example.

We employ this principled approach to implement a transformation from ML2 into
a conventional two-level language dubbed Alloy [17]. Alloy is a formal two-level lan-
guage designed to support lightweight formal techniques for simulation and verification
of model specifications. For the implemented transformation, an Alloy specification of

48 J. P. A. Almeida et al.

the top-level ML2 layer (in fact, MLT* [9]) is imported in all of the generated Alloy
specifications, serving as the topmost layer for our transformation. We shall explore
how each representation rule discussed above is applied in the ML2 to Alloy transfor-
mation. In order to illustrate the application of the transformation, we use the example
discussed in Listing 1.1 and the corresponding Alloy fragment in Listing 1.2.

Concerning rule (i), class declarations, native specialization, typing of relations
and attributes, are all supported by Alloy directly. This allows for a direct repre-
sentation of classes, e.g., in lines 1, 6 and 15 (Animal, Lion and AnimalSpecies)
and respective specializations (Species, Organism and Person were omitted due
to space constraints). Attribute and reference declarations are supported directly (see
isWarmBlooded in line 1 and instancesAreWarmBlooded in line 16).

Concerning rule (ii), we include the instance facet of classes into the specifi-
cation. Due to the absence of native support for instance declaration in Alloy, we
make use of singletons, see lines 2, 7 and 17 (AnimalReified, LionReified,
AnimalSpeciesReified), a solution we also employ for the representation of individ-
uals in lines 13 and 14 (Cecil and CarlLinnaeus). These instance facets (for classes
and individuals alike) are the holders of any assignments and are used to declare cate-
gorizations (see lines 21 and 22 for AnimalSpecies categorizing Animal).

Concerning rule (iii), instantiation is reified through the iof predicate that is defined
in the top-level library for MLT* imported in all specifications. This rule further binds

Capturing Multi-level Models in a Two-Level Formal Modeling Technique 49

the different facets of classes by enforcing that, whenever an entity natively instantiates
a class (as denoted with the keyword in) it also has an explicit instantiation link with
the reified class (and vice-versa). See lines 3–5, 10–12 and 18–20 which respectively
bind Animal and AnimalReified, Lion and LionReified, and AnimalSpecies and
AnimalSpeciesReified, following the same transformation pattern.

Specialization links between reified classes (iv) do not have to be declared explic-
itly, as they are a logical consequence of rule (iii) and the definition of specialization in
the top-level library. Rule (v) results in declaration of specializations towards the library
classes (Order1Type, Order2Type). Finally, regularity attributes result in the declara-
tion of a regulation fact (lines 23–25). In this case, all animals of a certain species are
warmblooded (or not) as defined by the species instancesAreWarmBlooded attribute.

The transformation was implemented on top of the Eclipse-based ML2 editor
https://github.com/nemo-ufes/ML2-Editor. The full implementation of the transforma-
tion and the listing of the original ML2 model and corresponding Alloy specification
can be found in https://github.com/nemo-ufes/ml2-to-alloy.

5 Final Considerations

In this paper, we have shown how to capture ML2 multi-level models in a two-level
representation scheme in Alloy. The approach builds up on the powertype pattern, by
reifying the instance facet of types. Differently from the powertype pattern, we system-
atically link type and instance facets. As a result, a two-level technique such as Alloy
can be directly used in the simulation and verification of multi-level models. By incor-
porating a formally defined (MLT*-based) top-level library, we can enforce consistent
usage of ML2 notions, from instantiation and order stratification to regularity features.

The literature presents a number of approaches for dealing with multi-level domains
within the limitation of two-level schemes. We observe among these three typical cases:
(i) the application of the powertype pattern that captures relations between classes of
different orders [15]; (ii) the reification of classes as entities that capture their instance
facets [18]; (iii) and the application of metamodeling strategies consisting on stacking
two-level models to represent higher-order classes as metaclasses [21]. Each of these
approaches exhibit some limitations in the representation of multi-level domains: (i)
powertype-based approaches fail to link instance and type facets and do not capture
the specialized instantiation semantics underlying categorization relations, (ii) simple
reification approaches fail to provide level structuring mechanisms which are require
to rule out unsound models [5]; and (iii) the stacking (or cascading) approach places
corresponding entities in distinct two-level models preventing the expression of cross-
level relations (such as named by between Species and Person).

We expect the transformation approach we discuss here to be applicable to other
two-level representation languages with minor effort. We are working on a first-order
logic formalization of the approach, in order to generalize it to other techniques beyond
Alloy. It is part of our present research agenda to explore the implications of our app-
roach to the representation of multi-level models in OWL-DL and UML, following the
work reported in [6,11].

https://github.com/nemo-ufes/ML2-Editor
https://github.com/nemo-ufes/ml2-to-alloy

50 J. P. A. Almeida et al.

Acknowledgments. This work has been partially supported by CNPq (407235/2017-5,
312123/2017-5), CAPES (23038.028816/2016-41), FAPES (69382549) and FUB (OCEAN
Project).

References

1. Almeida, J.P.A., Fonseca, C.M., Carvalho, V.A.: A comprehensive formal theory for multi-
level conceptual modeling. In: Mayr, H.C., Guizzardi, G., Ma, H., Pastor, O. (eds.) ER 2017.
LNCS, vol. 10650, pp. 280–294. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
69904-2_23

2. Atkinson, C., Kühne, T.: Model-driven development: a metamodeling foundation. IEEE
Softw. 20(5), 36–41 (2003)

3. Atkinson, C., Kühne, T.: Meta-level independent modelling. In: Proceedings of the 14th
ECOOP (2000)

4. Atkinson, C., Kühne, T.: The essence of multilevel metamodeling. In: Gogolla, M., Kobryn,
C. (eds.) UML 2001. LNCS, vol. 2185, pp. 19–33. Springer, Heidelberg (2001). https://doi.
org/10.1007/3-540-45441-1_3

5. Brasileiro, F., Almeida, J.P.A., Carvalho, V.A., Guizzardi, G.: Applying a multi-level mod-
eling theory to assess taxonomic hierarchies in Wikidata. In: Proceedings of the 25th WWW
(2016)

6. Brasileiro, F., Almeida, J.P.A., Carvalho, V.A., Guizzardi, G.: Expressive multi-level model-
ing for the semantic web. In: Groth, P., et al. (eds.) ISWC 2016. LNCS, vol. 9981, pp. 53–69.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46523-4_4

7. Cardelli, L.: Structural subtyping and the notion of power type. In: Proceedings of the 15th
POPL (1988)

8. Carvalho, V.A., Almeida, J.P.A.: Toward a well-founded theory for multi-level conceptual
modeling. Softw. Syst. Model. 17, 205–231 (2018)

9. Carvalho, V.A., Almeida, J.P.A., Fonseca, C.M., Guizzardi, G.: Extending the foundations
of ontology-based conceptual modeling with a multi-level theory. In: Johannesson, P., Lee,
M.L., Liddle, S.W., Opdahl, A.L., López, Ó.P. (eds.) ER 2015. LNCS, vol. 9381, pp. 119–
133. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25264-3_9

10. Carvalho, V.A., Almeida, J.P.A., Fonseca, C.M., Guizzardi, G.: Multi-level ontology-based
conceptual modeling. Data Knowl. Eng. 109(C), 3–24 (2017)

11. Carvalho, V.A., Almeida, J.P.A., Guizzardi, G.: Using a well-founded multi-level theory to
support the analysis and representation of the powertype pattern in conceptual modeling. In:
Nurcan, S., Soffer, P., Bajec, M., Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694, pp. 309–324.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39696-5_19

12. Fonseca, C.M.: ML2: an expressive multi-level conceptual modeling language. Master’s the-
sis. Federal University of Espírito Santo (2017)

13. Fonseca, C.M., Almeida, J.P.A., Guizzardi, G., Carvalho, V.A.: Multi-level conceptual mod-
eling: from a formal theory to a well-founded language. In: Trujillo, J.C., et al. (eds.) ER
2018. LNCS, vol. 11157, pp. 409–423. Springer, Cham (2018). https://doi.org/10.1007/978-
3-030-00847-5_29

14. Foxvog, D.: Instances of instances modeled via higher-order classes. In: FOnt 2005 Work-
shop, Proceedings of the 28th KI (2005)

15. Gonzalez-Perez, C., Henderson-Sellers, B.: A powertype-based metamodelling framework.
Softw. Syst. Model. 5, 72–90 (2006)

16. Guizzardi, G.: On ontology, ontologies, conceptualizations, modeling languages, and
(meta)models. Front. Artif. Intell. Appl. 155, 18 (2007)

https://doi.org/10.1007/978-3-319-69904-2_23
https://doi.org/10.1007/978-3-319-69904-2_23
https://doi.org/10.1007/3-540-45441-1_3
https://doi.org/10.1007/3-540-45441-1_3
https://doi.org/10.1007/978-3-319-46523-4_4
https://doi.org/10.1007/978-3-319-25264-3_9
https://doi.org/10.1007/978-3-319-39696-5_19
https://doi.org/10.1007/978-3-030-00847-5_29
https://doi.org/10.1007/978-3-030-00847-5_29

Capturing Multi-level Models in a Two-Level Formal Modeling Technique 51

17. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press, Cambridge
(2012)

18. Kimura, K., et al.: Practical multi-level modeling on MOF-compliant modeling frameworks.
In: Proceedings of the 2nd MULTI Workshop (2015)

19. Kühne, T., Schreiber, D.: Can programming be liberated from the two-level style: multi-level
programming with DeepJava. In: Proceedings of the 22nd OOPSLA (2007)

20. Lara, J.D., Guerra, E., Cuadrado, J.S.: When and how to use multilevel modelling. ACM
Trans. Softw. Eng. Methodol. (TOSEM) 24, 12 (2014)

21. Macías, F., Rutle, A., Stolz, V.: MultEcore: combining the best of fixed-level and multilevel
metamodelling. In: Proceedings of the 3rd MULTI Workshop (2016)

22. Mayr, E.: The Growth of Biological Thought: Diversity, Evolution, and Inheritance. Harvard
University Press, Cambridge (1982)

23. Neumayr, B., Grün, K., Schrefl, M.: Multi-level domain modeling with m-objects and m-
relationships. In: Proceedings of the 6th APCCM (2009)

24. Odell, J.: Power types. J. OO Program. 7, 8–12 (1994)

An SQLo Front-End for Non-monotonic
Inheritance and De-referencing

Joel Oduro-Afriyie and Hasan M. Jamil(B)

Department of Computer Science, University of Idaho, Moscow, ID, USA
odur8117@vandals.uidaho.edu, jamil@uidaho.edu

Abstract. We revisit the issues of non-monotonic inheritance and struc-
ture traversal in object-relational databases with new insights to pro-
pose OO extensions of SQL and demonstrate that they are sufficient
and powerful enough for modeling classes, non-monotonic inheritance
and de-referencing. In particular, we show that simple tweaking of SQL
with tuple ID helps capture these OO features cleanly and empowers
application developers with a powerful knowledge modeling tool.

Keywords: Object-oriented modeling · Abstract relations ·
Object-relational query language · Translational semantics ·
Inheritance and overriding

1 Introduction

Numerous applications can benefit from the simple software engineering idea of
inheritance and overriding. Despite significant interests in modeling these con-
venient features in database query languages, a fully functional object-oriented
(OO) [2] or object-relational (OR) database [4] did not materialize mainly
because it was extremely difficult to combine the simplicity and declarativity
of SQL-like languages with the power of full object-orientation in a single plat-
form. Serious efforts to craft an OO SQL date back to early to late 90s [5,7], and
no similar efforts can be seen since then. Even in those early efforts, researchers
were mainly focused on supporting abstract data types (ADTs). The commu-
nity then was eager to find a query language that looks and feels like C++. Not
surprisingly, the CQL++ [3], or SQL/XNF [7] type database languages basically
attest to the reality, although a limited number of research focused on features
such as inheritance without much success [5]. The OQL [1] or O2 [2] languages
are complex to say the least, and this explains why they did not become popular.

In this paper, we propose a novel approach to class hierarchy and inheri-
tance modeling with overriding, and object de-referencing, in classical relational
database systems without the need for a new algebra based on the conviction
that minimally extending SQL to support the urgently needed OO features is
prudent. In the remainder of the paper, we mainly use an illustrative example
to expose the modeling and query mapping technique we propose without much

c© Springer Nature Switzerland AG 2019
A. H. F. Laender et al. (Eds.): ER 2019, LNCS 11788, pp. 52–60, 2019.
https://doi.org/10.1007/978-3-030-33223-5_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33223-5_6&domain=pdf
http://orcid.org/0000-0001-8912-4568
http://orcid.org/0000-0002-3124-3780
https://doi.org/10.1007/978-3-030-33223-5_6

An SQLo Front-End for Relational Databases 53

details for the sake of brevity and for expository purposes. A complete technical
discussion on the model, language and query transformation is deferred to a full
article we plan to publish elsewhere.

2 The OR Model

The object relational model, or the OR data model, we propose, has two types
of tables – traditional tables (called simply tables) and abstract tables. Tables
are defined in standard ways using create table statements. For example, the
instance Professors in Fig. 1(a) is declared by the statement

c1: create table Professors (
PiD tupleID(3) primary key,
Name string(10),
Rank string(10)
Dept string(10));

q1: select *
from Professors;

Professors is a first normal form traditional table declaration, and thus all stan-
dard SQL statements can be used on it and query q1 above returns the entire
table in Fig. 1(a). In this statement, tupleID is a special string data type discussed
in the context of objects and classes below in more detail.

PiD Name Rank Dept

p-1 Sharon Assoc CS
p-2 Pierre Full ⊥
p-3 Tanaka ⊥ Econ
p-4 Alfredo Full CS
(a) Table Professors

PiD Dept Salary

p-1 e-7 110K
p-4 e-7 ⊥
p-3 e-8 105K
(b) Table Works

TiD Name State

t-a ⊥ DC

t-b Pria ⊥
t-c Aphrodite TX
(c) Abstract table
People

TiD Name State

t-a ⊥ ⊥
t-b Pria DC
t-c Aphrodite TX
(d) View of table
People

TiD Name State SiD Par

n-a ⊥ ID s-1 t-4

n-b Clint ⊥ s-2 t-5
n-c Moira TX s-3 t-3
n-d Alex PA s-4 ⊥
(e) Abstract table Stu-
dents

TiD Name State SiD Par

n-a ⊥ ⊥ ⊥ ⊥
n-b Clint ID s-2 t-5
n-c Moira TX s-3 t-3
n-d Alex PA s-4 ⊥
(f) View of table Students

TiD DiD Name Chair

e-6 d-0 CS p-1

e-7 d-1 ⊥ p-4
e-8 d-2 Math p-1
e-9 d-3 Econ p-3
(g) Abstract table De-
partments

TiD Name State SSN Income

t-2 ⊥ ⊥ 000 45K

t-3 Joe WA 001 ⊥
t-4 ⊥ OH 014 90k
t-5 Maria ⊥ 207 ⊥
(h) Abstract table Parents

TiD Name State SSN Income

t-2 ⊥ ⊥ ⊥ ⊥
t-3 Joe WA 001 45K
t-4 ⊥ OH 014 90k
t-5 Maria DC 207 45K
(i) View of table Parents

TiD DiD Name Chair

e-6 ⊥ ⊥ ⊥
e-7 d-1 CS p-4
e-8 d-2 Math p-1
e-9 d-3 Econ p-3
(j) View of table De-
partments

TiD Name State SiD Par Major

u-e ⊥ ⊥ s-5 ⊥ ⊥
u-f Ovro MI s-6 ⊥ e-7
u-g Abebi ID s-7 t-5 e-9
u-h Odelia ⊥ s-8 t-4 e-8
(k) Abstract table UnderGrads

TiD Name State SiD Par Major

u-e ⊥ ⊥ ⊥ ⊥ ⊥
u-f Ovro MI s-6 t-4 e-7
u-g Abebi ID s-7 t-5 e-9
u-h Odelia ID s-8 t-4 e-8
(l) View of table UnderGrads

Name CName

Sharon Alfredo
(m) Aggrega-
tion query

Fig. 1. OR model tables: traditional and abstract relations in class hierarchy.

54 J. Oduro-Afriyie and H. M. Jamil

Objects, Classes and Instances. In contrast, the abstract table People mod-
els a class object of type People and a set of instance objects of the same type
through the create abstract table declaration below.

c2: create abstract table People (
TiD tupleID(3) auto,
Name string(10),
State string(2),
default values ((⊥, ⊥, ”DC”)));

q2: select *
from People;

This create abstract table statement specifies an extended first normal form table
under the scheme People (TiD, Name, State) with several unique properties.
First, the scheme includes a distinguished attribute named TiD. This attribute
represents a domain of unique object IDs mandated by the concepts of OO
database models. In our model, all objects have an immutable ID, called the
OID, and these IDs in OR model are synonymous to the concept of tuple IDs
(denoted TiDs) first introduced by Sieg and Sciore [8]. These tuple IDs can be
created in several ways. The keywords tupleID(3) auto states that TiD is an
automatically generated string type object ID of length three. In OR model,
tupleID has a string domain that can have system generated values. Thus, it
requires a type declarations and optionally a method for generating it (e.g.,
auto). In contrast, the declaration

TiD tupleID compose(string(2)+”-”+integer(2))

says the tuple ID is a five character long string supplied by the user which has the
format first two characters, followed by a hyphen and then finally has a two digit
integer, resulting in a five character unique tuple ID. In this case too, database
wise uniqueness is preserved. Furthermore, since these IDs in TiD columns are
unique database wide in all abstract and traditional tables, they are candidate
keys by default. We call them object keys. However, tupleID, auto and compose
features can be used to type any attribute. But the uniqueness is enforced only
for the distinguished attribute TiD in ways consistent with the TiD algebra [8].

Figure 1(c) shows an instance of the abstract table People. In our model, all
abstract tables have the column TiD (but unlike TiD algebra, not all tables have
TiD columns), and thus all tuples in every abstract table have a unique object
ID. Observe also that the instance has two partitions. In the top partition, we
have the tuple 〈t-a, ⊥, DC〉, and in the bottom partition we have tuples {〈t-b,
Pria, ⊥〉, 〈t-c, Aphrodite, TX〉}. The lone tuple with TiD t-a in the top partition
is the default value of the class object People as stated in the default values clause
in the create abstract table statement. In this tuple, the first ⊥ corresponding
to the TiD column is replaced by the system generated object ID t-a. This
tuple contains the class default values for each column, e.g., State has default
class value DC, but Name does not. Finally, the bottom partition contains the
instance objects, each of which also has an object ID, e.g., t-b and t-c.

An SQLo Front-End for Relational Databases 55

Inheritance and Overriding. The consequence of having a class default value
is interesting and far reaching. For example, the query q2 above now returns
the abstract table “view” in Fig. 1(d). We make several important observations.
First, this table does not have a class default value tuple, i.e., all the values are
null (⊥) because we have closed the inheritance and the default values are no
longer useful. Also note that tuple t-b inherited the default State value DC and
replaced the null value. However, since the tuple t-c already has a local value
TX, it overrode the value DC and not inherited. This is in the spirit of dynamic
inheritance with overriding in OO systems, called non-monotonic inheritance.

Relationships and Aggregation. Being a superset of the relational data
model and SQL, the OR model and its query language SQLO supports rela-
tionships by respecting foreign keys. In the create table declaration below, the
references clause declares a foreign key in Works that references the primary key
of Departments, indicating Dept can accept null values. In contrast, the aggre-
gates clause (in the sense of SDM [6]), though similar to references, cannot accept
null values. Here too, the PiD column references a column in another table, but
not necessarily a primary key. Instead, it is an OID or tuple ID column. Note
that PiD is not a distinguished column name though it has the tuple ID domain.
Thus uniqueness is not maintained by default, but declaring it the primary key
enforces uniqueness in traditional sense, not in OO sense.

c3: create table Works (
PiD tupleID(3) primary key references Professors(PiD),
Dept tupleID(3) aggregates Departments(TiD),
Salary integer(7));

The instance table in Fig. 1(b) over the scheme Works(PiD, Dept, Salary) is
essentially a relationship between Professors and Department in ER sense. The
fundamental difference between aggregates and references is that the objects in
the former referenced tables need not be explicitly joined to access their columns
as is the case for latter reference types. The query below clarifies this distinction.

q3: select P1 →Name, Chair→Name as CName
from Works W1, Professors P1, Professors P2

where W1.PiD = P 1.PiD and Salary > 109K and W1.Dept→Chair =
P2.PiD and W1.Dept→Name = P2.Dept;

This query returns names of all professors and their chair’s who earn more than
$109K with their chair also from the same department. This query will return
the table in Fig. 1(m). Had the Professors table been declared as an abstract
table, we could have written this query in a much simpler way using OO de-
referencing features. Also note that the Department table is not referenced in
the where clause yet became accessible via de-referencing.

56 J. Oduro-Afriyie and H. M. Jamil

Class Hierarchies. Similar to classes in OO systems, abstract tables can be
organized in table hierarchies. While classes or abstract tables1 can have multi-
ple subclasses, they can only have unique superclasses. Subclasses in OR model
inherit properties and their default values, and all key and other integrity con-
straints, from their superclasses. While integrity constraints and the scheme of
a class are inherited monotonically, their class default values are inherited non-
monotonically in an overriding fashion based on specificity preference principle.

For example, consider an instance object s-1 in Students class in Fig. 1(e),
where Students is a subclass of People in Fig. 1(c). The following create abstract
table statement defines the subclass relationship between these two tables.

c4: create abstract table Students inherits People (
SiD string(3) primary key,
Par tupleID(3) aggregates Parents,
default values ((⊥, ⊥, ”ID”, ”s-0”, ⊥)));

Being a subclass of People, not only does Students inherit the scheme of People
and the object key, it also introduces two new attributes {SiD, Parent}, a new
primary key SiD, and a new default value ID for the inherited attribute State.
In this case, all instances of Students (as well as all its subclasses) will inherit,
when appropriate, the default value ID for State, and not DC since the local or
specific value ID at Students overrides the inherited value for State in People.

Null Closure. In a select query, the relation list in the from clause can be both
traditional and abstract tables. Since abstract tables can be subclass of another
class table, a long chain of inheritance becomes complicated. Each abstract table
has the potential to have inherited values from superclasses at arbitrary height.
Since updates in all tables are allowed, a static inheritance of all default values to
lower subclasses and instances is not a prudent choice though the approach could
make query processing substantially cheaper. But updates in class default values
have the potential to invalidate statically inherited values before the update and
leave the recovery from the state of erroneous inheritance at jeopardy. We use a
process called null closure to dynamically inherit the class default values down
to all subclasses and instances in an overriding manner.

3 Mapping SQLO to SQL

Implementation of the SQLO language is based on a translational semantics of
SQLO programs to SQL, so that we can understand the semantics in terms of the
well known meaning of SQL, and obviate the need for a native SQLO implemen-
tation, saving effort and cost. The correctness of SQLO is then established based
on the soundness and completeness properties of SQL relative to the OR data
model and its intended semantics. We argue that SQLO is sound and complete
1 In this article, we use the terms sub and superclasses interchangeably with sub and

supertables for convenience.

An SQLo Front-End for Relational Databases 57

too by showing that the translation outlined preserves the intended semantics of
SQLO. In the following sections, we only discuss translation of the SQLO specific
statements not available in SQL by way of examples.

3.1 Creating Class Tables

The People class table declaration in Sect. 2 is translated as follows. We create
two separate tables in SQL for each create abstract table statement to implement
class and instance objects in two partitions. The class tables are annotated with
subscript c and instance tables with i as follows.

c5: create table Peoplec (
TiD varchar(3) auto unique,
Name varchar(10),
State varchar(2));

c6: create table Peoplei (
TiD varchar(3) auto unique,
Name varchar(10),
State varchar(2));

u1: insert into Peoplec(TiD, Name, State)
values ($AutoKey, NULL, ’DC’);

In the above statements auto is a directive to create a random key that will never
be assigned to another TiD column of any tuple. Major database systems like
Oracle support similar unique primary key generation. In the insert statement
we use the $AutoKey keyword to call a function to generate the OID or the
tuple ID, and insert this tuple into Peoplec as the class default value. The
unique declaration makes TiD a candidate key, but not the primary key of the
table. The uniqueness of TiD is ensured by checking a unary system table called
UniqueKeys we maintain which logs all TiD values ever assigned and in use in
our databases. Note that the statement u1 above, implements the semantics of
the default values declaration in statement c2 in Sect. 2.

The subclass table Students in Sect. 2 is accomplished by creating the SQL
statements below. Note that for aggregation, we required that the Parent cannot
have null values, and the referenced Parents object cannot be deleted without
deleting the Students object.

c7: create table Studentsc (

TiD varchar(3) unique,

Name varchar(10),

State varchar(2),

SiD varchar(3) primary key,

Par varchar(3) not null

foreign key references Parentsi(TiD)

on update cascade

on delete restrict);

c8: create table Studentsi (

TiD varchar(3) unique,

Name varchar(10),

State varchar(2),

SiD varchar(3) primary key,

Par varchar(3) not null foreign key

references Parentsi(TiD)

on update cascade

on delete restrict);

u2: insert into Studentsc(TiD, Name, State,

SiD, Par)

values ($AutoKey, NULL, ’ID’, ’s-0’, NULL);

u3: insert into ClassHierarchy(SubClass,

SuperClass)

values (’Students’, ’People’);

We do not separately discuss the statements such as insert, delete and update,
which can be handled trivially. Finally, we enter the subtable relationship spec-
ified in the inherits keyword into the system table ClassHierarchy as a pair

58 J. Oduro-Afriyie and H. M. Jamil

〈‘Students’, ‘People’〉 to be able to create the class hierarchy for null closure
discussed next. The inherits keyword also prompts the inclusion of the attributes
in the superclass People into the current table Students.

3.2 Computing Null Closure and Table View

Prior to processing queries, we first process null closure discussed in Sect. 2 for all
directly or implicitly referred abstract tables to ground the tables with inherited
values in real time. On analysis of the query in terms of the tables included in
the from clauses, and the cross referencing of the de-reference operators with
the schemes, a list of abstract tables is created that potentially warrant null
closures. A precedence graph of subclass-superclass relationship for each of these
tables is constructed using the ClassHierarchy system table and for every table,
a maximal scheme is created to list the attributes that all clauses will need. We
then proceed to create two sets of views – one for the class tables and one for the
instance tables, and we then use only the views corresponding to each instance
table in the rewritten queries as follows.

Let us explain the process of using the query that asks list the names of
all undergraduate non computer science majors resident in Idaho and their par-
ents’ income such that their parents earn more than $75K and their department
chairs are computer science professors. This query can be posed in SQLO as the
following expression.

q4: select Name, Par→Income
from UnderGrads, Professors
where State = ’ID’ and Par→Income > 75K and Major→Name �= ’CS’

and Major→Chair = PiD and Dept =’CS’;

This query assumes that the following DDL statement has already been defined.

c10: create abstract table UnderGrads inherits Students (
Major tupleID(3) aggregates Departments(TiD));

In this query three abstract tables UnderGrads, Departments and Parents, and
a traditional table Professors are involved. This information is derived from the
database schema definitions, i.e., Major in UnderGrads aggregates Departments
where student majors are found. Similarly, Parent aggregates Parents where their
Income is listed. The de-reference operators in the query actually give away this
information. Finally, Chair in Departments aggregates Professors where we find
their department. While UnderGrads and Persons participate in a class hierarchy
and require null closure as shown below, Departments does not.

c11: create view Peoplecv(TiD, Name, State) as
select TiD, Name, State
from Peoplec;

c12: create view Studentscv(TiD, Name, State, SiD, Par) as
select V.TiD,

An SQLo Front-End for Relational Databases 59

case when V.Name=NULL then U.Name else V.Name,
case when V.State=NULL then U.State else V.State,
case when V.Par=NULL then U.Par else V.Par

from Peoplecv as U, Studentsc as V;

c13: create view UnderGradscv(TiD, Name, State, Par, Major) as
select V.TiD,

case when V.Name=NULL then U.Name else V.Name,
case when V.State=NULL then U.State else V.State,
case when V.Par=NULL then U.Par else V.Par,
case when V.Major=NULL then U.Major else V.Major

from Studentscv as U, UnderGradsc as V;

c14: create view Parentscv(TiD, Income) as
select V.TiD,

case when V.Income=NULL then U.Income else V.Income,
from Peoplecv as U, Parentsc as V;

The above statements only close the nulls in class tables. To truly inherit the
default values, we now close the inheritance in all three instance tables as follows.

c15: create view UnderGradsiv(TiD, Name, State, Par, Major) as
select V.TiD,

case when V.Name=NULL then U.Name else V.Name,
case when V.State=NULL then U.State else V.State,
case when V.Par=NULL then U.Par else V.Par,
case when V.Major=NULL then U.Major else V.Major

from UnderGradscv as U, UnderGradsi as V;

c16: create view Parentsiv(TiD, Income) as
select V.TiD,

case when V.Income=NULL then U.Income else V.Income,
from Parentscv as U, Parentsi as V;

c17: create view Departmentsiv(TiD, Name, Chair) as
select V.TiD,

case when V.Name=NULL then U.Name else V.Name,
case when V.Chair=NULL then U.Chair else V.Chair

from Departmentsc as U, Departmentsi as V;

The script above completes the steps for computing the null closures and gen-
erates three view tables for our query – i.e., UnderGradsiv, Parentsiv and
Departmentsiv.

3.3 Inheritance and Object Traversal in SQL Using Query
Rewriting

As a final step, we rewrite the SQLO query in Sect. 3.2 as a large join query
to accommodate object traversals anticipated by the de-reference operators over
the three null closed instance views we have generated and the traditional table:

60 J. Oduro-Afriyie and H. M. Jamil

q6: select U.Name, V.Income
from UnderGradsiv as U, Parentsiv as V, Departmentsiv as W,

Professors as X
where U.State = ’ID’ and U.Par=V.TiD and V.Income > 75K

and U.Major=W.TiD and W.Name �= ’CS’ and W.Chair=X.PiD
and X.Dept = ’CS’;

In our example database, there are two potential Idaho resident undergraduate
students, Abebi and Odelia. However, Abebi’s parent Maria’s income is less than
$75K, and her department chair Tanaka is not a computer science professor,
and thus does not qualify to be in our response. However, Odelia is a Math
major, and her department chair Sharon is a computer science professor and her
parent also has income higher than $75K although the parent name is missing.
So, SQLO appropriately returns the tuple 〈Odelia, 90K〉 as a response.

4 Conclusion

Our goal in this paper was to show that complex objects, class hierarchies, inher-
itance, overriding and structure traversal can be modeled as a simple extension
of SQL. While we did not discuss a complete translation algorithm for brevity, we
have presented the overall idea behind the translation of an SQLO database and
queries to a semantically equivalent SQL database. We have shown that the two
most coveted OO features, namely inheritance with overriding and object traver-
sal, can be captured within relational model based on a translational semantics
without the need for an entirely new language or a formal foundation.

References

1. Alashqur, A.M., Su, S.Y.W., Lam, H.: OQL: A query language for manipulating
object-oriented databases. In: VLDB, pp. 433–442 (1989)

2. Bancilhon, F., Delobel, C., Kanellakis, P.C. (eds.): Building an Object-Oriented
Database System, The Story of O2. Morgan Kaufmann, Burlington (1992)

3. Dar, S., Gehani, N.H., Jagadish, H.V.: CQL++: a SQL for the Ode object-oriented
DBMS. In: Pirotte, A., Delobel, C., Gottlob, G. (eds.) EDBT 1992. LNCS, vol. 580,
pp. 201–216. Springer, Heidelberg (1992). https://doi.org/10.1007/BFb0032432

4. Feuerlicht, G., Pokorný, J., Richta, K.: Object-relational database design: can your
application benefit from SQL: 2003? In: Barry, C., Lang, M., Wojtkowski, W., Con-
boy, K., Wojtkowski, G. (eds.) ISD, Challenges in Practice, Theory, and Education,
vol. 2, pp. 975–987. Springer, Boston (2007). https://doi.org/10.1007/978-0-387-
78578-3 30

5. Fuh, Y., et al.: Implementation of SQL3 structured types with inheritance and value
substitutability. In: VLDB, pp. 565–574 (1999)

6. Hammer, M., McLeod, D.: Database description with SDM: a semantic database
model. ACM Trans. Database Syst. 6(3), 351–386 (1981)

7. Mitschang, B., Pirahesh, H., Pistor, P., Lindsay, B.G., Südkamp, N.: SQL/XNF -
processing composite objects as abstractions over relational data. In: ICDE, pp.
272–282 (1993)

8. Sieg Jr., J., Sciore, E.: Extended relations. In: ICDE, pp. 488–494 (1990)

https://doi.org/10.1007/BFb0032432
https://doi.org/10.1007/978-0-387-78578-3_30
https://doi.org/10.1007/978-0-387-78578-3_30

Big Data Technology I

Modeling Data Lakes with Data Vault:
Practical Experiences, Assessment,

and Lessons Learned

Corinna Giebler1(&) , Christoph Gröger2 , Eva Hoos2,
Holger Schwarz1, and Bernhard Mitschang1

1 University of Stuttgart, Universitätsstraße 38, 70569 Stuttgart, Germany
{Corinna.Giebler,Holger.Schwarz,

Bernhard.Mitschang}@ipvs.uni-stuttgart.de
2 Robert Bosch GmbH, Borsigstraße 4, 70469 Stuttgart, Germany

{Christoph.Groeger,Eva.Hoos}@de.bosch.com

Abstract. Data lakes have become popular to enable organization-wide ana-
lytics on heterogeneous data from multiple sources. Data lakes store data in their
raw format and are often characterized as schema-free. Nevertheless, it turned
out that data still need to be modeled, as neglecting data modeling may lead to
issues concerning e.g., quality and integration. In current research literature and
industry practice, Data Vault is a popular modeling technique for structured data
in data lakes. It promises a flexible, extensible data model that preserves data in
their raw format. However, hardly any research or assessment exist on the
practical usage of Data Vault for modeling data lakes. In this paper, we assess
the Data Vault model’s suitability for the data lake context, present lessons
learned, and investigate success factors for the use of Data Vault. Our discussion
is based on the practical usage of Data Vault in a large, global manufacturer’s
data lake and the insights gained in real-world analytics projects.

Keywords: Data lakes � Data Vault � Data modeling � Industry experience �
Assessment � Lessons learned

1 Introduction

The advance of digitalization leads to large amounts of heterogeneous data. Businesses
that apply data analytics on these data can gain a large competitive advantage [1]. Data
lakes [2] are highly popular, since they enable the integration and explorative analysis
of heterogeneous data. Typically, data lakes are built using a schema-on-read approach
[2, 3] to allow the flexible usage beyond predefined use cases—so called use-case-
independence. Technology-wise, data lakes are heavily associated with the Hadoop
Distributed File System [2]. Even though data of any format may be stored in the data
lake, most data lakes in industry practice nowadays mainly contain structured data [4].

However, when managing data with the schema-on-read approach, data modeling
must not be neglected [5, 6]. It turned out that a lack of meaningful structure for data
may lead to quality issues, integration issues, performance issues and deviations from
enterprise goals [6]. Standardizing data modeling in data lakes has two advantages for

© Springer Nature Switzerland AG 2019
A. H. F. Laender et al. (Eds.): ER 2019, LNCS 11788, pp. 63–77, 2019.
https://doi.org/10.1007/978-3-030-33223-5_7

http://orcid.org/0000-0002-5726-0685
http://orcid.org/0000-0001-6615-4772
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33223-5_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33223-5_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33223-5_7&domain=pdf
https://doi.org/10.1007/978-3-030-33223-5_7

organizations: Technical and organizational processes (e.g., for ETL and project
management) can be reused, and data from different contexts can easily be combined.

One candidate for modeling data in data lakes is Data Vault [7, 8]. It is used to
model data lakes in both research and industry practice. Data Vault is a combination of
dimensional modeling and third normal form [7] and supports agile project manage-
ment and use-case-independent modeling [8, 9]. Because it is a simple and flexible
modeling technique, Data Vault qualifies for data modeling in data lakes [5].

Currently, there is little conceptual work on Data Vault available in both industry
and research. Aside from the reference books of its inventor [7, 8], there are some
rudimentary comparisons between Data Vault and other modeling techniques [9, 10].
Research also deals with the creation of a conceptual Data Vault model [11], the
automated physical design of Data Vault [12], or the direct transformation from JSON
to a Data Vault schema [13]. However, there are neither insights on practical experi-
ences nor detailed assessments for Data Vault, especially not in the context of data
lakes.

In this paper, we close this gap by providing guidance on the usage of Data Vault in
data lakes. Our contributions include the following:

• We investigate exemplary real-world analytics projects from three different core
business domains at a large, globally active manufacturer and provide insights into
the practical experiences made.

• We identify the shortcomings of Data Vault and demonstrate possible solutions.
• We present lessons learned and derive general success factors for the use of Data

Vault in data lakes.
• We assess Data Vault as data modeling technique for structured data in data lakes.

The remainder of this paper is structured as follows: Sect. 2 describes the Data
Vault model and its characteristics in detail. Section 3 discusses the exemplary ana-
lytics projects, the difficulties that arose, and possible solutions. Section 4 assesses
Data Vault based on the experiences made, presents the lessons learned, and derives
success factors for Data Vault modeling. Section 5 gives an overview and comparative
evaluation concerning modeling alternatives. Finally, Sect. 6 concludes the paper.

2 Data Vault Basics

After a first version of Data Vault was published in 2012 [7], the current Data Vault
model 2.0 extended and adapted the modeling technique further for enhanced perfor-
mance [8]. Subsection 2.1 describes the Data Vault model’s components and modeling
guidelines. Subsection 2.2 details the key characteristics of Data Vault.

2.1 The Data Vault Model

This paper deals with Data Vault 2.0 as described in the reference book [8]. The Data
Vault model is a conceptual and logical data model using table structures. Data Vault
represents entities, relationships between entities, and additional context data in three
different table types: hubs, links, and satellites.

64 C. Giebler et al.

Hubs represent business objects. Two example hubs are depicted in white in Fig. 1.
A hub contains the business key of the business object it represents,WPKey orMKey in
the example, and a unique surrogate key WPHashKey or MHashKey, hashed from this
business key. Besides those two keys, a hub contains a load date, and a record source.
The load date specifies when an entry was first added to the hub. The record source
identifies the source system the entry was loaded from.

Links represent associations or hierarchies between hubs. They refer to the con-
nected hubs via their surrogate keys. The primary key of each link is a hash of the
business keys it connects. In the exemplary link in Fig. 1 (dark grey), the
WPMHashKey is compound of the WPKey and the MKey. Like the hub, the link
contains a load date and a record source. All links express many-to-many relationships.
This adds flexibility to the model: If solely the cardinalities of a relationship in the
source system change, this has no effect on the links in the Data Vault model. New
entities can be added to the model without changing existing hubs, adding more
flexibility. Instead, a new link is created or existing links are updated. There exist
multiple types of links, e.g., SAME-AS-links indicate that entries of two hubs refer to
the same business object.

Satellites add additional information to hubs and links. In the example in Fig. 1, the
satellites (light grey) contain the color of a work piece or the production time associated
with the combination of a work piece and a machine. One hub or link may have
multiple satellites holding all attributes that are not covered by the hubs and links
themselves. Satellites contain the surrogate key of the hub or link they belong to as
both primary key and foreign key. One satellite can hold multiple entries for the same
hub or link entry for historization. Thus, the load date is the second part of the primary
key, to create a unique identifier. In addition, each satellite entry contains the record
source and a load end date. This load end date indicates when the entry’s validity
expired. Whenever data changes in the source system, a new entry is added to the
satellite and the load end date of the old entry is updated. In this way, a historization
according to Kimball’s slowly changing dimensions type 2 [14] is achieved. Just like

Hub_WorkPiece (WP)
WPHashKey
LoadDate
RecordSource

Link_WPM
WPMHashKey
LoadDate
RecordSource
WPHashKey
MHashKey

Sat_WorkPiece
WPHashKey
LoadDate
RecordSource
LoadEndDate
Color

Sat_LinkWPM

LoadDate
RecordSource
LoadEndDate
ProductionTime

PK PK

FK

FK

Hub_Machine (M)
MHashKey
LoadDate
RecordSource

PK

PK PK

WPMHashKeyPK FK

WPKey MKey

PK FK PK

FK

Primary Key
Foreign Key

Fig. 1. The Data Vault model consists of three different table types: hubs, links, and satellites.
Hubs represent business objects (e.g., work pieces or machines), while links connect hubs.
Satellites contain descriptive attributes, such as Color or ProductionTime [8].

Modeling Data Lakes with Data Vault 65

for links, there exist different types for satellites as well, such as multi-active satellites,
which store multiple entries for one parent key (e.g., multiple phone numbers for one
customer).

Not all additional information on a hub or link should be kept in one single satellite,
as this might lead to huge satellites. Instead, the reference proposes two splitting
techniques: First, we may split satellites by source system. This eases the process of
adding new source systems, as this only requires an additional satellite. Second, we
may split satellites by the change frequency of contained attributes. With this, static
attributes do not need to be updated every time a frequently changing attribute is
changed.

In addition to these modeling structures, Data Vault comes with a schema archi-
tecture shown in Fig. 2. This architecture consists of the Raw Vault, the Business Vault,
and Data Marts. Data first is loaded into the Raw Vault. Here, only hard business rules
[9, 16] are applied, i.e., technical rules that do not change the meaning of data, such as
the distribution into hubs, links, and satellites, or conversion into Unicode. Further
transformations are applied in the Business Vault. Here, soft business rules [9, 16] are
applied, which add business logic to the data. They might aggregate data, calculate
KPIs, and much more. They may also add structures to improve performance, such as
bridge tables containing frequently queried relationships. The Business Vault is an
optional modeling layer based on top of a Raw Vault. It is not necessary to add all data
from the Raw Vault to the Business Vault in the same level of detail. Finally the use-
case-specific Data Marts, derived from Raw Vault or Business Vault, may be in any
format, e.g., star schema or flat tables.

2.2 Key Characteristics of Data Vault

The popularity of the Data Vault model is based on three key characteristics that result
from its table structure: flexibility, loading efficiency, and auditability [7, 8].

Flexibility covers two aspects: (I) data are not changed in their meaning when saved
in the Raw Vault. Instead, they are transferred into new tables and only hard business
rules are applied. This means that they can be used for any desired use case. (II) the
Data Vault model is easily adaptable and extendible. Changes in the source systems can
easily be reflected in the Data Vault model with no or only little updates to existing
tables [8]. Links are only updated if a new hub is added to the relationship. The
addition of an attribute may be realized by updating a satellite, or by adding an entirely

Data MartData MartRaw Vault
- All Data
- Unprocessed

Business Vault
- Some Data
- Preprocessed

Generic Modeling in Data Vault

Data Mart
- Some Data
- Use-Case-

Specific

Use-Case-Dependent
Modeling

Fig. 2. Data Vault comprises three parts: Raw Vault, Business Vault, and Data Marts. The Raw
Vault contains all data, while the Business Vault adds additional information to some data to
increase performance. The use-case-specific Data Marts can be derived from either Vault [8].

66 C. Giebler et al.

new satellite. In all other cases, such as adding a new entity or relationship, or even an
entire source system, it is sufficient to add new tables to the Data Vault model. This
supports an agile approach in which one use case is implemented after the other and
new business objects, relationships, and attributes are added on purpose. Data Vault 2.0
provides a project management methodology taking advantage of this characteristic [8].

The Data Vault model enables high loading efficiency. In Data Vault 1.0, tables of
the same type could be loaded in parallel. However, the dependencies between tables
enforce a certain order: first hubs, then links and finally satellites. Data Vault 2.0
addresses this issue, allowing all tables to be loaded in parallel. The Data Vault model
also provides auditability, as all changes made to a source system entry are stored in the
satellites. For this, each change to the data is stored as a separate record with a
timestamp that indicates its expiration date.

3 Data Vault Modeling for Data Lakes in Practice

Based on the key characteristics presented in Subsect. 2.2, research literature suggests
to use Data Vault for modeling data in data lakes [5]. To assess the suitability of this
approach, we examined the usage of Data Vault in a real-world enterprise-wide data
lake. This data lake is part of the industry 4.0 initiative of a large, global manufacturer,
producing goods for various sectors, e.g., mobility or industry. Its data sources range
from Enterprise Resource Planning (ERP) systems and Manufacturing Execution
Systems (MES) to internet of things (IoT) devices.

We investigated the use of Data Vault in analytical projects from various business
domains in the manufacturer’s enterprise. In the following subsections, we detail three
of them that provide significant insights into Data Vault modeling for data lakes. These
business domains are manufacturing (Subsect. 3.1), finance (Subsect. 3.2), and cus-
tomer service (Subsect. 3.3). We identify ways in which the domains benefit from Data
Vault, and present issues that arose and their possible solutions. Table 1 summarizes
the characteristics of those domains. For the used data, we distinguish two data cate-
gories: (I) Transactional enterprise data that refer to business transactions and business
objects, and (II) non-transactional enterprise data that originate from novel data
sources (e.g., sensors or user generated content) and describe certain aspects of a
business activity in detail. Other aspects of interest are the source systems involved, the
process type [16], involved users, and addressed analytic capabilities.

3.1 Manufacturing Domain

In the manufacturing business domain, the goal of projects is to enable data-driven
manufacturing [17]. The captured data are used for, e.g., process performance reporting
and predictive maintenance. All projects are managed in an agile manner.

The focus of the analytics projects in this domain mainly lies on the analysis of
non-transactional data. Data originate from numerous MES and are captured by sen-
sors during manufacturing. Transactional data, such as master data, data from ERP
systems, and manually added data, e.g., defect codes added by domain experts, are
used as additional source of information. Since goods for sale are produced in this

Modeling Data Lakes with Data Vault 67

domain, the processes are primary processes. All kinds of users are equally involved in
this analytics project. Business users create reports on different aspects of the process,
such as factory efficiency (descriptive use cases). Domain experts use the data for
diagnostic use cases, e.g., to analyze test results and optimize processes. Data scientists
finally enable predictive use cases, such as predictive maintenance and quality
assessment.

Experiences with Data Vault. The analytics projects in this domain benefit from the
Data Vault characteristics in three ways: (I) the flexibility of Data Vault allows use-
case-independent modeling, (II) facilitates the agile development, and (III) allows the
incremental integration of numerous source systems, which is necessary due to the
large number of different source systems involved in this domain.

One major issue arose during the usage of Data Vault in this business domain: Due
to the integration of a large number of source systems the hash key generation became
quite complex. Across all the different source systems, the same business key is often
used for different business objects. In such a case, the Data Vault modeling reference
suggests to either extend the business key with the source system, or to create one
separate hub per source system. However, in the first approach, source systems are not
properly integrated. The second approach would quickly result in a large and overly
complex data model due to the large number of source systems involved in this domain
(over 600). Thus, two different approaches to solve this issue were developed. In the
first approach, the business key was extended using additional attributes to create a
unique composed key. However, deciding which attributes to add is complex, espe-
cially when schemata or business logic change in the source systems, or when many
business objects share the same values for a majority of their attributes. Therefore, a
second solution was developed. In this approach, a satellite is added for each involved
source system. If a business key is available in more than one source system, entries in
all affected satellites are added. To retrieve the information on one certain object, both
business key and source system have to be provided in the query. Figure 3 shows an

Table 1. Overview over characteristics of the investigated domains.

Manufacturing domain Finance domain Customer service
domain

Used data Transactional, Non-
transactional

Transactional Transactional, Non-
transactional

Kinds of
source
systems

ERP systems, Master
data, MES, Manually
added

ERP systems ERP systems, IoT
devices, Master data,
Simulations

Process
type

Primary Support Primary

Involved
users

Business user, Domain
experts, Data scientists

Business user,
Domain experts, Data
scientists

Domain experts

Analytic
capabilities

Descriptive,
Diagnostic, Predictive

Descriptive,
Predictive

Descriptive

68 C. Giebler et al.

example hub with two associated source system satellites. This solution is similar to the
proposed extension of the business key, but also integrates the different source systems.

Overall, even though the Data Vault reference did not sufficiently cover the issue of
ambiguous business keys and thus had to be extended, Data Vault provides the sig-
nificant benefits of flexibility and simple integration of new source systems. Especially
regarding the large number of MES, this is an essential feature in this domain.

3.2 Finance Domain

The second business domain under consideration concerns finance and controlling.
Data are used, for instance, to generate reports on wins and losses or to predict future
revenue. Multiple teams work agilely and in parallel on independent projects in this
domain. For example, one team is responsible for all use cases related to key perfor-
mance indicator (KPI) calculation, while another team deals with prediction use cases.

Only transactional data from ERP systems are used in this domain. The goal is to
organize and coordinate other processes in the company, making this domain’s pro-
cesses support processes. Mainly business users are involved in this domain. They
carry out descriptive use cases. However, domain experts and data scientists are also
involved, focusing on predictive use cases, such as resource planning and revenue
forecasts.

Experiences with Data Vault. In this business domain, the Data Vault characteristics
benefit analytics projects in four ways: (I) Data Vault’s flexibility allows use-case-
independent modeling and (II) supports multiple teams working in parallel. (III) Data
Vault’s high loading efficiency makes source data quickly available for analysis, which
is especially important for generating reports including recent data updates. (IV) Data
Vault’s auditability allows to detect tampering with sensitive data.

However, during the project iterations already carried out, the analytics project team
encountered three difficulties affecting the Data Vault model and the modeling process:

A major issue was the application of business logic. The necessary business logic is
split across the different layers of Data Vault (see Fig. 2): hard business rules are
applied in the Raw Vault, while soft business rules are applied in the Business Vault.
However, some business rules, e.g., currency conversion or resolving factorization, can
not be clearly classified as hard or soft. For these rules, it is debatable whether the
meaning of the data remains the same. Therefore, the project team extended the Data
Vault reference to apply all these non-classifiable rules in the Raw Vault.

Hub_WorkPiece (WP)
WPHashKeyPK

WPKey

Sat_Source2
WPHashKey
LoadDatePK

PK FK

Sat_Source1
WPHashKey
LoadDatePK

PK FK

<Data for WPKey from
Source1>

<Data for WPKey from
Source2>

Fig. 3. If the same business key refers to different business objects in different source systems,
one satellite per source system is added to the business key.

Modeling Data Lakes with Data Vault 69

Modeling roles, i.e., the function an entity has in a relationship, in the Data Vault
model is not covered by the Data Vault reference. However, roles are important in
many use cases. For example, an order might have both a billing address and a shipping
address, which have to be differentiated using roles. Again, two different approaches
were evaluated. The first approach uses one link between the hubs involved in a
relationship, i.e., the order and the address hub in the example. To this link, a satellite is
added that contains the role of the relation. However, the link’s primary key consists of
the business keys of the related hub entries. If the billing address is equal to the
shipping address for one certain order, two entries with the same primary key are added
to the link table. The second and preferred approach therefore uses one link per role, as
shown in Fig. 4.

To save analytical results for future use, e.g., to compare predictions to reality, an
adaption of the Data Vault model is required. However, it is unclear how these results
can be integrated into Data Vault, as this use case is not described in the Data Vault
modeling reference. As a solution, a new hub was introduced that represents the
analysis itself. It is linked to all hubs used in the analysis. Its satellites contain the
analysis results. This way, source system data is clearly separated from processed data.

In summary, various issues arose in this domain that could not be solved using the
standard Data Vault modeling reference. Instead, Data Vault had to be adapted or
extended. However, the domain also greatly benefits from the key characteristics of
Data Vault such as the flexibility for agile project management and parallel developer
teams.

3.3 Customer Service Domain

The last domain to detail is the domain of customer service. Here, field data captured
by IoT devices are used for, e.g., maintenance and product lifecycle management. For
this purpose, a product is equipped with sensors that continuously capture data on its
behavior. This field data then is compared to previously calculated simulation results.

The majority of data used are non-transactional field data captured by sensors and
simulation data. Transactional data, in particular master data and data from ERP
systems, are used to add additional information, such as product information. Since the
data are used to improve the product and add value to the customer, the processes in
this domain are primary processes. The only involved user group are domain experts,
who execute descriptive analysis on the data, such as comparing field data to simu-
lation data. Analytics projects in this domain are executed agilely.

Hub_Order Hub_Address
Link_ShippingAddress

Link_BillingAddress

Fig. 4. Modeling roles in relationships in Data Vault should be done using one link per role.

70 C. Giebler et al.

Experiences with Data Vault. Data Vault provides two major benefits to analytics
projects in this domain through its flexibility, which (I) allows use-case-independent
modeling and (II) supports agile project management.

The major issue encountered in this domain concerns the management of IoT data in
Data Vault. Once captured, IoT data do not change. Thus, the Data Vault modeling
reference suggests using nonhistorized links to store sensor data [8] (see Fig. 5). In
such a link, the load end date is omitted. However, this quickly results in satellites with
a large amount of entries due to the periodic capture of IoT data. Another idea
developed in this domain was to store IoT data in an external system providing cheap
storage for large amounts of data, e.g., HDFS. A link to these systems is stored in a
satellite, similarly to link-based integration [18]. Using multi-active satellites [8], it is
even possible to link multiple files to the same link or hub entry. However, this
approach may lead to longer execution times, as the IoT data have to be retrieved from
this external system.

Up until now, the project team has not yet found out which solution to prefer. Both
approaches still have to be balanced against each other. However, it is clear that there
are ways to manage even IoT data in the Data Vault model.

4 Lessons Learned and Overall Assessment

After examining the issues that arise in different business domains when using Data
Vault in data lakes, this section deduces the lessons learned. To this end, we discuss
and classify the issues encountered with Data Vault and highlight the solutions
developed in the examined domains (Subsect. 4.1). Based on these insights, we assess
the adequacy of Data Vault for structured data in data lakes and derive generally valid
success factors for Data Vault modeling (Subsect. 4.2).

4.1 Lessons Learned and Classification of Issues

The issues that arose during the practical usage of Data Vault can be assigned to one of
two classes (see Fig. 6): (I) issues only insufficiently covered by the modeling refer-
ence, and (II) issues not covered by the modeling reference at all.

Fig. 5. To store sensor data, a nonhistorized link is suggested by the Data Vault modeling
reference [8]. The associated satellite contains no load end date.

Modeling Data Lakes with Data Vault 71

(I) Insufficiently Covered

• The management of ambiguous business keys. In this issue, the same business key
refers to different business objects in various source systems (Sect. 3.1). The Data
Vault modeling reference suggests two different approaches to model ambiguous
business keys, which both have their drawbacks. Instead, one hub was created and
separate satellites for the different source systems were added.

• The application of business logic (Sect. 3.2). In the finance domain, not all rules
could clearly be classified as hard or soft. In the domain, the developers classified
these ambiguous business rules as hard rules and applied them in the Raw Vault.

• The handling of IoT data (Sect. 3.3). The Data Vault modeling reference suggests
storing IoT data in a nonhistorized link. However, the satellite tables containing
these data would become very large. Alternatively, IoT data can be stored in an
external low-cost system. So far, there is no evidence on which approach is
preferable.

(II) Not Covered

• The modeling of roles in relationships (Sect. 3.2). To solve this issue, one link per
role was added between the affected hubs.

• The saving of analysis results (Sect. 3.2). In this case, an additional hub was added
to the model to represent the analysis itself and to contain the results.

Both of these uncovered issues are not specific for the analyzed domains. Roles in
relationships occur in multiple business divisions, e.g., in human resources to differ-
entiate the roles of people working on a certain project. Storing analysis results or
transformed data back into the data lake is also a reoccurring use case [19, 20]. The
solutions developed for these issues comply with Data Vault modeling by using only
existing modeling structures (links and satellites). However, an extension to the Data
Vault model to directly cover these issues would be worthwhile to have.

4.2 Assessment and Success Factors for Data Vault in Data Lakes

Overall, analytics projects in each of the three examined business domains profited from
the key characteristics of Data Vault mentioned in Sect. 2.2. Especially Data Vault’s
flexibility was beneficial in all domains, due to agile project management, integration of
multiple source systems, and support of parallel development. The business domains
also benefitted from high loading efficiency and auditability. However, various issues
arose during modeling. From the experience gained with these issues, we derive three
generally valid success factors for Data Vault modeling in data lakes:

Fig. 6. Different issues arose when using Data Vault in data lakes, which the Data Vault
modeling reference either only insufficiently covered or not covered at all.

72 C. Giebler et al.

(I) Identify shortcomings of the Data Vault modeling reference. As shown above,
not all issues encountered in the projects are sufficiently covered by the Data Vault
reference, requiring an extension or adaption of the reference.
(II) Define a data architecture for data lakes. While for data warehouses, the Data
Vault reference proposes a schema architecture (see Fig. 2) [8], such an architecture
does not exist for data lakes. It is unclear whether the given architecture is appli-
cable in the data lake context. However, defining the Data Vault layers and the
applied business rules is of great importance and thus could be the basis of a data
lake architecture.
(III) Identify inconsistencies in source systems. These issues, such as ambiguous
business keys, may lead to severe problems in integration and analysis. Therefore,
they have to be addressed during data integration.

These success factors necessitate an enterprise-wide set of data modeling guidelines
that contain both modeling specifications and best practices for data modeling.
Thereby, these guidelines extend or even change the Data Vault modeling reference to
fit the context. They also should be communicated across domains to ensure consistent
data modeling across the data lake. We conclude that combined with such guidelines,
Data Vault is well suited to model structured data in data lakes.

5 Related Work and Comparative Evaluation

While we discussed Data Vault for data lake modeling, there are other alternatives from
both the data warehouse and the data lake context. Subsection 5.1 presents these
alternate modeling techniques. Subsection 5.2 compares Data Vault to some of these
alternatives using criteria relevant in the studied domains and data lakes in general.

5.1 Related Work

Representing the real world as accurately as possible is the aim of the well-known
entity-relationship model (ER model) [21]. Here, business objects are modeled as
entities with relationships between them. However, the ER model is only a conceptual
model and other techniques are used for logical and physical modeling.

For the data warehousing context, dimensional modeling was developed as con-
ceptual and logical model [14]. Data is stored in either fact tables or dimension tables.
Fact tables contain the metrics and measurements of interest for the business, e.g., sales
figures. Dimension tables allow to aggregate these so-called facts, e.g. along a time
axis.

Another approach to data warehouse modeling is normalization [22]. Especially the
third normal form was used for logical modeling. To allow historization, the third
normal form can be alternated into so called head-version tables [9]. Here, attributes are
divided into static attributes and attributes that should be historized. Static attributes are
stored in a so-called head table together with the business key. Attributes to be his-
torized are stored in one or more version tables linking to the respective head table.

Modeling Data Lakes with Data Vault 73

As a next step, Data Vault emerged as combination of dimensional modeling and
third normal form [7]. It is a conceptual and logical modeling technique.

The digitalization poses new challenges on data analytics and data management,
which are addressed in data lakes [2, 3]. For this context, additional modeling tech-
niques were recently proposed. Data droplets, for example, model the entire data lake
as a composition of small RDF graphs [23]. In another modeling technique [24], each
data entry is modeled as a small graph of four nodes, containing different information
on the entry, e.g., the data itself or its metadata. These four-tuples then are connected to
each other via their metadata nodes. To our knowledge, there exists no practical
experience report on the adequacy of these modeling techniques for data lakes.

5.2 Comparative Evaluation

As shown in the course of this paper, different domains with different requirements
benefitted from the use of Data Vault for data lake modeling. Nevertheless, Data Vault
also revealed some weaknesses in the form of insufficiently addressed modeling issues.
We thus compare Data Vault to dimensional modeling [14] and head-version tables [9]
(as an alternation of third normal form) to evaluate whether these alternatives are more
suitable for data lake modeling, using criteria relevant in the domains and data lakes in
general. We will not investigate ER modeling, as it is only conceptual, nor first
modeling approaches developed for data lakes specifically (such as data droplets [23]),
as these modeling approaches are still immature and not widespread in practice.

Table 2 depicts the result of this qualitative comparison. Use-Case-Independence,
as is necessary in data lakes, is achieved by all techniques but dimensional modeling,
where the analytic goals define the model. Support of agile project management (see
investigated domains) is only provided by Data Vault. In case of the other modeling
techniques, the schema of already existing tables has to be changed, e.g., to add a new
attribute. Similarly, Source Schema Changes, which happen in especially agile pro-
jects, result in many changes for dimensional modeling and head-version tables but not
for Data Vault. High Loading Efficiency, as needed in the domains, is provided by Data
Vault and partially by dimensional modeling, where dimension tables can be loaded in
parallel. In head-version tables, too many dependencies between tables make parallel
loading very complex. Auditability is achieved in all techniques using e.g., slowly
changing dimensions for dimensional modeling [14]. The Number of Tables is small
for dimensional modeling, where one fact table and only few tables for dimensions are
needed. Data Vault typically has an even higher number of tables than the head-version
model, especially in cases, where many one-to-one relationships are involved. While
head-version tables represent these relationships without additional tables, Data Vault
creates a link table for each of them. The Query Performance is directly dependent of
the number of tables, which is why dimensional modeling typically needs fewer JOINS
than Data Vault. However, this issue can be addressed by providing pre-joined tables in
Business Vault and Data Marts. The Understandability, which plays a role whenever
non-data scientists use the data, is affected by the number of tables as well, but also by
the overall complexity of the model. Here, dimensional modeling is easiest to under-
stand due to its simple structure. The Integration of Multiple Source Systems, as needed

74 C. Giebler et al.

in the domains, finally is simple in Data Vault and can be solved using satellites. In the
other techniques however, more complex integration techniques are necessary.

Overall, Data Vault addresses most criteria very well. However, especially
dimensional modeling has its strengths were Data Vault has its weaknesses (number of
tables, performance, and understandability). Thus, in cases where these criteria are of
great importance, e.g., for KPI-focused or aggregation-focused use cases, we propose
to use dimensional data marts on top of Data Vault, as already indicated in Fig. 2.

6 Conclusion

Data lakes recently emerged to enable the use-case-independent use of data. However,
even data in a data lake have to be modeled. Without data modeling, data are prone to
quality and integration issues. Research literature suggests Data Vault for this purpose.
To determine the adequacy of Data Vault for data lake modeling, we examined real-
world business domains at a large, globally active manufacturer. We provided insights
into three domains and discussed the experiences made with the practical application of
Data Vault for data lakes. It turned out that even though some of the projects used data
rather untypical for Data Vault (e.g., IoT data), it was successfully applied in all
projects. However, multiple issues arose when using Data Vault, some that were only
insufficiently covered by the Data Vault modeling reference, some that were not
covered at all. To successfully use Data Vault in data lakes, a set of enterprise-wide
modeling guidelines is necessary, which extend the available Data Vault modeling
reference and contain solution approaches and best practices.

Table 2. Comparative evaluation of modeling techniques

Data vault Dim. modeling Head-version
tables

Use-case-
independence

Yes No Yes

Support of agile
project management

Yes No, many changes
necessary

Often, adaption is
necessary

Source schema
changes

Few changes
necessary

Mostly big changes
necessary

Mostly big
changes
necessary

High loading efficiency Yes Parallel loading of
dimensions possible

No

Auditability Yes Yes Yes
Number of tables Very large Small Large
Query performance Many JOINS Few JOINS Depends
Understandability Medium Very high Medium
Integration of multiple
source systems

Very simple
using satellites

Complex Complex

Modeling Data Lakes with Data Vault 75

References

1. Margulies, J.C.: Data as competitive advantage. Winterberry Gr., October, pp. 1–28 (2015)
2. Mathis, C.: Data lakes. Datenbank-Spektrum 17(3), 289–293 (2017)
3. Fang, H.: Managing data lakes in big data era: what’s a data lake and why has it became

popular in data management ecosystem. In: Proceedings of the 2015 IEEE International
Conference on Cyber Technology in Automation, Control, and Intelligent Systems
(CYBER) (2015)

4. Russom, P.: Data lakes - purposes, practices, patterns, and platforms. TDWI (2017)
5. Topchyan, A.R.: Enabling data driven projects for a modern enterprise. In: Proceedings of

the Institute for System Programming of the RAS (ISP RAS 2016), vol. 28, no. 3, pp. 209–
230 (2016)

6. Stiglich, P.: Data modeling in the age of big data. Bus. Intell. J. 19(4), 17–22 (2014)
7. Linstedt, D.: Super Charge Your Data Warehouse: Invaluable Data Modeling Rules to

Implement Your Data Vault (2012)
8. Linstedt, D., Olschimke, M.: Building a Scalable Data Warehouse with Data Vault 2.0.

Elsevier Ltd., Amsterdam (2015)
9. Schnider, D., Martino, A., Eschermann, M.: Comparison of data modeling methods for a

core data warehouse. Trivadis (2014)
10. Yessad, L., Labiod, A.: Comparative study of data warehouses modeling approaches: Inmon,

Kimball and Data Vault. In: 2016 International Conference on System Reliability and
Science (ICSRS) (2016)

11. Jovanovic, V., Bojicic, I.: Conceptual data vault model. In: Proceedings of the 15th Southern
Association for Information Systems Conference (SAIS) (2012)

12. Krneta, D., Jovanovic, V., Marjanovic, Z.: A direct approach to physical data vault design.
Comput. Sci. Inf. Syst. 11(2), 569–599 (2014)

13. Cernjeka, K., Jaksic, D., Jovanovic, V.: NoSQL document store translation to data vault
based EDW. In: 2018 41st International Convention on Information and Communication
Technology, Electronics and Microelectronics (MIPRO) (2018)

14. Kimball, R., Ross, M.: The Data Warehouse Toolkit: The Definitive Guide to Dimensional
Modeling. Wiley, Hoboken (2013)

15. Inmon, W.H., Linstedt, D.: Data Architecture: A Primer for the Data Scientist - Big Data,
Data Warehouse and Data Vault. Elsevier Ltd., Amsterdam (2014)

16. Porter, M.E.: Competitive Advantage: Creating and Sustaining Superior Performance. Free
Press, New York (1985)

17. Gröger, C.: Building an Industry 4.0 analytics platform. Datenbank-Spektrum 18(1), 5–14
(2018)

18. Gröger, C., Schwarz, H., Mitschang, B.: The deep data warehouse: link-based integration
and enrichment of warehouse data and unstructured content. In: Proceedings of the 2014
IEEE 18th International Enterprise Distributed Object Computing Conference (EDOC)
(2014)

19. IBM Analytics: The governed data lake approach. IBM (2016)
20. Terrizzano, I., Schwarz, P., Roth, M., Colino, J.E.: Data wrangling: the challenging journey

from the wild to the lake. In: Proceedings of the 7th Biennial Conference on Innovative Data
Systems Research (CIDR) (2015)

21. Chen, P.P.-S.: The entity-relationship model-toward a unified view of data. ACM Trans.
Database Syst. 1(1), 9–36 (1976)

76 C. Giebler et al.

22. Inmon, W.H.: Building the Data Warehouse. Wiley, Hoboken (2005)
23. Houle, P.: Data Lakes, Data Ponds, and Data Droplets (2017). http://ontology2.com/the-

book/data-lakes-ponds-and-droplets.html
24. Walker, C., Alrehamy, H.: Personal data lake with data gravity pull. In: Proceedings of the

2015 IEEE Fifth International Conference on Big Data and Cloud Computing (BDCloud)
(2015)

Modeling Data Lakes with Data Vault 77

http://ontology2.com/the-book/data-lakes-ponds-and-droplets.html
http://ontology2.com/the-book/data-lakes-ponds-and-droplets.html

Requirements-Driven Visualizations
for Big Data Analytics:

A Model-Driven Approach

Ana Lavalle1,2(B), Alejandro Maté1,2, and Juan Trujillo1,2

1 Lucentia (DLSI), University of Alicante, Carretera San Vicente del Raspeig s/n,
San Vicente del Raspeig, 03690 Alicante, Spain
{alavalle,amate,jtrujillo}@dlsi.ua.es

2 Lucentia Lab, C/Pintor Pérez Gil, N-16, Alicante, Spain

Abstract. Choosing the right Visualization techniques is critical in Big
Data Analytics. However, decision makers are not experts on visualiza-
tion and they face up with enormous difficulties in doing so. There are
currently many different (i) Big Data sources and also (ii) many different
visual analytics to be chosen. Every visualization technique is not valid
for every Big Data source and is not adequate for every context. In order
to tackle this problem, we propose an approach, based on the Model
Driven Architecture (MDA) to facilitate the selection of the right visual
analytics to non-expert users. The approach is based on three different
models: (i) a requirements model based on goal-oriented modeling for
representing information requirements, (ii) a data representation model
for representing data which will be connected to visualizations and, (iii)
a visualization model for representing visualization details regardless of
their implementation technology. Together with these models, a set of
transformations allow us to semi-automatically obtain the correspond-
ing implementation avoiding the intervention of the non-expert users. In
this way, the great advantage of our proposal is that users no longer need
to focus on the characteristics of the visualization, but rather, they focus
on their information requirements and obtain the visualization that is
better suited for their needs. We show the applicability of our proposal
through a case study focused on a tax collection organization from a real
project developed by the Spin-off company Lucentia Lab.

Keywords: Data visualization · Big Data Analytics · Model Driven
Architecture · User requirements

1 Introduction

Data is continuously growing, specially since the last decade. With ever larger
amounts of data that need to be interpreted and analyzed, using the right visu-
alizations is crucial to help decision makers to properly analyze the data and
guide them to take better informed decisions.
c© Springer Nature Switzerland AG 2019
A. H. F. Laender et al. (Eds.): ER 2019, LNCS 11788, pp. 78–92, 2019.
https://doi.org/10.1007/978-3-030-33223-5_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33223-5_8&domain=pdf
https://doi.org/10.1007/978-3-030-33223-5_8

Model Driven Visual Analytics 79

In this new era of Big Data Analytics, there has been an increasing interest
from both the academic and industry worlds in different phases of the data life
cycle: from the storage to the analysis, cleaning or integration and, of course,
the visualization. Data and Information Visualization are becoming strategic
for the exploration and explanation of large data sets due to the great impact
that data have from a human perspective. An effective, efficient and intuitive
representation of the analyzed data may result as important as the analytic
process itself [6]. However, larger data sets and their complexity in terms of
heterogeneity contribute to make the representation of data more complex [5].

In this context, defining and implementing the right visualization for a given
data set is a complex task for companies, specially in the age of Big Data where
heterogeneous and external data sources require knowledge of the underlying
data to create an adequate visualization. As such, choosing the wrong visualiza-
tions and misunderstanding the data leads to wrong decisions and considerable
losses. One of the key difficulties for defining the right visualization technique
is the lack of expertise in information visualization of decision makers. Another
critical aspect is that, apparently, a large set of visualizations may be equally
valid for any given data sets, which has been proven to be absolutely wrong [21],
each data set and each analysis has its particular characteristics and not always
all the types of visualization are valid to represent them.

In order to tackle the above-presented problems, we propose an approach,
based on the Model Driven Architecture (MDA) [16] proposed by the Object
Management Group (OMG).

User

Visualization
specification

Data Query
Data source

Model Review
Process

Guidelines

User
Requirements

Model
CIM

PIM

PSM
Data

Profiling
Model

Model2Model
(CIM to PIM)

Data
Visualization

Model

Visualization
Generation

Model2Text

Data Visualization
Review

Implementation

CODE

Fig. 1. Overall view of the process proposed.

Figure 1 summarizes the process followed in our proposal, aligned with MDA.
Firstly, a sequence of questions guides users in creating a Goal-Oriented [12]

80 A. Lavalle et al.

model that captures their needs. This model (CIM layer) enables them to capture
all the visualizations that are needed to tackle their information needs. The user
requirements together with the data profiling information coming through the
Data Profiling Model (at PSM layer) are used as a visualization specification that
is input to a model to model transformation. This transformation generates the
Data Visualization Model (PIM layer). This model allows users to specify exactly
how they need to visualize the data. It also allows them to determine if the
proposed visualization is adequate to satisfy the essential requirements for which
it was created. The validation process is performed through a questionnaire
according to user goals model. If the proposed visualization passes the validation.
Otherwise, an unsuccessful validation points out to the existence of missing or
wrongly defined requirements that must be reviewed. This process is repeated
until all user requirements are fulfilled. Finally, a model to text transformation
generates the implementation of the visualization using the data visualization
model as input.

The great advantage of our proposal is that users no longer focus on the
underlying technical aspects or finding the most adequate visualization tech-
nique to be used in every different data analytic process. By following our app-
roach, decision makers obtain the visualization technique that is better suited
to their information needs and the characteristics of the data at hand in a semi-
automatic way. This is achieved thanks to our alignment with MDA, enabling
us to incrementally refine the visualization until its implementation is obtained.

The rest of the paper is structured as follows. Section 2 presents the related
work in this area. Section 3 presents the different proposed models of the app-
roach based on the MDA. Section 4 discusses a real case study in the fiscal
domain. Finally, Sect. 5 summarizes the conclusions and our future work.

2 Related Work

Several works have focused on proposing different ways to find the best visualiza-
tion. [2] surveys the main classifications proposed in the literature and integrates
them into a single framework based on six visualization requirements. In [11],
authors propose a framework for choosing the best visualization where the main
types of charts are related to users goals and to data dimensionality, cardinality,
and data type they support. Finally, [9] proposes a model to automate the trans-
lation of visualization objectives specified by the user into a suitable visualization
type based on seven visualization requirements.

Additionally, several approaches are focused on the analysis of visualization
representations. [15] describes an information visualization taxonomy. [18] make
a revision of visualization techniques for Big Data to determine which are the
most optimistic when analyzing Big Data. [4] propose a metamodel to represent
tree and graph views by modeling nodes and edges. Similarly, [7] uses nodes and
edges to draw basic shapes like lines and circles.

Other works are focus on visual analytics recommendation systems. [20]
detail the key requirements and design considerations for a visualization rec-
ommendation system and identify a number of challenges in realizing this vision

Model Driven Visual Analytics 81

and describe some approaches to address them. [8] propose EventAction, a pre-
scriptive analytics interface designed to present and explain recommendations
of temporal event sequences. Additionally, [21] propose SEEDB, a visualization
recommendation engine to facilitate fast visual analysis, SEEDB explores the
space of visualizations, evaluates promising visualizations for trends, and recom-
mends those it deems most “useful” or “interesting”. In [14] authors propose a
new language VizDSL for creating interactive visualizations that facilitate the
understanding of complex data and information structures for enterprise systems
interoperability.

To the best of our knowledge, the only approaches that follow the MDA phi-
losophy in the Big Data Context are presented within the TOREADOR project.
In [1], the authors propose a Model-driven approach that aims to lower the
amount of competences needed in the management of a Big Data pipeline. [10]
illustrates a use case exploiting the Model-driven capabilities of the TOREADOR
platform as a way to fast track the uptake of business-driven Big Data models.
[13] provides a layered model that represents tools and applications following
the Dataflow paradigm.

Despite all the work presented so far, none of the approaches provide a way
to easily translate user requirements into visual analytics implementations. Fur-
thermore, there is an absence of a methodology that guides users in obtaining the
most adequate visualization, allowing them to focus on their own needs rather
than on the characteristics of the visualization.

3 A MDA Approach for Visual Analytics

As previously introduced in the paper, specifying the right visualization for a
user is a challenging task. User has not only to take into account her needs, which
are on a completely different abstraction level, but also consider characteristics
of the data that make inadequate the use of certain visualizations. In order to
let the user focus on her information needs, we aim to bridge the gap between
the user requirements and their visualization implementation.

To this aim, we propose a development approach Fig. 1 in the context of the
Model Driven Architecture [16]. Our main goal is to help users to generate the
visualizations that are better suited to meet their information needs. Following
the basic principles of MDA, our proposal builds on three types of models:

– User Requirements Model (CIM layer): Allows users to capture their
information needs and certain visualization aspects that are needed to tackle
them.

– Data Visualization Model (PIM layer): Enables users to specify the
characteristics of their visualizations before obtaining their implementation.

– Data Profiling Model (PSM layer): Abstracts the required information
from the data sources to (i) aid in determining the most adequate visualization
and (ii) take certain aspects of data into account for their representation (such
as whether they are numeric or categorical).

82 A. Lavalle et al.

The process starts by capturing information needs at the CIM level. Then, a
data profiling process is run to generate a data profiling model at the PSM level
that contains the relevant data characteristics for the process. Once both models
have been obtained, they are processed through a model to model transformation
that generates a data visualization model at the PIM level. This model provides
the user with the better suited visualization for her needs and the data available,
and allows her to modify different aspects of the visualization such as the axis
where each attribute should be positioned, the orientation, or the color range
among others. Once the model refinement process is finished, a model to text
transformation generates the implementation using a visualization library, such
as D3.js in our case.

3.1 User Requirements Model

Our approach starts from a goal-oriented requirements model that allows us to
capture information needs. To describe the coordinates required to build a visu-
alization context (Goal, Interaction, User, Dimensionality, Cardinality, Inde-
pendent Type, and Dependent Type) we follows the specification to automate
data visualization in Big Data Analytics given in [9], in this way we make sure
that the visualization specification is addressed in terms of Big Data. Due to
paper constraints, we cover only the main aspects of our requirements model.

Our metamodel shown in Fig. 2 is an extension of i* and the i* for Data
Warehouses extension [12]. Existing elements in the i* core are represented in
blue (light grey), whereas those in i* for Data Warehouses are represented in red
(dark grey). The new concepts added by our proposal are represented in white.

Fig. 2. User requirements metamodel. (Color figure online)

Model Driven Visual Analytics 83

The first element is the VisualizationActor, which models the user of the
system. There are two types of Visualization Actors: Lay, if she has no knowl-
edge of complex visualizations, and Tech, if she has previous experience and is
accustomed to Big Data Analytics. Next is the BusinessProcess on which users
will focus their analysis. The business process will serve as the guideline for the
definition of Goals.

The AnalysisType allows users to express which kind of analysis they wish
to perform. The type of analysis can be determined by selecting which question
from the following ones [19] is to be answered: How to act? (Prescriptive), Why
has it happened? (Diagnostic), What is going to happen? (Predictive) or What
to do to make it happen? (Descriptive).

Next, a Visualization represents a specific visualization that will be imple-
mented to satisfy one or more VisualizationGoals. Each VisualizationGoal
describes an aspect of the data that the visualization should reflect. These goals
can be Composition, Order, Relationship, Comparison, Cluster, Distribution,
Trend, or Geospatial, as considered in [9].

Along with VisualizationGoals, Visualizations have one or more Interaction-
Types, that capture how the user will interact with the visualization. The dif-
ferent kinds of interaction are Overview, Zoom, Filter, or Details on Demand as
[9] consider to data visualization in Big Data Analytics. Finally, a Visualization
makes use of one or more DatasourceResource elements which feed the data to
the visualization.

Using these concepts we allow users to define their needs instead of focusing
on technical details that are not relevant at this level.

3.2 Data Profiling Model

Our second model is the Data Profiling Model. This model captures the data
characteristics that are relevant to the visualization and is generated through a
data profiling process. Firstly, users will select the data sources that they want to
be represented in the visualization. Consecutively, the data analyst will analyze
the data sources extract the values of the coordinates by analyzing the features
of the data sources. In this way, users do not need to manually inspect the data
or have a deep understanding.

To know how to delimit the values for each coordinate we have use the values
proposed in [9] to Big Data Analytics. In this way we classify the Dimensionality,
Cardinality, and Dependent/Independent Type as follows:

Cardinality represents the cardinality of the data. It can either be Low or
High, depending of the numbers of items to represent. Low cardinality considers
a few items to a few dozens of items while High cardinality is set if there are
some dozens of items or more.

Dimensionality is used to declare the number of variables to be visual-
ized. Specifically, it can be 1-dimensional when the data to represent is a single
numerical value or string, 2-dimensional when one variable depends on other,
n-dimensional when a data object is a point in an n-dimensional space, Tree

84 A. Lavalle et al.

when a collection of items have a link to one other parent item, or Graph when
a collection of items are linked to arbitrary number of other items.

Type of Data: is used to declare the type of each variable. It can be Nominal
when each variable is assigned to one category, Ordinal when it is qualitative
and categories can be sorted, Interval when it is quantitative and equality of
intervals can be determined, or Ratio when it is quantitative with a unique and
non-arbitrary zero point.

CIM2PIM

InteractionType

- Type

Where

E1

E3

if (VisualizationActor.Type == "Lay" && InteractionType.Type == "Overview" && (VisualizationGoal.Type ==
"Composition" || VisualizationGoal.Type == "Comparison") && Cardinality.Type == "Low" && Dimensionalisty.Type
== "n-dimensional" && IndependentDataType.Type == "Nominal" && DependentDataType.Type == "Ratio")

E2

VisualizationGoal

- Type

VisualizationActor

- Type

Cardinality

- Type

Dimensionality

- Type

IndependentDataType

- Type

DependentDataType

- Type

C E

E1:URM

E2:DPM

E3:DVM

Visualization

- Name
AxisVisualization

- Title = Visualization.Name
- Interaction = InteractionType.Type

- GraphicType = DerivedGraphicType

DerivedGraphicType = "Stacked Column Chart"

Fig. 3. Generation of axis based visualizations from user requirements.

CIM2PIM

E1 E3

DatasourceResource

- Name

Axis

- Name = Attribute

- Order = Null

E2
IndependentDataType

- Type

Attribute

- Name = DatasourceResource.Name
- Type = DatasourceResource.TypeDependentDataType

- Type

C E

E1:URM

E2:DPM

E3:DVM

Visualization

- Name

Where

For(AxisVisualization in E3) if(AxisVisualization.Title == Visualization.Name) AxisVisualization.axis.add(Axis)

Fig. 4. Generation of axes for axis based visualizations from user requirements.

3.3 Visualization Specification Transformation - (Model to Model)

Information coming from User Requirements Model and the Data Profiling
Model form the Visualization Specification. This specification is transformed

Model Driven Visual Analytics 85

into a data visualization model using a set of model to model transformations,
presented in Figs. 3 and 4 by the OMG standard language QVT [17]. According
to the nature of the visualization to be derived, there are two types of transfor-
mations. On the one hand, we can have axis-based visualizations, such as column
chart, line chart, bubble chart, etc. On the other hand, some visualizations such
as dendrogram, chord or graphs require graph-based visualizations, which make
use of nodes and edges instead of axis.

Due to space constraints, we will focus on how axis-based visualizations are
derived. Our first transformation (Fig. 3), generates the visualization element, an
AxisVisualization in this case. An AxisVisualization is derived according to the
graphic type established by the transformation. This value is derived using the
imperative part of the transformation (Where clause) according to the specific
criteria established by [9] for the each graphic type. The values Cardinality,
Dimensionality, IndependentDataType and DependentDataType are obtained
from the data profiling. Finally, the visualization name and interaction type
defined in the User Requirements Model are used to establish the title and
interaction of the Axisvisualization.

Next, as Fig. 4 shows, each of the axes is generated individually. An axis is
generated for each measure or category (abstracted by the DatasourceResource
element) in the User Requirements Model. Afterwards, each axis is assigned
their corresponding visualization by iterating over the data visualization model,
completing the derivation of the visualization.

Fig. 5. Data visualization metamodel. (Color figure online)

3.4 Data Visualization Model

In order to verify if the recommended visualization is adequate to satisfy the
information needs of the user and allow her to customize each visualization, we

86 A. Lavalle et al.

require an abstraction of the visualization to be generated. Despite our best
efforts, there is no metamodel proposed so far to model visual analytics. Thus,
to support our process, we have defined a novel visualization metamodel.

Our metamodel shown in Fig. 5 is composed of elements extracted from [4]
to define tree and graph visualizations, represented in blue (grey) color, while
new concepts added by our proposal to detail the specification of visualizations
represented in white. In the following, we describe the concepts included in the
proposed metamodel.

The main element is Visualization, this element collects all the visualization
requirements that should be met. It contains a visualization Title; a Legend, that
may be shown or not; a Graphic Type that determines the type of visualization;
a set of interactions that contain the type of interaction that must be supported
(Overview, Zoom, Filter or Details-on-demand); and a Dashboard Position, in
the event that the visualization will be part of a Dashboard.

In order to define the representation of a visualization, other elements are
necessary. A visualization has and Orientation, either Horizontal, Vertical, or
Any (when the graphic type does not have orientation). Moreover, a visualization
has a ColorRange, that represents the range of colours that will be used by the
visualization, an aspect of special importance for color-blind users.

A visualization will be instanced as either a GraphVisualization or an AxisVi-
sualization depending on the type of visualization. A GraphVisualization may
contain several Nodes and Edges [4]. Meanwhile, an AxisVisualization constaints
a series of axes that represent the data. An Axis is may have a Name, Order, Min-
imum Value and Maximum Value. Each Axis represents an Attribute at most.
An Attribute has a Name and a Type. Attributes can be used to be represented
or to set the order of the data in the visualization.

3.5 Visualization Generation Transformation - (Model to Text)

The Visualization Generation Transformation has as input the data visualiza-
tion model from the previous step. This transformation transforms each element
within the visualization specification into a code level specification for a graphic
library. In our case, we use the D3 JavaScript library [3] for generating the visu-
alization. The GraphicType and the Orientation determine the type of visualiza-
tion to implement. Categories and measures and their respective axes determine
how the data is assigned to each axis. Meanwhile, the Color Range is translated
into custom color scales. Moreover, if a Legend has been defined, the type of the
legend, title, position, font family and text size are be translated attributes in
the corresponding d3.legend function call. Finally, the title is used to provide a
name to the visualization created, and the dashboard position is used to assign
a position to the visualization.

4 Case Study

In order to evaluate the validity of our approach we have applied it to a real
case study, based on a tax collection organization. Due to space constraints, we

Model Driven Visual Analytics 87

provide a reduced example including enough data in order to allow readers to
completely understand the approach. Therefore, the example is constrained to
a Tax Region Area covering only three provinces. The organization requires a
set of visualizations to analyze their data in order to help them detect under-
lying patterns in their unpaid bills and tax collection distribution. Due to the
sensitivity of their data, we are not allowed to show the real values.

4.1 Specifying User Requirements

Through the application of our User Requirements Model to a tax collection
organization, the Fig. 6 has been generated. A tax collector user wants to ana-
lyze the unpaid debts. Therefore, the analysis will focus on the “Tax collection”
business process. Defining a business process helps determining the scope of the
analysis and the goals pursued. The user is not a specialist in Big Data Analytics
but rather an expert in tax management, thus she is defined as “Lay user”.

Next, the main objectives of the business process are defined as shown in
Fig. 6. Specifically, the user defined her strategic goal as “Reduce the unpaid
bills”. Strategic goals are achieved by means of analyses that support the
decision-making process. The analysis type allows users to express what kind
of analysis they wish to perform. In this case, the user wishes to know why bills
are unpaid. Thus, the user decides to perform a “Diagnostic analysis”.

The diagnostic analysis is decomposed into decision goals. The user defined
her decisions goals as: “Identify unpaid bills”, “Identify the quantities unpaid”,
and “Analyze the evolution”. Decisions goals communicate the rationale followed
by the decision-making process; however, by themselves they do not provide the
necessary details about the data to be visualized. Therefore, for each decision
goal we specify one or more information goals.

From each of the decision goals the user refined the following information
goals: “Identify places with more unpaid bills”, “Identify the type of unpaid bills”,
“Identify who has unpaid bills”, and “Evolution of unpaid bills”. Information
goals represent the lowest level of goal abstraction. And for each information goal,
we will have one visualization to achieve it. A visualization is characterized by
one or more visualization goals which describe what aspects of the data the visu-
alization is trying to reflect, and one or more kinds of interaction that they will
like to have with the visualization. Moreover, a visualization will make use of one
or more data source elements to get the relevant data from the database. In this
case, the user defines the interactions she want to have with each visualization
and her visualization goals following user guidelines. “Overview”, “Zoom” and
“Details-on-demand” have been defined as interactions and “Geospatial”, “Com-
position”, “Comparison”, “Order”, and “Trend” as visualization goals. Finally,
the user specifies the data source where the analysis will be performed and selects
the Categories and Measures that will populate the visualizations.

88 A. Lavalle et al.

S
Reduce

the unpaid
bills

AT
Make a

diagnostic
analysis

D
Identify the
quantities

unpaid

D
Analyze the

evolution

V
Geographic distribution

of Unpaids

BP
Tax collection

Cat
Province

M
Amount

Cat
Type

M
Amount

BP Business Process

S Strategic Goal

Data Source

Tax collector
Lay user

I
Identify places

with more unpaid
bills

M
Coordinates

Collec
Location

Cat

M

Category

Measure

Decomposition

Means-End

IT
Use Overview

interaction

D
Identify

unpaid bills

I
Evolution of
unpaid bills

I
Identify who has

unpaid bills

I
Identify the type
of unpaid bills

IT
Use Zoom &

Details-on-demand
interaction

IT
Use Overview

interaction

IT
Use Overview &

Zoom
interaction

M
Amount

Cat
Debtors

M
Amount

Cat
Province

Cat
Municipality

Cat
Year

Collec
Dossier

Collec
Date

DS

Cat
Province

VG
Trend

D Decision Goal

I Information Goal

AT Analysis Type

VG Visualization Goal

IT Interaction Type

V Visualization

VG
Order

VG
Composition

VG
Geospatial

DS

CollectionCollec

VG
Comparison

Collec
Bills

Cat
Province

V
Type of unpaid bills

V
Unpaid dossiers

V
Pending payments

over time

Fig. 6. Application of our user requirements metamodel to the case study.

4.2 Profiling Data Sources

Once user have defined the data sources and collections from where the data will
be extracted, it is possible to profile data sources to determine Dimensionality,
Cardinality and Dependent/Independent Type.

We focus on the “Identify the type of unpaid bills” Information Goal
from our Goal-Oriented model, which requires information about categories
“Type” and “Province” and measures “Amount”. Firstly, by the Data Profil-
ing Model, are classified the independent variables “Type” and “Province” as
Nominal and the dependent variable “Amount” as Ratio. Dimensionality is set
to n-dimensional, because the user has defined 3 variables to visualize. Finally,
the Cardinality is defined as Low Cardinality because the data contains a few
items to represent 3 provinces to represent and there are 6 types of bills.

Overall, the visualization specification obtained through User Requirements
Model and Data Profiling Model are:

Model Driven Visual Analytics 89

– Visualization Goal: Composition & Comparison
– Interaction: Overview
– User: Lay
– Dimensionality: n-dimensional
– Cardinality: Low
– Independent Type: Nominal
– Dependent Type: Ratio

With the definition of this visualization specification, by applying our visual-
ization specification transformation, the visualization type generated is “Stacked
Column Chart”.

4.3 Specifying Data Visualizations Requirements

The visualization specification is used as input of the Data Visualization Model.
A visualization tool will be generated as Fig. 7 shows using the information
collected in the process.

The tool shows the most suitable visualization type, the integration type
defined by the user and a representation of the visualization. It also shows the
selected elements to be represented in the visualization. The user will have to
choose in which axes she want to see each element represented. In this case, we
have “Province” in X axis, “Amount” in Y axis and “Type” as Color. The user
also has to select the element that determines the order in the visualization.
Other element to specify is the orientation of the visualization, this can be
defined as horizontal, vertical or any if the visualizations have no orientation.
In this case the user has decide to user a horizontal orientation. Next element
is the legend, which can be shown or not. A legend may have a title, a type
(in this case the user has decide to represent it like a list), a position on the
visualization, a font family, and a text size. The range of colours used to
represent the visualization also has to be choose, the user can choose one of
the color ranges proposed or personalize a range. Finally, the user can give a
dashboard position to the visualization and a title.

The user will review the data visualization model until she achieves her visu-
alization requirements. Once all the elements have been customized, the user has
to validate if the visualization obtained does contribute to answer her informa-
tional goal, in this case “Identify the type of unpaid bills”. If the visualization
is validated, it will be generated making a call to the D3 JavaScript library [3],
obtaining the visualization shown in Fig. 8. Otherwise, an unsuccessful valida-
tion would generated a review of the existing user requirements model, to start
a new iteration and generating in turn an updated model.

This visualization, combined with those generated for the others informa-
tion goals, will be grouped into a dashboard, aimed at satisfying the analytic
requirements of our tax collector user with the most adequate visualizations and
covering all the data required by the analysis.

90 A. Lavalle et al.

Legend:

Horizontal

Vertical

Any

Orientation:

Title

List

Sans-serif

Text Size 10

Up-Right

STACKED COLUMN CHART

Interaction:

Title: Type of unpaid bills

Color Range:

Elements to represent:

- Type
- Province

- Amount

Order by: Amount

Categories:

Measures:

Color

X

Y

Wrong Visualization

- Overview

Dashboard Position:

Down-Left
Can you "Identify the type of unpaid bills" with this visualization?

YES

Fig. 7. Application of our data visualization metamodel to the case study.

Fig. 8. Visualization rendered in D3.js.

5 Conclusions and Future Work

In this paper, we have presented an approach in the context of the Model Driven
Architecture (MDA) standard in order to help users derive the most adequate
visualizations. Our approach envisages three different models, (i) a requirements
model based on goal-oriented modeling for representing information require-
ments; (ii) a data profiling model that abstracts the required information from

Model Driven Visual Analytics 91

the data sources; and, (iii) a visualization model for capturing visualization
details regardless of their implementation technology. Together with these mod-
els, we have proposed a series of transformations that allow us to bridge the gap
between information requirements and the actual implementation. The great
advantage of our proposal is that users can focus on their information needs and
obtain the visualization that is better suited for their particular case, without
requiring visualization expertise. In order to check the validity of our approach,
we have applied our approach to a real use case focused on a tax collection organi-
zation. The results obtained, as well as a currently ongoing family of experiments,
support the approach presented.

As part of our future work, we are working on the definition and generation
of dashboards as a whole. In this way, we will simplify and reduce the resources
required to obtain visual analytics, which is of special interest for small and
medium companies who cannot afford hiring several analysts in order to cover
data, visualization, and business expertise required for Big Data analytics.

Acknowledgments. This work has been co-funded by the ECLIPSE-UA (RTI2018-
094283-B-C32) project funded by Spanish Ministry of Science, Innovation, and Uni-
versities. Ana Lavalle holds an Industrial PhD Grant (I-PI 03-18) co-funded by the
University of Alicante and the Lucentia Lab Spin-off Company.

References

1. Ardagna, C.A., Bellandi, V., Ceravolo, P., Damiani, E., Bezzi, M., Hébert, C.:
A model-driven methodology for big data analytics-as-a-service. In: International
Conference on Big Data, pp. 105–112. IEEE (2017)

2. Börner, K.: Atlas of Knowledge. MIT Press, Cambridge (2014)
3. Bostock, M.: Data-driven documents (2019). https://d3js.org/
4. Bull, R.I., Favre, J.: Visualization in the context of model driven engineering. In:

MDDAUI, vol. 159 (2005)
5. Caldarola, E.G., Rinaldi, A.M.: Improving the visualization of wordnet large lexical

database through semantic tag clouds. In: International Congress on Big Data, pp.
34–41. IEEE (2016)

6. Caldarola, E.G., Rinaldi, A.M.: Big data visualization tools: a survey - the new
paradigms, methodologies and tools for large data sets visualization. In: Proceed-
ings of the 6th International Conference on Data Science, Technology and Appli-
cations, DATA. INSTICC, SciTePress (2017)

7. Domokos, P., Varró, D.: An open visualization framework for metamodel-based
modeling languages. Electr. Notes Theor. Comput. Sci. 72(2), 69–78 (2002)

8. Du, F., Plaisant, C., Spring, N., Shneiderman, B.: Eventaction: visual analytics for
temporal event sequence recommendation. In: 2016 IEEE Conference on Visual
Analytics Science and Technology (VAST), pp. 61–70. IEEE (2016)

9. Golfarelli, M., Rizzi, S.: A model-driven approach to automate data visualization
in big data analytics. Inf. Vis. (2019, to appear)

10. Leida, M., Ruiz, C., Ceravolo, P.: Facing big data variety in a model driven app-
roach. In: RTSI, pp. 1–6. IEEE (2016)

11. Madhu Sudhan, S., Chandra, J.: IBA graph selector algorithm for big data visu-
alization using defense data set. Int. J. Sci. Eng. Res. (IJSER) 4(3), 1–7 (2013).
ISSN: 2229-5518

https://d3js.org/

92 A. Lavalle et al.

12. Maté, A., Trujillo, J., Franch, X.: Adding semantic modules to improve goal-
oriented analysis of data warehouses using I-star. J. Syst. Softw. 88, 102–111 (2014)

13. Misale, C., Drocco, M., Aldinucci, M., Tremblay, G.: A comparison of big data
frameworks on a layered dataflow model. Parallel Process. Lett. 27, 1740003 (2017)

14. Morgan, R., Grossmann, G., Stumptner, M.: VizDSL: towards a graphical visual-
isation language for enterprise systems interoperability. In: BDVA. IEEE (2017)

15. de Oliveira, E.C., de Oliveira, L.C., Cardoso, A., Mattioli, L., Junior, E.A.L.: Meta-
model of information visualization based on treemap. Univ. Access Inf. Soc. 16(4),
903–912 (2017)

16. (OMG), O.M.G.: Model driven architecture guide rev. 2.0 (2014). https://www.
omg.org/cgi-bin/doc?ormsc/14-06-01

17. (OMG), O.M.G.: MOF 2.0 query/view/transformation specification (2016).
https://www.omg.org/spec/QVT/1.3/PDF

18. Peña, L.E.V., Mazahua, L.R., Hernández, G.A., Zepahua, B.A.O., Camarena,
S.G.P., Cano, I.M.: Big data visualization: review of techniques and datasets. In:
International Conference on Software Process Improvement, pp. 1–9. IEEE (2017)

19. Shi-Nash, A., Hardoon, D.R.: Data analytics and predictive analytics in the era of
big data. In: Internet of Things and Data Analytics Handbook, pp. 329–345 (2017)

20. Vartak, M., Huang, S., Siddiqui, T., Madden, S., Parameswaran, A.: Towards visu-
alization recommendation systems. ACM SIGMOD Record 45(4), 34–39 (2017)

21. Vartak, M., Rahman, S., Madden, S., Parameswaran, A., Polyzotis, N.: SEEDB:
efficient data-driven visualization recommendations to support visual analytics.
Proc. VLDB Endowment 8(13), 2182–2193 (2015)

https://www.omg.org/cgi-bin/doc?ormsc/14-06-01
https://www.omg.org/cgi-bin/doc?ormsc/14-06-01
https://www.omg.org/spec/QVT/1.3/PDF

Don’t Tune Twice: Reusing Tuning
Setups for SQL-on-Hadoop Queries

Edson Ramiro Lucas Filho1(B), Eduardo Cunha de Almeida1,
and Stefanie Scherzinger2

1 Universidade Federal do Paraná, Curitiba, Brazil
{erlfilho,eduardo}@inf.ufpr.br

2 OTH, Regensburg, Brazil
stefanie.scherzinger@oth-regensburg.de

Abstract. SQL-on-Hadoop processing engines have become state-of-
the-art in data lake analysis. However, the skills required to tune such
systems are rare. This has inspired automated tuning advisors which
profile the query workload and produce tuning setups for the low-level
MapReduce jobs. Yet with highly dynamic query workloads, repeated
re-tuning costs time and money in IaaS environments. In this paper, we
focus on reducing the costs for up-front tuning. At the heart of our app-
roach is the observation that a SQL query is compiled into a query plan
of MapReduce jobs. While the plans differ from query to query, single
jobs tend to be similar between queries. We introduce the notion of the
code signature of a MapReduce job and, based on this, our concept of
job similarity. We show that we can effectively recycle tuning setups from
similar MapReduce jobs already profiled. In doing so, we can leverage
any third-party tuning adviser for MapReduce engines. We are able to
show that by recycling tuning setups, we can reduce the time spent on
profiling by 50% in the TPC-H benchmark.

1 Introduction

More than a decade after the publication of the MapReduce paper [7], we observe
a clear preference among Hadoop or Spark users for higher-level languages [11]
(e.g., Hive [21] and SparkSQL [2]). Typically, writing queries for SQL-on-Hadoop
systems is more productive than custom-coding MapReduce jobs for MapReduce
frameworks: SQL-on-Hadoop systems compile declarative queries into a query
plan of MapReduce jobs. Naturally, this greatly improves the productivity of
data scientists. Yet compiling queries to query plans, and then allocating their
jobs onto nodes in a cluster is only half the battle: The underlying MapReduce
framework needs to be tuned for performance.

The expertise required for allocating the right mix of physical resources (main
memory, disk space, bandwidth, etc.) to jobs, and for twiddling with the right
tuning knobs is rare. This was already the case roughly 10 years ago, when
the first automatic tuning advisers for MapReduce frameworks were proposed,
e.g. [8]. Ever since, SQL-on-Hadoop engines and MapReduce frameworks have

c© Springer Nature Switzerland AG 2019
A. H. F. Laender et al. (Eds.): ER 2019, LNCS 11788, pp. 93–107, 2019.
https://doi.org/10.1007/978-3-030-33223-5_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33223-5_9&domain=pdf
https://doi.org/10.1007/978-3-030-33223-5_9

94 E. R. L. Filho et al.

0 10 20 30
0

200
400
600
800

1,000

SQL-On-Hadoop releases

#p
ar
am

et
er
s

0 10 20 30
MapReduce releases

Hive SparkSQL Pig Hadoop Tez Spark

Fig. 1. Number of tuning parameters growing over time [10]. (The releases are: Hadoop
from 0.23.11 to 2.8.0, Spark from 0.5.0 to 2.2.0, Tez from 0.5.0 to 0.8.5, Hive from 0.3.0
to 2.3.0, Pig from 0.1.0 to 0.16.0, and SparkSQL from 1.1.0 to 2.2.0.)

grown in complexity, manifesting in the number of tuning parameters. As Fig. 1
shows, Hive [21] currently has about a thousand tuning parameters. Manual
tuning is quite out of the question.

Tuning advisers for MapReduce frameworks rely on profiling of the query
workload [1,8,12]. Naturally, profiling imposes an overhead. For instance, the
Starfish tuning adviser causes an overhead of up to 50% [12]. When the query
workload is highly dynamic, re-tuning becomes a cost factor in pay-as-you-go
IaaS environments.

In this paper, we model the static information of Hive to match jobs with
similar resource consumption patterns and reuse the same tuning setup to reduce
their total cost of tuning. Our model relies on two observations regarding the
query plans compiled from SQL queries: (a) The jobs within a query plan execute
different query operators, and often have different resource requirements. (b)
Since the jobs are generated automatically, MapReduce jobs tend to be similar
across query plans.

Let us consider a specific example regarding observation (a). Figure 2 shows
the resource consumption of TPC-H query 5. The Hive engine (version 0.6.0)
compiles this query into a sequence of seven MapReduce jobs. For each job, we
track main memory and CPU consumption, as well as the amount of data in
physical reads and writes.

Let us now consider observation (b). We regard two MapReduce jobs in two
query plans as similar from the perspective of tuning, if they have the same code
signature. Intuitively, the code signature of a MapReduce job captures the SQL
operators implemented by this job, as well as the expected size of the input.
This information is available through the Hive query compiler. Our hypothesis
(which we can confirm in our experiments) is that jobs that share the same code
signature benefit from the same tuning setups. We therefore reuse tuning setups
for similar jobs to reduce profiling time.

Let us illustrate this point. Compiling the TPC-H queries in Hive-0.6 yields
123 MapReduce jobs. For 75% of these jobs, there is at least one other job with
the same code signature. Only a quarter of all jobs has a unique code signature.

In fact, once we have profiled enough jobs, we may even be able to assign tun-
ing setups for ad-hoc queries. These are queries that we have not encountered (or

Don’t Tune Twice: Reusing Tuning Setups for SQL-on-Hadoop Queries 95

Fig. 2. CPU, memory, disk write and disk read consumption for TPC-H query 5 across
the 7 MapReduce jobs. (We executed the experiments on a cluster of 3 nodes (Intel(R)
Core(TM) i3-3240 CPU @ 3.40 GHz, 4GB of RAM and 1 TB of disk space each).
Details are provided in Sect. 4.)

profiled) yet. In fact, ad-hoc queries are prevalent in many query workloads [23],
yet tuning advisers for MapReduce frameworks rely on profiling the workload
up front. Thus, our approach can be used in environments where, traditionally,
tuning advisers fail.

In Sect. 2, we review the state-of-the-art on SQL-on-Hadoop engines, as well
as MapReduce frameworks and their tuning advisers. In Sect. 3, we motivate and
define the notion of the code signature of a MapReduce job, and introduce the
code signature cache. We conduct our experiments using the TPC-H queries in
Sect. 4. In Sect. 5, we discuss related work in the context of our approach. We
conclude with Sect. 6.

2 State-of-the-Art

We briefly sketch the control flow of compiling queries in SQL-on-Hadoop
engines. We then describe how automatic tuning advisers for MapReduce frame-
works proceed.

2.1 SQL-on-Hadoop Engines

The generic workflow within a SQL-on-Hadoop engine starts when a SQL query
is submitted to the Driver . This component manages session handlers and tracks
statistics. The Compiler then translates the query into a logical query plan. The
Optimizer rewrites the logical plan in order to find a good execution plan in
terms of execution costs. For instance, joins sharing the same join predicate may
be merged, or data partitions irrelevant to query evaluation may be disregarded.
The Executor then receives the DAG of MapReduce jobs. It queues the jobs in
the MapReduce framework for processing. The MapReduce jobs are nodes in a
directed acyclic graph (DAG). The directed edges denote dependencies between
jobs.

96 E. R. L. Filho et al.

insert overwrite table q5 local supplier volume
select n name, sum(l extendedprice * (1 − l discount)) as revenue
from customer c join

(select n name, l extendedprice, l discount, s nationkey, o custkey
from orders o join
(select n name, l extendedprice, l discount, l orderkey, s nationkey
from lineitem l join
(select n name, s suppkey, s nationkey from supplier s join
(select n name, n nationkey from nation n join region r
on n.n regionkey = r.r regionkey and r.r name = ’ASIA’

) n1 on s.s nationkey = n1.n nationkey
) s1 on l.l suppkey = s1.s suppkey

) l1 on l1.l orderkey = o.o orderkey
and o.o orderdate >= ’1994−01−01’ and o.o orderdate < ’1995−01−01’

) o1 on c.c nationkey = o1.s nationkey and c.c custkey = o1.o custkey
group by n name order by revenue desc;

(a) TPC-H query 5.

j1

j2

j3

j4

j5

j6

j7

(b) Query plan.

Fig. 3. Query and query plan of TPC-H query 5, as compiled by Hive 0.6.0.

Example 1. Figure 3b shows the final query plan produced by Hive v0.6.0 for
TPC-H query 5 (presented in Fig. 3a). Each job is responsible for executing one
or more SQL operators in the query, like sort and aggregation. ��

The DAG declares a partial order, which the Execution Engine considers
when deploying the jobs. However, the MapReduce framework needs to be con-
figured for performance: A tuning setup is registered with the MapReduce frame-
work before the jobs can be executed. Today’s SQL-on-Hadoop engines assign a
single tuning setup to all jobs of a query. However, technically, the underlying
MapReduce framework allows each job to run with its own tuning setup.

Tuning advisers for MapReduce frameworks, on the other hand, have not
been designed to tune a DAG of jobs, such as a query plan compiled from SQL
queries. Rather, they produce one tuning setup per MapReduce job, as discussed
next.

2.2 Tuning Advisers for MapReduce Frameworks

In general, there are different strategies for obtaining a profile of the resource
requirements of a MapReduce job. For instance, tuning advisers consider MapRe-
duce JobCounters [15,16], real-time statistics [22], job execution time [3] or
phases execution time [4], instrumentation of the JVM [12,17], or perform log
analysis [19,20].

Inevitably, profiling adds an overhead to the execution time of a MapReduce
job. For instance, Starfish [12] instruments the JVM. When Starfish monitors
all of the JVM tasks, the authors report a profiling overhead of 50%. To speed
up tuning, Starfish can be configured to profile only a sample of the JVM tasks.
For instance, when profiling only 20% of the JVM tasks, the profiling overhead
drops to 10%. However, not sampling but profiling all tasks will lead to more
effective tuning setups.

Reusing job profiles is a way to reduce the cost of tuning. The authors of
PStorM [9] propose a form of sampling to reduce the tuning overhead. They

Don’t Tune Twice: Reusing Tuning Setups for SQL-on-Hadoop Queries 97

Table 1. Tuning advisers for MapReduce frameworks in comparison: Reported
speedup, supported Hadoop version, and the heuristics used to determine tuning setups.

Tuning System Speed up Hadoop Version Heuristics

MR-COF [17] up to 41% 0.20.2 Genetic Algorithm

Gunther [16] up to 33% 0.20.3 Genetic Algorithm

Starfish [12] up to 46% 0.20.2 Random Recursive Search

MRTuner [19] 1x 1.0.3 and 1.1.1 PTC-Search

Panacea [18] 1.6x up to 2.9x - Exhaustive Search

RFHOC [4] 2.11x-7.4x 1.0.4 Genetic Algorithm

GeneExpression [14] 46%-71% 1.2.1 Particle Swarm Optimization

MROnline [15] 30% 2.1.0 Hill Climbing

MEST [3] - 2.6.0 Genetic Algorithm

JellyFish [22] up to 74% YARN Hill Climbing

sample only a single map and reduce task. This produces a tiny-profile, which
they match against a history of profiles. After PStorM finds a match to its tiny-
profile, it feeds the Tuning Adviser (e.g., Starfish) with the match in order to
generate a tuning setup.

Internally, tuning advisers maintain a representation of the tuning parameters
and their domains, as well as a cost model to predict the execution time of a
given job. They also apply heuristics. It is beyond the scope of this paper to do
a more thorough survey, especially as we employ tuning advisers as black box
systems. However, in order to give an idea of both the complexity of the problem,
as well as the plethora of solutions proposed, we list prominent tuning advisers
in Table 1. The reported speedups range from 24% up to 7.4x, depending on the
workload. Note the richness of heuristics applied in the various tools.

3 The Code Signature Cache

At the heart of our approach is a data structure called the code signature cache.
It assigns tuning setups to MapReduce jobs. The tuning setups are produced
by a third-party tuning adviser. We use the code signature of a MapReduce job
as lookup key in the code signature cache. We introduce the notion of a code
signature shortly. We then discuss how the code signature cache manages tuning
setups.

3.1 Code Signatures

The SQL-on-Hadoop engine Hive compiles SQL queries to query plans. During
query compilation, the resulting MapReduce jobs are annotated with several
descriptive properties. The Hive Java API makes these annotations accessible:
Each job is annotated with a list of the physical query operators that are imple-
mented by this job. For each operator, a cardinality is given. For instance, a job
may execute two Filter -operations (i.e. selection in relational algebra), as well
as one aggregation. Each job is further annotated with the estimated size of its
input.

98 E. R. L. Filho et al.

Fig. 4. Execution of selected TPC-H queries. The jobs labeled 1’ share the same code
signature and apparently have similar resource profiles. This suggests that they would
benefit from the same tuning setup.

Example 2. TCP-H query 1 is compiled by Hive into two jobs. The first job
is annotated with the operators Filter, Select, and GroupBy. Each operator
has cardinality 2. The job is further annotated with the operators TableScan,
ReduceSink, and FileSink, each with a cardinality of 1. In the setup of our exper-
iments (see Sect. 4) the estimated input size is stated as 7.24GB. ��

Our assumption is that these declarative annotations are related to the
resource profile of these jobs. Further, we hypothesize that jobs with the same
annotations may be executed with the same tuning setups, even though they
differ in their Java code. In our experiments, we are able to confirm this. For
now, we argue on an intuitive level.

Example 3. Let us consider Fig. 4, where we have run selected TPC-H queries
with a default tuning setup. For each query, we execute the MapReduce jobs
according to the query plan. Evidently, the queries have different query plans,
and therefore a different number of jobs. However, visual inspection suggests
that certain jobs have similar resource profiles. Thus, we have highlighted these
jobs with a shaded background. Incidentally, these jobs also share the same code
signature. In Fig. 4, we have labeled jobs with a unique code signature with a
unique job identifier (e.g., jobs 2, 3, and 4), and we have labeled the jobs with
the same code signature as job 1’.

Thus, this suggests that tuning setups may be shared between jobs with the
same code signature: Once one instance of job 1’ has been profiled, we reuse its

Don’t Tune Twice: Reusing Tuning Setups for SQL-on-Hadoop Queries 99

tuning setup for the other jobs with the same signature. Thus, we simply skip
profiling these jobs. ��

In fact, similarity of resource consumption between common MapReduce
jobs (e.g., sort, grep, WordCount) has already been identified [13]. However, we
believe to be the first wort to model Hive jobs specifically to identify this simi-
larity. The main difference of our model is that it calculates the code-signature
of a given job at compiling time, instead of running or sampling it.

Since the MapReduce jobs are compiled from queries, the query plans of
syntactically different queries nevertheless often contain jobs with the same query
annotations. Formally, we capture these annotations by the code signature of a
job, as defined next.

3.2 Definitions

We now embark on the formal definitions. Let us define a query plan as a directed
acyclic graph G = (V,E), where the set of vertices V represents the MapReduce
jobs, and the set of edges E denotes the precedence between two jobs. More
precisely, a vertex (job) j ∈ V is a tuple of the form v = (Oj , Tj , Cj) in which
Oj is the set of physical query operators it executes (the set of physical query
operators is fixed, Oj = {o1, . . . , on}. For instance, Hive version 0.6.0 knows 16
different physical operators), Tj is the set of associated input tables, and Cj is
the set of configurations used to allocate resources. Each directed edge e ∈ E
is an ordered pair of vertices defined as e = (i, j) and connects the jobs i to j,
when the execution of i directly precedes j.

The query compiler assigns the implemented physical query operators, as
well as their cardinalities, to each node in the query plan. We thus consider the
annotation function ops : V × O → N

+
0 , where

ops(j, o) =
{
n job j implements operator o exactlyn times
0 otherwise.

We also consider the annotation function ord : V → N
+
0 , which returns the

order of magnitude of the expected input data for the given MapReduce job.
We are now in the position to define the code signature of a MapReduce job.

Definition 1. The code signature of a MapReduce job j in V is a (|O| + 1)-
tuple,

codesignature(j) = 〈ord(j), o1 : c1, . . . , oi : ci, . . . , on : cn〉
where ci = ops(j, oi), the cardinality of this operator. ��

In the following example, we omit operators from the code signature with a
cardinality of zero, for the sake of brevity.

Example 4. We continue with TPC-H query 1. The code signature of the first
job is

〈9, Tablescan : 1, Filter : 2, Select : 2, Groupby : 2, Reducesink : 1, Filesink : 1〉
The order of magnitude of the input size is 9. ��

100 E. R. L. Filho et al.

Fig. 5. Lookups in the code signature cache. For a cache miss, a third-party tuning
adviser is run to produce a tuning setup.

3.3 Cache Hits and Misses

Figure 5 visualizes the code signature cache. Initially, the cache is empty. A SQL
query is compiled by Hive into the query plan (Step 1). For each of the jobs
j1, . . . , jn in this query plan, we look up the tuning setup in the code signature
cache (Step 2). For each cache miss, we employ the Starfish tuning adviser for
profiling the job and generating a tuning setup (Step 3). The tuning setups,
denoted t1, . . . , tn, are stored in the code signature cache, with the code signa-
tures of the jobs as lookup keys (Step 4). As the cache becomes populated, we
observe more cache hits (Steps 5 and 6). In the best case, we have cache hits for
all jobs in the query plan. Then we can simply reuse the tuning setups of similar
jobs, and need not turn to Starfish for profiling at all.

4 Experiments

We have implemented the code signature cache in Java, and integrated it
with Apache Hive. We leverage tuning setups generated by the Starfish tuning
adviser [12]. Unless explicitly stated otherwise, we run Starfish with sampling
turned off (i.e., a sampling rate of 100%), to obtain high-quality tuning profiles.
Using Starfish 0.3.01, we are tied to Hadoop 0.20.2 and Hive 0.6.0. We point out
that the code signature cache is a generic data structure and not restricted to
any particular version of Hive or Hadoop.

We evaluate the TPC-H queries provided for Hive2. The data has been gen-
erated with a scale factor of 10. This amounts to 10.46 GB of data when stored
on disk.

Our experiments were executed in a cluster with three physical machines.
We isolate the master node on one machine, so that it does not influence with
the profiling of jobs.

In particular, each machine has a Intel(R) Core(TM) i3-3240 CPU @
3.40 GHz, 4 GB of RAM, 1 TB of disk. We used the collectl tool3 tool to measure
CPU, memory, network, and disk consumption. The reported execution times

1 The Starfish binary is available at https://www.cs.duke.edu/starfish/release.html.
2 See https://issues.apache.org/jira/browse/HIVE-600 for the verbatim SQL queries.
3 http://collectl.sourceforge.net.

https://www.cs.duke.edu/starfish/release.html
https://issues.apache.org/jira/browse/HIVE-600
http://collectl.sourceforge.net

Don’t Tune Twice: Reusing Tuning Setups for SQL-on-Hadoop Queries 101

are averaged over 10 runs. All our profiling runs are configured with the out-of-
the-box tuning setup that we refer to as “Hadoop Standard”. We first consider
the reuse of tuning setups at the level of single MapReduce jobs, and later at
the level of SQL queries.

4.1 Recycling Tuning Setups at the Job Level

We first study the distribution of code signatures in the query plans of TPC-H
queries. We then confirm that the code signature is indeed a viable basis for
recycling tuning setups among jobs.

Fig. 6. Recycling tuning setups among jobs with the same code signature.

Repeating Code Signatures. We have compiled the TPC-H queries into
query plans. Figure 6a shows the number of jobs with the same code signature.
There is one code signature that is actually shared by 16 jobs. In fact, this job
occurs in over 70% of all TPC-H queries. Moreover, for 75% of all MapReduce
jobs, there is at least one other job with the same code signature. Only a quarter
of all jobs has a unique code signature. Thus, there is a considerable share of
recurring code signatures.

Justifying the Recycling of Tuning Setups. We experimentally examine
our hypothesis, stating that we may recycle tuning setups for jobs with the same
code signature in Fig. 6b. We choose 5 representative MapReduce jobs that all
share the same code signature. When compiled into query plans, we obtain 20
MapReduce jobs. For each job j of those five jobs, we define two groups of jobs:

1. The five jobs that share the same code signature. For these jobs, we obtain
the 5 tuning setups from Starfish.

2. The remaining jobs within the same query plan. These have different code
signatures. Again, we obtain the tuning setups from Starfish.

We then execute job 1 of query 1 with all the tuning setups from groups (1)
and (2), shown in the first and second bar respectively. We repeat this procedure

102 E. R. L. Filho et al.

for the other jobs listed. In general, the jobs executing with the tuning setups
of group (1) show better performance than with the tuning setups of group (2).
The reported execution times are averaged over 10 runs. The error bars mark
the minimum and maximum execution times. There is noticeably less variance
in the execution times of group (1).

Overall, we see that for jobs with the same code signature, we may use the
tuning setups interchangeably. When jobs have different code signatures, this is
not necessarily the case. We have conducted this experiment for all recurring
code signatures, and we have made the same observations in the other cases as
well. For the sake of conciseness, we show only the case portrayed in Fig. 6b.

4.2 Recycling Tuning Setups at the Query Level

We now employ the code signature cache for profiling the TPC-H queries. We
first profile all 22 queries in the order specified by the benchmark and discuss
the benefits of applying the code signature cache. We then contrast this with
the total time spent on profiling if Starfish only samples the JVM tasks. We also
consider different execution orders in profiling the TPC-H queries with the code
signature cache, and show that the query order does not have as much impact
on profiling time as one might expect. Finally, we compare the execution time
of non-uniform tuning when we have the code signature cache available during
profiling and when we profile all jobs with Starfish.

Profiling the TPC-H Queries in Order. We profile the 22 TPC-H queries
in the order of the TPC-H benchmark specification. Figure 7a shows the profiling
time per query. In total, over ten thousand seconds are spent on profiling.

Fig. 7. The code signature cache reduces the profiling time by over 50% for TPC-H.

Don’t Tune Twice: Reusing Tuning Setups for SQL-on-Hadoop Queries 103

Even though the runs in Fig. 7a do not make use the code signature cache,
for the purpose of illustration, we visually distinguish two groups of jobs:

1. Jobs which cause a cache miss in the code signature cache,
2. and jobs which cause a cache hit in the code signature cache.

We can observe that for the first TPC-H query, all jobs would cause a cache
miss. Yet already for the second and third queries, we’d have cache hits, even
though the savings are minor. With the code signature cache becoming more
populated, we get more cache hits, and in some cases, some substantial savings
in the profiling time. For instance, for queries Q6 and Q14, we can recycle all
tuning setups from the cache. Thus, they require no profiling at all.

Let us now turn to the quantitative assessment. In Fig. 7b, we use the code
signature cache. Thus, we employ Starfish only for the jobs from group (1), and
recycle the tuning setups for the jobs from group (2). The shaded grey area
indicates the height of the original bars from Fig. 7a, for easier comparison.

Using the code signature cache reduces the total time spent on profiling from
over ten to below five thousand seconds. Overall, we can cut down the time spent
profiling by more than 50%.

Recycling vs. Starfish Sampling. Starfish has its own strategy for reducing
the profiling time, by sampling only a share of the JVM tasks. We compare this
strategy with our approach of using Starfish (without sampling) in combina-
tion with the code signature cache. In Fig. 8a, we compare the total accumu-
lated time spent on profiling for different modes of operation. The topmost line
denotes profiling with Starfish, where sampling is turned off. This summarizes
the experiment of Fig. 7a.

Fig. 8. Accumulated time for profiling.

When we run Starfish with a sampling rate of 20% (nevertheless executing
all tasks of the query), the total time spent on profiling is effectively reduced.
However, sampling increases the error rate in the resulting tuning profiles [12].

In the given chart, the profiling time is lowest for the combination of Starfish
and recycling from the code signature cache. Thus, we can profile in half of the
time, without having to make the sacrifices due to sampling.

104 E. R. L. Filho et al.

Varying the Query Order. The recycling rate of tuning setups in the code
signature cache, as reported in Fig. 7b, is influenced by the order in which the
TPC-H queries are profiled.

In Fig. 8b, we vary the order of queries. Moreover, we contrast the MapReduce
jobs produced by two different versions of Hive. On the horizontal axis, the charts
show the total number of MapReduce jobs compiled from the TPC-H queries
by the Hive query compiler. On the vertical axis, we denote the number of jobs
which had to be profiled by Starfish.

The tuning adviser Starfish, when used stand-alone, profiles all jobs. We fur-
ther compare Starfish in combination with the code signature cache. Regardless
whether the queries are encountered in order of their specification or in a ran-
domly generated order, for this query workload, we can recycle tuning setups
from the cache for about half of the jobs.

Thus, while the query compilers of Hive 0.6.0 and 0.13.1 produce a different
number of jobs, the benefits of recycling is independently of the submission order.

Comparing Execution Times. Finally, we execute the TPC-H queries with
non-uniform tuning. In one scenario, the tuning setups for all jobs have been
generated by Starfish. In a second scenario, we have recycled tuning setups from
the code signature cache.

In total, this yields a speedup (or rather, slowdown) of 0.93 for the TPC-H
queries. Thus, thanks to the code signature cache, we only spend about half the
profiling time, with a tolerable impact on query execution times.

This is a good result, considering that Starfish with sampling turned on
imposes a higher error rate (e.g., an error rate of 15% when sampling merely
10% of the JVM tasks [12]).

4.3 Discussion

In summary, we can experimentally support our hypothesis that jobs with the
same code signatures benefit from the same tuning setups. Therefore, we may
recycle tuning setups. By reducing the number of jobs to be profiled, we can
effectively cut down on the time required for physical-level performance tuning.

Even when Starfish profiles only a sample of 20% of the tasks in the JVM,
it does not reach this speedup (while the quality of tuning setups produced by
Starfish degrades). Thus, coupling a third-party tuning advisor with the code
signature cache is a winning strategy for reducing profiling time.

For some queries, we were even able to directly assign tuning setups to
MapReduce jobs, requiring no profiling at all. This is promising for process-
ing ad-hoc queries, which normally do not benefit from up-front tuning. In our
experiments with the TPC-H queries, we were able to cut down profiling time by
half. Moreover, the mechanism is quite robust when the order of TPC-H queries
varies.

Don’t Tune Twice: Reusing Tuning Setups for SQL-on-Hadoop Queries 105

5 Related Work

Performance tuning for database management systems is an evergreen in
database research, and a profitable consultancy business in industry. As stated
by Bonnet and Shasha [5]: “An under-appreciated tuning principle asserts start-
up costs are high; running costs are low.”

There are several projects aiming at reducing the profiling time in physical-
level tuning. In Sect. 2, we have already described how Starfish [12] samples the
JVM tasks executing MapReduce jobs. This reduces the profiling time, but at
the cost of tuning effectiveness.

The PStorM [9] system is closest to our work. As in our approach, PStorM
leverages Starfish as a third-party tuning adviser. Also similar to our idea of
caching tuning setups, similar jobs are mapped to existing tuning setups in a
profile store.

However, our notion of job similarity based on code signatures is much sim-
pler, since we rely on the declarative annotations that the Hive query compiler
adds to MapReduce jobs. In contrast, PStorM considers code similarity met-
rics, and compares control flow graphs (CFG) as well as feature vectors. PStorM
avoids computing a code signature (e.g., by hashing the source code or byte
code), because of the risk of mismatching source code with similar behaviour,
but different code primitives (e.g., for-loop vs. while-loop).

In particular, PStorM analyzes the byte code for static features and samples
map tasks for dynamic features to probe the profile store for matching profiles.
Thus, the matching accuracy depends on the size of the sample and the mainte-
nance of the features, which also incur an execution overhead. After all, creating,
maintaining and testing feature vectors is time consuming.

Our code signature cache is less complex, yet nevertheless highly effective:
The lookup key is based on declarative query operators. Thus, we operate on a
higher level of abstraction, instead of on the underlying code primitives.

Another related system is Kambatla [13], that monitors the execution of
a given job using a pre-defined number of intervals. It computes the average
consumption for each resource within each interval and matches it with similar
profiles. MrEtalon [6] is another related system that profiles a given job on a
sample of the data set. MrEtalon builds a similarity matrix to this profile and
compares it to the pre-established similarity matrices, that will generate the
recommended tuning setup. All in all, the drawback of these systems is that
they increase the time spent on the tuning activity due to the effort to sample
the number of MapReduce tasks or the data set to match similar jobs.

6 Conclusion

Automated tuning of SQL-on-Hadoop engines and MapReduce frameworks is
a highly topical research area. Tuning adviser tools profile MapReduce jobs to
produce suitable tuning setups. Naturally, profiling introduces an overhead. In
pay-as-you-go environments, profiling can drive up the operational costs con-
siderably. Therefore, ways for reducing the time spent on tuning are of great
interest to the research community and practitioners alike.

106 E. R. L. Filho et al.

Existing tuning advisers cut down the profiling time by sampling, either
monitoring only a share of the JVM tasks (as done by Starfish), by monitoring
only a specific sample of MapReduce jobs (as done by PStorM), or running the
jobs with a sample of its data set. Thus, they trade time for the effectiveness of
the resulting tuning setup.

In this paper, we reduce the profiling time by skipping profiling altogether for
MapReduce jobs where we can recycle the tuning setups from similar jobs. To
this end, we rely on our model of the code signature as a means for identifying
similar jobs, and to populate the code signature cache.

Our approach is appealingly simple, yet effective, and lets us cut back on
profiling by nearly 50% in case of the TPC-H queries, without major sacrifices to
the quality of tuning setups. Provided that we have successfully profiled enough
similar queries (or rather, their MapReduce jobs), we may even supply ad-hoc
queries with tuning setups, skipping up-front profiling altogether.

As future work, we plan to refine the code signature cache by integrating
the selectivity of query operators into the code signature. Moreover, we hope
to be able to use the code signature cache for application-level tuning as well:
By caching power hints for MapReduce jobs, we might be able to automatically
suggest performance hints for similar jobs. This could be a great relief to the
data analyst who has no prior background in database administration.

Acknowledgments. We thank Herodotos Herodotou for all the support with Starfish.
This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal
de Nı́vel Superior - Brasil (CAPES) - Finance Code 001.

References

1. Aken, D.V., Pavlo, A., Gordon, G.J.: Automatic database management system
tuning through large-scale machine learning. In: SIGMOD (2017)

2. Armbrust, M., et al.: Spark SQL: relational data processing in spark. In: SIGMOD
(2015)

3. Bei, Z., Yu, Z., Liu, Q., Xu, C., Feng, S., Song, S.: MEST: a model-driven efficient
searching approach for mapreduce self-tuning. IEEE Access 5, 3580–3593 (2017)

4. Bei, Z., et al.: RFHOC: a random-forest approach to auto-tuning hadoop’s config-
uration. IEEE Trans. Parallel Distrib. Syst. 27(5), 1470–1483 (2016)

5. Bonnet, P., Shasha, D.E.: Application-level tuning. In: Liu, L., Özsu, M.T. (eds.)
Encyclopedia of Database Systems. Springer, Boston (2009). https://doi.org/10.
1007/978-0-387-39940-9

6. Cai, L., Qi, Y., Li, J.: A recommendation-based parameter tuning approach for
hadoop. In: International Symposium on Cloud and Service Computing, SC2 2017
(2018)

7. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
In: OSDI (2004)

8. Duan, S., Thummala, V., Babu, S.: Tuning database configuration parameters with
iTuned. ReCALL 2(1), 1246–1257 (2009)

9. Ead, M.: PStorM: profile storage and matching for feedback-based tuning of mapre-
duce jobs. In: EDBT (2014)

10. Filho, E.R.L., de Melo, R.S., de Almeida, E.C.: A non-uniform tuning method for
SQL-on-hadoop systems. In: AMW (2019)

https://doi.org/10.1007/978-0-387-39940-9
https://doi.org/10.1007/978-0-387-39940-9

Don’t Tune Twice: Reusing Tuning Setups for SQL-on-Hadoop Queries 107

11. Floratou, A., Minhas, U.F., Özcan, F.: SQL-on-hadoop: full circle back to shared-
nothing database architectures. PVLDB 7, 1295–1306 (2014)

12. Herodotou, H., et al.: Starfish: a self-tuning system for big data analytics. In: CIDR
(2011)

13. Kambatla, K., Pathak, A., Pucha, H.: Towards optimizing hadoop provisioning in
the cloud. Design (2009)

14. Khan, M., Huang, Z., Li, M., Taylor, G.A., Khan, M.: Optimizing hadoop parame-
ter settings with gene expression programming guided PSO. Concurrency Comput.
Pract. Expereience 29, e3786 (2017)

15. Li, M., et al.: MRONLINE: mapreduce online performance tuning. In: HPDC
(2014)

16. Liao, G., Datta, K., Willke, T.L.: Gunther: search-based auto-tuning of MapRe-
duce. In: Wolf, F., Mohr, B., an Mey, D. (eds.) Euro-Par 2013. LNCS, vol. 8097, pp.
406–419. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40047-
6 42

17. Liu, C., Zeng, D., Yao, H., Hu, C., Yan, X., Fan, Y.: MR-COF: a genetic mapreduce
configuration optimization framework. In: Wang, G., Zomaya, A., Perez, G.M., Li,
K. (eds.) ICA3PP 2015. LNCS, vol. 9531, pp. 344–357. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-27140-8 24

18. Liu, J., Ravi, N., Chakradhar, S., Kandemir, M.: Panacea: towards holistic opti-
mization of mapreduce applications. In: CHO (2012)

19. Shi, J., Zou, J., Lu, J., Cao, Z., Li, S., Wang, C.: MRTuner: A toolkit to enable
holistic optimization for mapreduce jobs. PVLDB 7, 1319–1330 (2014)

20. The Apache Software Fundation: Rumen: a tool to extract job characterization
data form job tracker logs (2013). https://hadoop.apache.org/docs/r1.2.1/rumen.
html

21. Thusoo, A., et al.: Hive - a petabyte scale data warehouse using hadoop. In: ICDE
(2010)

22. Ding, X., Liu, Y., Qian, D., et al.: JellyFish: online performance tuning with adap-
tive configuration and elastic container in hadoop YARN. In: ICPADS (2016)

23. Chen, Y., Alspaugh, S., Katz, R.: Interactive query processing in big data systems:
a cross industry study of mapreduce workloads. Technical report 12, University of
California, Berkeley, August 2012

https://doi.org/10.1007/978-3-642-40047-6_42
https://doi.org/10.1007/978-3-642-40047-6_42
https://doi.org/10.1007/978-3-319-27140-8_24
https://hadoop.apache.org/docs/r1.2.1/rumen.html
https://hadoop.apache.org/docs/r1.2.1/rumen.html

A Graph Model for Taxi Ride Sharing
Supported by Graph Databases

Dietrich Steinmetz1, Felix Merz1, Hui Ma2, and Sven Hartmann1(B)

1 Clausthal University of Technology, Clausthal-Zellerfeld, Germany
{dietrich.steinmetz,felix.merz,sven.hartmann}@tu-clausthal.de

2 Victoria University of Wellington, Wellington, New Zealand
hui.ma@ecs.vuw.ac.nz

Abstract. The emergence of more complex, data-intensive applications
motivates a high demand of effective data modeling for graph databases
to support efficient query answering. In this paper, we develop an intu-
itive graph data model for dynamic taxi ride sharing. We argue that
our proposed data model meets the data needs imposed by three funda-
mental tasks associated with taxi ride sharing. An experiment consisting
of a taxi ride sharing simulation with real-world data demonstrates the
effectiveness of our modelling approach.

Keywords: Graph database · Data modelling · Ride sharing

1 Introduction

With the increasing number of complex, data-intensive problems emerged, not
only are data sets getting bigger, but also data is getting more and more con-
nected. For example, cyber-traffic analysis is a domain where the size and inter-
connectivity of data is massively increasing due to the still rising usage of the
Internet [6]. A typical example of such complex, data-intensive problems is the
Dynamic Taxi Ridesharing Problem (DTRP) [8]. This problem aims to find taxi
routes and allocate passengers to taxis with the objectives of maximizing the
number of serviced passengers and minimizing the operating cost and passenger
inconvenience [1]. Due to the current rise of companies like Uber and Lyft and
the possible utilization in autonomous driving it is quite popular. The DTRP
is NP-hard [20], so solving it is computationally challenging. This problem also
attracts attention because historic taxi trip records, e.g., from New York City
(NYC) are openly available, which can be used to generate problem instances
for experiments. Besides NYC [8,16,19] data from other cities like Shanghai and
Beijing are frequently used for research [4,5,24].

To efficiently answer queries against large interconnected datasets, data
should be organized carefully so that it does not become a bottleneck for appli-
cations. In particular, we need not only effectively store data but also consider
the relationships among data and how this affects the performance of queries.

c© Springer Nature Switzerland AG 2019
A. H. F. Laender et al. (Eds.): ER 2019, LNCS 11788, pp. 108–116, 2019.
https://doi.org/10.1007/978-3-030-33223-5_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33223-5_10&domain=pdf
https://doi.org/10.1007/978-3-030-33223-5_10

A Graph Model for Taxi Ride Sharing 109

While relational databases are still the most common database technology for
data-intensive storage and retrieval applications, they are not very efficient for
queries of interconnected data due to the expensive joins [10]. To efficiently
answer structural queries for complex, data-intensive problems, graph databases
are a better choice since they provide native support not only for data but also
for relationships between data [18,23]. Graph databases consist of nodes and
relationships where nodes represent objects and relationships represent relations
between objects [17, Sect. 1]. With them the retrieval of related objects or entire
paths is often surprisingly efficient. This makes graph databases attractive for
the DTRP where a lot of path calculations are needed to compute solutions.

For interconnected data there are many ways to store them in a graph
database. To make best use of the capabilities of graph databases, data should
be organized in a way that important queries can be performed efficiently. How-
ever, since the appearance of graph databases in the 1980s there has been far
less research on conceptual modeling for them than for the relational databases
[2]. The intuitive way of data modeling is to identify relevant concepts in the
application domain and to abstract them as nodes and relationships [17, Sect. 3].
The following objectives will be achieved:

– To provide proper support of the fundamental tasks (e.g., finding taxi routes,
allocating travelers to taxis) of the DTRP by a graph database. Based on the
requirements we propose an intuitive model for the graph database.

– To evaluate our modeling approach we conduct a theoretical analysis of the
data needs of the DTRP that are met by our proposed graph model as well
as an experiment that explores the travel request satisfaction rate for differ-
ent numbers of taxis. For that we model real-world datasets of the DTRP
according to our proposed approach and store them in a graph database. For
our prototype implementation, we use Neo4j to store and retrieve the data
of the DTRP since it is currently the most popular graph database system
[18,21], and road network data can be easily imported from Open Street Map
(OSM) [22].

Organization. This paper is organized as follows. In Sect. 2 we briefly discuss
related work and outline the DTRP and its subproblems (allocating travelers to
taxis, sequencing the taxi schedule) to understand the requirements. In Sect. 3
we propose an intuitive graph model for the DTRP. In Sect. 4 we report on
the experiment that we have conducted. In Sect. 5 we give conclusions and an
outlook on future work.

2 Background

2.1 Data Modeling for Graph Databases

A graph model is a data model for graph databases and refers here to the
labeled property graph model presented in [17, Sect. 3]. Data modeling for graph

110 D. Steinmetz et al.

databases has not been researched as thoroughly as for relational databases. Pri-
marily an intuitive modeling approach is chosen, because the data often already
exists in a graph-like structure in cases where a graph database is used. Neo4j
lists multiple examples in their GraphGists list [12]. Some more sophisticated
examples for the most common use cases of Neo4j are given at [11]. Intuitive
graph modeling is also used in the literature in areas like cyber-traffic analysis
[6], healthcare [14] and biology [3,7].

2.2 Traveler-Taxi Allocation and Taxi Schedule Sequencing

Our work is motivated by the DTRP, cf. [8,9,20]. In this problem, a set of taxis is
running in a road network to serve customers, that is, to pick them up from their
location and to drop them off at another location. Customers can share a taxi to
save costs. Taxis have a limited seat capacity. To a certain extend taxis can make
detours but taxi drivers need to account for the interests of other passengers.
The objective of the DTRP is to achieve a high travel request satisfaction rate
while minimizing the total travel distance (or cost) of taxis. The DTRP is an
online problem since travel requests are coming on the fly and taxis need to be
scheduled in real-time. The information on travel requests is unknown until the
request is received.

NP-hard problems like the DTRP are particularly challenging, since problems
in this class are suspected to have no polynomial-time algorithms. Therefore,
heuristics are widely used to ensure scalability. The DTRP is a scheduling prob-
lem where taxis are resources and travel requests are tasks. Scheduling problems
are very popular in many application domains, and often tackled by decomposing
them into an allocation problem and a sequencing problem [15, Chap. 1].

Therefore, the DTRP is often treated as a composition of two subproblems:
the traveler-taxi allocation problem and the taxi schedule sequencing problem.
When a travel request is received, the goal is to allocate it to a taxi that is close
enough to pick up the traveler while satisfying the constraints of the request as
well as the constraints due to the seat capacity of the taxi and the requirements
of other travelers who are already on board of the taxi. Once a taxi has a
new request allocated to it, the schedule of this taxi has to be reorganized to
account for the potential detour and waiting time. Traveler-taxi allocation and
taxi schedule sequencing are not independent subproblems, since finding the best
candidate taxi for a request depends on how that request affects the taxi route.

2.3 Requirements for Our Graph Model

To solve the DTRP efficiently, we aim to design a graph model for it. A review
of the state-of-the-art literature on the DTRP resulted in the following set of
important tasks that should be supported by our graph model, cf. [8,9,20]:

Task 1 Retrieve the minimum travel time between the pickup and dropoff location
for a specified travel request.

A Graph Model for Taxi Ride Sharing 111

Task 2 Retrieve suitable taxis that can reach the pickup location of a request in
a specified timeframe.

Task 3 Retrieve the remaining capacity and the remaining slack time at a spec-
ified point in the taxi schedule.

These tasks are fundamental for the traveler-taxi allocation and the taxi
schedule sequencing. The minimum travel time of a request is the basis of cal-
culation of the maximum detour time for this request. Moreover, based on the
time of a request, the minimum travel time and the maximum detour time it is
possible to compute the latest arrival time of a request. This is crucial in order to
decide for a candidate taxi whether it can arrive in time at the pickup location
of a travel request. Finding suitable taxis for a request is the central aim for
the traveler-taxi allocation. The maximum slack time of involved trips and the
remaining capacity of a taxi are used when checking if a request can be inserted
into a taxi schedule. Among the candidate taxis the best one will be selected,
i.e., the one that causes the least increase of the overall travel distance or cost.

3 An Intuitive Graph Model for the DTRP

Based on the requirements discussed above we will now design a graph model
for the DTRP that can meet the data needs of the three important tasks.

For the DTRP the following real-world entities are relevant: travel requests,
taxis and a road network. We regard a road network as a directed graph
G = (V,E) where V is a set of road points and E a set of road segments. The
road points are used to model intersections, terminal nodes and other points of
interest, in particular potential pickup and dropoff locations of passengers. The
road segments are used to model roads or part of roads. In our graph model,
road points v ∈ V are represented by nodes with label RoadPoint. For each
road point we store the properties latitude and longitude. Road segments e ∈ E
are represented by relationships with type road segment between road points.
For each road segment we store the property travel time.

Travel requests r ∈ R are represented as nodes with label TravelRequest.
Requests come from potential passengers with a desired pickup and dropoff
location. For each request we store the properties datetime, passenger count and
maximum slack time. Furthermore, each request is linked to two road points
through two relationships with types is picked up at and is dropped off at
for the pickup and dropoff location, respectively.

Taxis h ∈ T are represented by nodes with the label TaxiShift. We regard a
taxi as a shift of a taxi driver.1 For each taxi we store the properties passenger
capacity, shift start and shift end. We model the schedule of a taxi h as a set
Sh of taxi states. Taxi states σh ∈ Sh are represented by nodes with label
TaxiState. Each taxi state is linked to a road point through a relationship with
type is located at. The next taxi state nextSh

(σh) ∈ Sh and the previous
taxi state prevSh

(σh) ∈ Sh are linked through relationships with type is before.

1 For simplicity, we assume in this work that each taxi has just one taxi shift.

112 D. Steinmetz et al.

Furthermore, there are relationships with type is scheduled by between a taxi
shift h and each of its taxi states σh ∈ Sh.

We regard a taxi state σh as a stay of taxi h at the road point vσh
. For each

taxi state we store the properties number of passengers nσh
, period start ts,σh

and period end te,σh
. They need to satisfy the constraint that the period end of

a taxi state differs from the period start of the next taxi state by the travel time
between their respective road points. Furthermore, for every taxi state we store
a property sσh

whether a pickup or dropoff is happening. A taxi stop is a taxi
state with a pickup or dropoff of some passenger. This causes a certain delay of
γ called the change time.2 Taxi stops have higher priority than other taxi states
since they have to be passed while other taxi states connecting the stops can be
replaced by different routes. To optionally skip the states there is an additional
relationship with type is before stop at each stop connecting it to the next
stop nexts,Sh

(σh) and previous stop prevs,Sh
(σh) if existent.

Trips are represented by nodes with label Trip. For each trip we store the
property remaining slack time. Once a request is accepted, it results in a trip of
the traveler. Each trip is linked to a request through a relationship with type
is initialized by. We regard the trip schedule as a subset of the schedule of
its assigned taxi. Hence, there are relationships with type is scheduled by
between a trip and each taxi state that it shares with its assigned taxi.

After the definition of the nodes and relationships we can now assemble them
in our intuitive graph model for the DTRP shown in Fig. 1.3

Proposition 1. Using our intuitive graph model in Fig. 1, it is possible to meet
all data needs of Tasks 1, 2 and 3

Sketch of Proof. We will demonstrate that based on our intuitive graph model
it is possible to solve the three important tasks.

For Task 1 we want to retrieve minimum travel time between the pickup and
dropoff location of a request. To compute the minimum travel time between two
road points v1, v2 ∈ V we find the path P with the lowest total travel time ω(P)
in the road network. We refer to this path P as the shortest path4 p(v1, v2). It can
be computed using a shortest path algorithm like Dijkstra’s or the A∗-heuristic.

For Task 2 we want to retrieve suitable taxis that are close to the pickup
location of a request. We can use Dijkstra’s algorithm with a maximum path
weight to find the schedule states close to the pickup location of the request.

For Task 3 we want to retrieve the remaining capacity and the remaining
slack time of a taxi in a given taxi state. The remaining seat capacity for a taxi
2 This change time is not considered in some publications on the DTRP even though it

has severe implications on ride sharing efficiency, since picking up passengers causes
a schedule delay even if the pickup location is on the taxi route.

3 For a better overview, we show the graph model with its nodes and relationships,
but do not visualize the properties stored for nodes and relationships.

4 In the literature this term is often used based on travel distance. Road segments,
however, can have different travel speeds which leads to the invalidity of the trian-
gle inequality on the road network. The path with the lowest total travel distance
between two locations might not necessarily be the shortest path between them.

A Graph Model for Taxi Ride Sharing 113

Travel
Request

Trip

Road
Point

Taxi
State

Taxi
Shift

is initialized by

is picked up at

is dropped off at

road segment

is located at

is scheduled by

is scheduled by

is before

is before stop

Fig. 1. Our intuitive graph model for the DTRP.

state can be computed from the total capacity (stored as a property of the taxi
node) and the current passenger number (stored as an aggregated property of the
taxi state node). The remaining slack time can be computed by inspecting the
current taxi state and all future taxi stops, and finding the minimal value of the
remaining slack times of the trips connected to them (stored as an aggregated
property of the trip node).

4 Experimental Evaluation

To evaluate our modeling approach we have implemented our proposed graph
model using Neo4j. In addition, we adapted the taxi ride sharing algorithms
from [8,9,20] and implemented them as a plugin for Neo4j. Our experiment
was based on real-world data of NYC utilizing OSM data and historic taxi trip
data from NYC [13]. The imported road network consisted of 605,828 road points
and 694,102 road segments, increasing to 927,621 road points and 1,931,503 road
segments after data preprocessing, which included data cleaning and integration.

For our experiment we used data for the week from January 4 to 10, 2016
involving 319,081 travel requests after preprocessing 328,643 taxi trips. After
the experiment the results were verified against our proposed graph model and
the time and seat capacity constraints, to check for the correctness of the imple-
mented algorithms.

Figure 2 shows the satisfaction rate of travel requests given by the number of
trips that are shared or completed without sharing and the travel requests that
are rejected on January 4, 2016 for 250, 500 and 1000 taxis. We observe that
significantly less travel requests can be handled when using 250 taxis compared
to 500 taxis, while 1000 taxis yield no significant improvement compared to 500
taxis.

114 D. Steinmetz et al.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 230

2,0
00

4,0
00

Hour of day

N
um

be
r
of

re
qu

es
ts

250 taxisshared trips
solo trips
rejected requests

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 230

2,0
00

4,0
00

Hour of day

N
um

be
r
of

re
qu

es
ts

500 taxisshared trips
solo trips
rejected requests

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 230

2,0
00

4,0
00

Hour of day

N
um

be
r
of

re
qu

es
ts

1000 taxisshared trips
solo trips
rejected requests

Fig. 2. Plots of the cumulative number of shared trips, solo trips and rejected requests
for January 4, 2016 with 250, 500 and 1000 taxis, respectively.

5 Conclusion and Future Work

In this paper, we have proposed a labeled graph property model for the DTRP.
Based on a review of state-of-the-art solutions for the DTRP we identified funda-
mental tasks for solving the problem and developed an intuitive graph model for
the DTRP. We then verified that our proposed graph model has the capability
to satisfy the requirements imposed by the fundamental tasks. In addition, we
provided a prototype impelmentation of our graph data model and the respec-
tive taxi ride sharing algorithms, which we then utilised for a taxi ride sharing
simulation with real-world data.

A Graph Model for Taxi Ride Sharing 115

For the future, we plan to conduct further experiments to explore the per-
formance and scalability of our approach. Moreover, we will investigate possible
design alternatives for our intuitive graph model in order to further improve the
support provided by the graph database backend for dynamic taxi ride sharing.

References

1. Agatz, N., Erera, A., Savelsbergh, M., Wang, X.: Optimization for dynamic ride-
sharing: a review. Eur. J. Oper. Res. 223, 295–303 (2012)

2. Angles, R., Gutierrez, C.: Survey of graph database models. ACM Comp. Surv.
40, 1 (2008)

3. Graves, M., Bergeman, E.R., Lawrence, C.B.: Graph database systems. IEEE Eng.
Med. Biol. Mag. 14, 737–745 (1995)

4. Hou, Y., et al.: Towards efficient vacant taxis cruising guidance. In: IEEE GLOBE-
COM, pp. 54–59 (2013)

5. Huang, Y., Bastani, F., Jin, R., Wang, X.S.: Large scale real-time ridesharing with
service guarantee on road networks. PVLDB 7(14), 2017–2028 (2014)

6. Joslyn, C., Choudhury, S., Haglin, D., Howe, B., Nickless, B., Olsen, B.: Massive
scale cyber traffic analysis: a driver for graph database research. In: International
Workshop Graph Data Management Experiences and Systems, p. 3. ACM (2013)

7. Lysenko, A., Roznovăţ, I.A., Saqi, M., Mazein, A., Rawlings, C.J., Auffray, C.:
Representing and querying disease networks using graph databases. BioData Min.
9(1), 23 (2016)

8. Ma, S., Zheng, Y., Wolfson, O.: T-share: a large-scale dynamic taxi ridesharing
service. In: IEEE ICDE, pp. 410–421 (2013)

9. Ma, S., Zheng, Y., Wolfson, O., et al.: Real-time city-scale taxi ridesharing. TKDE
27, 1782–1795 (2015)

10. Mishra, P., Eich, M.H.: Join processing in relational databases. ACM Comp. Surv.
24, 63–113 (1992)

11. Neo4j: Graph database use cases. https://neo4j.com/use-cases/
12. Neo4j: Neo4j GraphGists. https://neo4j.com/graphgists/
13. NYC Taxi & limousine commission: trip record data. http://www.nyc.gov/html/

tlc/html/about/triprecorddata.shtml
14. Park, Y., Shankar, M., Park, B.H., Ghosh, J.: Graph databases for large-scale

healthcare systems. In: IEEE ICDE Workshops, pp. 12–19 (2014)
15. Pinedo, M.L.: Scheduling: Theory, Algorithms, and Systems. Springer, Heidelberg

(2016)
16. Qian, X., Zhang, W., Ukkusuri, S.V., Yang, C.: Optimal assignment and incentive

design in the taxi group ride problem. Trans. Res. B: Meth. 103, 208–226 (2017)
17. Robinson, I., Webber, J., Eifrem, E.: Graph Databases. O’Reilly, Sebastopol (2013)
18. Sahu, S., Mhedhbi, A., Salihoglu, S., Lin, J., Özsu, M.T.: The ubiquity of large

graphs and surprising challenges of graph processing. PVLDB 11, 420–431 (2017)
19. Santi, P., Resta, G., Szell, M., Sobolevsky, S., Strogatz, S.H., Ratti, C.: Quantifying

the benefits of vehicle pooling with shareability networks. Proc. Nat. Acad. Sci.
111, 13290–13294 (2014)

20. Santos, D.O., Xavier, E.C.: Dynamic taxi and ridesharing: A framework and heuris-
tics for the optimization problem. In: IJCAI, vol. 13, pp. 2885–2891 (2013)

21. solidIT: DB-engines ranking - popularity ranking of graph DBMS. https://db-
engines.com/en/ranking/graph+dbms

https://neo4j.com/use-cases/
https://neo4j.com/graphgists/
http://www.nyc.gov/html/tlc/html/about/triprecorddata.shtml
http://www.nyc.gov/html/tlc/html/about/triprecorddata.shtml
https://db-engines.com/en/ranking/graph+dbms
https://db-engines.com/en/ranking/graph+dbms

116 D. Steinmetz et al.

22. Steinmetz, D., Dyballa, D., Ma, H., Hartmann, S.: Using a conceptual model to
transform road networks from OpenStreetMap to a graph database. In: Trujillo,
J.C., et al. (eds.) ER 2018. LNCS, vol. 11157, pp. 301–315. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-00847-5 22

23. Vicknair, C., Macias, M., Zhao, Z., Nan, X., Chen, Y., Wilkins, D.: A comparison
of a graph database and a relational database: a data provenance perspective. In:
ACM Southeast Conference, p. 42 (2010)

24. Yuan, N.J., Zheng, Y., Zhang, L., Xie, X.: T-Finder: a recommender system for
finding passengers and vacant taxis. IEEE TKDE 25, 2390–2403 (2013)

https://doi.org/10.1007/978-3-030-00847-5_22

Process Modeling and Analysis

Comprehensive Process Drift Detection
with Visual Analytics

Anton Yeshchenko1(B) , Claudio Di Ciccio1 , Jan Mendling1 ,
and Artem Polyvyanyy2

1 Vienna University of Economics and Business, Vienna, Austria
{anton.yeshchenko,claudio.di.ciccio,jan.mendling}@wu.ac.at

2 The University of Melbourne, Parkville, VIC 3010, Australia
artem.polyvyanyy@unimelb.edu.au

Abstract. Recent research has introduced ideas from concept drift into
process mining to enable the analysis of changes in business processes
over time. This stream of research, however, has not yet addressed the
challenges of drift categorization, drilling-down, and quantification. In
this paper, we propose a novel technique for managing process drifts,
called Visual Drift Detection (VDD), which fulfills these requirements.
The technique starts by clustering declarative process constraints dis-
covered from recorded logs of executed business processes based on their
similarity and then applies change point detection on the identified clus-
ters to detect drifts. VDD complements these features with detailed visu-
alizations and explanations of drifts. Our evaluation, both on synthetic
and real-world logs, demonstrates all the aforementioned capabilities of
the technique.

Keywords: Process mining · Process drifts · Declarative process
models

1 Introduction

The availability of data has extended conceptual modeling as a research field of
manually created models with automatic techniques for generating models from
data. Process mining is one of these recent extensions that is concerned with
providing transparency of how the businesses operate based on real-world event
data. Process discovery algorithms have proven to be highly effective in generat-
ing process models from data of stable behavior [1]. However, many processes are
not stable but are subject to various forms of change over time. In data mining,
such change over time is called a drift. A drift is a concept that process mining
has addressed only to a limited extent so far.

Recent works have focused on integrating ideas from research on concept
drift from data mining into process mining [7,12,18,22,26]. The arguably most
advanced technique is proposed in [14], where Maaradji et al. present a frame-
work for detecting process drifts based on tracking behavioral relations over time
c© Springer Nature Switzerland AG 2019
A. H. F. Laender et al. (Eds.): ER 2019, LNCS 11788, pp. 119–135, 2019.
https://doi.org/10.1007/978-3-030-33223-5_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33223-5_11&domain=pdf
http://orcid.org/0000-0002-5346-8358
http://orcid.org/0000-0001-5570-0475
http://orcid.org/0000-0002-7260-524X
http://orcid.org/0000-0002-7672-1643
https://doi.org/10.1007/978-3-030-33223-5_11

120 A. Yeshchenko et al.

using statistical tests. A strength of this approach is its statistical soundness and
ability to identify a rich set of drifts, which makes it a suitable tool for verifying
if an intervention at a known point in time has resulted in an assumed change
of behavior. However, in practice, the existence of different types of drifts in
a business process is not known beforehand, and the analysts are interested in
distinguishing what has and what has not changed over time. This need calls for
a more fine-granular analysis.

In this paper, we present a novel technique for process drift detection, called
Visual Drift Detection (VDD), which addresses the identified research gap. More
specifically, our technique facilitates the visual interpretation [25] of process
drifts founded in the formal rigor of temporal logic of Declare constraints [2,10]
and time series analysis [6]. Key strengths of our technique are clustering, i.e.,
grouping, of declarative behavioral constraints that exhibit similar trends of
changes over time and automatic detection of changes, i.e., drift points. These
features allow us to detect and explain drifts that would otherwise sneak unde-
tected by other techniques. The paper presents an evaluation that demostrates
these capabilities.

The remainder of the paper is structured as follows. Section 2 illustrates the
problem of process drift detection and formulates five requirements for its anal-
ysis. Then, Sect. 3 states the preliminaries. Section 4 presents our drift detection
technique, while Sect. 5 evaluates the technique using synthetic and real-world
benchmark data. Finally, Sect. 6 summarizes the results and concludes with an
outlook on future research.

2 Process Drift Analysis

This section discusses and motivates the problem of process drift analysis
(Sect. 2.1), and specifies requirements for its solution (Sect. 2.2).

2.1 Motivating Example

Various logs of real-world business process executions have been recently made
available for research. As an example, consider the log of the Italian process for
handling the collection of road ticket fines [16]. This process starts with a ticket
being issued. In the best case, which covers a third of all the cases, the fine is
directly paid. In roughly half of the other cases, a fine notification is sent to the
accused driver. Some of these drivers appeal, while some ignore the notice, such
that a considerable share of cases sees a penalty being added. Partially, these
are further appealed, paid or eventually sent for credit collection. The authority
is now interested in this question: Has the process of handling road ticket fines,
specifically for the accused drivers, changed over time, and which parts of the
process now work differently than in the past?

The described problem is typical for many domains. The objective is to
explain the change of the system’s behavior in a dynamically changing non-
stationary environment based on some hidden context [11]. In this setting, a

Comprehensive Process Drift Detection with Visual Analytics 121

Fig. 1. Different types of drifts, cf. Fig. 2 in [11]; note that an outlier is not a drift.

concept drift is a change of the conditional distribution of the output given a
specific input. Research in data mining and machine learning distinguishes tech-
niques for uncovering drifts in an online or offline manner [23], with applications
in prediction and fraud detection.

In process mining, process drift is a notion for analyzing changes of business
processes over time. Classical process mining techniques have implicitly assumed
that logs are not sensitive to time in terms of systematic change [1]. Sampling-
based techniques explicitly build on this assumption for generating a process
model with a subset of the event log data [5]. A significant challenge for adopting
concept drift for process mining is to represent behavior in a time-dependent
way. The approach reported in [14] uses causal dependencies and tracks them
over time windows. The specific challenge is to not only spot a drift but also to
classify it. Figure 1 shows established drift classes from data mining. Next, we
use the example of the road ticket fines process to illustrate the potential causes
of drifts.

A sudden drift is typically caused by an intervention. A new law could elim-
inate the right of an accused driver to lodge a second appeal. As a result, we
would not see second appeal events in our log in the future. An incremental
drift might result from a stepwise introduction of self-service terminals for pay-
ing fines at toll stations. A gradual drift may yield from a new policy to show
less indulgence with drivers who marginally violated speeding rules. Finally, a
reoccurring drift might result from specific measures taken in the holiday season
from June to August, like flagging down drivers directly on the highway to have
them pay right on the spot. Existing process mining techniques support these
types of drifts partially.

The following are four cases from the Italian road ticket fines log1:

1. 10 Jan. 2011: 〈Lodging ticket, Appeal, Appeal, Payment, Close ticket〉
2. 15 Jan. 2011: 〈Lodging ticket, Appeal, Appeal, No payment, Close ticket〉
3. 04 Feb. 2011: 〈Lodging ticket, Appeal, Payment, Close ticket〉
4. 06 Feb. 2011: 〈Lodging ticket, Appeal, No payment, Close ticket〉
We observe a sudden drift here due to the introduction of a new law. After 4
Feb. 2011, it is not possible to lodge a second appeal. Therefore, in formal terms,
from case 3 onwards, the behavioral rule that multiple appeals occur before the
ticket closes abruptly decreases in confidence. In Declare, we denote this rule
as AlternateResponse(Appeal, Close ticket).

1 https://doi.org/10.1007/s00607-015-0441-1.

https://doi.org/10.1007/s00607-015-0441-1

122 A. Yeshchenko et al.

2.2 Requirements

Based on the analysis of process change scenarios from the literature, like the
road ticket fines discussed previously, we identified five requirements for process
drift analysis:

R1. Identify drifts: The points at which a business process undergoes drifts
should be identified based on precise criteria;

R2. Categorize drifts: Process drifts should be according to their types;
R3. Drill down and roll up analysis: Process drifts should be characterized

at different levels of granularity, e.g., drifts that concern the entire process
or only its parts;

R4. Quantitative analysis: Process drifts should be associated with a degree
of change, a measure that quantifies to which extent the drift entails a
change in the process;

R5. Qualitative analysis: Process drifts should convey changes in a business
process to process analysts effectively.

Table 1. Process drift detection in process mining.

Approach R1 R2 R3 R4 R5
ProDrift [14,18] + +/- - - -
TPCDD [26] + - - - -
Process trees [17] + - - - +
Performance spectra [7] - - + - +
Comparative Trc. Clustering [12] - - - + +
Graph metrics on Proc.Graphs [22] + - - + +
VDD approach (this paper) + + + + +

Table 1 provides an
overview of the state-
of-the-art methods to
process drift analy-
sis with the reference
to the requirements.
Note that collectively
these methods imple-
ment all the require-
ments, whereas each individual methods addresses only a subset thereof.

Approaches like ProDrift [14] and Graph Metrics on Process Graphs [22] put
an emphasis on requirement R1. The evaluation of ProDrift in [14] shows that two
types of drifts are found with high accuracy (sudden and gradual drifts), hence
partly addressing requirement R2; note that the authors report high sensitivity
of the technique to the choice of the method parameters. The approach relies
on the automated detection of changes in business process executions, which are
analyzed based on causal dependency relations studied in process mining [24].
The Tsinghua Process Concept Drift Detection approach (TPCDD) [26] uses
two kinds of behavioral relationships (direct succession and weak order). The
approach computes those relations on every trace, so as to later identify the
change points through their merge and clustering. The sole type of drift that
TPCDD detects is the sudden drift.

The other approaches emphasize requirement R5. The approach based on
Process Trees [17] uses ProDrift for drift detection, and aims at explaining how
sudden drifts influence behavior of the process. To this end, process trees for pre-
driftand post-drift sections of the log are built and used to explain the change.

Comprehensive Process Drift Detection with Visual Analytics 123

The Performance Spectra approach [7] focuses on drifts that show seasonality.
The technique filters the control-flow and visualizes identified flow patterns. It
is evaluated against a real-world log, in which recorded business processes show
year-to-year seasonality. A strength of the Comparative Trace Clustering app-
roach [12] is its ability to include non-control-flow characteristics in the analysis.
Based on these characteristics, it partitions and clusters the log. The differences
between the clusters, then, indicate the quantitative change in the business pro-
cesses, refer to requirement R4. The Graph Metrics on Process Graphs app-
roach [22] discovers a first model, called a reference, using the Heuristic Miner
on a section of the log [1]. Then, it discovers models for other sections of the
log and uses graph metrics to compare them with the reference model. The
technique interprets significant differences in the metrics as drifts. The reference
model and detection windows get updated, once a drift is detected.

This discussion, summarized in Table 1, witnesses that none of the state-of-
the-art methods addresses all the five requirements. Thus, the work at hand, to
address the gap.

3 Preliminaries

In this section, formal preliminaries of the approach are given. Section 3.1 dis-
cusses Declare specification as the main body of process mining research we
build upon. Section 3.2 describes clustering and change point detection methods,
which are the main instruments of our approach.

An event log L (log for short) is a collection of recorded traces that cor-
respond to process executions. In this paper, we abstract the set of activities
of a process as a finite non-empty alphabet Σ = {a, b, c, . . .}, and we define a
trace as a finite sequence of activities ai ∈ σ, 1 ≤ i ≤ n. Case 1 of the road
ticket process from Sect. 2.1 is an example of a trace. Cases 1–4 are an example
of an event log. In the following examples, we shall also resort on the string-
representation of traces (i.e., σ = a1a2 · · · an) defined over Σ. Event log L is a
multiset of traces, as the same trace can be repeated multiple times in the same
log: denoting the multiplicity m � 0 as an exponent of the trace, we have that
L = {σm1

1 , σm2
2 , . . . , σmN

N } (if mi = 0 for some 1 � i � N we shall simply omit
σi). The size of the log is defined as |L| = ∑N

i=1 mi, i.e., the sum of its traces’
multiplicities. For example, the size of the Italian help desk log is 150370. A
sub-log L′ ⊆ L of L is a log L′ = {σ

m′
1

1 , σ
m′

2
2 , . . . , σ

m′
N

N } such that m′
i � mi for

all 1 � i � N . A log consisting of cases 1–3 from the example log L in Sect. 2.1
is a sub-log of L.

3.1 Declare Modeling and Mining

A declarative process specification represents the behavior of a process by means
of constraints, i.e., temporal rules that specify the conditions under which activ-
ities may, must, or cannot be executed. In this paper we focus on Declare, one
of the most well-established declarative process modeling languages to date [2].

124 A. Yeshchenko et al.

Table 2. Example Declare constraints.

Constraint Explanation Examples

AtMostOne(a) If a occurs, then it occurs at most
once

�bcc �bcac ×bcaac ×bcacaa

Response(a, b) If a occurs, then b occurs eventually
after a

�baabc �bcc ×caac ×bacc

AlternateResponse(a, b) If a occurs, then b occurs eventually
afterwards, and no other a recurs in
between

�cacb �abcacb ×caacb ×bacacb

ChainResponse(a, b) If a occurs, then b occurs immediately
afterwards

�cabb �abcab ×cacb ×bca

Precedence(a, b) If b occurs, then a must have
occurred before

�cacbb �acc ×ccbb ×bacc

AlternatePrecedence(a, b) If b occurs, then a must have
occurred before and no other b recurs
in between

�cacba �abcaacb ×cacbba ×abbabcb

ChainPrecedence(a, b) If b occurs, then a occurs immediately
beforehand

�abca �abaabc ×bca ×baacb

NotSuccession(a, b) a occurs if and only if b does not
occur afterwards

�bbcaa �cbbca ×aacbb ×abb

Declare provides a standard library of templates (repertoire [9,20]), i.e.,
constraints parametrized over activities. Examples of Declare constraints are
Response(a, b) and ChainPrecedence(b, c). The former constraint applies the
Response template on tasks a and b, and states that if a occurs then b must
occur later on within the same trace. In this case, a is named activation, because
it is mentioned in the “if” clause, thus triggering the constraint, whereas b is
named target, as it is in the consequent clause [9]. ChainPrecedence(b, c)
asserts that if c (the activation) occurs, then b (the target) must have occurred
immediately before. Given an alphabet of activities Σ, we denote the number of
all possible constraints that derive from the application of Declare templates
to all activities in Σ as #cns ⊆ O(Σ2) [9]. For the Italian road ticket fine log,
#cns = 1584. Table 2 shows some of the templates of the Declare repertoire,
together with the examples of traces that satisfy (�) or violate (×) them.

Declarative process mining tools can measure to what degree constraints
hold true in a given event log [15]. To that end, diverse measures have been
introduced. Among them, we consider here support and confidence [10]. Their
values range from 0 to 1. In [10], the support of a constraint is measured as
the ratio of times that the event is triggered and satisfied over the number of
activations. Let us consider the following example event log: L = {σ4

1 , σ
1
2 , σ

2
3},

having σ1 = baabc, σ2 = bcc, and σ3 = bcba. The size of the log is 4+1+2 = 7. The
activations of Response(a, b) that satisfy the constraint amount to 8 because
two a’s occur in σ1 that are eventually followed by an occurrence of b, and σ1 has
multiplicity 4 in the event log. The total amount of the constraint’s activations
in L is 10 (see the violating occurrence of a in σ3). The support thus is 0.8. By
the same line of reasoning, the support of ChainPrecedence(b, c) is 7

8 = 0.875
(notice that in σ2 only one of the two occurrences of c satisfies the constraint). To

Comprehensive Process Drift Detection with Visual Analytics 125

Fig. 2. The VDD approach.

take into account the frequency with which constraints are triggered, confidence
scales support by the ratio of traces in which the activation occurs at least once.
Therefore, the confidence of Response(a, b) is 0.8× 6

7 ≈ 0.69 because a does not
occur in σ2. As b occurs in all traces, the confidence of ChainPrecedence(b, c)
is 0.875.

3.2 Clustering and Change Point Detection Algorithms

In this paper, we focus on the analysis of time-series data. A time series is
a sequence of ordered data points 〈t1, t2, · · · , td〉 = T ∈ R

d consisting of d ∈
N

+ real values. Figure 3(f) illustrates an example of time series. A multivariate
time series is a set of n ∈ N

+ time series D = {T1, T2, . . . , Tn}. We assume a
multivariate time series to be piece-wise stationary except for its change points.
In our approach, we take advantage of the following techniques.

Time series clustering is an unsupervised data mining technique for orga-
nizing data points into groups based on their similarity [4]. The objective is to
maximize data similarity within clusters and minimize it across clusters. More
specifically, the time-series clustering is the process of partitioning D into non-
overlapping clusters of multivariate time series, C = {C1, C2, . . . , Cm} ⊆ 2D,
with Ci ⊆ D and 1 ≤ m ≤ n, for each i such that 1 ≤ i ≤ m, such that
homogeneous time series are grouped together based on a similarity measure.
A similarity measure sim(T, T ′) represents the distance between two time series
T and T ′ as a non-negative number. Time-series clustering is often used as a
subroutine of other more complex algorithms and is employed as a standard tool
in data science for anomaly detection, character recognition, pattern discovery,
visualization of time series [4].

Change point detection is a technique to detect the points in which multi-
variate time series exhibit changes in their values [6]. Let Dj denote all elements
of D at position j, i.e., Dj = {T j

1 , T j
2 , ..., T j

n}, where T j is a j-th element of time
series T . The objective of change point detection algorithms is to find k ∈ N

+

changes in D, where k is previously unknown. Every element Dj for 0 < j � k
is a point at which the values of the time series undergo significant changes.
In Fig. 3(f), e.g., each vertical black dashed line is one of the k = 9 change

126 A. Yeshchenko et al.

points. To detect change points, the search algorithms require a cost function
and a penalty parameter as inputs. The former describes how homogeneous the
time series is. It is chosen in a way that its value is high if the time series con-
tains many change points and low otherwise. The latter is needed to constrain
the search depth. The supplied penalty should strike a good balance between
finding too many change points and not finding any significant ones. Change
point detection is a technique commonly used in signal processing and, more in
general, for the analysis of dynamic systems that are subject to changes [6].

4 Technique

In this section, we introduce the VDD approach. First, we derive a multivariate
time series from an event log, where each time series represents how the confi-
dence values of some Declare constraint evolve over time. We prefer confidence
over support to prevent that sporadically occurring activities bias our detection
algorithms. Then, we cluster sub-sets of time series to group together the con-
straints that expose a similar trend in their confidence value. Next, using change
point detection techniques, we identify the process drifts, i.e., the points in which
significant changes in the confidence of behavioral rules occur. Finally, we assess
and explain behavioral changes through visual diagrams and numerical reports
on drift metrics. Figure 2 illustrates the multi-step VVD approach.

Step 1: Mining Declare Windows. In this step, we split the log into sub-
logs. From each sub-log, we mine the set of Declare constraints and compute
their confidence.

Step 2: Slicing the Declare Constraints Space into Time and Behav-
ior Sub-spaces. This step begins with the extraction of multi-variate time series
that represent the trends of the constraints’ confidence. Thereupon, we cluster
those time series to find groups of constraints that exhibit similar confidence
trends (henceforth, behavior clusters). The step ends by returning the detected
change points both in the entire multi-variate time series and in each cluster, so
as to find overall and behavior-specific drifts, respectively.

Step 3: Explaining Drifts. In the last step, we plot Drift Maps and Drift
Charts to visually identify and characterize the detected drift. In the following,
we detail those steps.

4.1 Mining Declare Windows

The first step takes as input a log L, and two additional parameters (winsize
and winstep). It returns a multivariate time series D based on the confidence of
mined Declare constraints.

First, we sort the traces in the event log L by the timestamp of their respective
first events. Thereupon, we extract a sub-log from L as a window of size winsize ∈
N

+, with 1 � winsize � |L|. We subsequently shift the sub-log window by a given
step (winstep ∈ N

+, with 1 � winstep � winsize). Notice that we have sliding

Comprehensive Process Drift Detection with Visual Analytics 127

windows if winstep < winsize and tumbling windows if winstep = winsize. Thus,
the number of produced sub-logs is equal to: #win =

⌊ |L|−winsize−winstep
winstep

⌋
. Having

winsize set to 5000 and winstep set to 2500, #win amounts to 57 on the Italian
road fine ticket log.

For every sub-log Lj ⊆ L thus formed (1 � j � #win), we check all pos-
sible Declare constraints that stem from the activities alphabet of the log,
amounting to #cns (see Sect. 3.1). For each constraint i ∈ 1..#cns, we compute
its confidence over the sub-log Lj , namely Confi,j ∈ [0, 1]. This generates a time
series Ti = (Confi,1, . . . ,Confi,#win) ∈ [0, 1]#win for every constraint i. In other
words, every time series Ti describes the confidence of all the Declare con-
straints discovered in the i-th window of the event log. The multivariate time
series D = {T1, T2, . . . , T#cns} encompasses the full spectrum of all constraints.
Next, we detail the steps of slicing the Declare constraints and explaining the
drifts.

4.2 Slicing the Declare Constraints Space into Time and Behavior
Sub-spaces

The second step processes the previously generated multivariate time series D
to derive (i) a set C of clusters exhibiting similar confidence trends, and (ii) a
set of k ∈ N

+ change points representing the process drifts.

Change Point Detection. To detect change points, we use the Pruned Exact
Linear Time (PELT) algorithm [13]. This algorithm performs an exact search,
but requires the input dataset to be of limited size. Our setup is appropriate as
by design the length of the multivariate time-series is limited by the choice of
parameters winsize and winstep. Also, this algorithm is suitable for cases in which
the number of change points is unknown a priori [6, p. 24], as in our case. We
use the Kernel cost function, detailed in [6], which is optimal for our technique,
and adopt the procedures described in [13] to identify the optimal penalty value.

Clustering Time Series of Declare Constraints. By applying a change
point detection algorithm on the entire multivariate time-series, we are able to
pinpoint the window (i.e., the sub-log) where overall behavior changes occur.
However, the level of granularity may be inappropriate as we could not sin-
gle out the phenomena that are local to certain behavioral rules. That would
interfere with the accuracy of results. Therefore, we use time-series clustering
techniques [4] to group together similarly changing pockets of behavior of the
process. One time series describes how one constraint changes its confidence over
time. By clustering, we find all the time series that share similar trends of values,
hence, we find all similarly changing constraints. We use hierarchical clustering,
as it is reportedly one of the most suitable algorithms when the number of clus-
ters is unknown [4]. As a result, we obtain a partition of the multivariate time
series of Declare constraint confidence values into behavior clusters.

128 A. Yeshchenko et al.

4.3 Explaining Drifts

After clustering the behavior of the log and finding the change points, we expand
the classification of the types of drifts found in the literature by being able to
identify, pinpoint, and categorize the drifts within behavior clusters. We also
allow for an assessment of how erratic the clusters are by means of the novel
measure described next.

Finding Erratic Behavior Clusters. The behavioral changes in one cluster
can be visually depicted by a plot like that in Fig. 3(f). Thus, in order to find
and pinpoint the most interesting (erratic) behavior clusters, we define a measure
inspired by the idea of finding the length of a poly-line in a plot. The rationale
is, straight lines denote a regular trend and have the shortest length, whilst
more irregular, wavy curves evidence more behavior changes and their length is
higher. We are, therefore, mostly interested in longer lines.

We compute our measure as follows. We calculate for all constraints i such
that 1 ≤ i ≤ #cns the Euclidean distance δ : [0, 1] × [0, 1] → R+ between
consecutive values in the time series Ti = (Ti,1, . . . , Ti,winsize), i.e., δ(Ti,j , Ti,j+1)
for every j s.t. 1 � j � winsize. For every time series Ti, we thus derive the
overall measure Δ(Ti) =

∑winsize−1
j=1 δ(Ti,j , Ti,j+1). Thereupon, to measure how

erratic a behavior cluster is, we devise the following measure:

Ertc(C) =
|C|∑

j=1

√
1 + (Δ(Ti) × #win)2 (1)

The most erratic behavior cluster has the highest Ertc value.

Visual Drift Classification. We enable the visual identification of the patterns
illustrated in Fig. 1 with a graphical representation that we name Drift Maps:
they depict clusters and their constraints’ confidence measure evolution along
the time series, together with the drift points. We allow the user to inspect every
single cluster and its drifts in dedicated diagrams that we name Drift Charts.

Drift Maps, such as those illustrated in Figs. 3(a) or 4(b), plot all drifts
data on a two-dimensional plane. The visual representation we adopt is inspired
by [25]. The x-axis is the time axis, while every constraint corresponds to a point
along the y-axis. We add vertical lines to mark the identified change points, i.e.,
drift points, and horizontal lines to demark clusters. Constraints are sorted by the
similarity of the confidence trends. The values of the time series are represented
through the plasma color-blind friendly color map [25], from blue (low peak) to
yellow (high peak).

To analyze the time-dependent trend of specific clusters, we build Drift
Charts, such as those depicted in Figs. 3(f) or 4(c). They have time on the
x-axis and average confidence of the constraints in a cluster on the y-axis. We
add vertical lines as in Drift Maps.

Comprehensive Process Drift Detection with Visual Analytics 129

Drift Maps permit the users to have a global picture of the clusters and of
the process drifts. Drift Charts allow for a visual categorization of the drifts
according to the classification introduced in [11] (Fig. 1). The following section
demonstrates applications of this visual-aided approach on synthetic and real-
world logs.

5 Evaluation

This section presents our evaluation setup, its results on detecting and explaining
drifts, and a discussion of the results.

5.1 Evaluation Setup

Table 3. Event logs used in the evaluation.
Origin Event log Related work
Synthetic ConditionalMove ProDrift 2.0 [18]
Synthetic ConditionalRemoval ProDrift 2.0 [18]
Synthetic ConditionalToSequence ProDrift 2.0 [18]
Synthetic Loop ProDrift 2.0 [18]
Real-world Italian help desk1 Process Trees [17]
Real-world BPI20113 ProDrift 2.0 [18]

We evaluate our approach
both on synthetic and real-
world event logs.2, 3, 4 We
also compare the obtained
results with the state-of-the-
art methods. Table 3 summa-
rizes the event logs used in
the evaluation and indicates
related work which used these
logs. To discover Declare
constraints, we used minerful5 because of its high performance [10]. We opted
for the ruptures python library6 for change point identification. We used the
scipy library7 for the clustering of time-series, including the hierarchical cluster-
ing. By experimenting with the clustering algorithm, we tuned the parameters to
attain the best outcome, such as the weighted method for linking clusters (dis-
tance between clusters defined as the average between individual points), and
the correlation metric (to find individual distances between two time-series). To
enhance Drift Map visualizations, we sort the time-series of each cluster with the
mean squared error distance metric. We implemented our approach in Python
3. Its source code is publicly available.8

2 https://doi.org/10.4121/uuid:0c60edf1-6f83-4e75-9367-4c63b3e9d5bb.
3 https://doi.org/10.4121/uuid:a7ce5c55-03a7-4583-b855-98b86e1a2b07.
4 https://doi.org/10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54 (preprocessed

as in [18]).
5 https://github.com/cdc08x/MINERful.
6 https://github.com/deepcharles/ruptures.
7 https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.

linkage.html.
8 https://github.com/yesanton/Process-Drift-Visualization-With-Declare.

https://doi.org/10.4121/uuid:0c60edf1-6f83-4e75-9367-4c63b3e9d5bb
https://doi.org/10.4121/uuid:a7ce5c55-03a7-4583-b855-98b86e1a2b07
https://doi.org/10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54
https://github.com/cdc08x/MINERful
https://github.com/deepcharles/ruptures
https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html
https://github.com/yesanton/Process-Drift-Visualization-With-Declare

130 A. Yeshchenko et al.

Fig. 3. Evaluation results on synthetic logs.

Fig. 4. BPIC2011 hospital log VDD visualizations.

5.2 Detecting Drifts

To demonstrate the accuracy with which our technique detects drifts, we first
test it on synthetic data in which drifts were manually inserted, to show that
we detect drifts at the points in which they occur. Thereafter, we compare our
results with the state-of-the-art algorithm ProDrift [18] on real-world event logs.

Comprehensive Process Drift Detection with Visual Analytics 131

Fig. 5. Italian help desk log VDD visualizations.

Synthetic Data. Ostovar et al. [18] published a set of synthetic logs that they
altered to artificially include drifting behavior: ConditionalMove, Conditional-
Removal, ConditionalToSequence, and Loop.9 Figure 3 illustrates the results of
the application of the VDD technique on these logs. By measuring precision
as the fraction of correctly identified drifts over all the ones retrieved by VDD
and recall as the fraction of correctly identified drifts over the actual ones, we
computed the F-score (harmonic mean of precision and recall) of our results for
each log. Using the default settings and no constraint set clustering, we achieve
the F-score of 1.0 for logs ConditionalMove, ConditionalRemoval, Conditional-
ToSequence, and 0.89 for the Loop log. When applying the cluster-based change
detection for the Loop log, we achieve the F-score of 1.0. The Drift Map for the
Loop log is depicted in Fig. 3(e). In contrast to [18] we can see which behavior
in which cluster contributes to the drift. The Drift Chart in Fig. 3(f) illustrates
the trend of confidence for the most erratic cluster for the Loop log.

Real-World Data. Figure 4(a) illustrates the Drift Map constructed for the
BPIC2011 event log.3 As in [18], two drifts are detected towards the second
half of the time span of the log. However, in addition, our technique identifies
drifting behavior at a finer-granular level. Figure 4(b) shows the drifts pertaining
to clusters of constraints. The trend of the confidence measure for the most
erratic cluster is depicted in Fig. 4(c).

Our technique correctly detects drifts in the Italian help desk log, by identi-
fying the same two drifts that were found by ProDrift [17], approximately in the
first half and towards the end of the time span. As illustrated by the VDD visu-
alization in Fig. 5(a), in addition we detected another sudden change in the first
quarter. Following on that, we analyzed the within-cluster changes (Fig. 5(b))
and noticed that the most erratic cluster contains an outlier, as is shown by the
spike in Fig. 5(c).

9 http://apromore.org/platform/tools.

http://apromore.org/platform/tools

132 A. Yeshchenko et al.

5.3 Explaining Drifts

Table 4. Italian help desk log erratic
clusters.

Drift number Ertc measure
without drift 89
9 780.041
11 328.881
14 293.887
10 292.712
13 289.103
7 232.401
4 196.012
15 171.012
16 166.111

To better understand a particular drift, we
further examine the constraints that par-
ticipate in the drift. Using the example of
the Italian help desk log presented above,
we examine the most erratic behavior clus-
ters’ drifts (calculated using Eq. (1)), shown
in Table 4. In Fig. 6, we present the most
erratic examples of behavior, and in Table 5
we present the constrains that describe that
specific behavior after applying the con-
straint minimization algorithm.

Figure 6(a) shows an erratic behavior,
which visually corresponds to the reoccur-
ring concept classification from Fig. 1. Examining the constraints that constitute
this behavior, the analyst could conclude that in the dates of the peak in Fig. 6(a)
the activity Create SW anomaly always had Take in charge ticket executed immedi-
ately beforehand, and otherwise in the other parts of the plot. Also, she could
conclude that before Create SW anomaly the Assign seriousness activity was executed,
and no other Create SW anomaly occurred in between.

Table 5. Italian ticket log constraints; including min, max, and mean confidence.

Cluster Constraint Activity 1 Activity 2 Min Max Mean

9 ChainPrecedence Take in charge ticket Create SW anomaly 0.0 100 42.8

AlternatePrecedence Assign seriousness Create SWanomaly 0.0 100 49.0

11 ChainPrecedence Take in charge ticket Schedule intervention 0.0 100 9.9

AlternatePrecedence Assign seriousness Schedule intervention 0.0 100 9.9

4 ChainResponse Take in charge ticket Wait 9.4 69.6 23.2

NotSuccession Resolve ticket Wait 10 77.2 26

NotSuccession Wait Assign seriousness 10 78 26.6

NotSuccession Wait Take in charge ticket 9.8 73.3 22.1

AlternateResponse Assign seriousness Wait 9 72.3 23.8

AlternateResponse Wait Closed 8.3 61.4 22.5

AlternateResponse Wait Resolve ticket 8.3 61.4 22.8

AtMostOne Wait 9.8 68.6 25.1

Figure 6(b) has four spikes, where Schedule intervention activities occurred.
Immediately before Schedule intervention, Take in charge ticket occurred. Also,
Assign seriousness occurred had to occur before Schedule intervention recurred. We
notice, however, that this cluster shows outlier behavior, due to its rare changes.

Finally, Fig. 6(c) depicts a gradual drift until June 2012, and the incremental
drift afterward. We notice that all constraints in the cluster have Wait either as
an activation (e.g., with AlternateResponse(Wait, closed)) or as a target (e.g.,
with ChainResponse(Take in charge ticket,Wait)).

Comprehensive Process Drift Detection with Visual Analytics 133

Fig. 6. Italian help desk log detailed clusters.

5.4 Discussion

Our method addresses all the five requirements for process drift detection pre-
sented in Sect. 2.2 as follows:

R1 We evaluated our method with the synthetic logs showing its ability to iden-
tify drifts precisely;

R2 We developed a visualization approach based on Drift Maps and Drift Charts
for classification of process drifts and have shown its effectiveness for real-
world logs. Our enhanced approach based on change point detection has
yielded effective to automatically discover the exact points at which sudden
and reoccurring concept drifts occur. The indicative approximation of long-
running progress of incremental and gradual drifts was also found. Outliers
were detected via time series clustering;

R3 Using clustering, Drift Maps, and Drift Charts, the method enables the
drilling down into (rolling up out) sections with a specific behavior (gen-
eral vs. cluster-specific groups of constraints);

R4 We introduced, and incorporated into our technique, a drift measure called
Ertc that quantifies the extent of the drift change;

R5 To further qualitatively analyze the detected drifts, VDD shows how the
process specification looks before and after the drift (as a list of Declare
constraints, refer to Table 5).

We found that the size of the window does not introduce significant difference
in results for the automatic evaluation of the VDD, so we recommend using
the number of windows that will guide the visual search best, that is around
60 windows should be produced for one graph. That means the recommended
parameters are: winstep = |L|

60+1 and winsize = 2 · winstep for smooth visual rep-
resentation.

6 Conclusions

In this paper, we presented a visual technique for detecting and analyzing pro-
cess drifts in logs of executed business processes. First, the technique uses the

134 A. Yeshchenko et al.

MINERful technique to discover declarative process constraints from logs. Sec-
ond, it applies clustering and change point detection methods over time series
of characteristics of the discovered constraints to detect process drifts (in parts
of) business processes. The technique then devises visualizations of the detected
clusters and change points for the visual classification of drifts. Finally, we pre-
sented a technique for evaluating and explaining process drifts.

We evaluated our technique both on synthetic and real-world data. On syn-
thetic logs, the technique achieved an average F-score of 0.96 and outperformed
all the state-of-the-art methods. On real-world logs, the technique managed to
describe all types of process drifts in a comprehensive manner. Also, the evalu-
ation reported that our technique can identify outliers of process behavior.

Limitations of the work at hand naturally give rise to future research. First,
one can study the problem of automatic classification of process drifts; we plan
to use shapelets [3] to solve this problem. Second, one can study how the use
of other declarative process constraints, e.g., the 4C spectrum [21] or branched
Declare [8], impacts the effectiveness of the technique. Third, an empirical
evaluation with the potential users of the technique can provide further insights
for improving the usability of the approach. Finally, we argue that, based on the
identified past process drifts, and using time-series prediction algorithms, one
can predict future drifts to prepare for forecasted changes [19].

Acknowledgements. This work is partially funded by the EU H2020 program under
MSCA-RISE agreement 645751 (RISE_BPM). Artem Polyvyanyy was partly sup-
ported by the Australian Research Council Discovery Project DP180102839.

References

1. van der Aalst, W.M.P.: Process Mining - Data Science in Action. Springer, Heidel-
berg (2016). https://doi.org/10.1007/978-3-662-49851-4

2. van der Aalst, W.M.P., Pesic, M., Schonenberg, H.: Declarative workflows: balanc-
ing between flexibility and support. CS - R&D 23(2), 99–113 (2009)

3. Abanda, A., Mori, U., Lozano, J.A.: A review on distance based time series clas-
sification. DMKD 33(2), 378–412 (2019)

4. Aghabozorgi, S., Seyed Shirkhorshidi, A., Ying Wah, T.: Time-series clustering -
a decade review. IS 53(C), 16–38 (2015)

5. Bauer, M., Senderovich, A., Gal, A., Grunske, L., Weidlich, M.: How much event
data is enough? A statistical framework for process discovery. In: CAISE, pp. 239–
256 (2018)

6. Truonga, C., Oudre, L., Vayatis, N.: Selective review of offline change point detec-
tion methods (2019). arxiv:1801.00718

7. Denisov, V., Belkina, E., Fahland, D.: BPIC 2018: Mining Concept Drift in Per-
formance Spectra of Processes (2018)

8. Di Ciccio, C., Maggi, F.M., Mendling, J.: Efficient discovery of target-branched
declare constraints. Inf. Syst. 56, 258–283 (2016)

9. Di Ciccio, C., Maggi, F.M., Montali, M., Mendling, J.: Resolving inconsistencies
and redundancies in declarative process models. IS 64, 425–446 (2017)

10. Di Ciccio, C., Mecella, M.: On the discovery of declarative control flows for artful
processes. ACM TMIS 5(4), 24:1–24:37 (2015)

https://doi.org/10.1007/978-3-662-49851-4
http://arxiv.org/abs/1801.00718

Comprehensive Process Drift Detection with Visual Analytics 135

11. Gama, J., Zliobaite, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on
concept drift adaptation. ACM Comput. Surv. 46(4), 44:1–44:37 (2014)

12. Hompes, B., Buijs, J.C.A.M., van der Aalst, W.M.P., Dixit, P., Buurman, H.:
Detecting change in processes using comparative trace clustering. SIMPDA 2015,
95–108 (2015)

13. Killick, R., Fearnhead, P., Eckley, I.A.: Optimal detection of changepoints with a
linear computational cost. J. Am. Stat. Assoc. 107(500), 1590–1598 (2012)

14. Maaradji, A., Dumas, M., La Rosa, M., Ostovar, A.: Detecting sudden and gradual
drifts in business processes from execution traces. IEEE TKDE 29(10), 2140–2154
(2017)

15. Maggi, F.M., Mooij, A.J., van der Aalst, W.M.P.: User-guided discovery of declar-
ative process models. In: CIDM, pp. 192–199. IEEE (2011)

16. Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P.: Balanced multi-
perspective checking of process conformance. Computing 98(4), 407–437 (2016)

17. Ostovar, A., Leemans, S.J., La Rosa, M.: Robust drift characterization from event
streams of business processes (2018). https://eprints.qut.edu.au/121158/

18. Ostovar, A., Maaradji, A., La Rosa, M., ter Hofstede, A.H.M., van Dongen, B.F.:
Detecting drift from event streams of unpredictable business processes. In: ER, pp.
330–346 (2016)

19. Poll, R., Polyvyanyy, A., Rosemann, M., Röglinger, M., Rupprecht, L.: Process
forecasting: towards proactive business process management. In: Weske, M., Mon-
tali, M., Weber, I., vom Brocke, J. (eds.) BPM 2018. LNCS, vol. 11080, pp. 496–512.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98648-7_29

20. Polyvyanyy, A., Armas-Cervantes, A., Dumas, M., García-Bañuelos, L.: On the
expressive power of behavioral profiles. Formal Asp. Comput. 28(4), 597–613
(2016)

21. Polyvyanyy, A., Weidlich, M., Conforti, R., La Rosa, M., ter Hofstede, A.H.M.:
The 4C spectrum of fundamental behavioral relations for concurrent systems. In:
Ciardo, G., Kindler, E. (eds.) PETRI NETS 2014. LNCS, vol. 8489, pp. 210–232.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07734-5_12

22. Seeliger, A., Nolle, T., Mühlhäuser, M.: Detecting concept drift in processes using
graph metrics on process graphs. In: S-BPM, p. 6 (2017)

23. Tsymbal, A.: The problem of concept drift: definitions and related work. Comput.
Sci. Depart. Trinity College Dublin 106(2), 58 (2004)

24. van der Aalst, W., Weijters, T., Maruster, L.: Workflow mining: discovering process
models from event logs. TKDE 16(9), 1128–1142 (2004)

25. Ware, C.: Information visualization: perception for design. Elsevier, Amsterdam
(2012)

26. Zheng, C., Wen, L., Wang, J.: Detecting process concept drifts from event logs. In:
OTM CoopIS, pp. 524–542 (2017)

https://eprints.qut.edu.au/121158/
https://doi.org/10.1007/978-3-319-98648-7_29
https://doi.org/10.1007/978-3-319-07734-5_12

A Probabilistic Approach to Event-Case
Correlation for Process Mining

Dina Bayomie1(B) , Claudio Di Ciccio1 , Marcello La Rosa2 ,
and Jan Mendling1

1 Vienna University of Economics and Business, Vienna, Austria
{dina.sayed.bayomie.sobh,claudio.di.ciccio,jan.mendling}@wu.ac.at

2 University of Melbourne, Melbourne, Australia
marcello.larosa@unimelb.edu.au

Abstract. Process mining aims to understand the actual behavior and
performance of business processes from event logs recorded by IT sys-
tems. A key requirement is that every event in the log must be associated
with a unique case identifier (e.g., the order ID in an order-to-cash pro-
cess). In reality, however, this case ID may not always be present, espe-
cially when logs are acquired from different systems or when such systems
have not been explicitly designed to offer process-tracking capabilities.
Existing techniques for correlating events have worked with assumptions
to make the problem tractable: some assume the generative processes to
be acyclic while others require heuristic information or user input. In this
paper, we lift these assumptions by presenting a novel technique called
EC-SA based on probabilistic optimization. Given as input a sequence
of timestamped events (the log without case IDs) and a process model
describing the underlying business process, our approach returns an event
log in which every event is mapped to a case identifier. The approach
minimises the misalignment between the generated log and the input
process model, and the variance between activity durations across cases.
The experiments conducted on a variety of real-life datasets show the
advantages of our approach over the state of the art.

Keywords: Event correlation · Simulated annealing · Process mining

1 Introduction

Recent years have seen a drastically increasing availability of process execution
data from various data sources [16]. Process mining offers different analysis tech-
niques that can help to extract business insights from these data, known as event
logs. To this end, each event in an log must have at least three attributes [17]:
(i) the event class referring to a specific activity in the process (e.g., “Order
checked” or “Claim assessed”), (ii) the end timestamp capturing the completion
time for that activity, and (iii) the case identifier (e.g., the order number in an
order-to-cash process, or the claim ID in a claims handling process). Data lake

c© Springer Nature Switzerland AG 2019
A. H. F. Laender et al. (Eds.): ER 2019, LNCS 11788, pp. 136–152, 2019.
https://doi.org/10.1007/978-3-030-33223-5_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33223-5_12&domain=pdf
http://orcid.org/0000-0002-2549-6407
http://orcid.org/0000-0001-5570-0475
http://orcid.org/0000-0001-9568-4035
http://orcid.org/0000-0002-7260-524X
https://doi.org/10.1007/978-3-030-33223-5_12

A Probabilistic Approach to Event-Case Correlation for Process Mining 137

Fig. 1. Overview of the EC-SA approach.

infrastructures, though, often put more emphasis on storing and synchronising
data than on structuring them in a way that process mining can be readily
applied [6,11].

Prior research has described the problem of missing case identifiers as a
correlation problem, because the connections between different events has to
be reestablished based on heuristics, domain knowledge or payload data. In
essence, the correlation problem is concerned with identifying which events
belong together to the same case when a unique case identifier is missing. Exist-
ing correlation techniques face the challenge of operating in a large search space.
For this reason, previous proposals have introduced assumptions to make the
problem tractable. Some techniques assume the generative processes to be acyclic
[9,14] while others require heuristic information about the execution behavior
of activities in addition to the process model [7]. Beyond that, performance has
been an issue.

In this paper, we address the correlation problem as a multi-level optimization
problem. We propose a novel technique called EC-SA (Events Correlation by
Simulated Annealing), which is based on simulated annealing. As illustrated in
Fig. 1, the technique takes as input a set of uncorrelated events and a (normative
or descriptive) process model that captures knowledge of the underlying business
process, and produces an event log as output. The technique revolves around
two nested objectives. First, it seeks to minimize the misalignment between the
generated log and an input process model; second, it seeks to minimize the
activity execution time variance across cases. This latter objective builds on the
assumption that same activities tend to have similar duration across cases.

The remainder of this paper is organized as follows. Section 2 discusses the
related work. Section 3 presents the different phases of our novel EC-SA event
correlation technique. Section 4 then discusses the experimental evaluation on
real-life logs before Sect. 5 concludes the paper.

138 D. Bayomie et al.

2 Related Work

Several techniques have been defined to address the event correlation problem.
The following ones correlate the events from the control flow perspective. The
greedy approach in [9] estimates a Markov model for an uncorrelated event log.
It does not support cyclic behavior. It is sensitive to concurrency and the num-
ber of overlapping cases at a given point in time. In [18], the authors provide
an approach that uses sequence partition to search the solution space for the
minimal set of patterns that can represent the uncorrelated event log. The app-
roach does not support cyclic. As an output, it produces the behavioral patterns
of the log. The Correlation Miner (CMiner) approach [14] works in two phases.
The first phase is discovering an acyclic process model from the uncorrelated log
using linear programming. In the second phase, the discovered model is used to
correlate the events by solving quadratic programming constraints. It does not
support cyclic models. The performance of the approach is highly sensitive to
the amount of uncorrelated events mainly because of the quadratic-constraints
based phase. The Deducing Case Ids (DCI) approach in [7] searches the solu-
tion space for the possible correlation between the events, and prunes the search
space based on the given input in terms of the process model and heuristic data
on activity execution behavior. DCI supports the cyclic processes. It is sensitive
to the quality of the input data and not computationally efficient.

Our approach has common factors with CMiner and DCI. The three tech-
niques consider the activity duration to find a solution, and they use the control
flow to identify the correlation between the events.

Two techniques tackle the correlation problem by considering the data per-
spective have been devised to date. In [13] the authors address the correlation
problem in the web service environment. Their semi-automated approach corre-
lates events of the service logs as process views based on a correlation condition
using the event data from different data layers. In [15], the authors address the
problem of having the event data stored in databases. They mine the association
and correlation rules over the different attributes in the database. Then, they
measure the support of these rules over the data and use the most supported
rules for correlating the events. They use the MapReduce technique to improve
the performance of applying the correlation constraints.

In summary, these recent techniques make assumptions about process behav-
ior, available information and size of search space. Our EC-SA technique lifts
those assumptions.

3 Event Correlation Technique

We treat the problem of automatically correlating events as a multi-level opti-
mization problem. Specifically, our technique, EC-SA, is based on population-
based simulated annealing [2]. The technique revolves around two nested objec-
tives: (i) minimizing the misalignment between the generated event log and the
input process model, and (ii) minimizing the activity execution time variance

A Probabilistic Approach to Event-Case Correlation for Process Mining 139

across cases. In order to describe our technique precisely, we first introduce a
number of preliminary concepts.

3.1 Preliminaries

We introduce the basic notions of event, uncorrelated event log, case and pro-
jection of a case over an event attribute. Thereupon, we present the definitions
of event log and trace.

An event e is an atomic unit of execution. Events bear attributes. In par-
ticular, we assume the following attributes to be mandatory: activity name Act
(string) and timestamp Ts (date-time). The value of attribute X on event e
shall be denoted as e.X, e.g., e.Ts refers to the timestamp of e. We assume a
total order � to be defined over the universe of events. Therefore, we assign to
every event a unique integer index (or event id for short), induced by � on the
events. We shall denote the index i of an event e as a subscript, ei. We assume
the assignment of Ts to be coherent with �, i.e., if e � e′ then e.Ts � e′.Ts. In
Fig. 1(a), e.g., event e3 is such that e3.Act = B and e3.Ts = 28.11.2018 13:05:03.

An uncorrelated event log (or uncorrelated log for short) UL is a finite set of
events with total order �. Figure 1(a) depicts an uncorrelated event log UL.

A case σ = 〈eσ1 , . . . , eσn
〉 is a finite sequence of length n of events

eσi
with 1 � i � n induced by �, i.e., such that eσi

� eσk
for every i � k � n.

We assume every case to be assigned a unique case identifier (case id for short),
namely an integer in a convex subset. The value of attribute X over case σ
shall be denoted as σ.X. In Fig. 1(c), σ2 = 〈e2, e4, e6〉. We write L(e) = σ to
indicate that the case of event e in log L is σ. In the example of Fig. 1(c),
L(e2) = L(e4) = L(e6) = σ2.

An event log L = {σ1, . . . , σn} is a finite non-empty set of non-overlapping
cases, i.e., if e ∈ σi, then e /∈ σj for all i, j ∈ [1 . . . n], i �= j. We denote its
cardinality as |L| = N with N � 1. Figure 1(c) shows an event log consisting of
cases σ1, σ2, and σ3. Notice that the union of all events of every case of a log
L, together with the total order defined on them, is an uncorrelated log. For the
sake of conciseness, we denote this totally ordered events set as UL(L). A trace
t is a projection of a case σ over the activity names: t = Act(σ). In Fig. 1(c),
Act(σ2) = 〈A,B,D〉.

3.2 The Problem

Given an uncorrelated log UL as input (like the one in Fig. 1(a)), the output of
EC-SA is an event log L that partitions UL into a set of cases, i.e., such that for
every event e ∈ UL there exists one and only one case σ ∈ L s.t. e ∈ σ. Figure 1(c)
shows such a log. To derive L from UL, EC-SA considers as an additional input
a process model (e.g., the Workflow net depicted in Fig. 1(b)), which drives the
mapping of events to cases. We assume the process model to have exactly one
start activity (initially, only one activity is enabled) and to expose terminating
conditions (at some stage of the run, no activity is enabled any longer).

140 D. Bayomie et al.

3.3 Multi-level Optimization

The event correlation problem can be solved by optimization metaheuristic
techniques. EC-SA uses a multi-level simulated annealing as optimization tech-
nique. Simulated Annealing (SA) is a metaheuristic that searches for the nearest
approximate global solution in the search space of the optimization problem, by
simulating the cooling process of metals through the annealing process. Using SA
to solve the event correlation problem helps in finding a global optimal correlated
log in reasonable time.

SA explores the search space through the following steps. It starts by creating
the initial population, as we are using the population-based SA [2]. A population
(pop) is a non-empty set of individuals (|pop| � 1). The population is formed by
generating random individuals. Then SA initializes the current step Scurr = 1
and the current temperature with an initial temperature, τcurr = τinit. The
annealing process begins with the generation of a neighbor solution x′ for the
current individual x. Next, SA computes the energy cost function between x and
x′, namely δfc(x, x′). Both δfc(x, x′) and τcurr are used as input to compute the
acceptance probability of the new neighbor solution, which we denote as prob(x′).
prob(x′) determines if the new neighbor, x′, can be used as the next individual.
Notice that prob(x′) may select x′ even though it performs worse than x in order
to increase the chances to skip the local optimum and let the algorithm further
explore the search space. At each iteration, SA compares the global optimal
solution xG at step Scurr − 1, i.e., the best solution over the iterations [0, Scurr[,
with the local optimal solution xL in pop at Scurr based on δfc(xG, xG). Thus,
SA can return the best solution over all the iterations. Finally, SA uses a cooling
schedule that defines the rate at which the temperature (τcurr) cools down, and
increments Scurr by 1. SA repeats the annealing and cooling process till Scurr

reaches the maximum number of iterations (Smax).
SA has a set of parameters that influence the annealing process: (i) the

initial temperature (τinit), (ii) the maximum number of steps (Smax), and (iii)
the population size (|pop|). In addition to these parameters, SA requires the
following main functions to be defined: (i) the creation of a new neighbor (x′), (ii)
the energy cost function (δfc(x, x′)), (iii) the acceptance probability (prob(x′)),
and (iv) the cooling schedule. We implement those functions to resolve the event
correlation problem. In the rest of this section, we discuss the SA steps using
the defined functions.

The cooling schedule simulates the cooling-down technique of the annealing
process by controlling the computation of the current temperature τcurr. We use
the logarithmic function schedule, as follows: τcurr = τinit

ln(1+Scurr)
.

Figure 2 shows the steps of EC-SA. Aside of the aforementioned SA-specific
parameters, it requires as input (i) an uncorrelated event log (e.g., the one
depicted in Fig. 1(a)) and (ii) a process model (e.g., the one of Fig. 1(b)). The
approach generates a (correlated) event log as its output (depicted, e.g., in
Fig. 1(c)). We discuss the steps in details through the following subsections.

A Probabilistic Approach to Event-Case Correlation for Process Mining 141

Fig. 2. The EC-SA technique

Creating the Initial Population. As shown in Fig. 2, the first step is the gen-
eration of the initial population, pop, of size |pop| � 1. An individual represents
a possible event log, such as the one depicted in Fig. 3(a). We use a dedicated
data structure for such individuals that we name log array.

A log array LA is an associative array mapping every event to a case. The
size of the log array is |LA| = |UL|. We write LA(e) = σ to indicate that event e
is mapped to case σ by log array LA. In Figs. 3(a) and 4, the log array elements
are labeled with the corresponding event (e.g., B4 is event e4, where e4.Act = B).
The content of each cell is the assigned case id (e.g., B4 is assigned with case id
2, i.e., LA(e4) = σ2). LA is created by replaying the uncorrelated events on the
process model. The replaying step is repeated based on the population size. In
our example, we assume |pop| = 1 for readability purposes.

To generate the log array, we replay all events on the process model. Every
run from the initial activity to the termination conditions will correspond to a
case. We name the cases corresponding to non-terminated runs as open cases. We
figure three scenarios when replaying an event e over the input process model:

1. e corresponds to the execution of the start activity of the process model
(we name it start event); then, a new run starts and a new case is open,
accordingly;

2. e corresponds to the execution of an enabled (non-starting) activity on one
(or more) runs (enabled event); then, e is assigned to the case of the run that
enables its activity, or, if more runs enable it, it is assigned randomly to one
of those.

3. e does not correspond to any enabled activity (non-enabled event); then, e
is assigned randomly to one of the open cases, although its activity was not
enabled. This way, we guarantee to correlate all the events even when the log
has deviated from the model.

The replaying of the uncorrelated events in Fig. 1(a) on the process model in
Fig. 1(b) generates the LA1 individual in Fig. 3(a). In the example, upon e1 we
generate σ1, and upon e2, σ2 starts. Afterwards, there are two open cases within

142 D. Bayomie et al.

the log before e3: both σ1 and σ2 expect the execution of activity B or activity C.
Therefore, e3 can belong to each of those cases. In Fig. 3(a), e3 is assigned to σ2,
as well as e4 and e5. To guarantee the assignment of all uncorrelated events to
some case, we randomly assign the non-enabled events to one of the open cases.
For instance, e6 is a non-enabled event, as both σ1 and σ2 are not expecting
activity D. Thus, e6 is randomly assigned to one of the open cases (σ2, in the
example).

Creating a Neighbor Solution. The fundamental step of exploring the search
space in the simulated annealing technique is creating a new neighbor based on
the current solution. We explore the search space by selecting a changing point
in the current individual (x) and replay the events on the model from that point
on in order to find a different solution (x′). The selection of the changing point
is based on the current step (Scurr) to determine from which part of the LA the
change may occur. For instance, when Scurr = 1 the changing point is randomly
selected from the beginning of the log, i.e., the first few events. Instead, when
Scurr = Smax − 1 the changing point is randomly selected from the end of the
log, i.e., the last few events. The continuous increment of Scurr leads to reducing
the number of events to be replayed at each iteration; this is in line with the
cooling down mechanism of the simulated annealing approach.

Energy Cost Function. The energy function is a fundamental part of simu-
lated annealing. As shown in Fig. 2, this function is divided into two components
to support a bilevel objective and solve the correlation problem. The first-level
objective (fa(x)) aims at minimizing the misalignment between the output log
and the given process model. The second-level objective (ft(x)) aims at mini-
mizing the activity execution time variance within the log.

To measure the model-log misalignment we use the well-established align-
ment cost function proposed in [1]. Figure 3 shows an example of the align-
ment computation. The first step is to extract the cases from the log array
as shown in Fig. 3(b). Then, we project the traces from the cases as shown in
Fig. 3(c). For each trace within the log, we compute the raw alignment cost
(δA(ti)) of the trace w.r.t. the process model. For example, Fig. 3(d) shows that
the model cannot execute activity D in t2, so it is considered as a move in the
log. On the other hand, activity C in t1 is considered as a move in the model
as it does not occur in the trace although the model would require it. The
third trace has no deviations. The raw cost of the log is the summation of the
traces’ alignment cost. For instance, the raw cost of the log array in Fig. 3(a) is
fa(LA1) = δA(t1) + δA(t1) + δA(t3) = 1 + 1 + 0 = 2.

The second objective of EC-SA is to minimize the activity execution time
variance. We assume that the same activities tend to have similar execution
duration across cases. We thus calculate the time variance using the Mean Square
Error (MSE) as in Eq. (2). MSE measures the deviation between the expected
activities durations and the correlated events durations. Given an activity a, we
compute the average of the activity durations as the expected value Timeavg(a).

A Probabilistic Approach to Event-Case Correlation for Process Mining 143

A1 A2 B3 B4 C5 D6 A7 C8

Case Id 1 2 2 2 2 2 3 3
Case 1 <A1>
Case 2 <A2, B3, B4, C5, D6>
Case 3 <A7, C8>

Trace 1
<A, B, B, C, D>1Trace 2
<A>1

Trace 3 <A, C>1

Trace 1

A B B C D

Model

A B B C >>
Trace 2
Model

Trace 3 A C
Model A C

A >>
A C

Fig. 3. Alignment computation of LA1

Given a case σ = 〈eσ1 , . . . , eσn
〉, we compute the Elapsed Time (ET), i.e., the

event duration, of an event eσi
∈ σ (with 1 � i � n) as follows:

ET(σ, eσi
) =

{
eσi

.Ts − eσi−1 .Ts if 1 < i � n

0 otherwise
(1)

Recalling that with LA(e) we indicate the case to which e is assigned by log
array LA, the (time-)MSE is computed as follows.

MSE(LA) =
1

|LA|
|LA|∑
i=0

(Timeavg(ei.Act) − ET(LA(ei), ei))2 (2)

The MSE is used as the second-level objective function, ft. For example, the
average execution times (in minutes) of each activity in the log array of Fig. 3(a)
are Timeavg(B) = 2.52, Timeavg(C) = 12.02, and Timeavg(D) = 15.02. Consid-
ering the expected time values for each of the events, we have that ft(LA1) =
MSE(LA1) = 4.1min.

Based on the energy function, i.e., on objective functions fa (alignment cost)
and ft (time-MSE), the energy cost function, δfc(x, x′), is computed as follows.

δfc(x, x′) =
{

fa(x′) − fa(x) if fa(x′) > fa(x)
ft(x′) − ft(x) otherwise. (3)

prob(x′) = exp
−δfc(x,x′)

τcurr (4)

The acceptance probability, prob(x′), is computed using δfc(x, x′) and the cur-
rent temperature (τcurr) as shown in Eq. (4). EC-SA compares the value of
prob(x′) with a random value in the interval [0, 1] to accept (if higher) or reject
(if lower) the new neighbor. In this way, we simulate the annealing process,
enforced by the fact that the decrease of the τcurr temperature also diminishes
the randomness of the choice. Furthermore, notice that the memory-less stochas-
tic perturbation makes it possible to skip the local optimal.

144 D. Bayomie et al.

Algorithm 1. Selection of the solution for the next iteration
input : Current LogArray x; new neighbor LogArray x′

output: Selected LogArray

1 if fa(x
′) � fa(x) then return x′ ;

2 else if fa(x
′) = fa(x) then

3 if ft(x
′) � ft(x) or prob(x′) � random(0, 1) then return x′ ;

4 else if fa(x
′) > fa(x) and prob(x′) � random(0, 1) then return x′ ;

5 return x

Selection of the Next Individual. Algorithm 1 shows the full selection pro-
cedure of the individual for the next iteration. Its decision between x and x′

is based on the objective functions, fa (first-level) and ft (second-level), and
prob(x′) (perturbation). If the new neighbor (x′) has a lower alignment cost,
then it is selected. If the new neighbor (x′) and current individual (x) have the
same alignment cost, then we check the activity time variance. We alter the final
decision with a random selection weighed by prob(x′) which, in turn, is calcu-
lated on the basis of the current temperature, τcurr, and δfc(x, x′). As Eq. (3)
shows, also δfc(x, x′) considers ft(x) and ft(x′) in this case. On the contrary, if
the new neighbor has a higher alignment cost than the current individual, we
calculate δfc(x, x′) based on fa(x) and fa(x′). The acceptance probability, again,
may alter the decision. This process is repeated for each individual within the
population.

Running Example. Figure 4 shows the intermediate results within the EC-SA
iterations. We assume that Smax = 4 and τinit = 100. Figure 4(a) shows the new
individual created from the initial individual x = LA1. Since fa(x) = fa(x′) and
ft(x) < ft(x′) , then δfc(x, x′) is computed considering ft. δfc(x, x′) is equal to
0.4. Thus, prob(x′) is calculated on the basis of τcurr = 100 and δfc(x, x′). Upon
the comparison of prob(x′) against a random value in [0, 1], we assume that
x′ is selected and replaces x in the population. Figure 4(b) shows the second
iteration, where fa(x′) = 0 � fa(x) = 2. Therefore, x′ is directly selected
without computing the acceptance probability as it performs better than the
current individual (x). Figure 4(c) shows the last iteration. The new neighbor
achieves a higher fa(x′) = 1 than the current individual (fa(x) = 0). Thus,
δfc(x, x′)is computed on the basis of fa. Based on prob(x′) at τcurr = 91 and a
selection against the random value, we assume that x′ is rejected and x is kept
in the population.

Finally, EC-SA returns the solution that has the best fa and ft over all the
iterations, i.e., the global optimal solution xG till Smax, as shown in Fig. 1(c).
Following the EC-SA steps in Fig. 2, the algorithm proceeds until Scurr = Smax.
The replaying of the events from different changing points in the log over the
iterations grows the search space to explore. Accepting a worse solution than

A Probabilistic Approach to Event-Case Correlation for Process Mining 145

A1 A2 B3 B4 C5 D6 A7 C8

Case Id 1 2 2 2 2 2 3 3

A1 A2 B3 B4 C5 D6 A7 C8

Case Id 1 2 1 1 1 1 3 3

A1 A2 B3 B4 C5 D6 A7 C8

Case Id 1 2 1 1 1 1 3 3

A1 A2 B3 B4 C5 D6 A7 C8

Case Id 1 2 1 2 1 2 3 3

A1 A2 B3 B4 C5 D6 A7 C8

Case Id 1 2 1 2 1 2 3 3

A1 A2 B3 B4 C5 D6 A7 C8

Case Id 1 2 1 1 1 2 3 3

Fig. 4. EC-SA iterations, with Smax = 3 and τinit = 100

the current solution in some iterations helps to skip the optimal local solution
and reach the optimal global solution.

4 Evaluation

We implemented EC-SA in a freely available prototype tool.1 Using this tool we
conducted two experiments to evaluate the accuracy and time performance of our
approach, and compared the results with the state-of-the-art approach DCI [7].

4.1 Design

Given an event log with correlated events (the “original log”), we removed the
case identifiers and created an uncorrelated set of events. Using the latter log
as input, we conducted two experiments (see Fig. 5). First, we measured the
accuracy of the log generated by our approach against the original log, by taking
as input process knowledge the set of distinct traces extracted from the original
log itself. The purpose of this first experiment was to measure the loss of accuracy
in the log produced by EC-SA, when using as input the equivalent of a perfectly
fitting and precise process model (as represented by the set of traces of the
original log). In the second experiment, instead of the distinct traces of the
original log, we used as process knowledge the process model mined from the
original log using two state-of-the-art automated discovery methods: Split Miner
[4] and Inductive Miner [10]. These two methods strike different tradeoffs in terms
of fitness, which captures the degree to which the discovered process model is able
to recognize the traces in the event log, and precision, which captures the extent
to which the behavior allowed by the process model is observed in the event log.
The purpose of this second experiment was to measure how well our approach
is able to correlate events, in spite of an input model that is not perfectly fitting

1 Available at https://github.com/DinaBayomie/EC-SA/releases/tag/v1.0.

https://github.com/DinaBayomie/EC-SA/releases/tag/v1.0

146 D. Bayomie et al.

nor precise. This second scenario is closer to reality, where a process model
may be available within the organisation, though this model is not a faithful
representation of the behavior captured by the set of uncorrelated events we
want to correlate. Finally, we compared the results of the second experiment
with the DCI approach as a baseline.

Fig. 5. Evaluation steps

Table 1. Example illustrating L2Lsim computation steps

To measure the accuracy of the event log generated by EC-SA w.r.t. the
original log, we used two measures: L2Lsim and L2LSMAPE. L2Lsim is a log-to-
log similarity measure, defined as the average string-edit distance between each
trace of the generated log and its closest trace in the original log, weighted by
the relative frequency of each trace in the two logs (cf. Definition 1). In essence,
this measure is the transposition of the alignment-based fitness measure between
a model and a log [1] to the case of two logs. L2LSMAPE is the symmetric mean
absolute error of the events elapsed time between the two logs (cf. Definition 2).
We used this measure to assess the time deviation between the events in the
generated log and those in the original log. Finally, we measured the time taken
by our approach and by DCI to complete the correlation task, using a timeout
of 24 h.

Definition 1 (L2Lsim). Let Δins
del be the string-edit distance allowing only for

insertions and deletions [12]. Let L1 and L2 be two event logs of same cardinality
N , L1 = {σ1,1, σ1,2, . . . , σ1,N} and L2 = {σ2,1, σ2,2, . . . , σ2,N}. We define the
pair of trace-closest cases of L1 and L2, (σ1,�, σ2,�), as follows:

(σ1,�, σ2,�) = arg min
σ1,i∈L1
σ2,j∈L2

{
Δins

del(Act(σ1,i),Act(σ2,j))
}

with 1 � i, j � N (5)

A Probabilistic Approach to Event-Case Correlation for Process Mining 147

The log-to-log similarity distance L2Lsim is thus inductively defined as follows:

N × L2Lsim(L1, L2) =

{
Δins

del(Act(σ1,1),Act(σ2,1)) if |L1| = |L2| = 1
L2Lsim(L1 \ {σ1,�}, L2 \ {σ2,�}) otherwise

(6)

Operationally, L2Lsim is computed as follows: we first sort L1 and L2 by their
trace-closest pairs of cases, then we sum up the respective Δins

del distances till
saturation, and finally we derive L2Lsim by averaging the sum over the number
of cases in the logs. Table 1 shows two example logs, L1 in Table 1(a) and L2

in Table 1(b), and the computation of L2Lsim(L1, L2). We compute Δins
del for

each pair of traces, and sort them as in Table 1(c). For instance, Δins
del(t1,3,t2,2)

is 0 as there is no deviation between the two traces. By selecting this pair,
Δins

del(t1,3, σ2,�)) and Δins
del(t1,�, σ2,2) are removed (the marked cells in Table 1(c)).

Thus, L2Lsim(L1, L2) = 2
3 ≈ 0.67.

Definition 2 (L2LSMAPE). L2LSMAPE is the Symmetric Mean Absolute Error
of the events Elapsed Time (ET) between two event logs, L1 and L2, such
that their events are equivalent, i.e., UL(L1) = UL(L2). Let ET(L(e), e) be the
Elapsed Time of event e in log L as per Eq. (1). We define L2LSMAPE as follows:

L2LSMAPE(L1, L2) =
1∑|L1|

i=0 |σi|
×

∑
e∈UL(L1)

|ET(L1(e), e) − ET(L2(e), e)|
|ET(L1(e), e)| + |ET(L2(e), e)| (7)

In the following, we will use the original log as L1 and the generated log as
L2.

4.2 Datasets

We used a dataset of model-log pairs from a recent benchmark of automated
discovery methods [3]. This collection contains twelve public real-life event logs
extracted from the 4TU Centre for Research Data.2 These logs record executions
of business processes from a variety of domains, such as healthcare, finance,
government and IT service management. They are the BPI Challenge (BPIC)
logs from 2012 to 2017, the Road Traffic Fines Management Process (RTFMP)
log, and the SEPSIS Cases log.3

Table 2 reports the logs characteristics. These logs are widely heterogeneous
ranging from simple to very complex, with a log size ranging from 681 traces (for
the BPIC152f log) to 150,370 traces (for the RTFMP log). A similar variety can
be observed in the percentage of distinct traces, ranging from 0.2% to 80.6% of
2 https://data.4tu.nl/repository/collection:event logs real.
3 Seven of these logs, namely the BPIC14 log, the five BPIC15 logs and the BPIC17

log, were filtered in [3] using the technique in [8] to remove infrequent behavior. We
kept this filtering to be able to use the models associated with these logs in the
benchmark dataset.

https://data.4tu.nl/repository/collection:event_logs_real

148 D. Bayomie et al.

Table 2. Descriptive statistics of public logs

Traces Events Tr. length

Evt. log Total
Dst.
%

Total
Dst.
%

m. avg M.

BPIC12 13087 33.4 262200 36 3 20 175

BPIC13cp 1487 12.3 6660 7 1 4 35

BPIC13inc 7554 20.0 65533 13 1 9 123

BPIC14f 41353 36.1 369485 9 3 9 167

BPIC151f 902 32.7 21656 70 5 24 50

BPIC152f 681 61.7 24678 82 4 36 63

BPIC153f 1369 60.3 43786 62 4 32 54

BPIC154f 860 52.4 29403 65 5 34 54

BPIC155f 975 45.7 30030 74 4 31 61

BPIC17f 21861 40.1 714198 41 11 33 113

RTFMP 150370 0.2 561470 11 2 4 20

SEPSIS 1050 80.6 15214 16 3 14 185

Table 3. Results of Exp. 1

Evt. log L2Lsim L2LSMAPE

BPIC12 0.87 0.13

BPIC13cp 0.85 0.20

BPIC13inc 0.91 0.21

BPIC14f 0.86 0.28

BPIC15f1 0.89 0.22

BPIC15f2 0.82 0.09

BPIC15f3 0.91 0.02

BPIC15f4 0.83 0.21

BPIC15f5 0.94 0.02

BPIC17 0.96 0.31

RTFMP 0.96 0.32

SEPSIS 0.91 0.11

the total number of traces, and the number of event classes (i.e., the activities
executed within the process), ranging from 7 to 82. Finally, the length of a trace
also varies from very short, with traces containing only one event, to very long,
with traces containing 185 events.

For each log, we used the process model obtained by Split Miner (SM) and
Inductive Miner (IM), both with noise filtering enabled and default parameters,
as per the benchmark in [3]. These two methods strike different tradeoffs between
fitness and precision: IM tends to create models with higher fitness but low
precision; SM tends to create smaller models with an overall higher F-Score (the
harmonic mean of fitness and precision), though with lower fitness. This led to
a total of 24 log-model pairs for our evaluation.

4.3 Results

Tables 3 and 4 show the results of the two experiments, respectively. From Exp.
1 we can see that using a perfectly accurate input (the distinct traces of the
original log), the average loss of accuracy is only 10% (average L2Lsim = 0.901,
min = 0.82, max = 0.96). This is consistent with the events elapsed time, which
is relatively low across all twelve logs (average L2LSMAPE = 17.6%, mix = 2%,
max = 28%). Overall, these results indicate the robustness of the specific opti-
mization technique chosen (multi-level simulated annealing), which proves to be
appropriate for the problem at hand. These results were achieved by setting the
initial temperature to 1,000 and the maximum number of steps to 100.

As expected, when comparing the results of the two experiments (cf. Tables 3
and 4), the logs generated in Exp. 1 using as input the distinct log traces of
the original log have higher L2Lsim and lower L2LSMAPE values than the logs
generated in Exp. 2 using a process model as input. However, the loss in L2Lsim

between the two experiments is only 4.42% on average, barring a modest increase
in L2LSMAPE (16.67% on average). These differences are attributable to the fact
that the models used as input are not perfectly accurate. Specifically, fitness

A Probabilistic Approach to Event-Case Correlation for Process Mining 149

Table 4. Results of Exp. 2 with Split Miner (SM) and Inductive Miner (IM)

SM-mined model SM-based output log IM-mined model IM-based output log

Source log Fitness Precision L2Lsim L2LSMAPE Fitness Precision L2Lsim L2LSMAPE

BPIC12 0.97 0.72 0.83 0.44 0.98 0.50 0.82 0.42

BPIC13cp 0.90 0.93 0.78 0.41 0.82 1.00 0.78 0.40

BPIC13inc 0.98 0.92 0.92 0.61 0.92 0.54 0.89 0.57

BPIC14f 0.77 0.84 0.77 0.40 0.89 0.64 0.77 0.42

BPIC15f1 0.90 0.88 0.81 0.30 0.97 0.57 0.79 0.35

BPIC15f2 0.77 0.90 0.77 0.12 0.93 0.56 0.74 0.21

BPIC15f3 0.94 0.78 0.85 0.18 0.95 0.55 0.82 0.15

BPIC15f4 0.73 0.91 0.77 0.33 0.96 0.58 0.74 0.30

BPIC15f5 0.79 0.94 0.90 0.14 0.94 0.18 0.60 0.32

BPIC17 0.96 0.81 0.94 0.45 0.98 0.70 0.92 0.47

RTFMP 1.00 0.97 0.96 0.47 0.99 0.70 0.93 0.52

SEPSIS 0.76 0.77 0.89 0.27 0.99 0.45 0.72 0.40

and precision affect the L2Lsim measure negatively. Given that in general the
precision of IM is much lower than that of SM, while its fitness is slightly higher,
we obtain better results both in terms of L2Lsim and L2LSMAPE when using as
input the models discovered by SM. For example, the precision of the SM model
for BPIC15f5 is 0.94 as opposed to 0.18 in the case of IM, while the two fitness
measures are much closer to each other (0.79 for SM, 0.94 for IM). A very low
precision as in the case of IM for this log, provides a large number of possibilities
to replay the process and thus to correlate events in ways that are different than
those in the original log. In the specific case of the BPIC15f5 log, this leads to a
difference of 30% in L2Lsim between SM and IM.

Leaving aside the specific differences between SM and IM, the average L2Lsim

across all 24 model-log pairs is still relatively high (0.82), which means that in
most cases we can correlate events correctly. The average L2LSMAPE is also
relatively low (0.36), meaning that the event times in the generated log deviate
by 36% on average from those of the original log. In other words, we correctly
assign events to their specific cases on 64% of the cases on average.

Table 5 compares the results of the second experiment with DCI using the
models generated by SM. This table also reports the time performance of the
two approaches. Looking at the accuracy, we can see that EC-SA outperforms
DCI in all except three logs where L2Lsim is higher for DCI, and one log where
L2LSMAPE is lower for DCI. In those logs where EC-SA outperforms DCI, the
differences in L2Lsim range from small to substantial increases. For example, in
the case of the BPIC15f5 log, our approach’s L2Lsim is 22% higher than that
of DCI. In this case, the discovered model has a fitness of 0.79. As DCI strictly
depends on the process model behavior, it cannot assign the deviating events to
any case, thus around 22% of the events will not be correlated and thus excluded
from the generated log. EC-SA handles this problem by randomly assigning these
events to one of the open cases, i.e. cases started before the event occurrence.

150 D. Bayomie et al.

On the contrary, when the model has very high fitness, DCI is able to correlate
all the events to their possible cases because it builds a complete representation
of the solution space, which will thus include the optimal solution. On the other
hand, EC-SA’s degree of randomness may lead to escaping the global optimum
if the number of steps set is not sufficiently high, for the model-log at hand.
As a result, DCI can have a slightly higher L2Lsim than EC-SA, as in the case
of BPIC12 where the discovered model has fitness of 0.97, and DCI’s L2Lsim is
6% higher than that of EC-SA. In reality, though, we cannot assume the input
model to be highly fitting. Rather, we expect this model not to be very accurate
both in terms of fitness and precision, given that it would be a model created
manually by process analysts through interviews and workshops (so it may be
biased towards the perspective of particular process participants), and may in
addition be out-of-date.

Table 5. Results of Exp. 2 with EC-SA and DCI (using the SM-mined model)

EC-SA output (SM) DCI output (SM)

Source log L2Lsim L2LSMAPE Exec. [h] L2Lsim L2LSMAPE Exec. [h]

BPIC12 0.83 0.44 5 0.89 0.47 18.5

BPIC13cp 0.78 0.41 1.1 0.81 0.30 5

BPIC13inc 0.92 0.61 2.2 0.77 0.50 19

BPIC14f 0.77 0.40 2.7 24

BPIC15f1 0.81 0.30 5.2 0.81 0.43 21.9

BPIC15f2 0.77 0.12 4 0.71 0.54 22.3

BPIC15f3 0.85 0.18 6 0.89 0.20 23.7

BPIC15f4 0.77 0.33 6 0.71 0.53 22.7

BPIC15f5 0.90 0.14 5 0.74 0.50 23.5

BPIC17 0.94 0.45 8 24

RTFMP 0.96 0.47 7 24

SEPSIS 0.89 0.27 1.6 0.84 0.25 17

Looking at the time performance, we can observe that DCI suffers from signif-
icant performance issues as it takes close to 20 h for the majority of logs, timing
out at 24 h for three logs. Specifically, DCI takes 4× the average execution time
of EC-SA. In effect, DCI requires as input extra information such as minimum,
average and maximum execution time for each activity. For our evaluation, we
calculated this heuristic data based on the three quartiles of the activities exe-
cution time in the original log. The quality of the DCI output is affected by
the quality of its inputs. The heuristic data affects the L2LSMAPE and L2Lsim

because it is used to prune the various correlation possibilities assessed by the
approach.

5 Conclusion

We presented a novel approach called EC-SA to address the problem of correlat-
ing events that belong to the same case. Our approach uses multi-level objective

A Probabilistic Approach to Event-Case Correlation for Process Mining 151

simulated annealing for mapping each event to a case. For optimization, we use
trace alignment cost and activity execution time variance. Our evaluation in
terms of log-to-log similarity, symmetric mean absolute error of event elapsed
times and overall time performance on a range of real-life model-log pairs shows
that our approach outperforms the state of the art. A possible avenue for future
work is to include the payload of uncorrelated events to improve correlation accu-
racy, e.g. data inputs/outputs of process activities. Another avenue for future
work is to explore different forms of process knowledge as input to EC-SA, e.g.,
declarative rules [5].

Acknowledgements. This research is partly funded by the Australian Research
Council (DP180102839) and by the EU H2020 programme under agreement 645751
(RISE BPM).

References

1. Adriansyah, A., van Dongen, B., van der Aalst, W.: Conformance checking using
cost-based fitness analysis. In: Proceedings of EDOC. IEEE (2011)

2. Askarzadeh, A., dos Santos Coelho, L., Klein, C., Mariani, V.C.: A population-
based simulated annealing algorithm for global optimization. In: Proceedings of
SMC. IEEE (2016)

3. Augusto, A., et al.: Automated discovery of process models from event logs: review
and benchmark. IEEE TKDE 31(4), 686–705 (2019)

4. Augusto, A., Conforti, R., Dumas, M., La Rosa, M., Polyvyanyy, A.: Split miner:
automated discovery of accurate and simple business process models from event
logs. Knowl. Inf. Syst. 59(2), 251–284 (2019). https://doi.org/10.1007/s10115-018-
1214-x

5. Baier, T., Di Ciccio, C., Mendling, J., Weske, M.: Matching events and activities
by integrating behavioral aspects and label analysis. SoSyM 17(2), 573–598 (2018)

6. Bala, S., Mendling, J., Schimak, M., Queteschiner, P.: Case and activity identifica-
tion for mining process models from middleware. In: Buchmann, R.A., Karagiannis,
D., Kirikova, M. (eds.) PoEM 2018. LNBIP, vol. 335, pp. 86–102. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-02302-7 6

7. Bayomie, D., Awad, A., Ezat, E.: Correlating unlabeled events from cyclic business
processes execution. In: Nurcan, S., Soffer, P., Bajec, M., Eder, J. (eds.) CAiSE
2016. LNCS, vol. 9694, pp. 274–289. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-39696-5 17

8. Conforti, R., La Rosa, M., ter Hofstede, A.: Filtering out infrequent behavior from
business process event logs. IEEE TKDE 29(2), 300–314 (2017)

9. Ferreira, D.R., Gillblad, D.: Discovering process models from unlabelled event logs.
In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol.
5701, pp. 143–158. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-03848-8 11

10. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured
process models from event logs containing infrequent behaviour. In: Lohmann, N.,
Song, M., Wohed, P. (eds.) BPM 2013. LNBIP, vol. 171, pp. 66–78. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-06257-0 6

https://doi.org/10.1007/s10115-018-1214-x
https://doi.org/10.1007/s10115-018-1214-x
https://doi.org/10.1007/978-3-030-02302-7_6
https://doi.org/10.1007/978-3-319-39696-5_17
https://doi.org/10.1007/978-3-319-39696-5_17
https://doi.org/10.1007/978-3-642-03848-8_11
https://doi.org/10.1007/978-3-642-03848-8_11
https://doi.org/10.1007/978-3-319-06257-0_6

152 D. Bayomie et al.

11. Meroni, G., Di Ciccio, C., Mendling, J.: An artifact-driven approach to monitor
business processes through real-world objects. In: Maximilien, M., Vallecillo, A.,
Wang, J., Oriol, M. (eds.) ICSOC 2017. LNCS, vol. 10601, pp. 297–313. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-69035-3 21

12. Navarro, G.: A guided tour to approximate string matching. ACM Comput. Surv.
33(1), 31–88 (2001)

13. Nezhad, H., Saint-Paul, R., Casati, F., Benatallah, B.: Event correlation for process
discovery from web service interaction logs. VLDB J. 20(3), 417–444 (2011)

14. Pourmirza, S., Dijkman, R., Grefen, P.: Correlation miner: mining business pro-
cess models and event correlations without case identifiers. IJCIS 26(02), 1742002
(2017)

15. Reguieg, H., Toumani, F., Motahari-Nezhad, H.R., Benatallah, B.: Using Mapre-
duce to scale events correlation discovery for business processes mining. In: Barros,
A., Gal, A., Kindler, E. (eds.) BPM 2012. LNCS, vol. 7481, pp. 279–284. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-32885-5 22

16. Soffer, P., Hinze, A., Koschmider, A., Ziekow, H., et al.: From event streams to
process models and back: challenges and opportunities. Inf. Syst. 81, 181–200
(2019)

17. van der Aalst, W.: Process Mining - Data Science in Action, 2nd edn. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4

18. Walicki, M., Ferreira, D.: Sequence partitioning for process mining with unlabeled
event logs. DKE 70(10), 821–841 (2011)

https://doi.org/10.1007/978-3-319-69035-3_21
https://doi.org/10.1007/978-3-642-32885-5_22
https://doi.org/10.1007/978-3-662-49851-4

DCR-KiPN a Hybrid Modeling Approach
for Knowledge-Intensive Processes

Flávia Santoro1(B), Tijs Slaats2, Thomas T. Hildebrandt2,
and Fernanda Baiao3

1 University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
flavia@ime.uerj.br

2 University of Copenhagen, Copenhagen, Denmark
{slaats,hilde}@di.ku.dk

3 Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
fbaiao@inf.puc-rio.br

Abstract. Hybrid modeling approaches have been proposed to repre-
sent processes that have both strictly regulated parts and loosely regu-
lated parts. Such process is so-called Knowledge-intensive Process (KiP),
which is a sequence of activities based on intense knowledge use and
acquisition. Due to these very particular characteristics, the first author
previously proposed the Knowledge-intensive Process Ontology (KiPO)
and its subjacent notation (KiPN). However, KiPN still fails to represent
the declarative perspective of a KiP. Therefore, in this paper, we propose
to improve KiPN by integrating it with the declarative process modeling
language DCR Graphs. DCR-KiPN is a hybrid process modeling nota-
tion that combines a declarative process model language (activities and
business rules) with the main aspects of a KiP, such as cognitive ele-
ments (decision rationale towards goals, beliefs, desires and intentions),
interactions and knowledge-exchange among its participants.

Keywords: Knowledge-intensive Process · Hybrid process notation

1 Introduction

Process models are typically represented using visual notations founded on well-
established metamodels that define constructs of the language and structural
rules among them. Notations comprise a set of graphical diagrams and symbols
constrained by those rules. Such symbols and rules should ideally be enough
for expressing important aspects of the business processes, both completely and
correctly. Popular visual notations for modeling business processes include the
industry standard Business Process Modeling Notation (BPMN), which focuses
on the representation of (imperative) structured control-flow oriented processes.

When it comes to flexible processes (whose control flow is not rigid), other
modeling approaches, such as declarative (constraint-based) notations, focus on
what “can” be done rather than on what “should” be done. Declare [11] and
c© Springer Nature Switzerland AG 2019
A. H. F. Laender et al. (Eds.): ER 2019, LNCS 11788, pp. 153–161, 2019.
https://doi.org/10.1007/978-3-030-33223-5_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33223-5_13&domain=pdf
https://doi.org/10.1007/978-3-030-33223-5_13

154 F. Santoro et al.

DCR Graphs [5] are examples of declarative modeling languages that support
a higher degree of flexibility in business process modeling. However, many pro-
cesses in real life are neither totally unstructured nor ad-doc; thus, hybrid mod-
eling approaches [2,10,13] have been proposed to address such processes. Many
examples of such scenarios are classified as a Knowledge-intensive Process (KiP).

A KiP is a sequence of activities based on intense knowledge use and acqui-
sition. It is dynamic, lack a predefined control-flow, and is highly dependent on
the experience and knowledge of stakeholders [1]. Due to these very particular
characteristics, Franca et al. [12] proposed an ontology for the definition of KiP,
the Knowledge-intensive Process Ontology (KiPO). Based on this metamodel,
Netto et al. [9] developed the Knowledge-intensive Process Notation (KiPN). The
original metamodel was extended to incorporate constructs related to declarative
constraints [6], but the notation was not properly updated.

We investigate how to represent the integration of the main components of
KiPO using a declarative paradigm in KiPN. This is the classic problem of how
to define a hybrid modeling approach that combines flexibility with constraints
in a process model, but more than this, including many other elements that
cannot be represented in one single diagram. From the other side, DCR Graphs
is a declarative approach for flexible business process modeling in which both the
constrains as well as the run time state can be visualized and also it allows an
effective process execution [5]. So, we argue that bringing together DCR Graphs
and KiPN addresses the problem of hybrid modeling in the context of KiP.

The goal of this paper is to discuss the conceptual modeling of KiP and
present DCR-KiPN which is a hybrid process modeling notation that combines a
declarative process model language (activities and business rules) with the main
aspects of a KiP (decision rationale towards goals, beliefs, desires and intentions,
interactions and knowledge-exchange). Our main contribution is advancing the
potential understanding of KiPs by providing the foundations for a rich concep-
tual modeling approach.

2 Preliminaries

2.1 Running Example

We use a knowledge-intensive process example from the literature to illustrate
the problem and the proposal, as well as to serve as a preliminary evaluation.
Vaculin et al. [14] described the “Solution Builder” (SB) application that sup-
ports supply chain teams “to simplify, streamline, and standardize idea to mar-
ket deployment of cross-brand solutions”. The process behind this application
is related to the complex development of a new solution involving team mem-
bers working collaboratively to understand the structure, requirements, and con-
straints of the solution. The outcome - a Prescribed Action Course (PCA) -
consists of parameterized actions to enable the solution. To create a PCA, many
parameters and issues need to be considered and, depending on the nature of the
solution, different sets of decisions need to be made. The basic process (Question-
Answer - QA) is to respond to questions formulated by the SB, previously mod-

DCR-KiPN a Hybrid Modeling Approach for Knowledge-Intensive Processes 155

eled as individual elements of knowledge. Usually, answering a question requires
research, and moreover, an answer can be reworked, postponed or committed.

This is a typical KiP scenario that presents the challenges of modeling not
only the tasks to be done (answer questions) but also the decisions (which could
be based on rules). Since the decisions are dependent on the participant expertise,
each instance might take different paths. For example, one expert could opt to
delay an answer in order to start a research about the topic, and this could
add a non-expected delay to that process instance. In order to have a complete
understanding of the process, it is also necessary to represent the interactions
among the participants, the cognitive aspects and alternatives they consider.

2.2 Modeling Knowledge-Intensive Processes

KIPs encompass various interconnected knowledge-intensive decision making
tasks conducted by human workers [1]. Some examples of KiPs are customer
support, design of new products/services, and IT governance [7]. An important
aspect of a KiP is the large number of exceptions that can occur in different
instances. Franca et al. [12] proposed the KiPO, a metamodel to define KiP con-
cepts formalized in an ontology well-founded in UFO [4]. KiPO [12] contemplates
the various perspectives of a KiP, especially related to cognitive aspects, business
rules, decision making and collaboration. Moreover, Netto et al. [9] presented its
subjacent notation (KiPN) which stands for the graphical representation of the
KiPO elements. KiPN is a visual syntax (graphic vocabulary and grammar rules)
that comprises a set of 6 interrelated diagrams, which in turn are composed by
symbols that altogether represent the main perspectives of a KiP.

KiP Diagram is the main diagram, which aims to provide an overview of the
process by showing its activities and goal. Unlike a BPMN representation, there
is no predefined order of execution for the activities. Business Rules Diagram
documents the constraints that, in normal circumstances, should be considered
in a decision-making task. The purpose of this diagram is to visualize the business
rules considered in each alternative. Socialization Diagram represents aspects of
collaboration and knowledge exchange among agents. Decision Map describes the
decision-making dynamics, allowing the visualization of the rationale that leads
to a decision. Agent Matrix maps the skills and experience of the agents. Inten-
tion Panel depicts the intrinsic characteristics of agents which might influence
the main activities and goals of the process, such as, desires that motivate agents
to act, beliefs and feelings when participating in a socialization or decision.

KiPO was recently extended by Lyrio [6] who introduced the concepts of
Linear-time Temporal Logic (LTL) Declare templates. Moreover, the character-
istic of unpredictability in KiP can lead to the violation of constraints. These vio-
lations should be represented, so that they could be managed. Levels of enforce-
ment assign a minimum degree of compliance to be respected by process agents.
The enforcement level (EL) of a business rule is defined at design time (Con-
ceived EL) but violations are only identified at runtime (Perceived EL). Up to
now, KiPN did not provide elements to model such concepts.

156 F. Santoro et al.

2.3 Modeling Declarative Processes with DCR Graphs

The theory of Dynamic Condition Response (DCR) Graphs [5] was developed
independently from the notation Declare, sharing inspiration from LTL and the
early work on declarative constraint patterns used for formal verification [8].
DCR Graphs offer several advantages: (1) provides a clear notation of state of
the process as it is executed, (2) uses only a handful of basic relations (constraints
and effects), (3) provides strong formal expressiveness results [3].

Figure 1 shows an example of a DCR Graph for the QA process. The boxes in
the diagram represent the (completion of) activities of the process, the bottom
part contains the name of the activity, the top bar may contain a number of exe-
cuting roles. DCR Graphs support 5 basic relations between activities: condition,
response, milestone, exclusion and inclusion. The condition relation, indicated in
orange with a bullet at the target, represents that the activities Rework answer
and Commit Answer cannot execute before the activity Answer question has been
done. Condition relations may also have an associated delay depicted by a num-
ber next to the arrow, in the example, Commit Answer can only happen at least
3 days after the last execution of Answer question, i.e. leaving time to do more
research and possibly decide to rework the answer.

The response relation, indicated in blue with a bullet at the source, indi-
cates that the execution of activity Answer question requires the activity Commit
Answer to happen at some later time. Responses are not immediate and should
not be confused with the notion of flow: we may wait with committing the
answer, and execute any other enabled activity in the meantime. The exclusion
relation, indicated in red and with a % sign at the target, represents that when
the activity at the source is executed, the activity at the target is excluded from
the process. In the example, this means that when Answer question is executed,
Postpone answer is excluded, and when Commit Answer is executed, Do research,
Rework answer and Answer question are excluded. Dually, the inclusion relation,
indicated in green and with a + sign at the target, indicates that the activity
at the target is included when the activity at the source is executed. So, after
deciding to rework the answer, the postpone activity is included again.

Fig. 1.Marking of timed DCR Graph after
the execution of Answer question. (Color
figure online)

Boxes also carry a marking consist-
ing of three parts indicating a state
of each activity. The first part is if
an activity has been executed (and
how long ago) - indicated with a green
check mark. The second part is if the
activity is a pending response, required
to happen in the future (and possibly
a deadline for when) - marked with a
blue exclamation mark. The third part
is if it is currently included in the pro-
cess - indicated by marking excluded
(not included) with a dashed border.

DCR-KiPN a Hybrid Modeling Approach for Knowledge-Intensive Processes 157

3 DCR-KiPN

DCR-KiPN is a hybrid notation to represent the dynamic aspect of KiP. DCR
graphs provide the representation of flexible execution of tasks in a dynamic
way, in which we add violations and their respective enforcement levels. KiPN
brings the diverse perspectives of KiP, then, composing the hybrid model.

Fig. 2. Extended metamodel

The perception of
a business rule by
an Agent occurs dur-
ing the analysis of
the alternatives in the
decision-making pro-
cess [6], i.e., the Agent
perceives the business
rule through the con-
sent of its compliance
level. The Perceived
EL of a rule in a
decision-making rep-
resents the consensus
among all the agents
who participated in
the action. The indi-
vidual perceptions of the agents are represented by the Feelings or Beliefs that
influence the decision. The event that might cause the rule violation is unpre-
dictable and, therefore, cannot be described in a process model. This does not
however exempt it from being represented to provide a better understanding of
what happened in a specific instance. The violation of a business rule occurs
when, during the execution of a process instance, it is no longer possible for
the rule to be satisfied. E.g. a rule given by a condition relation is violated if
the activity at the target of the relation is executed before the activity at the
source. While violation of condition relations can be immediately detected, it is
not possible to determine that a response relation is violated in finite time. A
violation of a response relation with a time deadline can, however, be detected.

DCR graph allows events to run multiple times. The conflict relation is gener-
alized to two relations of dynamic exclusion and inclusion of events. This ensures
that the dynamic characteristic of a KiP will be explicit in the model because
events can be re-executed and skipped, as well as constraints can be re-defined
for specific cases. The most important is the representation of such possibilities.
In this sense, the proposed incorporation of DCR Graphs as the main KiPN
diagram presents two requirements: 1. Extension of the KiPO to incorporate
the inclusion and exclusion relations and the concepts of Enforcement Levels for
conditions and responses; and, 2. Extension of DCR Graphs notation to repre-
sent EL on conditions and responses. We modified KiPO by adding the Classes
Include and Exclude as the concepts formally defined in [5]. As we will see in
the next section, sometimes, the Classes Include and Exclude, when dynamically

158 F. Santoro et al.

instantiated in a running case of a process by adding or excluding events, shows
a Decision made by the Agent, which implies in a Perceived EL. Thus, making
inclusions and exclusions explicit provides an enhanced understanding of the
decision made and its consequences. Figure 2 depicts KiPO extension.

4 DCR-KiP Notation and Application Scenario

The EL concepts and the new relationships defined in the metamodel should
be represented in a visual format. For each enforcement level adopted in the
ontology, we propose an icon, as presented in Fig. 3, that is added to modifiers
on condition and response relations. They explain the enforcement level of the
constraint and possibly providing an escalation activity to be carried out in case
the constraint is violated.

Fig. 3. Representation of EL

In order to evaluate DCR-KiPN and draw
preliminary conclusions about how represen-
tative the extended notation is, we have mod-
eled the KiP scenario of our running exam-
ple and we discuss its advantages and limita-
tions. Figure 4 shows a partial representation
of this scenario, showing the representation
of posting and answering questions.

Fig. 4. Example DCR graph with
violations and enforcement levels

After a question is posted, it should be
answered within the deadline of 14 days.
However, two of the possible violations are
allowed in the model: either the answer can
be postponed before the deadline passes (but
still the answer is required eventually) or the
deadline can be violated and subsequently
justified.

The behaviour of this example can in
fact be encoded as the plain timed DCR
graph in Fig. 5. While the latter can be exe-
cuted directly by the current DCR tools (e.g.
https://dcrgraphs.net), the former is likely
easier to understand by an end-user.

4.1 Discussion

This proposal aims at using all the representativeness that KiPN offers to model
a KiP allied to the possibility of representing the dynamics of a running process
embedded in a process model, i.e., choosing the next activity to be performed
even if the agent has to “break a business rule”, which is in fact the reality of
such type of processes. This hybrid language integrates the declarative paradigm
with all the other elements and diagrams that compose the KiPN. Consequently,
in our running example, it would be possible to model the beliefs, desires and

https://dcrgraphs.net

DCR-KiPN a Hybrid Modeling Approach for Knowledge-Intensive Processes 159

intentions associated to the respondent (the innovation agent) as shown in Fig. 6,
the Intention Panel of KiPN.

Fig. 5. Encoding of violations and EL

The process of answering a ques-
tion involves decisions that leads the
respondent, for example, to rework on
his/her initial solution for the prob-
lem. In this case, he/she will do some
research as many times as he/she
finds necessary to provide ground for
his/her activity. The Decision Map
Diagram supports the representation
of his/her rationale, as in Fig. 7. The
decision on how to answer a question
is an important element of this KiP.
Thus, when we look at the diagrams
of Figs. 4 and 5, we can see the paths
chosen to execute a task related to the
business rules, and the impact on the process, but the diagrams in Figs. 6 and
7 enhance our understanding of the domain by making explicit the knowledge
involved and the cognitive rationale of the participants.

Fig. 6. Intention panel for QA process Fig. 7. Decision map for QA process

Furthermore, the Business Rules diagram of KiPN may be replaced by the
extended DCR Graphs. The integration in terms of metamodel opens opportu-
nities to explore the different views in many scenarios.

5 Conclusion

The paper motivates and outlines the integration of KiPN, which is a rich nota-
tion for KiP, and the declarative modeling language of timed DCR Graphs. The
aim was to fill a gap of a proper way to capture the essence of the fulfillment
and violation of business rules in a KiP, which stands for its real dynamics, but
still allowing the integrated representation of the diverse concepts that supports

160 F. Santoro et al.

KiP understanding. Our main contribution is on adding to the body of knowl-
edge of the conceptual modeling of knowledge-intensive processes to formally
capture the semantics of business rule enforcement and violation. We contribute
specifically to its dynamic perspective and to the visualization of the impacts of
the business rules accomplishment and violation by the agents while they make
decisions on the possible paths to follow.

As for future work, we intend to perform case studies in real scenarios and
to provide formal descriptions for the solution proposed, in particular formal
encodings of all types of EL to timed DCR graphs.

Acknowledgments. Work supported by the Innovation Fund Denmark project Eco-
Know (7050-00034A) and the Danish Council for Independent Research project Hybrid
Business Process Management Technologies (DFF-6111-00337).

References

1. Ciccio, C.D., Marrella, A., Russo, A.: Knowledge-intensive processes: characteris-
tics, requirements and analysis of contemporary approaches. J. Data Semant. 4(1),
29–57 (2015)

2. Debois, S., Hildebrandt, T., Marquard, M., Slaats, T.: Hybrid process technologies
in the financial sector: the case of BRFkredit. In: vom Brocke, J., Mendling, J.
(eds.) Business Process Management Cases. MP, pp. 397–412. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-58307-5 21

3. Debois, S., Hildebrandt, T.T., Slaats, T.: Replication, refinement & reachability:
complexity in dynamic condition-response graphs. Acta Inf. 55(6), 489–520 (2018)

4. Guizzardi, G.: Ontological foundations for structural conceptual models. Ph.D.
thesis, University of Twente, October 2005

5. Hildebrandt, T.T., Mukkamala, R.R.: Declarative event-based workflow as dis-
tributed dynamic condition response graphs. In: Proceedings Third Workshop on
Programming Language Approaches to Concurrency and communication-cEntric
Software, PLACES, pp. 59–73 (2010)

6. Lyrio, R.: DecKiPO: Extending the semantic expressivity of the business rules rep-
resentation in knowledge-intensive processes scenarios. Master’s thesis, UNIRIO,
(in Portuguese) (2018)

7. Marjanovic, O., Freeze, R.D.: Knowledge intensive business processes: theoretical
foundations and research challenges. In: 44th Hawaii International International
Conference on Systems Science, HICSS-44 2011, pp. 1–10 (2011)

8. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Property specification patterns for
finite-state verification. In: 2nd Workshop on Formal Methods in Software Practice,
March 1998

9. Netto, J.M., Barboza, T., Baião, F.A., Santoro, F.M.: KiPN a visual notation for
knowledge-intensive processes. Int. J. Bus. Process Integr. Manage. (IJBPIM) 9(3),
197–219 (2019). X(Y4), 000–000

10. Parody, L., López, M.T.G., Gasca, R.M.: Hybrid business process modeling for the
optimization of outcome data. Inf. Softw. Technol. 70, 140–154 (2016)

11. Pesic, M., van der Aalst, W.M.P.: A declarative approach for flexible business
processes management. In: Business Process Management Workshops, BPM, pp.
169–180 (2006)

https://doi.org/10.1007/978-3-319-58307-5_21

DCR-KiPN a Hybrid Modeling Approach for Knowledge-Intensive Processes 161

12. dos Santos França, J.B., Netto, J.M., do E Santo Carvalho, J., Santoro, F.M.,
Baião, F.A., Pimentel, M.G.: KIPO the knowledge-intensive process ontology.
Softw. Syst. Model. 14(3), 1127–1157 (2015)

13. Slaats, T., Schunselaar, D.M.M., Maggi, F.M., Reijers, H.A.: The semantics of
hybrid process models. In: On the Move to Meaningful Internet Systems: OTM,
pp. 531–551 (2016)

14. Vacuĺın, R., Hull, R., Heath, T., Cochran, C., Nigam, A., Sukaviriya, P.: Declara-
tive business artifact centric modeling of decision and knowledge intensive business
processes. In: Proceedings of the 15th IEEE International Enterprise Distributed
Object Computing Conference, EDOC 2011, Helsinki, Finland, 29 August–2
September 2011, pp. 151–160 (2011)

Exploring the Modeling of Declarative
Processes Using a Hybrid Approach

Amine Abbad Andaloussi1(B), Jon Buch-Lorentsen1, Hugo A. López2,5,
Tijs Slaats3, and Barbara Weber1,4

1 Software and Process Engineering, Technical University of Denmark,
2800 Kongens Lyngby, Denmark

amab@dtu.dk
2 Department of Computer Science, IT University of Copenhagen,

Copenhagen, Denmark
3 Department of Computer Science, University of Copenhagen,

Copenhagen, Denmark
4 Institute of Computer Science, University of St. Gallen,

St. Gallen, Switzerland
5 DCR Solutions A/S, Copenhagen, Denmark

Abstract. Process modeling aims at providing an external representa-
tion of a business process in the shape of a process model. The com-
plexity of the modeling language, the usability of the modeling tool, and
the expertise of the modeler are among the key factors defining the diffi-
culty of a modeling task. Following a qualitative analysis approach, this
work explores a hybrid modeling technique enhanced with a tool (i.e.,
the Highlighter) to guide the transition from informal text-based pro-
cess descriptions to formal declarative process models. The exploratory
results suggest that this technique provides cognitive support to model-
ers and hint towards an enhanced quality of process models in terms of
alignment, traceability of process requirements and availability of doc-
umentation. The outcome of this work shows a clear opportunity for
future work and provides a framework for further empirical studies.

1 Introduction

A process model is a visual/graphical representation of the different components
of a business process, as well as their interrelations. The full understanding of a
process tends to be a joint construction between different process design artifacts
(process artifacts for short), including the business process model. In this paper,
we examine an approach used to relate textual process artifacts and business
process models during the Process of Process Modeling (PPM for short). This

Work supported by the Innovation Fund Denmark project EcoKnow (7050-00034A),
the Danish Council for Independent Research project Hybrid Business Process Man-
agement Technologies (DFF-6111-00337), and the European Union’s Horizon 2020
research and innovation programme under the Marie Sklodowska-Curie grant agree-
ment BehAPI No. 778233.

c© Springer Nature Switzerland AG 2019
A. H. F. Laender et al. (Eds.): ER 2019, LNCS 11788, pp. 162–170, 2019.
https://doi.org/10.1007/978-3-030-33223-5_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33223-5_14&domain=pdf
https://doi.org/10.1007/978-3-030-33223-5_14

Exploring the Modeling of Declarative Processes Using a Hybrid Approach 163

process is regarded as a “design activity” where a modeler develops an internal
representation of the business process and externalizes it through one or many
process artifacts [3]. Throughout this process, three levels of cognitive load are
induced. (1) Intrinsic load is associated with the complexity of the material
being processed, while (2) extraneous load is rising from the unnecessary rep-
resentational complexity of the task. (3) Germane load, in turn, is associated
with the effort invested in building an appropriate scheme to organize new infor-
mation efficiently [5]. During a modeling session, intrinsic load emerges from
the complexity of inferring a mental model from a set of process specifications.
Extraneous load raises from the formulation of the textual process description
and the complexity of the modeling tool. While intrinsic load is inherent to the
task and thus unavoidable, efforts can be made to reduce the extraneous load by
improving the quality of the tool-support and enhancing the PPM experience.

When considering the declarative modeling paradigm, the requirement for
lowering extraneous load in favor of extra intrinsic processing becomes more
stringent. This is due to the understandability of declarative languages, which is
shown to be controversial especially for novice end-users [8]. A hybrid modeling
approach can, in turn, be used to facilitate the modeling of declarative business
processes and provide additional channels to support the PPM through a set of
interrelated process artifacts. In this vein, the Highlighter [11] was introduced.

(a) DCR Modeler (b) Highlighter (c) Simulator

Fig. 1. A hybrid process artifact combining the Modeler, the Highlighter and the sim-
ulation tools. Available online as part of the DCR platform at https://dcrgraphs.net/

The Highlighter (cf. Fig. 1b) is integrated with the default Dynamic Con-
dition Response (DCR [10]) graphical modeling tool (shortly, the Modeler, cf.
Fig. 1a) and a guided simulation (cf. Fig. 1c). The tool displays a process model
and an annotatable textual description side-by-side allowing to map the specifi-
cations in the textual process description with the corresponding model elements
(i.e., activities, roles and relations). During a typical modeling session, end-users
can design process models by highlighting activities, roles and relations in the

https://dcrgraphs.net/

164 A. A. Andaloussi et al.

process description, then intertwine with the Modeler and the guided simulation
to reconcile and validate the process model. Following a qualitative research
approach, this work aims at exploring the understandability of such a hybrid
process artifact. The remainder of this paper is organized as follows. Section 2
provides an overview of the existing hybrid process artifacts. Section 3 explains
the research method. Section 4 reports the obtained findings. Section 5 provides
a discussion, while Sect. 6 wraps up the key findings and presents future work.

2 Background and Related Work

Hybrid process representations are introduced in the literature in two contexts:
(a) to designate hybrid languages (e.g., [14]) or (b) to describe hybrid process
artifacts. While hybrid languages combine existing languages to enable a concise
and precise representation of business processes, hybrid process artifacts combine
two or more process artifacts overlapping in the description of some aspects of
the business process [1]. The emergence of hybrid process artifacts is driven by
three main motivations: (1) supporting the understandability of process models
(cf., [1,2]), (2) enhancing the maintainability of process models (cf., [16]), and
(3) improving the modeling of business processes.

Similar to this work, Dengler and Denny, in [7], propose a hybrid process
artifact that combines process models and textual descriptions, embedded in a
wiki-based platform. The proposed representation aims at improving the PPM
experience by enabling different stakeholders to extract process knowledge and to
express business processes using both formal and informal constructs. The find-
ings of a qualitative analysis show that the proposed approach supports better
knowledge elicitation. With the same idea in mind, Pinggera et al. in [12] pro-
pose the Literate Process Modeling (LiProMo) approach aiming at interweaving
annotations and graphical process models to enhance the communication when
modeling business processes.

3 Research Method

This section introduces the research questions, presents the subjects who took
part in this study, describes the material and the procedure followed to run the
study and explains the approach used to analyze the collected data.

Research Questions: The Highlighter aims at enhancing the PPM experience
by providing a tool-support allowing to facilitate the transition from a textual
process description to a graphical process model. In order to investigate this
support, it is necessary to understand the way the Highlighter is used in practice.
To this end, the first research question is formulated as follows: RQ1: How do
users engage with a modeling task using the Process Highlighter?

By enhancing the PPM experience, the Highlighter is expected to positively
affect the perceived quality of the produced models. To explore this angle, the
second research question is formulated as follows: RQ2: In what aspects can
the Highlighter help to improve the quality of process models?

Exploring the Modeling of Declarative Processes Using a Hybrid Approach 165

Participants. The participants who took part in this study included novice
subjects from industrial and education environments. In the former, 7 employees
from the Syddjurs municipality in Denmark, and from the latter, 10 students
from the Technical University of Denmark (DTU).

Material. The material used to conduct this study originates from a process
introduced by Reichert and Weber in [13, p. 349]. This process describes the
writing of a project proposal. The material was presented in Danish at Syddjurs
municipality and in English at DTU. A copy of the material is available online
at http://andaloussi.org/papers/ER2019/material.pdf.

Procedure. The study was conducted in both Syddjurs municipality and DTU.
Participants were introduced to the modeling notation and the use of the High-
lighter in both locations. Then, participants were given a familiarization task
on PPM using the tool and the notation. Next, the participants were given the
description of the project proposal process and were asked to use the Highlighter
to derive the corresponding process model.

We collected participant’s insights about their experience with the tool from
retrospective think-aloud sessions.

Analysis Approach. In order to address our research questions, two different
analyses have been performed. At the first stage, we have extracted the interac-
tions of the users with the DCR modeling platform. This data were filtered to
keep only the interactions associated with adding activities, roles and relations.
Next, these interactions were split between those using the Highlighter, and those
using the Modeler. During the analysis, the interactions were aggregated over
all the modeling sessions and projected according to their time-occurrence into
a rhythm eye chart [9]. An example of such a visualization is shown in Fig. 2.
The ring structure represents a time-line, the different percentages refer to the
progress in relative time. Events (i.e., interactions) are projected as thin lines
onto the ring and events of similar type (e.g., interaction with the Highlighter)
are depicted with the same color. Besides the user interactions, the collected ver-
bal data were transcribed and analyzed following a qualitative coding approach
based on concepts from grounded theory [6].

4 Findings

This section reports the findings. Section 4.1 scrutinizes the way users engage
with a modeling task using the Highlighter. Section 4.2 explores whether the
proposed hybrid modeling approach can improve the quality of process models.

http://andaloussi.org/papers/ER2019/material.pdf

166 A. A. Andaloussi et al.

4.1 How Do Users Engage with a Modeling Task Using the Process
Highlighter? (RQ1)

The users’ interactions collected throughout the modeling sessions provide deep-
ened insights into the way end-users engaged with the Highlighter. As shown in
Fig. 2, most of the interactions with the Highlighter occurred during the first
quarter of the modeling session, which in turn, suggests that most end-users ini-
tiated the modeling using the Highlighter and then progressively moved to the
Modeler. To further substantiate this modeling pattern, the users’ interactions
were scrutinized to identify the common interactions within each of the process
artifacts. As shown in Fig. 3a, a larger portion of activities were appended to
the model using the Highlighter. Similarly, Fig. 3b shows that most roles were
added using the Highlighter. Unlike activities and roles, Fig. 3c shows that rela-
tions were mostly added using the Modeler, which in turn suggests that the
Highlighter was not extensively used to add relations. These users’ interactions
come in line with the subjective insights provided by the participants during the
think-aloud. Indeed, most participants affirmed using the Highlighter to identify
activities and roles from the process description and resort to the Modeler to add
relations. These insights raise the following questions: (1) Why is the Highlighter
perceived more efficient to identify and add activities and roles? (2) What makes
the use of the Modeler tool more attractive for adding relations to the model?

Fig. 2. The interactions associated with the Highlighter and the Modeler tool.

To answer both questions, we turn to the qualitative coding of the verbal
data. In respect to (1), the participants mentioned that the tool provides a kick-
start to process modeling and helps in developing an overview of the business
process (e.g.,“Definitely, I think it is way easier to use the Highlighter to create
the activities and it gives a better overview”). Moreover, some participants have
associated the use of the Highlighter with its ability to provide structure and
to decompose the complexity of the process description (e.g., “it is [referring to
the Highlighter] a nice way to structure the text”). Other participants mentioned
that the Highlighter can help to memorize the process specifications and to draw
attention to specific fragments of the process description (e.g., “It was faster that

Exploring the Modeling of Declarative Processes Using a Hybrid Approach 167

Fig. 3. Interactions associated with adding activities, roles and relations.

was the main focus. at least I feel that [it] helps speed things up. I did not really
notice that text was highlighted because I already knew what I had highlighted
myself, so I mainly focused on the relations that could be between them”).

In respect to (2), while the identification of activities and roles was straight-
forward for most participants, many of them faced difficulty when trying to add
relations in the Highlighter. Some participants justified their abstention with
the argument that the Modeler tool provides a two-dimensional visualization
allowing to perceive the interplay between the different activities (e.g., “It just
seemed easier once the visual aspect of the activities were done, then you could
just connect them directly”). In addition, some participants struggled to locate
the exact textual fragment referring explicitly to a specific constraint in the
process description. This struggle might be due to the phrasing of the process
description (e.g., “For the relations, I’m not sure it’s the problem of the High-
lighter or on the formulation of the text”). Unlike activities and roles which are
often explicit in the process description, relations may not be always explicit in
the text.

4.2 In What Aspects Can the Highlighter Help to Improve
the Quality of Process Models? (RQ2)

From the think-aloud, it has emerged that the mapping between the process
model and the process description supports better traceability of the process
specification (e.g., “Using the Highlighter makes sense in the sense that it adds
traceability . . . it helped me map the relations to the requirements”) and enables
a wider coverage of the requirements in the process description (e.g., “It would be
useful after and it is also useful during because I can see whether I already cov-
ered some piece of text”). In addition, the participants’ quotes indicate that the
Highlighter was used to check the alignment between the process description and
the process model (e.g., “It [referring to the Highlighter] becomes indispensable
as a method to verify whether the process fits with what has been described”1).
1 Quote translated from Danish.

168 A. A. Andaloussi et al.

Last but not least, some participants emphasized the importance of using the
Highlighter as a mans to document their process models (e.g., “I think it is very
useful as a documentation tool and documentation can also be very useful during
the process”). Indeed, the explicit links between the process model and the tex-
tual process description can serve for documenting the semantics of the model
and enabling modelers to justify their modeling choices [12].

5 Discussion

The findings of this exploratory study provide several indications about the per-
ceived benefits of the Highlighter. Both the subjective insights obtained from
the participants and the user interactions extracted from the modeling platform
show that the Highlighter was perceived more efficient to identify and append
activities and roles to the model. These insights fall in line with the conclusions
drawn from cognitive psychology. Indeed the use of the Highlighter to mark-
up specific fragments of the process description (e.g., activities, roles) can be
associated with a well-known phenomenon referred in cognitive psychology as
the isolation effect [15]. This effect is shown to increase the reader attention on
specific parts of the text and help memorizing them [4,15]. This, in turn, can
potentially explain the participants’ insights related to the increased memory
and attention when using the Highlighter and to some extent support the other
insights about the ability of the Highlighter to provide overview and structure as
well as to reduce the complexity of the process description (cf. Sect. 4.1). In addi-
tion to that, the quotes of several participants indicate that the Highlighter can
support increased traceability, enhanced coverage and better alignment between
the process model and the corresponding process description. However, when it
gets to identify relations in the model, the Highlighter was challenging. As men-
tioned in Sect. 4.1, This challenge is associated with the difficulty in identifying
the right text reflecting a certain constraint in the process model, which can be
due to the phrasing of the process description.

All these insights provide indications about the extraneous load arising from
using the tool. Indeed, the cognitive support provided by the Highlighter can
reduce the complexity of the modeling task and contribute to an enhanced PPM
experience. However, the implicitness of some constraints in the process descrip-
tion can add an extra layer of complexity when trying to map them to DCR
relations, which in turn can induce a higher extraneous load. Hence, the use
of the Highlighter can be presumably more effective with process descriptions
comprising explicit constraints.

Finally, it has to be noted that the outcome of this exploratory work can
be subject to limitations mainly with regards to the number of participants
who participated in the study. Therefore, it is hard to generalize the reported
findings and draw strong conclusions about the use of hybrid process artifacts
in general and the Highlighter in particular. Nevertheless, the outcome of this
work provides interesting insights emerging from the users’ experience and sheds
light on the direction of subsequent empirical investigations.

Exploring the Modeling of Declarative Processes Using a Hybrid Approach 169

6 Conclusion and Future Work

This work summarizes the findings of an exploratory study investigating the
modeling of DCR graphs with the support of the Highlighter. The results sug-
gest that the use of the Highlighter is associated with increased support in PPM
and hints toward an enhanced quality of process models. The outcome of this
study provides strong indications for the direction of future work. Based on the
conclusions drawn from cognitive psychology, we hypothesize that (a) the High-
lighter reduces the cognitive load induced during a modeling task. Moreover,
following the insights about the explicit mapping between the process speci-
fications and the corresponding model elements we hypothesize that (b) the
Highlighter improves model comprehension and clarifies the semantics of the
model. Concerning the quality of process models, we hypothesize that (c) the
Highlighter provides better alignment between the process description and the
process model and enables covering the majority of the requirements mentioned
in the text.

These hypotheses define our direction for future work. Following a quanti-
tative analysis approach, we are planning a series of experiments to test and
validate each of these hypotheses in controlled experimental settings. Moreover,
it would be worth to investigate in the up-coming studies the support offered
by the Highlighter when integrated with other process modeling languages from
both the declarative and the imperative paradigms. The findings will serve as
a basis to validate the usability of the Highlighter and will help to improve the
design of similar hybrid process artifacts.

References

1. Abbad Andaloussi, A., Burattin, A., Slaats, T., Petersen, A.C.M., Hildebrandt,
T.T., Weber, B.: Exploring the understandability of a hybrid process design arti-
fact based on DCR graphs. In: Reinhartz-Berger, I., Zdravkovic, J., Gulden, J.,
Schmidt, R. (eds.) BPMDS/EMMSAD -2019. LNBIP, vol. 352, pp. 69–84. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-20618-5 5

2. Abbad Andaloussi, A., Slaats, T., Burattin, A., Hildebrandt, T.T., Weber, B.:
Evaluating the understandability of hybrid process model representations using
eye tracking: first insights. In: Daniel, F., Sheng, Q.Z., Motahari, H. (eds.) BPM
2018. LNBIP, vol. 342, pp. 475–481. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-11641-5 37

3. Burattin, A., et al.: Who Is behind the model? Classifying modelers based on
pragmatic model features. In: Weske, M., Montali, M., Weber, I., vom Brocke, J.
(eds.) BPM 2018. LNCS, vol. 11080, pp. 322–338. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-98648-7 19

4. Cashen, V.M., Leicht, K.L.: Role of the isolation effect in a formal educational
setting. J. Educ. Psychol. 61(6p1), 484 (1970)

5. Chen, F., et al.: Robust Multimodal Cognitive Load Measurement, pp. 13–32.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31700-7

6. Corbin, J., Strauss, A.: Basics of Qualitative Research: Techniques and Procedures
for Developing Grounded Theory. SAGE Publications, Thousand Oaks (2014)

https://doi.org/10.1007/978-3-030-20618-5_5
https://doi.org/10.1007/978-3-030-11641-5_37
https://doi.org/10.1007/978-3-030-11641-5_37
https://doi.org/10.1007/978-3-319-98648-7_19
https://doi.org/10.1007/978-3-319-98648-7_19
https://doi.org/10.1007/978-3-319-31700-7

170 A. A. Andaloussi et al.

7. Dengler, F., Vrandečić, D.: Wiki-based maturing of process descriptions. In:
Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp.
313–328. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23059-
2 24

8. Fahland, D., et al.: Declarative versus imperative process modeling languages: the
issue of understandability. In: Halpin, T., et al. (eds.) BPMDS/EMMSAD -2009.
LNBIP, vol. 29, pp. 353–366. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-01862-6 29

9. Gulden, J.: Visually comparing process dynamics with rhythm-eye views. In:
Dumas, M., Fantinato, M. (eds.) BPM 2016. LNBIP, vol. 281, pp. 474–485.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58457-7 35

10. Hildebrandt, T.T., Mukkamala, R.R.: Declarative event-based workflow as dis-
tributed dynamic condition response graphs. EPTCS 69, 59–73 (2011)

11. López, H.A., Debois, S., Hildebrandt, T.T., Marquard, M.: The process high-
lighter: from texts to declarative processes and back. In: BPM (Disserta-
tion/Demos/Industry), volume 2196 of CEUR, pp. 66–70. CEUR-WS.org (2018)

12. Pinggera, J., Porcham, T., Zugal, S., Weber, B.: LiProMo-Literate process model-
ing. In CAiSE Forum, volume 855 of CEUR, pp. 163–170. CEUR-WS.org (2012)

13. Reichert, M., Weber, B.: Enabling Flexibility in Process-Aware Information Sys-
tems. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30409-5

14. Slaats, T., Schunselaar, D.M.M., Maggi, F.M., Reijers, H.A.: The semantics of
hybrid process models. In: Debruyne, C., et al. (eds.) OTM 2016. LNCS, vol.
10033, pp. 531–551. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
48472-3 32

15. von Restorff, H.: Über die wirkung von bereichsbildungen im spurenfeld. Psychol-
ogische Forschung 18, 299–342 (1933)

16. Zugal, S., Pinggera, J., Weber, B.: The impact of testcases on the maintainability
of declarative process models. In: Halpin, T., et al. (eds.) BPMDS/EMMSAD -
2011. LNBIP, vol. 81, pp. 163–177. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-21759-3 12

https://doi.org/10.1007/978-3-642-23059-2_24
https://doi.org/10.1007/978-3-642-23059-2_24
https://doi.org/10.1007/978-3-642-01862-6_29
https://doi.org/10.1007/978-3-642-01862-6_29
https://doi.org/10.1007/978-3-319-58457-7_35
https://doi.org/10.1007/978-3-642-30409-5
https://doi.org/10.1007/978-3-319-48472-3_32
https://doi.org/10.1007/978-3-319-48472-3_32
https://doi.org/10.1007/978-3-642-21759-3_12
https://doi.org/10.1007/978-3-642-21759-3_12

Query Approaches

Negation in Relational Keyword Search

Qiao Gao(B), Mong Li Lee, and Tok Wang Ling

National University of Singapore, Singapore, Singapore
{gaoqiao,leeml,lingtw}@comp.nus.edu.sg

Abstract. Keyword search in relational databases frees users from writ-
ing complicated SQL queries. However, negation is still not allowed in
keyword queries, limiting its expressiveness. This work addresses the
problem of supporting negation in keyword queries. Our solution con-
siders the keyword matches and the scope of negation. This enables us
to correctly translate the negation using either NOT or NOT EXISTS
SQL operator, and allows us to determine the user’s search intention. We
also support multiple negation and nested negation in keyword queries,
further increasing the expressive ability.

1 Introduction

Keyword search over relational databases has become a popular search paradigm,
relieving non-expert database users of the need to write complex error-prone
SQL queries. Existing relational keyword search has focused on improving the
efficiency of the query processing [2,4,6], ranking the query results [8,10,12] or
extending the expressive power of the keyword query, e.g., allowing metadata
[13], aggregate functions [15] or temporal predicates [5] in keyword queries.

A keyword query typically has some search target and search conditions. For
example, in the query {Department Employee Skill Java} that finds departments
which have employees with the skill Java, the keyword “Department” indicates
the search target, while the keywords “Employee Skill Java” indicate the search
condition. However, there is no support for negation in search conditions, e.g.,
find departments which have some employee who does not have the skill Java.

A naive approach to support negation in relational keyword search is to
allow the reserved word NOT in keyword queries, and translate it into the NOT
operator in the corresponding SQL queries. This approach will retrieve correct
results when the negation is applied to search conditions involving single val-
ued attributes. However, incorrect results may be retrieved when multivalued
attributes are involved in the search conditions. Figure 1 shows an company
database with relations Employee, Department and Project. Relation Employ-
eeSkill captures the multivalued attribute Skill of employees, while relation Work-
For captures the projects that employees work for. Suppose we issue a keyword
query {Department Employee NOT Skill Java} to find departments which have
some employee who does not have the skill Java. The naive approach would
translate this query to the following SQL statement and retrieve departments
D01 and D02.
c© Springer Nature Switzerland AG 2019
A. H. F. Laender et al. (Eds.): ER 2019, LNCS 11788, pp. 173–188, 2019.
https://doi.org/10.1007/978-3-030-33223-5_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33223-5_15&domain=pdf
https://doi.org/10.1007/978-3-030-33223-5_15

174 Q. Gao et al.

SELECT D.* FROM Department D, Employee E, EmployeeSkill ES

WHERE D.Did = E.Did AND E.Eid = ES.Eid AND NOT ES.Skill contains ‘Java’;

Employee
Eid Name Salary Address Did JoinDate
E01 Smith 3.5k Brown Street D01 2010
E02 Green 4.2k Queen Street D01 2009
E03 Brown 5.5k Smith Street D02 2006

EmployeeSkill
Eid Skill
E01 Java
E02 C++
E03 Java
E03 PhP

Project
Pid Name Budget
P01 Safety for Java 40k
P02 RDB 50k
P03 AI 60k

Department
Did Name Address
D01 Computing Brown Street
D02 Marketing Queen Street

WorkFor
Eid Pid
E01 P01
E02 P02
E02 P03
E03 P02
E03 P03

Fig. 1. Example company relational database.

We observe that the answer D02 is not correct because its only employee
Brown (E03) has two skills Java and PhP. This is because Skill is a multivalued
attribute, and the NOT operator in SQL cannot handle negation over multiple
tuples. The correct SQL statement requires us to use NOT EXISTS to ensure
that none of the skills of an employee is Java:

SELECT D.* FROM Department D, Employee E

WHERE D.Did = E.Did AND NOT EXISTS (SELECT * FROM EmployeeSkill ES

WHERE E.Eid = ES.Eid AND ES.Skill contains ‘Java’);

Translating keyword queries involving negation over multivalued attributes using
NOT EXISTS guarantees that the negation in the search condition is applied
to multiple tuples. This requires us to understand matches of the keywords in a
query. If the keyword matches some tuple value that belongs to a single-valued
attribute, then the negation is applied to a single tuple, and a NOT operator
suffices. Otherwise, if the keyword matches some tuple value that belongs to a
multivalued attribute, then the negation has to be applied to a set of tuples, and
a NOT EXISTS operator is needed.

Supporting negation in keyword queries also requires us to consider the scope
of negation to identify the search intention. Consider two queries which have
the same set of keywords, but the position of NOT differs: {Department NOT
Employee Project AI} and {Department Employee NOT Project AI}. The first query
aims to find departments which do not have any employee who participates in
some AI project because the scope of negation is”Employee Project AI”. This
query will return no results. In contrast, the second query finds departments
which have some employee who does not participate in any AI project since the
scope of negation is “Project AI”. This query would return department D01 that
has employee E01 who does not participate in any AI project.

In this work, we propose a solution to support negation in keyword queries.
We consider two important aspects: (a) the matches of keywords, and (b) the
scope of negation. The former enables the correct SQL translation using either

Negation in Relational Keyword Search 175

NOT or NOT EXISTS depending on whether the negation is applied to search
conditions involving single tuple or multiple tuples. The latter allows us to iden-
tify the user’s search intention. Our solution also supports multiple negation and
nested negation. We evaluate the effectiveness of our approach to increase the
expressiveness of keyword queries and retrieve correct results.

2 Preliminaries

A keyword query involving negation is a sequence of keywords {k1 k2...kn} where
ki may be a data-content keyword, a metadata keyword or the reserved word
NOT. A data-content keyword matches tuple values, and there may be several
such matches, e.g., Java may match a project name or an employee skill. This
ambiguity leads to different query interpretations. A metadata keyword matches
either a relation name or an attribute name, and provides the context of a data-
content keyword, e.g., Skill matches the attribute name in relation EmployeeSkill
and having this keyword before Java indicates that the user is interested in
employees with the Skill Java rather than projects related to Java. The reserved
word NOT indicates negation. For a query to be meaningful, we impose the
constraint that if a keyword ki is the NOT reserved word, then ki+1 is either a
data-content or a metadata keyword, 1 < i < n. Further, we also allow the use
of brackets in the query to define the scope of the negation.

We adopt the semantic approach in [13] to process keyword queries. This app-
roach uses an Object-Relationship-Mixed (ORM) schema graph to capture the
Object-Relationship-Attribute (ORA) semantics in a relational database which
will enable us to distinguish single-valued attributes, multivalued attributes and
object/relationship types in database when we analyze the matches of query
keywords. Query patterns are constructed based on the ORM schema graph to
depict different query interpretations. Each query pattern is subsequently used
to generate a SQL statement.

2.1 ORM Schema Graph

An ORM schema graph G = (V,E) captures the object types, relation-
ship types and attributes in a relational database. Each node u ∈ V is
an object/relationship/mixed node comprising of an object/relationship/mixed
relation and its component relations. An object (or relationship) relation cap-
tures the single-valued attributes of an object type (or a relationship type).
Multivalued attributes are captured in component relations. A mixed relation
contains information of both an object type and its many-to-one relationship
types. Two nodes u and v are connected by an undirected edge (u, v) ∈ E if
there exists a foreign key-key constraint from the relations in u to those in v.

Figure 2 shows the ORM schema graph for the database in Fig. 1. Note that
an ORM node may contain multiple relations, e.g., node Employee contains
object relation Employee and component relation EmployeeSkill .

176 Q. Gao et al.

Department Employee WorkFor Project

Legend: u Object Node u Relationship Node u Mixed Node

Fig. 2. ORM schema graph of Fig. 1.

2.2 Query Patterns

Based on the ORM schema graph, a set of query patterns can be generated to
capture the different interpretations of the query keywords. Details of pattern
generation process are in [13]. We illustrate the key ideas with an example.

Consider the query {Department Employee Java}. The keyword Department
matches the relation name Department, while the keyword Employee matches the
relation name Employee. These relations are mapped to the nodes Department
and Employee in the ORM schema graph in Fig. 2. Based on Fig. 1, we have
two matches for the keyword Java, namely, the value of attribute Skill in the
component relation EmployeeSkill, and the value of attribute Name in the object
relation Project. Figure 3 shows the query patterns generated to capture these
matches. Query pattern Pa depicts the interpretation to find departments which
have employees with the skill Java, while Pb depicts the interpretation to find
departments which have employees participating in some project Java.

Department Employee

Skill contains ‘Java’

Department Employee WorkFor Project

Name contains ‘Java’

(a) Query pattern Pa (b) Query pattern Pb

Fig. 3. Two query patterns generated for query {Department Employee Java}.

2.3 SQL Generation

Each query pattern is used to generate an SQL statement [13]. The target nodes
are first identified as they indicate the query search target. These are usually the
nodes matched by the first few metadata keywords in the query. The SELECT
clause has all or specific attributes from the relations corresponding to the target
nodes. The FROM clause contains the relations of all the nodes in the query
pattern. The WHERE clause contains the join conditions for the relations in
FROM clause and also the attribute value conditions in the query pattern.

Consider the query pattern Pa in Fig. 3(a). The node Department is the target
node as it is matched by the first metadata keyword in the query. The SQL
statement generated for Pa is as follows:

SELECT D.* FROM Department D, Employee E, EmployeeSkill ES

WHERE D.Did =E.Did AND E.Eid = ES.Eid AND ES.Skill contains ‘Java’;

Negation in Relational Keyword Search 177

Note that all the attributes in the relation Department are added to the SELECT
clause. The component relation EmployeeSkill is included in the FROM clause,
since there is an condition over its attribute Skill.

3 Proposed Solution

Given a keyword query Q that contains negation, we first derive a query Q′

that contains only data-content and metadata keywords in Q, and generate a
set of query patterns from Q′. Then we annotate each query pattern P with
NOT or NOT EXISTS operator by analyzing if the negation should be applied
to attributes or objects/relationships. Finally, we generate SQL statements from
the annotated query patterns. We describe the details of the last two steps.

3.1 Annotating Query Patterns

To simplify discussion, we first assume that query Q has only one NOT reserved
word. Suppose k1 and k2 are keywords before and after NOT in Q respectively.
We analyze the matches of these keywords to determine if the negation is over
an attribute or some object/relationship. Let P be a query pattern generated
from Q by omitting the NOT.

Case 1. k1 and k2 match the same node n in P . In this case, the NOT
in Q indicates a negation over some attribute of the object/relationship that
corresponds to the node n.
Case 2: k1 and k2 match different nodes in P . In this case, the NOT in Q
indicates a negation over some object/relationship.

3.1.1 Negation over Attributes
Here, we distinguish whether the negation is applicable to a single-valued or mul-
tivalued attribute. If k2 matches the value or name of a single-valued attribute
A, then the negation is applied to only one tuple, and we annotate the node n in
P with a NOT operator, i.e., NOT A contains ′value′. Otherwise, if k2 matches
the value or name of a multivalued attribute A, then the negation needs to be
applied to multiple tuples, and we annotate n with a NOT EXISTS operator,
i.e., NOT EXISTS A contains ′value′.

Example 1 (Negation over single-valued attribute). Consider the query

Q1 = {Department Employee NOT Name Smith}

We first generate a query pattern P1 from {Department Employee Name Smith}
(see Fig. 4(a)). Then we examine the keywords before and after the NOT in
Q1. The keyword Employee matches the object node Employee in P1, while
Name matches the single-valued attribute name Name of the same object node
Employee. Hence, the negation is over a single tuple and we annotate P1 with a
NOT operator before the condition Name contains ′Smith′ (see Fig. 4(b)). ��

178 Q. Gao et al.

Department Employee

Name contains ‘Smith’

Department Employee

NOT Name contains ‘Smith’

(a) Query pattern P1 (b) Annotated query pattern for Q1

Fig. 4. Example query pattern annotated with NOT operator.

Example 2 (Negation over multivalued attribute). Suppose we have the query:

Q2 = {Department Employee NOT Skill Java}.
We generate a query pattern P2 from {Department Employee Skill Java} (see
Fig. 5(a)). The keyword Skill after the NOT in Q2 matches the multivalued
attribute name Skill of Employee, indicating that the negation is applicable to
multiple tuples. As such, we annotate P2 with a NOT EXISTS operator before
the condition Skill contains ′Java′ as shown in Fig. 5(b). ��

Department Employee

Skill contains ‘Java’

Department Employee

NOT EXISTS (Skill contains ‘Java’)

(a) Query pattern P2 (b) Annotated query pattern for Q2

Fig. 5. Example query pattern annotated with NOT EXISTS operator.

Note that a keyword query can have negation over more than one attributes
in an object/relationship. In this situation, users should use brackets to specify
which attribute(s) the negation is applicable to.

Example 3 (Negation involving more than one attributes). Consider the following
queries which have brackets over different attributes:

Q3 = {Department Employee NOT (Name Smith Skill Java)}
Q4 = {Department Employee NOT (Name Smith) Skill Java}

Figure 6(a) shows the query pattern generated from {Department Employee Name
Smith Skill Java}. The node Employee has two search conditions on its attributes
Name and Skill. The brackets in Q3 indicate that the negation should be applied
to both attributes, while those in Q4 imply that the negation is applicable only
to Name. Figure 6(b) shows the annotated query pattern for Q3 with a NOT
EXISTS operator over attributes Name and Skill in the node Employee since
Skill is a multivalued attribute. In contrast, the annotated query pattern for Q4

has a NOT operator over the single-valued attribute Name. ��
3.1.2 Negation over Object/Relationship
Let n be the object/relationship node in P that corresponds to the relation R
matched by k2. In this case, the NOT in Q indicates a negation over multiple
tuples of R, and we annotate the node n with a NOT EXISTS operator.

Negation in Relational Keyword Search 179

Department Employee

Name contains ‘Smith’
Skill contains ‘Java’

Department Employee

NOT EXISTS (Name contains ‘Smith’,
Skill contains ‘Java’)

(a) Query pattern P3 (b) Annotated query pattern for Q3

Fig. 6. Example query pattern with NOT EXISTS operator over multiple attributes.

Example 4 (Negation over object). Consider the following query:

Q5 = {Department NOT Employee Name Smith}.

Figure 7(a) shows a query pattern P5 generated from {Department Employee
Name Smith}. P5 is the same as P1 in Fig. 4(a) because Q5 and Q1 in Example
1 have the same set of metadata and data-content keywords. The difference is
the keywords before and after the NOT. Here, the keyword Department matches
the node Department in P5, while the keyword Employee matches another node
Employee. There is a one-to-many relationship between nodes Department and
Employee, implying that each tuple in the relation Department can be associated
with multiple tuples in the relation Employee via the key-foreign key reference.
Hence, we annotate P5 with a NOT EXISTS operator over the Employee node
to indicate that the negation is applied to multiple tuples (see Fig. 7(b)). ��

Department Employee

Name contains ‘Smith’

Department Employee

Name contains ‘Smith’

NOT EXISTS

(a) Query pattern P5 (b) Annotated query pattern for Q5

Fig. 7. Annotating an object node in a query pattern with NOT EXISTS operator.

When the negation is over some object/relationship, the scope of the negation
may include other objects/relationships depending on the position of the NOT.
Users can use brackets to specify the scope of the negation. By default, we use
all the keywords after NOT to find the scope of the negation.

Example 5 (Scope of negation). Consider the following queries which have the
same set of keywords, but the position of NOT differs:

Q6 = {Department NOT Employee Project AI}
Q7 = {Department Employee NOT Project AI}

Query pattern P6 in Fig. 8(a) is generated from {Department Employee Project
AI}. The search intention of Q6 is to find departments that do not have employees
working for project AI. The set of keywords that comes after NOT in Q6 is W =

180 Q. Gao et al.

{Employee, Project, AI} which match the nodes Employee and Project in P6.
The minimal connected subtree T = {Employee − WorkFor − Project} in P6

that contains these nodes gives the scope of the negation. Figure 8(b) shows the
annotated query pattern where NOT EXISTS is applied to T .

Name contains ‘AI’
Department Employee WorkFor Project

(a) Query pattern P6 for queries Q6 and Q7

NOT EXISTS

Name contains ‘AI’
Department Employee WorkFor Project

(b) Annotated query pattern for Q6

Name contains ‘AI’
Department Employee WorkFor Project

NOT EXISTS

(c) Annotated query pattern for Q7

Fig. 8. Example to illustrate the scope of negation.

On the other hand, the search intention of Q7 is to find departments which
have some employee that does not work for project AI. The set of keywords
that comes after NOT in the query is W ′ = {Project, AI} which match the
same node Project in P6. Figure 8(c) shows the annotated query pattern where
NOT EXISTS is applied to the minimal connected subtree T ′ = {WorkFor −
Project}, indicating that the scope of the negation in Q7 is T ′. ��
Note that the node Workfor is included in T ′, since it is an intermediate
node between node Employee (matched by the keyword before NOT) and node
Project (matched by the keyword after NOT) in the query pattern. Includ-
ing the intermediate node Workfor in T ′ ensures that departments which have
employees that do not work for any project are also retrieved. This is because
such departments also satisfy the search intention – an employee who does not
work for any project certainly does not work for project AI. If we do not include
the node WorkFor in T ′, then we can only retrieve departments which have
some employee working for some project not named AI. This search intention
can be expressed by the query {Department Employee WorkFor NOT Project AI}
where the keyword WorkFor is specified explicitly before NOT to indicate that
it is outside the scope of the negation and the employee must work for some
project.

Algorithm 1 gives the details to find the scope of negation when an
object/relationship is involved. The input is a query Q, a query pattern P and
the position of NOT in Q. The output is an annotated query pattern depicting
the minimal connected subtree where NOT EXISTS should be applied to. We
first find a minimal connected subtree T that is matched by the set of keywords
following the NOT reserved word (Lines 1–6). Then we expand T to include
adjacent nodes that are not matched by any keywords in Q (Lines 7–13).

Negation in Relational Keyword Search 181

Algorithm 1. Scope of negation when an object/relationship involved
Input: query Q = {k1...kn}, query pattern P , position i of NOT in Q
Output: annotated query pattern P ′

1 if ki is followed by a bracket then
2 Add all the keywords in the bracket into a set W;
3 else
4 Add all the keywords after ki in to a set W;
5 Let V = {v1 v2...vm} be the set of nodes in P matched by keywords in W;
6 T = findMinimalSubtree(V, P); // Find minmal connected subtree T
7 Add all the nodes adjacent to T in P to a queue Queue;
8 while Queue is not empty do // Expand the minimal subtree T
9 u = Queue.poll();

10 if u is not matched by any keywords in Q then
11 T = T ∪ {u};
12 foreach node u′ �∈ T and adjacent to u in P do
13 Queue.add(u);

14 P ′ = annotateNotExists(T, P); // Annotate NOT EXISTS over T
15 return P ′;

3.1.3 Handling Multiple Negation in a Query
We have analyzed whether the negation is over attributes (Case 1) or over
object/relationship (Case 2). These two types of negation can be handled inde-
pendently, even if they occur at the same time in a query. For example, in
the query {Department NOT Employee NOT Name Smith}, the first negation
is applied to the object Employee while the second negation is applied to the
attribute Name. We handle each negation independently as described in Exam-
ples 1 and 4. Figure 9 shows the final annotated query pattern which is essentially
obtained by merging the annotations in Fig. 4(b) and Fig. 7(b).

Department Employee

NOT Name contains ‘Smith’

NOT EXISTS

Fig. 9. Annotated query pattern for {Department NOT Employee NOT Name Smith}.

A keyword query with multiple negation involving attributes only can also be
handled independently. Note that if we have multiple negation involving the same
multivalued attribute, e.g., {Project Employee NOT Skill Java NOT Skill C++},
we can use the OR operator in SQL to reduce the number of multiple NOT
EXISTS operators as shown in Fig. 10.

On the other hand, when a keyword query has multiple negation over
objects/relationships only, each negation has its own scope and may involve dif-
ferent nodes in the query pattern, leading to different search intentions. Again, we

182 Q. Gao et al.

Employee

NOT EXISTS (Skill contains ‘Java’
OR Skill =contains ‘C++’)

Project WorkFor

Fig. 10. Annotated query pattern with multiple negation over the same multivalued
attribute for query {Project Employee NOT Skill Java NOT Skill C++}.

use brackets to define the scope of each negation. For each negation in keyword
query, we use Algorithm 1 to identify its scope and generate an annotated query
pattern. These annotated query patterns are then merged to one final annotated
query pattern. Note that the merging is carried out differently depending on
whether the negation is nested or independent in the keyword query.

Example 6 (Nested negation over objects). Suppose we want to find departments
which do not have employees named Smith and these employees also do not
participate in project AI. We can issue the following query with nested negation:

Q8 = {Department NOT (Employee Smith NOT (Project AI))}
For each negation, we call Algorithm 1 to identify its scope and generate an
annotated query pattern. These annotated query patterns are merged to a final
annotated query pattern with nested NOT EXISTS operators (see Fig. 11). ��

NOT EXISTS

Name contains ‘AI’
Department Employee WorkFor Project

NOT EXISTS

Name contains ‘Smith’

Fig. 11. Final annotated query pattern with nested negation for query Q8.

Example 7 (Independent negation over objects). Consider a query with two nega-
tion, one over the object Employee and another over the object Project:

Q9 = {Department NOT (Employee Smith) NOT (Project AI)}
The search intention is to find departments which do not have employees named
Smith and these departments also do not have any employees participating in
project AI. Here, we generate one subquery for each negation as follows:

S1 = {Department NOT Employee Smith}
S2 = {Department NOT Project AI}

For each subquery, we call Algorithm 1 to identify the scope of the nega-
tion and generate the corresponding annotated query pattern (see Fig. 12(a)
and Fig. 12(b)). These annotated query patterns are combined by merging the
Department node which is outside the scope of both negation. Figure 12(c) shows
the final annotated query pattern obtained. ��

Negation in Relational Keyword Search 183

Department
Name contains ‘Smith’

NOT EXISTS
Employee

(a) Annotated query pattern for subquery S1

Name contains ‘AI’
Department Employee WorkFor Project

NOT EXISTS

(b) Annotated query pattern for subquery S2

Name contains ‘AI’
Department

Employee WorkFor Project

Name contains ‘Smith’

NOT EXISTS

NOT EXISTS
Employee

(c) Final annotated query pattern for query Q9

Fig. 12. Annotated query pattern with independent negation over objects.

3.2 Generating SQL Statements

We generate an SQL statement for each annotated query pattern P . We first
ignore the NOT annotations in the query pattern and use the method in [13]
to generate the main SQL query (recall Sect. 2.3). Then for each NOT operator
in P , we add a NOT operator in front of the corresponding attribute value
condition in the SQL statement.

For each NOT EXISTS operator in P , starting from the outermost NOT
EXISTS, we add a NOT EXISTS operator together with a subquery to the
WHERE clause of the main SQL query. We identify the relations in the nodes
under the scope of this NOT EXISTS operator, and move these relations from
the FROM clause of the main SQL query to the FROM clause of the subquery.
The joins and select conditions involving these relations are also moved from
the WHERE clause of main SQL query to that of the subquery. If this NOT
EXISTS operator has other nested NOT EXISTS operators in the annotated
query pattern, we generate a second-level subquery in the first-level subquery
and move the relations in a similar way.

Example 8 Recall query Q1 = {Department Employee NOT Name Smith}. Its
annotated query pattern in Fig. 4(b) has one NOT operator. We first obtain
the main SQL query and then add a NOT operator before E.Name as follows:

SELECT D.* FROM Department D, Employee E

WHERE D.Did = E.Did AND NOT E.Name contains ’Smith’; ��

Example 9 Recall query Q8 = {Department NOT (Employee Smith NOT (Project
AI))}. Its final annotated query pattern in Fig. 11 has two NOT EXISTS opera-
tors. We first obtain the main SQL query:

SELECT D.* FROM Department D, Employee E, WorkFor WF, Project P

WHERE E.Did = D.Did AND E.Name contains ’Smith’ AND WF.Eid = E.Eid

AND WF.Pid = P.Pid AND P.Name contains ’AI’; Then we process the

184 Q. Gao et al.

NOT EXISTS operators in the query pattern and add subqueries. Note that
relations in node Employee are in the first level subquery and relations in nodes
WorkFor and Project are in the second level subquery. The final SQL statement
generated is as follows:

SELECT D.* FROM Department D

WHERE NOT EXISTS (SELECT * FROM Employee E

WHERE E.Did = D.Did AND E.Name contains ’Smith’

AND NOT EXISTS (SELECT * FROM WorkFor WF, Project P

WHERE WF.Eid = E.Eid AND WF.Pid = P.Pid AND P.Name contains ’AI’));

The generated SQL statement can be executed in any relational DBMS to
retrieve query results. Some DBMS such as Oracle has optimized the NOT
EXISTS operator as anti-join operator based on negation as failure theory [3].
For example, for the select statement in the second NOT EXISTS operator in
the above SQL query, if an answer satisfying this select statement is found, the
second NOT EXISTS operator will fail and the rest of the answers will not be
tested.

4 Evaluation

We evaluate the expressive ability of our proposed approach to supporting nega-
tion in keyword queries. For comparison, we implement a baseline by extending
the work in [13] to allow for the NOT reserved word in a keyword query, and
translating the negation into the NOT operator in the SQL statement. We use
two datasets in our evaluation: the TPC-H database1 (TPCH) and the ACM
Digital Library publication2 (ACMDL). Table 1 gives the schemas.

Table 1. Database schemas.

TPCH ACMDL

Part (partkey, name, type, size, retailprice) Paper (paperid, title, keywords, date, procid)

Supplier (suppkey, name, nationkey, acctbal) Proceeding (procid, acronym, title, date,

PartSupp (partkey, suppkey, availqty, supplycost) country, publisherid)

Lineitem (partkey, suppkey, orderkey, quantity) Publisher (publisherid, code, name, country)

Order (orderkey, custkey, status, totalamount) Author (authorid, name)

Customer (custkey, name, nationkey, mktsegment) Author aff history (authorid, affiliation)

Nation (nationkey, name, regionkey) Editor (editorid, name)

Region (regionkey, name) Write (authorid, paperid)

Edit (editorid, procid)

Table 2 shows the keyword queries we design for the TPCH database and
the user search intention. Queries T1 and T2 involve negation over single-valued

1 http://www.tpc.org/tpch/.
2 http://dl.acm.org/.

http://www.tpc.org/tpch/
http://dl.acm.org/

Negation in Relational Keyword Search 185

Table 2. Keyword queries over the TPCH database.

Keyword query Search intention Baseline Ours

T1 customer order NOT
totalamount >300,000

Find customers who have
orders with total price not
larger than 300,000

� �

T2 customer part type steel NOT
name brown

Find customers who bought
steel that is not named brown

� �

T3 part name rose NOT supplier
region Africa

Find parts named rose and
not from a supplier in Africa

× �

T4 customer NOT order Find customers who do not
have any orders

× �

T5 customer part steel NOT (part
copper) NOT (part tin)

Find customers who bought
steel and not copper or tin

× �

T6 customer NOT (part copper
NOT (supplier S1))

Find customers who did not
buy copper that is not
supplied by S1

× �

attribute totalamount and name respectively. Both the baseline and our approach
correctly generate SQL statements with NOT operator over these attributes.

Queries T3 and T4 involve negation over object/relationship supplier and order
respectively. The baseline approach translates the negation into NOT SQL oper-
ators over the attributes in supplier (for T3) and order (for T4), which leads to
incorrect results. In contrast, our solution first identifies the scope of the NOT
reserved word and uses the NOT EXISTS operator in the generated SQL queries
to retrieve correct results. Query T5 has two independent negation over the object
part, while T6 has nested negation. Only our proposed solution is able to handle
such queries and retrieve correct results.

Table 3 shows the queries we design for ACMDL database. Query A1 involves
negation over a single-valued attribute, and both the baseline and our solution
can generate the correct SQL statement. Query A2 has a negation over the
multivalued attribute affiliation. Only our proposed solution can retrieve the
correct results since we use the NOT EXISTS operator to check all the affiliations
for each author in the proceeding SIGMOD. This guarantees that all the 3918
authors retrieved do not have any affiliation matching “NUS”. In contrast, the
baseline uses the NOT operator and retrieve 29 additional incorrect authors.

For query A3, our solution can identify that the scope of the negation is the
object paper and generates an SQL query that uses the NOT EXISTS operator to
retrieve the correct results (470 distinct authors). However, the baseline retrieves
14 additional incorrect results, since it can only guarantee that each author in
the results has at least one paper that is not related to database.

Queries A5 and A6 have multiple negation. Our solution retrieves correct
results for both queries, while the baseline cannot handle negation over multival-
ued attributes and object/relationship. Further, the baseline could not generate

186 Q. Gao et al.

the correct query pattern and identify the scope of the NOT reserved words for
queries with nested negation.

In summary, our proposed solution improves the expressive ability of keyword
queries by allowing for negation over attributes, object/relationship, as well as
multiple negation including nested negation.

Table 3. Keyword queries over the ACMDL database.

Keyword query Search intention Baseline Ours

A1 proceeding name publisher
NOT name Springer

Find the name of proceeding
whose publish is not Springer

� �

A2 author NOT affiliation NUS
paper proceeding SIGMOD

Find authors not with
affiliation from NUS and
published paper in SIGMOD

× �

A3 author affiliation Harvard NOT
paper database

Find the authors with
affiliation Harvard and have
not written paper related to
database

× �

A4 author affiliation Berkeley
NOT edit proceeding

Find the authors from
Berkeley and not edit any
proceedings

× �

A5 paper NOT title database
NOT (author affiliation NUS)
proceeding VLDB

Find the papers neither with
title database nor with
authors from NUS, and
published in VLDB

× �

A6 paper SIGMOD NOT (author
NOT (affiliation Stanford))

Find the papers from
SIGMOD and none of their
authors not from Stanford

× �

5 Related Work

Early works in relational keyword query support keywords that match tuple
values [1,2,6]. [11] increases the expressiveness of keyword query with aggregates
and GroupBy functions for users to retrieve statistical information. [7] extends
keyword queries with temporal predicates and time periods for users to specify
conditions over the time dimension of the database. All these works do not
distinguish the Object-Relationship-Attribute (ORA) semantics in the database,
which may lead to missing, incomplete, meaningless, duplicated and incorrect
results [14].

A semantic approach is proposed in [13] which utilizes an Object-
Relationship-Mixed (ORM) data graph to capture ORA semantics, and extends
keyword queries with metadata keywords to reduce the inherent ambiguity of
keyword queries. [15] shows the importance of ORA semantics for the correct

Negation in Relational Keyword Search 187

evaluation of keyword queries with aggregates and GroupBy. [5] provides sup-
port for temporal predicates in keyword queries, and uses ORA semantics to
capture the multiple interpretations of temporal conditions.

To the best of our knowledge, none of the existing keyword search approaches
over relational database support negation in keyword queries. The work in [9]
provides support for NOT semantics in keyword queries over XML. However,
the evaluation is based on the hierarchical structure of XML trees and is not
applicable to the general graph model of relational data. Further, [9] does not
differentiate the object, relationship and attribute semantics in the XML docu-
ments. Our proposed solution extends the semantic approach in [13] as it is able
to address the problem of incomplete and incorrect results, etc., by capturing
the ORA semantics in relational database.

6 Conclusion

Existing keyword search over relational databases do not allow users to specify
negation in search conditions, which limits the expressiveness of the keyword
query. Processing keyword queries with negation is complex and we cannot
simply translate the negation in a keyword query to the corresponding SQL
NOT operator as this may lead to incorrect query results. In this work, we have
extended keyword queries to include the NOT reserved word so that negation
over search conditions can be expressed. Our solution analyzes the scope of each
NOT reserved word, and determines whether it should be translated to the SQL
NOT or NOT EXISTS operator to ensure that correct results are retrieved. We
also support multiple negation and nested negation in keyword queries. Evalu-
ation on two datasets shows the effectiveness of our solution to identify user’s
search intention and retrieve correct results.

References

1. Agrawal, S., Chaudhuri, S., Das, G.: DBXplorer: a system for keyword-based search
over relational databases. In: IEEE ICDE (2002)

2. Bhalotia, G., Hulgeri, A., Nakhe, C., Chakrabarti, S., Sudarshan, S.: Keyword
searching and browsing in databases using BANKS. In: IEEE ICDE (2002)

3. Clark, K.L.: Negation as failure. In: Gallaire, H., Minker, J. (eds.) Logic and Data
Bases. Springer, Boston (1978). https://doi.org/10.1007/978-1-4684-3384-5 11

4. Ding, B., Yu, J.X., Wang, S., Qin, L., Zhang, X., Lin, X.: Finding top-k min-cost
connected trees in databases. In: IEEE ICDE (2007)

5. Gao, Q., Lee, M.L., Ling, T.W., Dobbie, G., Zeng, Z.: Analyzing temporal key-
word queries for interactive search over temporal databases. In: Hartmann, S.,
Ma, H., Hameurlain, A., Pernul, G., Wagner, R.R. (eds.) DEXA 2018. LNCS, vol.
11029, pp. 355–371. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
98809-2 22

6. Hristidis, V., Papakonstantinou, Y.: Discover: keyword search in relational
databases. In: VLDB (2002)

https://doi.org/10.1007/978-1-4684-3384-5_11
https://doi.org/10.1007/978-3-319-98809-2_22
https://doi.org/10.1007/978-3-319-98809-2_22

188 Q. Gao et al.

7. Jia, X., Hsu, W., Lee, M.L.: Target-oriented keyword search over temporal
databases. In: Hartmann, S., Ma, H. (eds.) DEXA 2016. LNCS, vol. 9827, pp.
3–19. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44403-1 1

8. Kargar, M., An, A., Cercone, N., Godfrey, P., Szlichta, J., Yu, X.: Meaningful
keyword search in relational databases with large and complex schema. In: IEEE
ICDE (2015)

9. Lin, R.-R., Chang, Y.-H., Chao, K.-M.: Identifying relevant matches with NOT
semantics over XML documents. In: Yu, J.X., Kim, M.H., Unland, R. (eds.) DAS-
FAA 2011. LNCS, vol. 6587, pp. 466–480. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-20149-3 34

10. Luo, Y., Lin, X., Wang, W., Zhou, X.: SPARK: top-k keyword query in relational
databases. In: ACM SIGMOD (2007)

11. Tata, S., Lohman, G.M.: SQAK: doing more with keywords. In: ACM SIGMOD
(2008)

12. Yu, X., Shi, H.: CI-Rank: ranking keyword search results based on collective impor-
tance. In: IEEE ICDE (2012)

13. Zeng, Z., Bao, Z., Le, T.N., Lee, M.L., Ling, T.W.: ExpressQ: identifying keyword
context and search target in relational keyword queries. In: ACM CIKM (2014)

14. Zeng, Z., Bao, Z., Lee, M.L., Ling, T.W.: A semantic approach to keyword search
over relational databases. In: Ng, W., Storey, V.C., Trujillo, J.C. (eds.) ER 2013.
LNCS, vol. 8217, pp. 241–254. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-41924-9 21

15. Zeng, Z., Lee, M.L., Ling, T.W.: Answering keyword queries involving aggregates
and group by on relational databases. In: EDBT (2016)

https://doi.org/10.1007/978-3-319-44403-1_1
https://doi.org/10.1007/978-3-642-20149-3_34
https://doi.org/10.1007/978-3-642-20149-3_34
https://doi.org/10.1007/978-3-642-41924-9_21
https://doi.org/10.1007/978-3-642-41924-9_21

Answering GPSJ Queries in a Polystore:
A Dataspace-Based Approach

Hamdi Ben Hamadou1 , Enrico Gallinucci2 , and Matteo Golfarelli2(B)

1 Institut de Recherche en Informatique de Toulouse, Toulouse, France
hamdi.ben-hamadou@irit.fr

2 University of Bologna, Cesena, Italy
{enrico.gallinucci,matteo.golfarelli}@unibo.it

Abstract. The discipline of data science is steering analysts away from
traditional data warehousing and towards a more flexible and lightweight
approach to data analysis. The idea is to perform OLAP analyses in a
pay-as-you-go manner across heterogeneous schemas and data models,
where the integration is progressively carried out by the user as the
available data is explored. In this paper, we propose an approach to sup-
port data analysis within a polystore supporting relational, document
and column data models by automatically handling both data model and
schema heterogeneity through a dataspace layer on top of the underlying
databases. The expressiveness we enable corresponds to GPSJ queries,
which are the most common class of queries in OLAP applications. We
rely on Nested Relational Algebra to define a cross-database execution
plan. The plan is composed of several local plans, to be executed on the
distinct databases, and a global plan, which combines and possibly aggre-
gates inter-database data. The system has been prototyped on Apache
Spark.

Keywords: Polystore · NoSQL · Dataspace · GPSJ · Schemaless ·
OLAP

1 Introduction

With the rise of Big Data, NoSQL systems have effectively provided different
ways to address the scalability issues of relational database management systems
(RDBMSs) and the variety aspect of Big Data. As companies move towards poly-
glot persistence [20] (i.e., employing several DBMSs to exploit the best features
of each) to optimize the operational workload, new challenges arise from an ana-
lytical perspective, because the analyst needs a transparent way to access these
fragmented and differently-shaped data. At the same time, the discipline of data
science is steering analysts away from traditional data warehousing and towards
a more flexible and lightweight data analysis approach. The idea is to relax the
rigidity of traditional integration approaches to perform OLAP (OnLine Analyt-
ical Processing) analyses in a pay-as-you-go manner [14], where the integration is
c© Springer Nature Switzerland AG 2019
A. H. F. Laender et al. (Eds.): ER 2019, LNCS 11788, pp. 189–203, 2019.
https://doi.org/10.1007/978-3-030-33223-5_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33223-5_16&domain=pdf
http://orcid.org/0000-0002-4140-4584
http://orcid.org/0000-0002-0931-4255
http://orcid.org/0000-0002-0437-0725
https://doi.org/10.1007/978-3-030-33223-5_16

190 H. Ben Hamadou et al.

progressively carried out by the user as the available data is explored. This calls
for new approaches to enable effective analyses on a polyglot system without
performing a complex integration phase.

The main challenges to address in this context are related to the heterogeneity
of the data in terms of data model and schema. Data model heterogeneity is
intrinsic in a polyglot database; it requires to distribute the computation of a
query across the different databases (which adopt different query languages) and
to possibly rely on a middleware to combine and further elaborate the results.
Schema heterogeneity is a common type of heterogeneity in most NoSQL systems
as they abandon the traditional schema-first, data-later approach of RDBMS
(which requires all record in a table to comply with a predefined schema) in
favour of a soft-schema approach, in which each record embeds its own schema
definition. For instance, two records in the same collection may contain different
attributes or the same attributes following different naming conventions. Schema
heterogeneity is mainly due to schema evolution and to the acquisition of data
from sources adopting different schema representations for the same entities.

State-of-the-art proposals for polyglot systems mainly include multistores
(which provide a unique query language to separately query different DBMSs)
and polystores (which additionally enable cross-DBMS query processing) [23].
Current solutions mostly focus on addressing data model heterogeneity and on
optimising the query processing, but they do not consider schema heterogene-
ity. This prevents analysts from taking full advantage of the data, as several
instances may be missed by queries that do not take schema variations into con-
sideration. In this paper we propose an approach to support data analysis within
a polystore by handling both data model and schema heterogeneity through a
dataspace layer on top of the underlying databases. A dataspace is a lightweight
integration approach providing basic query expressive power on a variety of data
sources, bypassing the complexity of traditional integration approaches and pos-
sibly returning best-effort or approximate answers [7]. Consistently with the pay-
as-you-go philosophy, the dataspace is first built by applying simple matching
rules and is progressively enriched by the users as they discover new relationships
among data structures through exploratory queries.

The query expressiveness we enable corresponds to GPSJ queries (i.e., gener-
alized projection, selection and join [12]), i.e., the most common class of queries
in OLAP applications. State-of-the-art works typically delegate to the user the
formulation of adequate queries with the risk of getting inconsistent answers to
the envisioned questions. In contrast, GPSJs enforce a query semantics to pre-
vent the user from getting misleading results leading to ambiguous or potentially
incorrect interpretation in the analytical context. The possibility to extend the
approach to a broader class of queries is considered as future work. For a given
GPSJ, our approach defines a cross-database execution plan in Nested Relational
Algebra (NRA) [24], which is compatible with the expressiveness of document
stores’ query language [3] and SQL (as it is a superset of relational algebra),
with the latter being used by both RDBMSs and column-based systems. The
cross-database execution plan is composed of several local plans, to be executed

Answering GPSJ Queries in a Polystore: A Dataspace-Based Approach 191

on the distinct underlying databases, and a global plan, which combines and
possibly aggregates inter-database data. The resolution of schema heterogeneity
is handled in the local plans, where the knowledge of the dataspace is exploited
to properly query all schema variations of the involved data. This activity is
supported by previous research efforts on enabling schema-independent query-
ing on heterogeneous schemas [1,2,9,10], which focus only on single collections
of records in a particular data model. A prototypical implementation of the
approach has been carried out on Apache Spark [26].

The paper outline is as follows. After discussing related work in Sect. 2, in
Sect. 3 we formalize the dataspace and the query expressiveness. Then we present
the formulation of the execution plan in Sect. 4. Finally, in Sect. 5 we briefly
discuss the prototypical implementation and we draw the conclusions.

2 Related Literature

The importance of transparently querying multistore systems has been high-
lighted by contexts such as federated databases [21] and, more recently, soft-
schema support in NoSQL systems [5]. Here we classify state-of-the-art work by
focusing on the considered levels of data model and schema heterogeneity.

Data Model Transformation. Generally, these works store document data model
into a relational one [6,22]. They offer relational views built on top of the new
relational data model to assist the user while formulating queries. This strategy
implies that several data model transformation should be performed. Hence, this
process requires additional resources, such as an external relational database [15].
Users of these systems have to learn new schemas every time new data are
inserted (or updated) in the collection, because it is necessary to re-generate the
relational views.

Multistore and Polystores. Most of the approaches provide integrated access to a
number of heterogeneous database systems [8,16] through one [16] or more query
language [8] using a middle-ware layer. However, they still require the user to
either define the global schema or to specify a particular data source to use, e.g.,
BigDAWG [8] requires user to use the adequate querying language for each data
model. Furthermore, they consider neither schema mapping during the query
rewriting steps, nor schema heterogeneity.

Multimodel Systems. These systems offer a single platform to store and query
data in different data models (e.g., OrientDB, http://orientdb.com/orientdb/).
Multimodel systems excel in term of data governance, management, and access.
However, they are limited to a pre-defined set of data models and extending
support to new data models is challenging.

Schema-Independent Querying. In document-based stores structural heterogene-
ity points to the existence of several paths to access the same attribute. A trans-
parent querying mechanisms to overcome this heterogeneity is introduced in [2].
A recent research work [9] resolves the problem of having semantically equivalent

http://orientdb.com/orientdb/

192 H. Ben Hamadou et al.

attributes but with a different naming convention, as highlighted in [25], using
a set of schema mappings. Most of these approaches consider the heterogeneity
problem inside one collection at a time for a particular data model only. More-
over, the same information could be represented using different data types, and
transcoding functions are required to resolve this heterogeneity [11].

Schema Inference. A second line of work focuses on the representation of the
different schemas within the same collection of documents. In [25] the authors
recommend summarizing all document schemas under a skeleton to discover the
existence of fields or sub-schemas inside the collection. In [13] the authors suggest
extracting collection structures to help developers in the process of designing
their applications. The limitation with such a logical view is that it requires a
manual process in order to build the desired queries by including the desired
attributes and all their possible navigational paths.

All mentioned works handle either data model or schema heterogeneity. To
the best of our knowledge, this is the first work to handle both of them.

3 Dataspace and Query Modeling

In this work we consider a polystore comprising databases in three data mod-
els: relational, document-based and column-based1. Our running example is a
variation of Unibench [18], i.e., a benchmark multimodel dataset based on an
e-commerce application. The conceptual schema is shown in Fig. 1. With respect
to Unibench we exclude the graph and key-value databases and we extend the
benchmark by injecting some heterogeneity into the schemas. We remark that
schema heterogeneity is possible only in the document-based and column-based
data models. In particular, we cover the following kinds of schema heterogeneity.

– Missing attributes: attributes that exist in some records and not in others
(e.g., the gender and birthday of the Client are not always specified).

– Different data types: attributes with varying data types (e.g., the id in Client
is a number, but the personId in Order is stored as string).

– Semantic equivalence: attributes with varying naming conventions (e.g., order-
Line.cost and orderLine.price in Order are alternative attributes representing
the same information).

In the polystore, the data is split among a set of databases DB. We exploit the
concept of dataspace to provide a global representation of the available attributes
in the different databases and to hide the underlying schema heterogeneity. In
particular, the dataspace plays the role of the abstraction level enabling the user
to formulate queries. As data model heterogeneity entails terminology hetero-
geneity, Table 1 explains the terminology used in the remainder of the paper to
generally refer to schema elements (e.g., tables, columns), independently of their
declination in the different data models. The basic information we consider is
the attribute, which we define as follows.
1 We remark that column-based NoSQL systems (e.g., BigTable [4]) are different from

column-oriented DBMS (e.g., Vertica).

Answering GPSJ Queries in a Polystore: A Dataspace-Based Approach 193

Client

id
firstName
lastName
gender
birthday
place

Vendor

vendor
country
industry

Order

orderID
personID
orderDate
totalPrice
orderLine []

productID
asin
title
price
brand
pid
idNumber
name
cost
make

Invoice

orderID
custID
orderDate
totalPrice

Product

asin
title

dm = relational
db = Company

dm = document
db = Stores

dm = column
db = Firm

al
te

rn
at

iv
e

or
de

rL
in

e
sc

he
m

as

Fig. 1. Running example of a multi-store e-commerce application, based on Unibench
[18]; orderLine is an array in the Order collection whose objects come in two schema
variations (i.e., attributes from orderLine.productID to orderLine.brand are alternative
to those from orderLine.pid to orderLine.make).

Table 1. The adopted terminology VS the terminology used in different data models.

Relational Column-based Document-based Reference term

Table Column-family Collection Collection

Tuple Object Document Record

Attribute Column Attribute Attribute

Attribute name Column name Path Name

Definition 1 (Attribute). Given a polystore DB, we define an attribute as
a = (dm, db, col, name), where dm = [relational|column|document] is the data
model, db ∈ DB is the database name, col is the collection name in db, name is
the name of the attribute in the collection col.

We refer to A∗ as the set of all attributes within all databases in the poly-
store DB; given an attribute a, we use db(a), col(a), name(a) and array(a)
to respectively refer to its database db, its collection col, its name name and
(possibly) the array attribute in which it is contained. In fact, attributes in
document-based stores can appear in a nested form. In such cases, the name of
the attribute corresponds to a path in dot notation that contains the ordered
list of array attributes and ends with the attribute itself; accessing a simple
attribute requires to unnest all the arrays in which it is contained.

Example 1. With respect to Fig. 1, consider the following reference attributes:

– a1 : (relational,Company,Client, id)
– a2 : (relational,Company,Client, firstName)
– a3 : (relational,Company,Client, lastName)
– a4 : (document, Stores,Order, personID)
– a5 : (document, Stores,Order, orderLine)
– a6 : (document, Stores,Order, orderLine.productID)

– a7 : (document, Stores,Order, orderLine.pid)

– a8 : (document, Stores,Order, orderLine.price)

– a9 : (document, Stores,Order, orderLine.cost)

– a10 : (document, Stores,Order, orderLine.brand)

– a11 : (document, Stores,Order, orderLine.make)

194 H. Ben Hamadou et al.

It is db(a4) = Stores and col(a4) = Order; also, array(a6) = array(a7) =
array(a8) = array(a9) = a5; attributes a6, a8 and a10 belong to the first
schema variation of orderLine, while attributes a7, a9 and a11 belong to the
second schema variation of orderLine.

In a polystore, attributes do not provide a global representation that hides the
inherent schema heterogeneity as several syntactically different attributes may
represent the same type of information. Relationships between attributes can be
either manually inserted or automatically discovered. The automatic retrieval of
such relationships is out of scope in this paper. Nonetheless, the literature on
this topic is abundant; we refer the reader to a survey on common techniques for
schema matching [17] and to an existing work for automatic discovery of primary-
foreign key relationships [19]. Whether they are obtained either automatically or
manually, which is likely when an incremental approach is adopted, relationships
can be formalized as follows:

Definition 2 (Mapping). A mapping is a relationship between two attributes
a

′
and a

′′
. We define a mapping as m = (a

′
, a

′′
, φ, ϕ, ψ), where a

′
, a

′′ ∈ A∗,
φ = [sameAs|fk] is the type of the mapping, and ϕ is a transcoding function to
express a′ values in a′′ format (if necessary; otherwise, ϕ = I() where I() is
the identity function). Finally, ψ is the semantics describing the meaning of the
relationship (limitedly to fk mappings).

The mapping type sameAs resolves semantic equivalence by indicating that
there is an exact match between a

′
and a

′′
, i.e., both attributes represent the

same information for a given entity; a sameAs mapping can exist only if, for any
given record, a

′
and a

′′
never coexist. Conversely, fk indicates that the values in a

′

correspond to the values in a
′′

(i.e., a relationship that, in RDBMSs, is modeled
as a

′
being a foreign key to a

′′
). Consequently, a

′′
must be a key; for the sake of

simplicity, all keys are not composite. Mappings are assumed to be consistent;
for example if ∃ m

′
= (a

′
, a

′′
, fk, ϕ, ψ), then � m

′′
= (a

′
, a

′′
, sameAs, ϕ′).

The sameAs mappings are used to capture schema heterogeneity within a
collection (thus, db(a

′
) = db(a

′′
) and col(a

′
) = col(a

′′
)) whereas fk mappings are

used to establish join relationships between collections (thus, col(a
′
) �= col(a

′′
)).

The semantics is necessary when the same attribute is referenced by several
fk mappings to disambiguate the relationships. Note that while fk mappings
are oriented, sameAs mappings are not oriented in principle, but they become
oriented in practice when we consider the function ϕ that transcodes from a′ to
a′′ and not viceversa.

Example 2. Consider the following mappings between the attributes defined in
Example 1: m1 = (a4, a1, fk, toInt(), “client order”), m2 = (a6, a7, sameAs, I()),
m3 = (a8, a9, sameAs, I()), m4 = (a10, a11, sameAs, I()).

The presence of several attributes that semantically represent the same con-
cept can be hidden by an abstract representation called feature, which is based
on the sameAs mappings.

Answering GPSJ Queries in a Polystore: A Dataspace-Based Approach 195

Definition 3 (Feature). A feature is a representation of a set of attributes in
the polystore that semantically model the same concept. We define a feature as
f = (name, a,M), where a is the representative attribute of the feature, name
is the name of the feature (possibly different from name(a)), and M is a set
of sameAs mappings, in the form (a′, a, sameAs, ϕ), linking all the feature’s
attributes to the representative attribute a. M = ∅ when a concept is modeled
by a single attribute.

The name of each feature is derived from the names of the represented
attributes. However, it is up to the end user to specify a different name.

Example 3. Given the mappings in Example 2 we obtain the following features:

– f1 = (id, a1, ∅)
– f2 = (firstName, a2, ∅)
– f3 = (lastName, a3, ∅)
– f4 = (personId, a4, ∅)

– f5 = (orderLine, a5, ∅)
– f6 = (orderLine.productID, a6, {m2})
– f7 = (orderLine.price, a8, {m3})
– f8 = (orderLine.brand, a10, {m4})

We refer to attr(f) as the set of attributes represented by f (i.e., the represen-
tative attribute plus those derived from the mappings). An attribute is always
represented by one and only one feature; thus, for any two features f

′
and f

′′
,

it is attr(f
′
)∩attr(f

′′
) = ∅. We refer to the feature of an attribute a as feat(a)

and to the name of a feature as name(f).
Ultimately, we simply define the dataspace as follows.

Definition 4 (Dataspace). A dataspace D is a set of features.

We remark that, since features represent only attributes, there is no notion
of collection in the dataspace (i.e., at the feature level). This is a substantial
difference with a traditional integration approach, which would have required
to define global collections and to model them (and their respective attributes)
consistently with the modelings used in the different databases. Instead, fea-
tures simply highlight the semantically distinct concepts that are available in
the dataspace. In the next Section we explain the query mechanism based on
the dataspace of features.

The query expressiveness that we consider covers a wide class of queries by
composing three basic SQL operators: selection, join and generalized projection.
The combination of these three operators determines GPSJ (Generalized Pro-
jection / Selection / Join) queries that were first studied in [12]. We provide the
following definition of a query, which is based on the features of the dataspace.

Definition 5 (Query). Given a dataspace D, we define a query as q =
(qπ, qγ , qσ), where: qπ ⊆ D specifies the features to be projected; qγ specifies
optional aggregations as a set of couples (f, op), where f ∈ D and op is an
aggregation function; qσ is an optional set of selection predicates in the form of
triplets (f, ω, v), where f ∈ D, ω ∈ {=;>;<; �=;≥;≤} and v is a value.

196 H. Ben Hamadou et al.

Middleware

ql4
ql3
ql2
ql1qg

Dataspace Query
rewriting

q

ql1 ql2 ql3 ql4

qg

query results local queries execution

global query
execution

data flow
metadata flow

Legend:

Fig. 2. Query execution process: the query q (formulated on the dataspace) is trans-
lated into a set of local queries (ql1 . . . ql4) to be executed in separate databases, and a
global query (qg) that operates in the middleware on the results of the local queries.

GPSJ queries are the most common class of queries in OLAP applications.
Attributes in qγ are measures of the event that is the target of the OLAP anal-
ysis. The single events are measured at the finest level of granularity, possibly
filtered by conditions expressed on qσ and then grouped at the coarser granularity
defined by qπ. It is not mandatory that all the three operators are present, thus
simple selection queries and join queries are also covered. We refer to feat(q) as
the set of features involved in q; also, we will use attr(q) as short for attr(feat(q)).

Example 4. Let us suppose that we want to measure the average price order-
Line.price of the products orderLine.productID of brand orderLine.brand “ABC”
by a client called “John Smith” from the dataspace D. Therefore the group-by
set is qπ = {f6}; the aggregation set is qγ = {(f7, avg)} and the set of selection
predicates is qσ = {(f2, =, “John”), (f3, =, “Smith”), (f8, =, “ABC”)}.

4 Execution Plan Formulation

The execution of the query requires the definition of an execution plan that
potentially includes different databases. We model the execution plan in NRA,
as it is compatible with SQL and document stores’ query languages [3]. Given
a query execution plan, we distinguish between the single local plans (i.e., the
parts that can be executed directly on a single database) and the global plan (i.e.,
the part to be executed in the middleware to join the data coming from different
databases). While the local plans directly access the collections of the polystore,
the global plan accesses the intermediary results of the local plans (i.e., views on
the single databases). An intuition of the process is given in Fig. 2. We remark
that schema variability is managed by the local plans.

4.1 Determining the Query Graph

The information necessary to build the query plan can be modeled by means of a
supporting structure we call datagraph. Indeed, a query involves a set of features
which, in turn, represent several attributes in the dataspace. The datagraph is
used to find the connections between these attributes and to obtain the execution
plan for a given query.

Answering GPSJ Queries in a Polystore: A Dataspace-Based Approach 197

a1

1

a2

a3

a4 a5

a8 a9

a10 a11GPq
2GPq

sibling
nested
fk

Legend:

Fig. 3. Query graph of the query in Example 4, with the query graph partitions GP 1
q

and GP 2
q highlighted; bold circles correspond to representative attributes of a feature.

Definition 6 (Datagraph). The datagraph G is a graph G = (A∗, E) where
A∗ is the set of all the attributes of all databases (representing the vertexes of
the graph) and E is the set of edges connecting the attributes.

An edge e ∈ E between two attributes a
′
and a

′′
indicates the existence of a

relationship, which is described by its type, i.e., type(e); its value is one of the
following three:

– sibling: represented as a
′ ↔ a

′′
, it indicates that a

′
and a

′′
are in the same

collection and at the same nesting level;
– nested: represented as a

′ n−→ a
′′
, it indicates that a

′
is nested inside a

′′
;

– fk: represented as a
′ fk−→ a

′′
, it indicates that the values of a

′′
are referred to

the values of a
′
.

Edges of type sibling and nested are automatically derived from the schema,
while those of type fk can be either derived from the original schemas or defined
by the user through mappings. Noticeably, nested edges can only come from
databases whose data model supports nested attributes (i.e., document- and
column-based). Figure 3 shows a portion of the datagraph representing the
attributes from Example 1. The existence of a directed path from a

′
to a

′′
,

represented as a
′ ⇒ a

′′
, implies the existence of a -to-one (i.e., either one-to-one

or many-to-one) relationship from a
′
to a

′′
through a chain of join and unnesting

operations. For instance, it is a9 ⇒ a2, while a1 �⇒ a4.

Definition 7 (Query graph). Given a datagraph G and a query q, we define
the query graph Gq = (A′ ⊆ A∗, E′ ⊆ E) as the minimally connected subgraph
of G such that i) A′ ⊇ attr(q), and ii) there exists A′′ ⊆ A′ s.t. A′′ �= ∅, A′′ ⊇
qγ ,∀(a ∈ A′′, a′ ∈ A′), it is a ⇒ a

′
.

Condition (i) ensures that all attributes belonging to the features involved in
the query are included in A′. Condition (ii) entails the answerability of query q
on D with the GPSJ semantics, that is, there exist one or more attributes rep-
resenting the events at the finest level of granularity (i.e., a -to-one relationship
exists with all the others attributes in q). More than one query graphs could
exist for a given query as more than one -to-one paths could exist each associ-
ated to a different semantics (e.g., a sale could be associated to both the date of
sale and date of shipping). In this case the user is asked to identify the adequate
query graph to execute.

198 H. Ben Hamadou et al.

Fig. 4. Sample execution plan for a generic GPSJ; different shades of grey represent
different databases.

Algorithm 1. Definition of the NRA execution plan for a query q.
Input q = (qπ, qγ , qσ): a query; Gq = (A′, E′) the query graph for q.
Output P : the NRA plan of q.
1: P ← ∅

2: LP ← ∅ � Empty array of local plans
3: GPq ← partitionQueryGraph(Gq)

4: for all GP i
q ∈ GPq do � One local plan is created for every partition of Gq

5: CP ← ∅ � Empty array of collection plans
6: C ← identifyAccessedCollections(GP i

q)

7: for all col ∈ C do � One collection plans is created for every partition of GP i
q

8: CPcol ← defineCollectionP lan(col, GP i
q)

9: LPi ← defineLocalJoins(CP, GP i
q)

10: P ← defineGlobalP lan(LP, Gq)
11: return P

4.2 Defining the Nested Relational Algebra Execution Plan

The full structure of a GPSJ query is shown in Fig. 4 and, as discussed in Sect. 3,
is composed of an aggregation2, over a set of joins, over a set of filtering opera-
tors. The process to translate a query graph Gq into an NRA execution plan is
described by Algorithm 1 and requires to: (1) partition Gq in several subgraphs,
each corresponding to a local plan (line 1); (2) define each local plan (lines 4–9);
(3) collate the local plans into the global one (line 3).

Query Graph Partitioning. Intuitively, a local plan includes all and only the
operators that apply to the same database. More formally, this corresponds to
partitioning Gq based on the edges of type fk in E′ (denoted as E′

glo) such that

a
′ fk−→ a

′′
and db(a

′
) �= db(a

′′
) (see Fig. 3). Let us define GPq as the set of parti-

tions, where |GPq| = |E′
glo|+1. Noticeably, if two edges in E′

glo refer to the same
database db, it will determine two local plans. For instance, with reference to the
running example, this happens if both Client and Vendor tables are accessed on
the relational database through the Stores collection in the document database.

2 We define the aggregation with the operator γ declared as X
γ

Y , where X is the
group-by set (i.e., a set of features) and Y is the set of aggregations (where each
aggregation is composed of a feature and an aggregation function).

Answering GPSJ Queries in a Polystore: A Dataspace-Based Approach 199

Local Plan Definition. At this point, for each query graph partition GP i
q , we

define the corresponding local plan by applying in sequence the following steps.

1. Identify accessed collection Similarly to the query graph partitioning step,
the collections to be accessed are identified by partitioning Gi

q based on the
edges of type fk. It is possible that the same collection needs to be accessed
twice (e.g., given a collection of cities, both the birth city and the residence
of customers are requested by the query); this happens when Gi

q includes two
fk edges between the same collections and with different semantics.

2. Define collection plan For each collection col we define a plan by applying in
sequence the following steps.
(a) Collection accesses A collection access C(col) is added to the local plan

to denote the collection to be accessed.
(b) Unnest operators Given a feature f ∈ feat(q), it may happen that some

of the attr(f) belong to a nested structure. To retrieve them it is manda-
tory to flatten the structure by recursively unnesting the arrays. More
formally, if ∃ a ∈ attr(f) | array(a) �= ∅, the unnest operator μ on
array(a) is necessary. For instance, given a

′′′ ∈ attr(f) in the collection
col, if array(a

′′′
) = a

′′
, array(a

′′
) = a

′
and array(a

′
) = ∅, then C(col)

in the local plan becomes μa′′ (μa′ (C(col))). Notice that, due to schema
heterogeneity, several arrays may need to be unnested, thus the unnesting
rule is applied to each a ∈ attr(f).

(c) Selection operators for each feature f ∈ feat(qσ), a selection operator σp

must be added to the local plan, where p = (f, ω, v) is the selection pred-
icate on f . Clearly, p must be actually formulated on attr(f); however,
if |attr(f)| > 1 due to schema heterogeneity, the same predicate must
be applied to several attributes. The predicate must be true for any of
the schema variations of f . Each record fits a specific schema variation
including only one of the attributes in attr(f), thus p is defined as a dis-
junction of conditions on attr(f): p = (

∨
∀ai∈attr(f) ϕai

(name(ai)), ω, v),
where ϕ is the function transcoding ai into the representative attribute of
f . For the sake of optimization, a single selection operation is generated
for predicates that must be applied to the same collection, e.g., given
p1 = {f

′
, ω1, v1} and p2 = {f

′′
, ω2, v2}, if col(attr(f

′
)) = col(attr(f

′′
))

then the applied selection operator is σp1∧p2 .
(d) Projection operators The role of projection operator is threefold: (1)

it keeps only the features required by the following join and aggre-
gation operators; (2) it solves the semantic equivalence by combining
all the attributes in attr(f) and renaming them in name(f); (3) it
solves data format heterogeneity by applying ϕ to transcode values from
the original format to the one of the representative attribute. Consider
Fπ = {feat(qπ) ∪ feat(qγ) ∪ F��} the set of features to be projected,
where F�� is the set of features whose attributes are involved in fk edges
in Gq. Also, consider F col

π = {f ∈ Fπ | attr(f) ∈ col}. |F col
π | projections

are added to the previously defined access plan for col. The projection for
f ∈ F col

π is defined as
(∨

∀ai∈attr(f) ϕai
(name(ai))

)
/ name(f). The role

200 H. Ben Hamadou et al.

of
∨

is to select the only non-null value among attr(f); it is expressed
with the CASE statement in SQL, or with the $ifNull operator in the Mon-
goDB query language. Finally, “/” represents the renaming of the result
with the feature’s name.

3. Define local joins For each edge a
′ fk−→ a

′′
in a query graph partition Gi

q,
a join operator ��name(feat(a′))=name(feat(a′′)) is added to join the different
collection plans. Please note that for the sake of simplicity we did not consider
projections aimed at removing features that are necessary only for joins.

Global Plan Definition. Similarly to the addition of local joins, a join operator
��name(feat(a′))=name(feat(a′′)) is added for each edge a

′ fk−→ a
′′

between two query
graph partitions to join the different local plans. We remark that the optimiza-
tion of join ordering is out of the scope of this paper. Ultimately, the aggregation
operator qπ

γ
qγ

after the last join operator, where qπ is the group-by set of the
query and qγ is the set of aggregations functions applied on the features. We
remind the reader that the final aggregation or projection is optional.

Example 5. The execution plan of the query in Example 4 is shown in Fig. 4.
Noticeably, the aggregation and global join operators directly reference the
resolved feature names.

Fig. 5. Execution plan of the query in Example 4.

5 Discussion and Conclusions

Data science and BI 2.0 expect more flexible and lightweight approaches to data
analysis. Our proposal extends previous polystore solutions by handling schema
heterogeneity and ensuring consistent answer for GPSJ queries, i.e., a wide class
of queries that is the most common in OLAP.

Answering GPSJ Queries in a Polystore: A Dataspace-Based Approach 201

Although the main contribution of this paper is the introduction of the formal
framework, we carried out a preliminary experimentation through a prototype to
verify the correctness and effectiveness of our findings. With reference to Fig. 2
we adopted Spark SQL as the middleware, MySQL, MongoDB and Cassandra as
relational, document-based and column-based DBMSs, respectively. The poly-
store we implemented is based on Unibench and has been extended with schema
heterogeneity. All the classes of heterogeneity discussed in the paper have been
injected and two different schemata for the Order collection are present. Maximal
schema cardinality is 142k records for the Order and Invoice collections. We also
defined the minimal set of features to answer a workload of 4 queries. In partic-
ular, query in Example 4 (whose plan is reported in Fig. 5) retrieves 23% of the
orders, and allows to transparently access the related order lines that are evenly
distributed on different schemata of the document DB. Overall query execution
requires 6.9 s: 0.2ṡ are necessary to create the plans, 1.2 s to run in parallel the
local plans, 2.7 s to generate Spark dataframes and 2.8 s to run the global one.
Other queries perform at comparable times and all results correctly correspond
to those of a manual execution.

Future extensions will cover different aspects. First, we plan to cover hori-
zontal partitioning of the data, that is, the same collection can span on several
collections on potentially different DBs. This introduces a new level of hetero-
geneity, as features may represent attributes that do not belong to the same col-
lection. We will also extend our approach (1) to support additional data models
(e.g., key-value and graph), and (2) to enable a broader set of queries than GPSJs
(e.g., [1]). In terms of effectiveness, we will consider the introduction of KPIs to
provide further insights to the user with respect to the underlying heterogeneity
of the data (e.g., [10]). Finally, we intend to run larger experimentation over real
datasets to better study the efficiency and boundaries of our approach.

References

1. Ben Hamadou, H., et al.: Schema-independent querying for heterogeneous collec-
tions in NoSQL document stores. Inf. Syst. (2019, in press). https://doi.org/10.
1016/j.is.2019.04.005

2. Ben Hamadou, H., Ghozzi, F., Péninou, A., Teste, O.: Towards schema-
independent querying on document data stores. In: 20th International Workshop
on Design, Optimization, Languages and Analytical Processing of Big Data Co-
Located with EDBT/ICDT. CEUR-WS.org (2018)

3. Botoeva, E., Calvanese, D., Cogrel, B., Xiao, G.: Expressivity and complexity of
MongoDB queries. In: 21st International Conference on Database Theory, pp. 9:1–
9:23. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2018). https://doi.org/
10.4230/LIPIcs.ICDT.2018.9

4. Chang, F., et al.: Bigtable: a distributed storage system for structured data. ACM
Trans. Comput. Syst. 26(2), 4:1–4:26 (2008)

5. Corbellini, A., Mateos, C., Zunino, A., Godoy, D., Schiaffino, S.N.: Persisting big-
data: the NoSQL landscape. Inf. Syst. 63, 1–23 (2017)

https://doi.org/10.1016/j.is.2019.04.005
https://doi.org/10.1016/j.is.2019.04.005
https://doi.org/10.4230/LIPIcs.ICDT.2018.9
https://doi.org/10.4230/LIPIcs.ICDT.2018.9

202 H. Ben Hamadou et al.

6. DiScala, M., Abadi, D.J.: Automatic generation of normalized relational schemas
from nested key-value data. In: 2016 ACM SIGMOD International Conference on
Management of Data, pp. 295–310. ACM (2016). https://doi.org/10.1145/2882903.
2882924

7. Franklin, M.J., Halevy, A.Y., Maier, D.: From databases to dataspaces: a new
abstraction for information management. SIGMOD Rec. 34(4), 27–33 (2005)

8. Gadepally, V., et al.: The BigDAWG polystore system and architecture. In: 2016
IEEE High Performance Extreme Computing Conference, pp. 1–6. IEEE (2016)

9. Gallinucci, E., Golfarelli, M., Rizzi, S.: Variety-aware OLAP of document-oriented
databases. In: 20th International Workshop on Design, Optimization, Languages
and Analytical Processing of Big Data Co-Located with EDBT/ICDT. CEUR-
WS.org (2018)

10. Gallinucci, E., Golfarelli, M., Rizzi, S.: Approximate OLAP of document-oriented
databases: a variety-aware approach. Inf. Syst. (2019, in press). https://doi.org/
10.1016/j.is.2019.02.004

11. Golfarelli, M., et al.: OLAP query reformulation in peer-to-peer data warehousing.
Inf. Syst. 37(5), 393–411 (2012). https://doi.org/10.1016/j.is.2011.06.003

12. Gupta, A., Harinarayan, V., Quass, D.: Aggregate-query processing in data ware-
housing environments. In: 21th International Conference on Very Large Data Bases,
pp. 358–369. Morgan Kaufmann (1995)

13. Herrero, V., Abelló, A., Romero, O.: NOSQL design for analytical workloads: vari-
ability matters. In: 35th International Conference on Conceptual Modeling, pp.
50–64 (2016). https://doi.org/10.1007/978-3-319-46397-1 4

14. Jeffery, S.R., Franklin, M.J., Halevy, A.Y.: Pay-as-you-go user feedback for datas-
pace systems. In: 2008 ACM SIGMOD International Conference on Management
of Data, pp. 847–860. ACM (2008). https://doi.org/10.1145/1376616.1376701

15. LeFevre, J., et al.: MISO: souping up big data query processing with a multistore
system. In: 2014 ACM SIGMOD International Conference on Management of Data,
pp. 1591–1602. ACM (2014). https://doi.org/10.1145/2588555.2588568

16. Ong, K.W., Papakonstantinou, Y., Vernoux, R.: The SQL++ semi-structured data
model and query language: a capabilities survey of SQL-on-Hadoop, NoSQL and
NewSQL databases. CoRR abs/1405.3631 (2014)

17. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.
VLDB J. 10(4), 334–350 (2001). https://doi.org/10.1007/s007780100057

18. Rolls, D., Joslin, C., Scholz, S.: Unibench: a tool for automated and collaborative
benchmarking. In: 18th IEEE International Conference on Program Comprehen-
sion, pp. 50–51. IEEE Computer Society (2010). https://doi.org/10.1109/ICPC.
2010.36

19. Rostin, A., et al.: A machine learning approach to foreign key discovery. In: 12th
International Workshop on the Web and Databases (2009)

20. Sadalage, P.J., Fowler, M.: NoSQL Distilled: A Brief Guide to the Emerging World
of Polyglot Persistence. Pearson Education, London (2013)

21. Sheth, A.P.: Federated database systems for managing distributed, heterogeneous,
and autonomous databases. In: 17th International Conference on Very Large Data
Bases, p. 489. Morgan Kaufmann (1991)

22. Tahara, D., Diamond, T., Abadi, D.J.: Sinew: a SQL system for multi-structured
data. In: 2014 ACM SIGMOD International Conference on Management of Data,
pp. 815–826. ACM (2014). https://doi.org/10.1145/2588555.2612183

23. Tan, R., et al.: Enabling query processing across heterogeneous data models: a
survey. In: 2017 IEEE International Conference on Big Data, pp. 3211–3220. IEEE
Computer Society (2017). https://doi.org/10.1109/BigData.2017.8258302

https://doi.org/10.1145/2882903.2882924
https://doi.org/10.1145/2882903.2882924
https://doi.org/10.1016/j.is.2019.02.004
https://doi.org/10.1016/j.is.2019.02.004
https://doi.org/10.1016/j.is.2011.06.003
https://doi.org/10.1007/978-3-319-46397-1_4
https://doi.org/10.1145/1376616.1376701
https://doi.org/10.1145/2588555.2588568
https://doi.org/10.1007/s007780100057
https://doi.org/10.1109/ICPC.2010.36
https://doi.org/10.1109/ICPC.2010.36
https://doi.org/10.1145/2588555.2612183
https://doi.org/10.1109/BigData.2017.8258302

Answering GPSJ Queries in a Polystore: A Dataspace-Based Approach 203

24. Thomas, S.J., Fischer, P.C.: Nested relational structures. Adv. Comput. Res. 3,
269–307 (1986)

25. Wang, L., et al.: Schema management for document stores. PVLDB 8(9), 922–933
(2015). https://doi.org/10.14778/2777598.2777601

26. Zaharia, M., et al.: Apache Spark: a unified engine for big data processing. Com-
mun. ACM 59(11), 56–65 (2016). https://doi.org/10.1145/2934664

https://doi.org/10.14778/2777598.2777601
https://doi.org/10.1145/2934664

Ontology-Schema Based Query
by Example

Lucas Peres, Ticiana L. Coelho da Silva(B), Jose Macedo(B),
and David Araujo(B)

Insight Data Science Lab, Fortaleza, CE, Brazil
{lucasperes,ticianalc,jose.macedo,david}@insightlab.ufc.br

Abstract. The Web has evolved from a network of linked documents
to one where both documents and data are linked, resulting in what is
commonly known as the Web of Linked Data, that includes a large vari-
ety of data usually published in RDF from multiple domains. Intuitive
ways of accessing RDF data become increasingly important since the
standard approach would be to run SPARQL queries. However, this can
be extremely difficult for non-experts users. In this paper, we address
the problem of question answering over RDF. Given a natural language
question or a keyword search string, our goal is to translate it into a
formal query as SPARQL that captures the information needed. We pro-
pose Von-QBE which is a schema-based approach to query over RDF
data without any previous knowledge about the ontology entities and
schema. This is different from the-state-of-art since the approaches are
instance-based. However, it can be unfeasible using such approaches in
big data scenarios where the ontology base is huge and demands a large
amount of computational resource to keep the knowledge base in mem-
ory. Moreover, most of these solutions need the knowledge base triplified,
which can be a hard task for legacy bases. Von-QBE results are promis-
ing for the two real benchmarks evaluated, considering that only the
ontology schema is used to generate SPARQL queries.

1 Introduction

The Web has evolved from a network of linked documents to one where both
documents and data are linked, resulting in what is commonly known as the Web
of Linked Data, that includes a large variety of data usually published in RDF
from multiple domains. Intuitive ways of accessing RDF data become increas-
ingly important since the standard approach would be to run structured queries
in triple-pattern-based languages like SPARQL [12]. This can be extremely dif-
ficult for non-experts users.

Consider the example question, such as “Find the title of action movies pro-
duced in Eastern Asia and the name of their company”. A possible SPARQL
formulation, assuming a user familiar with the schema of the underlying knowl-
edge base, could consist of the following:

c© Springer Nature Switzerland AG 2019
A. H. F. Laender et al. (Eds.): ER 2019, LNCS 11788, pp. 204–212, 2019.
https://doi.org/10.1007/978-3-030-33223-5_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33223-5_17&domain=pdf
https://doi.org/10.1007/978-3-030-33223-5_17

Ontology-Schema Based Query by Example 205

SELECT DISTINCT ?x ?title ?company_name WHERE {
?x a mo:Movie; mo:title ?title;
mo:isProducedBy ?y; mo:belongsToGenre [a mo:Brute_Action] .

?y :companyName ?company_name .
?y :hasCompanyLocation [a mo:Eastern_Asia] . }

This complex query, which involves multiple joins, is difficult for the user to
come up with specific relations, classes and entities. This would require famil-
iarity with the knowledge base, which in general, no user should be expected to
have. In this paper, we address the problem of question answering over RDF.
Given a natural language question QN and an underlying ontology O, our goal
is to translate QN into a formal query QS as SPARQL that captures the infor-
mation need to be expressed by QN . We focus on queries that emphasize classes
and relations between them. We do not consider aggregation, disjunctive and
negation queries.

A considerable number of question answering approaches for RDF data has
been proposed, to name a few [1,8,9,11,13] and [12]. They address the same
problem of this paper. However, they present several limitations: [1,9,13] and
[11] are instance-based approaches, which can be unfeasible in big data scenarios
where the ontology base is huge and demands a large amount of computational
resource to keep the knowledge base in memory. Moreover, most of those solu-
tions need the knowledge base triplified, which can be a hard task for legacy
bases. [12] requires a pre-processing phase to constructed a phase-concept dic-
tionary as part of the knowledge base, and [8] is based on SPARQL templates. In
this paper, we propose Von-QBE (stands for Virtual Ontology Query By Exam-
ple) that overcome such limitations. Von-QBE derives from the term virtual
ontology, since it is not instance-based and it can use an ontology virtualized by
other tools like Ontop [3] instead of RDF stores.

Von-QBE is a schema-based approach to query over RDF data without any
previous knowledge about the ontology entities and schema. Von-QBE lets the
user queries using natural language questions or by using a keyword search and
translates the query into SPARQL. Furthermore, Von-QBE assists the user to
construct his/her query search interactively. The remainder of the paper is struc-
tured as follows: Sect. 2 introduces our proposal Von-QBE. Section 3 presents the
experimental evaluation, and finally Sect. 4 draws the final conclusions.

2 Von-QBE Framework

In this section, we introduce our proposal. Given a natural language question QN

(or a keyword search string) and an ontology base O, Von-QBE translates QN

into a SPARQL query QS that can capture the same information expressed by
QN . Beyond that, Von-QBE also helps the user to construct its keyword search
interactively. For the sake of brevity, from now on we will use QN in place of the
natural language question, and the keyword search string since each word in the
natural language question is tackled as a keyword.

206 L. Peres et al.

Person
subClassOf

Actor

has male actor

is produced by

title budget
production started year

MovieProduction Company

literal literal literal

company name

literal

birth name

literal

Fig. 1. Part of IMDB ontology schema with the highlighted fragment for the search:
movies and their actors birth name

Suppose the ontology schema in Fig. 11 represented as an RDF graph based
on [4], where the classes are graph nodes and the properties, edges. Imagine a
user that starts QN with the keyword movie. Von-QBE suggests improving QN

using concepts from the ontology schema and whenever QN represents what the
user is searching for, the user can submit QN to Von-QBE. Then, Von-QBE
transforms QN into a SPARQL query QS and returns the answers.

Von-QBE comprises three main components: (1) Fragment Extractor respon-
sible to, from QN , identify the ontology subset involved in the query. Through-
out this paper, we call such subset as fragment ; (2) Fragment Expansor which
expands the fragment with classes and properties, i.e. ontology concepts. Based
on this expansion, Fragment Expansor suggests new ontology concepts to the
user expands QN ; and finally, (3) Query Builder which transforms the fragment
into a SPARQL query QS . In what follows, we describe in details each Von-QBE
component.

Fragment Extraction. As we mentioned before a fragment from the underlying
RDF graph corresponds to the classes and properties of the ontology schema
involved on QN . The Fragment Extraction is made up by two main components:
(1) Keyword Matcher that identifies the ontology concepts mentioned on QN ,
and (2) Fragment Constructor that discovers how these concepts are related on
the ontology schema. Consider the ontology schema presented in Fig. 1 and QN

as “Give the movie actors”. The Keyword Matcher would identify the classes
Movie and Actor that yield the highest similarity value with the terms of QN .
From these classes, the Fragment Constructor would extract the fragment Movie
has male actor Actor, once the class Movie directly achieves Actor in the RDF
graph.

Now consider QN as “Find the birth name of actors from movies”. The Key-
word Matcher would identify the classes Actor and Movie, and the property
birth name. However, birth name is not a property of Actor neither a property
of Movie in the RDF graph. So Fragment Constructor identifies the class Per-
son and the property subClassOf to relate birth name with Actor. Finally, the
fragment is built by means of the relation has male actor that relates Movie and
Actor, the relation subClassOf that relates Actor and Person, and the relation

1 https://sites.google.com/site/ontopiswc13/home/imdb-mo.

https://sites.google.com/site/ontopiswc13/home/imdb-mo

Ontology-Schema Based Query by Example 207

birth name which is a property of Person. The generated fragment is highlighted
in Fig. 1.

Algorithm1 performs the Keyword Matcher. First of all, we prefer to use Jaro-
Winkler [10] as the similarity measure since it is widely used. Algorithm 1 receives
as input a list of words from QN , the ontology schema (RDFSchema) and a
similarity threshold ρ. It outputs the ontology concepts (classes and/or proper-
ties) that match with words. For each word (line 3) in QN , testWord appends
such word with the previous words (composedConcept) in QN such that they
together are similar to a concept in RDFSchema (Line 4). So, Line 5 checks if
there is any concept on RDFSchema such that the similarity between testWord
is greater than a threshold ρ. If so, the algorithm updates composedConcept
(Line 6) in order to keep in such variable a sequence of words in QN that
matches an ontology concept according to ρ. If the similarity is not greater
than ρ, the algorithm adds into elements list the highest similar ontology con-
cept with composedConcept (Lines 8 and 9), and updates the composedConcept
variable to the current analyzed word. The intuition behind is from that word
the algorithm might start a new sequence of words that match with any ontol-
ogy concepts. Algorithm1 needs to check if there is any ontology concept that
is similar to the last value assigned to composedConcept at Line 13. If so, such
concept is added into the elements list (Lines 14 and 15). Line 17 returns the
output of the algorithm.

The output of Algorithm 1 is given as input Fragment Constructor module,
which builds the fragment that relates the ontology concepts involved in QN

according to the RDF Schema (also given as input). First, it computes the closure

Algorithm 1. Algorithm Keyword Matcher
Data: words, RDFSchema, ρ
Result: elements //ontology elements

1 elements := {}; n :=(words.length-1); composedConcept := ”” ;
2 for i := 0 to n-1 do
3 word = words[i] ;
4 testWord = composedConcept + word ;
5 if similarConcept(testWord, RDFSchema) > ρ then
6 composedConcept = testWord ;
7 else
8 concept := RDFSchema.getMostSimilarConcept(composedConcept);
9 elements.add(concept) ;

10 composedConcept = word ;
11 end
12 end
13 if similarConcept(composedConcept, RDFSchema) > ρ then
14 concept := RDFSchema.getMostSimilarConcept(composedConcept) ;
15 elements.add(concept) ;
16 end
17 return elements

208 L. Peres et al.

graph [5] which is a subgraph constructed by using the shortest paths (obtained
by running Dijkstra algorithm) among all the pair of ontology concepts returned
by Algorithm1. This graph might have cycles which are often found on RDF
ontologies. Imagine two properties that are one inverse of another, like has male
actor that connects Movie to Actor and is male actor in, connecting Actor
to Movie. To remove these cycles, the module applies Prim’s algorithm [6] to
find the Minimum Spanning Tree(MST). Prim outputs a fragment smaller or
equal than the closure graph. This means that such a fragment contains only
the minimal number of paths to connect all the ontology concepts outputted by
Algorithm1. Of course, the closure graph might have multiple MSTs. However,
Prim only takes one of them.

After the computation of the fragment, Von-QBE starts two other compo-
nents: (1) Fragment Expansor which expands the fragment with ontology classes
and properties. Based on this expansion, Fragment Expansor suggests new ontol-
ogy concepts to the user expands QN ; (2) Query Builder which transforms the
fragment into a SPARQL query QS .

Fragment Expansor. Von-QBE suggests the user expands QN using the ontol-
ogy classes and properties that are directly connected to the fragment. The Frag-
ment Expansor expands the fragment with all edges (of course, the ones that
are not already in the fragment) that come in (or out) from the fragment nodes.
Remember that our ontology is represented as an RDF graph, and the fragment
nodes are ontology classes. Let QN be “Find the movies and their actors” and
the underlying ontology is the RDFSchema represented in Fig. 1. The fragment
nodes derived from QN are Movie and Actor. From the node Movie, Fragment
Expansor can find the following properties: title, budget, production started year,
is produced by and has male actor. However, the has male actor is already in
the fragment. So, only the other properties should be presented as a suggestion
to the user expands QN . The node Actor contains a particular case. Consider
the property has male actor is already in the fragment. In this case, Fragment
Expansor can only suggest subClassOf. However, when a class is a subclass of
another, it must inherit the properties from the parent class. So, instead of sug-
gesting subClassOf, Fragment Expansor suggests to the user birth name.

Query Builder works as follows: each edge in the fragment (output of Frag-
ment Constructor module or expanded with the suggestions outputted by Frag-
ment Expansor module and accepted by the user) is added as a clause (or triple
pattern), and the source and the target nodes are named as variables. Since
the ontology schema might have properties that present multiple domains and
ranges, Query Builder also adds a clause to inform the instance type (class) of
each variable. All the clauses (or triple patterns) are given as input to Apache
Jena library2 which generates QS according to the SPARQL syntax. Let QN be:
“Find the birth name of actors from movies” and the fragment with the follow-
ing relations: Movie has male actor Actor, Actor subClassOf Person and Person
birth name. The second edge relates to the property subClassOf. Whenever Query

2 http://jena.apache.org.

http://jena.apache.org

Ontology-Schema Based Query by Example 209

Builder finds an edge with subClassOf, it replaces such edge by other new edges
that have the parent class as a source. So considering the RDFSchema rep-
resented in Fig. 1, Query Builder generates the following edges: E1: Movie has
male actor Actor and E2: Actor birth name.

The edge E1 is a relation connecting two classes. Since this is the first edge
to be processed, we have two new variables (one for Movie and one for Actor).
Query Builder also adds three clauses: a definition for the Movie variable, a
definition for the Actor variable and the connection of both variables using
the property has male actor. So, the edge E1 corresponds to the three following
triple patterns: TP1: ?Movie a imdb:Movie, TP2: ?Actor a imdb:Actor and TP3:
?Movie imdb:has_male_actor ?Actor. The edge E2 is a property that points to
a literal value (also called attribute or, in RDF, DataTypeProperty). This kind of
edge needs to use also two variables, but only the first one is a class instance, the
other variable is a literal value (strings, numbers, dates, among others). Since
the Actor variable is already defined, Query Builder only needs to add one more
triple pattern: TP4: ?Actor imdb:birth_name ?Actor_birth_name. Once all the
triple patterns are generated from the fragment edges, Apache Jena generates
the SPARQL query QS as follows:

SELECT ?Movie ?Actor ?Actor_birth_name WHERE{
?Movie a imdb:Movie .
?Actor a imdb:Actor .
?Movie imdb:has_male_actor ?Actor .
?Actor imdb:birth_name ?Actor_birth_name .}

3 Experiments

In this section, we provide the details about the experimentation performed
with Von-QBE. No experiments were made to compare Von-QBE to other solu-
tions previously mentioned since these works use the ontology data instances
to improve their performance, which would not be a fair comparison. From the
authors’ knowledge, OptiqueVQS [7] and Von-QBE are the only solution schema-
based, but OptiqueVQS does not accept natural language or keyword search then
we can not compare with OptiqueVQS as well. Instead, we experimented Von-
QBE with two real benchmarks. For each benchmark, we evaluate each question
is evaluated according to well-established metrics, i.e., recall and precision.

3.1 Datasets

Our experiments are based on two collections of questions: IMDB Movie Ontol-
ogy3 virtualized using Ontop [3] with questions formulated in SPARQL query4.
IMDB provides data about actors, movies, directors, and production company.
3 https://sites.google.com/site/ontopiswc13/home/imdb-mo.
4 https://raw.githubusercontent.com/wiki/ontop/ontop/attachments/Example_

MovieOntology/movieontology.q.

https://sites.google.com/site/ontopiswc13/home/imdb-mo
https://raw.githubusercontent.com/wiki/ontop/ontop/attachments/Example_MovieOntology/movieontology.q
https://raw.githubusercontent.com/wiki/ontop/ontop/attachments/Example_MovieOntology/movieontology.q

210 L. Peres et al.

Another collection of questions are the QALD5 task for question answering over
linked data. It comprises two sets of questions over DBpedia [2], annotated with
SPARQL queries and answers. We used QALDs 5, 6, 7 and 9 training ques-
tions which are provided with a SPARQL benchmark. For both benchmarks, the
questions out-of-scope for Von-QBE were not considered, like ASK type ques-
tions, aggregation, and counting. Moreover, the ones that no entities are available
(empty results).

After removing these questions, our test set consists of 12 QALD-(5, 6, 7,
9) training questions and 29 Ontop questions out of 37. The number of evalu-
ated questions in QALD-(5, 6, 7, 9) reduces by much, because these questions
comprise information about instances, like people names, country names, aggre-
gations, sorting, while Von-QBE works with conceptual questions, using classes
and properties names only.

3.2 Evaluation Results

Table 1 lists the results of each experiment using IMDB and QALD datasets.
To both benchmarks, we set 0,9 as the similarity threshold (ρ) in the Keyword
Matcher algorithm. IMDB contains some questions with low results for precision,
like the keyword search question 24: “title movies company name production
company located East Asia”, for example, demands the movie title and company
names located in East Asia. Von-QBE generates a SPARQL query that projects
all properties and entities used in the triple-patterns on the SELECT clause,
then the movies and companies URIs, titles, and names are returned. However,
there exist movies with the same title but different IDs, so Von-QBE retrieves
more answers than the benchmark. This decreases precision.

Table 1. Experiment results for IMDB and QALD-(5, 6, 7, 9) datasets.

Dataset Questions Select-project questions Answerable questions Recall (R) Precision(P)

IMDB 37 37 29 0.96 0.69

QALD-5 286 269 1 0.2 1× 10e− 4

QALD-6 335 308 5 0.55 0.001

QALD-7 215 193 2 0.39 3× 10e− 5

QALD-9 408 371 4 0.66 0.013

Weighted mean 0.53 0.0047

Another drawback is for questions that use entities to filter the results, like
question 271 from QALD-9: “Which awards did Douglas Hofstadter win?”. The
SPARQL gold standard retrieves only the awards from Douglas Hofstader while
the SPARQL generated from Von-QBE retrieves all the awards. This happens
because VON-QBE is schema-based only, and Douglas Hofstader is an entity,
5 http://qald.aksw.org.

http://qald.aksw.org

Ontology-Schema Based Query by Example 211

not a concept. This has a major impact in the QALD results, since only a really
small portion of the questions, Von-QBE can retrieve any result. Analyzing only
the queries with answers, we still get some acceptable recall results using only
the schema. We plan to enhance VON-QBE by using, for instance, Named Entity
Recognition tools to detect for each entity described in the query (like Douglas
Hofstader) its corresponding class. The evaluation data can be found at6 and a
demonstration of Von-QBE can be found at7.

4 Conclusion and Future Work

In this paper, we propose Von-QBE to address the problem of translating a
natural language question or a keyword search over RDF data into SPARQL
query. From the authors’ knowledge, Von-QBE is the first work to address such
a problem using only the ontology schema. We believe our results are promising
for the two real benchmarks evaluated, considering that only the ontology schema
was used to generate SPARQL queries. As future work, we aim at using natural
language processing tools to detect entities described in the query and find its
corresponding concept over the ontology schema. Moreover, we aim at expanding
Von-QBE to process different types of queries, like aggregation.

Acknowledgments. This work has been supported by FUNCAP SPU 8789771/2017
research project.

References

1. Arnaout, H., Elbassuoni, S.: Effective searching of RDF knowledge graphs. J. Web
Semant. 48, 66–84 (2018)

2. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia:
a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007.
LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-76298-0_52

3. Calvanese, D., et al.: Ontop: answering SPARQL queries over relational databases.
Semant. Web 8(3), 471–487 (2017)

4. World Wide Web Consortium, et al.: RDF 1.1 concepts and abstract syntax
5. Kompella, V.P., Pasquale, J.C., Polyzos, G.C.: Multicast routing for multimedia

communication. IEEE/ACM Trans. Netw. (TON) 1(3), 286–292 (1993)
6. Prim, R.C.: Shortest connection networks and some generalizations. Bell Labs

Tech. J. 36(6), 1389–1401 (1957)
7. Soylu, A., Kharlamov, E., Zheleznyakov, D., Jimenez-Ruiz, E., Giese, M., Horrocks,

I.: OptiqueVQS: ontology-based visual querying. In: VOILA@ ISWC, p. 91 (2015)
8. Unger, C., Bühmann, L., Lehmann, J., Ngonga Ngomo, A.-C., Gerber, D., Cimiano,

P.: Template-based question answering over RDF data. In: Proceedings of the 21st
International Conference on World Wide Web (2012), pp. 639–648. ACM (2012)

6 https://github.com/InsightLab/linked-graphast/tree/evaluation.
7 https://github.com/InsightLab/von-qbe.

https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1007/978-3-540-76298-0_52
https://github.com/InsightLab/linked-graphast/tree/evaluation
https://github.com/InsightLab/von-qbe

212 L. Peres et al.

9. Usbeck, R., Ngomo, A.-C.N., Bühmann, L., Unger, C.: HAWK – hybrid question
answering using linked data. In: Gandon, F., Sabou, M., Sack, H., d’Amato, C.,
Cudré-Mauroux, P., Zimmermann, A. (eds.) ESWC 2015. LNCS, vol. 9088, pp.
353–368. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18818-8_22

10. Winkler, W.E.: The state of record linkage and current research problems. Statis-
tical Research Division, US Census Bureau, Citeseer (1999)

11. Xu, K., Zhang, S., Feng, Y., Zhao, D.: Answering natural language questions via
phrasal semantic parsing. In: Zong, C., Nie, J.Y., Zhao, D., Feng, Y. (eds.) Nat-
ural Language Processing and Chinese Computing. CCIS, vol. 496, pp. 333–344.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45924-9_30

12. Yahya, M., Berberich, K., Elbassuoni, S., Ramanath, M., Tresp, V., Weikum, G.:
Natural language questions for the web of data. In: Proceedings of the 2012 Joint
Conference on EMNLP and CoNLL, pp. 379–390. Association for Computational
Linguistics (2012)

13. Yih, S.W.-T., Chang, M.-W., He, X., Gao, J.: Semantic parsing via staged query
graph generation: question answering with knowledge base

https://doi.org/10.1007/978-3-319-18818-8_22
https://doi.org/10.1007/978-3-662-45924-9_30

Query Rewriting for Continuously
Evolving NoSQL Databases

Mark Lukas Möller1(B), Meike Klettke1, Andrea Hillenbrand2, and Uta Störl2

1 University of Rostock, Rostock, Germany
{mark.moeller2,meike.klettke}@uni-rostock.de

2 University of Applied Sciences Darmstadt, Darmstadt, Germany
{andrea.hillenbrand,uta.stoerl}@h-da.de

Abstract. In agile software development settings, applications are typi-
cally backed by schema-flexible NoSQL databases. New application code
frequently implies data model changes to the effect of multiple schema
versions within the NoSQL database. Here, a query rewriting approach
can handle the issue of how to access legacy data, otherwise datasets
in previous schema versions would seem to disappear for the applica-
tion. Our NoSQL query rewriting approach for multi-versioned databases
takes evolution operations into account, their reverse operations as well
as the heterogeneity of data. For that purpose we specify four NoSQL het-
erogeneity classes from relational up to completely unstructured NoSQL
records. Furthermore, we propose a NoSQL query rewriting algorithm
that generates subqueries compatible to all existing structural versions.

Keywords: Multi-versioned NoSQL databases · NoSQL query
rewriting · NoSQL Schema Evolution · NoSQL data heterogeneity
classes

1 Introduction

All successful software products permanently underlie changes. This includes fre-
quent schema evolutions of data structures which in turn implies the necessity
to eventually adapt legacy data to such data model changes. Schemaless NoSQL
databases that do not prescribe structural and semantic constraints allow appli-
cations to store different structural versions in the same database. If applications
are evolved, then the issue of multi-versioned databases has to be addressed.
NoSQL query rewriting (QR) allows the application to access data entities in
different structural versions. Our approach for QR distributes such queries onto
the pertained different structural versions as shown in Fig. 1.

Query rewriting can be applied in two directions. Forward Query Rewriting
assumes a legacy application and handles queries in case that the legacy appli-
cation is not aware of an already evolved database schema. Backward Query
Rewriting assumes an evolved application and fetches entities according to legacy

c© Springer Nature Switzerland AG 2019
A. H. F. Laender et al. (Eds.): ER 2019, LNCS 11788, pp. 213–221, 2019.
https://doi.org/10.1007/978-3-030-33223-5_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33223-5_18&domain=pdf
https://doi.org/10.1007/978-3-030-33223-5_18

214 M. L. Möller et al.

Application version j
with queries in version j

Data in version j retrieved by queries in application version j

Data in version j+m retrieved by queries in application version j+mForward Query Rewriting
Data in version j+m
Queries in version j

Backward Query Rewriting
Data in version j

Queries in version j+m

Application version j+m
with queries in version j+m

Fig. 1. Forward and Backward Query Rewriting for versioned databases

schema versions. For implementing lazy data migration, a backward QR app-
roach has to be applied, which turns out to be the common use-case.

We first define the semantics of evolution operations, introduce an evolution
history graph which contains information on schema versions and evolution oper-
ations, and then develop a QR algorithm for multi-versioned NoSQL databases.

2 Foundations

In this section we summarize the formal foundations for the QR algorithm while
particularly focusing on the NoSQL characteristics.

NoSQL Heterogeneity Classes. NoSQL databases can store heterogeneous
datasets within the same collection. Heterogeneity has to be considered in all
algorithms that process NoSQL data. We have to take into account struc-
tural heterogeneity, varying cardinalities, and the existence of so-called dangling
tuples. Therefore, we are introducing four heterogeneity classes (HC).

HC1 contains datasets in different structural versions, yet all datasets in the
same version have exactly the same structure. Further, we can assume 1:1 car-
dinalities and no dangling tuples between two entity types.
HC2 extends HC1 by adding 1:n cardinalities. Dangling tuples can occur and
have to be considered during data migration.
HC3 extends HC2 to arbitrary cardinalities (1:1, 1:n, n:1, n:m).
HC4 represents databases that can have different structures within the same
version. Here, optional properties can occur. NoSQL databases allow this het-
erogeneity even if an explicit schema, e.g., a JSON schema, is present.

Formal Semantics. NoSQL data with an equal or similar set of properties is
called a kind. A kind named A is defined by a schema SA and a set of entities
EA, i.e., KA = (SA, EA). The schema SA consists of a set of property names
SA = {A1, . . . , An}. The set of entities over SA is defined as EA := {e1, . . . , em}
where m is the number of entities. Each entity in EA consists of up to n attributes
called aij , so ei = {aij | i ∈ {1, . . . ,m}, j ∈ {1, . . . n}}. Here, i represents the
index for the i-th entity of EA and j is the j-th attribute of the entity.

Each attribute aij consists of an attribute name and an attribute value,
i.e., aij = (Aij : vij) ∈ SAi

× D(Ai) whereby SAi
⊆ SA and D(Ai) ⊆ D(A).

Query Rewriting for Continuously Evolving NoSQL Databases 215

Thus, SAi
× D(Ai) represents the property domain. The property value vij is

either a null value, a boolean, a string, a number, an array, or it can contain
nested properties, as is typical in NoSQL applications. If vij contains the nested
property w, the value of w is accessible by the path expression vij .w. In case of
nested properties, all paths are assumed to be available in the schema as well.

Example 1. Let us consider a database of a research institute for storing sensor
data with three different kinds: projects, metadata, and the sensor values for each
test run. The kind projects is defined as Kprojects = {Sprojects, Eprojects}. The
according schema is Sprojects = {“p id”, “station name”, “funder”, “budget”}. A
set of possible entities could read as follows:

Eprojects = {{("p_id": 1), ("station_name": "Baltic Sea"), ("funder": "DFG"), ("budget": "5
Mil")}, {("p_id": 2), ("station_name": "Baltic Sea")}}↪→

Lastly, we introduce X? as a notation to mark X as an optional property.
Analogously, the set operator

?∈ exists. The notation X
?∈ SA predicates that X

is part of the schema, yet not all entities necessarily have a property X.

Evolution Operations. The semantics of an evolution operation has to con-
sider the HC. As an example, we discuss the rename operation for HC4 (see
Fig. 2). In version vA, both optional property names X and Z are considered to
be part of the schema SA[vA] . Here, [vA] represents the version number. On the
schema level, it is required to distinguish the cases resulting from whether X and
Z is present or not for each entity. For example, if both the new and old property
names are present, the current value is kept. The properties A2, . . . , An repre-
sent the other properties of the kind which do not affect the operation. After
the operation, the now non-optional property Z is part of the schema while X is
not part of the schema anymore. Here, [vA + 1] states that the version number
is incremented. The given four cases describe the migration of all entities in EA.

The evolution operations are defined accordingly across all HCs. For example,
in HC1, only the first case has to be considered. In [5], we specified the complete
definitions for the operations add, delete, rename, and the even more complex
multi-type operations move and copy with a more detailed explanation.

3 Rewriting NoSQL Data

Based on the above definitions, we can now develop an algorithm for NoSQL
query rewriting regarding all heterogeneity classes.

Evolution History Graph. For query rewriting it is necessary to store infor-
mation about the history of schema versions and the evolution operations which
transform each schema version into its successor schema version. The informa-
tion is stored in a graph-based model, G = (H,OP). The history H contains the

216 M. L. Möller et al.

HC4: Rename Ignore A.X To Z

global precond : {X ?∈ SA, Z
?∈ SA}

SA(X?, Z?, A3, . . . , An)[vA] SA(Z,A3, . . . , An)[vA+1]

∀ei ∈ EA[vA] :

case:X ∈ ei[vA] ∧ Z /∈ ei[vA]

⎧
⎪⎨

⎪⎩

case precond : {X ∈ ei[vA] ∧ Z /∈ ei[vA]}
ei((X:x), ai3 , . . . , ain)[vA] ei((Z:x), ai3 , . . . , ain)[vA+1]

case postcond : {X /∈ ei[vA+1] ∧ Z ∈ ei[vA+1]}

case:X ∈ ei[vA] ∧ Z ∈ ei[vA]

⎧
⎪⎨

⎪⎩

case precond : {X ∈ ei[vA] ∧ Z ∈ ei[vA]}
ei((X:x), (Z:z), ai3 , . . . , ain)[vA] ei((Z:x), ai3 , . . . , ain)[vA+1]

case postcond : {X /∈ ei[vA+1] ∧ Z ∈ ei[vA+1]}

case:X /∈ ei[vA] ∧ Z ∈ ei[vA]

⎧
⎪⎨

⎪⎩

case precond : {X /∈ ei[vA] ∧ Z ∈ ei[vA]}
ei((Z:z), ai3 , . . . , ain)[vA] ei((Z:z), ai3 , . . . , ain)[vA+1]

case postcond : {X /∈ ei[vA+1] ∧ Z ∈ ei[vA+1]}

case:X /∈ ei[vA] ∧ Z /∈ ei[vA]

⎧
⎪⎨

⎪⎩

case precond : {X /∈ ei[vA] ∧ Z /∈ ei[vA]}
ei(ai3 , . . . , ain)[vA] ei((Z:⊥), ai3 , . . . , ain)[vA+1]

case postcond : {X /∈ ei[vA+1] ∧ Z ∈ ei[vA+1]}

global postcond : {X /∈ SA[vA+1], Z ∈ SA[vA+1]}

Fig. 2. Semantics of the rename operation in HC4 with ignore strategy

schema versions of each kind from the oldest available to the most recent version.
The history of a kind K is denoted as HK , so H = {HK1 , . . . ,HKn}. For each
version, a tuple with the version number and the superset of the property names
of the schema in this version is stored. It is denoted as HK = {(v, {props})}.

The set of evolution operations OP is defined as a set of tuples (s, t, vs, vt, op)
for storing evolution information. Each tuple contains the name of the source and
the target kind (s and t), the current version of the source, the new version of
the target kind (vs and vt), and the parameterized evolution operation. Executing
an evolution operation results in a new tuple in OP. For single-type operations,
a tuple is added to the corresponding history H, while for multi-type one tuple
is added to each of the histories of the source and of the target kind.

K : projects
6© p id

station name
funder
budget

7© p id
funder
budget

6©

move(station name measureloc,
p id = m id)

2©

K : metadata
1© m id

is scaled
datetime
geocoord

2© m id
is scaled
datetime
geocoord
measureloc

3© m id
is scaled
datetime
geocoord

2©

move(measureloc measureloc,
m id=run id)

18©

K : test run
17© run id

date
s value
dt

18© run id
date
s value
dt
measureloc

19© run id
dt
s value
measureloc

19©

18©
rename

(date dt)

Fig. 3. Evolution history graph for rewriting queries

Query Rewriting for Continuously Evolving NoSQL Databases 217

As an example, we use a part of an evolution history graph with three kinds
Kprojects, Kmetadata, and Ktest run. These are available in different versions due to
past schema evolution operations. This graph is visualized in Fig. 3. Circled num-
bers represent the respective schema versions, each associated with a group of
properties in that schema version. Evolution operations are visualized as arrows,
labeled with parameterizations of exemplary evolution operations.

The graph is explained using Ktest run. Initially, the schema of this kind con-
sists of the properties “run id”, “date”, “s value”, and “dt”, and there are no
entities in older versions than 17 (oldest materialized version). Two move and
one rename operation are executed, which generate the following result set:

Htest run = {(17, {run_id, date, s_value, dt}), (18, {run_id, date, s_value, dt,
measureloc}), (19, {run_id, s_value, dt, measureloc})},↪→

OP = {(projects, metadata, 6, 2, move(projects.station_name → metadata.measureloc, p_id =
m_id)), (metadata, test_run, 2, 18, move(metadata.measureloc → test_run.measureloc,
m_id = run_id)), (test_run, test_run, 18, 19, rename(test_run.date → test_run.dt))}

↪→
↪→

Analogously, Hproject and Hmetadata are created. The property names in the
history sets are the superset of all property names of the entities of a kind in a
particular version.

The Query Rewriting Algorithm. The task of the QR routine is to transpar-
ently look up entities and their property values as if they were eagerly migrated.
The QR algorithm is provided in Algorithm 1.

For each version in HK of a queried kind K, the operation is looked up in
OP that led to this particular version. Then, the query is rewritten based on
rules given in Sect. 2 and in [5]. If one of the multi-entity operations is applied,
affected kinds that are not part of the original query need to be joined. If the
joined kind is affected by an evolution operation that has not been migrated
until now, a rewriting cascade is triggered. This process is continued recursively
based on the resulting rewritten queries.

The QR process is demonstrated by querying Ktest run in the latest version
19. For illustration, we use SQL as the query language. Without additional
knowledge of the data, we have to assume HC4. As an example, all entities are
selected, expressed by SELECT * FROM test run. Data in the latest version is
queried directly. Only the star-operator is expanded to the list of properties.
We assume the presence of a system-handled property called v for each entity,
denoted as a circled number in Fig. 3. Figure 4 contains the whole query for all
versions of Ktest run. The query for the latest version is given in line 1.

For each older schema version of a queried kind, operations are looked up,
which lead to the least recently inspected, that is, to the chronologically newest
version. In Fig. 3, operations are depicted as inbound edges. On the formal level,
the information can be found by inspecting the tuples in OP. The generated
query of the last iteration is rewritten. Eventually, other kinds have to be rewrit-
ten recursively if they were part of a multi-entity operation. In the running
example, the query for Ktest run in version 18 is generated next. Since data is

218 M. L. Möller et al.

Algorithm 1. QR Algorithm
procedure Select Query Rewrite
input:

G = (H,OP)
Q ← Query against kind K

5: init:
Qall ← Q � Collects Queries for all versions, global
Qver ← Q � Query to modify per iteration

main:
for each version v′ < v of K do

10: Qver ← rewrite(K, Qver, v′)
return Qall

rewrite(Kind K, Query Q, Version v):
s ← lookup schema of K in H in version v
op ← lookup edge in OP which led K to previously inspected version

15: if op was single-type operation then
Q′ ← Apply rules on Q proposed in [5]
Augment version information in where clause: K. v = v
Qall ← Qall ∪ Q′ � ∪ = UNION operation
return Q′

20: else
Ksrc ← source kind of multi-entity operation op
Join Kind Ksrc with Kinds in Q (condition in op)
Q′ ← Apply rules proposed in [5] � Rewrites latest version of Ksrc
Augment version information in where clause: K. v = v

25: Qall ← Qall ∪ Q′

if Ksrc was lazily evolved then
for each version v′

Ksrc < vKsrc of Ksrc do

Q′ = rewrite(Ksrc, Q′, v′
Ksrc) � Recursive rewrite

return Q′

present in HC4, four subqueries are generated from the query of the previous
iteration and can be found in lines 2–9 of Fig. 4.

This query is recursively modified in the following iteration. The next QR
step is the move operation that migrates Ktest run from version 17 to 18 and
takes Kmetadata into account. Here, the move ignore approach is applied, which
joins only the first match and is abbreviated by JOIN FIRST MATCH ONLY as
introduced in [5]. The four subqueries given in lines 10–21 in Fig. 4 are generated.

In contrast to the single-type operation, the QR of the multi-type opera-
tion must not be interrupted. The moved property “measureloc” is affected by
another evolution operation and entails a QR cascade. Recursively, the versions
and applied operations on Kmetadata are checked if they influence the query. This
is the case, because a move operation on Kproject affects “measureloc”. The fully
rewritten query for Ktest run in version 17, the lines 22–41 of Fig. 4, have to be
part of the query as well. Recursively, it is checked whether there is an opera-
tion on Kprojects that influences properties in the query. In the example, the QR
process terminates because there are no pending operations left.

Yet, the QR algorithm is able to rewrite read-only queries with arbitrary pro-
jection and selection attributes. Aggregations can be handled in two steps. First,
the affected kinds from all schema versions are read, and second the aggregation
operation is executed. Write operations can be executed, too. In that case, all
affected entities are migrated to their latest version first.

Query Rewriting for Continuously Evolving NoSQL Databases 219

1 SELECT run_id, dt, s_value, measureloc FROM test_run WHERE _v=19
2 UNION SELECT run_id, date AS dt, s_value,measureloc
3 FROM test_run WHERE _v=18 AND EXISTS(date) AND NOT EXISTS(dt)
4 UNION SELECT run_id, date AS dt, s_value, measureloc
5 FROM test_run WHERE _v=18 AND EXISTS(date) AND EXISTS(dt)
6 UNION SELECT run_id, dt, s_value, measureloc
7 FROM test_run WHERE _v=18 AND NOT EXISTS(date) AND EXISTS(dt)
8 UNION SELECT run_id, NULL AS dt, s_value, measureloc
9 FROM test_run WHERE _v=18 AND NOT EXISTS(date) AND NOT EXISTS(dt)

10 UNION SELECT run_id, date AS dt, s_value, measureloc
11 FROM test_run JOIN FIRST MATCH ONLY metadata ON m_id = run_id
12 WHERE test_run._v=17 AND metadata._v = 3 AND EXISTS(date) AND NOT EXISTS(dt)
13 UNION SELECT run_id, date AS dt, s_value, measureloc
14 FROM test_run JOIN FIRST MATCH ONLY metadata ON m_id = run_id
15 WHERE test_run._v=17 AND metadata._v = 3 AND EXISTS(date) AND EXISTS(dt)
16 UNION SELECT run_id, dt, s_value, measureloc
17 FROM test_run JOIN FIRST MATCH ONLY metadata ON m_id = run_id
18 WHERE test_run._v=17 AND metadata._v = 3 AND NOT EXISTS(date) AND EXISTS(dt)
19 UNION SELECT run_id, NULL AS dt, s_value, measureloc
20 FROM test_run JOIN FIRST MATCH ONLY metadata ON m_id = run_id
21 WHERE test_run._v=17 AND metadata._v = 3 AND NOT EXISTS(date) AND NOT EXISTS(dt)
22 UNION SELECT run_id, date AS dt, s_value, station_name AS measureloc
23 FROM test_run JOIN FIRST MATCH ONLY metadata ON m_id = run_id
24 JOIN FIRST MATCH ONLY projects ON p_id = m_id
25 WHERE test_run._v=17 AND metadata._v = 2 AND projects.p_id = 6
26 AND EXISTS(date) AND NOT EXISTS(dt)
27 UNION SELECT run_id, date AS dt, s_value, station_name as measureloc
28 FROM test_run JOIN FIRST MATCH ONLY metadata ON m_id = run_id
29 JOIN FIRST MATCH ONLY projects ON p_id = m_id
30 WHERE test_run._v=17 AND metadata._v = 2 AND projects.p_id = 6
31 AND EXISTS(date) AND EXISTS(dt)
32 UNION SELECT run_id, dt, s_value, station_name as measureloc
33 FROM test_run JOIN FIRST MATCH ONLY metadata ON m_id = run_id
34 JOIN FIRST MATCH ONLY projects ON p_id = m_id
35 WHERE test_run._v=17 AND metadata._v = 2 AND projects.p_id = 6
36 AND NOT EXISTS(date) AND EXISTS(dt)
37 UNION SELECT run_id, NULL AS dt, s_value, station_name AS measureloc
38 FROM test_run JOIN FIRST MATCH ONLY metadata ON m_id = run_id
39 JOIN FIRST MATCH ONLY projects ON p_id = m_id
40 WHERE test_run._v=17 AND metadata._v = 2 AND projects.p_id = 6
41 AND NOT EXISTS(date) AND NOT EXISTS(dt);

Fig. 4. Result of the query rewriting algorithm for HC4

4 Related Work

The main focus of this paper lies on combining the notions of heterogeneity of
datasets and evolution in NoSQL databases for query rewriting. For this task,
we have regarded the following related work.

Schema evolution with complex schema modification operations (SMOs),
automated data migration operations, and automated rewriting of queries for
relational databases, has been studied by Moon et. al. in the PRISM project [4].
In [2], a language is defined for bidirectional schema evolution and forward and
backward delta code generation in relational databases.

There are several tools for NoSQL databases schema evolution. Most of them
implement an eager migration, for instance, Mongeez, Flyway, and Liquibase. The
foundation of lazy NoSQL data migration has been proposed in [7]. A similar
approach is introduced in [6], where the performance of lazy migration in NoSQL
data stores has been studied in particular. In [3] first ideas for hybrid approaches

220 M. L. Möller et al.

and an estimation of their complexity are given. The foundations on QR in our
tool Darwin have been developed in [8]. Here, operations are translated into
DEDs and in that context, forward and backward mappings are defined. For HC1
and HC2, prototypical implementations have been made in this work. Another
QR approach EasyQ [1] uses a dictionary with paths to properties with the same
information but different names for expanding queries.

To the best of our knowledge, the combination of input data in different HCs,
versioning, and multi-type evolutions has not been studied before.

5 Summary and Future Work

In lazy data migration, datasets are only updated on demand. Consequently,
NoSQL databases contain datasets in different schema versions. For querying
these versioned NoSQL data, we developed QR techniques so that queries against
the latest version of the schema are rewritten against previous schema versions.

We have shown that query rewriting in HC4 has to consider all structural vari-
ants of the entire dataset. Without any additional knowledge about the NoSQL
database, we can merely assume HC4. In case that the datasets are in another
HC, query rewriting turns out much simpler. Consequently, information about
the HC can significantly improve the performance of the rewriting process. In
NoSQL databases with a rigid schema management, we can even guarantee that
datasets are in NoSQL HC1.

The overall aim of the Darwin project is the development of a migration
adviser in order to support users to choose the optimal migration strategy in a
certain scenario. The HC of the NoSQL data influences this choice. In case of
HC1, a lazy migration can be recommended. For datasets in HC4, eager data
migration is more advantageous than lazy or hybrid approaches.

The tool Darwin [9] currently covers query rewriting for HC1 and HC2. In
the next step, we will extend Darwin to rewrite queries for datasets in all HCs.

Acknowledgements. The article is published in the scope of the project “NoSQL
Schema Evolution und Big Data Migration at Scale” which is funded by the Deutsche
Forschungsgemeinschaft (DFG) under the number 385808805. A special thanks goes
to Stefanie Scherzinger, Dennis Marten, Tanja Auge, and Hannes Grunert for their
support, comments on this work, and several discussions.

References

1. Hamadou, H.B., Ghozzi, F., Péninou, A., et al.: Towards schema-independent query-
ing on document data stores. In: Proceedings of EDBT/ICDT (2018)

2. Herrmann, K., Voigt, H., Rausch, J., et al.: Living in parallel realities: co-existing
schema versions with a bidirectional database evolution language. In: Proceedings
of SIGMOD 2017 (2017)

3. Klettke, M., Störl, U., Shenavai, M., et al.: NoSQL schema evolution and big data
migration at scale. In: Proceedings of SCDM@Big Data 2016 (2016)

Query Rewriting for Continuously Evolving NoSQL Databases 221

4. Moon, H.J., Curino, C.A., Zaniolo, C.: Scalable architecture and query optimization
for transaction-time DBs with evolving schemas. In: Proceedings of SIGMOD 2010
(2010)

5. Möller, M.L., Klettke, M., Störl, U.: Formal semantics of NoSQL evolution oper-
ations under different heterogeneity levels. Technical report, Rostock University
(2018)

6. Saur, K., Dumitras, T., Hicks, M.W.: Evolving NoSQL databases without downtime.
In: Proceedings of ICSME 2016 (2016)

7. Scherzinger, S., Klettke, M., Störl, U.: Managing schema evolution in NoSQL data
stores. In: Proceedings of DBPL@VLDB (2013)

8. Stenzel, J.: Query rewriting in NoSQL-Datenbanksystemen. Master’s thesis, Uni-
versity of Applied Sciences Darmstadt (2017)

9. Störl, U., et al.: Curating variational data in application development. In: Proceed-
ings of ICDE 2018 (2018)

Big Data Technology II

Relaxed Functional Dependency
Discovery in Heterogeneous Data Lakes

Rihan Hai1(B), Christoph Quix2,3, and Dan Wang1

1 RWTH Aachen University, Aachen, Germany
{hai,wang}@dbis.rwth-aachen.de

2 Hochschule Niederrhein, University of Applied Sciences, Krefeld, Germany
christoph.quix@hs-niederrhein.de

3 Fraunhofer Institute for Applied Information Technology FIT,
Sankt Augustin, Germany

Abstract. Functional dependencies are important for the definition of
constraints and relationships that have to be satisfied by every database
instance. Relaxed functional dependencies (RFDs) can be used for data
exploration and profiling in datasets with lower data quality. In this
work, we present an approach for RFD discovery in heterogeneous data
lakes. More specifically, the goal of this work is to find RFDs from struc-
tured, semi-structured, and graph data. Our solution brings novelty to
this problem in the following aspects: (1) We introduce a generic meta-
model to the problem of RFD discovery, which allows us to define and
detect RFDs for data stored in heterogeneous sources in an integrated
manner. (2) We apply clustering techniques during RFD discovery for
partitioning and pruning. (3) We performed an intensive evaluation with
nine datasets, which shows that our approach is effective for discovering
meaningful RFDs, reducing redundancy, and detecting inconsistent data.

1 Introduction

Data lakes (DLs) have been proposed to tackle the problem of data access by
providing a comprehensive repository, in which the raw data from heterogeneous
sources is ingested in its original format [5]. Although DLs have been generally
considered as a promising solution, they face the challenges that the ingested
raw data often lack sufficient metadata or have inadequate data quality.

Functional dependencies (FDs) specify that attributes functionally depend on
some other attributes, e.g., in Fig. 1b, the working years of employees determine
their levels: Y ears → Level. In contrast to such an exact FD, we might also
be interested in discovering relaxed functional dependencies (RFDs). RFDs are
relaxed in the sense that they do not apply to all tuples of a relation, or that
similar attribute values are also considered to be equal [2]. In Fig. 1b we can
have a RFD: Y ears → Salary, if we consider 24.8 and 24.9 to be similar. RFDs
are especially useful in cases where the source data have lower quality with
inconsistencies and incorrect values. By using RFDs, we can detect additional
relationships among data items for data exploration or profiling; on the other
c© Springer Nature Switzerland AG 2019
A. H. F. Laender et al. (Eds.): ER 2019, LNCS 11788, pp. 225–239, 2019.
https://doi.org/10.1007/978-3-030-33223-5_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33223-5_19&domain=pdf
https://doi.org/10.1007/978-3-030-33223-5_19

226 R. Hai et al.

{"Genre":
{
"name":" Symbolism",
"Painter": [{
"name":" Gustav Klimt",
"Painting": [{

"title":"The Lady in Gold",
"History": [
{
"year":1941,
"museum":" Belvedere",
"city":" Vienna"},

{
"year":2006,
"museum":"Neue Galerie",
"city":"New York"}]
}] }]

} }

(a) JSON document: Art genre

EID Years Level Salary(k)
t1 1011 2 1 24.8
t2 1008 2 1 24.9
t3 846 5 2 45
t4 845 5 2 45
t5 107 10 3 60
t6 23 11 3 60

(b) Relational table: Employee

(c) Graph: Supply chain

Fig. 1. Running example: heterogeneous data in a data lake

hand, we can identify the data objects that violate the detected constraints,
which can be useful for data cleaning.

Problem Definition. We tackle the problem of discovering RFDs in DLs with
structured data (relations), semi-structured data (JSON) and graphs. Figure 1
shows our running example with JSON, relational, and graph data. JSON is a
popular data model for semi-structured data, but it has not yet been investi-
gated for RFD discovery. Discovery of FDs or RFDs in graphs often focuses on
linked data in RDF (Resource Description Framework) [18], but not for labeled
property graphs of Neo4j, which we address in our work.

Related Works. Most existing solutions for FD discovery [12] focus on handling
only one type of data, e.g., relational [9,16], XML [4,17], or graphs [18]. In
this work we propose an approach based on a generic metadata model, which
handles heterogeneous data in a unified manner and thus avoids the need for
specific algorithmic solutions for each data type. It also leads to a clearer RFD
definition, which simplifies the understanding over different data structures.

A number of RFD definitions and discovery solutions have been proposed [2];
they can be classified into three categories. To tolerate inconsistent data, the first
type of RFDs [9] require that “almost” all tuples satisfy the dependency; usually
an error threshold ε indicates the degree to which the dependency is allowed to
be violated. The second category of RFDs [1] relax on how the attribute values
are compared. Instead of grouping identical values, they group similar attribute
values by using similarity functions (e.g., Y ears → Salary in our example). The
third category of RFDs [4] are the hybrids of the previous two types. A recent
approach [11] discovers RFDs based on sampling and a novel search space traver-

Relaxed Functional Dependency Discovery in Heterogeneous Data Lakes 227

sal strategy, which is efficient, yet the possibilities of supporting heterogeneous
data and applying clustering techniques are not considered as in this work.

Our Solution. We propose a clustering-based RFD discovery method for hetero-
geneous data such that we can find the “hidden” relationships among attributes
in various datasets. To support inconsistent or incomplete data, our approach
tolerates a certain degree of tuple violation. Our main contributions are: (1)
We propose a generic metamodel and RFD definition, which facilitates an inte-
grated method to perform RFD discovery over heterogeneous data. (2) We pro-
vide clustering-based algorithms to discover RFDs. (3) We propose a pruning
procedure based on agglomerative clustering, which can effectively reduce the
search space and thereby improve the performance. (4) We show experimentally
that our approach produces more meaningful RFDs with less redundancy, and
the discovered RFDs can be effectively used for error detection.

The remainder of the paper is organized as follows: first we introduce pre-
liminary concepts in Sect. 2; we explain our proposed generic metadata model
and definition of RFD in Sect. 3; then we discuss the overall approach in Sect. 4;
we evaluate our solutions in Sect. 5, before we conclude the paper in Sect. 6.

2 Preliminaries

We define FDs and relevant concepts as in [9,12]. Given a relational schema R
and its instance r, for a tuple ti ∈ r and a set of attributes X ⊆ R, ti[X] denotes
the projection of ti on X. For a set of attributes X ⊆ R and an attribute A ∈ R,
the FD X → A holds iff for all pairs of tuples ti, tj ∈ r, if ti[X] = tj [X], then
ti[A] = tj [A]. We refer to X as the left-hand side (LHS) and A as the right-hand
side (RHS).

A FD X → A is minimal if by removing any attribute from X, the FD is
no longer satisfied. A FD X → A is non-trivial if A /∈ X. Given two attributes
A,B ∈ R, if we have X → A and X → B, then X → AB. Thus, it is sufficient to
detect dependencies with singleton RHS. Like most existing works, our approach
generates minimal, non-trivial RFDs with singleton RHS.

Partition. Given a set of attributes X, we group tuples with identical values
projected on X, and obtain equivalent classes. In Fig. 1b, {t1, t2} is an equiva-
lence class regarding Y ears. By grouping all tuples in r into equivalent classes,
we obtain a partition πX of r regarding X. The number of equivalent classes
|πX | is its rank. In Fig. 1b, πY ears = {{t1, t2}, {t3, t4}, {t5}, {t6}}, πLevel =
{{t1, t2}, {t3, t4}, {t5, t6}}, and |πY ears| = 4, |πLevel| = 3. If we already have
the partitions of πX and πY , we can obtain a new partition of the attribute set
X∪Y by computing the product of πX and πY , i.e., πX∪Y = πX ·πY (Lemma 3.6,
[9]). For instance, π{Y ears,Level} = πY ears ·πLevel = {{t1, t2}, {t3, t4}, {t5}, {t6}}.
If a set of attributes X has no two identical tuple values, we call X a superkey. If
none of the strict subsets of X is a superkey, X is a key, e.g., EID in Fig. 1b. By
removing equivalent classes whose sizes are one, we obtain stripped partitions,
denoted as π̂. For example, π̂Y ears = {{t1, t2}, {t3, t4}}. ||π̂X || is the sum of the
sizes of equivalent classes in π̂, e.g., ||π̂Y ears|| = 4.

228 R. Hai et al.

FD Inference. Given π̂X , the error measure e(X) = (||π̂X ||−|π̂X |)/|r|, indicates
the minimum fraction of tuples to be removed from r such that X becomes a
superkey. A FD X → A holds iff e(X) = e(X∪A) (Lemma 3.5, [9]). For example,
e(Y ears) = e({Y ears, Level}) = 4−2

6 , thus we have the FD: Y ears → Level.
Given a set of FDs (denoted as Σ) over schema S, a cover of Σ (denoted as σ)
is a set of FDs satisfying: (1) σ ⊆ Σ; (2) any FD in Σ is either also in σ, or can
be implied by σ, denoted as σ |= Σ.

3 Metadata Model and RFD Definition

In order to discover the RFDs for heterogeneous data sources, a primary step is
to have a proper representation of the schemas. FD or RFD discovery usually
works on relational structures. The tree-structured data models such as JSON,
could be represented in a universal relation that contains all attributes of the
JSON document with normalized atomic values. However, such a normalization
causes failures to detect dependencies including array-based elements, and mas-
sively increases the number of tuples, which puts a huge burden on performance
[17]. Therefore, our approach for RFD discovery preserves the hierarchical rela-
tionships among schema elements by applying a generic metadata model, which
can also represent the schema of relational tables and Neo4j graphs.

Our metadata model is inspired by our previous model GeRoMe [10], but
the present model is much simpler as we focus on RFD discovery. The model is
similar to extended entity-relationship models with explicit types for attributes
which might also be complex types to represent nested objects.

Definition 1. A generic schema S is a tuple 〈T,C, P,A〉 with

– T is a set of atomic types, e.g., {number, string, boolean, . . . };
– C is a set of complex types {c1, . . . , cn} where each ci has a set of properties

prop(ci) ⊆ P and super types super(ci) ⊆ C;
– P is a set of properties {p1, . . . , pm} where each pi has a type, i.e., type(pi) ∈

C ∪ T , and each pi might be unique (unique(pi) ∈ {true, false}) or multi-
valued (multi(pi) ∈ {true, false});

– A is a set of binary association types {a1, . . . , ak} where each ai has a set
of properties prop(ai) ⊆ P , a source and a target type (source(ai) ∈ C and
target(ai) ∈ C).

A dataset as an instance of a schema is logically represented by a set of tuples
of different arities. For example, if the schema has a complex type c with n
properties, then an instance of c is a tuple with n+1 attributes: c(id, v1, . . . , vn)
where id is a unique object identifier and each vi represents a property value.
Instances of an association type ai with m properties are represented as tuples
ai(id, o1, o2, v1, . . . , vm) with id being a unique identifier for this association,
o1/o2 being the identifier of the source/target object and each vi is a prop-
erty value. Note that tuples of complex or association types might have nested
structures as the properties might have complex types and/or be multi-valued.

Relaxed Functional Dependency Discovery in Heterogeneous Data Lakes 229

Definition 2. A generic functional dependency (gFD) for a generic schema
S = 〈T,C, P,A〉 is an expression of the form: [X0]X1, . . . , Xn → Y1, . . . , Ym

– X0 is an absolute path expression starting with a complex or association type
t ∈ C ∪ A, defining the context of the gFD, resulting in a set of objects O;

– X1, . . . , Xn, Y1, . . . , Ym are relative path expressions that are evaluated relative
to the results of X0 and select for each o ∈ O a single value, i.e., generating
a virtual relation R with tuples of the form r(o, x1, . . . , xn, y1, . . . , ym);

– a path expression has the form s0.s1.sk, where s0 ∈ C ∪ A is the initial
step for an absolute path expression to select the starting type, and s1, . . . , sk

are steps in absolute or relative path expressions that refer either to properties
or association types to navigate in the schema;

– the semantics is as for plain FDs: ∀ti, tj ∈ R : ti[X] = tj [X] ⇒ ti[Y] = tj [Y].

In the following, we briefly explain how different types of data sources are
virtually mapped to this generic representation of schemas and FDs.

Representation of JSON. The types of objects in JSON are represented by
complex types in our model, as they might have properties and associations.
JSON arrays are represented as multi-valued properties.

Example 1. In Fig. 1a, Genre is a complex type with two properties: name with
an atomic type and Painter with a complex type. Some properties (e.g., Painting)
are multi-valued. This gFD states that each painting is owned by one museum
in the corresponding year: [Genre.Painter.Painting]title,History.year →
History.museum

Representation of Neo4j Graphs. A Neo4j graph separates data into nodes
and relationships. A node has a collection of properties in key-value pairs and
a set of labels that specify the node type. A relationship is a directed edge
connecting two entity nodes. In our metadata model, nodes and their properties
are represented as complex types. A node may have multiple labels indicating
its domain roles, which we specify as super types. We represent a relationship
as association, whose source and target identify the corresponding in- and out-
going complex types. A relationship in Neo4j usually also has a set of properties
that can be attached to the association in our model.

Example 2. In Fig. 1c, the nodes Chai and Ipoh Coffee both have the label
Product, which is a complex type, as well as Category and Supplier. The
relationships PART OF and SUPPLIES are association types. In addition to
Fig. 1c, Product has the properties productName, unitInStock and unitPrice,
while Supplier has ID and name, which all have atomic types. The associ-
ation SUPPLIES has a property purchasePrice. The gFD below defines that
for each supplied product, the purchase price depends on the supplier ID and
the product name: [Supplier.SUPPLIES]source.ID, target.productName →
purchasePrice.

230 R. Hai et al.

Subsequently, gFDs that relate properties from several complex or association
types are referred to as inter-FDs, in contrast to intra-FDs defined within the
scope of one type. Usual FDs in relational schemas are intra-FDs.

Based on our metadata model, we now define RFDs.

Definition 3. Given a schema S = 〈T,C, P,A〉 and its instance r, a RFD f is
in the form: [X0]X1, . . . , Xn

ε−−−−→
cX ,cY

Y1, . . . , Ym

– the basic structure of the RFD is as for gFDs defined in Definition 2;
– ε is the error threshold that indicates the minimal percentage of objects to

be removed from O (the result of X0) such that the RFD becomes valid, i.e.,
Ψ(f) = min{|O1| |O1 ⊆ O and f holds for O\O1}/|O| ≤ ε [9];

– cX and cY are values that indicate the clustering over the values of the LHS
and RHS of f ; values within the same cluster are considered to be equal.

Example 3. The following examples define RFDs given the relation in Fig. 1b:
(a) [Employee]Level

0.2−−−−→
1.0,1.0

Y ears (b) [Employee]Salary
0−−−−−→

0.998,1.0
Level The

first example states that the dependency holds if we remove no more than 20%
tuples (e.g., t5 or t6) from the relation; the second example requires all the tuples
to satisfy the dependency.

The values cX , cY are indicators for the clustering applied to the instance values.
A higher value indicates that elements are well matched to their own cluster,
while lower values indicate that more dissimilar elements are grouped in one
cluster. In Sect. 4, we will use the silhouette coefficient (SC) [14] as indicator,
which has not been applied in existing RFD discovery approaches. In Exam-
ple 3b, the salary values 24.8 and 24.9 are grouped in the same cluster, and with
a SC of 0.998 we can say Salary is “well-clustered”.

4 Our Approach

4.1 Approach Overview

Algorithm 1 describes our approach with a dataset D and error threshold ε as
input. We first extract the schema of D and represent it in our generic meta-
model. The dataset is transformed into a decomposed form, which basically
corresponds to the first normal form of the logical instance representation dis-
cussed in Sect. 3 (all properties are transformed to atomic values). The original
hierarchical structures and relationships are maintained as the schema infor-
mation (see Sect. 4.2). We refer to the resulting tables as property tables, and
they are preprocessed in two steps. First, we filter long textual attributes which
lead to less interesting RFDs without semantic significance (long texts are often
unique). The second step is to group the same values of an attribute using hash
partition.

We prune and remove certain attributes, if they are found to be equivalent
by our feature-based agglomerative clustering (see Sect. 4.3). Then, we discover

Relaxed Functional Dependency Discovery in Heterogeneous Data Lakes 231

Algorithm 1. RFD Discovery
Input: Relational/JSON/graph dataset D, threshold ε; Output: Set of RFDs

1 R ← ExtractSchema(D); D′ ← 1NF Decomposition(D, R); Σ ← ∅; Pr ← ∅
2 foreach property table d ∈ D′ do
3 P0 ← HashPartition(FilterLongTextualAttrs(d)); P ← ∅ // Preproc.

4 C ← FeatureAgglomeration(P0) // Prune equivalent attributes

5 foreach attribute c ∈ C do
6 (Pc, sc) ← ClusterPartition(P0, c) // Obtain equivalent classes

7 Add Pc to P , add sc to Φ // Φ: silhouette coefficient

8 Σ ← Σ ∪ IntraRFDDiscovery(P, R, ε, Φ); Pr ← Pr ∪ P

9 Σ′ ← InterRFDDiscovery(Pr, R, ε, Φ, Σ)
10 return Σ ∪ Σ′

the intra-RFDs by X-means clustering (Sect. 4.4). For JSON or graphs, a RFD
may also exist among properties of different complex types or association types.
Therefore, we also try to discover whether there exist inter-RFDs (Sect. 4.5).
The union of intra-RFDs and inter-RFDs is returned as the final result.

4.2 Schema Inference and Dataset Decomposition

A relational dataset can be directly processed for RFD discovery; a JSON or
graph dataset needs some preprocessing to generate tables with atomic values
only. Our DL system [5,8] loads a JSON document and extracts its schema
using Apache Spark1. Based on the extracted schema, we decompose the JSON
documents into a set of property tables. We perform decomposition as follows:
(1) For each complex type, we create a property table for it with an identifier ID
and each property as a column. (2) If a complex type c2 is a property of another
complex type c1, we create a column parent identifier (PID) with the identifier
of c1 in the table of c2. (3) If there is an association type (e.g., a relationship in
Neo4j graph), we create a new association property table with columns storing
its properties, e.g., identifiers of source and target objects. (4) If a Property is
multi-valued, we generate a value table.

Example 4. Table 1 shows the decomposed property tables, one for each complex
type. Except the root node Genre, each property table has a column PID. Note
that we use path-based table names, thus we can uniquely find an attribute in
a property table. Graphs of Neo4j are processed similarly, but we retrieve the
schema using the APOC library2. In addition to the steps above, we create path
tables for inter-RFD discovery. In the evaluation, we limit the length of paths
to 3, as longer paths often do not lead to meaningful results. Table 2 shows three
examples of property tables: the left one for the complex type Supplier, the middle
one for the association type SUPPLIES, and the last one which is a path table
including IDs of all nodes and relationships on the path.
1 https://spark.apache.org/.
2 https://neo4j-contrib.github.io/neo4j-apoc-procedures/.

https://spark.apache.org/
https://neo4j-contrib.github.io/neo4j-apoc-procedures/

232 R. Hai et al.

Table 1. Decomposed result of Fig. 1a.

Genre
ID name
1 Symbolism

Genre.Painter
ID PID name

11 1
Gustav
Klimt

Genre.Painter.Painting
ID PID title

101 11
The Lady
in Gold

Genre.Painter.Painting.History
ID PID year museum city
1001 101 1941 Belvedere Vienna
1002 101 2006 Neue Galerie New York

Table 2. Partial decomposed result of Fig. 1c.

Supplier
ID name
12 Cooper

Supplier-SUPPLIES-Product
ID SrcID TgtID purchasePrice
101 12 35 35

Supplier-SUPPLIES-Product-PART OF-Category
node1 ID rel1 ID node2 ID rel2 ID node3 ID

12 101 35 102 18

4.3 Pruning Rules

Given a dataset whose number of attributes is m, and number of tuples is |r|,
the lattice-based FD discovery has the complexity O(|r|2 (

m
2

)2 2m) [12]. Thus,
pruning candidate FDs has been intensively conducted in existing works for
efficiency. Existing pruning rules [9] mainly check whether an attribute is a key,
or whether a candidate FD can be inferred from existing dependencies. Besides
implementing the existing pruning rules [9,12,17], we have designed the following
pruning procedure based on agglomerative clustering.

Equivalent Attributes. We call two attributes A and B equivalent if two RFDs
A → B and B → A both hold [16]. We can replace A with B in the LHS or
RHS of a dependency. In this way, we have less RFDs; yet, it preserves the same
information, which leads to a smaller cover of the final RFD set.

Pruning Based on Agglomerative Clustering. To detect equivalent
attributes, we use agglomerative (hierarchical) clustering; for generality, we cal-
culate the distances using Ward’s method [15] as criterion. The first step is
feature selection. Recall in Sect. 2 we introduced that a FD can be inferred
from the calculation of e(X), which depends on the values of the stripped parti-
tion rank |π̂X | and its sum ||π̂X ||. Thus, we calculate the values of |π̂A| and
||π̂A|| for each attribute to form the feature matrix for agglomerative clus-
tering. Given two attributes A and B, their squared Euclidean distance is
dAB =

√

(|π̂A| − |π̂B |)2 + (||π̂A|| − ||π̂B ||)2. During the hierarchical clustering
process, the values of distance among current clusters are monotonic. Thus, we
can determine the optimal number of clusters by detecting the change point3 in
the distance slope, and use it as the termination condition. Note that [16] also
discovers equivalent attributes, yet it examines strict value equality. In this work
we detect equivalence by applying agglomerative clustering, which provides the
relaxation. Finally, we set attributes in each cluster as equivalent attributes for
pruning.

3 Library used in implementation: https://github.com/deepcharles/ruptures.

https://github.com/deepcharles/ruptures

Relaxed Functional Dependency Discovery in Heterogeneous Data Lakes 233

EID Years Level Salary
t7 108 10 3 60
t8 25 11 3 60
t9 11 12 3 60
t10 10 12 3 60.2
t11 9 13 3 60.2
t12 3 13 3 200

Years
Level
Salary

|π̂| ||π̂||
⎡

⎣

6 12
3 12
3 11

⎤

⎦

(a) (b) (c)

Fig. 2. (a) Added tuples; (b) Feature matrix; (c) Clustering result

Example 5. Figure 2a shows a few additional tuples which we added to Fig. 1b.
Since EID is a key and already pruned, we calculate the feature matrix for the
remaining attributes (cf. Fig. 2b), e.g., by comparing similar values of Salary
we obtain stripped partition π̂Salary = {{t1, t2}, {t3, t4}, {t5, t6, t7, t8, t9, t10, t11}}
(t12 is stripped out as its equivalent class size is one). Thus, in the third row of
the matrix in Fig. 2b we insert |π̂Salary| = 3, ||π̂Salary|| = 11. Figure 2c shows the
hierarchical clustering result using the matrix, and the red line indicates that the
clustering terminates with two clusters when it reaches the change point. Since
Level and Salary are in the same cluster, we have them as equivalent attributes.
We can prune Salary and only examine RFD candidates including Level.

4.4 Clustering-Based RFD Discovery

To provide the relaxation in attribute value comparison, for partition we use
clustering instead of exact value matching.

Our partition method ClusterPartition is invoked from the main algorithm
with the previous partition P0 and the current attribute c as input, and produces
the new clustering-based partition Pc. The second output sc is the silhouette
coefficient (SC) for c, which constitutes cX and cY in Definition 3.

Our approach automatically determines the optimal number of clusters by
applying the clustering method X-means [13], which conducts an initial cluster-
ing, then repeatedly performs local K-means to split each cluster, and selects
the most promising subset of clusters using Bayesian Information Criterion.

The upper bound u for the number of clusters is the rank of the initial
partition P0, the lower bound l is 2. To make X-means more efficient for a
potentially large number of clusters, we do a preprocessing to narrow down the
potential values for the number of clusters. The preprocessing uses a binary
search strategy to refine the upper and lower bounds. In each step, a K-means
clustering is performed with K = u+l

2 and the search continues in that part with
better SCs. From the intensive experiments over real world datasets, we found
that the clustering results become less meaningful with SC below 0.8; thus, we
will ignore clusterings with a SC less than 0.8. If the initial rank of P0 is low
(e.g., less than 50), then the preprocessing step is skipped as X-means is already

234 R. Hai et al.

quite efficient in this case. The final result of the ClusterPartition procedure is
a new partition and the corresponding SC.

In [18], an algorithm for automatically determining the number of clusters
for discovering dependencies in RDF graphs was also proposed. However, [18] is
based on gap statistics and K-means, and increases the value of K by one per
step, which is inefficient for a large value of K. In contrast, X-means selects the
most promising subset of clusters for refinement per K-means sweep, and we
apply binary search to fasten the procedure with a large K.

After obtaining the partition, the function IntraRFDDiscovery (Algorithm 1,
line 8) computes the stripped partition and infers the RFD using the error mea-
sure in Definition 3. We also generate the RFD candidates based on the attribute
lattice similar to TANE [9].

4.5 Inter-RFD Discovery

For JSON documents, a RFD may exist among attributes of different types.
Thus, we also need to examine such inter-RFDs, whose LHS/RHS are attribute
sets from different tables after decomposition. The key challenge in inter-RFD
discovery is how to efficiently “group” property tables to avoid an exhaustive
search. More specially, regarding partition and RFD inference, discovering inter-
RFD is similar to intra-RFD which we have introduced. However, for inter-RFD
we need to combine the attributes from a set of property tables, which implies
much more RFD candidates than the intra-RFD discovery for a single property
table. We mainly developed the following rules extended from [17] to make the
inter-RFD discovery more efficient:

(1) If a property table T2 is generated from a multi-valued property, we group
it with its parent table T1, e.g., (History, Painting) in Fig. 1a.

(2) If a RFD created from rule (1) is valid for tuples with the same par-
ents (PIDs), but does not hold in all the tuples, we add the next ances-
tor table farthest from the root. We repeat this step until we find a
valid inter-RFD or we reach the root table. For instance, if the RFD
candidates generated from (History, Painting) do not hold, we examine
(History, Painting, Painter).

(3) We group the parent table with its child tables, or two sibling tables if they
have similar number of records. The purpose of this rule is to group property
tables with similar number of records (|r| for computing e(X)), otherwise
there will be a number of null values, and it rarely leads to valid RFDs.

Note that for (1) and (2), [17] has proposed algorithms to compute inter-
RFDs from invalid intra-RFDs, which hold for the instance values of each indi-
vidual complex type, but might not for the whole JSON document or graph. For
instance, in the History table in the right of Table 1, the intra-RFD: year →
museum holds only for the same painting (e.g., PID as 101). It is very likely
that there exist other painting records with year 2006 but in other museums, i.e.,
year → museum is not valid. However, within the grouping (History, Painting)

Relaxed Functional Dependency Discovery in Heterogeneous Data Lakes 235

Table 3. Relational datasets

Name Rows# Attr#

Adult 32561 15
Bio 184292 9
Wiki Image 777676 12

Table 4. JSON datasets

Name Records# Objects# Attr# L

TVshows 20 18 47 5
Restaurant 25357 4 13 3
Profile 1561 3 15 2

Table 5. Graph datasets

Name Nodes# Rel# NodeTypes# NodeProp# RelTypes# RelProp#

Movie 171 250 2 5 4 1
Northwind 1035 3139 5 51 4 5
WorldCup 83382 156673 13 30 16 0

Table 6. Number of FDs/RFDs: baseline and our approach (ε = 0)

Name Adult Bio Wiki image TVshows Restaurant Profile Movie Northwind WorldCup

Baseline 78 30 66 603 44 75 27 1749 826

Our approach 46 10 66 259 44 40 27 2105 715

if we add the attribute title in LHS, we might find a valid inter-RFD, e.g.,
[Genre.Painter.Painting]title,History.year → History.museum.

After obtaining the attributes in the same group, the search space construc-
tion, pruning and RFD discovery are similar with intra-RFDs. In particular, for
Neo4j property graphs, the inter-RFD discovery procedure is similar but among
node/relationship/path tables from the shortest paths to the longest paths.

5 Evaluation

We have evaluated our approach over nine datasets to compare with a base-
line approach (Sect. 5.1), and demonstrate that our approach discovers more
meaningful dependencies with less redundancy. In Sect. 5.2, we show that our
approach is fault-tolerant, and can be used to detect inconsistent data.

Experimental Setting. We have conducted the experiments in a server running
Ubuntu 14.04 LTS, with two Intel Xeon X5647@2.93 GHz CPUs (8 logical cores
per CPU) and 16G RAM. The tested relational, JSON, and graph datasets are
stored in MySQL 5.5.62, MongoDB 3.4.16, and Neo4j 3.4.5, respectively. The
decomposed tables are stored in MySQL and the discovered RFDs are stored
in MongoDB. We have implemented the decomposition in Java and the other
algorithms in Python 3.5, which are embedded in our DL system Constance [5].

236 R. Hai et al.

Tested Datasets4. Table 3 shows the name, number of rows and attributes of
the relational datasets: Adult, Bio and Wiki Image. Table 4 provides the number
of JSON records, number of objects/attributes and nesting levels (L) in JSON
schema for three JSON datasets. Table 5 reports the number of entity nodes and
relationships in the data, the number of nodes types and relationship types, and
their corresponding properties in the metadata of graph datasets.

5.1 Baseline Comparison of Discovered Dependencies

The main goal of our clustering-based method and pruning procedure in Sect. 4
is to discover meaningful RFDs and reduce redundancy. Thus, we first report
the results of discovered RFDs from all the datasets. For comparison, we have
implemented a baseline algorithm using the TANE approach [9]. Since TANE
only supports relational data, in the baseline we also apply our rules for inter-FD
discovery from JSON/graph datasets. Thus, the comparison mainly reflects the
effect of relaxation brought by ClusterPartition procedure and pruning using
agglomerative clustering.

Reduce Redundancy. By allowing a ratio ε of violating tuples, it usually leads
to a larger number of RFDs than the exact FDs. To reduce this effect such that
we can observe the impact of our pruning method, we set error threshold ε as
0 in this test (Table 6). We can observe that in most datasets, our approach
has a smaller or equal number of discovered dependencies, because with the
agglomerative clustering we detect equivalent attributes and prune the depen-
dencies accordingly. Thus, our results have less redundancy and imply all the
FDs generated by the baseline.

Discover more Meaningful Dependencies. Now we assign ε with typical
error threshold values: 0.01, 0.05, and 0.1. Figure 3 depicts the impact of ε on the
number of discovered RFDs. For JSON/graph datasets, the upper hatched parts
indicate the number of inter-RFDs. For instance, for TVshows with ε = 0.01,
there are 75 intra-RFDs and 246 RFDs in total (171 inter-RFDs). Combining
Fig. 3 and Table 6, we observe that in most datasets there are more RFDs when
ε > 0 than ε = 0; these dependencies do not exist in the FD results of the
baseline approach. For instance, for TVshows with ε as 0.1 we obtain the RFD:
[root.embedded.episodes]name → airtime. It indicates that the episode name
(not a key attribute) can functionally determine the episode airtime. Such mean-
ingful dependencies can be found by our RFD discovery approach but not by
the baseline approach. Moreover, with a larger value of ε, we often find more
RFDs, e.g., the results of datasets Adult, TVshows and Restaurant in Fig. 3.

Moreover, in some cases we found that the discovered RFDs are “more
compact” than FDs, i.e., with less attributes in LHS. For example, in
the Northwind dataset, there exists a FD f1 generated by the baseline:
Customer.postalCode,Order.shipRegion → Order.shipCountry. In our app-
roach we produce the RFD f2: Customer.postalCode → Order.shipCountry

4 Links: http://dbis.rwth-aachen.de/cms/staff/hai/RFDDiscovery/datasets.

http://dbis.rwth-aachen.de/cms/staff/hai/RFDDiscovery/datasets

Relaxed Functional Dependency Discovery in Heterogeneous Data Lakes 237

Fig. 3. Number of discovered RFDs in nine datasets with different ε

with ε as 0.05. By clustering similar values instead of exact value matching,
and allowing a degree of tuple violation, we find RFDs like f2. In addition,
more RFDs will be pruned as we keep only minimal RFDs. Thus, in Fig. 3 we
observe that with a higher value of ε, the number of discovered RFDs decreases
in datasets Northwind and Movie.

5.2 Noise Tolerance and Error Detection

Besides finding interesting RFDs to enrich metadata in data lakes, another goal
in this work is to apply our approach over dirty data, then use the discov-
ered RFDs for error detection. We designed the below experiments to examine
whether our discovered RFDs meet such a requirement.

Fig. 4. Fault tolerance results Fig. 5. Error detection results

Noise Tolerance. In line with RFD-based data quality works [3], we obtain
dirty data by adding Gaussian noise (mean = 0.0, standard deviation β =
[1%, 5%, 10%]) to the values of 10% of the existing numerical attribute tuples in
every dataset. If a RFD discovered from the dirty data can also be found from
the clean data, we consider it as the true positive. We divide the amount of true
positives by the total numbers of RFDs discovered in the dirty data, and obtain

238 R. Hai et al.

precision; for recall we divide the number of true positives by the total number
of RFDs in the original clean data. Figure 4 shows the precision/recall/F1 score
results (y-axis) of our approach with error thresholds (x-axis) of the dataset
TVshows.5 We can observe that with different values of noises and error thresh-
olds, our approach maintains a satisfying accuracy (F1 > 0.85). Thus, even for
a dataset with inaccuracy, our approach can effectively discover RFDs.

Error Detection. In this experiment for each dataset, we insert additional
dirty tuples whose values are inconsistent with the original data. Then we use
the discovered RFDs to find violating tuples, and examine whether they are the
inserted dirty tuples. Figure 5 shows the results of 5 datasets with the percentage
of dirty tuples as 5%. The x-axis shows the value of ε used to generate the RFDs,
and the y-axis is the percentage of detected true dirty tuples by using these
RFDs. In all datasets, we can observe that the percentage of detected error data
has a significant increase when ε is getting close to the actual error data rate,
although with different varying trends. This indicates that the choice of error
threshold value plays a crucial role in finding all inconsistent data. For practical
use when the error rate is unknown in a newly imported dataset, we recommend
to run our approach with increasing values of error threshold, until the detected
error data becomes stable.

6 Conclusion

We have addressed the problem of RFD discovery for heterogeneous data lakes.
Our clustering-based approach groups similar attribute values. With our generic
metadata model, we provide a unified definition for RFDs, thereby enabling inte-
grated methods for processing different types of data, e.g., relational, JSON, and
graph data. We have designed a pruning procedure using agglomerative cluster-
ing, which can effectively prune RFD candidates. We have shown experimentally
with nine datasets that our approach can find semantically interesting RFDs,
which are less redundant compared to the classical approach. Our approach is
also fault tolerant, and the discovered RFDs can be used for detecting dirty data.
In the future, we plan to use the obtained RFDs for other tasks in data lakes
such as schema mapping [6,7].

Acknowledgements. The authors would like to thank the German Research Foun-
dation DFG for the kind support within the Cluster of Excellence “Internet of Produc-
tion” (Project ID: EXC 2023/390621612).

References

1. Bassée, R., Wijsen, J.: Neighborhood dependencies for prediction. In: Cheung, D.,
Williams, G.J., Li, Q. (eds.) PAKDD 2001. LNCS (LNAI), vol. 2035, pp. 562–567.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45357-1 59

5 Full results: http://dbis.rwth-aachen.de/cms/staff/hai/RFDDiscovery/res.

https://doi.org/10.1007/3-540-45357-1_59
http://dbis.rwth-aachen.de/cms/staff/hai/RFDDiscovery/res

Relaxed Functional Dependency Discovery in Heterogeneous Data Lakes 239

2. Caruccio, L., Deufemia, V., Polese, G.: Relaxed functional dependencies - a survey
of approaches. IEEE Trans. Knowl. Data Eng. 28(1), 147–165 (2016)

3. Cong, G., Fan, W., Geerts, F., Jia, X., Ma, S.: Improving data quality: consistency
and accuracy. In: Proceedings of the VLDB, pp. 315–326 (2007)

4. Fassetti, F., Fazzinga, B.: Approximate functional dependencies for XML data. In:
Proceedings of the ADBIS (2007)

5. Hai, R., Geisler, S., Quix, C.: Constance: an intelligent data lake system. In: Pro-
ceedings of the SIGMOD, pp. 2097–2100. ACM (2016)

6. Hai, R., Quix, C.: Rewriting of plain SO tgds into nested tgds. Proc. VLDB Endow.
12(11), 1526–1538 (2019)

7. Hai, R., Quix, C., Kensche, D.: Nested schema mappings for integrating JSON.
In: Trujillo, J.C., et al. (eds.) ER 2018. LNCS, vol. 11157, pp. 397–405. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-00847-5 28

8. Hai, R., Quix, C., Zhou, C.: Query rewriting for heterogeneous data lakes. In:
Benczúr, A., Thalheim, B., Horváth, T. (eds.) ADBIS 2018. LNCS, vol. 11019, pp.
35–49. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98398-1 3

9. Huhtala, Y., et al.: TANE: an efficient algorithm for discovering functional and
approximate dependencies. Comput. J. 42(2), 100–111 (1999)

10. Kensche, D., Quix, C., Li, X., Li, Y., Jarke, M.: Generic schema mappings for
composition and query answering. Data Knowl. Eng. 68(7), 599–621 (2009)

11. Kruse, S., Naumann, F.: Efficient discovery of approximate dependencies. Proc.
VLDB Endow. 11(7), 759–772 (2018)

12. Liu, J., Li, J., Liu, C., Chen, Y.: Discover dependencies from data - a review. IEEE
Trans. Knowl. Data Eng. 24(2), 251–264 (2012)

13. Pelleg, D., Moore, A.W., et al.: X-means: extending k-means with efficient estima-
tion of the number of clusters. In: Proceedings of the ICML, pp. 727–734 (2000)

14. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation
of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

15. Ward Jr., J.H.: Hierarchical grouping to optimize an objective function. J. Am.
Stat. Assoc. 58(301), 236–244 (1963)

16. Yao, H., Hamilton, H.J., Butz, C.J.: FD Mine: discovering functional dependencies
in a database using equivalences. In: Proceedings of the ICDM, pp. 729–732 (2002)

17. Yu, C., Jagadish, H.V.: XML schema refinement through redundancy detection
and normalization. VLDB J. 17(2), 203–223 (2008)

18. Yu, Y., Heflin, J.: Extending functional dependency to detect abnormal data in
RDF graphs. In: Aroyo, L., et al. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 794–809.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25073-6 50

https://doi.org/10.1007/978-3-030-00847-5_28
https://doi.org/10.1007/978-3-319-98398-1_3
https://doi.org/10.1007/978-3-642-25073-6_50

An Ontological Perspective for Database
Tuning Heuristics

Ana Carolina Almeida1(&), Maria Luiza M. Campos2,
Fernanda Baião3, Sergio Lifschitz3, Rafael P. de Oliveira3,

and Daniel Schwabe3

1 State University of Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
ana.almeida@ime.uerj.br

2 Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
mluiza@ppgi.ufrj.br

3 Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Rio de Janeiro, RJ, Brazil
fbaiao@puc-rio.br,

{sergio,rpoliveira,dschwabe}@inf.puc-rio.br

Abstract. Database tuning is a complex task, involving technology-specific
concepts. Although they seem to share a commonmeaning, there are very specific
implementations across different DBMSs vendors and particular releases. Data-
base tuning also involves parameters that are often adjusted empirically based on
rules of thumb. Moreover, the intricate relationships among these parameters
often pose a contradictory impact on the overall performance improvement goal.
Nevertheless, the literature – and practice – on this topic defines a set of heuristics
followed by DBAs, which are implemented by the available tuning tools in
different ways for specific DBMSs. In this paper, we argue that a semantic support
for the implementation of tuning heuristics is crucial for providing DBAs with a
higher-level conceptualization, unburdening them from worrying about internal
implementations of data access structures in distinct platforms. Our proposal
encompasses a set of formally-defined rules based on an ontology, enabling DBAs
to define new configuration parameters and to assess the application of tuning
heuristics at a conceptual level. We illustrate this proposal with two use case
scenarios that show the advantages of this semantic support for the definition and
execution of sophisticated DB tuning heuristics, involving hypothetical indexes
and what-if situations for relational databases.

Keywords: Database tuning � Ontology � SWRL � Heuristics

1 Introduction

Computational systems are increasingly ubiquitous, producing and consuming large
amounts of data. As a consequence, these systems pose a demand for higher perfor-
mance, especially for lower response time and increased throughput, pushing Database
Management Systems (DBMSs) to higher levels of functionalities and control. Data-
base (DB) tuning strategies address this need by supporting the configuration of the
physical design of the DB towards improving performance. DB tuning involves

© Springer Nature Switzerland AG 2019
A. H. F. Laender et al. (Eds.): ER 2019, LNCS 11788, pp. 240–254, 2019.
https://doi.org/10.1007/978-3-030-33223-5_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33223-5_20&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33223-5_20&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33223-5_20&domain=pdf
https://doi.org/10.1007/978-3-030-33223-5_20

decisions upon the creation and maintenance of indexes, materialized views, data
replication, partitioning, query rewriting, among others. These strategies constitute
heuristics for improving the performance of the applications that access this DB [1]. As
any other heuristics, DB tuning heuristics may be implemented and automated to assist
their users (in this case, the Database Administrator, or DBA) in achieving a goal (i.e.,
improving performance), and obtaining successful results in most cases [1]. The tools
that implement DB tuning heuristics can be semi-automatic (when the DBA makes the
final decision on tuning the DB based on the suggestions of the heuristics) or com-
pletely automatic (in the case of a self-tuning tool, which implements the decision
directly, without the intervention of the DBA).

However, DB tuning heuristics are typically empirically defined, and most lack a
precise definition. For example, when the DBA decides on performing a tuning action
(e.g., rewriting a query) to improve the database performance, s/he is following rea-
soning that is present in her/his mind, based on concepts, principles, and previous
experiences that only s/he is aware of. This scenario worsens in the presence of self-
tuning tools when the DBA is unaware of the rationale followed by the tool since only
the final physical design of the tuning process is available. The DBA cannot assess the
tuning actions or even backtrack an individual step taken by the tool. For example, the
DBA can conclude that a particular index created by the self-tuning tool might degrade
the performance of insertion operations in the DB and then may want to undo a tuning
action executed by the heuristic. However, the heuristic might have considered that,
even while degrading insert operations, the index was still beneficial to the database
workload as a whole (the set of all queries and data manipulation commands), as a
result of a decision rationale unknown to the DBA. In this case, the rationale and the
concepts analyzed by the tool are embedded in its source code, thus making it difficult
or even impossible for the DBA to scrutinize.

Also, semi-automatic or self-tuning tools are tailored to suggesting specific actions
for particular DBMSs, which makes heuristics experiments difficult in scenarios
including several DBMSs and their extension to different structures and parameters.
This difficulty does not only occur because the user must understand the source code of
the tool, but also because each DBMS employs distinct concepts and terminology for its
physical data structures and parameters, as well as for its implementation and syntax.

In this paper, we propose an approach to minimize these problems by explicitly
representing the elements and actions involved in the database tuning heuristics using
ontologies, as they represent an adequate means to support an accurate semantic record
of the heuristics formulation and behavior. The DBA can analyze the tuning heuristics
in more detail, as well as compare the different alternatives that each possible heuristic
proposes. Also, the DBA can perform (semi-) automatic experiments by combining
distinct heuristics. Finally, the use of ontologies also increases the heuristics under-
standing of the DBA, since they are described using higher-level concepts.

Thus, we present an ontological perspective for DB tuning heuristics. Our approach
is developed on top of an ontology-driven conceptual framework1, which includes an
ontology of DB tuning heuristics and an ontology of DB tuning structural concepts.

1 https://github.com/BioBD/outer_tuning, last accessed 2019/04/07.

An Ontological Perspective for Database Tuning Heuristics 241

https://github.com/BioBD/outer_tuning

These ontologies may be extended straightforwardly at the conceptual level to include
new concepts and heuristics, without requiring the understanding of the implementa-
tion code. The advantage of our approach is that it provides a transparent methodology
for tuning databases using multiple heuristics defined through rules based on semantic
reasoning. One may create new heuristics by reasoning over the ontologies. We discuss
some results of the application of our framework to two real-world case studies.

The remainder of this paper is organized as follows. In Sect. 2 we discuss state of
the art in this area; in Sect. 3 we provide an overview of our conceptual framework,
and we detail the ontology responsible for defining and executing the heuristics;
Sect. 4, we showcase an outline of a demonstration of our framework, using our
heuristic ontology. Section 5 concludes this research work.

2 State-of-the-Art

To set the context for discussing the specific contributions of this work, it is important
to present different types of initiatives that consider ways of capturing and representing
concepts involved in the tuning process, as well as those which offer any tuning support
based on the represented concepts for DB or DB Tuning heuristics. As the proposition
of specific DB tuning heuristics is not the focus of our proposal, we refrain from citing
here such related literature.

The first group of works contemplates those related to conceptual models associ-
ated with the DB domain. The Common Warehouse Metamodel (CWM) specification,
proposed by the Object Management Group (OMG) as a metadata interchange standard
[2] comprises, among others, a package to describe relational data resources, which
includes elements associated to indexes, primary keys, and foreign keys. Also sup-
porting interoperability, Aguiar, and colleagues [3] proposed RDBS-O, a well-founded
reference ontology covering high-level DB structure concepts. Both initiatives serve as
a starting point for more comprehensive efforts covering other aspects of DB physical
design, optimization and tuning. Aligned with our work, Ouared and colleagues adopt
an approach that proposes a meta-advisor repository for DB physical design [4]. They
describe a metamodel with elements dedicated to express optimization algorithms
(heuristics), their characteristics and a cost model.

The second group of initiatives addresses tools [5–10] and approaches [11–13],
which help the DBA to improve the performance of DBMSs. Considering the use of
previously represented knowledge, the research work of Bellatreche and colleagues
[14, 15] tracks the relationship between the requirements of the application and the
suggestion of physical structures for optimization of the DB in a data warehouse
environment. It uses an ontology to formalize domain concepts from data sources and
SWRL rules [16] to relate them to the application requirements. Although the strategy
supports indexes suggestions, there is no further explanation for them or the proposal of
grounded alternatives. Recently, Zhang and colleagues presented the OtterTune tool,
which leverages data collected from previous tuning efforts to train machine learning
models, and recommends new configurations that are as good as or better than ones
generated by existing tools or a human expert [17]. Among the helpful suggestions,
they highlight the selection of the best access structures and configuration parameters

242 A. C. Almeida et al.

for the DBMS. Zhang and colleagues proposed the CDBTune, an end-to-end automatic
DBMS configuration tuning system that recommends superior knob settings in cloud
environments, using deep reinforcement learning (RL). Through the reward-feedback
mechanism in RL instead of traditional regression, they expect to accelerate the con-
vergence speed of their model and improve efficiency of online tuning [18]. Zheng and
colleagues presented a neural network-based algorithm for performance self-tuning
[19] based on the workload and identify key system performance parameters, sug-
gesting values to tune the DBMS. The reasoning of the algorithms proposed by these
works is hidden in the source code or in the constructed model, making it difficult for
the DBA to understand it and make adjustments to extend, add or combine heuristics.
The decisions are not explained or justified to the DBA. In certain systems, such as
Oracle DBMS, there are specific tools for suggesting tuning actions, also making the
rationale of their choices available [20, 21]. Nevertheless, they still fail to capture the
actual DBA decision process, with justifications for chosen and refused suggested
tuning alternatives. Although there are a variety of tools and strategies to support the
DBA in the DB tuning task, most works fail to make reasoning and decisions explicit.

Moreover, existing DB tuning tools and approaches suggest actions but do not
provide a higher level mechanism for the DBA to verify the effectiveness of their
actions and to tailor the rationale to his/her background knowledge. If the DBA dis-
agrees with something suggested by the tool or approach, it may not be feasible for the
DBA to include or change any reasoning proposed by the tool. That way, only an
experienced DBA would be able to select the best tool to assist him/her according to
the established scenario. Besides, the tools and approaches that involve more than one
technique or structure do not have enough flexibility to consider additional methods.

3 The Outer-Tuning Conceptual Framework

We have developed Outer-Tuning, an ontology-driven framework for DB Tuning.
Outer-Tuning works both in automatic (self-tuning) and in semi-automatic (human
intervention) modes, and it may be extended to address new data structures and heuristics
because all changes are expressed in the conceptual level using a declarative language.

Outer-Tuning allows the user to enable/disable a set of inference rules (SWRL rules
[16]) established by heuristics. This functionality is crucial for the DBA, as s/he can
choose, through the interface, which heuristics should be used to tune the DB. The use
of a declarative language to define heuristics allows the DBA to focus on “what” the
heuristic should do, instead of “how” it should work.

3.1 Outer-Tuning Overview

Figure 1 Illustrates the architecture and execution of the Outer-Tuning framework,
using the activity diagram (UML alternative to the BPMN Business Process diagram)2.

2 https://sparxsystems.com/enterprise_architect_user_guide/14.0/guidebooks/tools_ba_uml_activity_
diagram.html, last accessed 2019/04/07.

An Ontological Perspective for Database Tuning Heuristics 243

https://sparxsystems.com/enterprise_architect_user_guide/14.0/guidebooks/tools_ba_uml_activity_diagram.html
https://sparxsystems.com/enterprise_architect_user_guide/14.0/guidebooks/tools_ba_uml_activity_diagram.html

Outer-Tuning monitors the DB [Step 1] in a non-intrusive and continuous way and
captures the workload submitted to the DB. Then, queries are parsed to identify query
components and data structures, whose corresponding concepts in the ontology are
needed by the tuning heuristics to estimate their processing cost (preconditions) [Step
2]. The rules engine instantiates the concepts [Step 3] and applies the tuning heuristics
specified in the ontology rules, thus inferring tuning actions [Step 4] to improve the
performance of the queries in the workload.

When the framework is set to automatic mode [Step 5], all suggested tuning actions
(e.g., creation of indexes and materialized views) are applied to the DB; in semi-
automatic mode, the suggested tuning actions are presented to the user [Step 6], who
may customize [Step 7] which tuning actions will actually be applied to the DB [Step 5].

3.2 Conceptual Models

The structural conceptual model of the Outer-Tuning framework comprises two
independent and complementary (sub)ontologies3: the DB tuning concepts ontology
(namespace: tuning) and the DB tuning heuristic ontology (namespace: heuristic).
The DB tuning heuristic ontology, which is the focus of the present work, makes
references to the concepts described in the DB tuning concepts ontology.

The ontologies are capable of answering the following competency questions:
(i) which are the DB concepts involved in the DB tuning process? (ii) what is necessary
for each heuristic to know about the DB and to make its decisions? (iii) which are the
possible actions that can be performed by a heuristic?

In this paper, we focus on the DB tuning heuristic ontology, which addresses
questions (ii) and (iii), and relies on the Unified Foundational Ontology (UFO) [22, 23]
as its semantic foundation. Using UFO allows removing the ambiguity of the concepts
used in the task of running DB tuning heuristics. This article explains the process of
development and use of the ontology.

Fig. 1. Outer-tuning execution process

3 https://www.ime.uerj.br/ontuning/, last accessed 2019/04/07.

244 A. C. Almeida et al.

https://www.ime.uerj.br/ontuning/

The heuristic ontology was designed to support the specification of DB tuning
heuristics as rules and the dynamic execution of heuristics during DB tuning, as
explained in the following Subsections.

Heuristic Specification
The DBA (which is the role played by a Person while tuning a DB) chooses and
specifies the heuristics (Fig. 2) that should be considered for DB tuning. Throughout
the tuning task, the DBA assumes more specific roles with distinct goals. For example,
when defining (and configuring) a heuristic the heuristic:DBA plays the role of a
heuristic:specifier. When configuring a heuristic, a heuristic:HeuristicSpecification
relationship arises. The heuristic:Heuristic exists independently of other concepts.

A heuristic:Heuristic takes data structures of the DB schema (defined in DB tuning
concepts ontology) and cost estimates of DB operations into account to infer those
actions that we should execute for performance improvement. Thus, each precondition
of a heuristic:Heuristic references existing database concepts (heuristic:DBConcept)
(Fig. 3). The heuristic:PreconditionConcept is derived from the relationship between
heuristic:Heuristic and heuristic:Database Concept. A heuristic:DBConcept special-
izes into heuristic:TuningAssist or heuristic:DBObject. The heuristic:TuningAssist is a
database concept required by a heuristic to perform its suggested actions (for example,
a heuristic that suggests indexes needs to execute the “create index” DDL statement.
So, this heuristic requires the “create index” statement as a precondition). A heuristic:
DBObject refers to the database concept analyzed by the heuristic to make decisions
(for example, the same heuristic suggesting an index may need to examine the tuning:
Where clause of an SQL statement. So, the tuning:Where clause concept is a pre-
condition of this heuristic).

Each heuristic:DBConcept defined in the DB tuning concepts ontology needs to be
instantiated (Fig. 4) by a heuristic:Source (either a heuristic:Function or a heuristic:
Rule). A heuristic:Function is a heuristic:ConceptInstanceFunctionwhen it instantiates a

Fig. 2. Fragment of the heuristic ontology – heuristic specification

An Ontological Perspective for Database Tuning Heuristics 245

heuristic:DBConcept (that is, when it creates a new individual in the DB tuning concepts
ontology). For example, a heuristic:ConceptInstanceFunction captures the database
workload and instantiates a heuristic:DMLcommand concept with the specific query
command captured. Analogously, a heuristic:Rule is a heuristic:ConceptInstanceRule
when it instantiates a heuristic:DBConcept.

Fig. 3. A fragment of the heuristic ontology – heuristic preconditions definition

Fig. 4. Fragment of the heuristic ontology – heuristic concepts instantiation definition

246 A. C. Almeida et al.

Functions differ from rules since a heuristic:Function can interact with the DBMS,
whereas a heuristic:Rule cannot. This is important since some heuristic:DBConcepts
require accessing the database content to be instantiated, such as DML (Data Manip-
ulation Language) commands. For example, the tuning:DMLcommand concept,
defined in the domain ontology, requires a function that connects to the DBMS to
retrieve the tuning:DMLcommand from the workload submitted by the user.

A heuristic:Function or method (Fig. 5) is a collection of statements embedded in
the database that operate together in a group. It defines input and output parameters. In
theory, all these parameters are optional. In our approach, the output parameter (in-
stantiated concept or tuning action) is mandatory. For example, a heuristic:Function
that retrieves a tuning:DMLcommand from the DBMS does not need any input
parameters, while a heuristic:Function that returns information from an execution plan
requires the execution plan as its input parameter. The heuristic:Parameter is a concept
in the ontology, and its properties indicate if it plays the role of an input or of an output
parameter to a heuristic:Function. Our approach preferably instantiates concepts
through rules rather than functions, so as to make any reasoning explicit. Functions are
used in specific situations to instantiate concepts that cannot be derived by rules.

A heuristic:Rule (Fig. 6) is composed by a heuristic: condition-action pair,
meaning that when the condition is satisfied, an action is performed. They provide the
DBA with the rationale for heuristics application, by keeping track of the way concepts
are instantiated when each tuning alternative is evaluated.

A heuristic:RuleEngine represents a system that applies inference mechanisms
based on given rules, which in our case define DB tuning heuristics. The rule engine
component implements the code that selects and executes the heuristics (described in
the ontology) to suggest tuning actions (e.g., query rewriting) and the creation of access
structures (e.g., materialized views). The instance of tuning:DMLcommand comprises
the where clauses according to the SQL specification.

To perform the DB tuning task, heuristic:Heuristic defines heuristic:Rules that
must be evaluated by the inference engine. Unlike the heuristic:ConceptInstanceRule,
this kind of rule (heuristic:HeuristicDefinitionRule) corresponds to the definition of the
heuristic’s actions about the DB behavior. For example, a heuristic of indexes can

Fig. 5. Fragment of the heuristic ontology – functions definition

An Ontological Perspective for Database Tuning Heuristics 247

simulate indexes, called hypothetical, to know if the optimizer would use it or not.
A tuning:HypotheticalIndex could exist in the DB (not physically) to improve certain
tuning:DMLcommand performance.

The heuristic may only suggests a hypothetical index, as illustrated by the fol-
lowing rule:

SingleStatement (?stat) ^ Where (?where) ^ hasClause (?stat, ?where)
^ Predicate (?pred)
^ componentOf (?pred, ?where) ^ SimpleExpression (?pred) ^ Refer-
encedColumn (?refCol)
^ componentOf (?refCol, ?pred) ^ hasName (?refCol, ?nameCol)
^ swrlx:makeOWLThing(?hypInd, ?refCol) ^ swrlb:stringConcat (?name-
Hyp, “hi_”, ?nameCol)
-> HypotheticalIndex (?hypInd) ^ hasName (?hypInd, ?nameHyp) ^
originates (?stat, ?hypInd)
^ acts_on (?hypInd, ?refCol) ^ IndexedColumn (?refCol)

This rule analyzes the tuning:SingleStatement and suggests the indexes according
to the columns referenced in the tuning:Where clause. Given a tuning:SingleStatement,
if it has a tuning:Where clause predicate that is a simple expression, the rule engine
should get the referenced column and its name. As a consequence (the rule action), the
machine creates a new individual of type tuning:HypotheticalIndex with its relation-
ships with the tuning:SingleStatement that caused it (Originates) and the tuning:Col-
umn being indexed (Acts On). The tuning:IndexedColumn is the same as the tuning:
ReferencedColumn. Additional rules defined in the ontology4 were not mentioned here,
since we described only the ones relevant to the example in the article.

Fig. 6. Fragment of the heuristic ontology – rules definition

4 http://www.inf.puc-rio.br/*postgresql/conteudo/projeto4/download/OntologiaTuning.owl, last
accessed 2019/04/07.

248 A. C. Almeida et al.

http://www.inf.puc-rio.br/%7epostgresql/conteudo/projeto4/download/OntologiaTuning.owl

All the concepts referring to data structured of the DB schema are defined in the DB
tuning concepts ontology, to reflect the structures considered by common DB Tuning
heuristics [7, 24, 25], and includes tuning:DMcommand, tuning:DDLcommand, tun-
ing:Clause, tuning:AccessStructure, tuning:Index, tuning:RealIndex, tuning:Hypo-
theticalIndex, tuning:Table, tuning:Column. If a new DB tuning heuristic needs to refer
to a new concept not previously defined, it just needs to extend the DB tuning concepts
ontology, defining the semantics of this new concept according to the existing ones.

Execution of Heuristics
The subsequent moment in the DB tuning task is the heuristic execution. The heuristic:
HeuristicExecution needs the heuristic:HeuristicDefinition described in the heuristic
ontology since it is responsible for suggesting or applying tuning techniques based on
the workload analysis. The user starting the execution process does not have to be an
expert, since the heuristics have been specified by an expert (DBA). When a person
starts a heuristic execution, s/he chooses which heuristic s/he wants to execute first,
assuming the heuristic:Executor Role and performing the heuristic:HeuristicSelection.

At runtime, the preconditions concepts, defined previously, must be instantiated
(heuristic:InstantiatedConcepts) and retrieved by a software agent. The software agent
is defined since an automated self-tuning strategy (without human DBA intervention)
may be used. Then, the heuristic:Agent manages the heuristic:HeuristicExecution,
using heuristic:InstantiatedConcepts. During the heuristic:HeuristicExecution, each
heuristic:Rule is checked and evaluated by the rule engine (heuristic:RuleEvaluation).

Rule consequents represent suggested Actions, which can be either a heuristic:
TuningAction or a heuristic:RuleAction. When there is a heuristic:RuleAction, it
becomes a heuristic:VariablesControl (Relator) managed by the heuristic:RuleEngine.
We consider heuristic:VariablesControl as new instances/individuals of objects or
properties in the domain ontology according to the conditions established by the
heuristic. For example, a heuristic can add a bonus property to hypothetical indexes
each time they are mentioned in an execution plan. This action (adding bonus) cannot
be considered a tuning action because it is just a simulation. Therefore, we modeled it
as a heuristic:RuleAction, as a logical consequence of heuristic:VariablesControl
(bonus).

A heuristic:TuningAction is an action to improve the DB performance, such as the
creation of an access structure. To illustrate it, the heuristic may decide to transform the
hypothetical index into a real index when it achieves a considerable bonus. Every
heuristic:TuningAction requires an interaction with the DB, that is achieved via
a heuristic:Function to perform this interaction, represented as a heuristic:
DBTuningFunction.

Moreover, every Tuning Action may have an optional Justification, so roles were
created (heuristic:Justifier and heuristic:TuningActionJustifier) to contemplate it. The
justification indicates an explanation for the fact that the DBA accepted or not an
action.

The DB tuning task can be semi-automatic or fully automatic. To address this, we
introduce the concept of heuristic:Implementer that aggregates properties from
heuristic:DBA and heuristic:Agent. When the DBA implements the action (DBA
Implementer), it means that it is semi-automatic, i.e., the DBA needs to intervene and

An Ontological Perspective for Database Tuning Heuristics 249

indicate whether or not to accept a suggested action. The DBA will need to analyze all
the suggested action. When the agent implements the action (heuristic:AgentImple-
menter), it means that it is fully automatic, i.e. without any human intervention, and the
heuristic:Agent performs all of the suggested actions.

Whenever the heuristic ontology is instantiated it means that a given heuristic is
being performed using concept instances defined in DB tuning concepts ontology
according to the workload submitted to the DB.

4 Case Studies

We ran two scenarios in our Outer-tuning framework, using our ontologies. The first
scenario applied tuning heuristics that suggest (hypothetical and physical) index
structures, and shows the importance of visualizing all the alternatives considered by
the tuning heuristics, instead of only the implemented actions. The second scenario
illustrates the need of extending the ontologies used by the framework, adding tuning
heuristics that suggest materialized views. Ontology extension points are described in
[26].

Scenario 1. The DB has a table (EMPLOYEE) with four columns (Identifier, Name,
Gender and Salary). Figure 7 shows the query presented in the DB workload that was
analyzed by the tuning heuristics defined in the heuristic ontology.

The DBA selects two different heuristics (HEIC-A and HEIC-B) to run individually
on the same workload and DB. The two heuristics eventually recommended the cre-
ation of different indexes in the DB.

At first, the DBA executes the framework using only the rules of the HEIC-A
heuristic about hypothetical indexes. Analyzing the DB, the optimizer generates the
query execution plan that chooses to use two hypothetical indexes (over the salary
column and gender column) created by the HEIC-A heuristic. Later, on the same initial
state of the DB (i.e., with no tuning actions performed by HEIC-A), the DBA executes
the framework using only the rules of the HEIC-B heuristic. The optimizer generates
the query execution plan that does not use any index and, rather, suggests a full table
scan operation. From these outcomes, the DBA may be in doubt about which rec-
ommendation to follow, either creating the physical index or not. The DBA, then,
checks the rule conditions that generated the candidate indexes and identifies that both
heuristics consider the columns referenced in the WHERE clause. As the conditions of
the rule are the same, the DBA cannot understand why the heuristics generated different
recommendations. S/he verifies information about the candidate index suggested by
each heuristic. By analyzing the ontology instances created during the execution of

SELECT * FROM EMPLOYEE
WHERE salary in (1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000)
AND gender = “M”’;

Fig. 7. Query presented in the analyzed workload

250 A. C. Almeida et al.

Scenario 1, the DBA concludes that HEIC-B heuristic does not consider bitmap
indexes, while HEIC-A does (Table 1). The following SQWRL query [27] recovers all
hypothetical indexes suggested per heuristic:

Heuristic(?h) ^ DatabaseConcept(?dc) ^ acts (?h, ?dc) ^
TuningAssist(?tunAss)
^ match(?tuna, ?dc) ^ CreateHypothetical(?tunAss) ^
HypotheticalIndex(?hypInd)
^ creates(?tunAss, ?hypInd) ^ hasType(?hypInd, ?indType)
-> sqwrl:select(?h, ?indType)

The regular B+tree indexes created by HEIC-B leads to a higher execution cost to
the query, justifying the fact that the optimizer does not consider them. The DBA may
also assess the decision rationale followed by our proposal (i.e., all alternative con-
siderations, even for those that are not considered for suggesting tuning actions).

Scenario 2. Scenario 2 used the TPC-H benchmark for the workload. This benchmark
has analytical queries (OLAP), an opportunity for the evaluation of heuristics that
consider materialized views (MVs). We considered two types of MVs during the
analysis of the results: the beneficial and the malefic. A MV is considered beneficial
when rewritten queries that use the MV increases the performance of the workload, and
malefic when their use decreases the performance of the workload. This occurs when
the MV size is greater than the number of pages read in the original query.

We ran two additional heuristics [28] in our Framework, which have inferred
materialized views for the workload. HMV1 pointed out three beneficial materialized
views to the workload (Q01, Q05, Q09) and two malefic (Q04, Q12). HMV2 showed
four beneficial materialized views (Q01, Q05, Q06, Q09) and five malefic (Q03, Q04,
Q07, Q12, Q14). Both heuristics brought a positive gain equivalent to the workload
(12.4% and 12.2%). But the framework showed that HMV1 estimated lower costs than
HMV2 for the creation and storage of MVs. While HMV1 proposed the creation of 5
MVs, HMV2 proposed 9. This demonstrates the way the framework shows that the
same heuristic can bring benefits or losses depending on the workload received.

Regardless of the result presented by both tuning heuristics, this scenario shows
that the framework is able to work simultaneously with more than one heuristic,
compare the solutions presented and the inclusion of new heuristics. With the use of
our framework, the DBA has sufficient information to assess which heuristics are
interesting for his/her workload, in a conceptual level. An experienced DBA may even

Table 1. Hypothetical Indexes considered by heuristics HEIC-A and HEIC-B

Heuristic Index
Name Creation cost Type

HEIC-A HI_GENDER 0.5625 Bitmap
HEIC-A HI_SALARY 4 Bitmap
HEIC-B HI_GENDER 13 B+tree
HEIC-B HI_SALARY 17 B+tree

An Ontological Perspective for Database Tuning Heuristics 251

extend the heuristics behavior based on his/her experience. For example, composing
HMV1 and HMV2 would suggest the beneficial MVs both have inferred and avoid the
malefic MVs (Q7, Q3, Q14) suggested by HMV2.

In conclusion, the scenarios show that the Framework is able to: (i) Display all
alternatives evaluated, regardless of the decision that the heuristic took. In addition to
the alternatives, the DBA may also submit SQWRL queries to view the instances of the
ontology that represent all the behavior of the heuristics; (ii) infer useful DB tuning
actions. The case studies have demonstrated useful actions to improve database per-
formance; (iii) compare tuning heuristics described with the ontology. The case studies
show that the comparison of heuristics is possible through the interpretation of
ontology instances, and (iv) support the DBA in the DB tuning task with relevant
information which s/he can match the heuristics to the workload or insert new
heuristics in the tuning ontology.

5 Conclusion and Future Works

We presented an ontological perspective for DB tuning heuristics execution. Existing
proposals hinder both the extension to new heuristics and the transparency of the
reasoning used for decision-making. We described a conceptual model (heuristic
ontology) to address these points. The extension to new heuristics is facilitated because
the user only needs to instantiate the heuristic ontology defining new rules. Although
not all database tuning strategies are covered by our ontology, the DB tuning concepts
ontology (not detailed in this present paper) can be easily extended (without changing
the framework) to include concepts and properties for memory tuning (e.g.: share-
d_buffers, checkpoint_segments), query tuning (e.g.: rewriting) and transactions tuning
(e.g.: locks, isolation levels). The transparency of the reasoning is obtained by defining
the rationale described in rules. As the rules are defined in terms of familiar concepts, it
becomes easier for the DBA to understand the heuristics proposed behavior. We argue
that representing database tuning activities with more formalism through our ontologies
allows a more precise discussion and study of the issues behind database tuning—for
example, the different ways of working with tuning heuristics (add new structures to
existing heuristics, work with different heuristics that suggest the same type of struc-
ture)—that are not possible if the concepts involved were not explained through a high-
level model.

Future work will address new DB tuning heuristics and how we can compose or
combine them, identifying conflicts of the rules (semi) automatically and solving them.
Besides, we can create a repository for DB tuning decisions rationale.

References

1. Shasha, D., Bonnet, P.: Database Tuning: Principles, Experiments, and Troubleshooting
Techniques. Morgan Kaufmann Publishers, San Francisco (2003)

2. OMG (Object Management Group): Common Warehouse Metamodel (CWM) Specification.
Version 1.1, vol. 1, No. formal/03-03-02 (2003)

252 A. C. Almeida et al.

3. Aguiar, C.Z., Falbo, R.D., Souza, V.E.: Ontological representation of relational databases.
In: ONTOBRAS (2018)

4. Ouared, A., Ouhammou, Y., Roukh, A.: A meta-advisor repository for database physical
design. In: Bellatreche, L., Pastor, Ó., Almendros Jiménez, J., Aït-Ameur, Y. (eds.) MEDI
2016. LNCS, vol. 9893, pp. 72–87. Springer, Cham (2016). https://doi.org/10.1007/978-3-
319-45547-1_6

5. Ding, Z., Wei, Z., Chen, H.: A software cybernetics approach to self-tuning performance of
on-line transaction processing systems. J. Syst. Softw. 124, 247–259 (2017)

6. Noon, N.N., Getta, J.R.: Automated performance tuning of data management systems with
materializations and indices. J. Comput. Commun. 4, 46–52 (2016)

7. Morelli, E., Almeida, A., Lifschitz, S., Monteiro, J.M., Machado, J.: Autonomous re-
indexing. In: Proceedings of the ACM Symposium on Applied Computing (SAC), pp. 893–
897 (2012)

8. Bruno, N., Chaudhuri, S., König, A.C., Narasayya, V., Ramamurthy, R., Syamala, M.:
AutoAdmin project at Microsoft research: lessons learned. Bull. IEEE Comput. Soc. Tech.
Comm. Data Eng. 34(4), 12–19 (2011)

9. Rangaswamy, S., Shobha, G.: Online indexing for databases using query workloads. Int.
J. Comput. Sci. Commun. 2(2), 427–433 (2011)

10. Goasdoué, F., Karanasos, K., Leblay, J., Manolescu, I.: View selection in semantic web
databases. Proc. VLDB Endow. 5(2), 97–108 (2012)

11. Basu, D., et al.: Regularized cost-model oblivious database tuning with reinforcement
learning. In: Hameurlain, A., Küng, J., Wagner, R., Chen, Q. (eds.) Transactions on Large-
Scale Data- and Knowledge-Centered Systems XXVIII. LNCS, vol. 9940, pp. 96–132.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53455-7_5

12. Bellatreche, L., Schneider, M., Lorinquer, H., Mohania, M.: Bringing together partitioning,
materialized views and indexes to optimize performance of relational data warehouses. In:
Kambayashi, Y., Mohania, M., Wöß, W. (eds.) DaWaK 2004. LNCS, vol. 3181, pp. 15–25.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30076-2_2

13. Bouchakri, R., Bellatreche, L.: On simplifying integrated physical database design. In: Eder,
J., Bielikova, M., Tjoa, A.M. (eds.) ADBIS 2011. LNCS, vol. 6909, pp. 333–346. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-23737-9_24

14. Bellatreche, L., Khouri, S., Boukhari, I., Bouchakri, R.: Using ontologies and requirements
for constructing and optimizing data warehouses. In: Proceedings of International
Convention MIPRO, pp. 1568–1573 (2012)

15. Khouri, S., Bellatreche, L., Boukhari, I., Bouarar, S.: More investment in conceptual
designers: think about it! In: Proceedings of the IEEE International Conference on
Computational Science and Engineering, pp. 88–93 (2012)

16. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: a
semantic web rule language combining OWL and RuleML. National Research Council of
Canada, Network Inference, and Stanford University (2004)

17. Zhang, B., et al.: A demonstration of the ottertune automatic database management system
tuning service. Proc. VLDB Endow. 11(12), 1910–1913 (2018)

18. Zhang, J., et al.: An end-to-end automatic cloud database tuning system using deep
reinforcement learning. In: Proceedings of the 2019 International Conference on Manage-
ment of Data, pp. 415–432. ACM (2019)

19. Zheng, C., Ding, Z., Hu, J.: Self-tuning performance of database systems with neural
network. In: Huang, D.-S., Bevilacqua, V., Premaratne, P. (eds.) ICIC 2014. LNCS, vol.
8588, pp. 1–12. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09333-8_1

20. Dias, K., Ramacher, M., Shaft, U., Venkataramani, V., Wood, G.: Automatic performance
diagnosis and tuning in oracle. In: Proceedings of CIDR Conference, pp. 84–94 (2005)

An Ontological Perspective for Database Tuning Heuristics 253

http://dx.doi.org/10.1007/978-3-319-45547-1_6
http://dx.doi.org/10.1007/978-3-319-45547-1_6
http://dx.doi.org/10.1007/978-3-662-53455-7_5
http://dx.doi.org/10.1007/978-3-540-30076-2_2
http://dx.doi.org/10.1007/978-3-642-23737-9_24
http://dx.doi.org/10.1007/978-3-319-09333-8_1

21. Alhadi, N., Ahmad, K.: Query tuning in oracle database. J. Comput. Sci. 8(11), 1889–1896
(2012)

22. Guizzardi, G.: Ontological foundations for structural conceptual models. Thesis presented in
the University of Twente (2005). http://doc.utwente.nl/50826

23. Guizzardi, G., Wagner, G., de Almeida Falbo, R., Guizzardi, R.S.S., Almeida, J.P.A.:
Towards ontological foundations for the conceptual modeling of events. In: Ng, W., Storey,
V.C., Trujillo, J.C. (eds.) ER 2013. LNCS, vol. 8217, pp. 327–341. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-41924-9_27

24. Lohman, G., Valentin, G., Zilio, D., Zuliani, M., Skelley, A.: DB2 advisor: an optimizer
smart enough to recommend its own indexes. In: Proceedings of the IEEE International
Conference on Data Engineering (ICDE), pp. 101–110 (2000)

25. Bruno, N.: Automated Physical Database Design and Tuning. CRC Press, Boca Raton
(2011)

26. Oliveira, R.P., Baião, F., Almeida, A.C., Schwabe, D., Lifschitz, S.: Outer-tuning: an
integration of rules, ontology and RDBMS. In: Proceedings of the Brazilian Symposium on
Information Systems (SBSI), Aracaju, Sergipe, Brazil (2019)

27. O’Connor, M.J., Das, A.K.: SQWRL: a query language for OWL. In: Proceedings of the 5th
International Workshop on OWL: Experiences and Directions, OWLED (2009)

28. Oliveira, R.P.: Ontology-based database tuning: the case of materialized views. Master thesis
presented at PUC-Rio, Rio de Janeiro, Brazil (2015)

254 A. C. Almeida et al.

http://doc.utwente.nl/50826
http://dx.doi.org/10.1007/978-3-642-41924-9_27

SkipSJoin: A New Physical Design
for Distributed Big Data
Warehouses in Hadoop

Yassine Ramdane1(B), Nadia Kabachi2(B), Omar Boussaid1(B),
and Fadila Bentayeb1(B)

1 University of Lyon, Lyon 2, ERIC EA 3083,
5, avenue Pierre Mendes, 69676 Bron Cedex, France

{Yassine.Ramdane,Omar.Boussaid,Fadila.Bentayeb}@univ-lyon2.fr
2 University of Lyon, University Claude Bernard Lyon 1, ERIC EA 3083,

43, boulevard du 11 novembre 1918, 69100 Villeurbanne, France
Nadia.Kabachi@univ-lyon1.fr

Abstract. Hadoop uses horizontal partitioning to improve the perfor-
mance of a big data warehouse. A major challenge when horizontally
partitioning the tables of a big data warehouse is to reduce network traf-
fic for a given workload. A common technique to avoid this issue, when
performing a join operation, is to co-partition the tables of the data ware-
house on their join key. However, in the existing partitioning schemes,
executing a star join operation in Hadoop still needs many MapReduce
cycles. In this paper, we combine a data-driven and a workload-driven
model to create a new scheme for distributed big data warehouses over
Hadoop, called “SkipSJoin”. Our approach allows performing the star
join operation in only one Spark stage, and allows skipping the load-
ing of some unnecessary HDFS blocks. Our experiments show that our
proposal outperforms some approaches in terms of query execution time.

Keywords: Load balancing · Bucket · Sort-merge-bucket join

1 Introduction

Partitioning and Load Balancing (PLB) of the data is an optimization technique
which is used to organize tables in Hadoop. It has been used to skip unneces-
sary data load, for load balancing [11], and to guide the physical design of a
DW [3]. In the literature, many works have tackled the problem of the PLB of
data with MapReduce. We can distinguish two types of techniques, static and
dynamic. In static techniques, the system distributes the database before pro-
ceeding with the processing. This technique is based on either a data-driven [6,7]
or a workload-driven model [10,11]. In dynamic techniques, the system performs
the PLB algorithm at the moment of query processing [5,8]. Hadoop uses differ-
ent techniques for the PLB of data to enhance queries performances. However,

c© Springer Nature Switzerland AG 2019
A. H. F. Laender et al. (Eds.): ER 2019, LNCS 11788, pp. 255–263, 2019.
https://doi.org/10.1007/978-3-030-33223-5_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33223-5_21&domain=pdf
https://doi.org/10.1007/978-3-030-33223-5_21

256 Y. Ramdane et al.

the random distribution of Hadoop blocks may slow down the query processing,
especially with the OLAP query when joining several tables.

An OLAP query is composed of several operations, such as filtering, star
joins, and grouping. The join operation is the most expensive one, and often
involves a high communication cost. To minimize the MapReduce cycles and
network communication when performing a star join operation, some solutions
have been proposed [5,8]. However, to the best of our knowledge, there is no
previous proposal that can perform the star join in only one Spark stage.

In this paper, we propose a new physical design for distributed BDW over
a cluster of homogeneous nodes, called “SkipSJoin”, based on a model that is
both data driven and workload-driven, using a static technique for the PLB of
the data like [6]. We take into account: the size of the DW, the distribution of the
foreign and the primary keys of the fact and dimension tables, the query workload
used, and the characteristics of the cluster. Our strategy allows performing the
filtering, projection, and star join operations of an OLAP query locally and in a
single Spark stage. Moreover, with SkipSJoin, we can avoid reading some data
blocks that are not relevant to an OLAP query, based on a given workload.
However, instead of using a sophisticated technique such as the max skipping
algorithm [11], our heuristic is simple, and based on two main measures, as
we will explain in Sect. 3.3. We have evaluated our approach on the TPC-DS
benchmark using Hadoop cluster, a Spark engine, and Hive system.

The rest of this paper is structured as follows. Section 2 summarizes related
work on horizontal partitioning techniques and different join algorithms with
MapReduce. Section 3 presents SkipSJoin’s architecture and provides further
details. We present our experiments in Sect. 4 and we conclude in Sect. 5.

2 Related Work

Horizontal Partitioning (HP) in databases has been widely studied [1,3,4,11].
The HP technique is used in BlinkDB [3] to guide the physical design of the
database and to improve OLAP query runtime. Sun et al. [11] proposed a fine-
grained tuple-level partitioning that can achieve the maximal level of skipping
of HDFS blocks. Moreover, HP is used to optimize join operation in distributed
system. We can notice that almost all of the existing join algorithms in the
literature rely on dynamic techniques of PLB of the data, e.g. repartition and
broadcast join [4] and multi-way join [1]. Few are based on static techniques,
such as HadoopDB [2] and trojan join [6]. This kind of algorithm requires prior
knowledge of table schema and join conditions. The dynamic algorithm of Afrati
et al. [1] may perform well for star join operation by minimizing the amount of
replication of tuples, however it may involve considerable communication cost
during tuples transfer. Also, the fully replicating tables used in the broadcast
join algorithm [4], can perform star join operation in map side with minimal
Spark stages if the dimension tables used in the query are small enough to fit into
memory. Purdilǎ et al. [8] propose a dynamic algorithm that can execute the star
join operation in two MapReduce cycles and [5] propose two efficient algorithms

SkipSJoin: A New Physical Design for Distributed Big Data Warehouses 257

to minimize network communication cost. However these methods still require
a shuffle phase. On the other hand, the static technique used in Hadoop++
[6] is not suitable for the star join operation, as it can co-partition two tables.
Moreover, HadoopDB [2] attempts to integrate MapReduce and parallel DBMS.
Some improvements have been made on both scalability and efficiency. However,
the results are still not satisfactory in the star join operation.

3 Proposal Approach

In the first part of our approach, we build horizontal fragments (buckets) of the
fact and dimension tables of the DW, using our hash-partitioning method (see
Sect. 3.2). Then, we distribute these buckets evenly over the cluster’s nodes, in
which we can execute the star join of an OLAP query locally and in only one
Spark stage. The second part allows skipping the scanning of some unnecessary
data blocks, by hash-partitioning some DW tables with frequent attributes of
the filters. That is, we extend the first part using a stable workload, i.e. the set
of columns used in Where clauses and Group by remains fairly stable over time
but the filters may change (the validity of this assumption has been empirically
observed in a variety of real-world production workloads [3]). Our approach is
composed of 6 steps: (1) Selecting the near-best number of buckets; (2) Adding
a new partition key to the fact table; (3) Creating the new dimensions that
contain the same bucketed key as the fact table; (4) Retrieving the most frequent
attributes from the queries’ filters; (5) Partitioning and bucketing the tables of
the DW; and finally (6) Balancing the buckets over the cluster’s nodes. Before
giving the details of our approach, we formulate our problem in the next section.

3.1 Formalization

Suppose, we have a star schema DW E = {F , D1, ... , Dk}, such that F is the
fact table and Dd, d ∈ 1 ... k, are the dimension tables. We denote by FK
the set of all foreign keys of F and by PK the set of primary keys of Dd.
We denote by Q the set of distinct queries used, such that Q = {q1, ... qm},
and by ϕ the set of the use frequencies of the queries qj , j ∈ 1...m, such that
ϕ = {f1, ... ,fm}. We define the workload W the set of all queries Q, used by its
corresponding use frequencies ϕ, in a period of time t, such that |W | = ∑m

j=1 fj .
We denote by R = {R0 ... ,Rk} the set of all frequent attributes used in the
queries’ filters of the workload W , such that R0 is the most frequent attribute
selected to hash-partition the fact table F , and Rd, d ∈ 1 ... k, is the most
frequent attribute selected to hash-partition the dimension Dd. We denote by
Bkey the partition key used to bucket F and all Dd in #B buckets, here #B
is the near-best number of the buckets that should be created. We denote by
BF = {BF0, ... , BF#B−1} the set of buckets created by bucketing F with Bkey
into #B buckets, and by BDd = {BDd0, ... , BDd#B−1}, the set of buckets of
each dimension Dd, d ∈ 1 ... k. We denote by BSF = {‖BF0‖, ... , ‖BF#B−1‖}
and BSDd = {‖BDd0‖, ... , ‖BDd#B−1‖}, d ∈ 1 ... k, the sets of the buckets’

258 Y. Ramdane et al.

Fig. 1. The steps of building SkpiSJoin

sizes of F and dimensions Dd respectively. We denote by a group the set of the
buckets that have the same value of Bkey: it is composed of one bucket of F and
one bucket of each Dd. We denote by N={n1, ... , ne} the set of all homogeneous
nodes of the cluster. The first aim is to choose Bkey and #B for building the
buckets of BF and all BDd, d ∈ 1 ... k, in such a way as to keep them roughly
balanced in size, and how to distribute them over N in order to perform the star
join, locally and in only one Spark stage. The second objective is to construct
R to skip loading some unnecessary HDFS blocks of some DW tables. Figure 1
summarizes the steps of our strategy. In the following, we detail our solution.

3.2 Selecting #B and Bkey

In this section, we explain briefly the steps 1, 2, and 3 of Fig. 1. In step 1, we
determine #B; In step 2, we show how to add the Bkey column to fact table F ,
and how to fill this key; In step 3, we show how to add Bkey to all dimensions.

SkipSJoin: A New Physical Design for Distributed Big Data Warehouses 259

Selecting #B. We should select #B from the range [#Bmin, ... , #Bmax]. To
determine #Bmin and #Bmax, we follow these rules:

– Rule 1. We should use almost all idle CPU cores of the nodes. So, #Bmin

should be equal to #c, the total number of CPU cores assigned to all Spark
executors. Our aim is to assign at least one RDD partition to each CPU core.

– Rule 2. Selecting a large number of #B (#B � #c) can disrupt the dis-
tributed system as a result of increasing the I/O operations, and this can
incur significant overhead for processing the RDD partition. Hence, and since
our processing is in-memory, using Spark, we determine #Bmax as follows:

#Bmax ≤ �#Bmin × max(VE/VM , 1)� and #Bmax ≤ |T | (1)

where VE is the size of E, VM is the sum of all memory sizes of the data nodes,
and T is the smallest dimension in E. The first part of Eq. (1) means that if
the memory size is large, we can process a large RDD partition. However, if
the memory size is small, then #Bmax increases and processing a small RDD
partition become preferable. The second part, i.e., #Bmax ≤ |T |, means that,
we must not get an empty bucket for all BF and BDd.

– Rule 3. To find quickly the near-best value of #B, we execute the queries
with #B = #c, and each time we increment #B, i.e. #B = #B + #c, until
#B = #Bmax or until the execution time of the queries rises.

Adding Bkey Column to the Fact Table. To create a group of the buckets,
we can add a new key Bkey of integer type to all the tables of the DW E and co-
partition the tables of E by this added join key. However, the way to fill the Bkey
column remains a challenging task. If the distribution of the values of Bkey is
skew, we obtain unbalanced bucket sizes in BSF and all BSDd, d ∈ 1 ... k. In this
case, our application seems un-parallelizable. To cure this issue, we should study
how to calculate the values of the Bkey column. Moreover, since the sizes of the
dimensions are small compared to the fact table, we can focus on only minimizing
the standard deviation of BSF and not BSDd, d ∈ 1 ... k, by bucketing F with a
simple range partitioning method. However, there is an essential factor that can
affect the size of the newly constructed dimensions (denoted D′d): the similarity
of the tuples in each bucket of BF . This can increase the number of tuples in
each bucket of BD′d, d ∈ 1 ... k, as we will show in the following. To overcome
this problem we propose the following method.

(1) From the fact table F , we create the matrix MB, such that:

MB =

(
VFD11 VFD21 .. VFDk1

..

.. .. VFDdj ..

..
VFD1n VFD2n .. VFDkn

)

where VFDdj is the value of the foreign key fkd comming from Dd in line j
of the fact table F , and n = |F |.

260 Y. Ramdane et al.

(2) After building MB, we clustered it in #B clusters. Thus, we obtain the
values of Bkey column. Our clustering method should trade off between the
number of tuples in each bucket against the similarity of the tuples in each
bucket. So, we finish by using the balanced K-means algorithm [9]. The
first reason to choose this kind of algorithm is to minimize the standard
deviation of BSF and the second one is to minimize the size of the newly
built dimensions D′d (see why and how to build D′d in next subsection).
The output of the algorithm is (n mod #B) clusters of size �n/#B	 and
#B-(n mod #B) clusters of size �n/#B�.

(3) Finally, we affect the cluster values obtained to the Bkey column.

Adding Bkey Column to the Dimension Tables. After adding Bkey to
F , and in order to construct a group, we must also add Bkey to all the Dd,
d ∈ 1 ... k, and obtaining new dimensions D′d. To do this, first, we create an
intermediate table IDd corresponding to the dimension Dd. The IDd table is
composed of two columns, fkd and Bkey, such that: (1) fkd is the foreign key
of dimension Dd in fact table F and (2) Bkey is the partition key added in F .
Initially, we have |IDd| = |F |, so, before joining IDd with Dd to obtain D′d,
we delete all duplicate tuples in IDd. By creating D′d we can build BD′d and
BSD′d.

3.3 Selecting the Frequent Attributes

In this section (step 4 in Fig. 1), we show how to select the most frequent
attributes used in the queries’ filters, namely the set R. To construct R, but
without using a sophisticated clustering method like the max skipping algo-
rithm [11], we finish by using a simple decision strategy which is based on two
essential rules. Note that step 4 is independent of the previous ones.

– Rule 1. We consider that a distribution Dist has a heavy data skew if the
value of the skewness, denoted by Sk, is more than 2.0 (we choose this value
following some recommendations of [12]). There are numerous methods to
calculate Sk of a given set. In our case, we use the following formula:

Sk =
n

(n − 1)(n − 2)

∑ (
xi − μ

σ

)3

where n is the cardinality of Dist, xi is the ith element of Dist, σ is the
standard deviation of Dist, and μ is the average value of Dist.

– Rule 2. Since our processing is in-memory, using the Spark engine, we assume
that an attribute A of a table T has a high density D if #Bmin ≤ 1/D(A) ≤
#Bmax, where D(A) = 1

number of distinct values of A in T , #Bmin, and the
#Bmax are selected as we have explained in the rules of Sect. 3.2. Our rea-
son for choosing this formula is to decrease the size of the meta-data table
persisting in memory by the Name-node when hash-partitioning T by A.

To create R: (1) We retrieve from the queries’ filters all the attributes of integer
type and we keep only the frequent ones. In our case, we assume that an attribute

SkipSJoin: A New Physical Design for Distributed Big Data Warehouses 261

is frequent if its rate of occurrence in the workload W is greater than or equal
to a threshold Th, which is determined by the administrator of the system; (2)
we keep only the most frequent attribute, for each table of the DW E that has
a high density D and the lower value of the skewness Sk; Finally (3) we create
the set Ri, i ∈ 0..k. For more details, see our previous work in [10].

3.4 Building the Partitions and the Buckets

After adding Bkey to F , building the new dimensions D′d, and creating the set
R, we can construct BF and BD′d, d ∈ 1 ... k. Thus, for each table T of E, we
hash-partition T by the corresponding attribute a ∈ Ri, i ∈ 0 ... k if one exists,
then we bucket T by the Bkey column into #B buckets. See step 5 of Fig. 1.

3.5 Placement of the Buckets

In this section, see step 6 of Fig. 1, we redistribute the groups created evenly
over the cluster nodes, using the round robin technique. Formally, we can denote
by groupi = BFi
k

d=1 BD′di, i ∈ 0 ...#B − 1. Thus, we start to place the
group0 in node 1, group1 in node 2, ..., and the groupp−1 in the node e, such
e = p modulo #B and p <= #B. We restarted the operation with same way, we
put groupp in node 1, groupp+1 in node 2, ..., until the last group#B−1.

Q1 Q2 Q3 Q4 Q5 Q6
0

5,000

10,000

1,
26

5

1,
37

5 3,
79

5

3,
21

2

3,
11

5

7,
65

0

20
2

21
5 1,
58

8

1,
42

5

1,
51

4

3,
03

1

17
7

18
8 89
8

92
8

95
0 1,
59

0

17
1

18
1 87
2

89
0

91
2 1,
51

6

Queries

ti
m
e
in

se
co
nd

es

SSH SHB SSMBO′ SSMBO

Fig. 2. Runtime of the queries with DW

queries workload
0

2,000

4,000

6,000 5,794

2,847
2,476

ti
m
e
in

m
in
ut
es

SHB SSMBO SkipSJoin

Fig. 3. Workload runtime

4 Experiments and Results

To evaluate our approach, we carried out some experiments with a BDW,
denoted by DW . We used a cluster of 15 slave data nodes and one master
node characterized by CPU Pentium I7 with 8 cores, 16 GB of memory and 2
TB of hard drive. For the workload W , we selected 20 queries from among the 99
queries of the benchmark with use frequencies ϕ. We divided our experiments
into two parts: In the first part, we evaluate our approach without using W .
The aim of this is to show how to perform the star join operation in a single
Spark stage whatever the used OLAP query. We have selected 6 queries from the
TPC-DS benchmark with different levels of complexity. We have compared our
approach with different baseline approaches. The approach notations are: SSH

262 Y. Ramdane et al.

is the default Partitioning and Distributing (P & D) schema of Hadoop/Spark,
using Shuffle Hash (SH) join; SHB is the default P & D schema of Hadoop/Spark,
using Hash Broadcast (HB) Join; SSMBO is our P & D schema (without based
on queries workload), using the balanced K-means and SMB join; and SSMBO’
which is similar to SSMBO but instead using the balanced K-means algo-
rithm, we just create roughly equal buckets’ size of the fact table, using range-
partitioning method. By using the rules of Sect. 3.2, we obtain #B = 630. In
the second part, we included our hash-partitioning technique based on the W .
So, in SkipSJoin we use our bucketing technique as in the SSMBO approach
and our skipping method as given in detail in Sect. 3.3. Figure 2 shows, for the
different approaches, the execution time of the 6 selected queries. In Fig. 3, we
compare the runtimes of W in the approaches SHB, SSMBO, and SkipSJoin.

As shown in Fig. 2, the query execution time with SSMBO approach is up 2
times better over SHB approach. We can see that the worst results were obtained
with SSH approach. This is due to the high rate of data shuffling. In Q1 and
Q2, since we only involved two small dimensions, the broadcasting of the RDD
partitions become fast and we can see that the execution times of these queries
in the SHB approach are roughly the same as with our approaches SSMBO’, and
SSMBO. However in Q3, Q4, Q5, and Q6, the performance of SHB suffers. The
reason is that in the SHB approach when the table is large, the system cannot
broadcast it, and must combine with HB join and SH join to perform these
queries. We noticed that the runtime of the queries with SSMBO is much better
than the SSMBO’ approach, and this demonstrates the efficiency of our balanced
K-means algorithm. Obviously, the random clustering applied in SSMBO’ can
increase the size of some new dimensions and degrade the system performances.
Moreover, we can see from Fig. 3 that SkipSJoin is much better than SSMBO.
The reason is that since we hash-partition some tables by the most frequent
attributes used in the filters of W , we can omit loading some chunks into memory.

5 Conclusion and Future Research

In this paper, we have presented a new strategy for partitioning and distributing
a big data warehouse over Hadoop cluster. SkipSJoin allows performing the star
join operation of an OLAP query locally, in only one Spark stage, without a shuf-
fle phase. Moreover, by taking into consideration the given workload, SkipSJoin
can skip loading unnecessary data blocks. We have seen that although we have
roughly balanced the split inputs, we get unbalanced intermediate results due to
the selectivity of some of the filters. In the future, we aim to add to our hybrid
approach SkipSJoin a Multi-Agent-System to balance smartly the reducer loads
(i.e. optimize grouping and aggregation operations).

SkipSJoin: A New Physical Design for Distributed Big Data Warehouses 263

References

1. Afrati, F.N., Ullman, J.D.: Optimizing multiway joins in a map-reduce environ-
ment. IEEE Trans. Knowl. Data Eng. 23(9), 1282–1298 (2011)

2. Abouzeid, A., Bajda-Pawlikowski, K., Abadi, D., Silberschatz, A., Rasin, A.:
HadoopDB: an architectural hybrid of MapReduce and DBMS technologies for
analytical workloads. Proc. VLDB Endow. 2(1), 922–933 (2009)

3. Agarwal, S., Mozafari, B., Panda, A., Milner, H., Madden, S., Stoica, I.: BlinkDB:
queries with bounded errors and bounded response times on very large data. In:
Proceedings of the 8th ACM European Conference on Computer Systems, pp.
29–42 (2013)

4. Blanas, S., Patel, J.M., Ercegovac, V., Rao, J., Shekita, E.J., Tian, Y.: A compari-
son of join algorithms for log processing in mapreduce. In: Proceedings of the 2010
ACM SIGMOD International Conference on Management of Data, pp. 975–986.
ACM (2010)

5. Brito, J.J., Mosqueiro, T., Ciferri, R.R., Ciferri, C.D.: Faster cloud Star Joins with
reduced disk spill and network comm. Proc. Comput. Sci. 80, 74–85 (2016)

6. Dittrich, J., Quiané-Ruiz, J.A., Jindal, A., Kargin, Y., Setty, V., Schad, J.:
Hadoop++: making a yellow elephant run like a cheetah (without it even noticing).
Proc. VLDB Endow. 3(1–2), 515–529 (2010)

7. Eltabakh, M.Y., Tian, Y., Özcan, F., Gemulla, R., Krettek, A., McPherson, J.:
CoHadoop: flexible data placement and its exploitation in Hadoop. Proc. VLDB
Endo. 4(9), 575–585 (2011)

8. Purdilă, V., Pentiuc, Ş.G.: Single-scan: a fast star join query processing algorithm.
Softw.: Pract. Exp. 46(3), 319–339 (2016)

9. Malinen, M.I., Fränti, P.: Balanced K -means for clustering. In: Fränti, P., Brown,
G., Loog, M., Escolano, F., Pelillo, M. (eds.) S+SSPR 2014. LNCS, vol. 8621, pp.
32–41. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44415-3 4

10. Ramdane, Y., Boussaid, O., Kabachi, N., Bentayeb, F.: Partitioning and bucketing
techniques to speed up query processing in Spark-SQL. In: IEEE 24th International
Conference on Parallel and Distributed Systems (ICPADS), pp. 142–151 (2018)

11. Sun, L., Franklin, M.J., Krishnan, S., Xin, R.S.: Fine-grained partitioning for
aggressive data skipping. In: Proceedings of the ACM SIGMOD International Con-
ference on Management of Data, pp. 1115–1126 (2014)

12. Field, A.: Discovering Statistics using IBM SPSS Statistics. Sage, Thousand Oaks
(2013)

https://doi.org/10.1007/978-3-662-44415-3_4

Learning k-Occurrence Regular
Expressions from Positive and Negative

Samples

Yeting Li1,2, Xiaoying Mou1,2, and Haiming Chen1(B)

1 State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing 100190, China

{liyt,mouxy,chm}@ios.ac.cn
2 University of Chinese Academy of Sciences, Beijing, China

Abstract. Deterministic regular expressions (DREs) are a core part of
XML schema languages such as DTD/XSD and are used in different
kinds of applications. Presently the most powerful model to learn DREs
is k-occurrence regular expressions (k-OREs for short). However, there
has been no algorithms can learn k-OREs from positive and negative
samples. In this paper, we propose an efficient and effective algorithm to
learn k-OREs from positive and negative samples. Our algorithm pro-
ceeds as follows: (1) learning deterministic k-OA from positive and neg-
ative samples based on genetic algorithm; (2) converting the k-OA into
optimum deterministic k-OREs.

Keywords: XML schema · Deterministic regular expressions ·
Language learning · Positive and negative samples

1 Introduction

Regular expressions (REs) are a fundamental concept in computer science and
widely used in various applications, e.g., programming languages, database and
semantic data modeling. Since they play an important role in data processing
and matching, REs have always been a popular research topic. Different appli-
cations may require REs with various extensions or restrictions, among them
are deterministic regular expressions (DREs) [5], which are a core part of XML
schema languages such as DTD and XSD, and are used in different kinds of
applications, e.g., the SPARQL query language for RDF [18], efficiently evaluat-
ing regular path queries [12], AXML [1]. Roughly speaking, a DRE must satisfy
that when matching a word from left to right against an expression, a symbol
can be matched to only one position in the expression without looking ahead.
For instance, given a DRE E1 = (a|b)a, if we input an a, it can efficiently match
the first a in E1 without looking ahead. But for a nondeterministic expression

Work supported by the National Natural Science Foundation of China under Grant
Nos. 61872339 and 61472405.

c© Springer Nature Switzerland AG 2019
A. H. F. Laender et al. (Eds.): ER 2019, LNCS 11788, pp. 264–272, 2019.
https://doi.org/10.1007/978-3-030-33223-5_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33223-5_22&domain=pdf
https://doi.org/10.1007/978-3-030-33223-5_22

Learning k-Occurrence REs from Positive and Negative Samples 265

E2 = (a|b?)a, if we input a symbol a, we cannot decide which position (the first
or the second a) in E2 to match without lookahead. One immediate benefit of
using DREs is efficient parsing. Indeed it gives a natural manner to define deter-
minism in REs. As a result, DREs perform better on several decision problems
than general ones, for example, language inclusion is tractable for DREs but is
PSPACE-complete for general ones [19,20]. It is known that DREs are strictly
less expressive than REs [6] and thus not every RE can be defined by a DRE.

Learning DREs is an important research topic, which means, briefly speaking,
given samples S, to learn a DRE r satisfying S ⊆ L(r) or returns null if no
such DRE exists. This problem becomes particularly important for XML schema
extraction, since Li et al. [16] showed that XML documents with corresponding
DTD/XSD definitions on the Web only account for 30.2%, with the proportion
of 24.5% for valid ones. Therefore, it is essential to devise algorithms to learn a
suitable schema for XML documents, and previous researches have shown that
the fundamental task in schema learning is inferring DREs from given samples
(i.e., learning DREs) (e.g., [2,3,8,17]).

Compared with the study of learning REs (or more generally, learning regular
languages), which has a relatively long history, the study of learning DREs is
relatively new and has been quite insufficient. Presently, most researches can
only deal with single occurrence regular expressions (i.e., expressions in which
each symbol occurs at most once), e.g., [2,3,7,8,14,15,17,22], which is quite
restrictive. On the other hand, a more powerful model for learning DREs is the
so called k-occurrence regular expressions (k-OREs) [2]. It has been observed that
in practice, it suffices to learn DREs in which each alphabet symbol occurs at
most k times, for some small k. Indeed, according to a study in which the authors
gathered large-scale real-world XML data containing 124, 326 DREs extracted
from DTDs and 134, 816 DREs from XSDs, the result reveals that DREs in
practical schemas satisfy that every alphabet symbol occurs only a small number
of times: 99.9% percent of DREs in DTDs and 100% percent of DREs in XSDs
satisfy k ≤ 7 [13]. And single occurrence regular expressions are just a special
case of k-OREs, i.e., k=1. However, currently there are only few researches on
k-OREs, e.g., Bex et al. [2] propose an algorithm to learn k-OREs, and Li et
al. [16] provide a learning algorithm for k-OREs with interleaving which is not
for DREs. Both of their methods only support learning from positive samples.
This shows the needs to further study algorithms for k-OREs. Furthermore, all
of the above existing researches learn DREs from positive samples only. However,
in the computational learning theory initiated by [9], a seminal result shows that
the class of all REs cannot be learned from positive data only. Using the same
technique from [9], Bex et al. [2] prove that even the class of DREs cannot be
learnable from positive data. Thus it is impossible for an algorithm to infer the
full class of DREs from positive data only.

Our Contributions: All existing algorithms for learning DREs consider only
positive samples. To the best of our knowledge, our work is the first to address
learning DREs from both positive and negative samples. We propose an efficient

266 Y. Li et al.

and effective algorithm to learn k-OREs from positive and negative samples,
which is based on a genetic algorithm.

2 Preliminaries

For the rest of this paper, Σ denotes a finite set of alphabet symbols. The
empty word is denoted by ε. The set of all words over Σ is denoted by Σ∗.
A standard regular expression over Σ is defined as: ∅, ε or a ∈ Σ is a regular
expression, the union E1|E2, the concatenation E1 · E2 or the Kleene star E∗

1

is a regular expression for regular expressions E1, E2. We also use shorthand
operators E? = ε|E and E+ = E · E∗. The size of an expression E, denoted by
|E|, is the number of symbols and operators occurring in E.

For a regular expression E, a marked form of E, denoted by E, is obtained by
marking symbols in E with subscripts, such that each marked symbol occurs only
once in E. For example, given an expression E = a(a|b)(ab)∗, one of its marked
form is E = a1(a2|b1)(a3b2)∗. The same notation will also be used for dropping
of subscripts from the marked symbols: E = E. We extend this notation for
words and sets of symbols in the obvious way. The definition of determinism is
based on the marked expressions, as follows.

Definition 1 [6]. A regular expression E is deterministic if and only if for all
words uxv, uyw ∈ L(E) if x �= y then x �= y, where x, y ∈ Σ and u, v, w ∈ Σ

∗
.

Definition 2 [2]. A regular expression E is k-occurrence (called k-ORE), if
every alphabet symbol occurs at most k times in E.

A k-occurrence automaton (called k-OA) is a specific kind of finite state
automata defined in the following. Note that states are labeled with symbols
but no edges are labeled.

Definition 3 [2]. A k-OA is a node-labeled graph G = (V,R, lab) where:

• V is a finite set of nodes (also called states) with a distinguished source src
and sink snk.

• R is the edge relation such that src has only outgoing edges; snk has only
incoming edges; every v ∈ V \ {src, snk} is reachable by a path from src to
snk.

• lab is the labeling function with V \ {src, snk} → Σ.
• there are at most k states with the same symbol in Σ.

A word a1 · · · an is accepted by G if there exists a path src v1 · · · vn snk in
G such that ai = lab(vi) for 1 � i � n. We denote the set of all words accepted
by G as L(G). We use outσ(v) to denote {v1|(v, v1) ∈ R and σ = lab(v1)}, i.e.,
the set of states of all direct successors of a state v in G.

Definition 4. A k-OA is deterministic, if for any v ∈ V and σ ∈ Σ, outσ(v)
contains at most one state.

Learning k-Occurrence REs from Positive and Negative Samples 267

3 The Learning Algorithm

Our algorithm aims to obtain a deterministic k-ORE with some fixed k, which
should accept all positive samples S+ and reject all negative samples S−. This
is mainly achieved by using a genetic algorithm. We show the major techni-
cal details of our algorithm in this section. The main algorithm is presented
in Sect. 3.1. Generating a deterministic k-OA from samples is introduced in
Sect. 3.2. Converting the k-OA into a deterministic k-ORE is given in Sect. 3.3.

3.1 The Main Algorithm

Algorithm 1. learner+−
Input: positive sample S+, negative

sample S−
Output: an expression r in k-ORE

1 initialize candidate set C ← ∅
2 for k = 1 to kmax do
3 for n = 1 to N do
4 A ← iKOA+

− (S+, S−, k)

5 r ← iKORE+
− (A)

6 if r �= ε then add r to C;

7 return r ← bestRE(C, S+, S−)

The pseudocode of our learning
algorithm is presented in Algo-
rithm1. We will make many
attempts with k varies. The k
value can range from 1 to the
maximal number of occurrences
of alphabet symbols in S+ and
S−, denoted as kmax. Notably,
on the basis of practical expe-
rience, kmax is usually less than
8, since 99.9% of practical DREs
satisfy that each symbol occurs
at most 7 times [13].

The function bestRE is used to select the final optimum result with a k
value, which ensures to avoid overgeneralization and to be as precise and concise
as possible. We introduce two measures for this selection: (a) A language size
measure [3] and (b) One part of the minimum description length (MDL) [21].
Language size measures the precision, which is the language size of an expression
r, called |L(r)|. Since in general L(r) is infinite and cannot be measured, we only
consider the words with length up to Lmax = 2m + 1, where m is the length
of r excluding regular expression operators, ε, and ∅. The function is defined
as: L(r)�Lmax =

∑Lmax

l=1 |Ll(r)|, where |Ll(r)| is the number of subset words of
L(r) that have length l. The part of MDL measures the concision, which is the
length of an expression r in bits, that is Len(r) = |r| ∗
log2(|Σ| + |M|)�, where
|Σ| is the size of the alphabet and M is the set of {|, ·, ?, ∗,+, (,)}. Intuitively,
the less the indicator values, the better the RE. Finally, we prioritize language
size over expression length. Since the genetic algorithm may also converge to a
local maximum, we also run the algorithms N times to increase the probability
of avoiding a local maximum value. In the experiments we set N to 10.

3.2 Generating Deterministic k-OAs from Samples

For a given k ∈ [1, kmax], a deterministic k-OA can be learned from samples
based on a genetic algorithm. We show the learning process in Algorithm2.

268 Y. Li et al.

Algorithm 2. iKOA+
−

Input: positive sample S+, negative sample S−, a k value
Output: a deterministic k-OA A

1 P ← init(k), C ← ∅
2 for generation= 1 to gmax do
3 W ← decode(P)
4 parents ← select(P , calcFitness(W , S+, S−))
5 P ← crossover(parents)
6 P ← mutate(P)
7 A ← bestFA(decode(P), S+, S−)
8 A ← DISAMBIGUATE(A, S+, S−)
9 add SIMPLIFY(A, S+, S−) to C

10 return A ← bestFA(C, S+, S−)

The Genetic Algorithm. Here, we consider the learning problem as finding
an optimum solution in the deterministic k-OREs for some fixed k.

Initialization. We first initialize a population whose size is the number of pos-
sible solutions. Each individual in the population is initialized to a k-OA with
k ∗ |Σ| + 2 states and random edge relations. For simplifying the operations on
k-OAs, we code each individual into a chain of binary DNA. Take 2-OA as an
example to explain the coding process, shown in Fig. 1. Actually a k-OA graph
of an individual is coded into a chain of string of 0s and 1s, and the length of
the string is (k ∗ |Σ| + 1)2. Inversely, the process of changing a chain of string
into a k-OA graph is called decoding.

Selection. In each generation of the population, we select excellent individuals
to breed new generations. We measure individuals by a fitness function used for
finding preferential solutions. In our algorithm, the function will choose individ-
uals which are good at describing the class of languages of samples.

Crossover and Mutation. They are two ways to generate a second generation
of one population based on those selected individuals by the above step. For
crossover, we decide a pair of parents from the selected ones for breeding. Muta-
tion can be easily completed by choosing and exchanging one position of one
individual. Examples are shown in Fig. 2. As shown in Algorithm 2, the genetic
algorithm is the basis of our algorithm. The variable P means a population. We
set the size of P as 500, then initialize P by randomly generating 500 individ-
uals (i.e., k-OAs). The function decode can code k-OAs with chains of binary
DNA. The population need to evolve gmax = 300 generations to get a rational
solution. The implementations of functions decode, select, crossover and mutate
can be referred to the above explanations. The crossover probability is assigned
as 0.8 and the mutation rate is 0.003 by experience. To be mentioned, calcFit-
ness will measure individuals by a fitness function, and the fitness value f(A)
for an automaton A is usually defined as follows.f(A) = |TP |+|TN |−|FP |−|FN |

|S+|+|S−| ,
where TP = {w ∈ S+ | w ∈ L(A)}, TN = {w ∈ S− | w /∈ L(A)},

Learning k-Occurrence REs from Positive and Negative Samples 269

Algorithm 3. DISAMBIGUATE

Input: positive sample S+, negative sample S−, a k-OA A
Output: a deterministic k-OA A

1 initialize queue Q to the initial states of A
2 initialize set of marked states B ← ∅
3 while Q is non-empty do
4 s ← first(Q)
5 while some σ ∈ Σ has |outσ(s)| > 1 do
6 C ← ∅
7 for t in outσ(s) do
8 A′ ← A
9 for all t′ in outσ(s) \ {t} do

10 delete edge(s, t′) from A′

11 add A′ to C

12 A ← bestFA(C, S+, S−)

13 add s to marked states B and pop s from Q
14 enqueue all states in out(s) \ B to Q

15 return A

Fig. 1. The process of encoding an
individual

Fig. 2. Examples for crossover and
mutation operations

FP = {w ∈ S− | w ∈ L(A)}, FN = {w ∈ S+ | w /∈ L(A)}, |S+|, |S−| are the
size of positive and negative samples, respectively. To be mentioned, the com-
putations of |TP |, |TN |, |FP | and |FN | involve the process of checking whether
a word can be accepted by an automaton. Here, we use the efficient algorithm
in [11]. The f(A) can guarantee selected individuals to accept positive samples
and reject negative samples as many as possible. For an automaton A, if the
value of f(A) is larger, then A has more possible to be chosen. The function
bestFA has the same operations as select, and the only difference between them
is that select returns a pair of parents from selected individuals based on the
fitness function, however, bestFA only returns the best automaton A (with the
largest fitness value is 1, i.e., satisfying S+ ⊆ L(A) and S− ∩ L(A) = ∅).

270 Y. Li et al.

DISAMBIGUATE can convert a k-OA into a deterministic k-OA. For each
state s and symbol σ ∈ Σ such that |outσ(s)| > 1, we delete edges to keep
|outσ(s)| = 1, which is guided by the function bestFA. SIMPLIFY is designed
to delete useless edges and states according to samples.

3.3 Converting Deterministic k-OAs into k-OREs

The process of converting an automaton into an expression has many results in
previous research. We complete Algorithm 4 based on related results.

Soa2Sore(A) implements the conversion of a single-occurrence automaton
(i.e., 1-OA) into a regular expression. However the single-occurrence automaton
restricts each symbol to occur at most once. Referring to the notion of marked
expressions, we can mark the symbols occurring more than once in the label of
states of a k-OA. That is, for every symbol a ∈ Σ and all states lab(si) = a(1 <
i � n), we get a marked k-OA such that lab(s1) = a1, · · · , lab(sn) = an. Clearly,
a marked k-OA is a single-occurrence automaton. We can convert the automaton
into a single-occurrence regular expression r, then we drop the subscripts for all
symbols in r and get a new expression in k-OREs. These series of processes
cannot guarantee the resulting k-ORE be deterministic. Hence, we refer to the
efficient determinism checking algorithm introduced in [10], and then ensure to
obtain a deterministic k-ORE from a deterministic k-OA.

Algorithm 4. iKORE+
−

Input: a deterministic k-OA A
Output: a DRE r in k-ORE or ε

1 r ← Soa2Sore(mark(A)) [8]
2 if r is not deterministic then
3 r ← ε

4 return r

Our learning algorithm calls
iKORE+

− with k ∈ [1, kmax]. In
these attempts, iKORE+

− must
return at least one determin-
istic regular expressions since
when k = 1 the expression
converted from a 1-OA will
always be deterministic. There-
fore, learner+− ensures to learn
a deterministic expression.

4 Conclusion

In this paper, we developed an algorithm to learn deterministic k-OREs from
positive and negative samples. We first constructed deterministic k-OAs based
on a genetic algorithm, to accept positive samples and reject negative ones. Then
we converted the k-OAs into deterministic k-OREs.

Although studies show that in practice it suffices to learn DREs from k-
OREs, however, for a fixed k value, k-OREs is a subclass of DREs. Therefore it
is of both theoretical and practical interests to further investigate new models
that can infer the full class of DREs. Further, in fact we also get a version of
our algorithm in which the expressions are not restricted to DREs. Then we can
compare our algorithm with others like [4], and use our algorithm to applications
that require REs rather than DREs. We leave these for future work.

Learning k-Occurrence REs from Positive and Negative Samples 271

References

1. Abiteboul, S., Milo, T., Benjelloun, O.: Regular rewriting of active XML and unam-
biguity. In: Proceedings of the 24th SIGMOD, pp. 295–303 (2005)

2. Bex, G.J., Gelade, W., Neven, F., Vansummeren, S.: Learning deterministic regular
expressions for the inference of schemas from XML data. TWEB 4(4), 14:1–14:32
(2010)

3. Bex, G.J., Neven, F., Schwentick, T., Vansummeren, S.: Inference of concise regular
expressions and DTDs. ACM Trans. Database Syst. 35(2), 11:1–11:47 (2010)

4. Bonifati, A., Ciucanu, R., Lemay, A.: Learning path queries on graph databases.
In: Proceedings of the 18th EDBT, pp. 109–120 (2015)

5. Brüggemann-Klein, A.: Unambiguity of extended regular expressions in SGML
document grammars. In: Lengauer, T. (ed.) ESA 1993. LNCS, vol. 726, pp. 73–84.
Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57273-2 45

6. Brüggemann-Klein, A., Wood, D.: One-unambiguous regular languages. Inf. Com-
put. 140(2), 229–253 (1998)

7. Ciucanu, R., Staworko, S.: Learning schemas for unordered XML. In: Proceedings
of the 14th DBPL, pp. 31–40 (2013)

8. Freydenberger, D.D., Kötzing, T.: Fast learning of restricted regular expressions
and DTDs. Theory Comput. Syst. 57(4), 1114–1158 (2015)

9. Gold, E.M.: Language identification in the limit. Inf. Control 10(5), 447–474 (1967)
10. Groz, B., Maneth, S.: Efficient testing and matching of deterministic regular expres-

sions. J. Comput. Syst. Sci. 89, 372–399 (2017)
11. Hopcroft, J.E., Ullman, J.D.: Introduction To Automata Theory, Languages, and

Computation. Addison-Wesley, Boston (2001)
12. Huang, X., Bao, Z., Davidson, S.B., Milo, T., Yuan, X.: Answering regular path

queries on workflow provenance. In: Proceedings of the 31st ICDE, pp. 375–386
(2015)

13. Li, Y., Chu, X., Mou, X., Dong, C., Chen, H.: Practical study of deterministic
regular expressions from large-scale XML and schema data. In: Proceedings of the
22nd IDEAS, pp. 45–53 (2018)

14. Li, Y., Dong, C., Chu, X., Chen, H.: Learning DMEs from positive and negative
examples. In: Li, G., Yang, J., Gama, J., Natwichai, J., Tong, Y. (eds.) DASFAA
2019. LNCS, vol. 11448, pp. 434–438. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-18590-9 61

15. Li, Y., Mou, X., Chen, H.: Learning concise relax NG schemas supporting inter-
leaving from XML documents. In: Gan, G., Li, B., Li, X., Wang, S. (eds.) ADMA
2018. LNCS (LNAI), vol. 11323, pp. 303–317. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-05090-0 26

16. Li, Y., Zhang, X., Cao, J., Chen, H., Gao, C.: Learning k -occurrence regular expres-
sions with interleaving. In: Li, G., Yang, J., Gama, J., Natwichai, J., Tong, Y. (eds.)
DASFAA 2019. LNCS, vol. 11447, pp. 70–85. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-18579-4 5

17. Li, Y., Zhang, X., Xu, H., Mou, X., Chen, H.: Learning restricted regular expres-
sions with interleaving from XML data. In: Trujillo, J.C., et al. (eds.) ER 2018.
LNCS, vol. 11157, pp. 586–593. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-00847-5 43

18. Losemann, K., Martens, W.: The complexity of regular expressions and property
paths in SPARQL. ACM Trans. Database Syst. 38(4), 24:1–24:39 (2013)

https://doi.org/10.1007/3-540-57273-2_45
https://doi.org/10.1007/978-3-030-18590-9_61
https://doi.org/10.1007/978-3-030-18590-9_61
https://doi.org/10.1007/978-3-030-05090-0_26
https://doi.org/10.1007/978-3-030-05090-0_26
https://doi.org/10.1007/978-3-030-18579-4_5
https://doi.org/10.1007/978-3-030-18579-4_5
https://doi.org/10.1007/978-3-030-00847-5_43
https://doi.org/10.1007/978-3-030-00847-5_43

272 Y. Li et al.

19. Losemann, K., Martens, W., Niewerth, M.: Closure properties and descriptional
complexity of deterministic regular expressions. Theor. Comput. Sci. 627, 54–70
(2016)

20. Martens, W., Neven, F., Schwentick, T.: Complexity of decision problems for XML
schemas and chain regular expressions. SIAM J. Comput. 39(4), 1486–1530 (2009)

21. Quinlan, J.R., Rivest, R.L.: Inferring decision trees using the minimum description
length principle. Inf. Comput. 80(3), 227–248 (1989)

22. Zhang, X., Li, Y., Cui, F., Dong, C., Chen, H.: Inference of a concise regular expres-
sion considering interleaving from XML documents. In: Phung, D., Tseng, V.S.,
Webb, G.I., Ho, B., Ganji, M., Rashidi, L. (eds.) PAKDD 2018. LNCS (LNAI),
vol. 10938, pp. 389–401. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-93037-4 31

https://doi.org/10.1007/978-3-319-93037-4_31
https://doi.org/10.1007/978-3-319-93037-4_31

Domain Specific Models I

What Rocks Are Made of: Towards
an Ontological Pattern for Material

Constitution in the Geological Domain

Luan Fonseca Garcia(B) , Joel Luis Carbonera ,
Fabricio Henrique Rodrigues, Cauã Roca Antunes , and Mara Abel

Informatics Institute - Federal University of Rio Grande do Sul (UFRGS),
Porto Alegre, RS, Brazil

{luan.garcia,joel.carbonera,fabricio.rodrigues,
caua.antunes,marabel}@inf.ufrgs.br

http://www.inf.ufrgs.br/bdi

Abstract. We propose an ontological pattern for dealing with the mate-
rial constitution relation in Geology domain. This is important because
geologists are often interested only in properties that are dependent to
the matter (the rock, the minerals) or to the object (a geological unit,
a grain). The scale of analysis is very important in Geology and may
range from millimeters to kilometers. Differentiating the matter from
the object that it constitutes allows one to represent properties from dif-
ferent scales separately. We first provide a short review of the state of
the art for the constitution relation and how our vision fits within the
existing theories.

Keywords: Ontological pattern · Ontological design pattern ·
Material constitution · Constitution · Ontology · Geology · Geological
domain

1 Introduction

In the Geology domain, in general, geologists have to deal with entities of very
different ontological natures and orders of magnitude (or scales), ranging from
millimeters to kilometers - e.g., from grains to geological unities. Beyond that,
when describing the very same entity under different scales, the geologist focus
on very distinct properties. For example, an amount of rock is regarded as a
homogeneous mass in macroscopic scale, but reveals a granular, discrete nature
when analyzed in microscopic scales1. Additionally, it is common to consider
that certain geological entities are constituted by certain amounts of rocks. By

1 We use ‘macroscopic’ here to refer to a scale where entities are large enough to be
visible by the naked eye. Conversely, ‘microscopic’ refers to anything smaller than
what can be seen by the naked eye.

c© Springer Nature Switzerland AG 2019
A. H. F. Laender et al. (Eds.): ER 2019, LNCS 11788, pp. 275–286, 2019.
https://doi.org/10.1007/978-3-030-33223-5_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33223-5_23&domain=pdf
http://orcid.org/0000-0001-9328-9007
http://orcid.org/0000-0002-4499-3601
http://orcid.org/0000-0002-8609-8103
http://orcid.org/0000-0002-9589-2616
https://doi.org/10.1007/978-3-030-33223-5_23

276 L. F. Garcia et al.

considering this conceptualization, geologists are able to differentiate the prop-
erties of the geological objects and the properties of the materials that constitute
them. Moreover, the distinctions between the properties of the object and of its
material is somewhat related to those between the properties found at different
scales of analysis. Bearing this in mind, having a clear understanding of the
nature of the material constitution in this context would provide significant help
for supporting analysis of the subjects of the domain.

Unfortunately, the notion of constitution is still heavily overloaded and con-
ceptually unclear in computer science, despite the wide number of efforts in the
Philosophy literature to properly characterize it ontologically, as discussed in
Sect. 2. Today, there is no computational model for Geology that explicitly deals
with the notion of constitution and its role in defining the domain concepts in
accordance with the conceptualization that is shared among geologists. In this
context, building systems that can represent geological data with the suitable
semantics becomes a challenge.

In this paper, we discuss the ontological nature of material constitution
within Geology and propose an ontological pattern that explicitly captures the
semantics underlying this notion and that can be used for supporting the suit-
able computational manipulation of geological data. In order to achieve that, we
establish three main requirements that our model should meet:

1. Integrate different scales of analysis in the same model;
2. Support the distinction between geological entities and the matter that con-

stitute them;
3. Clarify how some entities present different properties at different scales.

The remaining of the paper is organized as follows: Sect. 2 brings a brief
review of possible views on constitution in the realm of Philosophy and explicits
the notion we adopt in this work; in Sect. 1 we better describe the geological
concepts involved on our efforts and develop our model proposal; Sect. 4 presents
related work and discusses our finds; finally, our final remarks are presented in
Sect. 5.

2 Material Constitution

In [5], constitution is defined as the relation between something and what it is
made of. In this sense, we can define material constitution as the relation between
some material entity and the physical matter that it is made of. Although this
definition looks simple, there is much of a debate about the material constitution
relation.

Consider the example of the statue and the clay extracted from [14]. A sculp-
tor buys a lump of clay on Monday and names it ‘Lump’. On Tuesday, he sculpts
the clay into the form of a statue of the biblical king David and names it ‘David’.
It is possible to see that Lump differs from David. Lump existed on Monday,
David didn’t. Lump could survive being squashed, while David couldn’t. They
also differ in their kinds, since Lump is primarily a lump of clay, while David is
primarily a statue. Following this, the following argument is possible:

What Rocks Are Made of: Ontological Pattern for Material Constitution 277

1. David did not exist on Monday (and it exists on Tuesday).
2. Lump did exist on Monday (and continue to exists on Tuesday).
3. If 1 and 2 are true, then David is not identical do Lump.
4. We conclude then that David is not identical to Lump.

The problem is that this implies that spatially coincident objects exist, which
seems absurd at a first glance. This paradox can be broadly analyzed in five
perspectives [14]:

1. Accepting that Lump and David are different entities and have different prop-
erties (The Constitution View).

2. Denying that 1 is true because David already existed on Monday or that it
never existed (The Eliminativist View).

3. Considering 2 false by either denying the existence of Lump (Eliminativist) or
denying that Lump could survive the shape transformation (The Dominant
Kinds View).

4. Denying 3 by rejecting the standard formulation of Leibniz’s Law (The Rel-
ative Identity Theory).

5. Insisting that the underlying issues are in some sense verbal and there is no
matter of fact about which premise is false (The Deflationist View).

In this paper, we assume the first philosophical view, so-called The Con-
stitution View, because it is the only one that allows us to reflect a common
view among geologists, where they often differentiate properties from the matter
(rock) from properties of the object constituted by it (a geological unit consti-
tuted by that rock, for instance).

According to [2], The Constitution View is a metaphysical view of concrete
entities in the natural world that accepts the possibility of existing two different
material objects at the same place at the same time. In other words, this is the
view that accepts that some object is different from the matter that constitutes
it, that they are spatially coincident and that a relation of material constitution
holds between them. This philosophical standpoint brings to light properties
that are essential for one entity while are only contingent to another entity. For
instance, being shaped like a man is a essential property for David, the statue,
while it is only contingent for the lump of clay that constitutes it. Suppose that
the statue is melted until it has not a man-shape. The David statue would cease
to exist, while the lump of clay would remain the same.

It is important to note that even within the Constitution View there are
distinct approaches. [5] separates three different approaches according to the
relationship between constitution and composition, where composition is the
relation holding between something and its parts. All these three views of con-
stitution assume that the entities involved in the relation of constitution are
three-dimensional. It also implies that constitution is relative to a specific instant
of time - what constitutes something may change over time.

The first approach considers that objects are constituted by their parts, so
constitution is identified as composition (i.e. a parthood relation). This is the
view of [6,7,9–11]. The second one admits that constitution and composition

278 L. F. Garcia et al.

are distinct relations, but defines constitution in terms of parthood. Usually, in
this view, the constituent and constituted entity share all the same parts, but
the constituted is more loosely tied to these parts regarding its identity [13,16].
The third one, which is the approach that we follow in this work, says that
constitution is not composition and if x constitutes y, then x is not a part of y.
This approach is defended by [1,2] and will be detailed in the following.

According to Baker, the fundamental idea of constitution is that when some-
thing of one primary kind is in certain circumstances, something of another
primary kind (a new thing, with new causal powers) comes to exist. Baker says
that everything is of a single primary kind. She says that an object’s primary
kind answers the question: What is x most fundamentally? In this sense, the pri-
mary kind of the Lump would be being a lump of clay, and when it is sculpted
in a certain way there are certain circumstances that brings to existence a new
thing - David -, with new causal powers and different primary kind (being a
statue).

Baker defines 6 conditions for an entity to constitute another at a certain
time:

1. The constituent and the constituted entity are from distinct primary kinds.
2. The constituent and the constituted are co-localized in space and nothing can

be constituted by two things of the same primary kind at the same time.
3. There must exist a set of favorable circumstances which the constituent must

meet in order for the constitution relation to exist.
4. Whenever the constituent meets the favorable circumstances, the constitution

relation must exist.
5. There must exist a possible situation where the constituent is not constituting

anything of the same primary kind as the constituted entity, that is, whenever
it is not in favorable circumstances.

6. Constitution only holds between things of the same basic kind of stuff (mate-
rial things to material things, immaterial to immaterial, etc.).

Furthermore, Baker concludes that the constitution relation is asymmetric,
irreflexive and contingent. For instance, there could be an aggregate of grains of
quartz and feldspar that didn’t meet favorable circumstances because they are
far away from each other and thus do not constitute a sandstone rock.

In the following section, we present definitions for the entities from our
domain, discuss which constitution relations hold between them and propose
an ontological pattern for representing them.

3 Ontological Pattern for Geological Knowledge
Representation

Geologists are acquainted with a variety of different types of entities that they
have to deal with to make sense of the geological scenario that is presented to
them in order to carry out their reasonings and make their inferences. Among

What Rocks Are Made of: Ontological Pattern for Material Constitution 279

these entities, some are already evident in macroscopic scales of analysis, while
others only become discernible in microscopic scale.

In the group of macroscopic entities we can highlight the concepts of rock
and lithological unit. A lithological unit is a body of rock that is sufficiently
distinctive and continuous for being mapped, and thus is an object with three-
dimensional spatial expression and discernible features [15]. Therefore, we may
inspect the position, size, shape and boundaries of a lithologic unit. Amounts of
rock, on the other hand, are usually regarded as homogeneous portions of mat-
ter which constitute lithological units and other macroscopic geological entities.
Accordingly, a rock presents properties which are roughly uniform across all its
extension, such as porosity and density.

We shall focus here on a subtype of rock, known as Sedimentary Rock, a
rock that is formed by the accumulation of sediments (usually grains). Sedi-
ments are particles of rock originated from rocks that previously existed and
suffered processes of weathering and erosion. The study of sedimentary rocks is
important because most of petroleum reservoirs in the world occur in this kind of
rocks. Thus, the properties of sedimentary rocks are interesting for geologists for
understanding the lithological units in order to predict the behavior of oil and
gas inside the reservoir, as well as for allowing extrapolation of such properties
to other geological entities constituted by the same type of rock. The properties
of the lithological unit, although influenced by the properties of the rock, are
not directly derived from them.

In the microscopic scale, we have entities such as grain and mineral. In our
context, grains are small particles made of a single type of mineral. They present
types of properties similar to those found in lithologic units (position, size,
shape), though in a different scale. These properties are of interest for geolo-
gists since they help to explain how different grains would interact. A mineral is
a solid chemical compound with a crystalline structure. Moreover, analogously
to the case of rock, the mineral that constitutes a grain also present homo-
geneous properties, such as chemical composition, melting point, and behavior
under pressure. Such properties help the geologist to explain certain behaviors
of the grain or other larger objects with such mineral in its composition.

The connection between the entities of different scales, however, is usually
imprecise. It is generally agreed that sedimentary rocks are “made of” grains,
and properties such as grain size distribution are attributed to the rock. However,
these properties contradict the homogeneous nature of rocks. This suggests the
existence of an intermediate entity which collects the microscopic grains, allowing
the analysis of their properties as a group, but without the homogeneity that
characterizes the rock. We will refer to such an entity as a collection of grains
(i.e. the simple mereological sum of mineral grains which, when arranged in a
proper way, give rise to some amount of sedimentary rock). Similarly to how a
lithological unit have properties which cannot be directly derived from the rock
that constitutes it, rock properties do not rise directly from the properties of the
collection of grains. Instead, those properties emerge, in a certain sense, from
the way the collection of grains is arranged. That is, the exact same collection

280 L. F. Garcia et al.

of grains if differently arranged – e.g. due to diverse pressure conditions – would
yield a rock with different material properties - e.g. higher pressure would result
in ‘less permeability’.

The analysis of these concepts from the geological domain (i.e. Lithologic
Unit, Sedimentary Rock, Collection of Grains, Grain, Mineral) provides some
evidence that we are dealing with three fundamental kinds of entities that are
defined in [8], as Objects, Amounts of Matter and Arbitrary Collections. An
object is an entity with spatial extension in three dimensions and a unifying
relation that holds between all its parts. A car, a brick and a loaf of bread are
examples of objects. Examples from geological domain include lithologic units
and grains. Amounts of matter are entities which are mereologically invariant -
that is, their identity is tied to that of their parts - but have no unifying relation
among their parts. Examples of these entities include steel, mud, bread, and
air, as well as rock and mineral. Finally, arbitrary collections are groupings of
objects, do not have a unifying relation, and are mereologically invariant to a
certain extent, in the sense that the identity of a collection is tied to that of
its members, which may, however, change some of their parts without changing
their identities. A fleet of cars, a pile of bricks and a collection of grains are
examples of Arbitrary Collection.

By distinguishing these three main kinds of entities, our ontological pattern
elucidates which properties belong to each type of entity. For example, spatial
properties such as position, size and shape always come from objects. Thus, a
geologist may refer the boundaries of a lithologic unity, but not of a sedimentary
rock, or to the shape of a grain, but not of some mineral amount. Similarly,
material’s properties2, like permeability, density and melting point, are always
properties of amounts of matter. For example, a sedimentary rock has a certain
porosity which cannot be verified in the underlying collection of grains without
considering its arrangement, in the same way as a mineral presents a certain melt-
ing point that is not simply a function of its underlying collection of molecules,
but results from the particular way in which they are bonded together. In these
cases, we have properties of the “upper level” entity which do not arise directly
from the properties of the underlying entity. These new properties suggest that
there may be some constitution relations playing a part here. More specifically,
there seems to be constitution relations between:

A Sedimentary rock and lithological unity.
B Collection of grains and sedimentary rock.
C Mineral and grain.
D Collection of molecules and mineral.

In order to verify whether or not it is really the case, we can check them
against Baker’s six conditions (enumerated in Sect. 2). constitution relations sup-
porting the existence of such new properties.

2 Here understood as a local physical property of a system that does not depend on
the system size or the amount of material in the system.

What Rocks Are Made of: Ontological Pattern for Material Constitution 281

Considering what we discussed so far, some of Baker’s conditions are
promptly fulfilled by all cases. First of all, it is clear that we are dealing with
entities of distinct primary kinds in each of the considered relations, what fulfills
condition (1). It is also clear that, in each of the cases, the related entities are
spatially coincident. Additionally, Amounts of Matter (such as rocks and min-
erals) have their identities determined by that of their parts, we have that if
two instances of amounts of matter spatially coincide, they would share all the
same parts, and then they would actually be the same entity. A similar case can
be made for Arbitrary Collections (such as collections of molecules and grains).
Thus, it would not be possible to have two spatially coincident amounts of matter
(or arbitrary collections) giving rise to the same constituted entity, which ful-
fills condition (2). Moreover, the relations involve just material entities, which
arguably corresponds to a single basic type of stuff, fulfilling condition (6). The
remaining conditions must be verified for each case.

According the condition (3), the constituent entity must be in some favor-
able circumstance that makes it give rise to the constituted entity. Additionally,
by condition (4) whenever something of the type of the constituent is in such
favorable circumstance, it must give rise to the corresponding constituted entity.
Finally, by condition (5), there must be some possible situation in which a poten-
tial constituent do not gives rise to the corresponding constituted entity.

Lithological unit is defined as a body of rock that is sufficiently distinctive.
Thus, in case (A), a sedimentary rock gives rise to a lithological unity whenever
it is in some condition that results in the referred ‘sufficient distinctiveness’,
which is provided by some material discontinuity between the rock amount and
its surrounds - for example, being delimited by a geological fault or being sur-
rounded by rocks of different types. By the definition of lithological unity, the
rock that constitutes it is always in such condition, what fulfills condition (3).
Likewise, whenever an amount of rock is in such circumstances, it becomes suf-
ficiently distinctive and then gives rise to some lithological entity, what fulfills
the condition (4). Finally, whatever sufficiently large rock amount we take into
account contains smaller, inner amounts of rock of the same type. For such inner
amounts there is no material discontinuity that can make it distinguishable from
the larger rock amount. Thus, in these cases, the inner amounts cannot be said
to give rise to any lithological unit, and that provides a possible case to fulfill
condition (5).

In case (B), for a collection of grains to give rise to a rock, they must
present some high degree of consolidation (i.e. they must be tied strongly enough
together). Such degree of consolidation is the favorable circumstance required by
condition (3). Additionally, it is this degree of consolidation that gives rise to
the properties that rocks exhibit (e.g. it fixes the grains in the specific structure
that results in the porosity characteristic of the rock). Therefore, whenever a
collection of grains reaches such adequate degree of consolidation, an amount
of rock comes into existence - what meets condition (4). Finally, right after the
sediment deposition (i.e. when the grains are deposited at some surface) and
before lithification (i.e. the process that consolidates the sediment into rock), we

282 L. F. Garcia et al.

already have the collection of grains gathered together at the same place, but
we do not yet have a rock - which fulfills condition (5).

Case (C) is analogous to case (A). Being a small particle of a single type
of mineral, a grain is a small individuated portion of mineral. Thus, a grain
arises from an amount of mineral when such amount presents a material dis-
continuity in relation to its surroundings (e.g. as a result of a crack in a larger
amount of mineral, so that the two amounts are no longer tied together by the
chemical bonds characteristic of the mineral type). This material discontinuity
is the favorable circumstance required by condition (3). Conversely, whenever a
sufficiently small amount of mineral is surrounded by a material discontinuity, it
becomes a small individuated portion of mineral and, thus, a grain - what meets
condition (4). Again, analogously to case (A), every sufficiently large mineral
amount contains some inner non-individuate amount of the same mineral that,
lacking the required material discontinuity to its surroundings, does not give rise
to a grain - as required by condition (5).

Finally, case (D) is analogous to case (B). Since a mineral is a solid chemi-
cal compound with a crystalline structure, the arrangement of the molecules of
such chemical compound into the referred crystalline structure is precisely the
favorable circumstance that makes a mineral rise from a collection of molecules,
as required by condition (3). Moreover, whenever a collection of molecules of a
particular type is arranged into the crystalline molecular structure that charac-
terizes a mineral, there exist a mineral amount corresponding to such arrange-
ment, so that case (D) also meets condition (4). Finally, since a given collection
of molecules may be arranged in diverse structures (which would give rise to
minerals of different types), or not arranged at all (e.g. the mereological sum of
separate artificially created molecules), case (D) also meets condition (5).

Distinctly from the entirely new properties in cases (A), (B), (C) and (D)
- which do not derive from the underlying constituent entities -, no new prop-
erty arises when grouping objects in a collection. The properties of a collection
are simply statistical data over the objects they collect, being directly derived
from the properties of those objects. In our example, the mode, the average and
distribution of the size of the grains are properties of the collection which are
directly derived from the size of each grain. Thus, there is a clear distinction
among the relation that holds between the collection and the objects it groups
and the relations of constitution holding between objects and amounts of mat-
ter or between amounts of matter and collections. Additionally, if the relation
between the collection and each object were a constitution relation, it would con-
tradict our definition of constitution both by having more than one constituent
for a single constituted entity and by having a constituent entity that do not
spatially coincides with the constituted entity. Therefore, we identify the relation
of a collection and each of its objects as one of membership, a specific type of
parthood.

Given the definition of the concepts of the domain, their classification into
three upper-level types, and the identification of the constitution relations among
such concepts, we come up with the full model presented in Fig. 1. It meets the

What Rocks Are Made of: Ontological Pattern for Material Constitution 283

Object Amount of
Matter

Arbitrary
Collection

constitutes constitutes

member of

Lithological
Unit

Sedimentary
Rock

Collection of
Grains

constitutes constitutes

Grain Mineral
constitutes

member of

Collection of
Molecules

constitutes

Fig. 1. Ontological pattern for material constitution in the geology domain.

three requirements defined in introduction: (1) it integrates different scales of
analysis in the same model (e.g. dealing with molecules, grains and lithological
units), (2) it supports the distinction between geological entities and the matter
that constitutes them (i.e. lithological units being constituted by sedimentary
rock and grains being constituted by mineral amounts), and (3) clarify how
some entities present different properties in different scales (i.e. by acknowledging
the existence of collections of objects as constituents of amounts of matter, we
establish a link between discrete particles that we observe in smaller scales, e.g.
grains or molecules, with the homogeneous amounts of matter we observe in
larger scales, e.g. rocks or minerals).

In addition to using this pattern as a model for generically modeling the
geological domain, it may be used as a pattern for specific scenarios (for example,
substituting/specializing Sedimentary Rock, Grain, Mineral and so on with the
specific types of rock, grain and mineral with which one is working).

Finally, our model reveals an interesting pattern. For the cases we considered,
Objects are constituted by Amounts of Matter, which are in turn constituted by
Arbitrary Collections. Thus, it seems to be the case the constitution relations
delimit “constitution levels”, with each entity being constituted by something
in the level directly below, that is, constitution relations may not “skip” levels.
Furthermore, there may exist several successive chains of constitution relations,
that seems to agree with different scales of observation (e.g. each grain in a
collection is constituted by a portion of mineral, which is in turn constituted
by a collection of molecules). We observe this occurrence of this pattern in this
specific domain, but it may serve as insight for pursuing similar patterns in other
domains or as a possible general rule.

284 L. F. Garcia et al.

4 Related Work and Discussion

In this section, we make an ontological analysis of the conceptual model for Geol-
ogy proposed by [12] and compare it with our proposal, demonstrating how our
model is able to represent additional information that might be important when
dealing with geological knowledge. Richard’s is one of the most popular concep-
tual models and serve as the basis for notorious standard models in Geology
such as GeoSciML3 and RESQML4.

Richard’s model defines three main geological concepts: EarthMaterial, Geo-
logicUnit and GeologicStructure. EarthMaterials are the substances that make
up Earth, defined based on intrinsic properties independent of their disposi-
tion within Earth. GeologicUnits are identifiable parts of Earth with definable
and locatable boundaries, which are ‘composed of’ EarthMaterial. We note here
that what Richard calls ‘composition’ is actually a relation of constitution as
defined previously. GeologicStructures are configurations of matter in Earth,
defined based on inhomogeneities, patterns or discontinuities in a rock mass.
They are dependent entities whose existence relies on an underlying GeologicU-
nit or EarthMaterial.

As the author notes, an EarthMaterial not associated with any GeologicUnit
or GeologicStructure “would have to be homogeneous, isotropic and lack any
sort of internal discontinuities” [12]. In this sense, EarthMaterial matches our
notion of Amount of Matter. However, the author also defines CompoundMa-
terial as an EarthMaterial that has parts which are, in turn, “composed of”
other EarthMaterials. He names these parts EMConstituents, and claims that
they have types such as “clast” and “crystal” and roles that specify how the
constituent relates to the CompoundMaterial as a whole, such as “phenocryst”.
Two main aspects of this definition come to our attention. First, if the Com-
poundMaterial has parts with different types and roles regarding the whole, then
it is not homogeneous, even when not associated to any GeologicUnit or Geolog-
icStructure. Secondly, the EMConstituent types and roles resemble more closely
our notion of Objects than that of Amounts of Matter, since clasts, crystals
and phenocrysts are not necessarily homogeneous and have non-essential parts
which may change without altering their identities. This contradiction between
an “homogeneous” whole and its inhomogeneous parts highlights an attempt at
representing entities of different constitution levels (i.e., the CompoundMaterial
and the EMConstituents) without actually individuating such levels.

Another issue with Richard’s model is related to the properties of EarthMa-
terials. It is not always clear when a property such as GeologicAge or Genesis
refers to the EarthMaterial itself, to the particles that make it up or to the
object it ‘composes’ - EMConstituents, for example, have neither of these prop-
erties, however it is clear that the age of formation and history of a clast are
usually different from the same properties of the EarthMaterial that ‘composes’
it. A similar problem is faced by the property ChemichalDescription, which,

3 http://www.geosciml.org/.
4 https://www.energistics.org/resqml-current-standards/.

http://www.geosciml.org/
https://www.energistics.org/resqml-current-standards/

What Rocks Are Made of: Ontological Pattern for Material Constitution 285

for CompoundMaterials, actually derives from the properties of its constituents,
although this is not described by the model. Finally, it is also not clear which
PhysicalProperties are actually from the EarthMaterial and which belong to the
GeologicalUnit, neither how the ones from GeologicalUnit are derived from the
properties of its EarthMaterial, if they are derived at all. The same is true for
Color, which is a property from both concepts, even though the color of the
GeologicalUnit is certainly related to the Color of the EarthMaterial.

As we have discussed in the previous section, our ontological framework
allows us to model both the homogeneous rock and the underlying inhomo-
geneous collection of grains without falling in contradiction by expliciting the
change in scale between two constitution levels. Thus, we may describe a
rock with its uniform properties and the collection of grains and their varied
attributes, recognizing both as different entities (i.e., the rock is not the collec-
tion of grains and vice versa) and stressing the relation between them.

Additionally, our framework guides the attribution of properties to entities
according to their ontological nature, preventing confusion regarding to what
entity a particular property must belong. For example, the ChemicalDescription
which is assigned to a Rock is actually a property of the underlying collection of
grains, which, on its turn, is a statistical description of the chemical compositions
of the minerals which constitute the grains in the collection.

5 Conclusion

We have presented an ontological pattern for geological knowledge represen-
tation. Our pattern discerns three main kinds of geological entities, Objects,
Amounts of Matter and Arbitrary Collections. We have identified that, in the
Geology domain, constitution relations always occur either between Amounts of
Matter and Objects (rock/lithological unit and mineral/grain) or between Arbi-
trary Collections and Amounts of Matter (collection of grains/rock and collection
of molecules/mineral).

The pattern allows the integration between distinct scales of analysis which
are common to the domain and the distinction between geological entities and
the matter that constitute them, helping to clarify how some entities present
different properties in different scales. The pattern also guides the assignment of
properties to entities according to their nature as Objects, Amounts of Matter or
Arbitrary Collections, helping to prevent mismatching of properties, i.e., entities
with properties that actually belong to a different constitution level.

We restricted our study of the use of the material constitution relation to
the geological domain. In Geology, most of the time geologists are interested in
natural kinds. Natural kinds reflect the structure of the natural world, instead
of intentions and actions of human beings [3]. As a future work we would like to
investigate the possibility to generalize the proposed pattern to other domains,
but this will require a careful examination of the constitution relation that occurs
in the artifacts domain, as discussed in [4].

Our work relies on the view where the matter and the object constituted
by it are distinct entities. This view is specially useful in the geological domain

286 L. F. Garcia et al.

because it reflects the shared view of geologists where they differentiate the
rock from the objects that are constituted by it and identify properties that
are exclusive for each one of them. As a future work, we intend to extend
this ontological pattern for other domains, however, it might not be true that
every domain would benefit modeling separated the object from the matter that
constitutes it.

Acknowledgments. We would like to thanks the Informatics Institute from the Fed-
eral University of Rio Grande do Sul (UFRGS), the Brazilian National Research Coun-
cil (CNPq) and the Coordination for the Improvement of Higher Education Personnel
(CAPES) for supporting our research.

References

1. Baker, L.R.: Persons and Bodies: A Constitution View. Cambridge University
Press, Cambridge (2000)

2. Baker, L.R.: The Metaphysics of Everyday Life. Cambridge University Press, Cam-
bridge (2007)

3. Bird, A., Tobin, E.: Natural kinds. In: Zalta, E.N. (ed.) The Stanford Encyclopedia
of Philosophy. Metaphysics Research Lab, Stanford University, spring 2018 edn.
(2018)

4. Borgo, S., Vieu, L.: Artefacts in formal ontology. In: Philosophy of Technology and
Engineering Sciences, pp. 273–307. Elsevier (2009)

5. Evnine, S.J.: Constitution and composition: three approaches to their relation.
ProtoSociology 27, 212–235 (2011)

6. Fine, K.: Things and their parts. Midwest Stud. Philos. 23(1), 61–74 (1999)
7. Fine, K., et al.: Acts, events and things. In: Sixth International Wittgenstein Sym-

posium, Kirchberg-Wechsel (Austria), pp. 97–105 (1982)
8. Gangemi, A., Guarino, N., Masolo, C., Oltramari, A., Schneider, L.: Sweetening

ontologies with DOLCE. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002.
LNCS (LNAI), vol. 2473, pp. 166–181. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45810-7 18. http://dl.acm.org/citation.cfm?id=645362.650863

9. Johnston, M.: Constitution and identity. In: The Oxford Handbook of Contempo-
rary Philosophy (2005)

10. Johnston, M.: Hylomorphism. J. Philos. 103(12), 652–698 (2006)
11. Koslicki, K.: The Structure of Objects. Oxford University Press on Demand, Oxford

(2008)
12. Richard, S.M.: Geoscience concept models. Spec. Pap.-Geol. Soc. Am. 397, 81

(2006)
13. Thomson, J.J.: The statue and the clay. Noûs 32(2), 149–173 (1998)
14. Wasserman, R.: Material constitution. In: Zalta, E.N. (ed.) The Stanford Ency-

clopedia of Philosophy. Metaphysics Research Lab, Stanford University, fall 2017
edn. (2017)

15. Werlang, R., Abel, M., Perrin, M., Carbonera, J.L., Fiorini, S.R.: Ontological foun-
dations for petroleum application modeling. In: 18th International Conference on
Petroleum Data, Integration and Data Management (2014)

16. Zimmerman, D.: Theories of masses and problems of constitution. Philos. Rev.
104(1), 53–110 (1995)

https://doi.org/10.1007/3-540-45810-7_18
https://doi.org/10.1007/3-540-45810-7_18
http://dl.acm.org/citation.cfm?id=645362.650863

Role-Based Clustering for Collaborative
Recommendations in Crowdsourcing

System

Qiao Liao1,3, Xiangmin Zhou2, Daling Wang1(B), Shi Feng1, and Yifei Zhang1

1 School of Computer Science and Engineering,
Northeastern University, Shenyang, China

liaoqiaogtl@outlook.com, {wangdaling,fengshi,zhangyifei}@cse.neu.edu.cn
2 School of Science, RMIT University, Melbourne, Australia

xiangmin.zhou@rmit.edu.au
3 Tianjin Artificial Intelligence Innovation Center, Tianjin, China

Abstract. Crowdsourcing as a distributed problem-solving and busi-
ness production model has attracted much attention in recent years. In
crowdsourcing systems, task recommendation can help workers to select
suitable tasks on crowdsourcing platforms as well as help requesters to
receive good outputs. However, as one of the most successful recom-
mendation approaches, current clustering-based models in crowdsourcing
are challenged by multi-preference and cold-start problems. This paper
proposes a role-based clustering model, which transforms a large-sparse
worker-task rating matrix into a set of role-based clusters that are small,
independent and rating intensive worker-task rating matrices, leading to
better quality and performance in task recommendation. Specifically, we
first cluster a worker-task rating matrix into a set of clusters in terms
of the role identification and distribution operations. The clusters are
further extended to include all their external worker (task) roles. Then,
the task recommendation results with respect to a worker are generated
by operating over the clusters involving the worker’s activities, which
captures the worker’s preferences in multiple areas. Moreover, the model
discovers the structure information from the clustering results and crowd-
sourcing datasets, by which tasks can be recommended to new workers
interactively without their interest profiles. We evaluated our method
over the benchmark dataset from NAACL 2010 workshop. The results
show the high superiority of our proposed recommendation method over
crowdsourcing platforms.

Keywords: Role-based clustering · Task recommendation ·
Cold-start · Multi-preference · Crowdsourcing system

1 Introduction

Crowdsourcing as a distributed problem-solving and business production model
has attracted much attention in recent years [14,15]. Popular crowdsourcing sys-
tem examples include Amazon Mechanical Turk (or MTurk) and Crowd Flower
c© Springer Nature Switzerland AG 2019
A. H. F. Laender et al. (Eds.): ER 2019, LNCS 11788, pp. 287–301, 2019.
https://doi.org/10.1007/978-3-030-33223-5_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33223-5_24&domain=pdf
https://doi.org/10.1007/978-3-030-33223-5_24

288 Q. Liao et al.

etc. There is however a challenge in crowdsourcing system that a worker has to
select a task from more than thousands of tasks. In September 2017, the number
of available Human Intelligence Tasks (HITs) for qualified workers on MTurk
was about 259000 in average per day1. Obviously, it is impossible for workers to
select their most suitable tasks by browsing the extremely long task list. Fortu-
nately, task recommendation helps workers to select tasks from an automatically
generated short list and helps requesters to receive good outputs [18].

We study the problem of collaborative recommendation in crowdsourcing
system. Given a worker and a set of tasks, we aim to identify a list of tasks
that best meets the preferences of this worker. In the field of crowdsourcing,
two challenges need to be addressed. First, a worker in crowdsourcing may be
interested in one or more fields of crowdsourcing. For example, one may be inter-
ested in both “mathematics” and “music”. If the recommendation is limited to a
single field, quite a lot opportunities for task recommendation will be excluded.
Second, the workers to be recommended must include the workers who have
no history behaviors on crowdsourcing at all. Ignoring these workers will be a
serious barrier of improving the quality of crowdsourcing systems.

Many approaches have been developed for task recommendation. A well-
known method is the collaborative filtering (CF) that uses the pure rating data
to estimate or learn a model to make recommendation [4,13]. Typical exam-
ple of the CF approaches for crowdsourcing is Probability Matrix Factorization
(PMF) [9]. PMF may generate recommendation from a large worker-task rating
matrix derived from the crowdsourcing datasets [18]. However, the scalability of
CF approaches is limited as the approach has to generate recommendation by
using the entire worker-task rating matrix. For solving the scalability issue, the
clustering-based model was adopted as one of the most successful approaches in
recommender systems and has been applied in various cases [3,8]. Task recom-
mendation aims at recommending the proper tasks to workers so that the work-
ers are interested in the tasks. Normally, a clustering-based model first groups a
worker-task rating matrix into a set of clusters and then apply PMF to the clus-
ters for recommendation. However, as the common CF-based recommendation,
current clustering-based models are facing two challenges: multi-preference and
cold-start problems.

– Multi-preference problem: According to the cluster-based method, a worker
must be located in a single cluster and receives the task recommendation from
the cluster, while the worker might do the tasks of other clusters and a task
might be done by the workers of other clusters as well, excluding quite a lot
opportunities for task recommendation [3,5,12].

– Cold-start problem: As the recommendation above is limited to the workers
located in a cluster, it is hardly to recommend to new users who are not
located in any clusters at all. Though existing works addressed the cold-start
problem by taking into account the user profiles or by providing the most
popular tasks of the whole system to new users, the former is hardly available

1 https://worker.mturk.com/.

https://worker.mturk.com/

Role-Based Clustering for Collaborative Recommendations 289

in the most crowdsourcing practice, while the latter is limited by low success
rates of the recommendation [16–18].

In this paper, we consider a worker (task) as roles, and propose a role-based
clustering approach that allows a worker (task) to play roles in multiple clusters.
A worker (task) may be replaced by multiple worker (task) roles if the worker
(task) plays roles in more than one cluster, resulting in a set of extended clusters.
Applying CF to the extended clusters enables the recommendations to a single
worker from more than one cluster, regaining the missing opportunities to the
worker in recommendation. Additionally, in contrast with the current methods
for cold-start recommendation [16–18], the role-based clustering recommenda-
tion may improve the success rate of cold-start recommendation dramatically
by providing workers with the structure information about the crowdsourcing.
Our contributions in this work are summarized as follows.

1. We propose a role-based clustering approach that transforms a large-sparse
worker-task rating matrix into a set of small, independent and rating intensive
ones. Operating over the small, independent and rating intensive matrices
enables fast system response, while the effect of unrelated ratings is reduced.

2. We propose to generate recommendation for a worker from all the clusters
where the worker plays role in, leading to better opportunities in task recom-
mendation. As such, the multi-preferences of workers can be well exploited.

3. We propose to publish structure information and allow workers to request
recommendation from the areas of their interests, leading to high success rate
in the task recommendation to new workers.

4. We conduct extensive experiments on the benchmark dataset from NAACL
2010 workshop. The results show that our method is feasible and superior for
recommendation in crowdsourcing systems.

The structure of the rest of the paper is as follows. Section 2 surveys the
related work. Section 3 describes the framework of our recommendation solution
for crowdsourcing system. Section 4 presents our proposed role-based clustering
for task recommendation, followed by the experimental evaluation in Sect. 5.
Finally, we conclude the whole paper in Sect. 6.

2 Related Work

We review existing literature on collaborative recommendation approaches in
crowdsourcing system, particularly the approaches about the multi-preference
and cold-start problems.

Collaborative filtering (CF) approaches rely on the worker behaviors in rec-
ommendation. A typical CF-based approach for crowdsourcing is Probability
Matrix Factorization (PMF) [5], which generates recommendation from a large
worker-task rating matrix derived from the crowdsourcing datasets successfully
[17]. However, this approach incurs the scalability issue as its recommendation
is generated based on the entire worker-task rating matrix. The problem may

290 Q. Liao et al.

be solved by clustering-based model [7,10,11] that first preprocesses the worker-
task rating matrix into a set of small clusters and then conducts collaborative
filtering over these clusters. Usually, the clusters are interrelated rather than
independent of each other, reflecting the fact that workers may have multiple
preferences and thus worked in multiple clusters. Currently popular clustering-
based approach only generates recommendation to a worker based on the tasks
of the cluster where the worker is located, excluding quite some opportunities
in recommendation [3]. Moreover, this approach ignores the multi-preferences of
workers, leading to the contradiction that a worker with interests in multiple
areas can get task recommendation from a single area only.

Cold-start problem has been studied in traditional recommender systems
[19,20]. The cold-start problem in crowdsourcing platform is common when the
recommendations are generated for new workers. Under this situation, there is no
any rating between the new workers and the tasks of the crowdsourcing platform.
Yuen et al. [18] applied the PMF approach in crowdsourcing system to solve
the cold-start problem. This approach analyzes the relationships between users
and inter-dependencies among products to identify new worker-task associations
[18]. However, the success rate of such a recommendation may be still challenged
due to lacking of penalization in the recommendation, thus no worker personal
preference is considered at all. Li et al. [6] solved the cold-start problem by
using the degree of social influence to recommend tasks to the new workers. The
condition of this recommendation is that the new worker has friends who did the
tasks ever. However, the conditions it requires are hard to be satisfied in many
crowdsourcing systems.

We propose a clustering-based model that allows each worker (task) to play
roles in multiple clusters of their interests and generates recommendation to this
worker from all his related clusters. Our method relies on the worker behaviors,
e.g., submitting or completing tasks in crowdsourcing, and does not require the
creation of explicit profiles. It provides a new solution to cold-start problem in
terms of structure information that is recovered via matrix reconstruction.

3 Framework of Our Solution

This section describes the framework of our proposed role-based clustering for
task recommendation. Let [R]M×N be a worker-task rating matrix with M work-
ers and N tasks, and each Rij ∈ R be the behavior value of worker Wi to task
Tj , which includes 1, 2, 3, 4, 5, and null according to the extent of Wi favoring
Tj [17]. The framework of our approach is shown in Fig. 1.

In Fig. 1, the left part is a role-based clustering mechanism that transforms
a worker-task rating matrix R into a set of small and rating intensive clus-
ters, each cluster is a small worker-task rating matrix that consists of a set of
workers, a set of tasks and the ratings between them. The transformation from
the original R to a set of small worker-task rating matrices (R1, R2, . . . , Rn)
does not change the semantics of the original R. The semantics of a worker-
task rating matrix in this paper refers to all the workers, tasks and the ratings

Role-Based Clustering for Collaborative Recommendations 291

between them. The clusters are rating intensive because the principle “high
coherent and low coupling” was applied to the clustering. Each Ri is potentially
a professional working group (PWG). According to task description, all PWGs,
namely PMG1, PMG2, ..., PMGn as in Fig. 1 form the structure information
of R1, R2, ..., Rn, respectively. The significant change from Ri (i = 1, 2, ..., n) to
PMGi (i = 1, 2, ..., n) is the labeling and specification, including the name and
a short description of the Ri. Thus, a PMGi refers to a named and specified Ri.
Yet, the structure information to be used in the recommendation is only about
the name and specification, without necessarily looking into the content of the
Ri, and normally published in the outsourcing platform.

Fig. 1. Framework of role-based clustering for task recommendations

The recommendation is performed using Probability Matrix Factorization
(PMF). The PMF as shown in the right part of Fig. 1 is the recommendation
mechanism that takes Ri as input and provides recommendation to workers
as output. However, the way used to generate recommendation to experienced
workers is different from that to new workers. The tasks recommended to an
experienced worker may come from one or more clusters where the worker has
played roles. The tasks recommended to a new worker may come from one or
more clusters selected by him in terms of structure information.

4 Role-Based Clustering for Task Recommendation

This section discusses the details on our role-based clustering for collaborative
recommendations in crowdsourcing system, including the role-based clustering
and the collaborative filtering-based task recommendation.

4.1 Role-Based Clustering

Many clustering methods are available for item summarization [3,21]. We pro-
pose role-based clustering to allow users to play two roles. We create the worker-
task rating matrix first. The content of the rating matrix can be derived from
the working records of a crowdsourcing system. The ratings between workers
and tasks are captured as in [17]. If a worker’s work is accepted by requester,

292 Q. Liao et al.

the rating value is set as 5. If it is rejected by requester, the rating value is set
as 4. If a worker completes a task and submits the work done, the rating value is
set as 3. If a worker browses the detailed information of a task, the rating value
is set as 1. If a worker does not browse the detailed information of a task, set
the rating value as 0. The result matrix is depicted in Fig. 2(a), where the rows
W01,W02, ...,W12 are workers; the columns T01, T02, ..., T09 are tasks. The rating
between a worker and a task is one of the values in 1, 2, 3, 4, 5, null.

Taking the worker-task rating matrix as input, the process of role-based clus-
tering consists of two steps. First, it transforms the worker-task rating matrix
into a set of interrelated clusters, as shown by the transformation from Fig. 2(a)
to (b). Secondly, it transforms the interrelated clusters into a set of independent
clusters, as the transformation from Fig. 2(b) to (c). The interrelated clusters,
shown in Fig. 2(b), are worker/task-based because each cluster consists of work-
ers, tasks and the ratings between them. The independent clusters as shown in
Fig. 2(c), are role-based because each cluster consists of the worker-roles, task-
roles and the ratings between them. Considering multi-preference, a worker may
play multiple roles in multiple clusters if the worker worked on the tasks of the
multiple clusters. Similarly, a task may play multiple roles in multiple clusters
if the task was conducted by the workers of multiple clusters. The role-based
clustering makes a worker (task) be replaced by multiple roles whenever neces-
sary. The worker (task)-ID is therefore replaced by the IDs of multiple roles. For
example, the worker-ID W02 in Fig. 2(b) is replaced by the worker-role-ID W02

and W021 in Fig. 2(c); the task-ID T09 in Fig. 2(b) is replaced by task-role-ID T09

and T091 in Fig. 2(c). Arranging all the roles into the clusters where they played
in, we transform the Fig. 2(b) into (c).

The matrix reconstruction as a term in this paper refers to a process to
reorganize a task-worker rating matrix into a set of smaller and relatively rat-
ing intensive matrices preserving the meaning of original matrix. The matrix
reconstruction can be performed by exchanging the positions of the rows in the
matrix, as well as that of the columns. The exchanging does not change the
meaning of the matrix according to elementary number theory, while the distri-
butions of workers, tasks and ratings of the matrix will be changed. The matrix
reconstruction for clustering aims at driving the distribution into clusters. There
are two criteria for the driving: (1) a worker must be moved into a cluster if the
tasks completed by the worker are mostly located in the cluster; (2) a task must
be moved into a cluster if the workers doing the task are mostly located in the
cluster. As a result, a large sparse worker-task rating matrix is transformed into
a set of small and rating intensive worker-task rating matrices, shown as the
conversions from Fig. 2(a) to (b).

The clusters are “high coherent and low coupling”. The interconnections
between workers and tasks of the same cluster are high while those of differ-
ent clusters are minimized. The interconnection between workers and tasks may
be identified by the ratings between them. There is interconnection between two
workers working on the same tasks. Likewise, there is interconnection between
two tasks conducted by the same worker. Moreover, the interconnection between

Role-Based Clustering for Collaborative Recommendations 293

Fig. 2. Process of role-based clustering

any items (workers or tasks) is transitive. The matrix reconstruction is a process
to rearrange the positions of rows and columns, resulting in a set of clusters of
“high coherent and low coupling”, see also Fig. 2(b).

Considering the information behind clusters, the workers and tasks of each
cluster constitute a professional working group, see also that of labeled by ‘Math’,
‘Music’ and ‘Sport’ in Fig. 2. All the groups and the relationships between them
further form the organizational structure of a crowdsourcing platform. A clus-
ter is considered as a professional working group because the criteria about
the clustering is based on the behaviors of the workers rather than the sim-
ilarity between the tasks. To reuse the concepts and organizational structure
mined from the original rating matrix, we use the term structure information
to describe all the professional groups and the relationship between them. The
structure information is not only useful for task providers to add new tasks into
the system in a structured way, but also useful for new workers to understand the
organizational structure of the crowdsourcing. With the structure information,
new workers have an opportunity to request the mechanism of the platform to
generate recommendation from the professional groups of their preference.

294 Q. Liao et al.

In addition to the structure information, we must take into account the per-
formance of matrix reconstruction as well. Considering the transformation pro-
cess from Fig. 2(a) to (b), there could be a lot of exchanges between either rows
or columns. For a large worker-task rating matrix, the exchanges could be very
time expensive. To improve the performance, one may build the index of the rows
and columns, so the exchange is only performed over the index until no exchange
is necessary any more. We use a list of records instead of matrix to improve the
exchange performance, where a record consists of worker-ID, Task-ID and rat-
ing value. The record list is equivalent to the worker-task rating matrix because
both of them describe the same entities and their relationships.

For the clustering via matrix reconstruction, we extract the first cluster from
the whole matrix, then extract the second one from the rest of the data. The
process is recursively conducted until the size of the remained data is equivalent
to the prior estimated size of a reasonable cluster. Thus, the original large sparse
matrix is converted into a number of interrelated clusters. These clusters are not
independent of each other, as some workers of one cluster may also work on
the tasks of other clusters, and some tasks of one cluster may be conducted
by the workers contained in other clusters. The interconnection can be simply
identified by the ratings located outside of the clusters as shown in Fig. 2(b). To
remove the interconnection between clusters, the matrix reconstruction must be
performed by role-based restructuring. To do this, we first identify all internal
and external roles of the clusters, and then move the external roles together
with the corresponding ratings into the clusters in which they played. Here, a
role of a cluster refers to a worker who did one or more tasks of the cluster,
or a task completed by one or more workers of the cluster. In terms of role-
based clustering, all the clusters become role-based ones and the interrelationship
between them are disappeared from structure point of view. Algorithm 1 presents
the process of the role-based clustering.

All the roles are originated from workers and tasks. A worker of a cluster
will become an internal role of the cluster with the same ID. For example, the
worker W1,W2, ...,W12 and the task T1, T2, ..., T9 are internal roles of the clusters
containing them as shown in Fig. 2(c). While W021 and W051 are external worker-
roles derived from worker W02 and W05, T061 and T091 are external task roles
derived from task T06 and T09. When we move all the external roles into existing
clusters, all external ratings will be moved as well. As a result, each role belongs
to one and only one cluster and all the external ratings are cleaned. All the
clusters are independent of each other as in Fig. 2(c). In addition, the external
role IDs must be rooted by the IDs of original workers or tasks so that all the
clusters containing a worker may be identified easily. This helps to generate
recommendations from all the clusters for a worker with multi-preferences.

Role-Based Clustering for Collaborative Recommendations 295

4.2 Applying CF to the Role-Based Clusters

In this section, we discuss how to generate recommendation via CF approach.
Given a cluster Ck, we do probabilistic matrix factorization (PMF) [9] as follow.
Suppose there are M tasks, N workers, and a set of integer rating values from 1
to 5 and null in the cluster Ck. Let Rij represent the rating of worker Wi for task
Tj , W ∈ RD×N and T ∈ RD×M be latent worker and task feature matrices, with
column vectors Wi and Tj representing worker-specific and task-specific latent
feature vectors respectively. Since model performance is measured by computing
the root mean squared error (RMSE) on the test set, we first adopt a probabilistic
linear model with Gaussian observation noise. The conditional distribution over
the observed ratings is defined as below:

p(R|W,T, σ2) =
∏M

i=1

∏N

j=1
[N(Rij |WY

i Tj , σ
2)]Iij (1)

where N(x|μ, σ2) is the probability density function of the Gaussian distribution
with mean μ and variance σ2, and Iij is the indicator function that equals to 1
if worker wi rated task tj and 0 otherwise. We also place zero-mean spherical
Gaussian priors [7,10] on worker and task feature vectors.

p(W |σ2
W) =

∏M

i=1
N(Wi|0, σ2

W I), p(T |σ2
T) =

∏N

j=1
N(Tj |0, σ2

T I) (2)

The log of the posterior distribution over the worker and task features is
given as below:

ln p(W,T |R, σ2, σ2
T , σ2

W) = − 1
2σ2

∑M

i=1

∑N

j=1
Iij(Rij − WY

i Tj)2

− 1
2σ2

W

∑M

i=1
WY

i Wi − 1
2σ2

T

∑N

i=1
TY
j Tj

−1
2
((

∑M

i=1

∑N

j=1
Iij) ln σ2 + ND ln σ2

W + MD ln σ2
T) + C (3)

296 Q. Liao et al.

where C is a constant that does not depend on the parameters. Maximizing the
log-posterior over task and worker features with fixed hyper-parameters (i.e. the
observation noise variance and prior variances) is equivalent to minimizing the
sum-of-squared-errors objective function with quadratic regularization terms:

E = −1

2

∑M

i=1

∑N

j=1
Iij(Rij − WY

i Tj)
2 +

λW

2

∑M

i=1
||Wi||2Fro +

λT

2

∑N

j=1
||Tj ||2Fro (4)

where λW = σ2/σ2
W , λT = σ2/σ2

T , and || ||2Fro is the Frobenius norm. A local
minimum of the objective function given by Eq. 4 can be found by performing
gradient descent in W and T. This model can be viewed as a probabilistic
extension of the SVD model, since the objective given by Eq. 4 is simplified as
the SVD objective in the limit of prior variances going to infinity if all ratings
have been observed. In this work, instead of using a simple linear-Gaussian
model, which can make predictions outside of the range of valid rating values,
the dot product between the worker-specific and task-specific feature vectors is
passed through the logistic function g(x) = 1/(1 + exp(−x)), which bounds the
range of predictions:

p(R|W,T, σ2) =
∑M

i=1

∑N

j=1
[N(Rij |g(WY

i Tj), σ2)]Iij (5)

We let null into 0 and map the ratings 1, 2, ..., 5 to the interval [0, 1] using the
function t(x) = (x − 1)/(5 − 1), so the range of valid rating values matches the
range of predictions our model makes. Minimizing the objective function given
above using steepest descent takes linear time cost to the number of observations.

4.3 Recommendation Construction and Delivery

In this part, we describe how to generate recommendations to both experienced
workers and new workers. The role-based clustering model provides additional
opportunities in recommendation. Given an experienced worker of crowdsourc-
ing, multiple recommendations may be generated by applying CF to the role-
based clusters containing this worker. The percentage number of the tasks rec-
ommended to the worker may be provided according to the percentage of the
roles played by him.

We adopt two alternative solutions, recommendation from multiple clusters
and recommendation from worker selected clusters, for generating recommenda-
tions to new workers.

1. Recommendation from multiple clusters. A worker may get multiple
popular tasks from multiple clusters. As each cluster is corresponding to a
professional working group (PWG), likely corresponding to a field of interest,
it is more likely to meet a new worker’s preference by allocating tasks from
multiple clusters while not from the most popular tasks of the global worker-
task rating matrix, as proved by in Sect. 5.5.

Role-Based Clustering for Collaborative Recommendations 297

2. Recommendation from worker selected clusters. To solve the cold-start
problem, we publish the structure information in the crowdsourcing platform
in advance so that all the new workers have a chance to select the PWGs
of their interests and request the system for task recommendation from the
groups selected. Although cold-start problem is really’cold’, we find a chance
in crowdsourcing to make the problem’warmer’ with structure information. As
a result, the quality of the recommendation to new workers may be improved
significantly.

In fact, the matrix reconstruction on the worker-task rating matrix is a kind
of machine learning, which recovers the knowledge, a global picture about the
crowdsourcing, resulting in a basis for online active learning [2,22] for worker
preference. In practice, most new workers in the crowdsourcing are eager to see
the global picture in advance instead of receiving a recommendation blindly.

5 Experimental Evaluation

5.1 Experiment Setup

We conduct the experiments on the benchmark dataset collected by the NAACL
2010 workshop on crowdsourcing, which has been publically available [16–18].
The data was collected within a month from multiple requesters, including the
data for a diverse variety of tasks on MTurk. The numbers of the workers, tasks
and ratings are 1654, 10357 and 27971 respectively.

5.2 Evaluation Methodology

We evaluate our model, namely the role-based clustering for collaborative rec-
ommendations in crowdsourcing system in terms of effectiveness. First of all,
we evaluate the effect of the role-based clustering and, then, the effect of the
role-based recommendation. Moreover, we compare the effect of our model with
that of a few other existing competitors. Finally, we evaluate the effect of our
recommendation for cold start workers. The models for the comparison are as
follows.

1. PMF-based model exploits low-rank approximations to model the total user-
item rating matrix for further predictions [16].

2. K-means model uses k-means clustering to cluster users and, uses the PMF-
based model, to generate recommendation [3].

3. Hierarchical model uses hierarchical clustering to cluster users and, uses the
PMF-based model, to generate recommendation [3].

4. Role-based as proposed by us uses the role-based clustering method to clus-
ter the worker-task-rating matrix and uses the PMF-based model to generate
recommendation.

298 Q. Liao et al.

To conduct task recommendation for each experienced worker, we applied
PMF [1,9] to all the clusters in which the worker played roles. The recommenda-
tion quality is evaluated based on four metrics: root mean square error (RMSE),
mean squared error (MSE), mean absolute error (MAE), and mean percent-

age error (MPE), which are calculated by: RMSE =
√

(
∑

w,t R̂w,t − Rw,t)/N ,

MSE = (
∑

w,t(R̂w,t − Rw,t)2)/N , MAE = (
∑

w,t |R̂w,t − Rw,t|)/N , MPE =
100%
N

∑
w,t

̂Rw,t−Rw,t

Rw,t
respectively. Here, Rw,t is the worker-task rating value of

test set, R̂w,t, the predicting value of worker-task rating, and N the total number
of (worker, task, rating) triplets.

The recommendation quality for cold start workers is evaluated based on
Success Rate, namely the ratio of the new workers completing a recommended
task to all the new workers receiving recommendations. The success rate can
be calculated by SR = NWD/NWR, where, NWD is the number of the new
workers who have done a recommended task successfully, NWR the number of
new workers who got recommendations, and SR a short for Success Rate.

5.3 Experimental Results

Effect of Role-Based Clustering. We test the effect of role-based clustering
to the rating density of the worker-task rating matrix. We generate 10 clusters
using our role-based clustering over the worker-task rating matrix derived from
MTurk dataset, and calculate the density of each cluster and that of the original
whole matrix. The comparison results are reported in Table 1. Here the number
of workers (tasks) refers to the number of the roles that the workers (tasks) play
in one or more clusters and the density is the ratio between the number of ratings
and the size of the matrix. Clearly, comparing with the original rating matrix,
the clusters achieve 4–37 times higher density, which saves 90% of memory cost
and is suitable for efficient task recommendation.

Table 1. Result of role-based clustering

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 Original

Workers 136 372 324 51 251 179 283 365 234 162 1654

Tasks 1379 886 773 3027 374 770 896 876 519 867 10357

Ratings 2764 1932 1457 9162 1363 3686 1843 3063 1432 1269 27971

Density 1.47% 0.59% 0.58% 5.93% 1.45% 2.67% 0.73% 0.96% 1.18% 0.90% 0.16%

To further analyze these clusters, we extract the structure information from
each of them. The cluster structures are described as Table 2. As we can see,
different clusters represent different working areas of crowdsourcing, which is
helpful to locate the right tasks for interested workers.

Role-Based Clustering for Collaborative Recommendations 299

Table 2. Structure information of crowdsourcing

Group Field Description

C1 Definition Compare Compare the definitions of two dictionaries

C2 English-Afrikaans Check English-Afrikaans word translations

C3 Wikipedia Question Read a Wikipedia sentence and answer questions

C4 Spanish Annotation Annotation of positive and negative opinions (Spanish)

C5 Sentence Labelling Label sentences as “Important” or not

C6 Fact Confirmation Read a sentence and say whether it expresses a fact

C7 Clouds Tag Ranking Rank tag clouds for queries

C8 Twitter Labelling Label named entities in Twitter data

C9 English Writing English creative writing

C10 Subject Identify Identify subjects for given verbs in English sentences

Effect of Role-Based Recommendation. We evaluate the effect of role-
based model to the recommendation quality by conducting the recommendation
over different clusters and the original worker-task matrix. We randomly select
80% of ratings from the dataset as training data, and leave the remaining 20%
for recommendation prediction. The comparison results are shown in Table 3.
Comparing the pure PMF-based recommendation over the original worker-task
rating matrix, those over the role-based clusters achieve higher effectiveness in
terms of four metrics, RMSE, MPE, MSE and MAE. The smaller RMSE, MPE,
MSE or MAE indicates the better performance.

Table 3. Recommendation performance for different groups

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 Original

matrix

Ratings 2764 1932 1457 9162 1363 3686 1843 3063 1432 1269 27971

RMSE 0.103 0.142 0.405 0.41 0.395 0.403 0.457 0.629 0.231 0.605 0.424

MSE 0.021 0.023 0.184 0.107 0.156 0.163 0.197 0.395 0.053 0.366 0.18

MAE 0.008 0.014 0.099 0.154 0.126 0.238 0.202 0.266 0.033 0.183 0.162

MPE 0.038 0.016 0.089 0.352 0.287 0.273 0.174 0.423 0.032 0.091 0.394

Effectiveness Comparison. In this test, we evaluate the effectiveness of our
role-based model by comparing with existing competitors, PMF-based [16], K-
means model [3], and Hierarchical model [3]. As shown in Fig. 3, our role-based
model is superior to that of existing competitors in terms of RMSE, MSE
and MAE. This is because the role-based model can well handle the multiple-
preference problem of workers. Although hierarchical model achieves smaller
MPE than our role-based model, it incurs high time cost due to its pair-wise
user comparison during clustering process. Thus our role-based model is more
practical.

300 Q. Liao et al.

Fig. 3. Performance comparison of different methods

Effect to Cold Start Workers. We test the recommendation quality of our
role-based model and that of PMF-based model by conducting recommendation
to new workers. We recommend tasks to new workers by providing the most
popular tasks of the professional working groups. As shown in the Table 4, the
success rate of our role-based model is much higher than that of pure PMF
method for cold start recommendation. This has proved that our role-based
model can well handle the cold start problem in recommendation.

Table 4. Result of cold start solution

Cluster C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 Role PMF

Workers 109 298 259 41 200 143 226 292 187 130 2357 2357

Tasks 1103 709 618 2422 299 616 717 700 415 694 10367 10367

Ratings 1945 1332 1120 6373 932 2556 1287 2094 1101 867 27971 27971

Tasks Rec 3 2 2 8 2 4 2 3 2 2 30 30

Suc Rate 0.325 0.304 0.204 0.206 0.483 0.283 0.246 0.432 0.058 0.302 0.355 0.147

6 Conclusion

In this paper, we proposed a role-based clustering approach for collaborative
recommendations in crowdsourcing system. We first transform a large sparse
worker-task rating matrix into a set of small, rating intensive and independent
rating matrices and structure information. Then, the recommendation is gener-
ated by collaborative filtering over these small rating matrices. The test results
prove the high effectiveness of our solution.

Acknowledgements. The work was supported by the National Key R&D Program
of China under grant 2018YFB1004700, and National Natural Science Foundation of
China (61772122, 61872074).

References

1. Dueck, D., Morris, Q.D., Frey, B.J.: Multi-way clustering of microarray data using
probabilistic sparse matrix factorization. Bioinformatics 21(Suppl. 1), i144–i151
(2005)

Role-Based Clustering for Collaborative Recommendations 301

2. Elahi, M., Ricci, F., Rubens, N.: Active learning in collaborative filtering recom-
mender systems. Comput. Sci. Rev. 20(C), 29–50 (2016)

3. Gao, M., Cao, F., Huang, J.Z.: A cross cluster-based collaborative filtering method
for recommendation. In: ICIA, pp. 447–452 (2013)

4. Jannach, D., Zanker, M., Felfernig, A., Friedrich, G.: Recommender Systems: An
Introduction (2010)

5. Klašnja-Milićević, A., Ivanović, M., Nanopoulos, A.: Recommender systems in e-
learning environments: a survey of the state-of-the-art and possible extensions.
Artif. Intell. Rev. 44(4), 571–604 (2015)

6. Li, N., Mo, W., Shen, B.: Task recommendation with developer social network in
software crowdsourcing. In: ISEC, pp. 9–16 (2017)

7. O’Connor, M.: Clustering items for collaborative filtering. In: ACM SIGIR Work-
shop on Recommender Systems: Algorithms and Evaluation (1999)

8. Qin, D., Zhou, X., Chen, L., Huang, G., Zhang, Y.: Dynamic connection-based
social group recommendation. TKDE 1–14 (2019)

9. Salakhutdinov, R., Mnih, A.: Probabilistic matrix factorization. In: NIPS, pp.
1257–1264 (2007)

10. Sarwar, B.M., Riedl, J., Konstan, J.: Recommender systems for large-scale e-
commerce: scalable. In: ICCIT (2002)

11. Ungar, L.H.: Clustering methods for collaborative filtering. In: AAAI Workshop
on Recommendation Systems (1998)

12. Xu, B., Bu, J., Chen, C., Cai, D.: An exploration of improving collaborative rec-
ommender systems via user-item subgroups. In: WWW, pp. 21–30 (2012)

13. Yue, S., Larson, M., Hanjalic, A.: Collaborative filtering beyond the user-item
matrix:a survey of the state of the art and future challenges. ACM Comput. Surv.
47(1), 1–45 (2014)

14. Yuen, M.C., Chen, L.J., King, I.: A survey of human computation systems. In:
CSE, pp. 723–728 (2009)

15. Yuen, M.C., King, I., Leung, K.S.: A survey of crowdsourcing systems. In: PASSAT,
pp. 766–773 (2012)

16. Yuen, M.C., King, I., Leung, K.S.: Task recommendation in crowdsourcing systems.
In: CrowdKDD, pp. 22–26 (2012)

17. Yuen, M.-C., King, I., Leung, K.-S.: TaskRec: probabilistic matrix factorization
in task recommendation in crowdsourcing systems. In: Huang, T., Zeng, Z., Li,
C., Leung, C.S. (eds.) ICONIP 2012. LNCS, vol. 7664, pp. 516–525. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-34481-7 63

18. Yuen, M.C., King, I., Leung, K.S.: TaskRec: a task recommendation framework in
crowdsourcing systems. Neural Process. Lett. 41(2), 223–238 (2015)

19. Zhou, X., Chen, L., Zhang, Y., Cao, L., Huang, G., Wang, C.: Online video rec-
ommendation in sharing community. In: SIGMOD, pp. 1645–1656 (2015)

20. Zhou, X., et al.: Enhancing online video recommendation using social user inter-
actions. VLDB J. 26(5), 637–656 (2017)

21. Zhou, X., Zhou, X., Chen, L., Bouguettaya, A.: Efficient subsequence matching
over large video databases. VLDB J. 21(4), 489–508 (2012)

22. Zhu, J., Shen, B., Hu, F.: A learning to rank framework for developer recommen-
dation in software crowdsourcing. In: APSEC, pp. 285–292 (2015)

https://doi.org/10.1007/978-3-642-34481-7_63

A Reference Conceptual Model
for Virtual Network Function Online

Marketplaces

Renata Guizzardi1(B), Anderson Bravalheri2, Giancarlo Guizzardi3,
Tiago Prince Sales4, and Dimitra Simeonidou2

1 Ontology and Conceptual Modeling Research Group (NEMO),
Federal University of Espirito Santo, Vitoria, Brazil

rguizzardi@inf.ufes.br
2 High Performance Networks Group, University of Bristol, Bristol, UK

{a.bravalheri,Dimitra.Simeonidou}@bristol.ac.uk
3 Conceptual and Cognitive Modeling Group,

Free University of Bozen-Bolzano, Bolzano, Italy
gguizzardi@unibz.it

4 DISI, University of Trento, Trento, Italy
tiago.princesales@unitn.it

Abstract. Recently, we witnessed a shift in the Networking paradigm,
with large part of the network control moving from hardware to software.
This move has been accompanied by an increase of interest in declar-
ative software models (conceptual models) for the domain. Moreover,
novel architectures allow services to be deployed in multiple domains.
These changes call for new business models to allow the commercial-
ization of Virtual Network Functions (VNFs). This paper proposes the
creation of an ontology-based reference conceptual model to support
VNF Marketplaces, allowing VNF vendors and infrastructure providers
to commercialize VNFaaS (VNFs as services). The proposed reference
model has been engineered by using foundational ontology techniques
(UFO/OntoUML), it has been formally validated by using model simu-
lation techniques, and it has been implemented in OWL.

Keywords: Ontology-based conceptual modeling · Virtual Network
Function · Marketplace · UFO-S

1 Introduction

In the past few years, we have been observing a shift in the Networking paradigm,
with large part of the network control moving from hardware to software in the
context of an increased virtualisation of networks. This move has been accompa-
nied by an increase of interest in declarative software models (conceptual models)
for the domain [1]. Additionally, we have witnessed the migration of network
services to profit from the growing adoption of distributed cloud computing
c© Springer Nature Switzerland AG 2019
A. H. F. Laender et al. (Eds.): ER 2019, LNCS 11788, pp. 302–310, 2019.
https://doi.org/10.1007/978-3-030-33223-5_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33223-5_25&domain=pdf
https://doi.org/10.1007/978-3-030-33223-5_25

VNF Marketplace Reference Model 303

technologies in 5G networks. In this setting, new business models are needed to
enable the different market players to profit from these changes. Along with the
changes in the business models, comes the need for novel platforms to support
the development and commercialization of Virtual Network Functions (VNFs)
and Network Services (NSs).

In this paper, we discuss the case of a VNF Marketplace to enable VNF
vendors and infrastructure providers to commercialize VNFaaS (VNFs as ser-
vices). This marketplace is based on the architecture of the 5G Exchange Hub
[4], which consists of the interconnection of different testbed islands, allowing the
orchestration and deployment of multi-domain NSs. In this marketplace, service
developers may create new NSs through the combination of VNFs offered by
different vendors and deployed at distinct sites, according to the requirements
of the service being developed. In other words, we do not assume that the devel-
oper owns a particular infrastructure, but rather allow the services to be run in
third-parties infrastructures, which are owned by infrastructure providers.

Our proposed business model requires that prior to the service development
per se, a contract is established between the VNF vendor and the infrastructure
provider, regulating VNF deployment. For that, the infrastructure provider must
acquire a license to deploy, through a service agreement with the VNF vendor.
For deploying the VNF, the infrastructure provider charges from the developer
a deployment cost, which is defined with basis on how much the infrastructure
provider spends with the VNF license, and the infrastructure running and main-
tenance.

The proposed marketplace is based on a Reference Conceptual Model to
support the aforementioned business model, besides allowing NS developers to
design and deploy NSs. This particular paper reports on an excerpt of this Con-
ceptual Model, making explicit the involved market players (i.e. VNF vendors,
infrastructure providers and NSs developer), and how a service is established
between the different parties. In order to do that, we build our work on the basis
of a Core Ontology of Services (UFO-S) [8]. UFO-S is a well-founded ontology
based on the Unified Foundation Ontology (UFO), and by reusing it, we profit
from its already established semantics. Furthermore, as demonstrated in [8],
UFO-S is expressive enough to harmonize the different views of service found in
the literature of Service Computing, Service Sciences and Enterprise Modeling.

We here claim that an ontology-based Reference Conceptual Model is more
suitable than other kinds of conceptual models, such as ER and traditional UML
models. Our main justification is that besides making the domain knowledge
explicit, an ontology supports reasoning capabilities, i.e. the ability to navigate
in the ontology model, finding answers to specific queries. Moreover, if there is a
need to interoperate the marketplace with other systems (e.g. commercial portals
from specific VNF vendors), ontologies are particularly advisable, especially if
based on a foundational ontology, formalizing the real-world semantics behind
the domain concepts.

Following the best practices in the area of Ontology-Driven Conceptual mod-
eling [7], our proposed reference model has been engineered by using foundational

304 R. Guizzardi et al.

ontology techniques (UFO/OntoUML). Moreover, it has been formally validated
by using the OntoUML support for model simulation and anti-pattern detection,
and it has been implemented in the description logics SHROIQ (OWL). The pro-
posed model is then used to support the development of a proof of concept of
the proposed marketplace and allows for a number of reasoning tasks regarding
different aspects concerning its business model and its operation.

The remaining of this paper is organized as follows: Sect. 2 presents UFO-S,
the core ontology reused in this work; Sect. 3 describes the Marketplace Reference
Conceptual Model; Sect. 4 discusses validation and codification of the proposed
model, as well as the a proof of concept developed for the Marketplace; Sect. 5
discusses some related works; and finally, Sect. 6 presents our final considerations.

2 The UFO-S Core Ontology of Services

UFO-S [8] is a Core Ontology grounded on UFO [6] and as such, it is meant to
capture a structure that is recurrent in several domains [3]. UFO-S accounts for a
conceptualization of services independent of a particular application domain and
is designed with the main goal of supporting meaning negotiation among different
views on services held, for example, in Service Computing, Service Sciences and
Enterprise Semantics. In our work, we use only an excerpt of UFO-S, and for
the description of its remaining concepts, we refer to [8]. UFO-S is based on
the UFO foundational ontology. For reasons of space, we are not able to present
the definition of the categories comprehending UFO, and we thus also refer the
reader to [6].

In UFO-S, agent is a category that represents the essential properties of any
type of agentive object (e.g. person, organization, or software agent). Service
provider is the role played by agents when these agents commit themselves to
offer a service to a target customer community. As a role mixin, service provider
can be instantiated by agents of different kinds, e.g., persons and organiza-
tions [6].

Target customer community is a collective representing the group of agents
that constitute the community to which the service is being offered. The criteria
for defining the target customer community membership are included in the
content of the service offering. This may range from offerings with no restrictions
to strictly targeted service offerings. The target customers are members of a
target customer community and, therefore, have claims for the fulfillment of
the service provider’s commitments when offering a service. The social relator
aggregating the aforementioned commitments of the service provider and the
corresponding claims by the target customers is named service offering.

After the service is negotiated, a service agreement is established, and the
service provider becomes a hired service provider, while the target customer
effectively is turned into a service customer. As in a service offering, a service
agreement is composed of commitments and claims. However, in contrast to
the service offering, a service agreement involves not only commitments from
the hired service provider towards the service customer, but may also involve

VNF Marketplace Reference Model 305

commitments from the service customer towards the hired service provider (for
example, the commitment of providing a monetary compensation in case of ser-
vice delivery). In any case, a service agreement should conform to the previ-
ous service offering, in a sense that the commitments established by the former
should be compatible to the ones predefined in the latter.

3 VNF Marketplace Reference Conceptual Model

Figure 1 presents the concepts and relations that allow an Infrastructure
Provider to deploy and commercialize a Virtual Network Function (VNF)
developed by a third-party vendor, here named Virtual Network Function
Provider (VNF Provider). A VNF is the role played by a Software when com-
mercialized by a particular vendor (see the offers relation from Virtual Network
Function Offering to VNF). A VNF instantiates a VNF Type (e.g. the Cisco
ASA 5500-X Firewall is an instance of the Firewall type).

Fig. 1. Concepts involved in the contract between an Infrastructure Provider and a
VNF Provider to deploy and commercialize a VNF

Both VNF Provider and Infrastructure Provider are roles played by
Organizations. The Infrastructure Provider has a Location (this information
is important to enable the NS Developer to select the best placement for a par-
ticular service). The VNF Provider represents the vendors of VNFs, while the
Infrastructure Provider is the role responsible for actually deploying the VNFs
that compose the NSs in the Marketplace. For that, a service agreement (in the
sense of UFO-S) is established between the VNF Provider and the Infrastruc-
ture Provider, according to the concepts defined by UFO-S. Thus, first, a VNF
Provider provides a service offering (again, in the sense of UFO-S) to a Target
Infrastructure Provider Community.

The VNF Offering offers a particular VNF (e.g. Cisco ASA 5500-X Fire-
wall), having a specific License Cost. If an Infrastructure Provider member of

306 R. Guizzardi et al.

the target community is interested in the offering, a VNF Agreement may be
established, conforming to such VNF Offering (see the UFO-S conforms to rela-
tion between the VNF Agreement and VNF Offering). Having established this
VNF Agreement, the Infrastructure Provider gains the right to commercialize
the deployment of such VNF in the Marketplace.

Figure 2 presents the concepts and relations that allow a service developer
to acquire the right to deploy a particular VNF as part of a developed ser-
vice. To enable the Developer to use the VNF as part of an NS, the Infras-
tructure Provider delivers a service to the Developer, following the same ser-
vice structure as the one described above. The Infrastructure Provider makes
a Virtual Network Function Deployment Offering to a Target Developer
Community, having a particular VNF Deployment cost. Note that the VNF
Deployment Offering requires an existing VNF Agreement (refer to requires rela-
tion). This avoids that Infrastructure Providers commercialize the deployment of
VNFs for which they have not yet acquired a licensing agreement. An interested
Developer, member of the target community, may then make a VNF Deployment
Agreement (Virtual Network Function Deployment Agreement) conforming
to the VNF Deployment Offering, thus gaining the right to execute that partic-
ular VNF in a service developed through the Marketplace.

Fig. 2. Concepts involved in the contract between a Developer and an Infrastructure
Provider to deploy a VNF as part of a developed service

Please note that the excerpts of our reference conceptual model presented
in Figs. 1 and 2 are based on UFO-S. As previously stated, Core Ontologies are
general enough to allow the creation of ontologies in more specialized domains.
Thus, our reference model applies the UFO-S concepts described in Sect. 2 by

VNF Marketplace Reference Model 307

analogy. In other words, for all UFO-S described notions, we created concepts
that are specific to the Marketplace domain. For instance, in Fig. 1, the VNF
Provider plays the role of UFO-S service provider (provides VNF Offering) and
then the role of hired service provider (once a VNF Agreement is established),
at the same time that the Infrastructure Provider plays the roles of target cus-
tomer and service customer. In Fig. 2, the Infrastructure Provider is the one
that offers the service (see VNF Deployment Offering), hence playing the role
of UFO-S service provider and then the role of hired service provider (once a
VNF Deployment Agreement is established). Meanwhile, in the context of this
last figure, the Developer plays the role of target customer and service customer.
Moreover, our reference model shows two collectives based on UFO-S target cus-
tomer community (namely, the Infrastructure Provider Target Community and
the Developers Target Community), two relators based on UFO-S service offer-
ing (i.e. VNF Offering and VNF Deployment Offering), and other two relators
based on UFO-S service agreement (i.e. VNF Agreement and VNF Deployment
Agreement).

4 Implementation and Validation of the Reference Model

The Marketplace Reference Model proposed in the previous section has been
developed according to domain-specific knowledge elicited from (and validated
by) experts of the High Performance Networks Group of the University of Bristol.
Besides that, the reference model has been implemented in the Description Logics
SHROIQ (OWL) and verified using Protégé. Moreover, the derivation rules and
integrity constraints complementing the model have been specified using SWRL
rules (Horn Logic). Then, the ontology has been populated with instances. This
allowed for the verification of logical consistency and satisfiability of the model.

With this implemented version of the model in Protégé, once the reasoner
is turned on, some extra information is inferred about the individuals, based on
the implemented SWRL rules. For supporting the Marketplace’s functionalities,
it is important to know, for instance, what VNF type a particular VNF Deploy-
ment Agreement agrees to deploy; and what are the possible Deployment Costs
(related to the VNF Deployment Offering) associated to a specific VNF. This
information (among other) may not be known by the way the Reference Model’s
concepts are directly related, thus requiring the creation of SWRL rules that
enable such information inference based on the navigation of several concepts
and relations.

Besides this formal verification, the model has been validated via visual
simulation discussed in [7]. This strategy allows for systematically analyzing
the mode instances generated by the simulator in contrast with the set of
intended instances of the model developers. If the simulator generates unin-
tended instances, it is necessary to constrain the model to avoid them; and, on
the other hand, if some intended instances are missing, we need to verify if there
are existing constraints that should be relaxed to allow for them. To employ
this strategy, we have used the Alloy simulator of the OntoUML model-based

308 R. Guizzardi et al.

editor [5]. Such simulator takes as input the OntoUML model and a set of OCL
restrictions, generating as output the instances of the developed model.

Finally, an important validation is to understand if the model is able to
adequately support the class of applications for which it was created, in our
case, VNF Marketplaces. Figure 3 shows a screenshot of a proof of concept that
we developed for a VNF Marketplace. The prototype was implemented with
basis on the proposed reference model, which was taken as an analysis model to
help shape the developed interface, functionalities and knowledge base. In this
case, the implemented ontology was not used, since, as a design decision, we
favored a widely popular architecture for single-page web applications, known
as the MERN (MongoDB, Express, React, Node.js) stack. MongoDB is an open-
source NoSQL database, which allows us to store data about the marketplace
(e.g. available VNFs, NSs, infrastructure providers, etc.). Express and Node.js
are being used in the server side of the marketplace, particularly to implement a
RESTful API to persist and query application data stored in MongoDB. Lastly,
we used React - a well known Javascript library developed by Facebook - to
build the graphical user interface of the marketplace.

Fig. 3. Screenshot of the proof of concept homepage

5 Related Works

In the past few years, there have been a couple of initiatives proposing VNF Mar-
ketplaces in the sense discussed in this article. D’Oro, Palazzo, and Schembra [2]
propose a VNF Marketplace to enable customers behaving as third-party sellers
with their hardware and software resources providing VNFaaS (Virtual Network
Functions as a Service). The paper describes the marketplace’s architecture and
propose a mathematical model to regulate the network flows. Xilouris et al. [9]

VNF Marketplace Reference Model 309

describe the T-Nova approach, which includes a VNF marketplace to enable
buying, composing, and deploying “virtual” services on the fly. In that paper,
the authors describe some VNFs they have developed and how they may be
combined with the assistance of the marketplace. Moreover, they discuss about
VNF Lifecycles, Monitoring and Networking.

These works, however, despite discussing architectural and implementation
aspects of VNF marketplaces, do not propose an explicit reference model for
this domain. In fact, despite the recent interest in conceptual models in the
area of computer networks (e.g., [1]), to the best of our knowledge, the pro-
posal presented here is the first explicit, reusable, ontology-grounded Reference
Conceptual Model for VNF marketplaces. We also highlight that, in both these
existing works in the literature, the focus is on scalability issues, while our pro-
posed reference model targets the marketplace business model. In particular,
we do that by demonstrating that Network Services are indeed Services, in the
sense of the term employed in Service Science and related areas, i.e., in a sense
that takes service to be more than mere behavior (service delivery) and function
(the expected outcome of service delivery. Instead, this view essentially involves
aspects such as Service Offering and Service Agreement. As such, besides these
functional aspects, our model addresses the multiple aspects of contractual rela-
tionship management that are needed to make such a marketplace work. This
is done here by systematically reusing the central pattern of the UFO-S Core
Ontology of Services.

6 Conclusions

This paper presents a Reference Conceptual Model to support the development
of a VNF Marketplace to enable VNF vendors, and infrastructure providers to
commercialize VNFaaS. The proposed model has been developed using a well-
founded approach for modeling, verifying, validating and implementing ontology-
driven conceptual models. We believe that this model not only offers a solution
to the immediate problem at hand, but it also contributes to demonstrate the
practical usefulness of conceptual modeling techniques in the domain of Network
Services and Functions.

Our proposed conceptual model mainly focuses on Service Design and
Deployment via the appropriate configuration (binding) of VNFs and VNF types.
As such, the model ignores the infrastructure providers’ deployment capacity. In
a future version of this model (and its DL implementation), we should address
this aspect, thus improving its reasoning capabilities for supporting network
orchestration and management.

Acknowledgments. This work was supported by the EPSRC grant EP/L020009/1:
Towards Ultimate Convergence of All Networks (TOUCAN).

310 R. Guizzardi et al.

References

1. Barcelos, P.P.F., et al.: On the importance of truly ontological distinctions for stan-
dardizations: a case study in the domain of telecommunications. Comput. Stan.
Interfaces 44, 28–41 (2016)

2. D’Oro, S., et al.: Orchestrating softwarized networks with a marketplace approach.
In: Proceedings of the 14th MobiSPC)/12th FNC/Workshop, Leuven (2017)

3. de Almeida Falbo, R., Barcellos, M.P., Nardi, J.C., Guizzardi, G.: Organizing ontol-
ogy design patterns as ontology pattern languages. In: Cimiano, P., Corcho, O., Pre-
sutti, V., Hollink, L., Rudolph, S. (eds.) ESWC 2013. LNCS, vol. 7882, pp. 61–75.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38288-8 5

4. Gkounis, D., et al.: Towards sustainable end-to-end multi-domain orchestration of
softwarized 5g networks (forthcoming). IEEE Commun. Mag. Spec. Issue Future
Internet: Archit. Protoc. (2018)

5. Guerson, J., et al.: OntoUML lightweight editor: a model-based environment to
build, evaluate and implement reference ontologies. In: IEEE 19th EDOC Work-
shops. IEEE (2015)

6. Guizzardi, G.: Ontological foundations for structural conceptual models. CTIT,
Centre for Telematics and Information Technology (2005)

7. Guizzardi, G.: Ontological patterns, anti-patterns and pattern languages for next-
generation conceptual modeling. In: Yu, E., Dobbie, G., Jarke, M., Purao, S. (eds.)
ER 2014. LNCS, vol. 8824, pp. 13–27. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-12206-9 2

8. Nardi, J.C., et al.: A commitment-based reference ontology for services. Inf. Syst.
54, 263–288 (2015)

9. Xilouris, G., et al.: T-NOVA: a marketplace for virtualized network functions. In:
Proceedings of the EuCNC 2014, Bologna (2014)

https://doi.org/10.1007/978-3-642-38288-8_5
https://doi.org/10.1007/978-3-319-12206-9_2
https://doi.org/10.1007/978-3-319-12206-9_2

Intuitive Understanding
of Domain-Specific Modeling Languages:

Proposition and Application
of an Evaluation Technique

Dominik Bork(B), Christine Schrüffer, and Dimitris Karagiannis

Faculty of Computer Science, University of Vienna,
Waehringer Street 29, 1090 Vienna, Austria

dominik.bork@univie.ac.at

Abstract. For correct utilization of a modeling language and com-
prehension of a conceptual model, the graphical representation, i.e.,
the notation, is of paramount importance. A graphical notation, espe-
cially for domain-specific languages, should be aligned to the knowledge,
beliefs, and expectations of the intended model users. More concretely,
the notation of a modeling language should support computational
offloading for the human user by increasing perceptual processing (i.e.,
seeing) and reducing cognitive processing (i.e., thinking and understand-
ing). Consequently, method engineers should design intuitively under-
standable notations. However, there is a lack of support in evaluating
the intuitiveness of a notation. This paper proposes an empirical evalu-
ation technique for bridging that research gap. The technique comprises
three independent experiments: term association, notation association,
and case study. Usefulness of the technique is shown by an exemplary
evaluation of a business continuity management modeling language.

Keywords: Conceptual modeling · Domain-specific modeling ·
Modeling language · Notation · Evaluation · Business continuity
management

1 Introduction

Due to their abstracting power, conceptual models are excellent in decreasing
complexity of a system under study, thereby highlighting its relevant aspects for
means of understanding and communication by human beings [21]. In order to
achieve this ambitious goal, the demand for intuitively understandable graphi-
cal notations advances, consequently asking to fill a research gap of specialized
design and evaluation techniques [8,9]. This affects both, “standard” modeling
languages (see [4,5,7]) and domain-specific modeling languages (DSMLs).

For efficient model-based communication, the notation plays an important
role [6,21] as it establishes the “first contact of the users with the modeling lan-
guage” [7, p. 123] and a first precondition for its adoption and correct usage [4].
c© Springer Nature Switzerland AG 2019
A. H. F. Laender et al. (Eds.): ER 2019, LNCS 11788, pp. 311–319, 2019.
https://doi.org/10.1007/978-3-030-33223-5_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33223-5_26&domain=pdf
https://doi.org/10.1007/978-3-030-33223-5_26

312 D. Bork et al.

A notation should thus support the modeler in creating and the user in interpret-
ing a model. An intuitive notation should moreover account for computational
offloading, i.e., shifting some of the cognitive tasks to perceptual tasks [18] which
ultimately leads to an intuitive understanding of a modeling language [17]. Intu-
itivity refers to Semantic Transparency as proposed in [18], i.e., the extent to
which the graphical representation encodes the meaning of a modeling language
concept. Intuitiveness is also referred to by readability - models are represented
“in a natural way and can be easily understood without the need for further expla-
nations” [2, p. 214], pragmatic quality - “correspondence between the model and
the audience’s interpretation of the model” [14, p. 94], or understandability - “the
ease with which the concepts and structures in the [..] model can be understood
by the users of the model” [20].

Evaluation of modeling languages is very subjective and difficult [11,16,19].
“While the finished product (the software system) can be evaluated against the
specification, a conceptual model can only be evaluated against people’s (tacit)
needs, desires and expectations” [19, p. 245]. The difficulty further increases when
focusing on intuitive understanding. We believe intuitive understanding can only
be evaluated when the user’s knowledge, beliefs, and aptitudes are known - a
prerequisite for designing a DSML. Another open issue emerges when combining
method chunks in situational method engineering [10] to select one or integrate
existing notations. Consequently, our research question was: “How to efficiently
evaluate the intuitiveness of a domain-specific modeling language notation?”

This paper builds upon the foundations of conceptual modeling and visual-
ization (Sect. 2) and proceeds by proposing a new evaluation technique in Sect. 3.
Section 4 then reports on an exemplary application of the technique. Eventually,
Sect. 5 provides conclusions and directions for future research.

2 Foundations

Domain-Specific Conceptual Modeling. A conceptual modeling method
comprises [12]: A modeling language, a modeling procedure, and mechanisms &
algorithms. The modeling language encompasses the language syntax, i.e., the
grammar of the language; the language semantics, i.e., the meaning of the lan-
guage concepts; and the language notation (also referred to as concrete syntax),
i.e., the visual representation of the language. Based on the application, general-
purpose modeling languages (GPMLs) like BPMN and UML can be differenti-
ated from DSMLs as e.g., realized within the OMiLAB [3,13]. Evaluating the
intuitiveness of GPML notations is problematic because of the diverse stakehold-
ers involved and their modeling purposes addressed with such languages. When
designing a new DSML, on the other hand, evaluating intuitiveness becomes
feasible because the potential users and their purposes of using the DSML are
part of the design process [8]. Thus, DSML method engineers should respect
domain-specificity not only in the syntax but also in an intuitive notation.

Visual Aspects in Conceptual Modeling. [22] developed a decoding theory
considering humans as information processing entities. Information processing

Evaluation Technique for Domain-Specific Modeling Language Notations 313

can be divided into: Perceptual Processing (seeing) which is fast and automatic,
and Cognitive Processing (understanding) which is slow and resource-intensive.
Diagrams aim for computational offloading by replacing some cognitive tasks
by perceptual ones. The objective of designing cognitive effective notations thus
needs to be to reduce cognitive processing. Similarly, [18, p. 761] states “Design-
ing cognitively effective visual notations can [..] be seen as a problem of optimiz-
ing them for processing by the human mind”.

In conceptual modeling, an intuitive visual representation is vital for accep-
tance and adoption of the modeling method [7, p. 123]. “The extent to which
diagrams exploit perceptual processing largely explains differences in their effec-
tiveness” [18, p. 761] (see also [15,23]). A comprehensive foundation for empiri-
cal research on conceptual modeling notations was proposed by Daniel Moody’s
impactful Physics of Notation [18]. Moody developed nine design principles for
designing cognitive effective notations. The motivation for his research was that
“cognitive effectiveness of visual notations is one of the most widely held (and
infrequently challenged) assumptions in the IT field. However, cognitive effec-
tiveness is not an intrinsic property of visual representations but something that
must be designed into them” [18, p. 757].

Semantic Transparency. The semantic transparency design principle is
defined as “the extent to which the meaning of a symbol can be inferred from its
appearance” [18, p. 765]. In literature, semantic transparency is often considered
synonymous to an intuitive understanding, i.e., novice users having no training
on a modeling language are capable of intuitively deriving the meaning of the
language elements from looking at their notation [18]. A notation with a high
semantic transparency moves cognitive processing toward perceptual processing
as users can infer the meaning of a symbol/model from their working and/or
long term memory. Consequently, method engineers should design semantically
transparent (mnemonic) visual notations.

3 An Evaluation Technique for Notation Intuitiveness

A new evaluation technique assessing the intuitiveness of modeling language
notations is proposed in the following. The technique builds upon participatory
design [24] while aiming to be efficiently customized and utilized by method engi-
neers. The evaluation technique’s core consists of three sequential phases, each
of which conducting a specific experiment with participants. The core phases are
preceded by an initiation and concluded by a conclusion phase (see Fig. 1).

Initiation Phase. Participants are briefly introduced to the domain and the
building blocks of the modeling method to be evaluated. This primarily concerns
the definition of the relevant domain terms and an introduction to the individual
model types of the modeling method (if more than one model type is given). This
introduction needs to be textually or orally, i.e., without showing any visual
aspects like language concepts or sample models. Moreover, useful information
for analyzing the results of the experiments like demographics and previous
experience in modeling and the domain to be addressed is collected.

314 D. Bork et al.

Fig. 1. Procedure of the evaluation technique

Phase 1 – Term Association Experiment. Participants are provided terms
that refer to names of modeling language concepts. Each participant then indi-
vidually drafts one or more graphical representations for each term he/she deems
most intuitive. For this task, participants are provided blank papers that only
list the terms and coloured pencils for the sketches. As a conductor of this exper-
iment, one needs to classify the returned notation drafts into groups of similar
graphics with respect to the most frequent shapes and colors. Comparing the
gained drafts with the current modeling language notation might identify inad-
equacies and point to potential improvements.

Phase 2 – Notation Association Experiment. Participants are presented
notations of the current modeling language. They are then asked to record their
up to three intuitive associations that pop out when looking at the notations. It
is important to note, that participants are only presented the notation without
any hint of e.g., the name or the semantics of this concept. As a conductor of
this experiment, one needs to classify all responses to measure the percentage of
participants that intuitively associated the correct semantics to a provided nota-
tion. If one of the named terms of one participant matches with the true name or
semantics of the concept, the notation is classified identified. For instance, if one
of the named terms for a class ‘Recovery activity’ of one participant is ‘recovery
activity’ or ‘rollback activity’, the notation is correctly identified. In the case
that one of the named terms nearly fits the semantics, it is categorized as par-
tially identified. In the example of a class ‘Recovery activity’, the terms ‘task’
or ‘recovery measure’ nearly fit to the true semantics. If none of the provided
terms expresses the semantics, the notation is classified as not identified.

Phase 3 – Case Study Experiment. The case study should be as focused and
short as necessary to test whether participants are able to intuitively combine
the modeling language concepts in order to solve the presented case. It should
be textually introduced and participants shall be provided a modeling tool if
applicable. As a conductor of this experiment, one needs to classify the provided
models according to their semantic and syntactic correctness. Three error cat-
egories are distinguished: application error, considers a wrong application of a
concept or a wrong definition of a concept property; procedural error, covers a
wrong sequence of concepts and a wrong/missing application of a relation; and
incomplete model, covers missing concepts or missing properties of a concept.

Concluding Phase. The conductor presents the solution of the case study
before the participants are asked to fill out a feedback survey. The survey covers
the Intuitivity of the notations and optionally also the Usability of the modeling

Evaluation Technique for Domain-Specific Modeling Language Notations 315

tool (not in scope of this paper). Eventually, participants are asked to provide
positive and negative feedback, and improvement suggestions e.g., using post-its.

4 Application of the Evaluation Technique

This section describes an application of the technique to a DSML for business
continuity management (BCM) which is under development in the scope of an
international research project. BCM is defined as a “holistic management process
that is used to ensure that operations continue and that products and services are
delivered at predefined levels” [1]. It includes the identification of possible risks of
regular business processes and of processes which handle the consequences of an
occurred risk. The evaluation aimed to assess the intuitiveness of the graphical
notation of the first version of the BCM modeling language.

In total, 15 information science Master students participated in the eval-
uation. Most participants are male (87%), between 25 and 29 years old, and
are in the second semester of their Masters. The initiating survey showed, that
the participants have solid experience with modeling and meta-modeling, fun-
damental experience with business process modeling, and no experience in risk
management and business continuity management.

Fig. 2. Term Association experiment results for Risk (undetermined) and Consequence

Results of Phase 1: Term Association Experiment. Participants were pro-
vided ten concepts of the BCM modeling language. Within ten minutes, they
were asked to draft a notation for each term that they deemed most intuitive.
Figure 2 summarizes the classification of the results for the term Risk (unde-
termined) on the left side. The most frequent shape is a triangle and the most
frequently used colours are red shades. Furthermore, it can be stated that excla-
mation marks are frequently used. By comparing these results with the notation
realized in version 1 of BCM, it can be concluded that the notation is already
intuitive.

Figure 2 (right) summarizes the term association experiment results for the
concept Consequence. It can be derived, that in most classes an arrow is used
whereas the colours vary. By comparing these results it can be concluded, that

316 D. Bork et al.

shape and colours are different. Therefore, the notation in BCM version 1 is
categorized as not intuitive, requiring a major revision for this concept.

Figure 3 classifies excerpts of the results of the term association experiment
using a traffic light system. The green light (left circle) indicates that the associ-
ation is correct, the yellow light (middle circle) that the association is partially
correct, and the red light (right circle) that the association is not correct. From
the ten concepts tested in total, five associations were correct, four were partially
correct, and one was not correct (the concept Consequence).

Fig. 3. Excerpt of term association and notation association experiments results (Color
figure online)

Results of Phase 2 – Notation Association Experiment. Participants
were given 15 notation samples of the first BCM modeling language version.
They had ten minutes to write up to three most intuitive meanings they asso-
ciate to a given notation. Figure 3 (second column) classifies the gained insights
again using the traffic light system. In total, eight concepts were correctly iden-
tified, four concepts partially identified, and four concepts were not identified,
including the Consequence concept that already failed passing the term associ-
ation experiment.

Results of Phase 3 – Case Study Experiment. Participants were asked to
create five BCM models. For ensuring the test is focusing intuitiveness, a time
limit was set. Based on a pre-test with a novice modeler, we decided to give
participants 30 minutes to create all five models. The analysis of the models
resulted in the following observations: Most errors are application errors that
are twice as many as procedural errors or issues of incomplete models. Twenty-
two of the thirty-one errors are due to a wrong application of a concept which
can be explained by the misunderstood notation of the Risk Trigger or the mis-
understood relation between a Risk Trigger and a Risk. Interestingly, while the
Consequence notation was not identified in the first two evaluation experiments,
it was used correctly in every created model of all participants.

5 Lessons Learned, Implications and Conclusions

The concluding feedback session included a survey and a focus group discussion.
Participants proposed to develop new gateways especially for the risk model of

Evaluation Technique for Domain-Specific Modeling Language Notations 317

BCM which differ from BPMN gateways. Furthermore, it was mentioned that
the allocation of the likelihood was not intuitive. Figure 3 (right column) summa-
rizes an excerpt of the results of the term and notation association experiments.
If both experiments categorized a concept in the same colour of the traffic lights,
the concept is overall also categorized with this colour. The risk trigger is cat-
egorized red since it was not identified ten times in the notation association
experiment. The participants applied different colours by drawing the notation
of a likelihood, but nevertheless, twelve of fifteen participants correctly identified
the likelihood notation. Figure 4 exemplifies how the experiments’ led to more
intuitive notations.

Fig. 4. Revised notations for four BCM modeling language concepts

By involving the participants in co-creating and evaluating the notation it
was possible to improve the first version of the BCM modeling language with
respect to its intuitive understanding. A limitation of this research is related to
the generalizability of the findings. First, the participants were Master students
and not the actual users in the domain. It can be assumed however, that domain
experts would produce even better suggestions for improvement. A further limi-
tation targets the limited number of participants (15) and the single application
with one modeling language (BCM). However, even under these conditions, the
technique proved utility and produced notation improvements.

The technique proposed in this paper targets the empirical evaluation of the
intuitiveness of a modeling language notation. Strengths of the technique are its
technology-independence and language-customizability enabling efficient adop-
tion. In our future research we plan to apply the technique to further modeling
languages and to develop a web-based evaluation environment which enables
method engineers to efficiently set-up the experiments for their languages.

Acknowledgment. This research has been partly funded through the Federal Min-
istry of Education, Science and Research (BMBWF) funded France/Austria Joint Sci-
entific and Technological Cooperation program with the project number FR 01/2019.

References

1. Plain English ISO 22301 2012 Business Continuity Definitions. http://www.
praxiom.com/iso-22301-definitions.htm. Accessed 27 July 2019

2. Batini, C., Ceri, S., Navathe, S.B., et al.: Conceptual Database Design: An Entity-
Relationship Approach, vol. 116. Benjamin/Cummings, Redwood City (1992)

http://www.praxiom.com/iso-22301-definitions.htm
http://www.praxiom.com/iso-22301-definitions.htm

318 D. Bork et al.

3. Bork, D., Buchmann, R.A., Karagiannis, D., Lee, M., Miron, E.T.: An open plat-
form for modeling method conceptualization: the OMiLAB digital ecosystem. Com-
mun. Assoc. Inf. Syst. 44, 673–697 (2019)

4. Bork, D., Karagiannis, D., Pittl, B.: Systematic analysis and evaluation of visual
conceptual modeling language notations. In: 2018 12th International Conference
on Research Challenges in Information Science (RCIS), pp. 1–11. IEEE (2018)

5. Bork, D., Karagiannis, D., Pittl, B.: A survey of modeling language specification
techniques. Inf. Syst. 87, 101425 (2019)

6. Caire, P., Genon, N., Heymans, P., Moody, D.L.: Visual notation design 2.0:
towards user comprehensible requirements engineering notations. In: 21st IEEE
International Requirements Engineering Conference (RE), pp. 115–124. IEEE
(2013)

7. El Kouhen, A., Gherbi, A., Dumoulin, C., Khendek, F.: On the semantic trans-
parency of visual notations: experiments with UML. In: Fischer, J., Scheidgen,
M., Schieferdecker, I., Reed, R. (eds.) SDL 2015. LNCS, vol. 9369, pp. 122–137.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24912-4 10

8. Frank, U.: Domain-specific modeling languages: requirements analysis and design
guidelines. In: Reinhartz-Berger, I., Sturm, A., Clark, T., Cohen, S., Bettin, J.
(eds.) Domain Engineering, pp. 133–157. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-36654-3 6

9. Gulden, J., van der Linden, D., Aysolmaz, B.: A research agenda on visualizations
in information systems engineering. In: 11th International Conference on Evalua-
tion of Novel Software Approaches to Software Engineering, pp. 234–240 (2016)

10. Henderson-Sellers, B., Ralyté, J.: Situational method engineering: state-of-the-art
review. J. Univers. Comput. Sci. 16, 424–478 (2010)

11. Izquierdo, J.L.C., Cabot, J.: Collaboro: a collaborative (meta) modeling tool. PeerJ
Comput. Sci. 2, e84 (2016)

12. Karagiannis, D., Kühn, H.: Metamodelling platforms. In: Third International Con-
ference on E-Commerce and Web Technologies, EC-Web 2002, p. 182 (2002)

13. Karagiannis, D., Mayr, H.C., Mylopoulos, J. (eds.): Domain-Specific Conceptual
Modeling, Concepts, Methods and Tools. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-39417-6

14. Krogstie, J., Sindre, G., Jørgensen, H.: Process models representing knowledge for
action: a revised quality framework. Eur. J. Inf. Syst. 15(1), 91–102 (2006)

15. Larkin, J.H., Simon, H.A.: Why a diagram is (sometimes) worth ten thousand
words. Cogn. Sci. 11(1), 65–100 (1987)

16. Lindland, O.I., Sindre, G., Solvberg, A.: Understanding quality in conceptual mod-
eling. IEEE Softw. 11(2), 42–49 (1994)

17. Michael, J., Mayr, H.C.: Intuitive understanding of a modeling language. In: Aus-
tralasian Computer Science Week Multiconference, p. 35. ACM (2017)

18. Moody, D.: The ‘physics’ of notations: toward a scientific basis for constructing
visual notations in software engineering. IEEE Trans. Softw. Eng. 35(6), 756–779
(2009)

19. Moody, D.L.: Theoretical and practical issues in evaluating the quality of concep-
tual models: current state and future directions. Data Knowl. Eng. 55(3), 243–276
(2005)

20. Moody, D.L., Shanks, G.G.: What makes a good data model? Evaluating the
quality of entity relationship models. In: Loucopoulos, P. (ed.) ER 1994. LNCS,
vol. 881, pp. 94–111. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-
58786-1 75

https://doi.org/10.1007/978-3-319-24912-4_10
https://doi.org/10.1007/978-3-642-36654-3_6
https://doi.org/10.1007/978-3-642-36654-3_6
https://doi.org/10.1007/978-3-319-39417-6
https://doi.org/10.1007/978-3-319-39417-6
https://doi.org/10.1007/3-540-58786-1_75
https://doi.org/10.1007/3-540-58786-1_75

Evaluation Technique for Domain-Specific Modeling Language Notations 319

21. Mylopoulos, J.: Conceptual modelling and Telos. In: Conceptual Modelling,
Databases, and CASE: an Integrated View of Information System Development,
pp. 49–68. Wiley , New York (1992)

22. Newell, A., Simon, H.A.: Human Problem Solving, vol. 104. Prentice-Hall, Engle-
wood Cliffs (1972)

23. Petre, M.: Why looking isn’t always seeing: readership skills and graphical pro-
gramming. Commun. ACM 38(6), 33–44 (1995)

24. Recker, J.: Opportunities and constraints: the current struggle with BPMN. Bus.
Process. Manag. J. 16(1), 181–201 (2010)

Domain Specific Models II

A Unifying Model of Legal Smart
Contracts

Jan Ladleif(B) and Mathias Weske

Hasso Plattner Institute, University of Potsdam, Potsdam, Germany
{jan.ladleif,mathias.weske}@hpi.de

Abstract. Legal smart contracts have been a subject of research for
decades, especially since the fusion of deontic logic with traditional pro-
gramming poses significant challenges. The issue of how to develop and
verify legal smart contracts is growing in importance, not least due to
the rapid adoption of blockchain-based smart contracts. In this paper,
we want to pave the way towards a model-driven approach at legal
smart contract development. To this end, we combine insights from liter-
ature in law and legal informatics with capabilities of existing modeling
approaches and give a unifying model that encapsulates essential com-
ponents of legal smart contracts. The unifying model may be used as
a reference for language designers aiming at a holistic representation
of legal smart contracts in a model-driven architecture. It may further
serve as a basis for comparing existing modeling frameworks, which we
demonstrate by applying it to a set of eight distinct languages.

Keywords: Smart contracts · Conceptual model · Legal contracts

1 Introduction

The advent of blockchain technology has established smart contracts in the
general mainstream. Presented with a global network enabling general-purpose
smart contract execution capabilities and an unprecedented capitalization, devel-
opers are confronted with entirely new challenges. An often-cited example in
this context is the TheDAO bug, in which a programming error was exploited
to extract around USD 60 million from a smart contract in 2016 [19]. Thus, the
newfound ubiquity of smart contracts calls for a discussion on how the mod-
eling community can use years of experience in model-driven architecture and
software design to facilitate a structured development of secure smart contracts,
opening the doors for formal verification and dissemination.

This issue becomes even more pronounced when considering the long-term
implications of smart contract technology in law and governance. Fusing legal
concepts and smart contracts to form legal smart contracts as an enforceable
replacement of traditional contract prose and its fulfillment poses a variety of
conceptual and technical challenges [5]. One of these is the absence of a widely
adopted formal language for designing legal smart contracts that is “simple and
c© Springer Nature Switzerland AG 2019
A. H. F. Laender et al. (Eds.): ER 2019, LNCS 11788, pp. 323–337, 2019.
https://doi.org/10.1007/978-3-030-33223-5_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33223-5_27&domain=pdf
https://doi.org/10.1007/978-3-030-33223-5_27

324 J. Ladleif and M. Weske

natural to use, to such an extent that a lawyer could draft contracts using this
formalism instead of using traditional legal language” [2].

The issue goes beyond a mere formalization of real-life contract documents,
which has been a topic of ongoing research for several decades spawning an
impressive amount of approaches [3,17,28]. Instead, a formalization can only be
the first step. The core question is how contracts will be drafted in the future, and
whether a layer of abstraction can be devised that is suitable for all stakeholders
to appreciate—from attorneys through government officials to regular customers.

In this paper, we want to pave the way towards a model-driven design of
legal smart contracts by providing a unifying model of their components and
respective interplay. The model provides a basis for novel language developments,
as well as a baseline for an objective comparison and evaluation of existing
approaches. To this end, we give an overview of legal smart contract research
and formalizations, based on which we reason about our model. We demonstrate
the utility of the unifying model by comparing a set of eight existing language
proposals and raise concrete challenges for future research. It is not the goal of
this paper to give an exhaustive analysis of all issues regarding smart contracts
in practice, e.g., attack vectors or identity management.

The paper is structured as follows: in Sect. 2 we provide background informa-
tion on the formalization of legal contracts. In Sect. 3, we introduce a number of
different modeling languages for contracts. We then present our unifying model
of legal smart contracts in Sect. 4, before applying it to the languages discussed
before in Sect. 5. We conclude the paper in Sect. 6.

2 Formalizing Legal Contracts

For the remainder of this paper, we will use a stock option contract as an exam-
ple: An employer might give an employee the opportunity to buy shares in the
company at a specific price. The price is only valid until a particular expiration
date, though. If the employee does not exercise the option and buy the stock
within the receipt of the option and its expiration date, the option expires. In
legal terms, this agreement is an example of an American-style call option and
one of the most common types of contracts in the financial domain [11].

2.1 Smart Contract Templates

The idea of electronic contracting with smart contracts dates back decades before
blockchains or distributed ledgers were devised [17,27]. Smart contracts rely on
at least two observations, namely (i) that the validity of real-world contracts
can be secured via cryptographic methods and (ii) that they contain operational
aspects which can be automated by computers. Based on these observations,
Grigg introduced the concept of the Ricardian contract in an early electronic
payment system [7]. Basically, a Ricardian contract is a text file that is crypto-
graphically signed by a legal issuer and expresses some value to its holders.

A Unifying Model of Legal Smart Contracts 325

The Ricardian contract was further developed to form Ricardian triples,
which recognize that legal contracts can be roughly divided into three com-
ponents [2]. They contain clauses describing explicit procedures and actions; the
operational parts of the contract automatable via code. Some clauses are not
immediately automatable, often because they are ambiguous and require inter-
pretation or are intangible in nature, e.g., concepts like rights, obligations and
permissions. These constitute the non-operational parts of the contract which
are represented as legal prose. On top of that, contracts contain parameters that
are negotiated between all parties, e.g., prices or deadlines.

Fig. 1. A smart contract tem-
plate with the components of
the Ricardian triple

Figure 1 shows the typical structure of the
resulting so-called smart contract template—
legal prose and code exist alongside each other
and are interlinked. They are both refined
by parameters containing concrete agreement
details. This concept was picked up by Com-
monAccord1, a global initiative towards “cod-
ifying and automating legal documents” [9].
It is also used by some blockchain platforms
like Corda R3, which allows the deployment of smart contracts that have
parametrized legal prose attached to them [10].

Regarding traditional legal prose expressed in natural language as a separate
but integral part of the smart contract may be seen as an anachronism, though.
In fact, Clack et al. foresee that a common source language may be developed
that expresses code and legal prose at the same time [2]. This would require
a formal representation of concepts rooted in law, such as creating obligations
and liberties or transferring entitlements, all of which must be related to the
operational aspects of a contract. For this reason, research has also been focused
on formalizing legal prose and relations.

2.2 Formalizing Legal Relations

Legal prose is anchored in deontic logic and contains normative concepts such
as permissions, obligations and prohibitions. There are numerous approaches
to formalizing subsets of deontic logic capturing institutional and legal domains,
such as the seminal institutional grammar (ADICO) of Crawford and Ostrom [3].
More recently, Pace and Schneider developed a language for composing and
arguing about deontic notions [25]. However, these approaches do not explicitly
model parties and relations between parties, which are integral to contracts.

Thus, several approaches founded in ontology modeling have been pro-
posed. For example, Kabilan and Johannesson contribute a multi-tier ontology
framework modeling contract knowledge for the semantic web [15]. Contracts
are modeled on three different layers using Unified Modeling Language (UML)
class diagrams, from an upper-level view of contract terms down to a tem-
plate view with limited support for performance and enforcement concepts.

1 http://www.commonaccord.org/, accessed April 10th, 2019.

http://www.commonaccord.org/

326 J. Ladleif and M. Weske

Fig. 2. Reduced UFO-L model of a snapshot legal state in the stock option example
contract: after signing, the employee has the unprotected liberty to exercise the option

Griffo et al. present an approach that is more focused on legal relations [6].
They develop an extension to the Unified Foundational Ontology (UFO) called
Unified Foundational Ontology for Legal Relations (UFO-L), embracing both
standard deontic notions as well as complex legal relators like liberties.

Figure 2 shows an instance of UFO-L representing a simplified view of legal
relations between employer and employee in the stock option example. The stock
option is modeled as an unprotected liberty of the employee to exercise the option
against the employer. In essence, the complex liberty relator is composed of two
simple relators, which specify that (i) the employee has the permission to exercise
the option, and the employer must not stop them from doing so; and that (ii) the
employee has the permission not to exercise the option, and the employer must
not demand otherwise. This example shows how simple contracts can already
entail complex and non-obvious legal relations.

Additionally, there are open-textured terms in legal prose such as “with-
out delay” that are still difficult to capture precisely [5]. Their actual mean-
ing depends on the jurisdiction the contracts are supposed to comply with, as
regional laws and customs might differ. These kinds of modifiers governing the
final interpretation of legal relationships are sometimes called meta-rules and
need to be considered for fully specified formalizations [16].

3 Contract Modeling Languages

Existing formalizations of contracts are often based in logic. For example, Lee
was among the first to use first-order predicate logic to express actions, dead-
lines, and deontics in his seminal paper on a logic model for e-contracting [17].
The Legalese project2 is an example for a more recent effort to create a

2 https://legalese.com/, accessed April 10th, 2019.

https://legalese.com/

A Unifying Model of Legal Smart Contracts 327

Domain-Specific Language (DSL) targeting the modal µ-calculus. For an exten-
sive survey of formal languages and models for contracts we refer to Hvitved,
who provides a categorization and analysis of several contract languages [12].
Most of these languages use a textual or formulaic concrete syntax for contract
specification.

Hazard and Haapio, on the other hand, advocate for a more visual approach
to contract modeling, referring to a general trend in law to augment legal prose
with figures and clearer structuring [9]. This goes well with the model-driven
software development paradigm, in which graphical representations of models
are already commonly used on different levels of abstraction to break down
complex systems into easily understandable diagrams and shapes. These models
have the potential to fully specify legal smart contracts while “not [alienating]
the lawyer” [16]. As a consequence, we will limit this section to research that
has already been done towards a visual formalization of smart contracts, which
largely operates on similar principal components as textual approaches albeit
already generalized to a much higher level of abstraction.

Table 1. Selection of modeling approaches in the (smart) contract area

Cat. Abbr. Approach Underlying formalism

(a) MAV Mavridou and Laszka (FSolidM) [20] Finite state machine

AND Andrychowicz et al. [1] Timed automaton

FLO Flood and Goodenough [4] Deterministic finite automaton

(b) WEB Weber et al. [29] BPMN choreography/process

LOP López-Pintado et al. (Caterpillar) [18] BPMN process

KA1 Kabilan [14] BPMN collaboration

(c) KA2 Kabilan and Johannesson [15] UML class diagram

REI Reitwiessner (Babbage) [26] —

Table 1 shows the approaches to contract modeling we discuss in this paper.
They were identified after a review of research literature, development commu-
nities and online articles. Our requirements for choosing a language were that
it (i) uses a completely or partially graphical notation, and that (ii) the overall
approach is applied to legal contract modeling or smart contract modeling, i.e.,
not necessarily targeting legal applications, in the specific publication. The scope
and maturity of the selected approaches varies considerably, from mere concepts
up to fully integrated development solutions.

It should be noted that our selection is not meant to be a comprehensive
list of all graphical modeling languages for contracts. Especially in the area
of blockchain-based smart contracts, many visualization approaches have been
explored for various modeling paradigms [13], not all of which are present in
our selection. Nevertheless, we believe that we cover a wide range of declarative
and imperative approaches with different focuses. We categorize the approaches
into three groups: (a) automaton-based, (b) business processes and (c) other

328 J. Ladleif and M. Weske

languages. For space reasons, we can not go into detail on each approach, but
will summarize their capabilities in Sect. 5.2.

Automaton-Based (a). The first three approaches rely on the observa-
tion that contracts have a concept of state, which determines the set of
actions that may be performed. An example can be seen in Fig. 3, showing a
Finite State Machine (FSM) modeling the stock option example contract using
the notation proposed by Mavridou and Laszka [20]. From an initial state (“the
agreement has been made”), the employee may fire a transition triggering the
exercise of the option if it has not expired yet. Otherwise, only the expire transi-
tion may be fired, though it is not specified by whom. The actual smart contract
code implementation of the underlying function (encapsulating the stock trans-
fer) and the definition of expiry need to be available in the context of the model.

Fig. 3. FSM representing the stock
option contract example (syntax
from [20])

All three approaches share some sim-
ilarities: A contract model has a set of
(potentially complex) states, which are
connected using edges with temporal and
evaluative conditions. The roles within
a contract are not represented directly,
but through low-level or natural language
annotations—or, in case of the timed-
automaton approach, through the use of
one automaton per role [1]. They espe-
cially seem to focus on reachability or
complexity analysis of contracts rather
than providing a clear and complete visualization for all stakeholders.

Business Processes (b). Business Process Model and Notation (BPMN) is an
industry-standard modeling framework for business processes, collaborations and
choreographies [23]. Conformance, institutional rules and norms as well as inter-
organizational communication and agreements are common themes. Thus, the
domain lends itself particularly well to smart contracts, which was recognized in
a community-wide position paper [21]. Kabilan puts a focus on legal obligations,
and extends BPMN elements with a multi-tier contract knowledge ontology (see
Sect. 2.2) [14,15]. Weber et al. use BPMN choreography diagrams, laying a big-
ger focus on inter-organizational communication in the course of business con-
tracts [29]. López-Pintado et al., on the other hand, use BPMN process diagrams
with a similar notation [18].

Figure 4 shows an example of a generic BPMN choreography diagram model-
ing the stock option example. The choice of the employee to exercise the option
is modeled by an event-based gateway with a choreography task. The expiration
date is included as a timer intermediate catch event. The terms of the actual
contract are hidden inside a collapsed sub-choreography named ‘underlying’.

Other Languages (c). In their specification of a contract knowledge ontol-
ogy (see Sect. 2.2), Kabilan and Johannesson also present a method of modeling
smart contract templates as UML class diagrams [15]. Legal concepts and activ-

A Unifying Model of Legal Smart Contracts 329

Fig. 4. BPMN choreography diagram representing the stock option contract example

ities (performances) are represented as classes and directly interrelated using
associations, giving preconditions and fulfillment triggers.

Finally, Reitwiessner introduces his own notation for modeling smart con-
tracts grounded in blueprints of actual physical machines [26]. Basically, cur-
rency flows are represented using pipes triggered by valves and actuators that
may “fill up” tanks of currency. By looking at the blueprint of the machine, users
are supposed to grasp the flow of currency and the different control flow options
more intuitively. As of writing this paper, Babbage is just a proposal and has
not spawned any further implementation or research efforts.

4 Unifying Legal Smart Contract Modeling

While the trend of e-contracting is gaining traction, the issue of comprehensively
modeling legal smart contracts in a way that is understandable both for humans
as well as machines for enforcement and verification remains unsolved [2,9,25].
An initial obstacle is the lack of a common understanding about which contract
aspects should be natively reflected in legal smart contract modeling languages.
To this end, we develop a unifying model of legal smart contracts that unifies
all the essential requirements identified to date. We hope that this model can
be used as a reference for evaluating novel language proposals, and give the
framework for objective and holistic language comparisons.

4.1 General Reasoning

As a structural basis for our model, we adopt the idea of smart contract tem-
plates (see Sect. 2.1) due to its versatility and the fact that various smart contract
realizations already use similar structures successfully [10], albeit mostly lacking
the legal prose component [30]. We share the view of Clack et al. that there are
two sides to a contract: the operational as well as the non-operational side [2].

For both of these sides, we compiled requirements from various sources. These
include but are not limited to a discussion on the sequencing and causality of
deontic concepts by Pace and Schneider [25]; a proposal on the codification of
legal prose in a machine and human-readable way by Hazard and Haapio [9];
as well as an analysis on the legal interpretation and suitability of declarative
and imperative contract specifications for blockchains by Governatori et al. [5].

330 J. Ladleif and M. Weske

We drew further inspiration from existing modeling approaches (see Sect. 3) and
collected a set of unique capabilities such as the strong ties to legal states in
two approaches (KA1 [14], KA2 [15]). Lastly, we considered the 16 requirements
Hvitved used in his survey of formal languages and models for contracts [12].

For the non-operational aspects, we considered multiple legal ontologies (see
Sect. 2.2) [6]. However, they are often limited in that they have no concept of
algorithmic execution and the passing of time. Every UFO-L instance, for exam-
ple, rather represents a snapshot of the legal relations valid at a concrete point in
time, without any explicit notion of modeled behavior. Hence, it is not sufficient
to provide a singular UFO-L instance for each smart contract to transform it to
a legal smart contract. The temporal evolution of legal relations through actions
has to be a native component of a formalism [17].

Therefore, we adopt a conceptual approach closely related to the logic model
of contracts proposed by Lee [17]. The legal state of the contract is a snap-
shot of some set of legal relations between a number of entities, which in turn
enable some actions. Figure 5 illustrates this understanding of a mutual interplay
between actions and legal states using a Petri net modeling the stock option
example contract. Places and transitions represent legal states and actions,
respectively. Thus, actions may be performed subject to a legal state, transi-
tioning to a new legal state in a well-defined manner.

Fig. 5. Interplay of legal states with actions

For example, the place s in the Petri net might represent the legal state of
the stock option example pictured in Fig. 2. This enables two actions; (i) the
employee may exercise the option if it has not expired yet and (ii) the stock
option may automatically expire. Note that we do not distinguish between so-
called “happy paths” and reparation/exception paths in our model, as they both
rely on the same principles [25].

4.2 Unifying Model of Legal Smart Contracts

Based on the above reasoning, we compiled an overarching unifying model of
legal smart contracts as specified in the form of a UML class diagram in Fig. 6.
The main artifact is a Smart Contract, which contains sets of Legal States, Actions,
Roles, and Data Sources. We also adopt the notion of Meta-Rules as mentioned

A Unifying Model of Legal Smart Contracts 331

by Khalil et al. [16]. A Meta-Rule could be any piece of legislation or regulation
which eventually governs the performance of the contract (see Sect. 2.2).

Fig. 6. A unifying model of legal smart contracts

DataSources are specialized into Parameters, Variables and Oracles. Parameters
represent parameters negotiated for each contract instance, e.g., the price of
stocks in an option. Concrete Parameter instance values may vary in complexity,
from simple integer numbers to higher-order functions. Variables are custom run-
time state variables similar to parameters, but are not negotiated beforehand and
may be set and changed during runtime. An Oracle could be an online service
(e.g., providing currency exchange rates), or an event trigger reacting to external
events (e.g., a government entity initiating an audit).

Roles specify the number and types of participants in a contract, e.g., the
employee and employer similar to their specification in UFO-L (see Sect. 2.2).
Roles may refer to humans, but also to organizations or other entities. A Legal
State represents a snapshot of the legal relations between the Roles which held
at a specific point in time and enable a set of Actions.

Actions in our case refer to any activity that may occur during the execution
of a contract. An Action is either performed by one or more Roles, or considered
to be autonomous (e.g., the expiration of the stock option). Performing an Action
leads to an updated Legal State with the consequences of the Action applied. For
example, exercising a stock option (Action) is the choice of the employee (Role)
and would lead to a Legal State in which the option may not be exercised again.

Conditions and Expressions refine the interplay between Actions and Legal
States. For instance, a stock option might have an expiration date. In this case,
allowing the option to expire (an Action without involvement of a Role) would
be enabled on the Temporal Condition that the expiration date has been reached.
More generally, Temporal Conditions may refer to relative or absolute timers,
contingent on a common understanding of time of all participants. Evaluative
Conditions may refer to different Data Sources to decide on enablement, e.g., by
evaluating the value of Variables using a formal expression. Causal Conditions can

332 J. Ladleif and M. Weske

be used to enforce an ordering of Actions, and rely on the history of the legal
smart contract. Updates can be refined as well by providing a set of Expressions
applied to the resulting Legal State, for example calculating a currency exchange
with current data from an Oracle or processing some input given to the Action.

The concrete specification and shape of all classes is deliberately left unde-
fined. We do not aim to impose specific technologies or formalisms on the mod-
eler, but give a predominantly structural view to enable the investigation of
different realizations. For example, Legal States could be represented by UFO-L
instances, whereas Actions could be defined via BPMN process models. Similarly,
there might be formalisms which manage to combine Legal States and Actions
into a common language, inching closer to the vision of a single admissible source
language by Clack et al. [2]. Additionally, we do not specifically constraint ref-
erences between classes, e.g., a Legal State will probably reference some or all
Roles, while a Condition will need access to Data Sources.

5 Applying the Unifying Model

One goal of our unifying model is to provide a common conceptual understanding
of legal smart contracts, so as to mutually compare existing modeling languages.
In this section, we want to critically evaluate this goal by applying our unify-
ing model to the languages presented in Sect. 3. It is important to note that
the approaches heavily differ in their objectives, markup and degree of formal-
ization. Despite some of them not directly considering legal issues, the evalu-
ation provides valuable insights as to future challenges in legal smart contract
modeling.

5.1 Results

Table 2 shows the results of our comparison. All approaches were assessed with
regards to our unifying model. A checkmark implies that the approach contains
some native modeling element that supports (parts of) the respective aspect. A
bracketed checkmark means a partially formal support for the feature through

Table 2. Results of the comparison of the graphical approaches

A Unifying Model of Legal Smart Contracts 333

platform-specific code or natural language annotations. Admittedly, the distinc-
tion between native and annotated support involves a degree of estimation.

For example, the FSM approach (MAV [20]) supports the definition of roles
through the annotation of platform-specific authentication code (see Fig. 3),
whereas BPMN choreography diagrams (WEB [29]) natively model roles through
participant bands (see Fig. 4). Note that the assessments made are based on the
(claimed) current state of the approach as laid out in the respective publica-
tions. Not reflecting a certain part of our unifying model does not mean that the
underlying formalism is generally incapable of doing so. For example, BPMN has
native support for temporal conditions through timer events, but two approaches
(WEB [29], LOP [18]) do not allow their usage for implementation reasons. Fur-
ther, the degree to which a feature is supported may vary considerably due
to the heterogeneity of the approaches, which we attempted to counteract by
introducing the two layers of support (native and annotated).

5.2 Discussion

Our results show that support for the conceptual aspects of legal smart contracts
is a mixed bag—whereas some enjoy almost universal support, some are largely
absent. A good example for the former are actions; they are integral parts of
all approaches. Actions are represented through various modeling elements, like
transitions/flows, tasks or classes. All languages except one (FLO [4]) provide
some support for defining roles. Conditions also enjoy a relatively high level of
adoption; especially causal conditions are present in all approaches due to their
capability to model orderings of states and actions. Temporal and evaluative
conditions are, to some degree, present in around half of the approaches.

On the other hand, some areas seem to be largely missing. Only one language
(KA2 [15]) provides support for parameters in the sense of our unifying model,
i.e., as characteristic parts of a contract instance that are negotiated between all
parties and fixed at contract “signing” or instantiation. Some other approaches
emulate this behavior with the specification of variables that are set during
runtime using, for example, human tasks with manual inputs (WEB [29]). There
appears to be a lack of distinction between parameters and variables despite
their conceptual differences. Oracles are only supported by two of the BPMN
approaches (WEB [29], LOP [18]) through service and script tasks.

As is apparent from our comparison, evaluative conditions and expressions
are only ever present as annotations, i.e., formulas in a possibly platform-specific
expression language. These formulas tend to require a solid knowledge of pro-
gramming concepts such as boolean operators, which can not be expected from
non-technical personnel. Languages such as Decision Model and Notation (DMN)
decision tables might provide a visual and intuitive alternative for modeling for-
mulas, though complex decisions also require an expression language [24]. Decision
tables have been shown to be convertible to smart contract code [8].

Perhaps the most complex parts of contracts are the legal relations they
create (see Sect. 2.2). Two approaches model legal relations as a native part of
the contract model; either through annotations of ontology-based references to

334 J. Ladleif and M. Weske

message flows in BPMN (KA1 [14]), or through fully integrated instances of
ontology concepts in a UML class diagram (KA2 [15]). Lastly, one approach
(FLO [4]) uses natural language annotations to specify obligations and other
deontic notions. In general, though, legal relations are largely absent as explicitly
modeled concepts, i.e., dedicated modeling elements or annotations. The same
is true for meta-rules, which only one approach (FLO [4]) hints at by referencing
concrete New York state laws within natural language annotations.

5.3 Future Challenges

Summarizing the results of the application of the unifying model, we identify six
major future challenges in the area of legal smart contract modeling.

Modeling Data Sources. When different parties collaborate on fulfilling a
contract, it is of paramount importance that all data used in that process is
known and understandable by all participants. There needs to be a common view
on the values of data artifacts and, perhaps more importantly, their meaning and
semantics. While the structural and semantic modeling of data is a fundamental
and well-researched concept in areas such as business choreographies [22], it is
mostly missing in contract modeling and the legal smart contract languages we
evaluated. Thus, we conclude that (C1) formal definitions of data sources and
structures, and (C2) clear distinctions between the different kinds of data sources
are essential challenges for future modeling approaches.

Implementing Executable Contracts. While visualization and communica-
tion between stakeholders are important goals of model-driven software design,
the final intent is to generate a fully executable artifact. Of the evaluated mod-
eling approaches, only three (MAV [20], WEB [29], LOP [18]) explicitly cover
this step, providing a generator component for Ethereum smart contracts and
discussing the implications of blockchain characteristics such as immutability
and transaction cost (see Table 2) [30]. However, the generated smart contracts
are limited by constraints of blockchain technology such as the lack of support
for native timed triggers in Ethereum. Hence, even though two BPMN-based
approaches (WEB [29], LOP [18]) would technically support temporal conditions
through timer events, they are omitted due to the aforementioned restrictions.

Thus, more advanced or novel smart contract realizations might be needed.
Still, for a legal smart contract modeling language to gain practical importance,
it needs to (C3) be founded in clear and complete execution semantics which
are (C4) mapped to some actual realization of smart contract technology that
enables the enforcement of the contract.

Embedding Legal Relations. To improve support for legal aspects, we assess
that (C5) there needs to be a common framework of meta-rules which can be
uniquely referenced and (C6) legal states need to be embedded with roles, con-
ditions, expressions and associated with actions directly in the model. Only then
can a language be considered a universally acceptable replacement for traditional
legal contracts [2]. The embedding of legal states might be accomplished with

A Unifying Model of Legal Smart Contracts 335

(a) native modeling elements or (b) a set of rigorously defined deduction rules
founded in a formal framework of legal relations.

The proposal to introduce deduction rules is based on the insight that deontic
notions may be deduced from other modeling elements without being explicitly
present. Take, for example, the BPMN choreography diagram from Fig. 4 and
refer to the legal relations found in the UFO-L instance in Fig. 2. The event-
based gateway g models the exclusive choice of the employee to exercise the
stock option using task t. The gateway g in conjunction with task t thus implies
the no-right to omission relator—the employee has the permission to exercise the
option. The second part of the unprotected liberty relator, namely the no-right
to action relator, may be deduced from the timer event; i.e., the existence of
an alternative path that does not include the exercise of the option. The modes
inherent to the employer are technically implied by the closed-world assumption
of the modeling paradigm. Other concrete representations of behavioral models
and legal relations may exhibit similar mappings.

6 Conclusion

The increasing degree of automation in legal domains calls for a structured and
formal modeling approach for legal smart contracts. In this paper, we have devel-
oped a unifying model defining the essential components of fully specified legal
smart contracts based on literature from law, legal informatics and blockchain
research. We also introduced the reader to a set of eight existing modeling lan-
guages, and demonstrated how the unifying model can be used as a basis for
a holistic comparison of the languages’ expressiveness. Our results show that
the degree of support for specific legal smart contract concepts varies consider-
ably; ranging from good support for condition modeling to almost non-existing
support for legal states, relations or deontic notions. Based on these results,
we posed concrete challenges for future endeavors in unambiguously and fully
specifying legal smart contracts.

References

1. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, �L.: Modeling bit-
coin contracts by timed automata. In: Legay, A., Bozga, M. (eds.) FORMATS
2014. LNCS, vol. 8711, pp. 7–22. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-10512-3 2

2. Clack, C.D., Bakshi, V.A., Braine, L.: Smart contract templates: foundations,
design landscape and research directions. CoRR abs/1608.00771 (2016). http://
arxiv.org/abs/1608.00771

3. Crawford, S.E.S., Ostrom, E.: A grammar of institutions. Am. Polit. Sci. Rev.
89(3), 582–600 (1995)

4. Flood, M., Goodenough, O.: Contract as automaton: The computational represen-
tation of financial agreements. OFR Working Paper 15–04 (2015). https://doi.org/
10.2139/ssrn.2538224

https://doi.org/10.1007/978-3-319-10512-3_2
https://doi.org/10.1007/978-3-319-10512-3_2
http://arxiv.org/abs/1608.00771
http://arxiv.org/abs/1608.00771
https://doi.org/10.2139/ssrn.2538224
https://doi.org/10.2139/ssrn.2538224

336 J. Ladleif and M. Weske

5. Governatori, G., Idelberger, F., Milosevic, Z., Riveret, R., Sartor, G., Xu, X.: On
legal contracts, imperative and declarative smart contracts, and blockchain sys-
tems. Artif. Intell. Law 26(4), 377–409 (2018). ISSN 1572–8382, https://doi.org/
10.1007/s10506-018-9223-3

6. Griffo, C., Almeida, J.P.A., Guizzardi, G.: Conceptual modeling of legal relations.
In: Trujillo, J., et al. (eds.) ER 2018. LNCS, vol. 11157, pp. 169–183. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-00847-5 14

7. Grigg, I.: The Ricardian contract. In: First IEEE International Workshop on Elec-
tronic Contracting, pp. 25–31. IEEE (2004)

8. Haarmann, S., Batoulis, K., Nikaj, A., Weske, M.: DMN decision execution on
the ethereum blockchain. In: Krogstie, J., Reijers, H.A. (eds.) CAiSE 2018. LNCS,
vol. 10816, pp. 327–341. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-91563-0 20

9. Hazard, J., Haapio, H.: Wise contracts: smart contracts that work for people and
machines. In: Trends and Communities of Legal Informatics, 20th International
Legal Informatics Symposium IRIS 2017, pp. 425–432 (2017)

10. Hearn, M.: Corda: a distributed ledger. Technical White Paper (2016). https://
docs.corda.net/ static/corda-technical-whitepaper.pdf

11. Hull, J.: Options, Futures and Other Derivatives. Pearson/Prentice Hall, Upper
Saddle River (2009)

12. Hvitved, T.: Contract formalisation and modular implementation of domain-
specific languages. Ph.D. thesis, University of Copenhagen (2012)

13. Härer, F., Fill, H.G.: A comparison of approaches for visualizing blockchains and
smart contracts. Jusletter IT Weblaw, ISSN 1664–848X, 21 February 2019 (2019).
https://doi.org/10.5281/zenodo.2585575

14. Kabilan, V.: Contract workflow model patterns using BPMN. In: 10th Interna-
tional Workshop on Exploring Modeling Methods in Systems Analysis and Design
(EMMSAD 2005), CAiSE, vol. 363. CEUR-WS.org (2005)

15. Kabilan, V., Johannesson, P.: Semantic representation of contract knowledge using
multi/tier ontology. In: First International Conference on Semantic Web and
Databases, pp. 378–397. CEUR-WS.org (2003)

16. Al Khalil, F., Butler, T., O’Brien, L., Ceci, M.: Trust in smart contracts is a
process, as well. In: Brenner, M., et al. (eds.) FC 2017. LNCS, vol. 10323, pp.
510–519. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70278-0 32

17. Lee, R.M.: A logic model for electronic contracting. Decis. Support Syst. 4(1),
27–44 (1988). ISSN 0167–9236, https://doi.org/10.1016/0167-9236(88)90096-6

18. López-Pintado, O., Garćıa-Bañuelos, L., Dumas, M., Weber, I., Ponomarev, A.:
Caterpillar: A business process execution engine on the Ethereum blockchain.
CoRR abs/1808.03517 (2018). http://arxiv.org/abs/abs/1808.03517

19. Luu, L., Chu, D.H., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts
smarter. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pp. 254–269. ACM (2016)

20. Mavridou, A., Laszka, A.: Designing secure Ethereum smart contracts: A finite
state machine based approach. CoRR abs/1711.09327 (2017). http://arxiv.org/
abs/abs/1711.09327

21. Mendling, J., Weber, I., Aalst, W.V.D., et al.: Blockchains for business process
management - challenges and opportunities. ACM Trans. Manag. Inf. Syst. (TMIS)
9(1), 4:1–4:16 (2018). ISSN 2158–656X, https://doi.org/10.1145/3183367

22. Meyer, A., et al.: Data perspective in process choreographies: modeling and exe-
cution. Technical report BPM-13-29, BPMcenter.org (2013)

https://doi.org/10.1007/s10506-018-9223-3
https://doi.org/10.1007/s10506-018-9223-3
https://doi.org/10.1007/978-3-030-00847-5_14
https://doi.org/10.1007/978-3-319-91563-0_20
https://doi.org/10.1007/978-3-319-91563-0_20
https://docs.corda.net/_static/corda-technical-whitepaper.pdf
https://docs.corda.net/_static/corda-technical-whitepaper.pdf
https://doi.org/10.5281/zenodo.2585575
https://doi.org/10.1007/978-3-319-70278-0_32
https://doi.org/10.1016/0167-9236(88)90096-6
http://arxiv.org/abs/abs/1808.03517
http://arxiv.org/abs/abs/1711.09327
http://arxiv.org/abs/abs/1711.09327
https://doi.org/10.1145/3183367

A Unifying Model of Legal Smart Contracts 337

23. OMG: Business Process Model and Notation (BPMN), Version 2.0.2, December
2013. http://www.omg.org/spec/BPMN/2.0.2/

24. OMG: Decision Model and Notation (DMN), Version 1.1, December 2016. https://
www.omg.org/spec/DMN/1.1/

25. Pace, G.J., Schneider, G.: Challenges in the specification of full contracts. In:
Leuschel, M., Wehrheim, H. (eds.) IFM 2009. LNCS, vol. 5423, pp. 292–306.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00255-7 20

26. Reitwiessner, C.: Babbage – a mechanical smart contract language (2017). https://
medium.com/@chriseth/babbage-5c8329ec5a0e

27. Szabo, N.: Formalizing and securing relationships on public networks. First Monday
2(9) (1997). ISSN 13960466, https://doi.org/10.5210/fm.v2i9.548, https://ojphi.
org/ojs/index.php/fm/article/view/548

28. Szabo, N.: A formal language for analyzing contracts (2002). https://nakamoto
institute.org/contract-language/

29. Weber, I., Xu, X., Riveret, R., Governatori, G., Ponomarev, A., Mendling, J.:
Untrusted business process monitoring and execution using blockchain. In: La
Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 329–347.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45348-4 19

30. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger. Tech-
nical report EIP-150 (2014)

http://www.omg.org/spec/BPMN/2.0.2/
https://www.omg.org/spec/DMN/1.1/
https://www.omg.org/spec/DMN/1.1/
https://doi.org/10.1007/978-3-642-00255-7_20
https://medium.com/@chriseth/babbage-5c8329ec5a0e
https://medium.com/@chriseth/babbage-5c8329ec5a0e
https://doi.org/10.5210/fm.v2i9.548
https://ojphi.org/ojs/index.php/fm/article/view/548
https://ojphi.org/ojs/index.php/fm/article/view/548
https://nakamotoinstitute.org/contract-language/
https://nakamotoinstitute.org/contract-language/
https://doi.org/10.1007/978-3-319-45348-4_19

Formal Specification of Environmental
Aspects of a Railway Interlocking System

Based on a Conceptual Model

Dalay Israel de Almeida Pereira1(B) , Sana Debbech1 , Matthieu Perin2 ,
Philippe Bon1, and Simon Collart-Dutilleul1

1 Univ. Lille Nord de France, IFSTTAR, COSYS/ESTAS,
59650 Villeneuve d’Ascq, France

{dalay-israel.de-almeida-pereira,sana.debbech,philippe.bon,
simon.collart-dutilleul}@ifsttar.fr

2 Institut de Recherche Technologique Railenium, 59300 Famars, France
matthieu.perin@railenium.eu

Abstract. Relay-based Railway Interlocking Systems (RIS) are devel-
oped with the objective of controlling the movement of trains in a safe
manner. However, these systems are generally specified by informal lan-
guages whose analyses are made by human inspection, which are error
prone. A previous work presented an approach for specifying these sys-
tems in a formal language in order to automatically prove safety prop-
erties. Nevertheless, despite the impact of the environment over the sys-
tem operation, the approach allows only the specification of the electri-
cal components behaviour. Hence, the environment must be considered
in the system specification in order to guarantee its safety. This paper
presents the application of a higher level of modelling abstraction, con-
ceptual modelling, which may provide a conceptual clarification of the
RIS environment. This proposed conceptual model allows a semantic
analysis of the environmental impact over the system and the descrip-
tion of other safety properties that have not been considered in the formal
specification. In this work, an ontology built for the critical systems mod-
elling is used in order to provide a terminological harmonisation between
the physical elements of the system and the environment. The conceptual
model allows a safety-oriented improvement of the RIS formal specifica-
tion as well as it provides a common, shared and unambiguous view of
both system and environment.

Keywords: Conceptual modelling · Ontology ·
Railway Interlocking Systems · Relay diagrams · UFO · B-method

1 Introduction

Railway Interlocking Systems (RIS) are responsible for controlling trains in a
determined track in order to avoid the occurrence of hazards, like collisions.

Supported by the LCHIP (Low Cost High Integrity Platform) project.

c© Springer Nature Switzerland AG 2019
A. H. F. Laender et al. (Eds.): ER 2019, LNCS 11788, pp. 338–351, 2019.
https://doi.org/10.1007/978-3-030-33223-5_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33223-5_28&domain=pdf
http://orcid.org/0000-0001-9698-5569
http://orcid.org/0000-0002-4003-6505
http://orcid.org/0000-0002-9726-2458
https://doi.org/10.1007/978-3-030-33223-5_28

B-specification of Relay-Based RIS Based on a Conceptual Model 339

They are considered safety-critical systems, since failures may result in severe
consequences like the loss of people lives. A relay-based RIS is the implemen-
tation of an interlocking system logic as an electrical circuit whose current flow
is controlled by electromechanical components called relays. These systems are
generally specified by diagrams representing how the electrical components of
the circuit are connected. As a consequence, the safety proof of these systems
is a challenging task, since the usual way to verify these models is by manually
inspecting and drawing conclusions, which is error prone [10].

In order to automatically verify relay-based RIS, a previous work [2] has pre-
sented a methodology for the specification of these systems in a formal language,
B-method, whose mathematical background and supporting tools allow the auto-
matic system verification regarding safety properties. In this methodology, one
may extract the system behaviour based on the behaviour of its electrical compo-
nents. Although this methodology provides ways in order to verify the existence
of unsafe states during the execution of the system, it fails in disconsider the
impact of the environment on the behaviour of these systems. In order to prove
the safety of a RIS, the environment must be considered.

The specification of physical electrical components is based on their own
meanings and defined behaviours, whereas the environmental specification
involves pure knowledge about the field. Furthermore, the impact of the envi-
ronment over the system is not specified inside relay diagrams. In this work, an
example of the conceptual modelling usage is presented in order to conceptu-
alise relations between a RIS and its environment. The use of a conceptual model
allows a better understanding of the domain knowledge and provides a shared
view with a common vocabulary. Moreover, an improvement of the RIS formal
specification may be derived from the captured knowledge. In the literature, con-
ceptual modelling has never been used for assisting the RIS formal specification
and creating a direct distinction between the RIS and their environments.

Another benefit of conceptual modelling consists in the use of a top-level
ontology in order to provide a conceptualisation in real-world semantics and
approximate as well as possible the ideal representation of a domain. In this
paper, the conceptual modelling phase is based on the use of the Unified Foun-
dational Ontology (UFO) [9] in order to establish relations between the foun-
dational distinctions of UFO and the system and its environment dependencies.
Then, the ontological pattern and the modelling rules proposed by UFO are used
for building the ontology.

The next section presents the case study that is used throughout this paper.
Then, Sect. 3 discuss about the ontology for modelling critical systems, followed
by a presentation of the methodology for the formal specification of RIS. The
contribution of this paper, the use of conceptual modelling for the environmental
specification in a RIS example, is detailed in Sect. 5 and discussed in Sect. 6.
Finally, a conclusion and some previous works are presented.

340 D. I. de Almeida Pereira et al.

2 Case Study

Relay-based Railway Interlocking Systems are composed by electrical circuits
containing relays, which are electromechanical switching elements comprised by
electromagnets (coils) and contacts [15]. When electrified, a relay closes or opens
its contacts in a way that it may control the flow of electrical current inside the
circuit wires. Before their implementation, these systems are generally modelled
by relay diagrams, which are graph-like schemata that present how the electrical
components (relays and buttons, for instance) are connected by wires.

In order to exemplify the use of RIS, a simple railway track plan, presented
in Fig. 1, depicts two train tracks. This specific track section is used to allow two
trains to move in opposite directions without collisions. However, a dangerous
situation may be found when a train that arrives at Control Area A must change
to the other track because of problems on its own track. The possible collision
with a train that comes from Control Area C requires the use of an interlock-
ing system in order to control the movement of these trains. In this industrial
example, the diagram presented in Fig. 2 represents a relay-based RIS diagram
used by SNCF (the French National Railway Company) in order to control the
entrance of trains in Control Area A.

Fig. 1. Track plan from the signalling Control Area A to C

The connection between electrical components are represented by full lines
in relay diagrams. These lines are the electrical wires of the circuits. The rela-
tion between the relays and their related contacts are represented by vertical
semi-doted lines. A relay diagram may contain many different types of electrical
components. Some of them are detailed in Table 1.

Relay-based RIS are reactive systems, which means that the electrical activa-
tion of a component may trigger the activation of others components. In electrical
circuits, a component is activated if it is connected to a positive and a negative
sources of energy at the same time. The inputs of this system are usually rep-
resented by buttons, levers and independent contacts (whose related relays are
not presented). The outputs of these systems are generally understood as the
permission or a denial to a train to enter in an specific section of the tracks.
Considering the preconditions for each component to be activated and the con-
nections between these components, relay diagrams are graphical representations
of the logic behind relay-based RIS behaviour.

B-specification of Relay-Based RIS Based on a Conceptual Model 341

Fig. 2. Part of the relay-based system model of the signalling Control Area A

Table 1. Elements that may be used in a relay-based diagram.

Electrical sources of energy poles.

Couple button-lever.

Monostable and bistable relays coils, respectively.

Blocks for relay timed activation and deactivation, respectively.

A normally closed contact related to a monostable relay and a
contact related to a bistable relay, respectively.

Due to the critical nature of this example, a thorough RIS safety analysis
must be performed in order to avoid hazardous situations. For this purpose, the
railway safety community recommends the use of formal specification method-
ologies [7]. However, although the formal languages mathematical background is
capable of proving RIS safety properties, they do not dispose of tools for mod-
elling, organising and harmonising knowledge together with the physical system.

As an example, based on the knowledge about railway systems, the meaning
of some components depicted in Fig. 2 are presented in Table 2. However, the
system knowledge is related to a high level of expertise of the domain, which
may lead to conflicts between the actors. In the formal specification context,
there is a lack of a distinction between both system and environmental aspects.
This issue complicates the understanding of the formal specification, which may
be ambiguous in a collaborative context. Consequently, the need of the knowledge

342 D. I. de Almeida Pereira et al.

Table 2. Meaning of some elements of the relay diagram.

KAG a G Switch in the left position, if activated (TRUE) the
train cannot change to the other track

EPA C CSS Routing control, when activated it allows a train
to change its route (change tracks or not), when
deactivated it blocks the route change

RPD FA C911 Detector of the train presence in a track, it
deactivates in the presence of a train

INT AC V2 Detects if the track is free or not, it is activated if
the track is free (there is not a train)

KSS E V2 Permission given by Control Area C for a train to
come from Control Area A

EF11 Permission given by Control Area A for a train to
come from Control Area C

KIT C 911 Permission for a train in the Control Area A to
enter in the dangerous zone

conceptualisation arises in order to clarify and precise the terminology used in
the specification.

In fact, we believe in the powerful capacities of the conceptual modelling to
provide a shared and non ambiguous view with a common vocabulary. It allows
the semantic interpretation of the components of the system, the environment,
and relations between them in order to explicitly define a complete taxonomy
able to ensure the conceptual clarification of the system and its environment
with a high level of abstraction. Based on the definition of the relay diagram
elements and the foundational features proposed by UFO, a semantic alignment
is performed with the aim to establish an harmonisation between both abstract
and concrete domains. In the next section, we briefly present an ontology of
dysfunction analysis, which is proposed in a previous work, in order to explain
how it is partially reused to satisfy the goal of the present study.

3 An Ontology for the Safe Design of Critical Systems

In order to provide a systematisation of the integration of the dysfunctional
analysis into the design process, a domain ontology grounded in the Unified
Foundational Ontology (UFO) is proposed in a previous work. It is well-known
that the use of foundational ontologies in the development of a domain ontology
supports the real-world semantics and improve the clarity, the expressiveness
and the truthfulness of a domain conceptualisation. The discussion around the
choice of UFO in comparison with other upper ontologies has been made in a
previous work [5].

The Dysfunctional Analysis Ontology (DAO) aims to capture the dysfunc-
tional analysis knowledge and it establishes a semantic link between safety
constraints to be considered and the Goal-Oriented Requirements Engineering

B-specification of Relay-Based RIS Based on a Conceptual Model 343

(GORE) [17]. Furthermore, the related conceptual model improves the concep-
tual clarification of the safety reasoning and the management of safety decisions
in the early stages of the safety critical systems design. Then, it allows an under-
standable representation of a domain in order to deal with the complexity of the
collaborative decision-making.

DAO tackles the semantic heterogeneity issue that may lead to several con-
flicts between safety analysts and design engineers. The related terminology is
based on the extraction of standards definitions such as [4,11,12] since the rail-
way domain is the domain application of DAO. Moreover, the goal-oriented per-
spective is based on the reuse of a fragment from a reference domain model, the
Goal-Oriented Requirements Ontology (GORO), which is grounded in UFO [14].
This improves the completeness, the consistency and the flexibility criterion of
DAO. Hence, it supports the communication and the knowledge sharing between
both safety and design actors.

In the verification and the validation phases, DAO shows its capabilities to
represent several real situations and its taxonomy is relevant for the critical
aspect of railway systems. Furthermore, it demonstrates the validity of its reuse
for other critical applications such as the development of future autonomous
trains [6]. Indeed, DAO considers the socio-technical aspect of railway systems
and this is important in the safety improvement. Then, it considers both the
safety and the system views in the safety analysis and the system design. This
perspective of conceptualisation is relevant for the system specification too, since
it support the integration of the environmental properties.

In the present paper, the DAO fragment related to the system and the envi-
ronment views is reused in order to provide an ontological analysis of the environ-
mental aspect and to capture this knowledge regarding the system specification.
This phase seems to be a preliminary activity of the formal specification in order
to terminologically systematise the environment notion and its surrounding con-
cepts. One of the issues of formal methods consists in the inability to define the
real-world taxonomy with a common vocabulary. In other words, there is a need
to clarify the semantics used in the specification based on real-world assump-
tions and from a high level of abstraction. The present work aims to fill this gap
by capitalising and sharing the knowledge in order to satisfy the domain needs.
In order to improve the understanding of the DAO scope, Fig. 3 depicts a part
of the design pattern of DAO, that is able to address the challenges mentioned
above.

Fig. 3. A part of the DAO design pattern reusable for the relay-based RIS representa-
tion

344 D. I. de Almeida Pereira et al.

4 A Methodology for the Formal Relay-Based RIS
Specification

In order to formally specify the running example, a methodology has been pro-
posed in a previous work [2]. This methodology uses B-method in order to specify
the relay diagram logical behaviour based on propositional logic. In the railway
domain, B-method is considered one of the strongest approaches for the specifi-
cation of railway systems [8]. This section presents a methodology for the formal
specification of Relay-based RIS using B-method.

The basic building block of a B-method specification is the abstract
machine [16]. Inside a machine, the system specification is divided into clauses,
like: SETS, VARIABLES, INVARIANT, INITIALISATION and OPERATIONS. Within
these clauses, one must specify, respectively, constant information sets, vari-
ables, variables properties, the machine initial state (variables initial values),
and the operations responsible for changing the machine state. An example of
a B-machine is depicted on Fig. 7, explained in detail in Sect. 5.2. Further infor-
mation about the B-method clauses and notations may be found in [1].

As the RIS state is defined by the state of each electrical component, the
running example components must be specified as variables in B-method. Hence,
the INVARIANT and INITIALISATION clauses must type each variable and give
their initial states, respectively. Some particular types may be defined in the
SETS clause, and the initial state of the system is the one represented by the
relay diagram itself. Furthermore, inside the INVARIANT clause it is possible to
define safety properties that must be met during the system execution. The
complete B-specification of the running example is presented in [2], moreover,
disconsidering the grey blocks, Fig. 7 also presents this specification.

Considering our running example, in order to avoid possible train collisions, it
is possible to specify an invariant in propositional logic. This invariant guarantees
that the trains that come from Control Area A and C may never have permission
to enter in the dangerous zone at the same time. This property is defined by:
“not(PLUS KIT C 911 = TRUE & EF11 = TRUE)”. The system state transition
must be specified by an operation which receives the inputs of the system and
changes the values of the variables. This operation calculates the states based on
the preconditions for the activation/deactivation of each electrical component.

5 From Conceptual Modelling Towards Environmental
RIS Specification

The formal specification of the RIS presented as running example is not complete,
since it does not consider environmental variables that may impact its execution.
Hence, although this system is formally specified, it may not be considered safe.
In this section, the process of conceptual modelling the relay-based RIS example
is presented in order to conceptualise the knowledge about the system. Based
on this conceptual model, it is possible to structurally capitalise the relation
between the system and the environment and formally specify it.

B-specification of Relay-Based RIS Based on a Conceptual Model 345

5.1 Conceptual Model of a Relay-Based RIS Case Study

Before modelling the RIS environment, it is necessary to conceptualise the depen-
dence between the electrical components of the system. This dependency reflects
how the state of each component may affect the state of other component as a
reactive system, i.e., the impact of a component activation/deactivation in the
activation/deactivation of other components. This dependency is depicted in the
conceptual model presented in Fig. 4.

Fig. 4. Conceptual model of the state dependency between the electrical components
of the system

However, in real world, some environmental variables may affect the func-
tioning of the system. In this case, the environment is considered as any
object/aspect that is external to the system and related to it in some way. In
our case study, the environmental objects/aspects related to the execution of the
relay-based RIS are: track, train, pedal (which detects the train presence) and
time (or the variation of time). The conceptualisation of these environmental
variables is presented in Fig. 5. In order to improve the readability, concepts and
relations are respectively written in bold and italic types.

Fig. 5. Conceptual model of the system environment and dependencies between objects

Train, Track and Pedal may be characterised by their Dispositions, which
are respectively related to Position, Direction of extension and State. Con-
sidering the RIS in Control Area A, a train may be in one of three positions:

346 D. I. de Almeida Pereira et al.

“approaching”, “in transit” (entering the dangerous zone) or “arrived” (in the
dangerous zone). The track between the Control Areas A and C may be extended
in two different directions: normal (for the train the comes from Control Area C)
or opposite direction (for the train that comes from Control Area A). The Pedal
existing in the dangerous zone may be enabled or disabled in order to indicate
the presence or absence of a train in this specific location.

Based on the domain knowledge, it is possible to make an explicit repre-
sentation of the relations between these environmental variables and the elec-
trical components of the RIS. In this case, it is important to consider that the
relations associated to environmental variables are different from the relations
that connect physical components. The dependence relationship between elec-
trical components are “explicit”, since they are depicted in the relay diagram
and represent the physical logical connection between these components. In this
conceptual model, this relation is called exp-depends on. Contrarily, the envi-
ronmental objects are not explicitly connected or even represented in usual RIS
representations, hence, all their dependence relations are modelled as “implicit”
and called imp-depends on. Figure 5 depicts a part of the complete model which
captures these implicit relations.

A condition that must be guaranteed in order to extend the tracks is that the
component EPA C CSS must be deactivated in order to lock the train routing.
The train may not enter in a track if there is the possibility of changing its
route during this process. So, the extension of the tracks depends directly of the
component EPA C CSS state. The extension of the track is also directly related
to the permission for the trains to enter in the tracks, so, the state of the track
depends on the states of PLUS KIT C 911 and EF11.

Regarding the train, its state is directly related to the state of two physi-
cal components: KAG a G and INT AC V2. The former specifies that the switch
between tracks is settled to the right position (train not allowed to change tracks)
when activated, hence it must be deactivated when the train is “in transit”. The
latter indicates the occupation of the dangerous zone, hence it must be activated
once the train has arrived in this portion of the tracks.

The track and the train are dependent to each other, since a train needs
the track to be extended in order to enter in the dangerous zone and the track
requires the train to approach in order to extend. Similarly, the train and the
pedal are also dependent from each other since the pedal activates in the presence
of a train and the train may be considered as “arrived” once the pedal activates.
In order to activate the pedal, the component RPD FA C 911, which is responsible
for the detection of the train presence, must also be activated.

Similarly to what is presented in Fig. 5, the conceptual model fragment
related to the instantiation of the physical components is depicted in Fig. 6.
After adding the environmental information, the conceptual model of the sys-
tem is enriched. This step is important to provide a complete and structured
view of the system and its environment. Based on the conceptual model rep-
resenting the relations between the environment and the relay-based RIS, it is
possible to improve the formal specification of the system by specifying extra
conditions in order to prove the safety of the system.

B-specification of Relay-Based RIS Based on a Conceptual Model 347

Fig. 6. Conceptual model representing the physical components instantiation

5.2 Formal Specification of Environmental Aspects of the RIS Case
Study

Considering the running example B-specification, in order to add more infor-
mation about the system, it is necessary to redefine the content of each clause.
Except for time, which has been already defined as an input of the system in [2],
the environmental variables must be defined in the VARIABLES clause of the spec-
ification, since their states are now considered in the system state. The updated
specification is presented in Fig. 7, where all the added information are depicted
in blue and inside grey blocks.

Instead of specifying the track as a unique variable, we opted by specifying
it in two different variables according to its direction of extension. This may
be explained by the fact that the conditions for the extension in each direction
are unique and not related to each other. However, the possibility of exten-
sion in both directions at the same time may never exist. Hence, this condition
must be verified and guaranteed by the invariant “not(track extension OD =
TRUE & track extension ND = TRUE)”, considering “track extension OD”
and “track extension ND” the boolean variables related to the opposite and
normal direction extensions of the tracks. This invariant may substitute the ver-
ification related to the permission to the trains to enter in the dangerous zone,
since the extension of the tracks already includes this permission.

The train may be specified by an unique variable train OD, which may take
the values approaching, in transit or arrived, indicating the position of the
train that comes in the opposite direction. These states are specified in the SETS
clause of the machine. Regarding the pedal, it is specified as a boolean variable,
since it may assume only two states: activated (TRUE) or deactivated (FALSE).

Although the system may give permissions to the train to move, it does
not directly controls the train, hence, the train behaviour is independent of
the interlocking system. Since the train states are not directly dependent of the
system and as an environmental variable, its states may be evolved independently
of the RIS and in parallel with it. So, an operation for the state evolution of the
train must be created. Furthermore, the operation must consider that in order to

348 D. I. de Almeida Pereira et al.

Fig. 7. Specification improved by environmental aspects (Color figure online)

go from the “approaching” to the “in transit” state, the track must be extended.
Following a similar logic, in order to go from the “in transit” to the “arrived”
state, the pedal must be activated.

Another variable whose states are not controlled by the RIS at Control Area
A is track extension ND. Even if Control Area A gives permission to a train to
come from Control Area C, it does not extends the track in the normal direction,
since this extension is only controlled by the system in Control Area C. So, it is
necessary to create an operation for this independent behaviour.

Considering the conceptual model, the operation related to the state evo-
lution of the system itself must be improved. In this case, many preconditions
that relate the inputs and the environmental variables may be created. As an
example, the component INT AC V2 must be always deactivated if the train has
arrived, which indicates that this portion of the track is occupied. However, if

B-specification of Relay-Based RIS Based on a Conceptual Model 349

the train is still entering in this portion of the track (the train is “in transit” and
the pedal is “activated”), INT AC V2 is still active, since it is giving permission
to the train to enter. Hence, the same occurs if RPD FA C 911 is deactivated.

Many other conditions may also be considered. If the train is in transit, the
switch between the tracks must continue set to the left position, which means
that the component KAG a G must be set to FALSE. Furthermore, if the train is
“in transit” and EPA C CSS is activated, the pedal must also be activated, since
the course of the tracks may only be changed if the train has arrived.

Considering that Control Area A cannot control the track extension in the
normal direction, a condition must be specified in order to guarantee that the
track must not be extended when Control Area A aims to extend it in the
opposite direction. This means that, in the moment which the train that comes
from Control Area A receives the permission to enter in the dangerous zone, the
track must not be extended in the normal way. Hence, if KSS E V2 is activated,
the time of the block has passed and EF11 is deactivated, the extension in the
normal way must be FALSE.

The system in Control Area A is responsible for evolving the state of two
environmental variables: the track extension in the opposite way and the pedal
activation. The track will be extended in the opposite direction if EPA C CSS
is deactivated or if the train is already “in transit” or it has been “arrived”.
Furthermore, if the track is not already extended, the permission for a train
to enter in the Control Area A must be given (PLUS KIT C 911 activated).
Regarding the Pedal, if it is not already activated, it becomes TRUE if the train
is “in transit” at the same time that it is detected in the track.

6 Discussion

The specification of the system may be model-checked and simulated by Prob [13]
in order to guarantee that the execution of the system may never reach a dan-
gerous state. The model-checking process took 7391 ms, verifying the 85,919 pos-
sible transitions between the 62 existing states in a 64 bits Intel(R) Core(TM)
i7-7600U 2.80 GHz CPU with 16 Gb RAM and running the Windows 10 oper-
ating system in its professional version. The complete simulation of the system
execution has shown to be accurate with reality.

The conceptual model related to the environmental aspects of the system
allows the reasoning regarding the impact of the environment in the execution
of the system. Hence, it is possible to describe many safety conditions that
are not explicit in the relay diagram. In this work, the RIS running example
presented was improved by adding safety conditions in order to guarantee that,
for instance: a train may never enter in the dangerous zone if the course is not
locked, the track is never extended in the opposite direction if the switch is set to
the right position or that the track is not considered free if the train has arrived.

By adding these safety properties in the system specification, it is possible to
improve the safety of the system, since the environmental impact may be verified
and analysed. Furthermore, as a result of this work, it is possible to affirm that

350 D. I. de Almeida Pereira et al.

the formal specification of a relay-based RIS based on a relay diagram is not
enough for guaranteeing safety in some determined conditions. The specification
of the knowledge about the system linked to a structured representation of this
knowledge is an essential step in order to improve the safety of the railway
interlocking system.

7 Conclusion

This paper presents an example of the application of conceptual modelling in
order to improve the safety of a railway interlocking system formal specification.
The use of a conceptual model allows the reasoning about the impact of environ-
mental variables over the execution of the system. Hence, by using a structured
representation of the railway system knowledge, it is possible to derive safety
properties in order to improve the safety of the RIS specification.

As a result, the specification of a relay-based RIS that has been presented in
a previous work could be improved in order to consider many safety properties
that could not be considered before. As a conclusion, it is possible to affirm
that the knowledge conceptualisation of the railway domain is essential for the
formal specification of relay-based RIS, since relay diagrams do not present all
the information about unsafe possible states.

In our near future agenda we aim to perform a dysfunctional analysis of the
example presented in this work in order to study the impact of relay failures over
the system behaviour by reusing DAO. As a physical component, a relay may fail
and break, hence, this behaviour must also be considered in the specification of
the system. Furthermore, we aim to automate the formal behavioural specifica-
tion of relay diagrams based on a graph-like approach (as the one presented in [3])
linked to a complete conceptual model about the known dependence guidelines
between the components, environment and inputs of these systems.

Acknowledgements. This work is supported by the LCHIP project and the results
presented in this paper are a product of the studies made in this project.

We thank Clearsy LCHIP team for sharing their studies with us, in special, we
thank David Deharbe for his availability in explaining their results about the formal
specification of relay-based RIS. Besides, we also thank SNCF for providing and allow-
ing us to publish the relay schema in this paper.

References

1. Abrial, J.R.: The B-book: Assigning Programs to Meanings. Cambridge University
Press, New York (1996)

2. de Almeida Pereira, D.I., Deharbe, D., Perin, M., Bon, P.: B-specification of relay-
based railway interlocking systems based on the propositional logic of the system
state evolution. In: Collart-Dutilleul, S., Lecomte, T., Romanovsky, A. (eds.) RSS-
Rail 2019. LNCS, vol. 11495, pp. 242–258. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-18744-6 16

https://doi.org/10.1007/978-3-030-18744-6_16
https://doi.org/10.1007/978-3-030-18744-6_16

B-specification of Relay-Based RIS Based on a Conceptual Model 351

3. de Almeida Pereira, D.I., Perin, M., Bon, P., Collart-Dutilleul, S.: A framework
for the formal specification of relay-based systems based on a b-method graph
specification. Int. J. Comput. Electr. Eng. (IJCEE) 11(1), 11–19 (2019)

4. CENELEC, NF EN 50129: Applications ferroviaires: Systèmes de signalisation, de
télécommunication et de traitement - Systèmes électroniques de écurité pour la
signalisation, Mai 2003

5. Debbech, S., Bon, P., Collart-Dutilleul, S.: Towards semantic interpretation of goal-
oriented safety decisions based on foundational ontology. J. Comput. (JCP) 14(4),
257–267 (2019)

6. Debbech, S., Collart-Dutilleul, S., Bon, P.: Cas d’étude de mission ferroviaire
télé-opérée. Rapport de recherche, IFSTTAR - Institut Français des Sciences et
Technologies des Transports, de l’Aménagement et des Réseaux, November 2018.
https://hal.archives-ouvertes.fr/hal-02020997/l

7. Railway applications-communication, signalling and processing systems-software
for railway control and protection systems. Std, European Committee for Elec-
trotechnical Standardization (CENELEC), March 2001

8. Fantechi, A., Fokkink, W., Morzenti, A.: B-specification of relay-based railway
interlocking systems based on the propositional logic of the system state evolution.
In: Formal Methods for Industrial Critical Systems: A Survey of Applications, pp.
61–84 (2013)

9. Guizzardi, G., Wagner, G., Almeida, J.P.A., Guizzardi, R.S.: Towards ontologi-
cal foundations for conceptual modeling: the unified foundational ontology (UFO)
story. Appl. Ontol. 10(3–4), 259–271 (2015)

10. Haxthausen, A.E., Le Bliguet, M., Kjær, A.A.: Modelling and verification of relay
interlocking systems. In: Choppy, C., Sokolsky, O. (eds.) Monterey Workshop 2008.
LNCS, vol. 6028, pp. 141–153. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-12566-9 8

11. IEEE, 1012: IEEE Standard for System, Software, and Hardware Verification and
Validation (2016)

12. IEEE, 610.12: IEEE Standard Glossary of Software Engineering Terminology
(1990)

13. Leuschel, M., Butler, M.: ProB: a model checker for B. In: Araki, K., Gnesi, S.,
Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45236-2 46

14. Negri, P.P., Souza, V.E.S., de Castro Leal, A.L., de Almeida Falbo, R., Guizzardi,
G.: Towards an ontology of goal-oriented requirements. In: CIbSE, pp. 469–482
(2017)

15. Rétiveau, R.: La signalisation ferroviaire. Presse de l’école nationale des Ponts et
Chaussées (1987)

16. Schneider, S.: The B-method: An Introduction. Palgrave, Basingstoke (2001)
17. Van Lamsweerde, A.: Goal-oriented requirements engineering: a guided tour. In:

Proceedings of 5th IEEE International Symposium on Requirements Engineering
(RE 2001), pp. 249–262. IEEE (2001)

https://hal.archives-ouvertes.fr/hal-02020997/l
https://doi.org/10.1007/978-3-642-12566-9_8
https://doi.org/10.1007/978-3-642-12566-9_8
https://doi.org/10.1007/978-3-540-45236-2_46

From a Conceptual Model
to a Knowledge Graph for Genomic

Datasets

Anna Bernasconi(B), Arif Canakoglu, and Stefano Ceri

Dipartimento di Elettronica, Informazione e Bioingegneria,
Politecnico di Milano, Milan, Italy

{anna.bernasconi,arif.canakoglu,stefano.ceri}@polimi.it

Abstract. Data access at genomic repositories is problematic, as data
is described by heterogeneous and hardly comparable metadata. We pre-
viously introduced a unified conceptual schema, collected metadata in a
single repository and provided classical search methods upon them. We
here propose a new paradigm to support semantic search of integrated
genomic metadata, based on the Genomic Knowledge Graph, a seman-
tic graph of genomic terms and concepts, which combines the original
information provided by each source with curated terminological content
from specialized ontologies.

Commercial knowledge-assisted search is designed for transparently
supporting keyword-based search without explaining inferences; in biol-
ogy, inference understanding is instead critical. For this reason, we pro-
pose a graph-based visual search for data exploration; some expert users
can navigate the semantic graph along the conceptual schema, enriched
with simple forms of homonyms and term hierarchies, thus understand-
ing the semantic reasoning behind query results.

Keywords: Knowledge graph · Semantic search · Conceptual model ·
Data integration · Genomics · Next Generation Sequencing · Open data

1 Introduction

Next-Generation Sequencing (NGS) technologies and data processing pipelines
are supplying high-quality sequencing data at unprecedented pace [16]. Many
international consortia provide open access to an increasing number of valuable
datasets [6,8,14]. Use of integrated data produced at the various sources is fuel-
ing modern biological and clinical research. While the provided sequencing data
is generally of high quality, their metadata are not properly standardized and
normalized, some of them have missing values, and they are organized differ-
ently, with no interoperability support across data sources. To alleviate these
problems, we developed the Genomic Conceptual Model (GCM, [1]), covering 8
entities and 37 attributes which describe the most important and complex data
sources, including The Cancer Genome Atlas and Genomic Data Commons [6],
c© Springer Nature Switzerland AG 2019
A. H. F. Laender et al. (Eds.): ER 2019, LNCS 11788, pp. 352–360, 2019.
https://doi.org/10.1007/978-3-030-33223-5_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33223-5_29&domain=pdf
https://doi.org/10.1007/978-3-030-33223-5_29

Knowledge Graph for Genomic Datasets 353

the Encyclopedia of DNA Elements [14], Roadmap Epigenomics [8], and others.
We currently import 40 million metadata key-value pairs from 8 sources, which
describe about 240k genomic items.

In our ongoing effort to provide the genomics community with useful concepts
and tools, our next challenge is to make metadata semantically searchable and
explorable. Along with GCM, we implemented a multi-ontology semantic knowl-
edge base of genomic terms and concepts, called Genomic Knowledge Graph
(GKG). We selected ten attributes from GCM; their values were semantically
enriched by using the respective best ontologies, after a careful domain-specific
selection process. For each associated ontological term, we described synonyms
and other syntactic or semantic variants. We then provided a hierarchy of hyper-
nyms and hyponyms. The focus of this paper is not on the GKG construction,
discussed elsewhere [2], but rather in its use for supporting a domain-specific
semantic search.

Semantic search technology, which is fueling the main search engines devel-
oped by Google, Microsoft, Facebook and Amazon, is empowered by the use of
large knowledge graphs, supporting search at the semantic level. In these sys-
tems, when the query string can be reliably associated to a given entity, other
similar instances associated with that entity are also retrieved and displayed
together with the entity properties. Inspired by the successful exploitation of
knowledge graph in search engines, we envisioned a semantic search approach
empowered by our Genomic Knowledge Graph. However, our approach to seman-
tic search differs from the paradigm used by the main search engines; our seman-
tic search is focused only on domain specific outputs, and takes into account the
fact that users must check semantic inferences, as they are typically ill-defined
and error-prone due to the use of external ontologies. Since some expert users
may be willing to spend additional effort on search, we expose to them the struc-
ture of the knowledge graph, by offering exploration capabilities for accessing enti-
ties, relationships and hierarchies, e.g., by navigating from given experiments to
the cell lines or tissues of provenance, to the donors with their demography and
phenotypes, and to the extraction process with the used technology and device.

This paper is organized as follows. In Sect. 2, we briefly recall the data prepa-
ration pipeline to generate the Conceptual Model (GCM) and Knowledge Graph
(GKG). Section 3 shows how advanced users can query the knowledge graph
according to significant patterns of interaction; we briefly discuss the Neo4j data
format to allow exploration queries on GKG. Sections 4 and 5 present related
work and conclusions.

2 Building the Genomic Knowledge Graph

The construction of the Genomic Knowledge Graph is performed at the end of a
process of data preparation which downloads, transforms, and cleans metadata
from original sources, then integrates them in the GCM, performing normal-
ization and enrichment on a number of selected attributes. Such process uses
an ETL procedure, which stores data within relational tables; the enrichment
process is assisted by tools that minimize the integration designers’ efforts.

354 A. Bernasconi et al.

Fig. 1. The genomic conceptual model.

Original Metadata. Metadata are directly downloaded from the original
sources and transformed into key-value pairs. In some cases, information is
already exposed in this semi-structured format; in other cases, pairs are obtained
after flattening hierarchical structures such as json or xml.

Genomic Conceptual Model. GCM is an entity-relation schema whose main
objective is to recognize a common organization for a limited set of supported by
most data sources, although with very different names and formats [1]. In Fig. 1
we show GCM in its current state; additions of new attributes, highlighted with
grey background and bold font, are due to the practical experience we gained in
the field. The schema is organized as a four-pointed star, centered on the Item
entity, which represents an elementary experimental unit: a single file of genomic
regions and their attributes. Dimensions (or views) respectively describe: (1) the
biological phenomena observed in the experiment: the sequenced replicated sam-
ple, the biological material and its preparation, its donor; (2) the management
aspects of the experiment: the case studies and projects/organizations behind its
production; (3) the technological process used for the production of the experi-
mental item; (4) the extraction parameters used for internal selection and orga-
nization of items, based on a partitioning strategy acting on different parameter
values used in programmatic calls towards the sources.

Ontological Terms. As result of a normalization and enrichment phase, we
associate specific values of the GCM with controlled terms. Out of all GCM
attributes, we selected ten of them as worthy of enrichment. Then, we selected
one or two preferred bio-ontologies for each attribute, and performed an enrich-
ment process. The ontological terms information has been retrieved by using
the Ontology Lookup Service [7] “search term” API. We save vocabulary terms
with their preferred labels, synonyms (or other semantic variants), iri, descrip-
tions and external references (i.e., identifiers of equivalent terms in alternative
ontologies). The details of the annotation process are documented in [2].

Ontological Hierarchy. As a further ontological enrichment, we materialize
subsets of the aforementioned ontologies which are relevant to annotate our data

Knowledge Graph for Genomic Datasets 355

(typically these range up to five hierarchical levels). The terms are linked through
relationships which represent subsumption (IS A), thus including hypernyms
and hyponyms of the stored terms, and containment (PART OF), thus including
their holonyms and meronyms.

3 Exploration of the Genomic Knowledge Graph

The Genomic Knowledge Graph connections can be visually explored by users
who understand the entities and relationships of GCM, as well as their linking
to the vocabulary, and then to navigate the generalization IS A and the con-
tainment PART OF relationships. The user exploration may start from GCM
entities or from the vocabulary terms. We next explain 4 typical patterns of
exploration: finding items of a given dataset, of a given patient, of a given case
study and associated with a given term.

Fig. 2. Sequential interaction, from panel (A)—centered on Item ENCFF58—to
panel (B)—centered on GRCh38 narrowPeak Dataset—to panel (C)—centered on Item
ENCFF42. Note that the items in (A) and (C) share the same Project, ENCODE.
(Color figure online)

Finding Other Items from the Same Datasets. A typical three-step
exploratory interaction from an Item to a different Item of the same Dataset
is shown in Fig. 2. Entity instances are represented as circles which include the
value of entity identifiers or some relevant properties; directed edges, carrying
the relationship names, connect entity instances. At all times, one of the entity
instances is the navigation handler, and its attributes can be (on request) exten-
sively represented in a box presented below the diagram. The end of the navi-
gation is shown in Fig. 2(C), where the navigation handler points to entity Item
ENCFF42, but the navigation starts from Item ENCFF58 in Fig. 2(A).

356 A. Bernasconi et al.

We use Fig. 2(A) to illustrate the typical organization of a GCM instance,
centred of the Item ENCFF58 (gray color, in the center), connected to the other
entities Replicate, BioSample, Donor (colors from pink to dark red, along the
biological view), to CaseStudy and Project (yellow colors, along the manage-
ment view) and to ExperimentType (green color, along the technology view). In
Fig. 2(B) we show that the user navigates to the Dataset entity (blue color, along
the extraction view), where several other Item instances of the same Dataset are
illustrated; then, Fig. 2(C) shows the end of the navigation. Navigation progres-
sively occurs by double-clicking on entity instances, while attributes of a given
entity instance (in this case, of Item) are displayed by single-clicking.

Finding All the Datasets of a Given Patient. Another typical search query
asks for all data types pertaining to a specific cancer patient; associating the same
patient with heterogeneous data types is highly valuable in order to understand
the possible research questions that can be asked to the underlying data repos-
itory. However, this query must be explored patient by patient, as each patient
may be associated to a highly variable number of data types.

Fig. 3. Exploration starting from a Donor, providing tumoral and normal tissues, which
are used to provide Items belonging to different Datasets. Note that here we omit
Replicate nodes for space reasons; they have 1:1 correspondence with BioSamples.

As shown in Fig. 3, we represent Donors through their ethnicity, gender, and
age (in this specific case through values [asian, male, 49y]). The database stores
two biological samples extracted from this patient, who is affected by “Liver
Hepatocellular Carcinoma”. One sample is tumoral and the other one is healthy
(i.e., a control). By further expanding the nodes, the user reaches the Item level,
thereby extracting 9 data Items which belong to 7 different Datasets, each show-
ing the type of data described in the region files (e.g., mutations, methylation
levels, copy number variations, and RNA or miRNA gene expression).

Knowledge Graph for Genomic Datasets 357

Exploring the Organization of a Given Case Study. Figure 4 shows
another typical exploration. Assume that a user is not aware of what constitutes
a case of study in the ENCODE data source and wants to discover it. Thus,
she starts with a given CaseStudy entity ENCSR63, shown at the bottom of the
figure. This entity represents a set of Items that are gathered together, because
they contribute to the same research objective. The interaction first allows to
visualize the group of eight Items associated with this case study, belonging to
the hg19 narrowPeak and GRCh38 narrowPeak Datasets (respectively having
cardinality five and three). Then, the underlying biological views are revealed,
by showing that all the Items are associated with chains originating from two
distinct Donors.

Fig. 4. From bottom to top: a CaseStudy contains multiple Items, which derive from
two different Replicates/BioSamples/Donors and are contained in two Datasets based
on the reference assembly of the genome.

Ontological Exploration. By starting from terms, the user may see how each
term is connected to different entities, thereby typically exploring the hierarchical
structure of ontological terms. Figure 5 shows how multiple Items (grey nodes
on the right) can be retrieved by using different graph paths starting from the
same hierarchical ancestor, 〈brain〉. A typical search may start from this entity,
which already has a number of connected BioSamples (i.e., samples which have
been annotated as related to brain concept) and progressively discover all its
sub-concepts up to the level where terms annotate other BioSamples. Then, the
exploration connects BioSamples to their Replicates and eventually to Items.
Note that, in the figure, 〈brain〉 directly annotates a BioSample and is an indirect
hypernym of 〈pons〉 and 〈globus pallidus〉, each connected to two BioSamples.
Note also that five BioSamples give rise to six Replicates and then to seven Items,
and also note that some Items are associated with two Replicates. Once Items
are reached, the user may be interested in understanding from which datasets

358 A. Bernasconi et al.

or experiment types they derive; this is possible by further exploring from the
Item nodes, using the first pattern of exploration discussed in this Section.

Fig. 5. Search starting from ontological terms. Essentially, (A) contains the ontological
terms, (B) contains annotated BioSamples, and (C) the Replicates (pink) and derived
Items (grey). (Color figure online)

Implementation Using Neo4j. For supporting the exploration of GKG, we
converted the relational database describing GKG content [2] into a graph
database; among many available graph databases (e.g., Neptune or Titan1),
we have chosen Neo4j (https://neo4j.com/), currently the leading open source
graph database, used by several companies also in the bioinformatics domain
(e.g., EBI, Intermine2). We map to Cypher (Neo4j’s query language) exploration
queries which are progressively built by our query interface.

4 Related Works

Some recent works employ conceptual models’ expressive power to explain bio-
logical entities and their interactions [11,15], or to characterize the processes
and objects during related analysis workflows [13]. The GKG is instead based
on a CM [1] that drives the data integration process and exposes the unified
view resulting from this effort. A classic work [5] proposed a Genomics Ontol-
ogy, while a more recent one [4] promotes the use of foundational ontologies to
avoid errors while creating and curating genomic domain models for personal-
ized medicine. We instead use ontologies to find a common ground between the
descriptions and terminologies used in different sources.
1 https://aws.amazon.com/neptune/, http://titan.thinkaurelius.com/.
2 https://www.ebi.ac.uk/ols/docs/neo4j-schema, https://github.com/intermine/

neo4j.

https://neo4j.com/
https://aws.amazon.com/neptune/
http://titan.thinkaurelius.com/
https://www.ebi.ac.uk/ols/docs/neo4j-schema
https://github.com/intermine/neo4j
https://github.com/intermine/neo4j

Knowledge Graph for Genomic Datasets 359

Among a number of integrated databases in the bioinformatics domain that
employ graph-based paradigms, we cite: BioGraphDB [10], a resource to query,
visualize and analyze biological data belonging to several online available sources
(focused on genes, proteins, miRNAs, pathways); Bio4j [12], a platform inte-
grating semantically rich biological data (focused on proteins, functional anno-
tations); ncRNA-DB [3], integrating associations among non-coding RNAs and
other functional elements.

5 Conclusions

We built an exploration mechanism for supporting semantic queries upon our
Genomic Knowledge Graph; we demonstrated the effectiveness of our approach
through four examples which are representative of the use of our query interface.
Our repository is already storing data coming from eight data sources of genomic
data, including datasets relevant for epigenomics, gene expression data, muta-
tion data, deployed in conjunction with an advanced genomic data manager [9],
available at http://gmql.eu/gmql-rest/.

Acknowledgement. This research is funded by the ERC Advanced Grant 693174
GeCo (Data-Driven Genomic Computing), 2016-2021.

References

1. Bernasconi, A., Ceri, S., Campi, A., Masseroli, M.: Conceptual modeling for
genomics: building an integrated repository of open data. In: Mayr, H.C., Guiz-
zardi, G., Ma, H., Pastor, O. (eds.) ER 2017. LNCS, vol. 10650, pp. 325–339.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69904-2 26

2. Bernasconi, A., et al.: Ontology-driven metadata enrichment for genomic datasets.
In: International Conference on Semantic Web Applications and Tools for Life
Sciences, vol. 2275. CEUR-WS (2018)

3. Bonnici, V., et al.: Comprehensive reconstruction and visualization of non-coding
regulatory networks in human. Front. Bioeng. Biotechnol. 2, 69 (2014)

4. Mart́ınez Ferrandis, A.M., Pastor López, O., Guizzardi, G.: Applying the principles
of an ontology-based approach to a conceptual schema of human genome. In: Ng,
W., Storey, V.C., Trujillo, J.C. (eds.) ER 2013. LNCS, vol. 8217, pp. 471–478.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41924-9 40

5. Hammer, J., Schneider, M.: The GenAlg project: developing a new integrating data
model, language, and tool for managing and querying genomic information. ACM
SIGMOD Rec. 33(2), 45–50 (2004)

6. Jensen, M.A., et al.: The NCI Genomic Data Commons as an engine for precision
medicine. Blood 130(4), 453–459 (2017)

7. Jupp, S., et al.: A new ontology lookup service at EMBL-EBI. In: Malone, J., et al.
(eds.) International Conference on Semantic Web Applications and Tools for Life
Sciences, vol. 1546, pp. 118–119. CEUR-WS (2015)

8. Kundaje, A., et al.: Integrative analysis of 111 reference human epigenomes. Nature
518(7539), 317–330 (2015)

http://gmql.eu/gmql-rest/
https://doi.org/10.1007/978-3-319-69904-2_26
https://doi.org/10.1007/978-3-642-41924-9_40

360 A. Bernasconi et al.

9. Masseroli, M., et al.: Processing of big heterogeneous genomic datasets for tertiary
analysis of Next Generation Sequencing data. Bioinformatics 35, 729–736 (2018)

10. Messina, A., et al.: BioGraph: a web application and a graph database for querying
and analyzing bioinformatics resources. BMC Syst. Biol. 12(5), 98 (2018)

11. Palacio, A.L., López, Ó.P., Ródenas, J.C.C.: A method to identify relevant genome
data: conceptual modeling for the medicine of precision. In: Trujillo, J., et al. (eds.)
ER 2018. LNCS, vol. 11157, pp. 597–609. Springer, Cham (2018). https://doi.org/
10.1007/978-3-030-00847-5 44

12. Pareja-Tobes, P., et al.: Bio4j: a high-performance cloud-enabled graph-based data
platform. BioRxiv, p. 016758 (2015)

13. Rambold, G., et al.: Meta-omics data and collection objects (MOD-CO): a concep-
tual schema and data model for processing sample data in meta-omics research.
Database 2019, baz002 (2019). https://doi.org/10.1093/database/baz002

14. Consortium ENCODE. An integrated encyclopedia of DNA elements in the human
genome. Nature 489(7414), 57–74 (2012)

15. Reyes Román, J.F., Pastor, Ó., Casamayor, J.C., Valverde, F.: Applying conceptual
modeling to better understand the human genome. In: Comyn-Wattiau, I., Tanaka,
K., Song, I.-Y., Yamamoto, S., Saeki, M. (eds.) ER 2016. LNCS, vol. 9974, pp. 404–
412. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46397-1 31

16. Stephens, Z.D., et al.: Big data: astronomical or genomical? PLoS Biol. 13(7),
e1002195 (2015)

https://doi.org/10.1007/978-3-030-00847-5_44
https://doi.org/10.1007/978-3-030-00847-5_44
https://doi.org/10.1093/database/baz002
https://doi.org/10.1007/978-3-319-46397-1_31

Decision Making

Decision-Making in Knowledge-intensive
Processes: The Case of Value Ascription

and Goal Processing

Pedro H. Piccoli Richetti1(&), Fernanda Araujo Baião2,
and Maria Luiza M. Campos1

1 Graduate Program in Informatics, Federal University of Rio de Janeiro,
Rio de Janeiro, Brazil

pedro.richetti@ufrj.br, mluiza@ppgi.ufrj.br
2 Pontifical Catholic University of Rio de Janeiro (PUC-Rio),

Rio de Janeiro, Brazil
fbaiao@puc-rio.br

Abstract. Knowledge-intensive Processes (KiPs) are a range of business pro-
cesses which are rather unpredictable, highly variable, and very dependent on
human knowledge and collaboration. Despite the recent efforts to provide
comprehensive support for KiP management, there are still few discussions
about how human aspects influence process execution. For example, in a dis-
aster management KiP, why someone decides to take action when the action
itself may put their own life at stake? This work aims to provide an ontological
background for properly understanding human decision-making actions by
analyzing cognitive states of agents participating in a KiP. We introduce a novel
perspective of decisions seen as value and risk experiences, and a formal
characterization of agents’ beliefs in a goal processing framework, which paves
the way for precisely and systematically explaining decision-making towards
process goals. We claim that these value-oriented conceptual models are capable
of describing the rationale of decision-making in KiPs in terms of value and risk
ascriptions and by a set of belief types that supports goal processing. In a
practical example, the proposed conceptual models were applied in the analysis
of a real-life KiP instance from the air traffic control domain.

Keywords: Knowledge-intensive Process � Goal Processing � Value Ascription

1 Introduction

Business processes represent core assets of every organization and, as such, need to be
managed so as to enable stakeholders to control and guide their evolution. As stated by
Dumas et al. [1], the execution of a process leads to several outcomes that should deliver
some sort of value to the actors involved in the process. Traditional control-flow ori-
ented – or highly automated – processes typically require less effort to be understood,
managed and improved, since each step of these processes can be predefined due to their
intrinsic predictability and low variability. However, there exists a range of processes, so
called Knowledge-intensive Processes (KiPs), that are rather unpredictable, highly

© Springer Nature Switzerland AG 2019
A. H. F. Laender et al. (Eds.): ER 2019, LNCS 11788, pp. 363–377, 2019.
https://doi.org/10.1007/978-3-030-33223-5_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33223-5_30&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33223-5_30&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33223-5_30&domain=pdf
https://doi.org/10.1007/978-3-030-33223-5_30

variable, and very dependent on human knowledge and collaboration [2]. KiPs are
present in several domains, such as in customer support services, air traffic control,
design of new products or services, marketing campaigns planning, data quality man-
agement, IT governance and strategic planning, disaster management, criminal inves-
tigations and healthcare diagnosis [2, 3]. Human agents, and particularly their mental
states inhered in them are core elements of KiPs, since they characterize the driving
mechanisms for agents to make decisions and take action. Although there exist several
works on characterization and management of KiPs [2, 4–7], there are still scarce
discussions in the literature on how agents get motivated and decide to act when the
process demands ad-hoc decisions, experienced workers and actions to be planned at
runtime.

We argue that a precise definition of the cognitive mechanisms that lead agents to
participate in a process is of major relevance to explain how agents formulate a proper
course of action towards a process goal. Take, as an example, a disaster management
process, where the process instance is to save victims from a building on fire. The
process involves coordination of many agents, some of them very specialized, to
perform activities such as “to isolate the area”, “to bring resources to extinguish the
fire”, “to enter the building and rescue victims”, and “to provide medical assistance”.
Each of these activities are planned and executed specifically for the characteristics of
the fire; however, during the execution of some procedures, conditions may change the
original course of action (for example, if the building starts to collapse). Consider a
firefighter that decides to face the fire and enter the building to search for victims. What
motivates the agent to put his/her own life at risk and take this action? What mecha-
nisms make the firefighter decide to act guided by the goal of a process that makes
him/her take actions contrary to the natural desire of keeping his/her life safe? In this
context, the research question we pursue to answer is: How agents decide to act in order
to successfully achieve a goal within a KiP? As we shall claim in this paper, prior to
action, agents make decisions among the possible alternatives and then choose the most
valuable tasks towards the goals they have previously committed to.

Different notions of value surround business processes contexts. Sales et al. [8]
discussed the notions of ethical value, exchange value and use value, being the latter
the mostly used in the business literature. Use value is considered a core issue to
understand why customers choose a particular product or service and how companies
differentiate themselves from their competitors. The notion of use value is relative to
one or more experiences (future, current or past) and results from the valuation of such
experiences, where a value ascription relationship may take place between an agent and
a value object [9]. It is also important to consider the opposite effect of value ascription,
that is risk ascription. Risk contemplates future experiences whose chances of hap-
pening should be mitigated because their occurrence may imply some kind of loss.
Sales et al. [8] proposed that risk shares some similarities with value, such as goal-
dependency, context-dependency, uncertainty and impact, thus most of what is applied
to the use value notion also can be applied to the risk notion.

A goal can be defined as an anticipatory mental representation of a state of affairs
that governs and constrains the behavior of an agent towards its realization [10]. Goals
drive human desires and intentions that push agents towards actions, as proposed in the
seminal BDI framework [11]. Castelfranchi and Paglieri [10] argued that goals are

364 P. H. P. Richetti et al.

central for understanding human cognition, since a goal is a mental representation with
a given use, function, role or application. Thus, the value or risk ascribed by agents to a
business process activity depends entirely on the goals the agents have represented in
their mind and how the experiences provided by that activity contribute to achieving
these goals.

Major theories of motivation emphasize that different aspects of beliefs, values and
goals compose a motivational state that precedes decision-making and further action
[12]. Thus, we claim that a discussion about the role of value and risk within beliefs
and goals in KiPs is needed to properly define and understand how agents get moti-
vated and decide to act. In this work, as the main contribution, we propose a well-
founded conceptual model to characterize and structure the ontological nature of the
relationships between two core concepts: on one side, the mental states of agents
participating in a KiP; on the other side, the goals that have to be pursued to lead this
processes to a successful state. We argue that this conceptualization should consider
value and risk ascriptions within decision-making as crucial concepts to explain why
agents take actions in a KiP. To support this proposal, we consider the Goal Processing
Theory [10] and the Common Ontology on ValuE and Risk (COVER) [8] in favor of
KiP decision-making analysis. The Knowledge-intensive Process Ontology (KiPO) [4]
is considered as a reference structural conceptual model for KiPs. All proposed con-
ceptual models are anchored on the Unified Foundational Ontology (UFO) [13] in
order to provide a sound basis for the conceptualizations. UFO has been used to
evaluate, re-design and give real-world semantics to domain ontologies by making
them more truthful to reality and by making their ontological commitments explicit
[14]. UFO has also been chosen as a reference top-level ontology because it provides
basic concepts regarding objects and events, as well as social and intentional phe-
nomena, which are needed to properly model the discussed domain. Regarding vali-
dation, we report on empirical evidences gathered from a practical example, were the
proposed conceptual model has been successfully applied in the analysis of a real-life
KiP instance from the air traffic control domain.

The remainder of the paper is organized as follows: Sect. 2 presents the background
on KiPO, Goal Processing and Value Ascription theories. Section 3 presents the
conceptual models we propose to explain how goal processing, value and risk
ascription influence decision-making in KiPs. Section 4 presents a case study with a
real-life KiP instance from the air traffic control domain applying and illustrating the
usefulness of our proposed models, and Sect. 5 concludes the paper.

2 KiPO, Goal Processing and Value Ascription

2.1 The Knowledge-intensive Process Ontology (KiPO)

KiPO is a domain ontology comprising key concepts and relationships that are relevant
for understanding, describing and managing a Knowledge-intensive Process [4]. KiPO
provides a common, domain-independent understanding of KiPs and, as such, it may
be used as a meta-model for structuring KiP concepts. This ontology is anchored on
UFO, as each KiPO concept is defined according to UFO constructs, which in turn are

Decision-Making in Knowledge-intensive Processes 365

described in terms of its metaproperties (sortality, relational dependence, rigidity,
among others). It defines the core concepts of a KiP, such as agents, their goals and
mental states, Knowledge-intensive Activities (KiAs) the agents perform and the
contextual elements involved in KiAs. KiPO argues that a KiP is driven by agents’
intentions towards achieving process goals, and the flow of activities, especially
decision-making ones, within a KiP is deeply influenced by intentional moments, such
as Beliefs, Desires, Intentions and Perceptions [15].

According to KiPO, an Agent is the one who intentionally commits to make a
Decision to solve a Question, being a Decision a special type of KiA. A Question is a
Contingency event that triggers a Decision to be made. To perform a Decision, an
Agent chooses among several Alternatives, which represent potential Situations that
could be achieved (Chosen Alternative) or not (Discarded Alternative). Alternatives
satisfies Propositions, which are assessed as Advantages or Disadvantages according to
Criteria considered by the Agent during the assessment. An Alternative may also pose
some Risks, which are to be avoided. Regarding Decisions, KiPO demands
improvements on its Risk definition, since it considers Risk as a Proposition that
impacts on Decision Alternatives. More recently, the work of Sales et al. [8] considered
Risk as a special case of Value. Also, both Value and Risk concepts can be ascribed to
Experiences (Events) so that they can be evaluated by an Agent to the extent which of
these Experiences satisfy or hurt some Goal. This approach allows to explain why
Agents decide to choose an Alternative in preference of others by the notion of Value
Ascription, which considers a sense of valuation of the intended experiences a Decision
may imply. KiPO also defines two types of Goals, namely Process Goal and Activity
Goal. A Process Goal is the ultimate objective to be pursued when a KiP is performed
and it is expected that it should not change during process execution. An Activity Goal
is the Goal to be achieved by the execution of an Activity (being a single Activity or a
KiA) that an Agent commits to perform as part of the KiP, and it contributes to achieve
a Process Goal. KiPO does not elaborate on how Activity Goals are activated, pursued
or chosen in scenarios where decisions about the course of action are ad-hoc or the KiP
is subject to contingencies which force existing goals to be dropped or new goals to be
added.

2.2 Goal Processing

UFO defines a Goal as an internal mental representation of a future expected outcome
[13]. As such, its existence depends on an Agent having an Intentional Moment, being
a Desire or an Intention towards that Goal. A Desire is one kind of goal bearer, a
possible origin of Intentions, and it does not imply on any commitment to action. An
Intention refers to a Goal an Agent decides to pursue and it is assumed the Agent is
committed to act. An Intention can be characterized as a two-stage structure: an
intention “to do”, i.e., to perform a given action, and an intention “that”, i.e., to realize a
Goal [10]. For example, in the scenario of a firefighter whose intention is to rescue a
victim under debris of a collapsed building, the intention “that” is to rescue a victim
and the intention “to do” is the action of removing the debris over the victim. Goals can
be just “means”, or instrumental, to higher-level goals. These instrumental goals are
intermediate steps to achieve higher-level goals, and they can be added or dropped as

366 P. H. P. Richetti et al.

part of the planning for the agents to act. The decisions about which goals should be
chosen towards a higher-level goal, e.g. a process goal, is acknowledged as Goal
Processing [10]. In this processing, beliefs play a major role, acting as test conditions
and filters for goals to reach their final stage, where goals become executive and then
instantiate actions. Castelfranchi and Paglieri’s [10] theoretical proposal stands in
contrast with the dominant view of intentions. It suggests how to reduce the number of
motivational primitives in BDI logics from two (desires and intentions) to one (goals),
providing, at the same time, some insights on their mutual relationship. They propose a
list of different types of goal-supporting beliefs that play different functional roles in
goal processing, as described below, with illustrative examples of KiP scenarios:

Motivating Beliefs. Goals are often activated by beliefs on the current state of affairs.
This category considers two sub-classes: (a) Triggering Beliefs: beliefs that reactively
activate goals on the basis of a pre-established connection. For example, as a disaster
management coordinator, it is my belief that if a flood started in my city it will activate
my goal to provide operational support to a disaster response; (b) Conditional Beliefs:
beliefs that activate a goal on the basis of the conditional nature of the goal itself. For
example, as a loan officer, it is my belief that today is the 10th day of a month that
activates my conditional goal to check if borrowers paid their monthly debts. The
presence of motivating beliefs enables goals to be activated.

Assessment Beliefs. In order to consider a goal as candidate for being pursued, an
agent cannot conclude that such goal is either already realized, self-realizing, or
impossible to be achieved. Assessment beliefs are divided in three subclasses: (a) Self-
realization beliefs: beliefs concerning the fact that a goal will come to be autonomously
realized in the world. They may not require actions by the agent, e.g. due to natural
processes or other agents that guarantee their achievement. For example, as a forensic
investigator, it is my belief that a DNA exam obtained from a crime scene can last up to
14 days, which prevents me pursuing the goal of obtaining the results earlier;
(b) Satisfaction beliefs: beliefs concerning the fact that a goal is already realized, and
that it will remain as such without agents’ intervention. For example, as a physician, the
belief that my patient has been cured prevents me pursuing the goal to continue treating
the patient for the same disease; (c) Impossibility beliefs: beliefs concerning the fact
that a goal is impossible at a given time, or it will never be possible. For example, as an
air traffic controller, it is the belief that two aircrafts can collide if they concurrently
land on the same runway that unsupports my goal to direct them to the same runway at
the same time. The absence of assessment beliefs enables activated goals to be pursued.

Cost Beliefs. Beliefs concerning the costs or resources that an agent expects to sustain
as a consequence of pursuing a certain goal. For example, as an architect, it is my belief
about the high price of marble stone that makes me decide to not pursue the goal of
making an entire staircase with this material within a housing project.

Incompatibility Beliefs. Beliefs concerning different forms of incompatibility
between goals, that can force the agent to choose among them. For example, as a
product designer, it is my belief that I cannot apply premium materials in a new product
to ensure quality, and at the same time I want to offer a low-cost product, that prevents
me pursuing both these goals concurrently.

Decision-Making in Knowledge-intensive Processes 367

Preference Beliefs. Beliefs concerning which goals should be given precedence over
others in the current context. This category splits in two subclasses: (a) Value beliefs:
concerning the subjective value of a certain goal, given how this goal will benefit the
agent. For example, as a doctor, it is my belief that it is more valuable to treat a bone
fracture than to treat skin scrapings of a patient that suffered a motorcycle fall that
makes me choose first the goal to treat the bone fracture; (b) Urgency beliefs: con-
cerning when a goal will “expire”, i.e. it will be no more possible to achieve it. For
example, as a firefighter, it is my belief that the fire is about to reach a crowded room
that makes me pursue the goal to start fighting the fire first in that room.

Precondition Beliefs. Beliefs concerning the necessary preconditions to successfully
execute a chosen goal by executing the appropriate action. They are distinguished by
two sub classes: (a) Incompetence beliefs: mainly concern both the basic competences,
the sufficient skills and abilities needed to reach a goal, given agents’ convictions on
how to achieve the goal. For example, as a doctor, it is my belief that I cannot start the
surgery before an anesthetist applies sedation to the patient; (b) Lack of conditions
beliefs: concern external conditions, opportunities, and resources. They cover both
conditions for the execution of the appropriate actions and conditions for the success of
a correctly performed action. For example, as a loan officer, it is my belief that I cannot
lend money until the client signs the loan contract. The absence of precondition beliefs
enables chosen goals to be executed.

Means-end Beliefs. Beliefs concerning the instrumental relation between a goal and
an action or an event which is considered to serve to achieve the former, and, therefore,
can be assumed as a means to that end. For example, as a customer service officer, it is
my belief that I have to place a call to a client to obtain more details about an issue that
makes me place the call to achieve the instrumental goal of obtaining more details,
during a customer service process instance. Means-end beliefs enable chosen goals to
be executive, i.e. they allow an action to be immediately performed.

Each belief type supports a goal in a specific stage [10] as follows. Goal Activation
is the stage where the support of Motivating Beliefs makes goals active. In the next
stage (Goal Evaluation), goals are evaluated by the presence of Assessment Beliefs,
which verify if the Active Goal is already satisfied, will be autonomously satisfied, or it
is impossible to be achieved. In this phase, the Active Goals need not to be coherent,
and are subject to conflicts, thus having to be further chosen or to be renounced. If an
Active Goal passes this stage, it is a Pursuable Goal. In the sequence, Goal Deliberation
is performed, where Pursuable Goals are tested by Preference and Cost Beliefs and, if
there are no Incompatibility Beliefs, they can become Chosen Goals. At this point, a
Chosen Goal becomes an intention of an agent towards a future action. In Goal
Checking stage, if Chosen Goals have no more Precondition Beliefs constraining the
intended action and Means-end Beliefs support these goals, the goals become executive
and the actions can be immediately instantiated.

Another important aspect in Goal Processing is goal revision: each time the set of
beliefs changes, their supported goals should also be revised in order to maintain proper
goal support considering the “new believed” reality. For example, if the agent believes
a goal is unattainable or it is no longer motivated by its condition or higher-level goals,
that goal can be dropped. For instance, a KiP is subject to contingencies, that are

368 P. H. P. Richetti et al.

defined as unexpected events that interfere in the process execution. A contingency
event may bring about to reality a state of affairs that force a change on the agent’s
beliefs, thus demanding a goal revision. For example, during a coronary bypass sur-
gery, the blood pressure of the patient suddenly drops. Faced by this situation, the
leading surgeon, that has the belief that extreme hypotension is a life-threatening
condition, stops planned surgical activities to treat and restore the patient’s blood
pressure (a newly introduced instrumental goal) to normal levels, so the surgery can
continue.

2.3 Value Ascription

Goals give value to actions [16] and value can be ascribed to past, current or envisioned
experiences, involving or not a value object as the center of analysis [17]. This pos-
tulate about Value Experience is corroborated by the marketing domain where it is
stated that “Value resides not in the object of consumption, but in the experience of
consumption” [18]. The diagram1 on Fig. 1 presents an excerpt of COVER ontology
[8] depicting the relation of Value Experiences and Goals.

According to UFO [13], Events change reality by changing the state of affairs from
one (pre-state) Situation to another (post-state) Situation. A Value Experience aggre-
gates Value Events, which can be Impact Events, that are a kind of Value Event which
brings about Situations that are Impactful Outcomes. Such outcomes may be positive or
negative, related to value or risk ascriptions, respectively, and they impact the Intention
of an Agent that is the Value Subject participating in the Value Experience. Every
Intention has a Goal as propositional content. This brought about Impactful Outcome
can satisfy a Goal to a given degree, which can be determined by the comparison of the

Fig. 1. Relationship between Goals and Value Experiences [8]. (Color figure online)

1 From now on, we adopt the following color-coding scheme: events are represented in yellow, objects
in pink, qualities and modes in blue, relators in green, situations in orange, propositions in purple and
powertypes in white. Italic font style highlights classes’ names appearances in the text. For colorful
figures, please refer to the online version.

Decision-Making in Knowledge-intensive Processes 369

Impactful Outcome and the expected state of affairs to be reached when the Goal is
achieved. As stated by Azevedo et al. [19], the situations that satisfy a goal are the ones
in which value has been produced or their effect is realized.

3 Goal Processing and Value Ascription Roles in KiPs

In this section, we propose a conceptual model to formally define decision-making in
KiPs based on Value Ascription and Goal Processing theories. Essentially, a Decision
is represented as a Value Experience which an Agent can ascribe value to, referred to
the goals supported by the agent’s beliefs. Firstly, we provide precise definitions of
belief types and goal stages from Goal Processing theory. We anchored these con-
structs on UFO, so they can also be properly integrated with KiPO and COVER
constructs, as these two ontologies are already well-founded on UFO. Figure 2 sum-
marizes the proposed Goal Processing conceptual model that also considers the
guidelines for multi-level modeling described in [20].

A Belief Type is a specialization of an UFO::Intrinsic Moment Universal and
categorizes UFO::Belief. An instance of a Belief Type, like aMotivating Belief, is also a
specialization of UFO::Belief. A Goal Type is a specialization of UFO::Goal Universal
and partitions UFO::Goal in one of the four Goal Processing Stages according to
Castelfranchi and Paglieri’s theory [10]. The partition relation is applied to disjointly
categorize a first order type [20] (Goal Type), since according to the Goal Processing
Theory, a Goal must be present in only a single stage at a time. For example, an Active
Goal ceases to be active after the Goal Evaluation task, when the Goal becomes a
Pursuable Goal and so on. An instance of a Goal Type, e.g. an Active Goal, is also a
specialization of an UFO::Goal. Each instance of a Belief Type relates to instances of
Goal Type according to the Goal Processing stages (Fig. 2), e.g., a Pursuable Goal is
evaluated by Assessment Beliefs during the Goal Evaluation task.

Goal-orientation is a characteristic of KiPs. As stated by Di Ciccio et al. [2] for a
KiP: “The process evolves through a series of intermediate goals or milestones to be
achieved. Process participants continuously assess process progression and then act or
plan the actions to be performed, depending on the process status and the available data
and knowledge elements”. It is also important to consider that goals do not only derive
from internal motives, but they may originate from duties, obligations or may also be
imported, in forms of requests, orders, norms, and roles [21]. KiPs occur in the context
of organizations, which may have their own business rules, norms and roles. As the
focus of this work is on existing KiPs rather on design of new ones, it is assumed that
KiP goals are already existing. In these scenarios, whenever agents participate in a KiP,
it is expected that the agents are aware of the normative structures of the organization
they belong to. Thus, some goals of the organization may be imported by the agents
that participate in a KiP. This goal adoption can be seen as an agent doing something
for others, even though there is no sincere desire towards that goal. Thus, what
motivates an agent to act, even when there is no genuine desire to act, can be either a
desire to pursue a higher-level goal or a norm/obligation due to a commitment to the
organization.

370 P. H. P. Richetti et al.

The Self-Determination Theory (SDT) [16] is one of many motivation theories that
explains the origins of agents’ initiatives to act by specifying different types of moti-
vation [22]. Gagné and Deci [23] affirm that activities that are not interesting (i.e., that
are not intrinsically motivating) require extrinsic motivation, such as implicit approval
or tangible rewards, which are called external regulations in SDT. According to Eccles
and Wigfield [22], a task can be ascribed a positive value by a person because it
facilitates important future goals, even if this person is not interested in the task for
his/her own sake. For instance, students often take classes they do not particularly
enjoy but that they need to take in order to pursue other interests, for example, to please
their parents, or to obtain an academic degree.

Once an agent is committed towards a goal, an intentional structure is formed. The
intention “to do” may converge into a complex intentional action, performed by sub-
actions. In a KiP, this “to do” structure can be seen as a KiA, which is essentially a
complex action (Event) and, as such, may also be composed by other KiAs.

Decisions in a KiP are considered a special case of KiAs, where agents ponder the
possible alternatives and then choose the ones they believe will mostly satisfy a goal.
We argue that decisions heavily depend on the value or risk agents ascribe to that
decision experience based on the possible outcomes of the decision. The following
diagrams (Figs. 3 and 4) present the proposed formalization of the notion of value
ascription and decision-making in the context of KiPs. Each introduced new concept is
well-founded on an UFO construct. As KiPO and COVER are already anchored on
UFO, and due to space limitations, we omit their respective UFO specializations and
apply namespaces to refer to reused classes from their founding ontologies. As stated
by COVER, Value inheres in a Value Ascription. It is worth noting that COVER
considers that the notion of Risk is irreducibly intertwined with the notion of Value, that
is, Risk Ascription is a particular case of Value Ascription. In this sense, the Risk
specialization from Value concept aims to emphasize a counter-value position, where

Fig. 2. Goal types and their respective supporting beliefs [10] anchored on UFO.

Decision-Making in Knowledge-intensive Processes 371

the outcomes of an event may generate a negative impact or a loss for the Value
Subject, that is the participant of a Value Experience. A KiA, being an Event, can be a
specialization of a Value Experience, and a Decision, as a specialization of a KiA,
inheres the same properties of a Value Experience. Value Ascription is a relation that
also involves a Value Assessor, i.e. the one who judges the value of a Value Ascription.
This ascription is also directly affected by the intrinsic properties of the Value Objects
that may participate in a Value Experience. In a KiP setting, the agents that participate
in the process are called Participants, and they can be both Value Assessor Partici-
pants, judging the value of a KiA or a Decision, or Value Subject Participants, par-
ticipating in a KiA or making a Decision to solve a Question (Fig. 3).

According to KiPO, an Impact Agent, which is also a KiP Participant, is respon-
sible for executing KiAs and for identifying Questions that trigger Decisions. KiPO
defines Alternatives as situations that are brought about by making a Decision. Some
Alternatives can be discarded due to lack of supporting beliefs, such as when partici-
pants do not believe that they can cause any impact that will contribute to achieve a
Goal or when these Alternatives are to be brought about by a negative Impact Event (a
Loss Event). Conversely, a Chosen Alternative is supported by beliefs that it can cause
an impact that contributes to achieve a Goal. The situation brought about by a Chosen
Alternative is a pre-state for action, thus, from this point, a Participant can manifest an
Intention to act, with the propositional content of a Chosen Goal. If there are no more
precondition beliefs preventing the action to be executed, the Goal becomes an
Executive Goal and an Activity can be immediately performed (Fig. 4).

The following scenario presents an example of the presence of value concepts and
belief support to process a goal during the execution of a KiP. In a disaster management
process, Anne, a firefighter, has to rescue people from a building on fire. It is
undoubtedly true that she does not inhere the desire of putting her own life at risk, what
would be an inevitable consequence of entering the building. Nevertheless, she adopts
the goal of “making people safe” from her role, and as such, she commits herself (that
is, she chooses this goal and plans to act) to enter the building. The goal of “entering
the building on fire” is an instrumental goal to achieve the higher-level process goal of

Fig. 3. Value Ascription to Knowledge-intensive Activities and Decisions.

372 P. H. P. Richetti et al.

“making people safe”. This goal adoption may be motivated by an external regulation
of not feeling guilty if some victim gets deceased as a consequence of her lack of
immediate action and also relates to the use value ascribed to the decision to move and
enter the building, needed to help her achieve the process goal. To support this goal,
urgency (she believes that the fire will reach the victims very fast) and skill beliefs (she
received proper training, and knows she is capable to perform the rescue) are the most
important mental moments inhered in her when she chooses the instrumental goal to
enter the building.

KiPO defines Risk as the propositional content of an Alternative that threatens a
Decision. It does not elaborate on the ontological nature of Risk and how it can be of
much more interest for KiPs than being constrained to a proposition. As Risk can be
seen as a special case of Value [8], depending on the Goal and Beliefs inhering in a
Participant, there can be exclusively a Risk Ascription to a Decision, instead of a Value
Ascription. For example, an air traffic control officer has the Goal to direct the landing
of two aircrafts in the same airport in a very short time window. The demands of two
aircrafts landing almost simultaneously is a Threat Event (specialization of a Trigger
Event when it involves Risk Ascription) that triggers the Risk Experience. It is a
Decision to be made considering the existing Alternatives, and it puts the officer as a
Risk Subject since it is the Goal of air traffic controllers to safely route the aircrafts (the
Process Goal). Considering that the occurrence of a Loss Event will cause severe
consequences, a high Risk is ascribed to this Decision. For the instrumental Goal of
orienting two quasi-concurrent landings, the officer must have Beliefs supporting this
Goal. For example, if the Risk Subject has an Incompatibility Belief that it is unsafe to
land two aircrafts in a short time window (a Discarded Alternative), the officer decides
to authorize one aircraft to land and put the second on hold until it can safely
approximate to land.

KiPs are also recognized as collaboration-oriented processes [2], as the participa-
tion of multiple agents is expected for the achievement of process goals. In most
organizations, strict cooperation is a premise, and incentives, such as material rewards

Fig. 4. A Decision in a KiP as a Value Experience.

Decision-Making in Knowledge-intensive Processes 373

or social approval, can be offered to foster this behavior, acting as external regulations.
By these considerations, it is assumed that KiP participants are committed to cooperate
towards the process goals. Beyond the aforementioned case where one agent adopts the
organization’s goals, there is also a need of a group of agents to form a single whole
point of view of beliefs and goals about the process. It is trivial to assume that most of
the participants will adhere to a higher-level goal of a KiP due to their commitment to
the organization, but for the instrumental goals, it is necessary to establish proper
communications among the agents in favor of reaching consensus. Discussions about
communications in KiPs have been performed in [24], however, their role in goal
processing still deserves a detailed analysis, and for this reason, this topic is left out of
the scope of this paper and is planned as future work.

4 The Ontological Nature of Decision-Making in a Real-Life
KiP

To exemplify how the proposed conceptual models can properly represent decision-
making in KiPs, we inspected a real-life KiP from the air traffic control domain. The
specific process instance comprises the procedures taken by the air traffic control and
the pilot of the flight 1549, which crash-landed on New York’s Hudson River in 2009,
with no casualties. This happening was essentially a KiP, since it involved ad-hoc
decisions performed by experienced agents, a contingency event and collaboration
among all participants. The analysis relies on the inspection of the transcription2 of the
communications among LaGuardia tower, Teterboro tower, New York Terminal Radar
Approach Control (TRACON) and the aircraft. Due to space restrictions we focus on
specific points of the transcription that contain externalizations of mental states from
participating agents or characterizations of decision-making events.

At time 20:27:36 (hh:mm:ss, UTC time), the pilot externalized his Belief that the
plane lost thrust in both engines due to a collision with birds: “…Hit birds, we lost
thrust in both engines. We’re turning back towards LaGuardia.”. This supporting
belief activated an Instrumental Goal to return to LaGuardia airport in order to achieve
the higher-level Goal of safely transporting people from a point to another (the Process
Goal). At time 20:28:11, the pilot evaluated the Active Goal by the presence of an
Impossibility Belief when he stated: “We’re unable (to return to LaGuardia). We may
end up in the Hudson.” At that time, he also dropped this first Goal and activated a new
unexpected Instrumental Goal: to land on Hudson River.

In 20:29:02-03, the pilot considered an Alternative to try to land at Teterboro
airport offered by TRACON. At 20:29:21, TRACON authorized the plane to land at
Teterboro. At this point, the pilot had to choose between landing at Teterboro or at the
Hudson River. This deliberation was supported by a Value Belief (a subtype of a
Preference Belief) that landing at the Hudson River would be less risky (a Risk
Ascription) than turning to Teterboro. At 20:29:25 the pilot manifested an unusual

2 The full transcription is available in: https://www.faa.gov/data_research/accident_incident/1549/
media/Full%20Transcript%20L116.pdf.

374 P. H. P. Richetti et al.

https://www.faa.gov/data_research/accident_incident/1549/media/Full%20Transcript%20L116.pdf
https://www.faa.gov/data_research/accident_incident/1549/media/Full%20Transcript%20L116.pdf

Decision and refused the Alternative to go to Teterboro runway, since he ascribed a
higher Risk to this action because it could imply on more severe consequences (a Loss
Event), e.g., the plane would crash on ground and in an urban area. In the sequence
(20:29:28), the pilot made his last contact: “We’re gonna be in the Hudson.”. This
statement represents a Chosen Goal, which turned to be executive since there were no
more preconditions prior to the pilot take action and proceed to land on the river.

5 Conclusions

As human agents are a central piece for KiPs execution, shedding light in how agents’
mental states drive them to make decisions and perform actions towards goals is of
paramount relevance. More specifically, it is interestingly tricky to understand the
ontological nature of these cognitive elements and how they relate to the goals adopted
from external sources (such as an organization the agent is committed to) in a way that
value aggregation is perceived by both parties, in what would be considered contra-
dictory situations at a first sight, such as the outcome of a decision “to land a com-
mercial aircraft on a river” and the goal “to safely transport people”.

The main contribution of this work is a conceptual model, in the form of a well-
founded ontology, as a novel perspective for precisely explaining how process par-
ticipants choose goals, make decisions and perform actions based on the notions of
goal processing and value ascription. As a practical implication, the model can be of
relevance for any organization to help it precisely understand several collaborative and
unpredictable critical scenarios. Organizations can benefit of the proposed conceptu-
alization as a reference to analyze their KiPs, now considering that the associated
agents perform value ascriptions when making decisions prior to action. Besides, these
actions are only formulated after a series of assessments based on agents’ beliefs that
process instrumental goals needed to achieve business processes successful states.

We are aware that this work did not detail the possible origins of contingency
events, which are a main source of questions that trigger decisions. This limits the
scope of the present work, by assuming that these events can happen unexpectedly
during process execution. The proposed models also do not address neither the social
roles of process participants nor the communication perspective within KiPs and goal
processing. This perspective is relevant because it is through communication that
agents interact with each other, share their beliefs and form a common ground to make
collective decisions to achieve process goals. We have focused on agents’ internal
mental states that make them take individual decisions within the social context of a
KiP. This leaves space for further investigations in the future.

We successfully applied the proposed conceptual model to support analysis of a
complex and real-life KiP instance, showing the intrinsic and non-intuitive behavior that
may emerge from such processes. There is, of course, a need to collect more evidences to
demonstrate the descriptive and explanatory power of the proposed model, which will
demand a broader empirical evaluation to validate themodel under different KiP domains.
Domains that are in our agenda to be investigated include: software development and

Decision-Making in Knowledge-intensive Processes 375

troubleshooting processes. Future work may also relate value and risk ascription of
decisions to process performance outcomes. Since these ascriptions are associated with a
goal evaluation function, this should help model process performance of KiPs.

References

1. Dumas, M., La Rosa, M., Mendling, J., Reijers, H.: Fundamentals of Business Process
Management. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-662-56509-4

2. Di Ciccio, C., Marrella, A., Russo, A.: Knowledge-intensive processes: characteristics,
requirements and analysis of contemporary approaches. J. Data Semant. 4, 29–57 (2014)

3. Marjanovic, O., Freeze, R.: Knowledge intensive business processes: theoretical foundations
and research challenges. In: 44th International Conference on System Sciences (2011)

4. França, J., Netto, J., Carvalho, J., Santoro, F., Baião, F., Pimentel, M.: KIPO: the
knowledge-intensive process ontology. Softw. Syst. Model. 14(3), 1127–1157 (2014)

5. Işik, Ö., Mertens, W., Van den Bergh, J.: Practices of knowledge intensive process
management: quantitative insights. Bus. Process Manag. J. 19, 515–534 (2013)

6. Vaculin, R., Hull, R., Heath, T., Cochran, C., Nigam, A., Sukaviriya, P.: Declarative
business artifact centric modeling of decision and knowledge intensive business processes.
In: IEEE 15th International Enterprise Distributed Object Computing Conference (2011)

7. Mundbrod, N., Reichert, M.: Process-aware task management support for knowledge-
intensive business processes: findings, challenges, requirements. In: IEEE 18th International
Enterprise Distributed Object Computing Conference Workshops and Demos (2014)

8. Sales, T.P., Baião, F., Guizzardi, G., Almeida, J.P.A., Guarino, N., Mylopoulos, J.: The
common ontology of value and risk. In: Trujillo, J.C., et al. (eds.) ER 2018. LNCS, vol.
11157, pp. 121–135. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00847-5_11

9. Guarino, N., Andersson, B., Johannesson, P., Livieri, B.: Towards an ontology of value
ascription. In: Formal Ontology in Information Systems, vol. 283, p. 331 (2016)

10. Castelfranchi, C., Paglieri, F.: The role of beliefs in goal dynamics: prolegomena to a
constructive theory of intentions. Synthese 155, 237–263 (2007)

11. Bratman, M.: Intention, Plans, and Practical Reason, vol. 10. Harvard University Press,
Cambridge (1987)

12. Wigfield, A., Cambria, J.: Achievement motivation. In: The Corsini Encyclopedia of
Psychology, pp. 1–2 (2010)

13. Guizzardi, G.: Ontological Foundations for Structural Conceptual Models. Telematica
Instituut/CTIT, Enschede (2005)

14. Guizzardi, G., Wagner, G., Almeida, J., Guizzardi, R.: Towards ontological foundations for
conceptual modeling: the unified foundational ontology (UFO) story. Appl. Ontol. 10, 259–
271 (2015)

15. Rao, A.S., Georgeff, M.P.: BDI agents: from theory to practice. In: Proceedings of the First
International Conference on Multiagent Systems, vol. 95, pp. 312–319 (1995)

16. Ryan, R., Deci, E.: Intrinsic and extrinsic motivations: classic definitions and new directions.
Contemp. Educ. Psychol. 25, 54–67 (2000)

17. Sales, T., Guarino, N., Guizzardi, G., Mylopoulos, J.: An ontological analysis of value
propositions. In: IEEE 21st International Enterprise Distributed Object Computing
Conference (EDOC) (2017)

18. Frow, P., Payne, A.: Towards the ‘perfect’ customer experience. J. Brand Manag. 15, 89–
101 (2007)

376 P. H. P. Richetti et al.

http://dx.doi.org/10.1007/978-3-662-56509-4
http://dx.doi.org/10.1007/978-3-030-00847-5_11

19. Azevedo, C., Almeida, J., van Sinderen, M., Quartel, D., Guizzardi, G.: An ontology-based
semantics for the motivation extension to archimate. In: IEEE 15th International Enterprise
Distributed Object Computing Conference (2011)

20. Carvalho, V., Almeida, J., Fonseca, C., Guizzardi, G.: Multi-level ontology-based
conceptual modeling. Data Knowl. Eng. 109, 3–24 (2017)

21. Castelfranchi, C.: Intentions in the light of goals. Topoi 33, 103–116 (2014)
22. Eccles, J., Wigfield, A.: Motivational beliefs, values, and goals. Ann. Rev. Psychol. 53, 109–

132 (2002)
23. Gagné, M., Deci, E.: Self-determination theory and work motivation. J. Organ. Behav. 26,

331–362 (2005)
24. Richetti, P.H.P., de A.R. Gonçalves, J.C., Baião, F.A., Santoro, F.M.: Analysis of

knowledge-intensive processes focused on the communication perspective. In: Carmona, J.,
Engels, G., Kumar, A. (eds.) BPM 2017. LNCS, vol. 10445, pp. 269–285. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-65000-5_16

Decision-Making in Knowledge-intensive Processes 377

http://dx.doi.org/10.1007/978-3-319-65000-5_16

Conceptualization, Design,
and Implementation of EconBPC – A Software
Artifact for the Economic Analysis of Business

Process Compliance

Stephan Kuehnel1(&), Simon Thanh-Nam Trang2,
and Sebastian Lindner1

1 Martin Luther University Halle-Wittenberg, 06108 Halle (Saale), Germany
{stephan.kuehnel,sebastian.lindner}@wiwi.uni-halle.de

2 University of Goettingen, 37073 Goettingen, Germany
strang@uni-goettingen.de

Abstract. Business process compliance (BPC) refers to business processes that
meet requirements originating from different sources, such as laws, directives,
standards, etc. BPC has become a heavy cost driver that requires both technical
and economic support. While there are numerous tools for the technical support
of compliance with requirements, there is a lack of software artifacts supporting
the economic perspective of BPC. Consequently, this paper applies a design
science research approach aiming at the conceptualization, design, and imple-
mentation of a software artifact for the economic analysis of BPC. In this
context, we identify two design requirements on the improvement of decision
quality and the reduction of cognitive effort. In addition, we derive five design
principles (DP) on the basis of which the software artifact EconBPC is imple-
mented. The five DP are evaluated with regard to comprehensibility, trace-
ability, usefulness, and practicability both as part of an expert survey and in
think-aloud sessions.

Keywords: Business process compliance � Economic analysis �
Software artifact

1 Introduction

Business process compliance (BPC) refers to business processes that meet requirements
originating from various sources, such as laws, directives, etc. [1]. Approaches to BPC
verification aim to confirm compliance using formally expressed regulatory require-
ments by means of process verification tools [2]. Such tools focus on technical methods
to support BPC considering a variety of checking scopes like control flows, time, or
data [3]. Since BPC has become a heavy cost driver [1], complying with requirements
requires both technical and economic support [4]. On the one hand, BPC causes costs

Electronic supplementary material The online version of this chapter (https://doi.org/10.1007/
978-3-030-33223-5_31) contains supplementary material, which is available to authorized users.

© Springer Nature Switzerland AG 2019
A. H. F. Laender et al. (Eds.): ER 2019, LNCS 11788, pp. 378–386, 2019.
https://doi.org/10.1007/978-3-030-33223-5_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33223-5_31&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33223-5_31&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33223-5_31&domain=pdf
http://dx.doi.org/10.1007/978-3-030-33223-5_31
http://dx.doi.org/10.1007/978-3-030-33223-5_31
https://doi.org/10.1007/978-3-030-33223-5_31

for software, hardware, or personnel [5]. On the other hand, BPC prevents violations
that could result in negative monetary consequences, e.g., penalties or fines [5]. Both
aspects play an important role for the profitability of a company and must remain in an
appropriate balance. The investigation of process-based compliance measures (i.e.,
compliance activities/sequences of business processes) with regard to this balance is a
procedure that we call economic analysis of BPC. This analysis includes an economic
assessment of process-based compliance measures aimed at identifying inefficiencies
and stimulating process enhancements.

The economic analysis of BPC is a complex task for the person in charge of the
process (i.e., the process owner), especially if necessary data must be obtained from
extensive log files. Studies from the field of decision-making theory suggest the use of
software artifacts to support complex tasks and decisions, enabling a reduction of the
cognitive effort for the end user [6, 7], e.g., through automation. Although there are
design-oriented studies dealing with the economic valuation of business processes (see,
e.g., [8–10]), to the best of our knowledge there is a lack of software artifacts dealing
with the economic analysis of BPC. Hence, the research question (RQ) of this paper is:

RQ: How to conceptualize and design a software artifact for the economic
assessment and analysis of business process compliance?

To answer this question, we apply a design science research (DSR) approach whose
details are described in Sect. 2. Section 3 presents design requirements (DR) of a
software artifact for the economic analysis of BPC (short: EconBPC) and derives
corresponding design principles (DP). Section 4 describes the software architecture and
implementation of EconBPC, after which the evaluation results of both think-aloud
sessions and an expert survey are discussed in Sect. 5. Section 6 concludes with a
summary of contributions and a discussion of limitations.

2 Research Methodology and Preliminary Work

To structure our procedure and ensure scientific rigor when designing EconBPC, we
applied a DSR approach inspired by the method described in [11]. It involves five
steps: awareness of problem, suggestion, development, evaluation and conclusion.
Following Meth et al. [6], our research design includes two design cycles (see Fig. 1).

Literature review & design requirements

Conceptual model & tentative design principles

Method and prototype for the economic analysis of process-
based compliance measures based on workflow patterns

Simulations & questionnaire (students and alumni, N=31) Questionnaire & think-aloud sessions (experts, N=12)

Advanced prototype for the economic analysis of process-
based compliance measures based on event logs

Literature review & adapted problem definition

Enhanced design principles & software architecture model

Reflection of design and evaluation results

Awareness of
problem

Suggestion

Development

Evaluation

Conclusion

First design cycle Second design cycle

Fig. 1. Design science research approach for EconBPC (according to [6, 11])

Conceptualization, Design, and Implementation of EconBPC 379

A literature review [4] opened the first design cycle, created the awareness that the
economic analysis of BPC poses problems and challenges to theory and practice and
led to the derivation of the initial DR. The suggestion phase was dedicated to a
preliminary conceptualization of EconBPC through a conceptual model [4] and ten-
tative DP. Under consideration of these DP, we developed a method and a first pro-
totype of EconBPC that allows for an economic analysis of compliance utilizing the
well-known basic control flow patterns of van der Aalst et al. [12]. The method and the
prototype were initially tested with simulated data. As part of a formative evaluation,
we interviewed 31 alumni and students at master level in business informatics with a
questionnaire on perceived usefulness of EconBPC and asked for expected technical
and organizational applicability barriers. The perceived usefulness was asked on a
verbal-numeric rating scale with the levels: 1 = “not at all useful”, 2 = “hardly useful”,
3 = “useful”, 4 = “very useful” and 5 = “exceedingly useful”. The dataset and further
explanations on perceived usefulness can be found in Appendix A. 74% of the
respondents rated the approach as exceedingly or very useful, 23% as useful, 3% as
hardly useful and 0% as not useful at all. The main expected application barrier was the
availability of necessary data and data interfaces in small-sized companies. The eval-
uation results were used for reflection and prompted us to analyze data availability and
data interfaces more closely in the second design cycle.

The second cycle started with an extensive structured literature review of the BPC
domain (see [3]). A brief delineation of EconBPC from related work can be found in
Appendix B. We examined the search results to determine which data interfaces are
used by existing assessment approaches and how they address data availability. As a
result, it turned out that log files represent a sound data source [13, 14]. With this in
mind, we adapted the conceptualization of EconBPC and implemented an advanced
prototype that allows for an economic analysis of BPC utilizing log files. The DR and
enhanced DP as well as the advanced prototype and the evaluation results are described
in the following sections.

3 Design of the Software Artifact EconBPC

Research has identified the improvement of decision quality and the reduction of
cognitive effort as two of the main objectives of human decision makers [6, 7]. We
used these findings to derive DR for the tool EconBPC, which is aimed at supporting
humans to perform an economic analysis of BPC.

Ensuring BPC requires so-called “compliance activities” that are geared to meeting
requirements and added to processes at the initial modeling stage or as part of a process
redesign. Even in simple business processes, adding compliance activities can signif-
icantly increase complexity and reduce process transparency [2, 15], which makes the
economic assessment and analysis of BPC a cognitive challenge for process owners. In
this context, we propose to support process owners with a software artifact to reduce
their cognitive effort. Therefore, we formulated DR1 for EconBPC as shown in Fig. 2.

The focus of EconBPC is on the monetary aspects associated with the use of
compliance activities. On the one hand, compliance activities serve to prevent costs, as
they can prevent compliance violations and resulting monetary consequences. On the

380 S. Kuehnel et al.

other hand, costs are incurred for their implementation and execution, e.g., for per-
sonnel or the acquisition of software and hardware. These costs can significantly affect
the economic situation of companies, which is why we suggest to analyze the prof-
itability of compliance activities and to improve the quality of decisions on their use
taking into account economic criteria. Consequently, we formulated DR2 as shown in
Fig. 2.

In order to address the DR, we developed a set of five enhanced DP considering the
methodological notes of Fu et al. on DP articulation [16]. Figure 2 gives an overview
of the DP and their relationships to the respective DR.

The economic analysis of BPC demands the availability of data. As log files
represent a sound data source [13, 14] for process (re)constructions, data representa-
tions, and economic calculations, we suggest that EconBPC should provide a corre-
sponding import interface. Therefore, DP1 addresses the import of log files (see
Fig. 2).

Complex process models can hamper the distinction between activities serving
compliance and activities serving the core business [15]. Consequently, we suggest a
modular process interpretation allowing to separate the views on business and com-
pliance activities to improve process transparency and enable focused analytics [15].
Thus, a process can be understood as a composition of components (i.e., activities or
sequences) serving different tasks, such as components meeting compliance and
components meeting business tasks. The process modularity is addressed by DP2 (see
Fig. 2).

Economic measures, such as the economic efficiency, are generally based on a ratio
between the number of resources used (input) and a desired result (output) [17]. Since
the economic assessment of BPC requires the calculation of economic ratios, both the
input and the output of process-based compliance measures should be recorded in
monetary terms [4], as addressed by DP3 (see Fig. 2). Monetary data of input factors
(i.e., costs of compliance activities) should be assigned to the corresponding events of

Design principle 1:
„log file import“

Design principle 2:
„process modularity“

Design principle 3:
„monetary

input-output ratio“

Design principle 4:
„economic assessment

and analysis“

Design principle 5:
„compliance
enhancement

support“

... provide a log file import interface to enable process
(re)constructions, data representations, and economic
calculations.

… allow the integration of monetary data on input and output
factors of process-based compliance measures enabling the
calculation of monetary input-output ratios.

… automatically identify and assess the paths of a process
model enabling the calculation of economic indicators for
compliance and the analysis of inefficient process paths.

The artifact is intended to
reduce the cognitive effort
of process owners in the
economic assessment and
analysis of business
process compliance.

Design requirement 1

The artifact is intended to
improve the quality of
decisions on the use of
compliance activities
based on economic
criteria.

Design requirement 2

... support a modular process interpretation and provide a
separate view on compliance acitivites to improve process
transparency and enable focused economic analytics.

A tool for the economic analysis of business process compliance should ...

… be capable of both the economic valuation of planned
changes to process-based compliance measures and the
economic comparison of alternative compliance activities to
support economic decisions on compliance enhancements.

Fig. 2. Design requirements and enhanced design principles of EconBPC

Conceptualization, Design, and Implementation of EconBPC 381

the log file. Output factors can be expressed in monetary terms as a reduction of the
financial risk exposure of BPC (for further details see [5]).

The economic analysis of BPC is based on the assessment of all paths of a process
model taking into account compliance costs and path probabilities. Due to space
restrictions and since the assessment method is part of previous work [5], we omit
further methodical details in this paper. To calculate economic indicators for BPC with
little effort and to analyze inefficient paths easily, we suggest that EconBPC should
automatically derive and assess all process paths from a log file. Therefore, DP4
addresses the economic assessment and analysis of BPC considering process paths (see
Fig. 2).

If economic inefficiencies are identified, decisions on compliance enhancements
must or at least can be made. In order to ensure that planned changes to compliance
activities do not lead to a deterioration in profitability, EconBPC should be able to
simulate and assess these changes. If alternative compliance activities are available for
enhancing BPC, the tool should allow for a selection based on economic criteria.
Therefore, DP5 addresses the compliance enhancement support (see Fig. 2).

4 Implementation of EconBPC

The tool EconBPC was implemented as an R application that builds on the Shiny
library [18]. A download link as well as information on installing and using EconBPC
can be found at https://bit.ly/2oXZtop. A short screencast of the tool can be down-
loaded at https://bit.ly/2xwM2wW. Figure 3 illustrates the tool architecture as a
component diagram utilizing the Unified Modeling Language (UML).

We addressed DP1 by developing a log file importer for extensible event streams
(XES) since XES is a “generally-acknowledged format for the interchange of event log
data between tools and application domains” [14]. The compliance data importer
addresses DP3 since it allows the entering of monetary data of input and output factors
of process-based compliance measures required for the determination of monetary
input-output ratios. The component graph generator enables the visualization of

<< component >>
shiny application

<< device >> shiny server (linux)

<< user interface >>
compliance view<< component >>

log file importer

<< component >>
assessment and
analysis engine

<< component >>
compliance data

importer

<< user interface >>
process view

<< user interface >>
economic view

<< component >>
path analyzer

event log

compliance data

compliance map

process map

path list

analysis results

component / module provided interface requested interfacenode

event-related
compliance data

<< component >>
graph generator

Fig. 3. Architecture of EconBPC illustrated as UML component diagram

382 S. Kuehnel et al.

https://bit.ly/2oXZtop
https://bit.ly/2xwM2wW

business processes based on event data. Using the bupaR library [19], a multigraph is
created and displayed in the process view. By considering compliance data, the graph
generator also enables the modular illustration of compliance activities and sequences
in the compliance view. Thus, the graph generator and the user interfaces address DP2.
DP4 and DP5 are jointly addressed by the components path analyzer, assessment and
analysis engine, and the economic view. The path analyzer identifies all paths of a
process model from a log file and transfers a path list to the assessment and analysis
engine. The engine identifies the compliance events of the paths and assesses them
economically, considering monetary compliance data. The results of the path assess-
ment are aggregated for the business process enabling the calculation of economic
indicators for BPC. A calculation example can be found in preliminary work [5].
Finally, the assessment and analysis engine transfers the results to the economic view,
which displays the outcomes and graphically highlights inefficiencies. If the data of
planned changes to process-based compliance measures are imported via the compli-
ance data importer, the engine also enables the economic assessment and analysis of
BPC for simulation purposes.

5 Evaluation

The design of EconBPC was evaluated both by an expert survey and think-aloud
sessions. Think-aloud sessions are a method for evaluating software designs in which
users are asked to complete a series of tasks with the artifact being tested while the
users constantly verbalize their thoughts [20]. We oriented towards the so-called
“10 ± 2 rule” [21], which states that the problem identification rate of test persons
increases only marginally when the sample size exceeds 12. Consequently, we per-
suaded 12 participants of a regularly occurring compliance expert forum to participate
in our evaluation.

The test setup of the think-aloud sessions and a tabular summary of the results can
be found in Appendix C. The results can be summarized as follows: The log file import
and the compliance data interfaces have been characterized as intuitive to use. The
participants commented that the compliance view, which builds on these data, provides
a quick overview of the compliance activities. It was particularly emphasized that the
automatic path identification and assessment represent a great cognitive relief since the
manual evaluation of a large number of instances is practically unfeasible. They also
commented that calculation results and identified inefficiencies are clearly presented,
which facilitates their use for decision support. Besides these positive aspects, the
participants made a total of three significant suggestions for improvement: (1) an option
to save modified log files for later analysis or simulation purposes, (2) annotations of
compliance activities with cost and reliability data to increase the informative character
of the visual representation and (3) a function for importing compliance data along with
the log file to simplify data import. To address (1), we added an export interface for log
files to the tool. To address (2), we added a function to the graph generator allowing to
annotate activities with costs, frequencies and reliabilities. To address (3), we devel-
oped an XES extension (see Appendix D) for EconBPC enabling the storage of

Conceptualization, Design, and Implementation of EconBPC 383

compliance data in the log file. The stored values can be used as input data for the
economic assessment of BPC.

After the think-aloud sessions, each participant was given a questionnaire con-
taining four questions on each DP about the perceived comprehensibility (C), trace-
ability (T), usefulness (U) and practicability (P). To capture the responses, we used
verbal-numeric rating scales with the levels: 1 = “no approval”, 2 = “partial approval”,
3 = “predominant approval”, 4 = “full approval”. The questions of the expert survey
can be found in Appendix E, the dataset in Appendix F and a complete table of results
in Appendix G. The results can be summarized as follows: The respondents agreed
fully or predominately with all the statements on C, T, U and P for DP1, DP4 and DP5
in high proportions, i.e., within a range of 83%–100%. The respondents also agreed
fully or predominantly in high proportions with the statements on C, T and P for DP2
(83%–92%) and C, T and U for DP3 (92%–100%). However, only 67% fully or
predominantly agreed with statement on U for DP2. 25% partially agreed and 8%
abstained. Moreover, only 50% agreed completely or predominantly with the statement
on P of DP3, whereas 42% agreed partially and 8% did not. As a consequence of the
results of U for DP2 and P for DP3, we contacted the respondents again and offered
them the opportunity to justify their rating. It turned out that the somewhat lower rating
resulted from the improvement potentials identified in the think-aloud sessions. The
respondents indicated that the rating of U for DP2 could be increased by improving the
informative character of the visual process representation through the proposed
annotations. In addition, they argued that the rating of P for DP3 could be increased
significantly once the recommended XES extension is realized. Since these improve-
ment suggestions have already been implemented, the criticisms of DP2 and DP3 can
already be assumed to be eliminated.

6 Conclusion

This paper is concerned with the conceptualization, design, and implementation of a
software artifact for the economic analysis of BPC. In this context, we introduced two
DR on the improvement of decision quality and the reduction of cognitive effort.
Moreover, we derived five related DP which we evaluated as comprehensible, trace-
able, useful and practicable. Practitioners and scientists can adapt the DP for devel-
oping new tools, e.g., for specific application areas such as data protection, healthcare,
or the automotive industry. Thus, the DR and DP contribute to the prescriptive
knowledge base of the BPC domain. We implemented the design of EconBPC as a
software artifact and evaluated it by 12 test persons in think-aloud sessions. The results
showed that the prototype is intuitive to use and that both the automatic path identi-
fication and the assessment of process-based compliance measures are perceived as a
cognitive relief. In addition, it was found that the clear presentation of inefficiencies and
economic results contributes to decision support and can facilitate an improvement in
decision quality.

For the theoretical foundation of our DR we used decision-making theory.
Choosing a different foundation could result in different DR and related DP. However,
decision-making theory is commonly used for design-oriented studies [6, 7]. Since this

384 S. Kuehnel et al.

paper paid special attention to the design of our software artifact, we followed the
recommendations of Fu et al. [16] and focused the evaluation on the DP. Even though
the think-aloud sessions provided insights into the cognitive process of tool users, the
quantitative evaluation of cognitive effort and decision quality with appropriate metrics
is still subject to future research. As with any evaluation, our results depend on our
sample, i.e., the choice of other participants, or a different sample size could lead to
different results. However, by applying a common evaluation rule and selecting
subject-specific experts, we believe to have gained sound insights. Finally, this paper is
based on a purely economic view. The simultaneous consideration of other aspects,
such as social dimensions, ethics, or sustainability, represents an interesting opportu-
nity for further research.

References

1. Becker, J., Delfmann, P., Dietrich, H.-A., Steinhorst, M., Eggert, M.: Business process
compliance checking – applying and evaluating a generic pattern matching approach for
conceptual models in the financial sector. Inf. Syst. Front. 18, 359–405 (2016)

2. Schumm, D., Leymann, F., Ma, Z., Scheibler, T., Strauch, S.: Integrating compliance into
business processes: process fragments as reusable compliance controls. In: Proceedings of
the Multikonferenz Wirtschaftsinformatik 2010, pp. 2125–2137 (2010)

3. Sackmann, S., Kuehnel, S., Seyffarth, T.: Using business process compliance approaches for
compliance management with regard to digitization: evidence from a systematic literature
review. In: Weske, M., Montali, M., Weber, I., vom Brocke, J. (eds.) BPM 2018. LNCS, vol.
11080, pp. 409–425. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98648-7_24

4. Kühnel, S.: Toward a conceptual model for cost-effective business process compliance. In:
Proceedings of Informatik 2017, Lecture Notes in Informatics (LNI)), pp. 1631–1639 (2017)

5. Kuehnel, S., Zasada, A.: An approach toward the economic assessment of business process
compliance. In: Woo, C., Lu, J., Li, Z., Ling, T.W., Li, G., Lee, M.L. (eds.) ER 2018. LNCS,
vol. 11158, pp. 228–238. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01391-
2_28

6. Meth, H., Mueller, B., Maedche, A.: Designing a requirement mining system. JAIS 16, 799–
837 (2015)

7. Wang, B.: Interactive decision aids for consumer decision making in e-commerce. The
influence of perceived strategy restrictiveness. MIS Q. 33, 293 (2009)

8. Magnani, M., Montesi, D.: Computing the Cost of BPMN Diagrams. Technical report
UBLCS-07-17. Bologna (2007)

9. Vom Brocke, J., Recker, J., Mendling, J.: Value-oriented process modeling: integrating
financial perspectives into business process re-design. BPM J. 16, 333–356 (2010)

10. Sampathkumaran, P.B., Wirsing, M.: Financial evaluation and optimization of business
processes. IJISMD 4, 91–120 (2013)

11. Vaishnavi, V., Kuechler, W.: Design Science Research Methods and Patterns. Innovating
Information and Communication Technology. CRC Press Taylor & Francis, Boca Raton
(2015)

12. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.: Workflow
patterns. Distrib. Parallel Databases 14, 5–51 (2003)

13. Lu, R., Sadiq, S., Governatori, G.: Measurement of compliance distance in business
processes. Inf. Syst. Manag. 25, 344–355 (2008)

Conceptualization, Design, and Implementation of EconBPC 385

http://dx.doi.org/10.1007/978-3-319-98648-7_24
http://dx.doi.org/10.1007/978-3-030-01391-2_28
http://dx.doi.org/10.1007/978-3-030-01391-2_28

14. Günther, C.W., Verbeek, E.: XES standard definition 2.0. Eindhoven (2014)
15. Betke, H., Kittel, K., Sackmann, S.: Modeling controls for compliance – an analysis of

business process modeling languages. In: WAINA 2013. pp. 866–871. IEEE, NJ (2013)
16. Fu, K.K., Yang, M.C., Wood, K.L.: Design principles. Literature review, analysis, and future

directions. J. Mech. Des. 138, 101103 (2016)
17. Kirzner, I.M., Boettke, P.J., Sautet, F.E.: The Economic Point of View. An Essay in the

History of Economic Thought. Liberty Fund, Indianapolis (2009)
18. Chang, W., Cheng, J., Allaire, J.J., Xie, Y., McPherson, J.: Shiny: web application

framework for R. R package version 1.2.0 (2018). https://CRAN.R-project.org/package=
shiny

19. Janssenswillen, G., Depaire, B.: bupaR. business process analysis in R. BPM (2017)
20. Van den Haak, M., de Jong, M., Jan Schellens, P.: Retrospective vs. concurrent think-aloud

protocols. Behav. Inf. Technol. 22, 339–351 (2003)
21. Hwang, W., Salvendy, G.: Number of people required for usability evaluation. Commun.

ACM 53, 130 (2010)

386 S. Kuehnel et al.

https://CRAN.R-project.org/package%3dshiny
https://CRAN.R-project.org/package%3dshiny

DEMOS: A Participatory Design Approach
for Democratic Empowerment of IS Users

Raphaëlle Bour(&), Chantal Soule-Dupuy,
and Nathalie Vallès-Parlangeau

IRIT, Université Toulouse 1 Capitole, Toulouse, France
{raphaelle.bour,chantal.soule-dupuy,

nathalie.valles-parlangeau}@irit.fr

Abstract. The issue of democracy in society is at the heart of our current
concerns. The organizations and their information systems are also concerned by
this issue. Democracy in organization requires a debate about norms, values and
language encapsulated in the information systems. The participatory design
approaches address this issue by proposing a democratic empowerment for users
during design phase of projects. To go further, we propose a structured method
to integrate democracy into information systems. This method named DEMOS
for DEsign Method for democratic information System is described and then
illustrated by a real experiment provided by a “lifelong training” service at the
University. All aspects of the method are addressed: from elicitation phase to
implementation. We particularly focus on techniques and tools used during the
design phase.

Keywords: Democracy � Method engineering � Information system design �
Requirements engineering � Viewpoint � End-users � Participatory design �
Agility � User centered design

1 Introduction

The question of democracy in society is a huge topic. One thing is certain, we can
establish a parallelism between democracy in political society and democracy in
organizations. The democracy in organizations is built through a participation of co-
workers and a “high rate of empowerment” [1]. This process of democratization in
organizations requires a particular focus on Information Systems (IS). In fact, an IS is
not neutral. In his book Brey speaks about “embedded values” in the IS [2]. Mingers
says that IT (Information Technology) systems embed particular values which have a
“moral impact” [3]. These embedded values take the form of standards, quantification
conventions, indicators. In 2010, Floridi proposed to elicit those embedded values and
to take them into account during the IS development [4]. Salles and Colletis describe a
“three-level grid” highlighting the link between representations, models and norms [5].
In our view, these observations confirm the need of democracy. On the one hand, those
norms and values need to be debated, “deliberated and recognized” [3], in a democratic
way. On the other hand, if we agree with Salles to say that « democracy is considered
above all else to guarantee access to a plurality of worldviews” [6], a democratic IS has

© Springer Nature Switzerland AG 2019
A. H. F. Laender et al. (Eds.): ER 2019, LNCS 11788, pp. 387–394, 2019.
https://doi.org/10.1007/978-3-030-33223-5_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33223-5_32&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33223-5_32&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33223-5_32&domain=pdf
https://doi.org/10.1007/978-3-030-33223-5_32

to respect viewpoints. For that, the end-users representing different viewpoints have to
be considered in the system design. To go further, viewpoints must be implemented in
the IS. The IS should not conform only to a dominant viewpoint. In the continuity of
Van Den Hoven [7], we propose a “proactive integration” of democracy with a Design
Method for demOcratic information System, named DEMOS. Our method proposes to
integrate democracy in two ways. Firstly, we propose a democratic design method,
which lets users debate about IS values and norms, and to bring out viewpoints.
Secondly, we propose a democratic IS, which respects viewpoints identified in the
design phase and implements them.

In this article, we first present a state of art divided into two parts. First paragraph is
about user involvement in design approaches, second paragraph is about viewpoint
concept. Then, we identify specific issues for a democratic IS and present how DEMOS
can address them. We illustrate this part with a feedback from a real experiment
conducted with the “lifelong training” service at the university.

2 The State of Art

The lack of users input during design has been identified as being a major factor in the
failure of IS to be adopted by users [8]. The users’ participation is a way to increase
functional qualities of the system and to be as close as possible to their needs. It can
also be a way of democratic empowerment for users, by a direct participation in
decision making [9]. In the IT literature, we find several levels of users’ involvement in
projects: from considering the users as a “subject of study” in User Centered Design
(UCD), to users playing a more collaborative role in co-operative design. With Par-
ticipatory Design (PD), the user drives the design process himself [10]. With UCD,
design team analyses users’ interaction, and the direct users’ input in design decision
making is limited. The software developers still “lead the process”, whereas users
participate by refining their ideas [11]. The co-operative design seeks to find ways to
co-operate with users in the design process [10]. The users interact with a prototype of
a system being developed and can provide input in the design process. The user has a
consultative role, but it is not sufficient to speak about empowerment. PD is the most
involving approach in which participation of people in the co-design [12] of the IS is a
“central tenet” [13]. The user is considered as a partner and no more as a subject as in
UCD [14]. The aim is to increase system quality, and to empower people by a “higher
level of participation in decision making” [15]. As Simonsen says, participation is
absolutely necessary. According to him, it is a “basic human right” for users to have the
opportunity to influence the design and implementation processes if they are affected
by the changes resulting from designing and implementing [16]. Some authors like
Sanders defines PD as a “democratic approach” [11]. In fact, PD approaches can
provide a democratic empowerment if users participate in “defining project objectives
and initial plans” [17]. In this sense, DEMOS can be considered as a PD approach.

In software engineering, viewpoint may have different meanings, as we present in
this second paragraph. Today, the importance of involving end-users as stakeholders in
the Requirements Engineering (RE) phase is well established [18]. The common point
of each participative RE process is that authors make no distinction inside the users

388 R. Bour et al.

group. They only make a distinction inside the stakeholder’s group, like in the IEEE
standard where stakeholders are characterized as client, owner, operator, architect,
developer and users. Moreover, goal oriented RE is a way to elicit a project motivation,
but rarely address norms and values issues with a democratic debate. When authors use
the term “viewpoint”, they also have different visions. For Kotonya, viewpoints are
clients of the system, as in a client-server system [19]. With Sommerville, viewpoints
are considered in a multi-perspective way. The aim is to separate stakeholder’s con-
cerns. The end-users are again considered as one viewpoint [20]. In the field of
computer design, the viewpoints are often attached to different project actors:
designers, architects, end-users, etc. For its part, the European Standard CEN recog-
nizes four points of view: functional, informational, resources, organizational. These
classifications do not correspond to our problematic, which focuses on the different
user’s viewpoints only. About user’s viewpoint, there are different ways to tackle the
problem. In terms of RE, we are talking about user viewpoint modeling [21]. Unfor-
tunately, this form of modeling does not continue beyond the requirements during the
design work. The requirements model will not be translated into a conceptual model.
With component oriented information systems, viewpoint modeling is managed by
base schema and view schema concepts [22]. This form of modeling is primarily a way
to architect the system and remains a designer vision. The way to deal with the issue of
user views that is closest to ours is handled by Nassar. He proposes an adaptation of the
UML diagram with the notion of view extensions [23]. But here again, it is an answer
to a technical problem related to access rights, and the solution provided is not at all
user-oriented. Then, viewpoint issue is often seen in a technical perspective to separate
concerns, or to separate roles, but never as a respect guarantee of democracy.

3 DEMOS: A DEsign Method for demOcratic Information
System

DEMOS is presented in the form of a MAP: a “navigational structure” [24] developed
by Rolland. It allows presenting the method as a selection of intentions (circles) and
appropriate strategies (arrows) to achieve it (Fig. 1).

There are four intentions in the proposed method. Each intention in the MAP is a
way to solve an issue that the method addresses:

2. By interviews

End

1. By
documents

reading
Start

5. By Conceptual
representation

design

7. By Graph
NoSQL database
implementation

6. By searching
for similarities

9. By model
refinement

3. By
vision

expression

Elicitation phase Design phase Implementation phase

Identifiy
end users

Define
viewpoints

4. By task
elicitation

Design a
model by
viewpoint

Consolidate
viewpoint

models
8. By process

refinement

Fig. 1. General view of DEMOS

DEMOS: A Participatory Design Approach for Democratic Empowerment 389

• Identify end-users to involve end-users in a participatory and democratic
process

• Define viewpoint by allowing a debate to let viewpoints emerge.
• Design a model by viewpoint to design a democratic IS which considers these

viewpoints.
• Consolidate viewpoint models to provide traceability of viewpoints.

In the following sections, each strategy is described, with a brief list of means used
and expected results. The sections are grouped by intentions, for a better understanding.
From January to June 2018, DEMOS has been used for a real project. The project
focused on the implementation of an attendance management tool for the Toulouse 1
Capitole university’s “lifelong training” service. This experiment was conducted with 8
end-users: 3 teachers, 4 schooling managers and the “lifelong training” service man-
ager. The aim of the project was to develop a prototype to be tested by users. The
designed software is currently being implemented. In this paper, third et fourth
intention will be illustrated with feedback from this recent experiment.

3.1 First Intention: Identify End-Users

Our first issue is to involve end-users in a participatory and democratic process. For
that, the first intention: Identify end-users, is the starting point of our participative
approach. We developed two strategies to achieve this intention: by interviews and by
document reading. Both strategies are achieved with the client and the main managers
concerned by the project. They give information during interviews: motivation of the
project, issues to solve and constraints (as brake of users). Business documents com-
plete this information: organigram, specifications. The client must validate the list of
end-users obtained. These two strategies have been chosen to be complementary: they
give an analysis of prescribed work and real work [25] as said in work ergonomics.
Documentation is a representation of the prescribed work and gives a first list of end-
users, whereas interviews give information about real work.

3.2 Second Intention: Define Viewpoints

Our second issue is to allow a democratic debate to let viewpoints emerge. The second
intention: Define viewpoints is crucial. In fact, these viewpoints are the starting point of
the rest of the method. We developed two strategies to achieve this intention: by vision
expression and by task elicitation. Both strategies are achieved with end-users and a
moderator of the method during the scoping workshop. First, the end-users are
encouraged to debate about their visions, and to let viewpoints emerge. Thanks to tools
as photolanguage and mind mapping, they make a breakdown of different professions
and they express their vision of business domain to propose first viewpoint list. Then,
they identify tasks and describe processes with a simplified BPM notation. After that,
they consolidate the viewpoint list. During the experiment, two viewpoints were
identified: Management viewpoint (with the schooling manager and the lifelong
training service managers), and Education viewpoint (with the teachers).

390 R. Bour et al.

3.3 Third Intention: Design a Model by Viewpoint

Our third issue is to design a democratic IS which takes into account viewpoints. The
third intention: Design a model by viewpoint corresponds to the design phase starting
point. This intention requires a strategy: conceptual representation design. This
strategy is achieved during several viewpoint workshop. There are as many workshops
as identified viewpoints. The aim is to obtain one conceptual model by viewpoint.
During the workshop, each end-user uses his own vocabulary to express concepts he
manipulates to achieve his tasks. They do not have to adapt to other norms, values or to
use another vocabulary. Because the description of concepts is sometimes confusing
for end-users, we proposed several activities to achieve this goal: Photolanguage,
brainstorming, markers, etc. The main outputs of these section are simplified class
diagrams for each viewpoint. During the process refinement strategy, work on pro-
cesses during the viewpoint model designing intention can affect viewpoint identifi-
cation. For example, end-users can realize at this step that a viewpoint is badly or
insufficiently described. In this case, a new definition of the viewpoint is necessary.
Figure 2 presents an instantiation of a part of DEMOS meta-model corresponding to
the experiment with lifelong training service.

We obtained two different conceptual models, and we present here just a little part
of them. The vocabulary employed on each model corresponds to the corresponding
viewpoint, described with concepts, descriptors and links, using a simplified UML
class diagram formalism. Here the structure of the attendance representation is not the
same for each viewpoint: the management viewpoint speaks about trainees whereas the
education viewpoint is interested in students. Furthermore, while the education

Trainee
TraineeNumber
Name
First name
Date of birth
Adress
Diplomas obtained
Contact details

A endance
A endance
Signature of
responsible person

par cipates

Ac vity
Name
Date
Time
Dura on
Classroom
Type
Module

Course
Name

Session
Date
Time
Hourly
volume
Course type
Comment

is composed

Student
Name
First name
French first
name
Photo
Group

par cipates

A endance
Type
Annota on
Teacher signature

MANAGEMENT EDUCATION

0…*1
> is decsribed by

0…*
1

< origin

0…*

1
> is described by

VIEWPOINT CONCEPT

DESCRIPTOR

LINKS

1…*

0…*

< target

Instance of

Simplified part of DEMOS Metamodel

Fig. 2. Instantiation of the strategy By conceptual representation design

DEMOS: A Participatory Design Approach for Democratic Empowerment 391

viewpoint is only interested in the class attendance, the management viewpoint needs
to attest about attendance for other activities like internships.

3.4 Fourth Intention: Consolidate Viewpoint Models

The fourth intention: Consolidate viewpoint models, corresponds to the last step of the
design phase. This intention requires a strategy: searching for similarities. This
strategy is achieved during a sharing workshop where all participants are grouped. This
intention is crucial because even if each viewpoint corresponds to a conceptual rep-
resentation, some elements between these representations are common. Sometimes
these elements are identical, sometimes they are named differently but have the same
meaning, and sometimes they are simply organized differently. The similarities
between models must be identified to share the same IS. For these reasons, after the
moderator organizes the models pooling, the end-users can search for similarities. With
the representation refinement strategy, work on conceptual representation during the
viewpoint model consolidation section can affect the previous designed model. In fact,
searching for similarities can allow for some new concepts for a viewpoint to emerge.
In this case, viewpoint models must be completed.

Figure 3 presents an instantiation of a part of DEMOS metamodel corresponding to
the experiment with the lifelong training service.

In this illustration, we have selected just a part of the similarity links, corresponding
to previous viewpoint models. Here for example, the name of a trainee and the name of
a student are similar, so they must be linked. Each similarity link is a way to create a

TRAINEE

Trainee Number
Name

First Name
Date of birth

Adress
Diploma obtained

Contact details
A endance

Signature of resp. person
Name
Date
Time

ATTENDANCE

ACTIVITY Dura on
Classroom

Type
Module

STUDENT

Name
First name

French first name
Photo
Group
Type

Annota on
Teacher signature

Name
Date
Time

Hourly volume

ATTENDANCE

COURSE

Course type
SESSION

SL1

SL2

SL3

SL4

SL5
SL6

Comment

SL7
SL8

SL9

MANAGEMENT EDUCATION

VIEWPOINT

CONCEPT DESCRIPTOR

SIMILARITY
LINK

0…*1
> is decsribed by

0…*1
> is described by

0…*1
D1

0…*

1

D2 Instance of

Simplified part of DEMOS Metamodel

Fig. 3. Instantiation of the strategy By searching for similarities

392 R. Bour et al.

data repository. It guarantees that even if there is an implementation of several con-
ceptual models, objects are shared through this repository.

The last strategy: By Graph NoSQL Database implementation is the purpose of
the method because it is an implementation of the viewpoints. To keep viewpoint
traceability in the IS, it was necessary to implement a database structure in accordance
with viewpoints. Thus, the viewpoints can continue to exist independently during the
life of the IS. If a viewpoint evolves, the other viewpoints are not impacted, expected
by re-creating similarity links. One efficient solution to implement several linked
models is Graph No SQL Database, we have adopted this strategy. In the future, other
strategies could be added with other technical solutions.

4 Discussion

We have shown with DEMOS that a structured design method can contribute to
integrate democracy in IS, and we have illustrated our proposition with a concrete case.
Following the experiment, we have evaluated DEMOS with semi-structured interviews
with end-users. After a review of the method and of the results obtained during the
experiment, we have conducted an interview with each participant to evaluate the
method intentions, the method strategies and the method results. The evaluations
revealed that end-users understand intentions of the method. They understand both
aspects: a democratic process for a democratic IS which respects their viewpoints. The
viewpoint notion that was not obvious to them at first became clearer during the
workshops. Moreover, for users, sequencing of steps was coherent according to the
intentions. Overall, they were assisted by techniques and tools used during the process,
especially by the photolanguage activities. At the end, they are satisfied with the
method results, which are consistent with what they have expressed. The final software
is under development and was not considered for evaluation.

The issue addressed in this article is democracy in IS. We consider this issue with
two different perspectives: how to integrate democracy in IS conception approaches
and how to bring democracy into IS. It requires a participative approach involving end-
users, respect of viewpoints inside end-users’ group, and traceability of these view-
points. During the experiment, and according to the evaluation, each point has been
respected. However, the implementation of viewpoints is guaranteed by the imple-
mentation of a database structure. As future work, we want to add other intentions to
implement activity model and interface model.

References

1. Jardat, R.: How democratic internal law leads to low cost efficient processes. Soc. Bus. Rev.
3(1), 23–40 (2008)

2. Brey, P.A.E.: Values in technology and disclosive computer ethics. In: Floridi, L. (ed.) The
Cambridge Handbook of Information and Computer Ethics, pp. 41–58. Cambridge
University Press, Cambridge (2010)

3. Mingers, J., Walsham, G.: Toward ethical information systems: the contribution of discourse
ethics. MIS Q. 34(4), 833–854 (2010)

DEMOS: A Participatory Design Approach for Democratic Empowerment 393

4. Floridi, L.: The Cambridge Handbook of Information and Computer Ethics. Cambridge
University Press, Cambridge (2010)

5. Salles, M., Colletis, G.: How to deal with the conflicting views of the world expressed in
regional economic development policies. In: International Conference of Territorial
Intelligence, Besançon 2008, Besançon, France, p. 10 (2008)

6. Salles, M.: Decision-Making and the Information System, vol. 3. Wiley, Hoboken (2015)
7. van den Hoven, J.: Moral methodology and information technology. In: Himma, K.E.,

Tavani, H.T. (eds.) The Handbook of Information and Computer Ethics, pp. 49–67. Wiley,
Hoboken (2008)

8. McConnell, S.: Rapid Development: Taming Wild Software Schedules. Microsoft Press,
Redmond (2006)

9. Kautz, K.: Investigating the design process: participatory design in agile software
development. Inf. Technol. People 24(3), 217–235 (2011)

10. Andre, K., Christian, N.: Participatory design, user involvement and health IT evaluation.
Stud. Health Technol. Inform. 222, 139–151 (2016)

11. Ferrario, M.A., Simm, W., Newman, P., Forshaw, S., Whittle, J.: Software engineering for
‘social good’: integrating action research, participatory design, and agile development. In:
Companion Proceedings of the 36th International Conference on Software Engineering -
ICSE Companion 2014, Hyderabad, India, pp. 520–523 (2014)

12. Sanders, E.B.-N., Stappers, P.J.: Co-creation and the new landscapes of design. CoDesign 4
(1), 5–18 (2008)

13. Kensing, F., Blomberg, J.: Participatory design: issues and concerns. Comput. Support.
Coop. Work CSCW 7(3–4), 167–185 (1998)

14. Dell’Era, C., Landoni, P.: Living lab: a methodology between user-centred design and
participatory design: living lab. Creat. Innov. Manag. 23(2), 137–154 (2014)

15. Kujala, S.: User involvement: a review of the benefits and challenges. Behav. Inf. Technol.
22(1), 1–16 (2003)

16. Simonsen, J.: Routledge International Handbook of Participatory Design. Routledge,
London (2013)

17. Dearden, A., Rizvi, H.: Adapting participatory and agile software methods to participatory
rural development. In: Proceedings of the Tenth Anniversary Conference on Participatory
Design 2008, Indianapolis, IN, USA, pp. 221–225 (2008)

18. Milne, A., Maiden, N.: Power and politics in requirements engineering: embracing the dark
side? Requir. Eng. 17(2), 83–98 (2012)

19. Kotonya, G., Sommerville, I.: Requirements engineering with viewpoints. Softw. Eng. J. 11
(1), 5 (1996)

20. Sommerville, I., Sawyer, P.: Viewpoints: principles, problems and a practical approach to
requirements engineering. Ann. Softw. Eng. 3, 101–130 (1997)

21. Darke, P., Shanks, G.: User viewpoint modelling: understanding and representing user
viewpoints during requirements definition. Inf. Syst. J. 7(3), 213–219 (1997)

22. Caron, O., Carré, B., Muller, A., Vanwormhoudt, G.: A framework for supporting views in
component oriented information systems. In: Konstantas, D., Léonard, M., Pigneur, Y.,
Patel, S. (eds.) OOIS 2003. LNCS, vol. 2817, pp. 164–178. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-45242-3_16

23. Nassar, M.: VUML: a viewpoint oriented UML extension, pp. 373–376 (2003)
24. Rolland, C., Prakash, N., Benjamen, A.: A multi-model view of process modelling. Requir.

Eng. 4(4), 169–187 (1999)
25. Vilela, R.A.D.G.: et al.: Work ergonomic analysis and change laboratory: similarities and

complementarities between interventionist methods (2015, Unpublished)

394 R. Bour et al.

http://dx.doi.org/10.1007/978-3-540-45242-3_16

Complex Systems Modeling

Finding Preferred Objects
with Taxonomies

Paolo Ciaccia1, Davide Martinenghi2, and Riccardo Torlone3(B)

1 Università di Bologna, Bologna, Italy
paolo.ciaccia@unibo.it

2 Politecnico di Milano, Milan, Italy
davide.martinenghi@polimi.it

3 Università Roma Tre, Rome, Italy
riccardo.torlone@uniroma3.it

Abstract. Preferences about objects of interest are often expressed at
different levels of granularity, not always matching the level of detail of
stored data. For instance, we prefer rock to pop music, yet scheduled
concerts only cite the name of the performer, with no reference to the
musical genre. In this paper we address this common mismatch by lever-
aging the vast amounts of data organized in taxonomies (such as those
found in electronic catalogs and classification systems) for propagating
preferences from more generic to more specific concepts. This will help
users to locate their preferred objects. In spite of its apparent simplic-
ity, this problem requires special care in order to avoid some undesirable
effects, e.g., when conflicting preferences at different levels have to be
combined (although, generally, we prefer rock to pop music, we would
never miss a performance by Madonna). We present a formal model
to represent preferences and state the desirable properties of preference
propagation, such as the fact that more specific preferences always pre-
vail over more generic ones. We then propose a method for propagating
preferences along taxonomies, complying with the stated properties, and
show how preferred objects can thereby be efficiently determined.

Keywords: Preferences · Taxonomy · Best results

1 Introduction

The information available in digital form is growing so fast that the search for
data of interest (for attending events, buying products, planning a trip, etc.) is
becoming increasingly difficult over time. For this reason, there has recently been
a huge effort, in both industry and academia, to develop effective methods and
tools able to automatically suggest to any individual the items that better match
what he/she is looking for [8]. In this framework, the availability of preferences,
explicitly expressed by the users or somehow automatically derived from their
actions, has been always considered an important ingredient [3,9]. Unfortunately,
preferences and data do not always match perfectly, even when they refer to the
c© Springer Nature Switzerland AG 2019
A. H. F. Laender et al. (Eds.): ER 2019, LNCS 11788, pp. 397–411, 2019.
https://doi.org/10.1007/978-3-030-33223-5_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33223-5_33&domain=pdf
https://doi.org/10.1007/978-3-030-33223-5_33

398 P. Ciaccia et al.

same domain of interest. This is mainly due to the fact that, usually, preferences
are expressed in generic terms whereas data is very specific, as shown in the
example that follows.

Example 1. We are planning to reserve tickets for a series of concerts for which a
general schedule is available, as the one in Fig. 1. We prefer rock to pop concerts,
yet we prefer a performance by Madonna to a rock concert. Due to work commit-
ments, we also prefer concerts in August rather than in September. Furthermore,
as for the concert venue, during autumn we prefer places indoors to stadiums.
And, given two concerts by the same artist, we would prefer to save money (say,
if a concert costs ≤ 40$, then we prefer it to a concert by the same artist that
costs more than 100$, whereas for intermediate prices other considerations are
relevant). For the same reason, we would like to buy tickets only for (a subset
of) the “best” available alternatives.

Concerts
Artist Day Venue Price ($)
Bruce Springsteen 10/05/2019 Verona Arena 70 ta
Madonna 24/06/2019 Verona Arena 35 tb
Madonna 21/07/2019 Blue Note, Milan 120 tc
Eminem 12/08/2019 Unipol Arena, Bologna 60 td
Rihanna 10/10/2019 Blue Note, Milan 50 te
Bruce Springsteen 30/10/2019 Stadio Olimpico, Rome 100 tf

Fig. 1. A set of concerts.

The example highlights that: (i) preferences can be expressed at different
levels of detail, even for the same “dimension” of the problem (e.g., seasons vs
months for the time dimension), and (ii) in general, preferences do not match
the level of detail of data. Moreover, preferences can be conflicting when chang-
ing the level of detail (rock is better than pop, yet Madonna, a pop singer, is
preferred to rock artists). Finally, additional knowledge is needed to choose the
best alternatives using preferences. For instance, we need to know that Unipol
Arena is an indoor place, whereas Verona Arena is a Roman amphitheater (thus
an outdoor place).

This problem can be tackled by leveraging the great availability of shared
and public taxonomies, that is, collection of terms in a domain arranged hier-
archically according to an inclusion relationship (e.g., product catalogs, book
classifications, biological categorizations, etc.). For instance, the availability of a
classification of music artists according to different musical genres would allow
us to understand that a preference on rock artists propagates to Springsteen.

In this paper we present a principled approach to the problem of finding the
best objects stored in a data repository on the basis of a set of preferences that
are defined at a level of detail that does not necessarily match that of the data. As

Finding Preferred Objects with Taxonomies 399

a preliminary step, we adopt a data model for representing taxonomies of values
in specific domains (e.g., time or location) and propose a preference model for
tuples over attributes defined on a given set of taxonomies. This allows us to
formalize preferences between objects at different levels of detail, as those in
Example 1. We then identify some general properties of preference propagation
in the taxonomies, in particular, the fact that more specific preferences prevail
over more generic ones. Thus, in the example above, a Madonna concert takes
precedence over a Springsteen concert even if, in general, we prefer rock to pop.
We then illustrate an algorithm for propagating preferences along taxonomies,
complying with the stated properties. This algorithm takes as input a set of
taxonomies and a logic formula describing preferences between tuples over values
in the taxonomies and returns another formula describing the preferences that
hold on the actual data after propagation. Finally, we present a technique for
selecting the best tuples in the data repository according to the propagated
preferences. This technique would select tuples tb and td as the best alternatives
among the tuples in Fig. 1 given the preferences discussed in Example 1.

The rest of the paper is organized as follows. In Sect. 2 we present a data
model for representing tuples of values that belong to the levels of a set of tax-
onomies whereas, in Sect. 3, we illustrate a preference model over tuples of the
data model. In Sect. 4 we investigate the general properties of preference propa-
gation and then propose the algorithm for preference propagation. An algorithm
for the selection of the best tuples according to a set of propagated preferences
is discussed in Sect. 5. Finally, Sect. 6 briefly concludes. Formal results regarding
the correctness and complexity of our approach are omitted in the interest of
space.

2 Data Model

In this section we present the essential elements of our data model, which is an
adaptation of the model described in [6,7]. For what follows it is useful to remind
that a partial order ≤ on a domain V is a subset of V × V , whose elements are
denoted by v1 ≤ v2, that is: reflexive (v ≤ v for all v ∈ V), antisymmetric (if
v1 ≤ v2 and v2 ≤ v1 then v1 = v2), and transitive (if v1 ≤ v2 and v2 ≤ v3 then
v1 ≤ v3).

Essentially, we consider an extension of the relational model in which each
domain can be organized as a taxonomy, i.e., a set of values arranged hierarchi-
cally. Each taxonomy is organized into a set of levels corresponding to different
degrees of granularity. For instance, a taxonomy on time can be organized in
levels such as day, month, season, and year.

Definition 1 (Taxonomy). A taxonomy T is composed of:

– a finite set L = {l1, . . . , lk} of levels; each level l ∈ L is associated with a set
of values, denoted by T (l);

– a partial order ≤L on L having a bottom element, denoted by ⊥T , and a top
element, denoted by �T , such that:

400 P. Ciaccia et al.

• T (⊥T) contains a set of ground values whereas all the other levels contain
values that represent sets of ground values;

• T (�T) contains only a special value allT that represents all the ground
values;

– a family of functions μl2
l1

: T (l1) → T (l2), called level mappings, for each pair
of levels l1 ≤L l2 satisfying the following consistency conditions:

• for each level l, the function μl
l is the identity on the values of T (l);

• for each pair of levels l1 and l2 and for all l, l′ such that l1 ≤L l ≤L l2
and l1 ≤L l′ ≤L l2, we have: μl2

l (μl
l1

(v)) = μl2
l′ (μ

l′
l1

(v)) for each v ∈ T (l1).

Notice that if l ≤L l′ and μl′
l (v) = v′, then it is also true that v ∈ (μl′

l)−1(v′),
where (μl′

l)−1 is the inverse level mapping from level l′ to l.
A partial order ≤V , induced by the level mappings, can also be defined on

the values of a taxonomy T .

Definition 2 (Poset on values). Let T be a taxonomy and v1 and v2 be values
of levels l1 and l2 of T , respectively. We have that v1 ≤V v2 if: (i) l1 ≤L l2 and
(ii) μl2

l1
(v1) = v2.

Example 2. Portions of the taxonomies relevant to our working example on con-
certs are shown in Fig. 2. The time taxonomy has a bottom level whose (ground)
values are all the Days; other relevant levels (considering the preferences in Exam-
ple 1) are Month and Season, with Day ≤L Month and Day ≤L Season. A possible
value of the Day level is 23/07/2019, which is mapped by the level mappings
to the value 07/2019 of the level Month (i.e., μMonth

Day (23/07/2019) = 07/2019)
and to the value summer of the level Season. Conversely, the inverse level map-
ping from Month to Day yields for each month all the days in that month (e.g.,
23/07/2019 ∈ (μMonth

Day)−1(07/2019)). As another example, for the location of a
concert we consider levels Venue, VenueType, and InOut. The values of this tax-
onomy are organized in the poset shown in Fig. 3, where the level mappings are
represented by arrows. For instance, we have Blue Note ≤V Concert hall ≤V

Indoor and Verona Arena ≤V Amphitheater ≤V Outdoor.

Day

Month Season

Venue

VenueType

InOut

Price

PriceRange

Artist

Genre

Fig. 2. The taxonomies for our working example

The main construct of the data model is the t-relation, a natural extension
of a relational table built over taxonomies.

Finding Preferred Objects with Taxonomies 401

Blue Note Stadio OlimpicoVerona Arena

StadiumAmphitheaterConcert hall

Indoor Outdoor

Unipol Arena

InOut

VenueType

Venue

Fig. 3. A taxonomy for concerts’ locations

Definition 3 (t-schema, t-tuple, and t-relation). A t-schema (schema over
taxonomies) is a set S = {A1 : l1, . . . , Ak : lk}, where each Ai is a distinct
attribute name and each li is a level of some taxonomy Ti. A t-tuple t over S
is a function mapping each attribute Ai to a value in Ti(li). A t-relation r over
S is a set of t-tuples over S.

Given a t-tuple t over a t-schema S and an attribute Ai occurring in S on
level li, t[Ai : li] denotes the value of level li associated with t on Ai. In order to
simplify the notation, in the rest of the paper we always assume that level names
are unique (i.e., the same level name is not used in more than one taxonomy).
This makes it possible to understand attribute names, thus also writing t[li] in
place of t[Ai : li].

Example 3. A catalog of concerts in Italy can be represented by the t-schema
S = {Artist,Day,Venue,Price}. A possible t-relation over S is shown in Fig. 1.
Then we have tb[Venue] = Verona Arena and te[Artist] = Rihanna.

We conclude with the definitions of the partial order relations for t-schemas
and t-tuples.

Definition 4 (Posets on t-schemas and t-tuples). Let S1 and S2 be two
t-schemas. We have that S1 ≤S S2 if for each Ai : li ∈ S2 there is an element
Ai : lj ∈ S1 such that lj ≤L li. Let t1 and t2 be t-tuples over S1 and S2,
respectively. We have that t1 ≤t t2 if: (i) S1 ≤S S2, and (ii) for each Ai : li ∈ S2

there is an element Ai : lj ∈ S1 such that t1[Ai : lj] ≤V t2[Ai : li].

Notice that, in the above definition, S2 may have fewer attributes than S1.
However, we can assume without loss of generality that they have the same set
of attributes, since we can add to S2 the missing attributes at the top level.

Example 4. Consider the t-schemas S = {Artist,Day,Venue} and S′ = {Genre,
Season}, and the t-tuples t = 〈Eddie Vedder, 16/04/2019, Verona Arena〉 and
t′ = 〈rock, spring〉 over S and S′, respectively. Then, S ≤S S′ and t ≤t t′. This
is equivalent to considering the t-schema S′′ = {Genre,Season,�location} in place
of S′ and the t-tuple t′′ = 〈rock, spring,alllocation〉 in place of t′.

402 P. Ciaccia et al.

3 Preference Model

In this section, we present our model for preferences on t-relations. We denote
as T = T1 × . . . × Tk the (multi-dimensional) domain given by the Cartesian
product of taxonomies T1, . . . , Tk.

Definition 5 (Preference relation). A preference relation over the t-tuples
of a domain T is a preorder 	 on T , that is, a transitive and reflexive relation.
Given a pair of t-tuples t1 and t2 in T , if t1 	 t2 then t1 is (weakly) preferable to
t2. When neither t1 	 t2 nor t2 	 t1 hold, t-tuples t1 and t2 are incomparable,
denoted t1 ∼ t2. When both t1 	 t2 and t2 	 t1 hold, t-tuples t1 and t2 are
indifferent, denoted t1 ≈ t2. If t1 	 t2 and t2 �	 t1 we say that t1 is strictly
preferable to t2, denoted t1 t2.

Notice that ≈ is an equivalence relation and is a strict partial order.
Given a set of t-tuples r ⊆ T , the “best” t-tuples in r according to the

preference relation 	 can be selected by means of the Best operator β [10].
Although the β operator was originally conceived to deal with strict partial
orders, it can also be applied when the preference relation is a preorder, in
which case it will return in the result a t-tuple t iff there is no other t-tuple t′

that is strictly preferable to t:

β�(r) = {t ∈ r | �t′ ∈ r, t′ t}

Thus, β�(r) is not empty for any non-empty instance r, even when preferences
define cycles among the t-tuples.

Although the focus of what follows is not on the language used for expressing
preferences, it is useful to have one for illustrative purposes. To this end we
consider a logic-based language, in which t1 	 t2 iff they satisfy the preference
formula F (t1, t2):

t1 	 t2 ⇔ F (t1, t2)

When needed, we denote by 	F the preference relation induced by the formula
F , which otherwise will be understood.

As in [3], we only consider intrinsic preference formulas (ipf’s), i.e., formulas
in which only built-in predicates are present (and quantifiers can be omitted as
in Datalog). This implies that, in order to evaluate F (t1, t2), we only have to look
at (the attribute values of) t1 and t2. Furthermore, without loss of generality,
we assume that F is in Disjunctive Normal Form (DNF) and call each disjunct
of F a preference clause, i.e.:

F (t1, t2) =
n∨

i=1

Fi(t1, t2).

Finding Preferred Objects with Taxonomies 403

Example 5. The preferences informally stated in Example 1 can be expressed by
the DNF formula F (t1, t2) = F1(t1, t2) ∨ . . . ∨ F5(t1, t2), where the 5 preference
clauses are (the cheap and expensive values of the PriceRange level are the
intervals [0, 40] and (100,+∞), respectively):

F1(t1, t2) = (t1[Genre] = rock) ∧ (t2[Genre] = pop)
F2(t1, t2) = (t1[Artist] = Madonna) ∧ (t2[Genre] = rock)
F3(t1, t2) = (t1[Artist] = t2[Artist])∧

(t1[PriceRange] = cheap) ∧ (t2[PriceRange] = expensive)
F4(t1, t2) = (t1[Season] = autumn) ∧ (t2[Season] = autumn)∧

(t1[InOut] = indoor) ∧ (t2[VenueType] = stadium)
F5(t1, t2) = (t1[Month] = august) ∧ (t2[Month] = september)

It might be the case that an ipf leads to a non-transitive and/or non-reflexive
relation 	.1 For instance, given the formula:

F (t, t′) = (t[l] = a ∧ t′[l] = b) ∨ (t[l] = b ∧ t′[l] = c)

and t-tuples t1 = (a, . . .), t2 = (b, . . .) and t3 = (c, . . .), we have t1 	 t2 and
t2 	 t3, yet t1 �	 t3. A simple remedy to this issue is to allow a transitive (and
reflexive) closure operator, ∗, in the definition of F , i.e.:

F (t, t′)= [(t[l] = a ∧ t′[l] = b) ∨ (t[l] = b ∧ t′[l] = c)]∗ =
(t = t′)∨(t[l] = a ∧ t′[l] = b)∨(t[l] = b ∧ t′[l] = c)∨(t[l] = a ∧ t′[l] = c)

When convenient, we will use the notation 	∗ to denote the preference relation
obtained by transitively closing 	, and F ∗ to denote the transitive closure of a
formula F . In general, the transitive closure F ∗ of a formula F with n disjuncts
F1, . . . , Fn can be computed as:

G(t1, t2) ← F1(t1, t2)
. . .

G(t1, t2) ← Fn(t1, t2)
F ∗(t1, t2) ← G(t1, t2)
F ∗(t1, t2) ← G(t1, t3) ∧ F ∗(t3, t2).

Notice that F ∗ is finite and is still an ipf [3].
When a (clause of a) formula F compares values of an attribute A at the

same level l, it can be used to order t-tuples whose t-schema includes A : l. For
instance, clause F1 in Example 5 can be used to order t-tuples whose t-schema
includes the Genre level. This is made precise by the following definition.

Definition 6. A preference formula F applies to a t-schema S if there exist
t-tuples t1, t2 with t-schema S such that F (t1, t2) holds. We denote by 	S the
restriction of 	 to t-schema S, i.e., the subset of 	 consisting of pairs of t-tuples
with t-schema S.
1 Notice that, although according to Definition 5 � is not a preference relation (since

it is not a preorder), we still use the same symbol.

404 P. Ciaccia et al.

When a (clause of a) formula F also compares values of an attribute at different
levels, we say that F , as well as the corresponding preferences, are inter-schema,
since the t-tuples ordered by F necessarily have different t-schemas. For instance,
in Example 5, clause F2(t1, t2) = (t1[Artist] = Madonna) ∧ (t2[Genre] = Rock)
is inter-schema. Notice that

⋃
i 	Si

⊆	, where the inclusion is strict iff inter-
schema preferences are present.

4 Propagation of Preferences

In this section we detail how preferences can be propagated downward through a
set of taxonomies. The scenario we consider assumes that, using some preference
language, possibly different from the logic-based one we use in this paper, a
binary relation 	 is defined on the t-tuple domain T . Notice that we do not
require 	 to be a preference relation, i.e., transitive and reflexive, since these
properties do not need to be enforced at this stage. For instance, the binary
relation defined by the preference in Example 5 is neither transitive nor reflexive.

4.1 Propagation Principle and Rules

The 	 relation completely ignores the structure of the poset on t-tuples ≤t,
thus it treats T as if it were a “flat” domain. This is because 	 includes all and
only those preferences t1 	 t2 such that the attribute values of t1 and t2 satisfy
the preference formula, yet it does not take into account the taxonomies. The
key observation justifying the (downward) propagation of preferences, is that,
given a target t-schema S, by exploiting the hierarchical organization of T it is
possible to extend 	S , i.e., the relation 	 restricted to t-schema S, with more
preferences that involve t-tuples with t-schemas Si, with S ≤S Si.

Therefore, let 	↓ denote the binary relation obtained by propagating, in
some way to be described, the preferences in 	. We require that 	↓ ⊇ 	, which
implies that all preferences in 	 are preserved by propagation.

The basic idea underlying propagation could be tentatively captured by the
following simple rule:

t1 	↓ t2 ← ∃t′1, t
′
2 ((t′1 	 t′2) ∧ (t1 ≤t t′1) ∧ (t2 ≤t t′2)) (R0)

Rule R0 is based on the intuition that, in order to have t1 	↓ t2, there
must exist a preference between t-tuples t′1 and t′2 that generalize t1 and t2,
respectively: Since the rule also applies when t1 = t′1 and t2 = t′2, 	↓⊇	 always
holds. For instance, consider the t-schema in Fig. 1 and the preference clause
F1(t1, t2) = t1[Genre] = Rock) ∧ (t2[Genre] = Pop). From F1, using Rule R0 we
can propagate the preferences ta 	↓ tb and ta 	↓ tc, since Bruce Springsteen is
a rock artist whereas Madonna is a pop singer.

In spite of its simplicity, RuleR0 can lead to some unwanted effect, as argued
by the following example.

Finding Preferred Objects with Taxonomies 405

Example 6. In our working example, we have a generic preference for rock con-
certs over pop concerts. With no contradiction with the generic preference, we
might have a more specific preference stating that a performance by Madonna
takes precedence over Springsteen’s concerts. In this case, the more specific pref-
erence would entail, among others, tb 	 ta; yet, rule R0 would keep this prefer-
ence, but would also propagate the more generic preference on musical genres,
thus leading to ta 	↓ tb and making ta and tb become indifferent. However,
giving the same importance to both preferences contradicts the intuition, as the
more specific preference should take precedence over the more generic one.

Based on the above arguments, we therefore replace Rule R0 with the following
one, in which we propagate a preference to t-tuples t1 and t2 only if no preference
between them is already present in 	, i.e., t1 and t2 are incomparable:

t1 	↓ t2 ← (t1 	 t2) ∨ [(t1 ∼ t2) ∧ ∃t′1, t
′
2((t

′
1 	 t′2) ∧ (t1 ≤t t′1) ∧ (t2 ≤t t′2))]

(R1)

It turns out that RuleR1 also suffers from inconsistencies in propagation in
more complex cases.

Example 7. Consider clauses F1 (on musical genres) and F2(t1, t2) =
(t1[Artist] = Madonna) ∧ (t2[Genre] = rock) from our working example. We have
ta ∼ tb, thus using R1 we would propagate both preferences ta 	↓ tb (thanks to
F1) and tb 	↓ ta (thanks to F2), again leading to consider ta and tb as indifferent,
against intuition.

We can generalize the above observation as follows. Assume t1 ∼ t2 and
consider preferences t′1 	 t′2 and t′′2 	 t′′1 , with t1 ≤t t′1 ≤t t′′1 and t2 ≤t t′2 ≤t

t′′2 . According to Rule R1 both preferences can be propagated, thus leading to
t1 	↓ t2 and t2 	↓ t1. Even in this case we might argue that only preference
t′1 	 t′2 should be propagated, as it is more specific than t′′2 	 t′′1 (since t′1 ≤t t′′1
and t′2 ≤t t′′2). We can precisely capture this “specificity” requirement with the
following definition.

Definition 7 (More specific preferences). Given two preferences t′1 	 t′2
and t′′2 	 t′′1 , we say that the first is more specific than the second if both t′1 ≤t t′′1
and t′2 ≤t t′′2 hold and t′1 �= t′′1 or t′2 �= t′′2 .

Based on the above definition, we can replace Rule R1 with the following one:

t1 	↓ t2 ← ∃t′1, t
′
2 ((t′1 	 t′2) ∧ (t1 ≤t t′1) ∧ (t2 ≤t t′2)∧

�t′′1 , t′′2 ((t′′2 	 t′′1) ∧ (t′′1 ≤t t′1) ∧ (t′′2 ≤t t′2) ∧ ((t′1 �= t′′1) ∨ (t′2 �= t′′2))))
(R2)

where we no longer need to require that t1 ∼ t2, since the case of an existing
preference between t1 and t2 is captured by the second line of RuleR2.

406 P. Ciaccia et al.

Example 8. Based on the preferences in Example 5, Rule R2 propagates the fol-
lowing preferences to the t-tuples in Fig. 1, where for each preference we also
show the clause exploited for the propagation:

F1 : ta 	↓ te, tf 	↓ te
F2 : tb 	↓ ta, tb 	↓ tf , tc 	↓ ta, tc 	↓ tf
F3 : tb 	↓ tc
F4 : te 	↓ tf
F5 :

Notice that clause F5 yields no preference, since there is no concert in September.

4.2 Rewriting with Respect to the Target T-Schema

Rule R2 is the basic mechanism used to propagate preferences. However, it does
not guarantee that 	↓ is a preference relation (i.e., transitivity is not a con-
sequence of R2), even because the very input relation 	 is not necessarily a
preorder. Although one may be tempted to circumvent this problem by adopt-
ing an algorithm for non-transitive preferences [2], algorithms of this type can
discard a sub-optimal t-tuple t only if the database r contains a t-tuple t′ that
is directly (rather than transitively) better than t. The following example shows
the inadequacy of approaches base on non-transitive preferences.

Example 9. Consider the following t-relation r.

Artist Day Venue Price ($)

Eminem 12/08/2019 Unipol Arena, Bologna 60 td

Bruce Springsteen 30/10/2019 Stadio Olimpico, Rome 100 tf

Chick Corea 25/09/2019 Blue Note, Milan 65 tg

Since no preference among those in Example 5 applies to the t-schema of r,
t-tuples td, tf and tg are all incomparable. Therefore, RuleR2 can be applied,
thus propagating preferences td 	↓ tg (through clause F5) and tg 	↓ tf (through
clause F4). However, td �	↓ tf , thus 	↓ is not transitive.

An algorithm for non-transitive preferences would be able to discover that
β�↓(r) = {td}, since there exists a t-tuple in r, namely tg, that is directly better
than tf . Consider now r′ = {td, tf}. We argue that, even in this case, only td
should be returned as the best result, since tg, albeit not in r′, is still in the
domain of t-tuples. However, no algorithm that just looks at the t-tuples in r′

would be able to discard tf from the result, thus incorrectly returning the set
{td, tf}.

The approach we pursue is based on the idea of transitively closing the for-
mula F , once this has been rewritten with respect to the target t-schema S by
means of level mappings. The following example illustrates the idea.

Finding Preferred Objects with Taxonomies 407

Example 10. Consider the same scenario as in Example 9 and the following
rewriting, denoted F ′

S,↓, of F ′(t1, t2) = F5(t1, t2) ∨ F4(t1, t2), where F4 and F5

are as in Example 5.

F ′
S,↓(t1, t2)= [t1[Day] ∈ (μMonth

Day)−1(august) ∧ t2[Day] ∈ (μMonth
Day)−1(september)]∨

[t1[Day] ∈ (μSeason
Day)−1(autumn) ∧ t2[Day] ∈ (μSeason

Day)−1(autumn)∧
t1[Venue] ∈ (μInOut

Venue)
−1(indoor) ∧ t2[Venue] ∈ (μVenueType

Venue)−1(stadium)].

in which only values at levels in the t-schema of r are considered. Now, since
(μMonth

Day)−1(september)∩(μSeason
Day)−1(autumn) �= ∅ (i.e., some September days are

in autumn), there exists at least one Day value, such as tg[Day] = 25/09/2019
such that td is better than tg, which in turn is better than tf . This is sufficient
to conclude that td 	↓ tf .

Then, the transitive and reflexive closure of F ′
S,↓(t1, t2) can be written as:

F ′∗
S,↓(t1, t2)= (t1 = t2) ∨ F ′

S,↓(t1, t2)∨
[t1[Day] ∈ (μMonth

Day)−1(august)∧
t2[Day] ∈ (μSeason

Day)−1(autumn) ∧ t2[Venue] ∈ (μVenueType
Venue)−1(stadium)].

Therefore, even if r′ = {td, tf}, we correctly have β�∗
↓(r′) = {td}.

Besides inverse level mappings, also (direct) level mappings need to be used.
This is the case when the preference formula includes self-join predicates, in
which no values of more generic levels are present (thus inverse level mappings
cannot be applied). For instance, if we prefer to pay less, provided the two
concerts are of the same musical genre, the corresponding formula will have the
following pattern:

F (t1, t2) = (t1[A : l1] = t2[A : l1]) ∧ (t1[B : l] ≤ t2[B : l]).

Let S = {A : l′1, B : l, . . .}, with l′1 ≤L l1. In this case the only possible (and
correct) rewriting is:

FS,↓(t1, t2) = (μl1
l′1

(t1[A : l′1]) = μl1
l′1

(t2[A : l′1])) ∧ (t1[B : l] ≤ t2[B : l])

Example 11. The preferences described in Example 8 propagate to the t-tuples
in Fig. 1 without the need of computing the transitive closure. After computing
F ∗
S,↓ we also have, among others, the preference td 	∗

↓ tf . Since no t-tuple is
preferred to tb and td, we have that β�∗

↓(Concerts) = {tb, td}.

Algorithm 1 details the steps needed to obtain FS,↓ from F . Without loss of
generality we assume that all the preference clauses in F refer to attribute levels
that are not more specific than the corresponding ones in S, i.e., each preference
clause is relevant for obtaining FS,↓.

We observe that the rewritten formula FS,↓ uses inverse level mappings in
order to understand when preferences expressed at different levels can be tran-
sitively combined, which is all we need in this paper in order to determine the

408 P. Ciaccia et al.

Algorithm 1. Rewriting of preference formula F with respect to the target
t-schema S.
Input: taxonomies T1, . . . , Tk, target t-schema S = {A1 : l1, . . . , Ak : lk},

formula F = F1 ∨ . . . ∨ Fn.
Output: FS,↓.

1. let FS,↓ := F
2. for each predicate t[Aj : l] = c: // c is a constant
3. replace t[Aj : l] = c with t[Aj : lj] ∈ (μl

lj
)−1(c)

4. for each predicate t[Aj : l] θ t′[Aj : l]: // self-join predicate, θ ∈ {=, �=, <, ≤, >, ≥}
5. replace t[Aj : l] θ t′[Aj : l] with μl

lj
(t[Aj : lj]) θ μl

lj
(t′[Aj : lj])

6. return FS,↓

preferred objects in a t-relation. A different issue, which we do not cover in
detail in this paper, is to understand the most efficient approach to obtain the
transitively closed propagated preference relation. Besides the obvious alterna-
tive of materializing inverse level mappings, and then applying the standard
transitive closure algorithm, we may also consider, say, to make the transitive
closure algorithm aware of level mappings. With respect to the procedure given
in (3), the only additional complexity arises for cases like the one illustrated in
Example 10. In particular, consider an attribute Ai : li in the target t-schema
S, and assume that FS,↓ contains two predicates P and P ′ in which the inverse
level mappings (μl

li
)−1(c) and (μl′

li
)−1(d) appear, where c and d are constants,

li ≤L l, and li ≤L l′. In order to transitively combine P and P ′, as we did in
Example 10, it is necessary that the two images of the inverse mappings have a
non-empty intersection, i.e., (μl

li
)−1(c) ∩ (μl′

li
)−1(d) �= ∅. To this end there are

two cases to consider:

l ≤L l′: In this case it is sufficient to check that μl′
l (c) = d. Similarly, the case

l′ ≤L l requires to verify that μl
l′(d) = c.

l �≤L l′ and l′ �≤L l: When l and l′ are incomparable, the way to check that the
intersection is not empty depends on how level mappings are implemented.
For instance, for september and autumn the check just requires to compare
the definitions of these two concepts, which is an easy task.

5 Computing the Result

In order to compute the best results according to the (transitively closed) rewrit-
ten formula F ∗

S,↓ we can use any algorithm developed for returning the best
objects in a strict partial order, such as those in [1,10], by suitably adapting
it to work with preorders. Algorithm2 is such an adaptation of the well-known
BNL algorithm [1]. Before describing its logic, we need to detail how we can
effectively propagate only the most specific preferences.

According to Definition 7, in order to infer that t1 	∗
↓ t2 we have to look for

t-tuples t′1 and t′2 such that t′1 	 t′2, t1 ≤t t′1, and t2 ≤t t′2. From a practical
point of view, since we start with a formula F ∗

S,↓, the materialization of such

Finding Preferred Objects with Taxonomies 409

t-tuples t′1 and t′2 is not needed at all. Rather, if F ∗
S,↓(t1, t2) holds, we look at

the preference clause Fi that evaluates to true and, for each involved attribute,
we consider the original level it has for both t1 and t2 (remind that F ∗

S,↓ has
been obtained by applying (inverse) level mappings). If an attribute does not
appear in Fi we set its level to the top level of its taxonomy (henceforth simply
indicated by �).

Example 12. Consider t-tuples ta and tb in Fig. 1 and clause F2(t1, t2) =
(t1[Artist] = Madonna) ∧ (t2[Genre] = rock). Note that F2(tb, ta) holds and the
original levels when evaluating F2 for ta are (Genre,�,�,�), while those for tb
are (Artist,�,�,�).

Overall, this leads to a pair of t-schemas, spp(t1, t2) = 〈sig1,2(t1), sig1,2(t2)〉,
which we call the signature of propagated preference. Notice that sig1,2(t1) is
the t-schema for t1 when we test if t1 is preferred to t2. Since, in general,
this is different from the t-schema for t1 when we test if t2 is preferred to
t1, we need to use subscripts, i.e., sig1,2 and sig2,1, respectively, to distin-
guish the two cases. Now, if also F ∗

S,↓(t2, t1) holds, we compare spp(t1, t2) and
spp(t2, t1) = 〈sig2,1(t2), sig2,1(t1)〉 and conclude that the first preference is more
specific than the second, denoted by spp(t1, t2) < spp(t2, t1) iff sig1,2(t1) ≤S

sig2,1(t1) and sig1,2(t2) ≤S sig2,1(t2), with at least one t-schema being strictly
more specific. In Algorithm 2 this “specificity test” is performed by the proce-
dure MoreSpecificPref(t, t′), which returns t if the preference t 	∗

↓ t′ is more
specific than t′ 	∗

↓ t, t′ in the opposite case, and nil if neither case occurs.

Algorithm 2. Computing the best t-tuples in r according to F ∗
S,↓.

Input: t-relation r with t-schema S = {A1 : l1, . . . , Ak : lk}, formula F ∗
S,↓.

Output: β�∗
↓ .

1. let Best := ∅
2. for each t ∈ r
3. let Opt := true
4. for each t′ ∈ Best
5. cases
6. F ∗

S,↓(t, t
′) ∧ (F ∗

S,↓(t
′, t) ∧ t = MoreSpecificPref(t, t′) ∨ ¬F ∗

S,↓(t
′, t)) :

Best := Best \ {t′}
7. F ∗

S,↓(t
′, t) ∧ (F ∗

S,↓(t, t
′) ∧ t′ = MoreSpecificPref(t, t′) ∨ ¬F ∗

S,↓(t, t
′)) :

let Opt := false; break
8. if Opt then Best := Best ∪ {t}
9. return Best

Example 13. Assume we are comparing t-tuples ta and tb in Fig. 1.
Besides the clause F2 from Example 12, from clause F1 in Exam-
ple 5 (F1(t1, t2) = (t1[Genre] = rock) ∧ (t2[Genre] = pop)) we also
derive that ta 	∗

↓ tb, whereas tb 	∗
↓ ta follows from clause F2.

For the first preference we have spp(ta, tb) = 〈(Genre,�,�,�), (Genre,�,

410 P. Ciaccia et al.

�,�)〉, whereas for the second we have spp(tb, ta) = 〈(Artist,�,�,�), (Genre,
�,�,�)〉. Although for ta the two t-schemas are the same, for tb Artist is
strictly more specific than Genre, thus spp(tb, ta) < spp(ta, tb) and, consequently,
tb = MoreSpecificPref(ta, tb).

Algorithm 2 keeps the current best t-tuples in the Best set. When a new
t-tuple t is read, the Opt flag is set to true (line 3) and t starts to be compared
with the t-tuples currently in Best (line 4). Given t′ ∈ Best, when both F ∗

S,↓(t, t
′)

and F ∗
S,↓(t

′, t) hold the MoreSpecificPref procedure determines if one of the
two preferences is more specific than the other. If only t 	∗

↓ t′ is propagated
(i.e., t = MoreSpecificPref(t, t′)) then t′ is removed from the result set (line
6), which also happens if only F ∗

S,↓(t, t
′) holds. Conversely, when the preference

t′ 	∗
↓ t is more specific (or only F ∗

S,↓(t
′, t) holds), then we exit the loop by

setting Opt to false (line 7). If t exits the loop without having encountered a
strictly better t-tuple t′, then t is added to Best (line 8). Eventually, we have
β�∗

↓(r) = Best.

6 Conclusions

In this paper we have studied preference propagation along several taxonomies,
when the levels at which preferences are stated and that of the stored data differ.
The preference model we have proposed is able to deal with conflicting prefer-
ences in an effective way, thus propagating only the most specific preferences.

The specificity principle we use in this paper was also considered in [4], albeit
on a different preference model (using strict partial orders rather than preorders)
and a different scenario, in which preferences were to be combined across different
contexts. The problem of dealing with preferences defined on different schemas,
which is the main focus of the present paper, was not addressed at all in [4].

Propagation of preferences in OLAP systems is considered in [5], where an
algebraic language is adopted. Preferences on attributes are of type POS(l, v),
which means that v is preferred to any other value at the same level l. Propaga-
tion occurs along hierarchies of levels, however no issue concerning combination
of conflicting preferences is considered.

Unlike most works studying the problem of managing qualitative preference
queries on databases [9], in which the preference relation is a strict partial order
, in this paper we have considered “weak” preferences that are modeled as a
preorder 	. This choice originates from the observation that, while propagating
preferences between different t-schemas, transitivity cannot be guaranteed and a
transitive closure is needed. However, enforcing transitivity might lead to cycles,
which are harmless for preorders but cannot occur in strict partial orders.

Future work includes the study of efficient methods for computing the tran-
sitive closure of the preference formula along the lines sketched in Sect. 4, the
development of ad hoc algorithms for determining the best objects, and an exper-
imental evaluation on real-case scenarios.

Finding Preferred Objects with Taxonomies 411

References

1. Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: ICDE, pp.
421–430 (2001)

2. Chan, C.Y., Jagadish, H.V., Tan, K., Tung, A.K.H., Zhang, Z.: Finding k-dominant
skylines in high dimensional space. In: SIGMOD, pp. 503–514 (2006)

3. Chomicki, J.: Preference formulas in relational queries. TODS 28(4), 427–466
(2003)

4. Ciaccia, P., Torlone, R.: Modeling the propagation of user preferences. In: Jeusfeld,
M., Delcambre, L., Ling, T.-W. (eds.) ER 2011. LNCS, vol. 6998, pp. 304–317.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24606-7 23

5. Golfarelli, M., Rizzi, S., Biondi, P.: myOLAP: An approach to express and evaluate
OLAP preferences. TKDE 23(7), 1050–1064 (2011)

6. Martinenghi, D., Torlone, R.: Querying databases with taxonomies. In: Parsons,
J., Saeki, M., Shoval, P., Woo, C., Wand, Y. (eds.) ER 2010. LNCS, vol. 6412, pp.
377–390. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16373-
9 27

7. Martinenghi, D., Torlone, R.: Taxonomy-based relaxation of query answering in
relational databases. VLDB J. 23(5), 747–769 (2014)

8. Ricci, F., Rokach, L., Shapira, B.: Introduction to recommender systems handbook.
In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems
Handbook, pp. 1–35. Springer, Boston (2011). https://doi.org/10.1007/978-0-387-
85820-3 1

9. Stefanidis, K., Koutrika, G., Pitoura, E.: A survey on representation, composition
and application of preferences in database systems. TODS 36(3), 19:1–19:45 (2011)

10. Torlone, R., Ciaccia, P.: Which are my preferred items? In: RPEC, pp. 217–225
(2002)

https://doi.org/10.1007/978-3-642-24606-7_23
https://doi.org/10.1007/978-3-642-16373-9_27
https://doi.org/10.1007/978-3-642-16373-9_27
https://doi.org/10.1007/978-0-387-85820-3_1
https://doi.org/10.1007/978-0-387-85820-3_1

Generic Negative Scenarios
for the Specification of Collaborative

Cyber-Physical Systems

Viktoria Stenkova(&) , Jennifer Brings , Marian Daun ,
and Thorsten Weyer

paluno – The Ruhr Institute for Software Technology,
University of Duisburg-Essen, Essen, Germany

{viktoria.stenkova,jennifer.brings,marian.daun,

thorsten.weyer}@paluno.uni-due.de

Abstract. Collaborative cyber-physical systems face a plethora of different
albeit often similar set-ups they might find themselves in during runtime. While
it is necessary to consider each possible configuration to ensure safe operation of
a collaborative cyber-physical system, the sheer number of unwanted behaviors
makes manual safety assurance tasks daunting. The specification of unwanted
behavior in negative scenarios helps identifying and correcting safety-critical
design flaws. However, this requires negative scenarios for collaborative cyber-
physical systems to be identified and the essential pieces of information therein
to be consolidated and reduced to a manageable size. To this end we present a
semi-automated approach that (1) generates negative scenarios from main sce-
narios considering all possible configurations and (2) generates generic negative
scenarios using dedicated abstraction mechanisms that provide a condensed
view on unwanted behaviors. The application of our approach to a case example
from the automotive domain demonstrates its usefulness and appropriateness.

Keywords: Negative scenarios � Message Sequence Charts � Safety analysis �
Cyber-physical systems

1 Introduction

Scenarios are commonly used during requirements engineering [1]. In scenario-based
requirements engineering, scenarios are used to sketch real world situations the system
shall be able to cope with or purposes the system shall fulfill during its operation.
Scenarios, however, do not always define the wanted behavior of a system. Scenarios
can also be used to document unwanted behavior. These kinds of scenarios are com-
monly referred to as negative scenarios [2]. Negative scenarios are used to elicit and
specify safety requirements [3], as they specify what must not occur. This means that
scenarios can also represent behaviors in which the system fails or is misused. The
specification of security and safety hazards in negative scenarios allows for improving
safety analyses [2] (i.e. by checking whether negative scenarios can occur).

© Springer Nature Switzerland AG 2019
A. H. F. Laender et al. (Eds.): ER 2019, LNCS 11788, pp. 412–419, 2019.
https://doi.org/10.1007/978-3-030-33223-5_34

http://orcid.org/0000-0002-4936-1873
http://orcid.org/0000-0002-2918-5008
http://orcid.org/0000-0002-9156-9731
http://orcid.org/0000-0002-3357-5113
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33223-5_34&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33223-5_34&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33223-5_34&domain=pdf
https://doi.org/10.1007/978-3-030-33223-5_34

Scenarios cannot only be used to define the intended user interaction between
human users and the system but also to define the intended interaction-based behavior
between different systems [4]. This is particularly useful for collaborative CPS as they
can form dynamic system groups at runtime [5] to provide more functionality than the
individual systems can [6]. The concrete systems collaborating and the number of
system instances collaborating in a dynamic system group can vary considerably. This
poses challenges for their specification as there is a need to handle an extremely large
number of scenarios as system groups with different numbers of individual systems
constitute different scenarios [7, 8]. For example, a group of collaborating transport
robots jointly working in a smart factory, pose different behavior depending on the
number of robots used. If only two robots are responsible for transport tasks, and many
transport tasks are assigned to them, the robots pay less attention to their battery status
than if the group consisted of ten robots and just as many tasks. This problem is further
exacerbated when considering negative scenarios as for each regular i.e., positive main
scenario typically more than just one negative scenario needs to be specified, thus, the
number of possible negative scenarios can increase rapidly [2, 3].

If negative scenarios are specified for every possible number of systems in the
system group that show the same kind of behavior of the system group, the number of
scenarios a safety engineer would need to cope with surpasses what can be handled.
However, not specifying all scenarios bears the risk of leaving important aspects out
during safety analysis.

In this paper, we propose the specification of generic negative scenarios to allow
for specification of negative scenarios considering all possible numbers of system
instances that need to be considered, while at the same time keeping the number of
graphical diagrams a safety engineer needs to handle at a reasonable level. Therefore,
generic negative scenarios use dedicated abstraction mechanism to reduce complexity.
To support safety analysis by structured specification of all relevant negative scenarios
collaborative CPS might face during runtime, we propose

(a) an approach for systematic derivation of negative scenarios taking all different
configurations of the system group into account and

(b) an approach for generation of generic negative scenarios to specify all relevant
negative scenarios for the different configurations in one condensed view.

We use ITU Message Sequence Charts [9] for the specification of main scenarios,
negative scenarios and generic negative scenarios, as MSCs or MSC-like languages
(e.g., UML sequence diagrams, life sequence charts) are commonly used in the engi-
neering of CPS [3] and have proven useful for comparable tasks [10, 11]. Initial
evaluation results from an industrial case example highlight the applicability of the
approach and give important insights for enhancing scenario descriptions to account for
collaborative CPS.

The paper is structured as follows. Section 2 will briefly introduce the approach for
the creation of generic negative scenarios. Section 3 reports findings from our initial
evaluation. Section 4 reviews related approaches and Sect. 5 concludes the paper.

GNS for the Specification of Collaborative CPS 413

2 Generic Negative Scenarios

In this paper, we propose an approach to systematically derive and specify negative
scenarios taking the changing morphologies of the system group into account. The
approach relies on the structured derivation of negative scenarios and the specification
of these derived negative scenarios within one generic negative scenario. The resulting
generic negative scenario summarizes a class of similar negative scenarios that differ
from each other in the number of instances (as well as in the resulting interactions
between system instances due to the number of system instances involved). The
approach for generation of generic negative scenarios consists of four steps:

Step 1: Identification of a main scenario and alternative scenarios. Before
identifying negative scenarios, a positive main scenario is identified and docu-
mented which illustrates a desired behavior of a system group with the smallest
possible number of collaborative embedded systems. The main scenario is the
standard case in which the system works correctly. Besides the main scenario in
many cases alternative scenarios exist, which describe other regular ways of
interaction exchange leading to the fulfillment of the same scenario. Therefore, the
main scenario is examined for alternative behavior as is commonly done during
scenario-based engineering. To avoid confusion, we refer to this kind of alternative
scenario as classic alternative scenario in this paper.
Step 2: Identification of alternative configuration scenarios. Beside such classic
alternative scenarios, in Step 2 further alternative scenarios are identified that differ
in the number of systems involved. These alternative configuration scenarios are
created from the main scenario and the classic alternative scenarios by adding further
instances representing further systems and the according messages exchanged
between the new instance and the already existing instances. We refer to this kind of
alternative scenario as alternative configuration scenario in this paper.
Step 3: Identification of negative scenarios. The previously created main scenario
and all alternative scenarios (i.e. the classic alternative scenarios and the alternative
configuration scenarios) are analyzed for unwanted behavior. This is the case if the
system does not achieve its goals or even endangers them, for example, if the
behavior of individual system could endanger the system group. In most cases they
can be considered light variations from the specified positive scenarios, which result
in undesired system states. Consequently, an identified negative scenario for one
classic alternative scenario can also be extended to detail this situation considering
related alternative configuration scenarios defining the involvement of further sys-
tem instances. Therefore, for each main and classic alternative scenario, alternative
configuration scenarios are created and accordingly negative scenarios depicting the
same undesired situation with different numbers of system instances involved can
be generated.
Step 4: Generation of generic negative scenarios. To cope with the multitude of
negative scenarios, generic negative scenarios are created which abstract from the
concrete number of systems in a system group. Individual systems with the same

414 V. Stenkova et al.

behavior or tasks are grouped into equivalence classes. Each of these classes requires
only one instance in the generic negative scenario model, which enhances readability.

In Fig. 1 the steps for the creation of generic negative scenarios are illustrated. First a
main scenario (MS) is created and classic alternative scenarios (CAS 1 – CAS n), are
derived for aminimal number of instances. For themain scenario and each of these classic
alternative scenarios alternative configuration scenarios with different instance config-
urations of the system group (ACS 0.1 – ACS n.1) are created. for the main scenario, all
classic alternative scenarios and each alternative configuration scenario negative sce-
narios (NS) are specified and the generic negative scenario (GNS) is generated.

3 Application Example

We initially evaluated our approach by applying it to an industrial case example. As
application example a cooperative adaptive cruise control system from the automotive
industry was used. The specification was provided by our industry partners. Vehicles
equipped with cooperative adaptive cruise control systems are enabled to dynamically
form platoons during runtime [12]. This allows them to keep a small distance from each
other and perform maneuvers together. Platooning offers advantages over single
driving such as safety, eco-friendliness, cost savings (time, fuel) as well as advantages
for road traffic and the driver himself.

In a platoon two major roles can be distinguished: the lead vehicle and the fol-
lowing vehicles. While the lead vehicle initiates maneuvers and is responsible for the
organization of the platoon, the following vehicles also exchange information with
each other and each follow the preceding vehicle [13]. Therefore, each vehicle senses
its environment and exchanges this information with the other vehicles to allow the
platoon leader to make decisions taking all available context information into account.

The approach is applied to the platooning case example using the scenario of faulty
traffic sign recognition. The recognition of traffic signs depends on many factors,
including lighting conditions, weather conditions, obstacles and the condition of the
sensors [14]. Therefore, in a platoon, multiple negative scenarios can occur, involving

Fig. 1. Generation of generic negative scenarios

GNS for the Specification of Collaborative CPS 415

the erroneous non-recognition of the traffic sign by some vehicles of the platoon and
the erroneous detection of different speed limits by different vehicles of the platoon.

Figure 2 shows the resulting generic negative scenario for the detection of faulty
traffic signs within a platoon. For a more thorough description of the systematic gen-
eration of the generic negative scenario and its comparison to the traditional specifi-
cation of multiple negative scenarios, please refer to the supplement https://doi.org/10.
5281/zenodo.3266992.

alt

LV FV1 TS1,…,m

Max Speed x

Max Speed y ≠ x

New Current Speed

New Current Speed

Max Speed y ≠ x

FV2,…,n

New Current Speed

Max Speed y ≠ x
Max Speed y ≠ x

Max Speed y ≠ x

New Current Speed
New Current Speed

FOR each TS 1:m or FV 2:n
repe on of the alterna ve is possible

LV FV1 TS1,…,m

Max Speed y ≠ x

New Current Speed

Max Speed y ≠ x

FV2,…,n

New Current Speed
Max Speed z ≠ x,y

Max Speed z ≠ x,y
Max Speed z ≠ x,y

New Current Speed New Current Speed

First Possible
Alterna ve

Second
Possible

Alterna ve

Loop for
Possible

Alterna ve

Alterna ve for
Possible

Combina ons

Possible
Combina ons

Combina ons

Fig. 2. Generic negative scenario.

416 V. Stenkova et al.

http://dx.doi.org/10.5281/zenodo.3266992
http://dx.doi.org/10.5281/zenodo.3266992

The generic negative scenario abstracts from concrete instances but shows instances
for different identified instance classes. Instance classes are lead vehicle (LV), following
vehicle 1 (FV1), following vehicle 2-n (FV2,…,n) and traffic signs (TS 1,…,m). Note that
due to their high degree of similarity all following vehicles, but the first following
vehicle, are grouped into the class following vehicle 2-n.

In the generic negative scenario, the unwanted behavior, which in this case rep-
resents the overwriting of the desired speed of the platoon, is caused by the identified
generic instances which means that at least one vehicle in position three or higher
detects a wrong speed limit and propagates the wrong speed limit to the entire platoon.

The introduction of generic instances representing different classes of instances
leads to the need to define several alternatives for the definition of the negative
behavior for each possible configuration (e.g., FV3 or FV4 fails to detect a traffic sign
correctly). Since the alternative inline expression allows only one of the shown
behaviors, a loop is used to represent several of the similar alternatives, which depend
on the number of instances. The combinations thereof are then specified in a further
MSC shown in the lower half of Fig. 2, to express that e.g., FV4 and FV6 fail to detect a
traffic sign correctly.

Since the explicit specification of all these possibilities leads again to an exhaustive
diagrammatic representation, further simplifications are needed. For ITU MSCs the
“alt”-operator is defined as exclusive or. We assume that the introduction of a real “or”-
operator (i.e. a non-exclusive one) can reduce the complexity of the generic negative
scenarios. However, further research is needed to confirm that there are no side effects
caused by the introduction of a non-exclusive or operator for MSC.

4 Related Work

There exists a multitude of work in requirements engineering literature dealing with the
model-based specification of scenarios and its use during scenario-based requirements
engineering approaches (e.g. [1, 2]). Other approaches particularly focus on the
specification of negative [15] or misuse [16] scenarios. Recent approaches like [17]
propose the formalization of scenarios to foster monitoring negative scenarios at run-
time to verify that the negative scenario is not executed in a certain configuration of the
collaborative system group. In contrast, generic negative scenarios aim at a proper
diagrammatic (i.e. human readable) specification that can then serve for verification
purposes.

However, works on scenario-based requirements engineering typically do not take
the need for considering multiple closely related scenarios only differing in the number
of system instances specified into account. This is the case for approaches on instance
level modeling. Instance level modeling can be used, as in Pergl et al. [18], to represent
objects in more detail. Instance level modeling does not deal with general classes, but
with the objects themselves.

Jahn et al. [19] introduced the language pattern instance specialization which is
based on inheritance. It is intended to enable the reuse of properties and facets of an
instance by specializing them. Solmi [20] uses language entities for instance modeling.
Generic meta levels are used to describe instances. The graphical representation

GNS for the Specification of Collaborative CPS 417

proposed is similar to mind maps and can, thus, be combined with other languages.
Ehrig et al. [21] and Hamsworth et al. [22] propose generating instances to foster
testing.

The representation chosen for generic negative scenarios is closely related to the
specification of patterns, as no concrete number of instances etc. is given. Hence,
pattern matching (e.g., [23]) is to be seen as another related area for this paper.

5 Conclusion

The specification of negative scenarios, which describe safety and security hazards and
behavior resulting from these hazards that must not occur during system execution, is
an important task. Particularly, negative scenarios are needed to automatically check
whether the system correctly mitigates all these hazards. However, in this paper, the
case was made that the specification of negative scenarios for collaborative CPS that
partake in dynamic system groups at runtime easily becomes challenging due to the
many different negative scenarios to be considered. This is caused by the need to
consider all possible system group configurations that dynamically form during run-
time. Already slight variations in the system group’s morphology lead to the need to
consider further negative scenarios during safety analysis.

In this paper, we proposed an approach for the specification of generic negative
scenarios. Generic negative scenarios contribute to both problematic aspects. First,
generic negative scenarios account for the plethora of relevant negative scenarios using
only one specification artifact for specifying closely related negative scenarios. Second,
by grouping similar behaving system instances in the scenario, the size of the dia-
grammatic representation can considerably be reduced. Applicability and feasibility
have been shown for ITU MSCs for the specification of negative scenarios using an
industrial case example from the automotive domain provided by our industrial part-
ners. In this case example, it has shown that the proposed generic negative scenario
indeed sufficiently accounts for a variable number of systems and that the use of a
single generic negative scenario can considerably reduce complexity and aid in the
specification of negative scenarios for collaborative CPS.

Acknowledgements. This research was partly funded by the German Federal Ministry of
Education and Research (grant no. 01IS16043V). We like to thank our industrial partners for
their support. Namely, we thank Frank Houdek (Daimler AG).

References

1. Weidenhaupt, K., Pohl, K., Jarke, M., Haumer, P.: Scenario usage in system development: a
report on current practice. IEEE International Conference Requirements Engineering (1998)

2. Some, S.S.: Use cases based requirements validation with scenarios. In: IEEE International
Conference on Requirements Engineering (2005)

3. Sindre, G., Opdahl, A.L.: Eliciting security requirements with misuse cases. Requir. Eng. 10,
34–44 (2005)

418 V. Stenkova et al.

4. Daun, M., Tenbergen, B., Weyer, T.: Requirements Viewpoint. In: Pohl, K., Hönninger, H.,
Achatz, R., Broy, M. (eds.) Model-Based Engineering of Embedded Systems, The SPES
2020 Methodology, pp. 51–68. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-34614-9_4

5. Broy, M.: Engineering cyber-physical systems: challenges and foundations. In: Aiguier, M.,
Caseau, Y., Krob, D., Rauzy, A. (eds.) Complex Systems Design & Management, pp. 1–13.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-34404-6_1

6. Yang, W., Xu, C., Pan, M., Ma, X., Lu, J.: Improving verification accuracy of CPS by
modeling and calibrating interaction uncertainty. ACM Trans. Internet Technol. 18, 20 (2018)

7. Gheorghita, S.V., et al.: System-scenario-based design of dynamic embedded systems. ACM
Trans. Autom. Electron. Syst. 14, 3:1–3:45 (2009)

8. Brings, J., et al.: Model-based documentation of dynamicity constraints for collaborative
cyber-physical system architectures: findings from an industrial case study. J. Syst. Archit.
97, 153–167 (2019)

9. International Telecommunication Union: ITU-T Z.120 : Message Sequence Chart (MSC)
10. Daun, M., Brings, J., Krajinski, L., Weyer, T.: On the benefits of using dedicated models in

validation processes for behavioral specifications. In: International Conference on Software
and System Processes, pp. 44–53 (2019)

11. Daun, M., Weyer, T., Pohl, K.: Improving manual reviews in function-centered engineering
of embedded systems using a dedicated review model. Softw. Syst. Model. 18(6), 3421–
3459 (2019)

12. Milanes, V., Shladover, S.E., Spring, J., Nowakowski, C., Kawazoe, H., Nakamura, M.:
Cooperative adaptive cruise control in real traffic situations. IEEE Trans. Intell. Transp. Syst.
15, 296–305 (2014)

13. Ferrara, A.: Scaled experimental study of an automatic collision avoidance system for
passenger cars. IFAC Proc. 38, 301–306 (2005)

14. Ellahyani, A., El Ansari, M., El Jaafari, I.: Traffic sign detection and recognition based on
random forests. Appl. Soft Comput. 46, 805–815 (2016)

15. Uchitel, S., Kramer, J., Magee, J.: Negative scenarios for implied scenario elicitation. 27,
109–118 (2002)

16. Whittle, J., Wijesekera, D., Hartong, M.: Executable misuse cases for modeling security
concerns. In: 30th International Conference on Software Engineering, pp. 121–130 (2008)

17. Greenyer, J., Gritzner, D., König, F., Dahlke, J., Shi, J., Wete, E.: From scenario modeling to
scenario programming for reactive systems with dynamic topology. In: 11th Joint Meeting
Foundations of Software Engineering, pp. 974–978 (2017)

18. Pergl, R., Sales, T.P., Rybola, Z.: Instance-level modelling and simulation revisited. In:
Barjis, J., Gupta, A., Meshkat, A. (eds.) EOMAS 2013. LNBIP, vol. 153, pp. 85–100.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41638-5_6

19. Jahn, M., Roth, B., Jablonski, S.: Instance specialization-a pattern for multi-level
metamodelling. In: MULTI@ MoDELS, pp. 23–32 (2014)

20. Solmi, R.: Instance modeling assisted by an optional meta level. In: International Workshop
on Domain-Specific Modeling, pp. 53–57. ACM (2016)

21. Ehrig, K., Küster, J.M., Taentzer, G.: Generating instance models from meta models. Softw.
Syst. Model. 8, 479–500 (2009)

22. Haworth, B., Kirsopp, C., Roper, M., Shepperd, M., Webster, S.: Towards the development
of adequacy criteria for object-oriented systems. In: 5th European Conference on Software
Testing Analysis and Review. pp. 417–427 (1997)

23. Matsuoka, Y., Aoki, T., Inenaga, S., Bannai, H., Takeda, M.: Generalized pattern matching
and periodicity under substring consistent equivalence relations. Theor. Comput. Sci. 656,
225–233 (2016)

GNS for the Specification of Collaborative CPS 419

http://dx.doi.org/10.1007/978-3-642-34614-9_4
http://dx.doi.org/10.1007/978-3-642-34614-9_4
http://dx.doi.org/10.1007/978-3-642-34404-6_1
http://dx.doi.org/10.1007/978-3-642-41638-5_6

Model Unification

HIKE: A Step Beyond Data Exchange

Sergio Greco1, Elio Masciari2,3, Domenico Saccà1, and Irina Trubitsyna1(B)

1 DIMES-Università della Calabria, 87036 Rende, CS, Italy
{greco,sacca,trubitsyna}@dimes.unical.it

2 DIETI-Università degli Studi di Napoli Federico II, 80125 Napoli, NA, Italy
elio.masciari@unina.it

3 ICAR-CNR, 87036 Rende, CS, Italy

Abstract. The problem of exchanging data, even considering incom-
plete and heterogeneous data, has been deeply investigated in the last
years. The approaches proposed so far are quite rigid as they refer to fixed
schema and/or are based on a deductive approach consisting in the use
of a fixed set of (mapping) rules. In this paper, we propose HIKE (Highly
Intelligent Knowledge Extraction), a framework that addresses this prob-
lem. The core of the framework consists of a smart data exchange archi-
tecture integrating deductive and inductive techniques to obtain new
knowledge. The use of graph-based representation of source and target
data, together with the midway relational database and the extraction
of new knowledge allow us to manage dynamic databases where also fea-
tures of data may change over the time. The paper also addresses the
problem of computing certain answers in the new setting and reports a
precise analysis of its complexity.

1 Introduction

Many proposal have been made for data exchange among heterogeneous sources.
However, for the best of our knowledge, no generalization of the consolidated
data exchange framework, that supports both the extraction of new knowledge
and flexible representation of heterogeneous data has been defined so far. In this
paper we present HIKE (Highly Intelligent Knowledge Extraction), an extension
of the data exchange framework that addresses the above mentioned issues.

The global scenario is showed in Fig. 1, where (i) Source, Target and Midway
are three databases, (ii) ΣSM and ΣMT are extended TGDs (Tuple Generating
Dependencies) mapping data from Source to Midway and standard TGDs map-
ping data from Midway to Target, respectively, (iii) ΣM and ΣT are extended
TGDs defined over the Midway database and standard TGDs and EGDs (Equal-
ity Generating Dependencies) defined over the Target database, respectively.

The idea is that, by allowing an intermediate database and a richer language
to derive new information, as well as information obtained by analyzing data,
we may define more powerful and flexible tools for data exchange.

To have a flexible and general representation of source and target databases,
following the RDF approach, we decided to model them using a graph-based
c© Springer Nature Switzerland AG 2019
A. H. F. Laender et al. (Eds.): ER 2019, LNCS 11788, pp. 423–438, 2019.
https://doi.org/10.1007/978-3-030-33223-5_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33223-5_35&domain=pdf
https://doi.org/10.1007/978-3-030-33223-5_35

424 S. Greco et al.

Fig. 1. HIKE architecture

formalism where data are stored into ternary relations. Differently from other
formalisms where data are stored into a unique relation [3,17], we consider mul-
tiple ternary relations, but analogously to RDF our graph data consist of tuples
of the form (i, a, v) with i being a (resource) identifier, a an attribute name and
v a value (either a constant or an identifier). The midway database is a relational
database containing tuples of any arity that are either imported from the source
database using the ΣSM source-midway mapping rules, or are generated by the
Smart Analyzer Tool (SAT). Data dependencies denoted by Σ M are used to gen-
erate new information useful to enrich the target database. The target database
is graph-based and is built by importing data from the midway database using
the mapping rules ΣMT. Finally, as in the standard data exchange scenario, ΣT

consists of a set of TGDs or EGDs.
While we assume that the smart analyzer tool is a black-box aiming to pro-

duce new data stored in the midway database (in our prototype it implements
several data mining algorithms specific for the domain application), the language
used to define ΣM is a rich logical language that makes use of comparison pred-
icates, aggregate predicates and nondeterministic choice constructs (well stud-
ied in the past by the community of logic databases). This language allows to
obtain more realistic information that could be used in a flexible way by both
data experts (for analysis purposes) and inexperienced users (for a better navi-
gation through data). We point out that another peculiarity of our framework is
that the data exchange takes also advantages of information (under the form of
facts) generated by a data analyzer module and stored into the midway database,
together with the data extracted from the source database.

For the sake of presentation, in the following we shall denote as Smart Data
Exchange (SDE) the problem of exchanging data from a source database to a
target database using a midway database, which can be also populated by the
SAT module.

Example 1. Consider a source and a target databases describing the user’s pro-
files in a social network scenario. These databases contain relations PS(I, N, V)
and PT(I, N, V), respectively, with attributes I (profile identifier), N (attribute
name) and V (attribute value). The information about profiles’ compatibility,
extracted from source and target relations (by the SAT module) is stored in the
midway database using relation Corr(IS, IT, L), where the first two attributes
contain profile’s identifiers taken from tables PS and PT, respectively, whereas

HIKE: A Step Beyond Data Exchange 425

L represents the level of compatibility of these profiles. The problem here, is to
enrich PT with some “relevant” attributes from PS. This scenario can be modelled
as follows.

Assume that the source database contains the ternary relation PS, the target
database contains the ternary relation PT and the midway database contains the
relations PM, P’M, Tmp and Corr. The mapping from the source to the intermediate
databases is defined by the TGD

PS(i,n,v) → PM(i,n,v)

saying that all profiles in the source database are imported in the midway
database.

To enrich profiles in the midway database we could also use information about
compatibilities extracted by the smart analyzer tool. Thus, using full estended
TGDs we can define richer profiles as follows:

PM(iS, n,v) ∧ Corr(iS, iT, l) ∧ l ≥ 0,50 → Tmp(iT, n,v,count(iS))
Tmp(iT, n,v) ∧ w ≥ 5 → P′

M(iT, n,v)

where the head atom of the first dependency contains the aggregate function
count. These extended TGDs say that a target profile with identifier iT, which
is correlated with a ranking of at least 0.5, to at least 5 profiles in the source
database having the same attribute n and value v, must be enriched with the
feature (iT, n,v). The mapping from the intermediate to the target database my
be expressed using the midway-target TGD

P′
M(i,n,v) → PT(i, n,v)

��
Once the data of interest have been transferred to the target database they

can be checked for consistency and possibly updated using standard TGDs and
then analyzed to generate additional data which will be used in possibly next
steps.

Contributions and Related Works. Summarizing, in this paper we propose
a general framework that supports both analysis and flexible representation of
heterogeneous data. The use of graph-based representation of source and target
data, together with the extraction of new knowledge made by the SAT tool
allow us to manage dynamic databases where also features of data may change
over the time. The advantage of using a midway database is that we can use
more powerful, logic-based formalisms (using aggregates and nondeterministic
functions) to generate new data which are then filtered and imported in the
target database. We also study the problem of certain query answering [22] and
present a precise complexity analysis of the problem.

The idea to model data analysis during the data mapping is present in Data
Posting framework [8] and its simplified version [18]. Differently from HIKE, the

426 S. Greco et al.

framework proposed in [8,18] does not use graph-based formalisms for source and
target data and does not have an intermediate level for data analysis. Moreover,
it does not admit the use of existentially quantified variables in the mapping rules
and uncertain values in the body of mapping rules can be represented only by
means of non-deterministic variables, whose values can be selected from specific
relations called domain relations, possibly restricted by target count constraints.

Outline. In the following, we will describe in Sect. 2 the background of our
approach. In Sect. 3 we describe our smart data exchange framework. In Sect. 4
we study the complexity of the certain answer problem. In Sect. 5 our strategy
for gathering new information from data instances is presented. Finally, in Sect. 6
we will draw our conclusions. For space limitations proofs are omitted.

2 Background

In this section we recall the classical data exchange scenario and an extension
of the standard logic query language Datalog with nondeterministic constructs.

2.1 Data Exchange

A schema is a finite collection R = {R1, ..., Rk} of relation symbols. Each relation
symbol has an arity, which is a positive integer. A relation symbol of arity n
is called n-ary, and has n distinct attributes, which intuitively correspond to
column names. An instance I over the schema R is a function that associates
to each n-ary relation symbol Ri an n-ary relation I(Ri). With a little abuse of
notation we will use Ri to denote both the relation symbol and the relation that
interprets it. Given a tuple t occurring in a relation R, we denote by R(t) the
association between t and R and call it a fact. An instance can be conveniently
represented by its set of facts. R(v), where v is a vector of variables or constants
with the arity of R, is called atom. If R is a schema, then a dependency over R
is a sentence in some logical formalism over R.

A Tuple Generating Dependency (TGD) is formula of the form: ∀xφ(x) →
∃y ψ(x,y), where φ(x) and ψ(x,y) are conjunctions of atoms, and x,y are lists
of variables. Full TGDs are TGDs without existentially quantified variables. An
Equality Generating Dependency (EGD) is a formula of the form: ∀xφ(x) →
x1 = x2, where φ(x) is conjunction of atoms, while x1 and x2 are variables in
x. In our formulae it is common to omit the universal quantifiers, when their
presence is clear from the context. The left hand side (w.r.t. the implication
symbol) of a data dependency is called antecedent or body, whereas the right
hand side is called consequent or head.

Let S = S1, ..., Sn and T = T1, ..., Tm be two disjoint schemas. We refer to S
as the source schema and to the Si’s as the source relation symbols. We refer to
T as the target schema and to the Tj ’s as the target relation symbols. Similarly,
instances over S will be called source instances, while instances over T will be
called target instances. If I is a source instance and J is a target instance, then

HIKE: A Step Beyond Data Exchange 427

we write 〈I, J〉 for the instance K over the schema S∪T such that K(Si) = I(Si)
and K(Tj) = J(Tj), for i ≤ n and j ≤ m.

The data exchange setting [2,12] is a tuple (S, T,Σst, Σt), where S is the
source relational database schema, T is the target schema, Σt are dependencies
over the target schema T and Σst are source-to-target TGDs. The dependencies
in Σst map data from the source to the target schema and are TGDs of the form
∀x(φs(x) → ∃y ψt(x,y)), where φs(x) and ψt(x,y) are conjunctions of atomic
formulas on S and T , respectively. Dependencies in Σst are also called mapping
dependencies. Dependencies in Σt specify constraints on the target schema and
can be either TGDs or EGDs.

The data exchange problem associated with this setting is the following: given
a finite source instance I, find a finite target instance J such that 〈I, J〉 satisfies
Σst and J satisfies Σt. Such a J is called a solution for I.

The computation of an universal solution (the compact representation of all
possible solutions) can be done by means of the fixpoint chase algorithm, when it
terminates [10]. The execution of the chase involves inserting tuples possibly with
null values to satisfy TGDs, and replacing null values with constants or other null
values to satisfy EGDs. Specifically, the chase consists of applying a sequence of
steps, where each step enforces a dependency that is not satisfied by the current
instance. It might well be the case that multiple dependencies can be enforced
and, in this case, the chase picks one nondeterministically. Different choices lead
to different sequences, some of which might be terminating, while others might
not. Unfortunately, checking whether the chase terminates is an undecidable
problem [10]. To cope with this issue, several “termination criteria” have been
proposed, that is, (decidable) sufficient conditions ensuring chase termination.
Some recent works can be found in [7,14,15].

2.2 Datalog Extensions

Queries over relational database can be expressed using Relational Algebra, or
alternative equivalent languages such safe Relational Calculus and safe, non-
recursive Datalog (with negation). In the following, to state some results, we
implicity refer to Relational Algebra (or one of the equivalent formalisms) as
query language, even if tables in the target database represent graph-based data
(as we will see, they are stored into ternary relations). To make query languages
more expressive, several additional feature have been added to these languages
including the possibility to manage bags (SQL), aggregates (SQL), recursion
(Datalog), existential variables (Datalog±) and others. In the following we dis-
cuss the extension of Datalog with the nondeterministic choice constructs.

Choice Constructs. The choice constructs [16,20] have been introduced in Dat-
alog to get an increase in expressive power and to obtain simple declarative
formulations of classical combinatorial problems, such as those which can be
solved by means of greedy algorithms [20].

A choice atom is of the form choice((x), (y)), where x and y are lists of
variables such that x ∩ y = ∅, and can occur in the body of a rule. Its intu-
itive meaning is to force each initialization of x to be associated with a unique

428 S. Greco et al.

initialization of y, thus making the result of executing of a corresponding rule
nondeterministic. More formally, a choice rule is of the form:

A(w) ← B(z), choice((x), (y))

where A(w) is an atom, B(z) is a conjunction of atoms, x, y, z and w are lists
of variables such that x,y,w ⊆ z. The atom choice((x), (y)) is used to enforce
the functional dependency x → y on the set of atoms derived by means of the
rule.

The choice-least and choice-most constructs [16] specialize the choice con-
struct so as to force greedy selections among alternative choices—these turn
out to be particularly useful to express classical greedy algorithms. A choice-
least (resp. choice-most) atom is of the form choice least((x), (c)) (resp.
choice most((x), (c))), where x is a list of variables and c is a single variable rang-
ing over an ordered domain. A choice least((x), (c)) (resp. choice most((x), (c)))
atom in a rule indicates that the functional dependency defined by the atom
choice((x), (c)) is to be satisfied, and the c value assigned to a certain value of x
has to be the minimum (resp. maximum) one among the candidate values. The
body of a rule may contain even more than one choice constructs, but only one
choice-least or choice-most atom. For instance, the rule

p(x,y,c) ← q(x,y,c), choice((x), (y)), choice least((x), (c))

imposes the functional dependency x → y,c on the possible instances of p. In
addition, for each value of x, the minimum among the candidate values of c must
be chosen. For instance, assuming that q is defined by the facts q(a,b,1) and
q(a,d,2), from the rule above we might derive either p(a,b,1) or p(a,d,2).
However, the choice-least atom introduces the additional requirement that the
minimum value on the third attribute has to be chosen, so that only p(a,b,1)
is derived. The formal semantics is defined by rewriting rules with choice atoms
into rules with negated literals and selecting (nondeterministically) one of the
stable models of the rewritten program [16,20].

3 Smart Data Exchange

In this section we present the data exchange framework informally discussed in
the Introduction. We assume the existence of the following countably infinite
sets: relation names R, identifiers I, attribute names A, constants C, nulls N
and variables V. The set of relation symbols (also called predicate symbols) is
partitioned into three countable sets denoted by RS (source relations), RT (target
relations) and RM (midway relations), whereas DS = I∪A∪C, DT = I∪A∪C∪N
and DM = I∪A∪C denote the domains of relations RS, R T and RM, respectively.
Relations in RS and RT have arity 3 and take values from I × A × I ∪ C and
I ∪ N × A ∪ N × I ∪ C ∪ N respectively, whereas relations in RM may have any
arity n and take values from Dn

M. The main difference between the source and the
target databases is that the target database may also have nulls (corresponding

HIKE: A Step Beyond Data Exchange 429

to blank nodes in RDF) which are introduced to satisfy constraints. The set of
source (resp. target, midway) relations define the source (resp. target, midway)
database whose schema is denoted by S (resp. T , M).

The model defined above states that the source and target databases are
graph-based databases stored in a relational database (using triples), whereas
the midway database is a standard relational database. This choice is due to the
fact that we would exchange data among heterogeneous databases and we want
model data whose schema may change over the time. The next example shows
how relational data are stored into a graph-based database.

Example 2. Consider the below relational database, where attribute dept in
relation employee is a foreign key for relation department, whereas attribute
mgr in relation department is a foreign key for relation employee.

name dept sal
john cs 80
mary math 90

employee

name city mgr
cs london john

math paris john
department

The database can be represented as a graph-based database as showed below:

id attr val
i1 name john
i1 dept i3
i1 sal 80
i2 name mary
i2 dept i4
i2 sal 90

employee

id attr val
i3 name cs
i3 city london
i3 mgr i1
i4 name math
i4 city paris
i4 mgr i1

department

where each tuple with n values in the original relational database is mapped into
n triples sharing the same id. ��

In the following, for the sake of simplicity, we often express tuples using facts
and assume that C contains the set of natural numbers.

Extended TGDs. An atom is of the form p(t1, ..., tn), where t1, ..., tn are terms
(standard atom), or of the form t1θt2, where θ is a comparison predicates and
t1, t2 are terms (built-in atom). A literal is an atom A (positive literal) or its
negation ¬A (negative literal). A conjunction of literals is of the form B1∧· · ·∧Bn

where B1, ..., Bn are literals. A conjunction of literals is said to be safe if all
variables occurring in built-in atoms and negated literals also appear in positive
literals. From now on we assume that whenever we consider conjunctions of
literals they are safe.

Definition 1. An extended TGD (ETGD) is a universally quantified implica-
tion formula of one of the following forms:

430 S. Greco et al.

– ϕ(x) ∧ choice(x′) → ψ(w),
where ϕ(x) is a safe conjunction of standard and built-in literals, ψ(w) is a
conjunction of atoms, w ⊆ x and choice(x′), with x′ ⊆ x, is a possibly empty
conjunction of choice-atoms;

– ϕ(x) → q(w0, c1〈w1〉, ..., cn〈wn〉) (called aggregate dependency)
where ϕ(x) is a safe conjunction of standard and built-in literals, c1, ..., cn

denote aggregate functions (e.g., min,max, sum, count), w0 (called “group-
by” variables) and w1, ..., wn are lists of variables such that w0, ..., wn ⊆ x
and w0 ∩ wi = ∅ ∀i ∈ [1, n]. ��
For any set Σ of data dependencies, the dependency graph GΣ = (V,E) is

built as follows: V consists of the predicate symbols occurring in Σ, whereas
there is an edge from p to q if there is a dependency having p in the body
and q in the head. Moreover, the edge is labeled with ¬ (resp. ag) if p occurs
negated (resp. occurs in the head atom which contains aggregate functions). A
set of dependency is said to be stratified if the depencecy graph does not contain
cycles with labeled edges. Observe that since standard dependencies are positive
(that is, all body literals are positive), to check stratification it is sufficient to
check stratification of ETGDs. From now on we assume that our dependencies
are stratified.

The semantics of ETGDs with choice atoms can be defined as in the case of
Datalog rules. To this end, in order to eliminate head conjunctions, any ETGDs
r : ϕ(x) → p1(y1) ∧ · · · ∧ pk(yk) having k > 1 atoms in the head is rewritten
into: (i) k ETGDs ri : ϕ(x) → pi(yi) (i ∈ [1, k]), if r does not contain choice
atoms, and (ii) k + 1 ETGDs r0, ..., rk if r contains choice atoms, where r0 =
ϕ(x) → hr(x) and ri = hr(x) → pi(yi) (with i ∈ 1, k]), where hr is a fresh
new predicate. Regarding the semantics of ETGDs with aggregate functions,
as the set of ETGDs is stratified, we can partition it into strata so that, if a
stratum contains an ETGD with aggregate functions, then it does not contain
any other ETGD, and compute one stratum at time following topological order
defined over the strata by the dependency graph. The computation of an ETGD
with aggregate functions can be carried out in the same way of computing SQL
queries with aggregates, as body predicates have been already computed and,
therefore, they correspond to database relations in SQL (see also [13]).

Smart Data Exchange. Now we formally define the Smart Data Exchange
Framework.

Definition 2. A Smart Data Exchange (SDE) is a tuple (S,M, T,ΣSM,ΣMT,
ΣM,ΣT), where:

– S is the source schema containing predicates taken from RS,
– M is the midway schema containing predicates taken from RM,
– T is the target schema containing predicates taken from RT,
– ΣSM is a source-to-midway set of safe ETGDs,
– ΣM is a midway-to-midway set of safe, stratified ETGDs,

HIKE: A Step Beyond Data Exchange 431

– ΣMT is a midway-to-target set of standard TGDs, and
– ΣT is a target-to-target set of standard TGDs and standard EGDs. ��

As already pointed out, we assume that the source and target relations are
graph-based data and every class of objects is modeled as a named set of triples.
RDF graph, microdata and JSON representations are very closed to this descrip-
tion [1]. The midway database is a relational database containing relations of
any arity including data in the format of the source and target database.

For any SDE E = (S,M, T,ΣSM, ΣM, ΣMT, ΣT〉, we shall use the following
notation: Σ1 = ΣSM ∪ ΣM, Σ2 = ΣMT ∪ ΣT, and Σ = Σ1 ∪ Σ2.

Example 3. Consider a graph relation in the source database containing facts
of the form graph(id1, edge,id2) where id1 and id2 are node identifiers and
edge is an attribute value denoting that there is an edge from id1 to id2. The
data exchange problem consists in extracting a spanning tree to be stored in the
target database. From the source database we can import edges and nodes in
the midway database, as defined in the set ΣSM consisting of the below ETGD:

graph(x, edge,y) → edge(x, y) ∧ node(x) ∧ node(y)

Assume now that the midway database also contains a fact root(0), for instance
generated by the SAT module or imported from the source database using
another source-to-midway dependency. The next set of ETGDs ΣM shows how
it is possible to generate a spanning tree rooted in the node x denoted by fact
root(x).

root(x) → st(nil, x)
st(z,x) ∧ edge(x,y), choice((y), (x)),→ st(x,y) ∧ connected(y)
node(x) ∧ ¬connected(x), choice((), (x)) → nextRoot(x)

Here the first ETGD is used to start the computation by deriving an edge ending
in the root node (the starting node is the dummy node nil), whereas the second
ETGD, imposing the functional dependency y → x, guarantees that the set
of selected nodes is a spanning tree. The last ETGD in ΣM gives a node not
belonging to the spanning tree if the graph is not connected; this node can be
used in the future as a root to compute another spanning tree.

Spanning tree edges and nextRoot facts are then imported in the target
database (as triples) using the below set of TGDs ΣMT:

st(x,y) → graph(x,st,y)
nextRoot(x) → ∃y graph(nil,root,x)

Information stored in the target database are next analyzed to generate new
information which will be stored in the midway database. For instance, from a
fact graph(nil,root,x) the SAT module could generate a fact root(x) which,
after been stored in the midway database, could generate the computation of
another spanning tree rooted in x. ��

432 S. Greco et al.

Note that the process described in the previous example and showed in Fig. 1
is supervised, that is the activation of the module SAT is performed by the user.

The smart data exchange problem associated with this setting is the follow-
ing: given a finite source instance I over a schema S and a smart data exchange
E = (S,M, T,ΣSM, ΣM, ΣMT, ΣT), find finite instances J and K over the schemas
M and T , respectively, such that 〈I, J〉 satisfies ΣSM, J satisfies ΣM, 〈J,K〉 sat-
isfies ΣMT and K satisfies ΣM. The pair 〈J,K〉 is called a solution (or model) for
〈I, E〉, or equivalently for 〈I,Σ〉, where let Σ1 = ΣSM ∪ ΣM and Σ2 = ΣMT ∪ ΣT,
Σ = Σ1∪Σ2. The set of solutions for 〈I, E〉 (or equivalently for 〈I,Σ〉) is denoted
by Sol(I, E), (resp. Sol(I,Σ)). Moreover, J is also called solution (or model) for
〈I,Σ1〉 and, in cascade, K is a solution (or model) for 〈J,Σ2〉. Thus, the problem
of finding solutions can be split into two problems: (i) finding a solutions J for
I, and (ii) finding solutions K for J . The set of solutions for 〈I,Σ1〉 is denoted
by Sol(I,Σ1), whereas the set of solutions for 〈J,Σ2〉 is Sol(J,Σ2). Therefore,
given a smart data exchange framework, starting from I with dependency Σ1

we find solutions J1, ..., Jm and, then starting from every Ji (1 ≤ i ≤ m) with
dependency Σ2 we find solutions Ki1 , ...,Kin . Observe that m is always finite,
whereas in, in the general case, is not guaranteed to be finite [11].

Certain Answers. Since we have multiple models, the certain answers are
those derived from all models.

Definition 3. Given a query Q, a database I and a smart data exchange E =
(S,M, T, ΣSM, ΣM, ΣMT, ΣT), the certain answer of Q over 〈I, E〉 is

Certain(Q, I,E) =
⋂

〈J,K〉∈Sol(I,E)

Q(K) �

Since the certain answer could be equivalently defined as Certain(Q, I,E) =⋂
J∈Sol(I,Σ1)∧K∈Sol(J,Σ2)

Q(K), its computation can be optimized by considering
the four sets of dependencies separately, that is by first computing solutions J ′ for
〈I,ΣST〉, then solutions J for 〈J ′, ΣM〉, next solutions K ′ for 〈J,ΣMT〉, and, finally
solutions K for 〈K ′, ΣT〉. Let us now introduce the concepts of homomorphism
and universal model.

A homomorphism from a set of atoms A1 to a set of atoms A2 is a mapping
h from the domain of A1 (set of terms occurring in A1) to the domain of A2 such
that: (i) h(c) = c, for every c ∈ Const(A1); and (ii) for every atom R(t1, . . . , tn)
in A1, we have that R(h(t1), . . . , h(tn)) is in A2. With a slight abuse of notation,
we apply h also to sets of atoms and thus, for a given set of atoms A, we define
h(A) = {R(h(t1), . . . , h(tn)) | R(t1, . . . , tn) ∈ A}.

Definition 4. A universal model of (I,Σ) is a model 〈J,K〉 of (I,Σ) such that
for every model 〈J ′,K ′〉 of (I,Σ) there exists a homomorphism from K to K ′.
The set of all universal solutions of (I,Σ) will be denoted by USol(I,Σ). ��

HIKE: A Step Beyond Data Exchange 433

Proposition 1. For any positive query Q, database I and SDE E =
(S,M, T,ΣSM, ΣM, ΣMT, ΣT), the certain answer of Q over 〈I, E〉 is

Certain(Q, I,E) =
⋂

J ∈ Sol(I,Σ1)

Q(KJ)↓

where KJ is any universal solution of 〈J,Σ2〉 and Q(KJ)↓ is the result of com-
puting naively (i.e. considering nulls as constants) Q(KJ) and deleting tuples
with nulls. ��

Universal solutions for 〈J,Σ2〉 can be easily computed by applying the clas-
sical fixpoint algorithm called Chase which computes a subset of universal solu-
tions called canonical [4,11].

As previously discussed, in several cases we are not interested in all models
of 〈I,Σ1〉, but only in one selected nondeterministically (e.g. the set of edges of
any minimum spanning tree). Thus, we now introduce the definition of nonde-
terministic answer.

Definition 5. The nondeterministic answer to a query Q over a database
instance I and SDE E = (S,M, T,ΣSM, ΣM, ΣMT, ΣT) is

NonDet(Q, I,E) =
⋂

K ∈ Sol(J,Σ2)

Q(K)

where, J is a model for 〈I,Σ1〉 selected nondeterministically. ��
Observe that the nondeterministic choice of the model is applied only to

dependencies in Σ1, where users express explicitly that they want select non-
deterministically a subset of tuples, whereas for 〈J,Σ2〉 we consider all models.
Note that, two evaluations of the nondeterministic answers could give different
answers (as the choices made could be different) and that the responsibility of
computing nondeterministic answers, instead of certain answers, is left to the
user. Indeed, in several cases the user is not interested in specific models, but
only in one model satisfying some properties (e.g. any spanning tree). Therefore,
we introduce the concept of universal nondeterministic model.

Definition 6. A universal nondeterministic model for 〈I,Σ〉 is any universal
model in USol(D,Σ) selected nondeterministically. ��
Proposition 2. For any positive query Q, database I and SDE E =
(S,M, T,ΣSM, ΣM, ΣMT, ΣT), the nondeterministic answer of Q over 〈I, E〉 is

NonDet(Q, I,E) = Q(KJ)↓

where, let J be any model for 〈I,Σ1〉 selected nondeterministically, KJ is a
universal solution of 〈J,Σ2〉 ��

434 S. Greco et al.

4 Complexity Analysis

After having defined certain and nondeterministic answers we now study the
complexity of these problems.

First of all observe that computing answers to queries over databases and
SDEs is an undecidable problem. This comes out from the fact that the problem
of computing certain answers to queries over database with standard TGDs is
undecidable. In these cases the problem of deciding whether the chase algorithm
terminates (i.e. computes a finite model in finite time) is undecidable. Thus, the
problem of checking whether a tuple belongs to the certain answers is undecidable
as well.

One way of restoring decidability of certain answering is to isolate a fragment
of dependencies for which both the cardinality of USol(D,E) and the cardinality
of each element therein is finite. Another approach is identify a fragment of
dependencies for which certain answering becomes decidable, regardless of the
finiteness of USol(D,E) or the elements therein.

In this paper, we assume that dependencies in ΣT are terminating, that is
the chase algorithm is able to compute a (finite) canonical universal solution in
finite time. To guarantee finiteness of a universal solution several termination
criteria have been defined in the literature [7,15]. Therefore, we assume that ΣT

satisfies one of these criteria and we say that ΣT is terminating. Clearly, if ΣT

is terminating, all solutions for 〈I,Σ〉 are finite. Moreover, we say that a SDE
E = (S,M, T,ΣSM, ΣM, ΣMT, ΣT) is terminating, if ΣT is terminating.

Theorem 1. Let E = (S,M, T,ΣSM, ΣM, ΣMT, ΣT) be a terminating SDE, I a
database instance and Q a positive query. Then, the problems of computing
Certain(Q, I,E) and NonDet(Q, I,E) are both coNPcomplete. ��
Theorem 2. Let E = (S,M, T,ΣSM, ΣM, ΣMT, ΣT) be a terminating SDE without
EGDs, I a database instance and Q a positive query. Then, the problem
of computing Certain(Q, I,E) is in coNP , whereas the problem of computing
a nondeterministic answer NonDet(Q, I,E) is polynomial time. ��
Theorem 3. Let E = (S,M, T,ΣSM, ΣM, ΣMT, ΣT) be a terminating SDE without
choice atoms, I a database instance and Q a positive query. Then, the prob-
lems of computing Certain(Q, I,E) and NonDet(Q, I,E) are both polynomial
time. ��

We conclude by showing an interesting subclass of SDEs with choice atoms
and EGDs. To this end we need to introduce a refinement of the dependency
graph, called propagation graph, to analyze how values are propagated during
the evaluation of dependencies.

Propagation Graph. The Propagation Graph ΓΣ of a set of data dependency
Σ is a graph (V,E) where V is the set of predicate symbols occurring in Σ,
whereas E is built as follows. There is an edge from p to q if either: (i) there is

HIKE: A Step Beyond Data Exchange 435

an (E)TGD Σ having q in the head and p in the body, or (ii) there is an EGD
having in the body two (not necessarily distinct) atoms p(u) and p(v) containing,
respectively, the two variables occurring in the head. Moreover, in case (i) the
edge is labeled with ch if Σ contains a choice atom, whereas in case (ii) the edge
is labelled with eq.

Definition 7. A SDE E = (S,M, T,ΣSM, ΣM, ΣMT, ΣT) is said to be confluent if
the propagation graph of Σ = ΣSM∪ΣM∪ΣMT∪ΣT does not have paths containing
both edges labeled with ch and edges labeled with eq. �
Theorem 4. Let E be a decidable, confluent SDE, I a database instance and Q
a positive query. Then, the problem of computing NonDet(Q, I,E) is polynomial
time. �

5 Smart Analyzer Tool: Building New Data from Data
Instances

The analysis of data instances can lead to the discovery of features not modeled
in the initial data that could be of potential interest from the user point of
view. This information could lead to the introduction of new predicates and, in
order to address this problem, we leverage on different data mining techniques
[5,9,21], to extract novel knowledge useful for the scenario at hand. A prototype
of the SAT module implementing both (supervised) descriptive rule induction
techniques [19] and clustering techniques is under development; a preliminary
version implementing only specific clustering algorithms is described in [8].

As an example, assume to have a set of social network users exhibiting the
following properties: (i) sex (either male or female); (ii) list of prefered hobbies
(e.g. sport, shopping or culture); (iii) list of friends.

These features can be extracted and stored into ground facts using ad-
hoc wrappers and data analyzers that leverages schema information and pos-
sibly ontologies associated to data being analyzed. Assuming that the following
instances are extracted1:

S(i1, contains,o1) S(i1, contains,o2) S(i1, contains,o3)
S(i1, contains,o4) S(i1, contains,o5) S(i1, contains,o6)
S(o1, sex,female) S(o2, sex,male) T(o3, sex,male)
S(o4, sex,female) S(o5, sex,male) T(o6, sex,male)
S(o1, prefer,shopping) S(o2, prefer,shopping) S(o3, prefer,shopping)
S(o4, prefer,sport) S(o5, prefer,sport) S(o1, friend,o2)
S(o1, friend,o3) S(o4, friend,o5) S(o4, friend,o6)

Based on the instances shown above, the SAT module derives, among others,
the following pattern:

S(Z, contains,X) ∧ S(Z, contains,Y) ∧ S(X, friend,Y)∧
S(X,prefer,P) → S(Y,prefer,P)

1 Clearly the shown snapshot is very small and it is reported just to give an idea of
the type of data, but the technique works for relatively large datasets.

436 S. Greco et al.

Using this pattern, new facts regarding users’ preferences can be inferred.
Considering the above facts, the fact S(o6,prefer,sport) is derived.

As a further example, consider the application scenario where users inter-
act with a social network by posing queries, posting comments and uploading
(tagged) files. For instance, a user may issue the following query: Find a restau-
rant in Milan. Traditional search engines provide answers on the basis of their
default criteria. However, the output could be ineffective as users may not be
satisfied by query answers, as these are mainly based on proximity search and
some fixed categorizations (e.g. number of stars, price).

To improve this solution, we can perform data pre-processing by clustering
user comments stored in our system. As a result, we obtain a set of comment
groups from which it is possible to derive new search dimensions (to be provided
to users) previously hidden in the data. In our example the algorithm could pro-
vide the quality of the dishes served in restaurants that meet the conditions of
the query (restaurants located in the Milan area) and the new predicate describ-
ing this dimension could be Quality2. As users interact with the system and
new enquiries and comments are made, some other additional dimensions and
refinements of those previously obtained could arise. For instance, the predicate
Quality could be further refined by using additional predicates like fresh-fish
with suitable instance values: bad/good/excellent.

Regarding clustering techniques, it is worth noticing that, (i) the above men-
tioned reasoning is independent from the specific algorithm (we provide several
options to take into account the possibly different data features); (ii) assignments
of clusters to instances are made on a probabilistic basis for soft clustering (e.g.
a given instance X belongs to a cluster C with probability P (X,C)). For the
sake of simplicity, we assign X only to the highest probability cluster C.

Considering Example 1, as a cluster partitioning is produced, we can populate
the compatibility table Corr in the midway database, by simply adding instances
as follows: if X and Y are assigned to the same cluster C, we add the tuple
(X,Y,l) if l = P (X,C) ∗ P (Y,C) is greather than a given threshold (defined
by users). The SDE can then refine our pattern search strategy as explained in
Sect. 1, i.e. we can search only for patterns that are supported by a minimum
number of occurrences.

6 Conclusion and Future Work

In this paper we addressed the problem of enriching the data representation in a
Big data environment. We introduced the Smart Data Exchange setting in order
to overcome the limitations of the classical data representation approaches. It
is a more powerful representation strategy for extracting information from data
while integrating them. We analyzed the theoretical complexity of the approach
and its applicability in practical scenarios. As a future work, we plan to extend
our framework in order to integrate it with further data mining and deep learning
2 We recall that the predicate name can be obtained by using ad-hoc wrappers and
domain based ontologies.

HIKE: A Step Beyond Data Exchange 437

algorithms and to enrich data by also extracting information from the web and
from social media [6] or health data.

Acknowledgements. Authors have been supported by D-ALL and ProtectID
projects, Elio Masciari has been supported by POR FESR Campania project Remiam.

References

1. Angles, R., Gutierrez, C.: An introduction to graph data management. Graph
Data Management. DSA, pp. 1–32. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-96193-4 1

2. Arenas, M., Barceló, P., Fagin, R., Libkin, L.: Locally consistent transformations
and query answering in data exchange. In: PODS (2004)

3. Arenas, M., Gottlob, G., Pieris, A.: Expressive languages for querying the semantic
web. ACM Trans. Database Syst. 43(3), 13:1–13:45 (2018)

4. Beeri, C., Vardi, M.Y.: A proof procedure for data dependencies. J. ACM 31(4),
718–741 (1984)

5. Bianchini, D., Antonellis, V.D., Franceschi, N.D., Melchiori, M.: Prefer: a
prescription-based food recommender system. Comput. Stand. Interfaces 54, 64–75
(2017)

6. Brambilla, M., Ceri, S., Valle, E.D., Volonterio, R., Salazar, F.X.A.: Extracting
emerging knowledge from social media. In: WWW Conference, pp. 795–804 (2017)

7. Calautti, M., Greco, S., Molinaro, C., Trubitsyna, I.: Exploiting equality generating
dependencies in checking chase termination. PVLDB 9(5), 396–407 (2016)

8. Cassavia, N., Masciari, E., Pulice, C., Saccà, D.: Discovering user behavioral fea-
tures to enhance information search on big data. TiiS 7(2), 7:1–7:33 (2017)

9. Castano, S., Ferrara, A., Montanelli, S.: Exploratory analysis of textual data
streams. Futur. Gener. Comp. Syst. 68, 391–406 (2017)

10. Deutsch, A., Nash, A., Remmel, J.B.: The chase revisited. In: Proceedings of PODS
Conference, pp. 149–158 (2008)

11. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: semantics and
query answering. Theor. Comput. Sci. 336(1), 89–124 (2005)

12. Fagin, R., Kolaitis, P.G., Popa, L.: Data exchange: getting to the core. ACM Trans.
Database Syst. 30(1), 174–210 (2005)

13. Greco, S.: Dynamic programming in datalog with aggregates. IEEE Trans. Knowl.
Data Eng. 11(2), 265–283 (1999)

14. Greco, S., Spezzano, F., Trubitsyna, I.: Stratification criteria and rewriting tech-
niques for checking chase termination. PVLDB 4(11), 1158–1168 (2011)

15. Greco, S., Spezzano, F., Trubitsyna, I.: Checking chase termination: cyclicity analy-
sis and rewriting techniques. IEEE Trans. Knowl. Data Eng. 27(3), 621–635 (2015)

16. Greco, S., Zaniolo, C.: Greedy algorithms in datalog. TPLP 1(4), 381–407 (2001)
17. Libkin, L., Reutter, J.L., Soto, A., Vrgoc, D.: Trial: a navigational algebra for RDF

triplestores. ACM Trans. Database Syst. 43(1), 5:1–5:46 (2018)
18. Masciari, E., Saccà, D., Trubitsyna, I.: Simplified data posting in practice. In: Pro-

ceedings of 23rd International Database Engineering and Applications Symposium
(IDEAS 2019), Athens, Greece (2019, to appear)

19. Novak, P.K., Lavrac, N., Webb, G.I.: Supervised descriptive rule induction. In:
Sammut, C., Webb, G.I. (eds.) Encyclopedia of Machine Learning and Data Min-
ing, pp. 1210–1213. Springer, Boston (2017). https://doi.org/10.1007/978-1-4899-
7687-1 808

https://doi.org/10.1007/978-3-319-96193-4_1
https://doi.org/10.1007/978-3-319-96193-4_1
https://doi.org/10.1007/978-1-4899-7687-1_808
https://doi.org/10.1007/978-1-4899-7687-1_808

438 S. Greco et al.

20. Saccà, D., Zaniolo, C.: Stable models and non-determinism in logic programs with
negation. In: Proceedings of PODS Conference, pp. 205–217 (1990)

21. Tan, P., Steinbach, M., Karpatne, A., Kumar, V.: Introduction to Data Mining.
Addison-Wesley, Boston (2017)

22. ten Cate, B., Fontaine, G., Kolaitis, P.G.: On the data complexity of consistent
query answering. In: ICDT Conference, pp. 22–33 (2012)

Unified Management of Multi-model Data

(Vision Paper)

Irena Holubová1 , Martin Svoboda1(B) , and Jiaheng Lu2

1 Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
{holubova,svoboda}@ksi.mff.cuni.cz

2 University of Helsinki, Helsinki, Finland
jiaheng.lu@helsinki.fi

Abstract. The variety of data is one of the most challenging issues for
research and practice in data management. The so-called multi-model
data are naturally organized in different and mutually interlinked data
formats and logical models, including structured, semi-structured, and
unstructured. In this vision paper, we discuss the so far neglected, but for
correct and efficient management of multi-model data critical issues and
challenges: conceptual modeling of multi-model data, inference of multi-
model schemas, unified and conceptual querying, evolution management,
and, last but not least, autonomous multi-model data management.

Keywords: Multi-model databases · Conceptual modeling · Schema
inference · Query languages · Evolution management · Autonomous
systems

1 Introduction and Motivation

In recent years, the Big Data movement has broken down borders of many tech-
nologies and approaches that have so far been widely acknowledged as mature
and robust. One of the most challenging issues is the variety of data. It means
that data may be present in multiple types and formats – structured, semi-
structured, and unstructured – and independently produced by different sources
as well as natively conform to various models, schemas or ontologies.

Although traditional relational databases have been the systems of the first
choice for decades, with the arrival of Big Data, their capabilities have become
insufficient in many aspects, and so new types of systems, such as NoSQL or
NewSQL, have appeared. The variety of multi-model data itself brings another
dimension of complexity since multiple distinct models must be efficiently sup-
ported at a time. Currently, there exist more than 20 representatives of so-called
multi-model databases [15], involving well-known tools, both traditional rela-
tional and novel NoSQL (such as Oracle DB, Cassandra, or MongoDB).

This work was partially supported by the Charles University project PROGRES Q48
and the Academy of Finland project number 310321.

c© Springer Nature Switzerland AG 2019
A. H. F. Laender et al. (Eds.): ER 2019, LNCS 11788, pp. 439–447, 2019.
https://doi.org/10.1007/978-3-030-33223-5_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33223-5_36&domain=pdf
http://orcid.org/0000-0003-2113-1539
http://orcid.org/0000-0003-4694-6806
http://orcid.org/0000-0003-2067-454X
https://doi.org/10.1007/978-3-030-33223-5_36

440 I. Holubová et al.

The main open problems of these systems are: (1) The level of support for
multi-model data varies greatly, with different extent of ability to query across
different models, index internal structures or optimize query evaluation plans.
(2) Since these systems originate mainly in the IT industry, the existing solutions
are determined and significantly limited by the specifics of the original underlying
single-model systems. (3) For the same reason, there is a lack of necessary formal
background, unified approaches, and generally applicable methods allowing to
work with multi-model data in full possible extent.

In this vision paper, we discuss these critical open problems and envision the
core research areas closely related to the conceptual modeling and data manage-
ment that need to be appropriately targeted. Namely, we describe, justify, as well
as outline possible solutions for the following five key challenges: (1) proposal of
a formal background for conceptual modeling of multi-model data and mapping
and transformation of such data into individual models, (2) algorithms for infer-
ence of multi-model schemas, (3) unified and conceptual querying over multi-
model data, (4) correct propagation of changes to data, schemas, and queries
induced by the evolution management, and, finally, (5) autonomous multi-model
data management in general.

The rest of the paper is structured as follows: In Sect. 2, we provide a brief
overview of the existing mainly single-model approaches to data management. In
Sect. 3, we discuss the open problems and challenges of multi-model databases,
while we conclude in Sect. 4.

2 Related Work

There are basically two existing general approaches to manipulate and query
multi-model data: (1) polyglot persistence, and (2) multi-model databases [17].

The main strategy of the first kind of systems is to leverage different
databases to store different models of data and then develop a mediator to
integrate them together. While this idea can be traced back to not only feder-
ated databases studied during the 1980s, recently, several research prototypes
developed on the polyglot persistence paradigm were also introduced. For exam-
ple, DBMS+ [12] targets at embracing several database platforms with unified
declarative processing, while BigDAWG [9] provides an architecture supporting
location transparency and a middleware providing a uniform multi-island query
interface.

The second kind of systems incorporates only one single database to manage
different data models, and provides a fully integrated backend to handle the
system demands for performance, scalability, and fault tolerance [18]. The idea
of an integrated system can be traced back to the concept of object-relational
databases, which borrow and adapt the object-oriented programming principles
into the world of relational databases.

With the dawn of Big Data, the challenge of handling variety has recently
inspired a new generation of dedicated multi-model databases, capable of stor-
ing and processing structurally different data by supporting several data models

Unified Management of Multi-model Data 441

within just a single database. This way of solving the polyglot persistence prob-
lem offers advantages in data modeling, allowing to represent data in its most
native from. While this approach can be considered as opposite to the one size
does not fit all argument [26], it can also be understood as a way of re-architecting
traditional database models to address new requirements [13]. If nothing else, it
was (correctly) assumed that, by 2017, the majority of leading database systems
would offer multiple data models within just a single platform.

3 Research Challenges

While the existing multi-model databases pursue the bottom-up design princi-
ples, and so essentially represent kind of a trade-off solution, where a core model
is more-or-less painfully adapted to additional new models, a top-down approach
that would provide a systematically designed and robust conceptual multi-model
solution backed by a precise formalism is still missing. In particular, we see the
following main issues:

1. Formal background definition: There is a need for a complex formal apparatus
for multi-model data representation, storing and querying, including proofs
of its features and complexity of algorithms.

2. Data processing unification: Unified and generally applicable methods and
approaches for data processing tasks at the conceptual level (together with
necessary mappings and extensions to the logical level) need to be proposed.

3. Practical impact preservation: All the proposed languages, methods, and algo-
rithms must still preserve a tight relation to the existing systems so that they
can be exploited in real-world scenarios and implementations.

In this section, we discuss in detail five particular key areas we see as the
primary research targets for the conceptual modeling and database communities.

3.1 Conceptual Modeling of Multi-model Data

When data across distinct models are to be processed together, their schemas
inferred, or query expressions evaluated, kind of a unified data abstraction has
to be established first. These models often mutually share a couple of the same
principles on the one hand, while can also have certain specifics on the other.

For this purpose, widely used modeling languages ER [6] and UML [22] could
be utilized and in a top-down way adjusted to the needs of individual logical
models. While the former language exists in several notations yet provides more
complex constructs better grasping the real-world relationships among entities,
the latter one is standardized but, unfortunately, only too data-oriented and
concealing important details (e.g., weak entity types). On the contrary, bottom-
up approaches could find an inspiration in NoSQL AbstractModel [5], a system-
independent model for so called aggregate-oriented databases.

Regardless of the adopted strategy, the theory of categories [14], associative
arrays [11], or description logics [1] could be utilized to internally model the data

442 I. Holubová et al.

in a formal, abstract, and rigorous way. Complex non-relational systems often
involve a variety of heterogeneous and interrelated models – models that are,
unfortunately, expressed using several modeling languages. Moreover, if there
are only a few solutions targeting at conceptual modeling of NoSQL databases
in general, modeling of graph databases is even more non-trivial [21].

The key aspect of multi-model data is mutual links between the distinct mod-
els. Their semantics and features can differ depending on the types of interlinked
models. Also, within the single-model systems, these links can have different rep-
resentations, involving, e.g., foreign keys in the relational model, pointers in the
object model, or embedding and references in document models.

To sum up, the first core issue of multi-model data management is to define
and formally describe a way how multi-model data can be modeled and further
processed at a conceptual level in a unified means abstracting specific features
and technical details of individual models. Next, mapping rules and transforma-
tion operations need to be defined so that the proposed conceptual constructs
can be mapped to data structures provided by individual logical models, as well
as data directly transformed from/to at least the widely used models.

3.2 Inference of Multi-model Schemas

With multi-model data and databases, we may distinguish several levels of
schema support ranging from schema-full (where a schema description is pro-
vided explicitly and its requirements must be satisfied) to schema-less (where a
schema is neither provided nor required).

In reality, however, even in schema-less databases, there typically exists an
implicit schema, i.e., kind of an agreed structure of the data expected by the
application. Hence, the idea of schemalessness is often rather characterized as
schema-on-demand. This observation motivates the necessity of research in the
area of multi-model schema inference.

In case of a single-model schema inference, there exists a number of tech-
niques. As a consequence of Gold’s theorem [10], e.g., XML schema languages
are not identifiable from positive examples only (i.e., sample data). Hence, either
an identifiable subclass of such a language has to be inferred, or heuristics must
be utilized. Naturally, a large set of inference approaches, both heuristic [20] and
grammar-inferring [3], can be found for XML data. With the dawn of NoSQL
databases, there appeared approaches inferring, e.g., (big) JSON data [2] or
general approaches for aggregate-oriented databases [24].

When dealing with multi-model schema inference, we can primarily focus on
heuristic approaches. Apart from multi-model extensions of the existing verified
single-model approaches, mutual links between records across the models can
bring another piece of important information. Inference approaches may thus
benefit from information extracted from related data in distinct models.

The second issue of multi-model data management can hence be summarized
as the need of a universal multi-model schema-inference method that would
provide near real-world schemas and which would be able to infer a correct
schema at least for the majority of real-world use cases.

Unified Management of Multi-model Data 443

3.3 Multi-model Data Querying

There already exist proposals of proprietary multi-model query languages [16].
For example, AQL provided by ArangoDB enables one to access both graph
and document data. However, these languages have numerous limitations, often
lack the desired level of documentation and formalism, and not only because of
that, it is still an open challenge to develop a full-fledged query language for
multi-model data.

In pursuit of such a language, it is only natural to take into account fea-
tures of the existing languages used both in multi-model as well as single-model
databases. Despite they assume different data models and thus have certain
specifics, some of their aspects are rather surprisingly shared by more of them.
For example, results of SPARQL and Neo4j Cypher query expressions are tables
analogous to the relational model, even though these languages are intended for
RDF triples and property graphs respectively. Expressions of the majority of
languages are often decomposed into clauses, yet their structure and order are
fixed in case of SQL, while in Cypher these clauses can almost arbitrarily be
chained together. If usage of sub-queries in SQL is straightforward, not all the
languages support such a concept. In XQuery for XML data, expressions of all
kinds act like functions, and so can be arbitrarily embedded into each other, on
the contrary. Even expressions at a higher level of abstraction based on lambda
functions are provided in case of XQuery.

It is apparent that in a long-range perspective, it is highly unlikely that such
a variety of models and query languages could reasonably be maintained and
harnessed. And while the integration at the level of data has already begun as
plenty of formerly single-model systems are being enriched with additional data
formats, proposal of robust, unified, and even conceptual query languages with
appropriate expressive power should obviously be considered as the next step,
while other challenges, such as, e.g., multi-model indexing techniques, efficient
query evaluation and optimization etc., will in turn follow.

Even though the idea of conceptual querying is not new [4,28], contempo-
rary multi-model databases require a new point of view. Therefore, the third
challenging issue is to overcome the outlined obstacles and research on the pos-
sibilities of introducing such a unified, well-formalized, and still user-friendly
query language for the multi-model environment, so that the data could be pro-
cessed uniformly from a conceptual perspective concealing representation details
of individual logical models and their physical implementations.

3.4 Evolution Management in Multi-model Environment

Efficient management of schema evolution and propagation of changes to relevant
parts of a database system, such as data instances, queries, indices, or even
storage strategies, is a difficult task in general. In smaller applications, a company
can rely on a skilled database administrator, but in most cases, it is still a
complicated and error-prone job.

444 I. Holubová et al.

Currently, there exists a number of approaches dealing with single-model sys-
tems or systems with closely related models, namely aggregate-oriented NoSQL
databases [23,27]. There also exists a nontrivial set of approaches focusing pri-
marily on the evolution management of XML documents, as well as comprehen-
sive analyses of changes of real-world database schemas over time.

In the case of multi-model databases, this task is even more subtle and diffi-
cult, not only because we need to distinguish between intra-model and inter-
model changes. In the former case, we can re-use the existing single-model
approaches, while in the latter one, however, these cannot be straightforwardly
applied. In addition, the challenge of query rewriting [7,19], i.e., propagation of
changes to queries, also becomes more complex in case of inter-model changes,
which then require changes in data access constructs.

The fourth issue, therefore, is a proposal of a solution dealing with multi-
model evolution management covering both intra-model and inter-model changes
and ensuring their correct and complete (at least) semi-automatic propagation
to all affected parts of the system. This requires a definition of a set of schema
modification operations, their precise semantics, as well as the corresponding
algorithms for their correct and efficient propagation to not only data instances.

3.5 Autonomous Multi-model Data Management

Autonomous data management provides special features that enable databases to
self-tune and self-heal [8,25]. This service relieves database administrators of the
remaining operational tasks (that include advanced tuning functions, database
security, and troubleshooting), and so they can focus more time on design and
development activities instead of administering the database installation and
configuration.

Considering the environment of multi-model data, one application can store
data in one data model, whereas later the same data can be queried by another
application using a different model via multi-model data views [14]. Hence,
multi-model data transformation can exploit the genuine value of multi-model
databases which enable applications requiring different data models to share the
same platform. Multi-model databases are supposed to transparently provide
different access interfaces (views) of the same data adaptive to each application
requirement. Autonomous multi-model databases can recommend suitable data
models as such, while at a more advanced level, they can also provide data model
virtualization via controlling of physical multi-model data materialization and
transformation adaptively.

To conclude, the fifth issue is a proposal of a solution building autonomous
multi-model databases to automatically handle the evolution of data models,
selecting the best models for physical storage of data, and performing automatic
transformations between the involved models. In general, it is the responsibility
of databases (not users) to find the best way to organize and store the data in
order to fulfill and optimize inter-data model queries and modification requests.

Unified Management of Multi-model Data 445

4 Conclusion

As the current trends indicate, multi-model databases represent a dignified and
promising successor of the traditional approaches for the newly emerging and
challenging use cases. Yet they first need to gain solid foundations and reach the
same level of both applied and theoretical maturity in order to become a robust
alternative to the relational databases.

We hope to entice the database and conceptual modeling communities to
deal with the identified multi-model data management challenges related to the
conceptual view of this domain. In particular and as we hope we have shown
and argued in this paper, we believe especially the following areas are calling for
attention and should be appropriately tackled so that the envisioned function-
ality of database systems could be pursuit:

– Conceptual modeling of multi-model data enabling their further unified pro-
cessing, while abstracting specific features of widely used logical models and
still preserving the practical usability.

– Universal multi-model schema inference methods that will be able to provide
near real-world schemas for at least the majority of real-world use cases and
widely used constructs.

– User-friendly, yet well-formalized query language allowing for the unified pro-
cessing of multi-model data at a conceptual layer concealing details of indi-
vidual logical models.

– Evolution management covering both intra-model and inter-model schema
changes and ensuring their correct and complete propagation to all the
affected parts of the multi-model system.

– Autonomous multi-model database management solution allowing to select
suitable logical models, handle the evolution of schemas, as well as transfor-
mation of both data and query expressions.

References

1. Baader, F., Calvanese, D., McGuinness, D., Patel-Schneider, P., Nardi, D.: The
Description Logic Handbook: Theory, Implementation and Applications. Cam-
bridge University Press, Cambridge (2003)

2. Baazizi, M.-A., Colazzo, D., Ghelli, G., Sartiani, C.: Parametric schema inference
for massive JSON datasets. VLDB J. 28, 497–521 (2019)

3. Bex, G.J., Neven, F., Schwentick, T., Vansummeren, S.: Inference of concise regular
expressions and DTDs. ACM Trans. Database Syst. 35(2), 11:1–11:47 (2010)

4. Bloesch, A.C., Halpin, T.A.: ConQuer: a conceptual query language. In: Thalheim,
B. (ed.) ER 1996. LNCS, vol. 1157, pp. 121–133. Springer, Heidelberg (1996).
https://doi.org/10.1007/BFb0019919

5. Bugiotti, F., Cabibbo, L., Atzeni, P., Torlone, R.: Database design for NoSQL
systems. In: Yu, E., Dobbie, G., Jarke, M., Purao, S. (eds.) ER 2014. LNCS,
vol. 8824, pp. 223–231. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
12206-9 18

https://doi.org/10.1007/BFb0019919
https://doi.org/10.1007/978-3-319-12206-9_18
https://doi.org/10.1007/978-3-319-12206-9_18

446 I. Holubová et al.

6. Chen, P.: The entity-relationship model - toward a unified view of data. ACM
Trans. Database Syst. 1(1), 9–36 (1976)

7. Curino, C.A., Moon, H.J., Zaniolo, C.: Graceful database schema evolution: the
PRISM workbench. Proc. VLDB Endow. 1(1), 761–772 (2008)

8. Elmagarmid, A.K., Rusinkiewicz, M., Sheth, A., Sheth, A.: Management of Het-
erogeneous and Autonomous Database Systems. Morgan Kaufmann, Burlington
(1999)

9. Elmore, et al.: A demonstration of the BigDAWG polystore system. PVLDB 8(12),
1908–1911 (2015)

10. Gold, E.M.: Language identification in the limit. Inf. Control 10(5), 447–474 (1967)
11. Kepner, J., et al.: Associative array model of SQL, NoSQL, and NewSQL databases.

In: HPEC 2016, pp. 1–9. IEEE (2016)
12. Lim, H., Han, Y., Babu, S.: How to fit when no one size fits. In: CIDR (2013).

www.cidrdb.org
13. Liu, Z.H., Gawlick, D.: Management of flexible schema data in RDBMSs - oppor-

tunities and limitations for NoSQL. In: CIDR (2015). www.cidrdb.org
14. Liu, Z.H., Lu, J., Gawlick, D., Helskyaho, H., Pogossiants, G., Wu, Z.: Multi-model

database management systems - a look forward. In: Gadepally, V., Mattson, T.,
Stonebraker, M., Wang, F., Luo, G., Teodoro, G. (eds.) DMAH/Poly -2018. LNCS,
vol. 11470, pp. 16–29. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
14177-6 2

15. Lu, J., Holubová, I.: Multi-model data management: what’s new and what’s next?
In: EDBT, pp. 602–605 (2017)

16. Lu, J., Holubová, I.: Multi-model databases: a new journey to handle the variety
of data. ACM Comput. Surv. (2019, accepted)

17. Lu, J., Holubová, I., Cautis, B.: Multi-model databases and tightly integrated
polystores: current practices, comparisons, and open challenges. In: CIKM, pp.
2301–2302 (2018)

18. Lu, J., Liu, Z.H., Xu, P., Zhang, C.: UDBMS: road to unification for multi-model
data management. CoRR, abs/1612.08050:285–294 (2016)

19. Manousis, P., Vassiliadis, P., Papastefanatos, G.: Automating the adaptation of
evolving data-intensive ecosystems. In: Ng, W., Storey, V.C., Trujillo, J.C. (eds.)
ER 2013. LNCS, vol. 8217, pp. 182–196. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-41924-9 17

20. Mlýnková, I., Nečaský, M.: Heuristic methods for inference of XML schemas:
lessons learned and open issues. Informatica, Lith. Acad. Sci. 24(4), 577–602 (2013)

21. Pokorný, J.: Conceptual and database modelling of graph databases. In: IDEAS
2016, pp. 370–377. ACM, New York (2016)

22. Rumbaugh, J., Jacobson, I., Booch, G.: Unified Modeling Language Reference
Manual. Pearson Higher Education, London (2004)

23. Scherzinger, S., Cerqueus, T., de Almeida, E.C.: Controvol: a framework for con-
trolled schema evolution in NoSQL application development. In: ICDE 2015, pp.
1464–1467. IEEE Computer Society (2015)

24. Sevilla Ruiz, D., Morales, S.F., Garćıa Molina, J.: Inferring versioned schemas from
NoSQL databases and its applications. In: Johannesson, P., Lee, M.L., Liddle,
S.W., Opdahl, A.L., López, Ó.P. (eds.) ER 2015. LNCS, vol. 9381, pp. 467–480.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25264-3 35

25. Sheth, A.P., Larson, J.A.: Federated database systems for managing distributed,
heterogeneous, and autonomous databases. ACM Comput. Surv. (CSUR) 22(3),
183–236 (1990)

www.cidrdb.org
www.cidrdb.org
https://doi.org/10.1007/978-3-030-14177-6_2
https://doi.org/10.1007/978-3-030-14177-6_2
https://doi.org/10.1007/978-3-642-41924-9_17
https://doi.org/10.1007/978-3-642-41924-9_17
https://doi.org/10.1007/978-3-319-25264-3_35

Unified Management of Multi-model Data 447

26. Stonebraker, M., Cetintemel, U.: “One size fits all”: an idea whose time has come
and gone. In: ICDE 2005, pp. 2–11. IEEE Computer Society, Washington, DC
(2005)

27. Störl, U., Müller, D., Klettke, M., Scherzinger, S.: Enabling efficient agile software
development of NoSQL-backed applications. In: BTW 2017, pp. 611–614 (2017)

28. ter Hofstede, A.H., Proper, H.A., Van Der Weide, T.P.: Formal definition of a
conceptual language for the description and manipulation of information models.
Inf. Syst. 18(7), 489–523 (1993)

Schema Validation and Evolution
for Graph Databases

Angela Bonifati1(B) , Peter Furniss2, Alastair Green2, Russ Harmer3 ,
Eugenia Oshurko3, and Hannes Voigt2

1 Lyon 1 University & CNRS Liris, Villeurbanne, France
angela.bonifati@univ-lyon1.fr

2 Neo4j, London, UK
{peter.furniss,alastair.green,hannes.voigt}@neo4j.com

3 UdL, CNRS, ENS Lyon, UCBL1, Lyon, France
{russell.harmer,ievgeniia.oshurko}@ens-lyon.fr

Abstract. Despite the maturity of commercial graph databases, little
consensus has been reached so far on the standardization of data defini-
tion languages (DDLs) for property graphs (PG). Discussion on the char-
acteristics of PG schemas is ongoing in many standardization and commu-
nity groups. Although some basic aspects of a schema are already present
in most commercial graph databases, full support is missing allowing to
constraint property graphs with more or less flexibility.

In this paper, we show how schema validation can be enforced through
homomorphisms between PG schemas and PG instances by leveraging a
concise schema DDL inspired by Cypher syntax. We also briefly discuss
PG schema evolution that relies on graph rewriting operations allowing
to consider both prescriptive and descriptive schemas.

Keywords: Graph databases · Graph schema modelling · Graph
schema validation

1 Introduction

Property graph databases are modern data management systems that use graph
structures, such as nodes, edges and properties, to encode semantically complex
data [3]. Graph database technology has made tremendous progress with many
commercial products—such as Neo4j, Oracle PGX, SAP HANA Graph, Redis
Graph, Cypher for Apache Spark and TigerGraph—and yet little consensus has
been reached so far on the standardization of graph data querying and manipu-
lation or of data definition languages (DDLs).

The aim of ISO SC32/WG3 is to develop a new international standard-
ized query language—called GQL1—for property graphs, with support from

1 https://www.gqlstandards.org/.

c© Springer Nature Switzerland AG 2019
A. H. F. Laender et al. (Eds.): ER 2019, LNCS 11788, pp. 448–456, 2019.
https://doi.org/10.1007/978-3-030-33223-5_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33223-5_37&domain=pdf
http://orcid.org/0000-0002-9582-869X
http://orcid.org/0000-0002-0817-1029
https://www.gqlstandards.org/
https://doi.org/10.1007/978-3-030-33223-5_37

Schema Validation and Evolution for Graph Databases 449

the activities of the wider community such as OpenCypher2 and G-Core [1].
Standardization of graph data querying and manipulation is therefore well
under way.

At present, there are only a few examples of property graph systems offer-
ing schema and DDL, e.g. Neo4j’s Cypher for Apache Spark and TigerGraph.
Neo4j 3.5 already provides the means to express certain basic aspects of schemas,
e.g. the use of unique property and property existence constraints enables us to
enforce nodes (or edges) to have certain properties. However, this does not allow
users to express more advanced aspects of schemas such as specifying, for a
given node or edge label, the collection of all possible associated properties; or
constraining whether or not an edge may exist between nodes with certain labels.

In this paper, we make the following specific contributions: (i) a schema model
(and corresponding DDL) specifying labels and (mandatory) properties for nodes
and edges with mixed composition and facilitating strict typing of every graph
element (Sect. 2); (ii) a mathematical framework for schema validation allowing
us to construct both instances and schemas as property graphs and to enforce
schema validation through the existence of a homomorphism from instance to
schema (Sect. 3); and (iii) graph rewriting rules [5] and their application to prop-
agate changes from schema to instance (or vice versa) while keeping the instance
and schema consistent at all times (Sect. 4).

2 PG Schema Language

We introduce in this section an OpenCypher-based3 schema DDL for Property
Graphs (PG). Although informing and feeding the ongoing standardization pro-
cess, our DLL must not be intended as a standard proposal since its main pur-
pose is to substantiate the algorithmic contributions presented in the paper. The
basic components of a schema definition assume a finite set of labels L, a set of
property keys K and a finite set of data types T .

Property Graph Type. A property graph type is a triple (BT , NT , ET)
where BT is a set of element types, NT is a set of node types and ET is a set
of edge types. A property graph type provides the schema for a PG. Multiple
PGs can share a property graph type to the effect that they will have the same
schema.

Property Type. A property type is a pair (k, t), where k ∈ K is the property
key and t ∈ T is its data type.

Element Type. An element type b ∈ BT is a 4-tuple (l, P,M,E), where l ∈ L
is a label, P is a set of property types, M ⊆ P is a subset of mandatory property
types and E ⊆ BT is the set of element types that b extends.

Hence, “Message {content: STRING?, length: INTEGER}” is a declaration of
the element type m = (Message, {pt1, pt2} , {pt2} , ∅), where
pt1 = (content, STRING) and p2 = (length, INTEGER); while

2 http://www.opencypher.org/.
3 https://s3.amazonaws.com/artifacts.opencypher.org/openCypher9.pdf.

http://www.opencypher.org/
https://s3.amazonaws.com/artifacts.opencypher.org/openCypher9.pdf

450 A. Bonifati et al.

“Post :: Message {language: STRING?}” declares the element type p =
(Post, {pt3 = (language, STRING)} , ∅, {m}).

An element type is allowed to extend multiple other element types, but must
not extend itself either directly or indirectly. All element types of a property
graph type must be disambiguated by their label. Where clear from context, we
use the label to denote the corresponding element type.

Exposed (Mandatory) Property Types and Labels. The set of exposed
property types of an element type b = (l, P,M, E) is defined as prop(b) :=
P ∪ ⋃

c∈E prop(c), i.e. all the property types that b possesses, either directly
or through inheritance. Similarly, we define mand(b) to be the set of exposed
mandatory property types of b and labels(b) to be the set of exposed labels of
b. For instance, for element type p from above we have prop(p) = {pt1, pt2, pt3},
mand(p) = {pt2}, and labels(p) = {Post, Message}.

For an element type b to be valid, prop(b) must not have two or more property
types with the same property key, i.e. all properties types of a element type
are disambiguated by their property key. Where clear from context, we will
use the property key to denote the corresponding property type. For instance,
for the element type p above, we have prop(p) = {content, length, language},
mand(p) = {length} and labels(p) = {Post, Message}. Note that labels(b) is
unambiguous for all element types b of a property graph type.

Node Type. A node type nt ∈ ET is a 1-tuple (b), where b ∈ BT is an element
type. For a node type nt = (b), we define prop(nt) = prop(b), mand(nt) =
mand(b), and labels(nt) = labels(b).

Edge Type. An edge type et ∈ ET is a triple (s, b, t), where s, b, and t are
element types. Exposed (mandatory) property and label sets are defined analo-
gously to node types based on b. Note that s and t need not be node types. This
allows a single edge type to be inherited by multiple node types.

Example. The following snippet of the OpenCypher PG schema DDL creates
a property graph type that captures an excerpt of the LDBC SNB [8] schema 4.
CREATE GRAPH TYPE snb (

// element types

Person {

firstName : STRING, lastName : STRING

},

Message {

creationDate : TIMESTAMP, browserUsed : STRING

},

Comment <: Message {},

Post <: Message {

imageFile : STRING?

},

// node types

(Person), (Post), (Comment),

4 The complete PG schema encoding of LDBC SNB is reported in [4].

Schema Validation and Evolution for Graph Databases 451

// edge types

(Person)-[KNOWS]->(Person),

(Person)-[LIKES]->(Message),

(Message)-[HAS_CREATOR]->(Person),

(Comment)-[REPLY_OF]->(Message)

)

3 Schema Validation

In this section, we provide a mathematical formalization of our schema notion
that, in particular, allows us to interpret a DDL specification as a PG. We
present the mathematical definitions of schemas and instances as property graphs
in Sect. 3.1 and then discuss the application of homomorphisms to the schema
validation problem in Sect. 3.2.

3.1 Schemas and Instances as Property Graphs

We fix countable sets O, K and V of objects, keys and values respectively. For
the purposes of this paper, we assume that V contains (at least) basic types of
integers, booleans, strings and dates.

A property graph is defined to be a tuple (N,E, η, P, ν,M) where N and E
are disjoint, finite subsets of O called nodes and edges; η : E → N × N is a
function assigning a source and target node to each edge; P ⊆ (N ∪ E) × K is a
finite set of properties; ν ⊆ P × V is a finite relation, assigning sets of values to
properties; and M ⊆ P is a set of mandatory properties. The requirement that ν
be finite means that each node and each edge has finitely many properties, each
of which has a finite set of associated values.

A schema (BT ,NT , ET) specified in our DDL from Sect. 2 can be interpreted
as a property graph S in the following way. The nodes NS are the node types
NT and we have an edge e ∈ ES from n1 to n2 in ES if, for some l1 ∈ labels(n1)
and l2 ∈ labels(n2), there is an edge type (n1, e, n2) ∈ ET . Note that a node
type always gives rise to a single node of S whereas an edge type may give rise
to many edges in the schema graph; this is how inheritance in the DDL syntax is
‘expanded out’ in the schema graph S interpreting the property graph type. Each
node and edge has the (mandatory) properties specified by its corresponding
node or edge type. As an example, the schema defined in Sect. 2 and interpreted
as a property graph is illustrated in Fig. 1.

3.2 Schema Validation via Graph Homomorphisms

Let G and S be property graphs where NG ∪ EG and NS ∪ ES are disjoint.
A homomorphism h : G → S is a function hN : NG → NS and a function
hE : EG → ES , mapping nodes and edges of G to nodes and edges of S, such
that ηS ◦hE = (hN ×hN)◦ηG. We write h := hN ∪hE . We further require that (i)
if (x, k) ∈ PG then (h(x), k) ∈ PS ; (ii) if ((x, k), v) ∈ νG then ((h(x), k), v) ∈ νS ;
and (iii) if (h(x), k) ∈ MS then (x, k) ∈ MG.

452 A. Bonifati et al.

PersonfirstName: STRING
lastName: STRING

Post

imageFile: STRING?
creationDate: STRING
browserUsed: STRING

Comment

creationDate: STRING
browserUsed: STRING

K
N
O
W
S

HAS
CRE

ATO
R

HAS CREATOR

LIK
ES

LIKES

Y
L

P
E

R
F

O

REPLY OF

Fig. 1. An extract from the SNB schema

n1

firstName: Bryn
lastName: Davies

n2

imageFile: photo33711.jpg
creationDate: 2010-10-16
browserUsed: Firefox

n3

firstName: Jose
lastName: Alonso

n4

creationDate: 2010-10-30
browserUsed: Firefox

n5

firstName: Jane
lastName: Murray

n6

creationDate: 2010-10-30
browserUsed: Safari

n7

creationDate: 2010-10-30
browserUsed: Safari

LIKES

KN
OW
S

KNOWS

LIKES

HAS
CRE

ATO
R H

A
S
C
R
E
A
T
O
R

HAS CREATOR

LI
KE
S

REPLY
OF

HAS CREATOR

REPLY OF

Fig. 2. A valid instance of the SNB schema extract

We can view a homomorphism h : G → S as a formalization of the notion
schema validation, i.e. that G respects the ‘schema’ S: each node/edge x of G is
an instance of the schema node/edge h(x); edges in S constrain which edges can
exist in G; and properties that are mandatory in the schema S are mandatory
(so must occur) in G. In the example instance G of Fig. 2, we have used colours to
encode the homomorphism h, i.e. all yellow nodes are Comments, etc. In the DDL
of Sect. 2, the fact that all element types are disambiguated by their label would
also allow us to determine h provided we include these labels in the instance G.

The ReGraph Library. The Python library ReGraph5 provides an implemen-
tation of the presented system. It enables us to construct property graphs and
structure them into hierarchies (DAGs) of graphs via homomorphisms. In this
paper we limit our use of the library to the special case of two graphs con-
nected by a single homomorphism, i.e. h : G → S as this is sufficient to express
that G respects the schema S. Our system thus provides an abstraction barrier
that gives the illusion that the underlying Neo4j graph is, in fact, two separate

5 https://github.com/Kappa-Dev/ReGraph.

https://github.com/Kappa-Dev/ReGraph

Schema Validation and Evolution for Graph Databases 453

graphs—a data graph and a schema—related by a homomorphism that guaran-
tees schema validation. In the next section, we explain briefly how updates to
either of these graphs are performed in such a way as to maintain the invariant
of schema validation.

4 Property Graph Rewriting

In our approach, the data graph and its schema are represented as PGs; as such,
we can use graph rewriting rules [5] to perform updates of either. Informally, a
rewriting rule consists of a pattern—of which there can be zero, one or many
instances in the graph G we wish to modify—together with a collection of mod-
ifications to be effected. In the case of PGs, these operations are: addition and
deletion of elements; cloning and merging of nodes; and modification of the set
of values associated with a property. The rule is applied by selecting an instance
in G and performing the associated operations. The effect of a rule application
remains localized to the subgraph of G picked out by the choice of instance
which, in practice, is very small compared with G itself.

In general, an update invalidates the homomorphism that previously existed
and which guaranteed compliance of the data to the schema. In our mathemat-
ical formulation, and its associated implementation discussed briefly below, we
automatically recompute a canonically updated homomorphism that restores
compliance [9]. The way in which compliance can be broken—and the process
by which we restore it—depends on whether the update was made to the data
graph or to the schema.

In the first case, compliance can be broken by the addition of nodes, edges
or properties or by the merging of nodes in the data graph. By default, the
addition of a new element e is propagated to the schema, i.e. we add a new
element to the schema to type e in the data graph. We can further specify
that e is actually typed by an existing element of the schema; this can be done
explicitly by the user or, more commonly, computed automatically through the
use of labels. However, in the case of the merge of two nodes, their associated
typing nodes in the schema must be merged—unless they already had the same
type (in which case no change to the schema is necessary).

In the second case, compliance can be broken by the deletion of an element
or by the cloning of nodes in the schema. By default, the cloning of a node
n is propagated to the data graph, i.e. we clone all instances of n in the data
graph. For some or all instances of n, we may not wish to propagate but rather
specify the particular clone of n that should be used to type it, i.e. a concept
refinement ; again, this can be specified directly by the user or computed auto-
matically through the use of labels. However, in the case of the deletion of an
element, we must delete all its instances in the data graph.

An update of the data graph that propagates to the schema can be blocked in
our implementation. This would be appropriate in situations where the schema
is already well-developed and we expect all incoming data to comply, i.e. we con-
sider our schema to be prescriptive. However, in an earlier phase of development,

454 A. Bonifati et al.

the ability to propagate automatically new elements to the schema enables the
user to focus simply on gathering their data of interest and allows the schema
to adapt appropriately, i.e. the schema is considered to be descriptive. As such,
our approach—in addition to providing the guarantee that updates never break
schema compliance—also provides support for the natural development cycle of
an application.

In our implementation, a rewriting rule is translated into a Cypher query
that manipulates the underlying Neo4j graph in such a way as to preserve the
correspondence with the data and schema graphs. As outlined above, an update
of one graph may—but need not necessarily—induce a further update of the
other to maintain schema validation. A detailed account will be included in the
long version of this paper and can be found in the arXiv preprint [4].

5 Related Work

Schema evolution [17] is a well established topic in data management. A set
of principles ruling out schema and instance evolution under schema constraints
was discussed in [10]. Various approaches exist to increase usability and efficiency,
e.g. schema evolution-aware query languages [18] or providing a general frame-
work to describe database evolution in the context of evolving applications [7].
Meta Model Management 2.0 [2] introduced tools to match, merge and diff given
relational schema versions. The resulting mappings couple the evolution of the
schema and the data; however, they are complex relationships between hetero-
geneous schemas, as in data integration and ETL scenarios, i.e. they only deal
with schema evolution after the fact. Recently, PRISM [6] and InVerDa [11] have
provided advanced database schema evolution tools. PRISM focuses on plain
database evolution but allows the answering of queries using former schema
versions with respect to the current data. InVerDa provides co-existing schema
versions via bidirectional transformations with symmetric relational lenses [12].
However, none of the above approaches goes beyond a prescriptive schema.

SHACL [14] is a language for validating RDF graphs. Shapes are used to
validate RDF instances against a set of conditions. SHACL supports RDF
term restrictions, cardinality constraints, and predicate constraints. Research
on ontologies also considered the problem of update propagation to instances
using Description Logic mappings [13]. However, such mappings are quite com-
plex when contrasted with the implicit homomorphisms considered in our work.
The distinction between descriptive and prescriptive schemas as carried out in
our paper is reminiscent of open and close tuple types as used for instance in
JSON [16]. In particular, the schema flexibility pointed out in our work affects
not only types but entire portions of the schemas and as such is more general.

Graph rewriting has been used in a variety of areas related to knowledge rep-
resentation and meta-modelling. For example, triple graph grammars [15,19]—
which correspond very closely to our rewriting rules—provide a means to specify
bidirectional model transformations and have been used in various applications
such as conformance testing and model synchronization.

Schema Validation and Evolution for Graph Databases 455

6 Concluding Remarks

We have presented a schema DDL for PGs following the ASCII-art syntax of
Cypher and shown how schema validation and evolution can be simulated via a
mathematical framework that enforces and maintains schema validation.

Our next step is to enrich the DDL for the expression of finer constraints
and to define a DML for our graph update operations.

Acknowledgements. We would like to thank Petra Selmer (Neo4j) for her careful
proof reading and useful feedback. This work was partially funded by a grant from the
Fédération Informatique de Lyon.

References

1. Angles, R., et al.: G-CORE: a core for future graph query languages. In: SIGMOD,
pp. 1421–1432 (2018)

2. Bernstein, P.A., Melnik, S.: Model management 2.0: manipulating richer mappings.
In: SIGMOD, pp. 1–12 (2007)

3. Bonifati, A., Fletcher, G., Voigt, H., Yakovets, N.: Querying Graphs. Synthesis
Lectures on Data Management. Morgan & Claypool Publishers, San Rafael (2018)

4. Bonifati, A., et al.: Schema validation and evolution for graph databases. CoRR
arXiv:1902.06427 (2019)

5. Corradini, A., Heindel, T., Hermann, F., König, B.: Sesqui-pushout rewriting. In:
Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT
2006. LNCS, vol. 4178, pp. 30–45. Springer, Heidelberg (2006). https://doi.org/10.
1007/11841883 4

6. Curino, C., Moon, H.J., Zaniolo, C.: Graceful database schema evolution: the
PRISM workbench. PVLDB 1(1), 761–772 (2008)

7. Domı́nguez, E., Lloret, J., Rubio, A.L., Zapata, M.A.: MeDEA: a database evolu-
tion architecture with traceability. DKE 65(3), 419–441 (2008)

8. Erling, O., et al.: The LDBC social network benchmark: interactive workload. In:
SIGMOD, pp. 619–630 (2015)

9. Harmer, R., Oshurko, E.: Knowledge representation and update in hierarchies of
graphs. In: Guerra, E., Orejas, F. (eds.) ICGT 2019. LNCS, vol. 11629, pp. 141–158.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23611-3 9

10. Hartung, M., Terwilliger, J.F., Rahm, E.: Recent advances in schema and ontology
evolution. In: Schema Matching and Mapping, pp. 149–190 (2011)

11. Herrmann, K., Voigt, H., Pedersen, T.B., Lehner, W.: Multi-schema-version data
management: data independence in the twenty-first century. VLDB J. 27(4), 547–
571 (2018)

12. Hofmann, M., Pierce, B.C., Wagner, D.: Symmetric lenses. In: POPL (2011)
13. Kharlamov, E., Zheleznyakov, D., Calvanese, D.: Capturing model-based ontology

evolution at the instance level: the case of DL-Lite. J. Comput. Syst. Sci. 79(6),
835–872 (2013)

14. Knublauch, H., Kontokostas, D.: Shapes Constraint Language (SHACL). W3C
Recommendation 20 July 2017

15. Königs, A., Schürr, A.: Tool integration with triple graph grammars - a survey.
Electron. Notes Theoret. Comput. Sci. 148(1), 113–150 (2006)

http://arxiv.org/abs/1902.06427
https://doi.org/10.1007/11841883_4
https://doi.org/10.1007/11841883_4
https://doi.org/10.1007/978-3-030-23611-3_9

456 A. Bonifati et al.

16. Ong, K.W., Papakonstantinou, Y., Vernoux, R.: The SQL++ semi-structured data
model and query language: a capabilities survey of SQL-on-hadoop, NoSQL and
NewSQL databases. CoRR arXiv:1405.3631 (2014)

17. Rahm, E., Bernstein, P.A.: An online bibliography on schema evolution. SIGMOD
Rec. 35(4), 30–31 (2006)

18. Roddick, J.F.: SQL/SE - a query language extension for databases supporting
schema evolution. SIGMOD Rec. 21(3), 10–16 (1992)

19. Schürr, A.: Specification of graph translators with triple graph grammars. In: Work-
shop on Graph-Theoretic Concepts in Computer Science, pp. 151–163 (1994)

http://arxiv.org/abs/1405.3631

Grounding for an Enterprise Computing
Nomenclature Ontology

Chris Partridge1,2(&) , Andrew Mitchell1 ,
and Sergio de Cesare2

1 BORO Solutions Ltd., London, UK
{partridgec,mitchella}@borogroup.co.uk

2 University of Westminster, London, UK
s.decesare@westminster.ac.uk

Abstract. We aim to lay the basis for a unified architecture for enterprise
computer nomenclatures by providing the grounding ontology based upon the
BORO Foundational Ontology. We start to lower two significant barriers within
the computing community to making progress in this area; a lack of a broad
appreciation of the nature and practice of nomenclature and a lack of recognition
of some specific technical, philosophical issues that nomenclatures raise. We
provide an overview of the grounding ontology and how it can be implemented
in a system. We focus on the issue that arises when tokens lead to the overlap of
the represented domain and its system representation – system-domain-overlap –
and how this can be resolved.

Keywords: Enterprise computing nomenclature ontology � Nomenclature �
Identifier � Identifier inscription � Identifying space � Foundational Ontology �
BORO � System-domain-overlap � Type-token distinction � Type-token-
occurrence distinction � Use-mention distinction � Paper tools

1 Introduction

An examination of a legacy enterprise system’s data schemas will usually reveal,
among other things, that a substantial proportion of the data are identifiers; many of the
field/attribute names will have a tell-tale suffix; such as code, short name, and identifier.
Typically, the identifier fields in the data schemas, such as ‘Alpha Currency Code’,
mark out a column of identifiers in (what we call) a nomenclature, a formalised system
of identifiers. When one starts to examine the ways in which the nomenclatures have
been implemented, there seem to be a variety of patterns, driven by a combination of
established practices and requirements, with little theoretical foundation.

Given the scale and ubiquity (and, as we shall show below, importance) of these
nomenclatures, it is not surprising that there have been attempts to try to organise them
across the enterprise (e.g. [1]). However, none of these have yet produced either a
general, unified architecture or an ontology for computer nomenclatures. In this paper,
we aim to lay the basis for such a unified architecture by providing the grounding for an
nomenclature ontology.

© Springer Nature Switzerland AG 2019
A. H. F. Laender et al. (Eds.): ER 2019, LNCS 11788, pp. 457–465, 2019.
https://doi.org/10.1007/978-3-030-33223-5_38

http://orcid.org/0000-0003-2631-1627
http://orcid.org/0000-0001-9131-722X
http://orcid.org/0000-0002-2559-0567
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33223-5_38&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33223-5_38&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33223-5_38&domain=pdf
https://doi.org/10.1007/978-3-030-33223-5_38

We believe that there have been two significant barriers within the computing
community to making progress in this area. Firstly, a lack of a broad appreciation of the
nature and practice of nomenclature. In the first part of the paper, we develop this
through a brief historical review. Secondly, a lack of recognition of some specific
technical, philosophical issues that nomenclatures raise. In the second part of the paper,
we outline these issues. Next, we provide an overview of the ontology and how it can
be implemented in a system. In the third part, we describe a nomenclature ontology that
addresses the issues identified. In the fourth part, we describe a significant issue that
arises when implementing the ontology in a system and how to address it.

2 A Brief History of Nomenclatures

In this paper, our focus is on nomenclatures in enterprise computer systems. However,
these are the result of a long and broad evolution that started well before computing
technology or enterprises emerged. We look at this evolution to provide a better
understanding of their general nature and see more clearly where and how concerns
have shaped them. Nomenclatures are dependent upon classifications. Initial classifi-
cations were developed without the formality and structure of nomenclatures, which
emerged when classifications start to scale. The combination of classifications and
nomenclatures, particularly in biology, are often called taxonomies – the Linnaean
taxonomy being the original example.

There is ample evidence of classification from early history; examples include
Ancient Egyptian onomastica (such as the Onomasticon of Amenope), Aristotle’s
Categories and Theophrastus’s Historia Plantarum. In the 15th century, the invention of
printing introduced the technology to support larger classification systems. In the 16th

and 17th centuries, this led to an increase in works classifying plants and animals. In
Species Plantarum (1753), Carl Linnaeus started modern formal binomial nomenclature
with two types of names; genus and species – these are early examples of what we call
identifying spaces. Over time, nomenclature management was formalised. For many
scientific nomenclatures, a two-part process evolved; firstly, providing an accessible
example of the identified entity – a type specimen – and then secondly publishing its
name, publicly providing an example of the name. Both the type specimens and
published names were exemplars provided for examination and comparison. This
formalisation aimed to make the process more efficient, allowing the nomenclature to
scale effectively. This formalisation was part of a broader emergence of bureaucracy,
which aims for a rational and efficient way of organising human activities. As Weber
[2, Chap. 6] noted, this mechanises the organisation. As well as being subjected to
bureaucratisation, nomenclatures played a significant role in enabling it. As they
developed more formal processes, enterprises found their efficiency depended heavily
upon standardised classifications and their associated standardised nomenclatures;
modern examples include ISO 3166 Country Codes and ISO 4217 Currency Codes.

In many ways, computing technology offered an opportunity to create the ultimate
bureaucracy – a living embodiment of the ‘iron cage’ (Weber’s characterisation of
bureaucracy). It enables far more efficient rational calculation and control than its
predecessor, writing technology. Nomenclatures seem a natural fit for computing,

458 C. Partridge et al.

whether storing the codes or handling the rules for managing them. Though there is a
recognition that the paper-based rules might need tightening up to take advantage of
computing’s capabilities – see, for example [3].

3 Nomenclature’s Type-Token Architecture

For sound pragmatic reasons nomenclatures are streamlined. For example, within an
identifying space, the identifiers typically aim to be unique (no duplicates) and distinct
(no object with two identifiers), making algorithmic identification feasible. It is the
identifiers that are unique rather than the individual inscriptions. When the algorithmic
rules are executed, the process of identifying and reidentifying does not involve the
identifier directly. Let’s say we are matching an identifier in an article with the
nomenclature’s list. We match two inscriptions, a portion of text in a copy of the article
with an entry in a copy of the list. Clearly, neither inscription is the identifier (if it were,
we could simply destroy it and then the identifier would no longer exist). The processes
work with the identifiers indirectly through their distinct member inscriptions.

This distinction between the identifier and the inscription is known as the type-
token distinction. It was introduced by Peirce [4, sec. 4.537]; where (roughly) types are
general, and tokens are their concrete instances; typically written (inscriptions) or
spoken (utterances). So, for example, in this sentence – Rose is a rose is a rose is a rose
– one could say that there are three different word-types (‘rose’, ‘is’ and ‘a’) and ten
different word-token inscriptions. (There are also three occurrences of ‘rose’, but we
don’t have enough space to discuss this here). From a nomenclature’s perspective,
identifiers are word-types and identifier inscriptions are word-tokens. The nomencla-
ture rules are typically framed in terms of word-types, though the execution of the rules
typically involve word-tokens. However, the design, particularly of computer
nomenclatures, does not usually make explicit the type-token distinction.

4 Outlining a Nomenclature Ontology

Here we provide an example of what a general nomenclature ontology would look like.
We base this upon the BORO Foundational Ontology [5]. Hopefully, it will inspire
alternative nomenclature ontologies based upon different foundations. There is a good
argument that a nomenclature ontology should be included within a foundational
ontology as it spans multiple (if not most) domains.

One of the critical requirements is to capture the type-token distinction, to clearly
identify identifier inscriptions (tokens) and separate them from identifiers (types). This
is done by showing that they are different types of objects. There is also a less obvious
requirement to characterise what the third type of nomenclature component, identifying
spaces, are. Identifier inscriptions (tokens) manually written on paper, carved in stone
or metal are visibly concrete, existing in space and time. Identifier inscriptions (tokens)
written by the computer into computer storage (whether a magnetic tape or disk or
solid-state memory), while not directly visible, are also plainly concrete and spatio-
temporal. The identifier inscriptions (tokens) belong to an identifier (type). Under the

Grounding for an Enterprise Computing Nomenclature Ontology 459

BORO extensional view, these types are the set of tokens (all possible tokens in all
possible worlds). For example, all GB inscriptions that are ISO Country Code
inscriptions make up the type that is the GB ISO Country Code. This extensional view
is common, though not universal, in philosophy [6–11]. On this view, identifier
inscriptions (tokens) and identifiers (types) are clearly different kinds of thing. Iden-
tifiers (types) belong to identifying spaces. For example, the GB ISO Country Code
belongs to the ISO 3166-1 alpha-2 codes identifying space. Under the extensional
view, these identifying spaces are the set of appropriate identifiers (types).

In this view, the objects in the nomenclature ontology are recursively grounded in a
series of levels. As shown in Fig. 1, at ground level, the identifier inscriptions are of
spatio-temporal particulars. At the next level, identifiers are grounded in their member
inscriptions; then, the identifying spaces are grounded in their member identifiers.

The purpose of an identifier is to refer to an object – the identified object. Fur-
thermore, every identifier (type) and all its identifier inscriptions (tokens) refer to the
same object. From an engineering perspective, there are two main architectural options
for how this reference could work; firstly, that only the identifiers (types) refer directly
and the identifier inscriptions (tokens) refer indirectly via their types or secondly, that
both identifiers (types) and the identifier inscriptions (tokens) refer directly. The second
option has the disadvantage of needing a mechanism to ensure that all the identifier
inscriptions (tokens) consistently refer to the same object as their identifier (type) – a
typical example of data redundancy.

5 Implementing a Nomenclature Ontology System

When using the BORO methodology (bCLEARer) to mine the ontologies from legacy
systems, the relevant data, as well as their data schemas, are extracted and transformed
into the ontology. Typically, the legacy systems contain domain nomenclatures, so
these are extracted, transformed and stored in the ontology. Our experience is that this
raises a theoretical issue with design implications. The underlying issue is that the
represented domain and its representation overlap (as shown graphically later in
Fig. 3); the actual real identifier inscriptions (parts of the domain, and not some rep-
resentation of them) are stored and processed in the system. We call this a ‘system-

Fig. 1. Grounding levels

460 C. Partridge et al.

domain-overlap’. The situation repeats in models of the system, where tokens are
typically used in naming – a kind of a ‘model-domain-overlap’ or more generally a
‘representation-represented – overlap’.

5.1 Lessons Learnt from Mention and Use

The issues that this kind of overlapping raise have been recognised in philosophy,
though mostly in the context of written text (so writing technology). Quine [12, pp. 23–
26] describes a use-mention distinction. He contrasts two sentences; (1) Boston is
populous and (2) ‘Boston’ is disyllabic. He notes that in the first sentence the name is
being used, and in the second sentence it is being mentioned – and suggests we follow
the practice of always using quotation to distinguish use and mention, saying it is more
convenient but needs “special caution” as a “quotation … designates its object not by
describing it in terms of other objects, but by picturing it.”

While Quine is surely correct to distinguish between use and mention, his proposal
for the use of quotation has been questioned. Tarski [13] and Church [14, Chap. 8]
examine the use of quotations in natural language and decide against using them.
Davidson [15] also examines this, noting several issues arising from how to interpret
the use of a name-token inside the quotation marks. He proposes an alternative
‘demonstrative theory’ in which quotation marks help to refer to a name-type by
pointing to (showing) a token of one. He suggests one reads them as ‘the expression a
token of which is here’ – a ‘word-type-reference to word-token-reference to word-
token’ pattern. The benefit with this approach is that anything that looks like a token is
one. There is no need to view some tokens as pictures. A good lesson here is to let
tokens be tokens.

Quine’s quotation analysis assumes that each inscription of a name can be cate-
gorised as a use or a mention – this is necessary if mentions are to be enclosed in
quotation marks. Davidson [15] suggests that one could both use and mention at the
same time. The lesson here seems to be that one cannot usefully assume that a token in
the published nomenclatures is exclusively a use or a mention. So, Quine’s quotational
approach cannot be applied directly to nomenclatures – they are more about ways of
using their identifiers. One final consideration is technology. One can write quotation
marks, but there is no easy way of directly pronouncing them. The possibility of
quotation marks is created by writing technology; emerging technologies create new
opportunities for representation. Both Quine and Davidson’s proposals are plainly tied
to writing technology. This suggests that there may be opportunities for a new mode of
nomenclature representation suitable for computing technology.

5.2 The Current Patterns of Implementation – A Baseline

Current system implementations contain tokens and successfully work with them.
Examination of enterprise systems shows two main patterns illustrated in Fig. 2
(Identifiers as Attributes and Identifiers as Objects), neither of which resemble Quine
and Davidson’s approaches mentioned above. It is not uncommon to find examples of
both patterns in a single system. The figure shows the pattern for a single entity type –
Countries. In an enterprise system, this pattern is repeated for each entity type –

Grounding for an Enterprise Computing Nomenclature Ontology 461

resulting in a multiplicity of nomenclature infrastructures. Our goal here is to find a
way of unifying them.

In Fig. 2, the main data-level nomenclature components have been marked out, as
far as it is feasible. Hopefully, this makes clear that this classification is implicit, that
there is no way to work it out from just the explicit structure. Also, the components are
all, in a way, second class citizens [16]; in that, as attributes or objects they do not have
access to the same range of resources as classes; for example, they cannot be super- or
sub-typed. In the models of the domain, the representations of the three components of
the nomenclature are explicitly marked out. They also clearly separate the “pure”
domain and the nomenclature. As we use this as a basis for our implemented system,
we keep this architecture.

5.3 A Proposed Implementation

Figure 2 makes clear that the system contains ‘real’ identifier inscriptions (tokens).
These play a critical role in the operation of the system as they are exemplars of their
types, used to identify and reidentify tokens of the same type. The nomenclature
ontology needs to be extended with tokens. Given the earlier analysis, we want to
introduce the tokens as just tokens, with no additional commitments to sometimes
treating the tokens as pictures of themselves. We also want to avoid committing to a
token being either exclusively for use or mention. The simplest design is to add the
token as a new kind of representation and connect them to their representation in the
model. This is similar in some ways to Davidson’s ‘word-type-reference to word-
token-reference to word-token’ pattern (mentioned above), in that the word-type and
word-token are referred to and the actual token demonstrated. One outstanding issue is
that the non-token picture uses of the inscriptions remain in the representations. The
next step is to remove these, leaving the representations as bare nodes.

When humans wish to review the model, it is useful to present the nodes with
labels. To achieve this, one needs first to make a clear distinction between what is
stored internally and what is viewed (a kind of ANSI-SPARC or model-view archi-
tecture). In the view layer, one presents a framed copy of the token (in a similar manner
to Quinean quotations) with agreed framing glyphs. The view can recover the
names/labels of these nodes algorithmically by navigating from the bare node to their

Fig. 2. Patterns of current identifier implementation for an entity

462 C. Partridge et al.

‘real’ identifier inscriptions. One can present the name/label using a bare copy of the
‘real’ identifier inscriptions; we have done this for the schema level representations in
our models – nodes such as ‘Identifiers’ and ‘Countries’.

This gives us a system such as that modelled in Fig. 3, which illustrates both ways
of presenting the tokens; firstly, reflecting the way they are stored in the ontology data
structure with tokens and bare nodes and secondly, as bare nodes that are adorned with
an inferred name. In the latter case, this notation needs to be read as shorthand for the
fuller first case.

In this approach, all the nomenclature management is handled in the same way;
there is no schema-data names distinction as in Fig. 2. Moreover, all the representations
of nomenclature components are bare nodes and so are first-class citizens; they have
access to the same resources as the domain’s bare nodes. Tokens are always tokens, as
there is no need for framing devices such as quotation marks; hence, there are no
pictures of tokens. This resolves the issues identified earlier.

This way of managing tokens has a history. For example, in the semantic network
SNePS, [17, 18], inscriptions are a special kind of thick node joined to the rest of the
semantic network of thin bare nodes by LEX arcs (see also [19]). Schapiro [18] rightly
compares the resulting separation of thick (token) and thin (bare) nodes with Carnap’s
[20, sec. 14] example of structural definite descriptions. However, the thick inscription
nodes are held at arm’s length via the LEX arc, without access to the resources of the
bare nodes, making them second class citizens [16].

6 Conclusions

We believe that the grounding for an enterprise computing nomenclature ontology,
described above, lays the basis for a unified architecture for nomenclatures in computer
systems. We provided the grounding in four ways. Initially, we made clearer what a
nomenclature is (and so its requirements). Then we looked at the critical technical
issues faced when specifying such an ontology. We focused on the distinction between

Fig. 3. Proposed implementation structure

Grounding for an Enterprise Computing Nomenclature Ontology 463

type (identifiers) and token (inscriptions). Then, we provided an example of a
nomenclature ontology based upon the BORO Foundational Ontology that explicitly
makes the distinction between inscriptions, identifiers and identifying spaces and
specifies their identity criteria. It also clearly distinguishes between the domain and the
nomenclature. Finally, we provided an example of an implementation of a nomen-
clature ontology. We identified the treatment of tokens as a significant issue, illustrating
this with the analysis of the proposed use-mention distinction. We related this to
system-domain-overlap and showed how this can be accommodated by treating tokens
as token.

A theme running through the paper was the way in which nomenclatures are tools
both shaped by and shaping the prevailing technology. In the era of printing tech-
nology, nomenclatures in lists and tables were ‘paper tools’ deployed alongside sci-
entific taxonomic and bureaucratic classifications. These tools were subsequently
embedded in computer enterprise systems. In this narrative, the nomenclature ontology
can be used to design computer tools for a computer-based nomenclature, uncon-
strained by writing technology. We hope this paper will both encourage a unified
approach to nomenclatures though the development of alternative nomenclature
ontologies based upon different foundational ontologies and an increasing number of
implementations of these ontologies in systems.

Acknowledgements. We want to thank Salvatore Florio and Mesbah Khan for all their help in
developing this paper.

References

1. Business Scenario: Identifiers in the Enterprise. The Open Group (2006)
2. Weber, M.: Economy and Society. Bedminister Press, New York (1922)
3. McMurry, J.A., et al.: Identifiers for the 21st century: how to design, provision, and reuse

persistent identifiers to maximize utility and impact of life science data. PLoS Biol. 15,
e2001414 (2017)

4. Peirce, C.S.: Collected Papers of Charles Sanders Peirce. Harvard University Press,
Cambridge (1932)

5. De Cesare, S., et al.: BORO as a foundation to enterprise ontology. J. Inf. Syst. 30, 83–112
(2016)

6. Ramsey, F.P.: Foundations of Mathematics and Other Logical Essays. Routledge, Abingdon
(1931)

7. Whitehead, A.N., et al.: Principia Mathematica, to *56. Cambridge University Press,
Cambridge (1925)

8. Quine, W.V.: Quiddities: An Intermittently Philosophical Dictionary (1987)
9. Haack, S.: Philosophy of Logics. Cambridge University Press, Cambridge (1978)
10. Hugly, P., et al.: Expressions and Tokens. Analysis 41, 181–187 (1981)
11. Ayer, A.J.: Language, Truth and Logic. Courier Corporation, Mineola (1946)
12. Quine, W.: Mathematical Logic. Harvard University Press, Cambridge (1940)
13. Tarski, A.: The concept of truth in formalized languages. Log. Semant. Metamathematics 2,

152–278 (1956)

464 C. Partridge et al.

14. Church, A.: Introduction to Mathematical Logic. Princeton University Press, Princeton
(1996)

15. Davidson, D.: Quotation. Theory Decis. 11, 27–40 (1979)
16. Strachey, C.: Fundamental concepts in programming languages. High.-Order Symb.

Comput. 13, 11–49 (2000)
17. Maida, A.S., et al.: Intensional concepts in propositional semantic networks. Cogn. Sci. 6,

291–330 (1982)
18. Shapiro, S.C., Rapaport, W.J.: SNePS considered as a fully intensional propositional

semantic network. In: Cercone, N., McCalla, G. (eds.) The Knowledge Frontier.
SYMBOLIC, pp. 262–315. Springer, New York (1987). https://doi.org/10.1007/978-1-
4612-4792-0_11

19. Partridge, C.: Business Objects: Re-engineering for Re-use (1996)
20. Carnap, R.: The Logical Structure of the World: Pseudoproblems in Philosophy (1967)

Grounding for an Enterprise Computing Nomenclature Ontology 465

http://dx.doi.org/10.1007/978-1-4612-4792-0_11
http://dx.doi.org/10.1007/978-1-4612-4792-0_11

Big Data Technology III

Events as Entities in Ontology-Driven
Conceptual Modeling

João Paulo A. Almeida1(B), Ricardo A. Falbo1, and Giancarlo Guizzardi1,2

1 Ontology and Conceptual Modeling Research Group (NEMO),
Federal University of Espírito Santo (UFES), Vitória, Brazil

jpalmeida@ieee.org, falbo@inf.ufes.br
2 Conceptual and Cognitive Modeling Research Group (CORE),

Free University of Bozen-Bolzano, Bolzano, Italy
giancarlo.guizzardi@unibz.it

Abstract. The Unified Foundational Ontology (UFO) has been used to
provide foundations for the major conceptual modeling constructs. This
ontology has led to the OntoUML Ontology-Driven Conceptual Model-
ing language, a UML class diagram profile reflecting the ontological
micro-theories comprising UFO. So far, the focus of OntoUML has been on the
representation of structural aspects of a domain (endurant types and their rela-
tions), corresponding to a fragment of UFO dubbed UFO-A. This paper extends
OntoUML by addressing the representation of event types, reflecting the UFO-B
foundational ontology of events. Based on the ontological distinctions and axiom-
atization provided by UFO-B, we define newOntoUML constructs and guidelines
for the conceptual modeling of events and event relations in structural conceptual
models.

Keywords: OntoUML · Events · Ontology-driven conceptual modeling

1 Introduction

There has been a growing interest in the use of foundational ontologies to evaluate
and (re)design conceptual modeling languages. With such use as a key motivation, a
community of researchers has contributed for over a decade now to the development
of the Unified Foundational Ontology (UFO), providing theoretical foundations under-
lying all major conceptual modeling constructs. UFO has been used to systematically
design an ontology-driven conceptual modeling (ODCM) language termed OntoUML
[10,14], which has been successfully employed in academic, industrial and governmen-
tal settings to create conceptual models in a variety of domains [14].

The observation of the application of OntoUML over the years, conducted by sev-
eral groups in a number of domains, amounted to a fruitful empirical source of knowl-
edge regarding the language and its foundations. In particular, we have observed how
modelers would slightly subvert the language’s syntax, ultimately creating what we call
“systematic subversions” [14]. These “subversions” would produce models that were

c© Springer Nature Switzerland AG 2019
A. H. F. Laender et al. (Eds.): ER 2019, LNCS 11788, pp. 469–483, 2019.
https://doi.org/10.1007/978-3-030-33223-5_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33223-5_39&domain=pdf
https://doi.org/10.1007/978-3-030-33223-5_39

470 J. P. A. Almeida et al.

grammatically incorrect, but which were needed to express the intended conceptualiza-
tions. Moreover, they were “systematic” because they recurred in the works of different
authors in similar manners and with the same modeling intent.

One of these “language subversions” concerns the representation of events and their
relations [16,21]. Dealing with the representation of events is key to conceptual mod-
eling and knowledge representation, given the importance of events in cognition, lan-
guage and, in fact, most human endeavours. Despite their importance, the current ver-
sion of OntoUML does not address event types explicitly, as it focuses on the modeling
of structural aspects of the domain in accordance with the fragment of UFO that was
first defined (UFO-A, an ontology of endurants).

Recently, there has been a growing interest in the explicit modeling of events in
structural conceptual models. This trend can be observed in the so-called event reifica-
tion approach in conceptual modeling [1,2,17] and in behavioral modeling in Object-
Oriented structural models (class diagrams) [5]. For example, Olivé [17] writes: “When
events are entities, they are modeled in a way similar to ordinary entities: they are
instance of event types (a special kind of entity type), they may participate in relation-
ships, they can be specialized or generalized, and so on...”. Moreover, empirical studies
show the benefits of explicitly representing events in structural models. For example,
Allen and March [2] show the benefits of explicit event representation in terms of faster
learning about the semantics of queries over a conceptual model, and in terms of bet-
ter supporting casual users in accurately recognizing when these queries are correct.
They argue that effective analysis and design require “a more substantive ontological
definition of an event as an entity having both identity and properties.”

Following the same ontology-based language engineering approach that was used
to create the original version of OntoUML [10], we employ here a well-founded theory
of events (UFO-B) to advance an extension of OntoUML to address events and their
relations. We introduce specialized stereotypes to capture event types, their (mereolog-
ical and historical) relations, as well as their relations to the existing endurant types in
OntoUML. Syntactic constraints in the profile guide the creation of sound models cap-
turing event types and adhering to the rules of the underlying foundational ontology.

The remainder of this paper is organized as follows: Sect. 2 presents some back-
ground on OntoUML and the UFO-B ontology of events. The notions in UFO-B are
used in Sect. 3 to introduce constructs and syntactic constraints for event modeling in
OntoUML. In Sect. 4, to demonstrate the expressivity of the profile, we employ it in the
representation of a reference ontology of software testing [20]. Section 5 positions our
contribution with respect to related work and Sect. 6 presents some conclusions.

2 Background

OntoUML is a language whose meta-model has been designed to comply with the onto-
logical distinctions and axiomatization put forth by UFO [10]. The ontological distinc-
tions present in the ontology are reflected in the modeling primitives of the language
via stereotypes, providing thus precise semantics grounded in the underlying ontology.
In addition to that, the metamodel of the language is enriched with a number of seman-
tically motivated syntactic formal constraints [7] that reflect the axiomatization of the

Events as Entities in Ontology-Driven Conceptual Modeling 471

underlying ontology. This combination of stereotypes and constraints enforces confor-
mance, making every valid OntoUML model compliant to UFO.

The original version of OntoUML reflects a particular layer of UFO termed UFO-A,
which is the Ontology of Endurants in UFO. Endurants are entities that exist in time and
can change in a qualitative way while maintaining their identity. They are endowed with
both essential and accidental properties and, for this reason, they can instantiate certain
types in a necessary manner (static classification) while instantiating other types in a
contingent manner (dynamic classification). Substantials (e.g., Mick Jagger, his car, the
moon), relators (e.g., Bill and Ana’s marriage, Mary’s enrollment in Yale) and qualities
(e.g., John’s knowledge of Greek, Paul’s Fever) are examples of endurants. Roughly
speaking, they are the ontological counterparts of Objects, Reified Relationships and
Weak Entities in the literature of Conceptual Modeling [9,10].

Figure 1 exemplifies an OntoUML model. In this model, we have two kinds of sub-
stantials: Organization and Person. Kinds are types that classify their entities nec-
essarily (in a modal sense) and that provide a uniform principle of identity for their
instances. Instances of a kind can (contingently) instantiate different roles in differ-
ent relational contexts. For example, a person can move in the extension of the role
Employee by participating in Employment relators. This distinction between neces-
sary and contingent types applies to all endurants and not only to substantials. For
example, while an Employment is necessarily so, it can contingently be classified as
a TemporaryEmployment and as a PermanentEmployment, i.e., the same instance
of Employment (e.g., the one connecting John Smith and the UN) can move from the
extension of the former to the extension of the latter. Relators (as well as qualities)
are existentially dependent entities. In this example, the Employment of John Smith in
the UN can only exist if both John Smith and the UN exist. This particular relation of
multiple existential dependency is termed in OntoUML mediation [10].

Beyond the Ontology of Endurants, UFO also comprises an Ontology of Events
(UFO-B). It has been formalized and model checked in [13] and, in [4], systematically
mapped to the description logics SHROIQ. It has been extensively tested in practice and
employed as a reference model for addressing problems from enterprise architecture
[16], software engineering [20], as well as complex media management and event mod-
eling in petroleum exploration [13]. UFO-B is composed of five sub-theories: (i) mere-
ology – events can form partonomies. In this sub-theory, the relations between events
and their parts are characterized by the axioms of the so-called extensional mereology;
(ii) participation – events are existentially dependent on endurants. The maximal part of
an event that is exclusively dependent on a particular endurant is called a participation

Fig. 1. OntoUML model capturing endurant types

472 J. P. A. Almeida et al.

Fig. 2. A summary of UFO-B and its relations

(of that endurant in that event). Events can be partitioned into a set of exhaustive and
mutually disjoint participations in this sense. For example, in Brutus’ stabbing of Cae-
sar, we have the participations of Brutus, of Caesar, and of the dagger; (iii) temporal
relations – events occur in time accumulating temporal parts. Their primary proper-
ties are temporal properties. In particular, their begin and end points. Based on these
properties, this theory defines all of the so-called Allen Relations [3] between events;
(iv) events as manifestation of dispositions – this sub-theory connects endurants and
events by characterizing how events are manifestations of particular endurants called
dispositions, which can themselves inhere in other endurants. For example, the passing
of an electrical current in a conductor is an event that is a manifestation of a disposition
(electrical conductivity) inhering in a conductor. Dispositions are said to be triggered by
certain situations; (v) change – events map the world from situations (that activate the
dispositions of which they are manifestations) to situations (which are brought about
the occurrence of that event). If an event E brings about a situation S that activates the
dispositions that are manifested as event E ′, then we say that: S triggers E ′ and that
E causes E ′. Figure 2 summarizes these aspects of UFO-B. For a complete presentation
and full formalization of this ontology, one should refer to [4,13].

3 Extending OntoUML with Event Types

This section presents the extension of OntoUML we have defined to support the model-
ing of event types and their relations according to UFO-B. First of all, we introduce the
stereotype �event� to identify those classes whose instances are events (i.e., to iden-
tify the event types in a model). We then introduce stereotypes for UML associations to
provide rules for relating various event types, supporting thereby the modeling of mere-
ological relations between events and historical dependence relations. We also intro-
duce stereotypes to model the participation of endurants in events (�participation�,
�creation�, �termination�), effectively connecting the extension for events we

Events as Entities in Ontology-Driven Conceptual Modeling 473

introduce here with the endurant types that had been defined previously for OntoUML
(�kind�, �subkind�, �phase�, �role�, �relator�, �quality�, etc.).

3.1 Introducing Event Types with the �event� Stereotype

The stereotype �event� identifies those classes whose instances are events (past
occurrences). These classes are disjoint from any classes that model endurant types,
and whose instances are endurants. As a consequence, no class may be stereotyped
with both �event� and any of the other stereotypes defined for endurant types in
OntoUML. For the same reason, no class may specialize simultaneously a class stereo-
typed �event� and a class stereotyped with any of the other OntoUML stereotypes
representing endurant types.

Classes stereotyped �event� may be given special attributes to reflect an event’s
temporal properties in a suitable temporal quality structure. We consider two options
here: (i) the use of two attributes, one stereotyped �begin� and the other stereotyped
�end� to identify the boundaries of events; or (ii) the use of a single attribute stereo-
typed with both stereotypes (�begin� and �end�) in case begin and end coincides
systematically for that class. The choice of temporal value space (and thus correspond-
ing datatypes) is application-dependent, and typically reflects a particular model’s gran-
ularity requirements. In models in which these alternatives can be applied uniformly to
all event classes, the temporal attributes can be included in an abstract Event super-
class (stereotyped �event�). (This solution is similar to what is proposed by [6] with
a single �timestamp� stereotype.)

The use of these temporal attributes forms the basis of the support for the well-
known time interval relations proposed by Allen [3]. All these relations can be
derived directly from the temporal attributes [13]. Helper OCL operations reflecting
each of the temporal relations are defined in the profile (before, meets, overlaps,
starts, during, finishes, after, metBy, overlappedBy, startedBy, contains,
finishedBy and equals) and thus can be used in constraints involving event classes.

3.2 Relations Between Event Types and Endurant Types

Participation. In order to model the participation of endurants in events, we use the
stereotype �participation�. An association stereotyped �participation� always
relates a class stereotyped with �event� with a class denoting an endurant type. If an
endurant and an event are linked through a �participation� association, then, either:
(i) the event is a manifestation of a disposition of the participating endurant, or (ii) the
event is composed of such a manifestation. The lefthand side of Fig. 3 illustrates the
use of the stereotypes showing the participation of persons into acts of composition. In
this particular model, an act of composition is always dependent on a single person (the
composer). Moreover, a person may participate in one or more acts of composition.

Creation and Termination of an Endurant. A special kind of participation is the cre-
ation of an endurant. This is identified with the �creation� stereotype. If an endurant
is related to an event through an association stereotyped�creation� then that endurant

474 J. P. A. Almeida et al.

Fig. 3. Creation of a Musical Piece in an Act of Composition

is created in that event. In the example shown in Fig. 3, a Musical Piece is created in
an Act of Composition (or in an event that is part of it).

Note that we are concerned here only with the modeling of events as past (as
opposed to ongoing) occurrences. Using Lyons’ distinction between experiential and
historical modes of description ([15] apud [8]), we adopt the historical mode, i.e., we
are concerned with “the fixed history of events as faits accomplis, as it were the fossil
record of once-active processes.” [8]. Because of this, instances of classes stereotyped
with �event� are classified by those classes necessarily (“rigidly” or “statically”).
For the same reason, any features of events are immutable (and should be marked
readOnly), including the association ends attached to endurants in participation and
creation associations (An Act of Composition will never have a different Person
as composer or produce a different Musical Piece than it has produced. A Person,
on the other hand, may participate in new acts of composition in time—but always
accumulating past acts of composition if any).

The introduction of (past) events in a model has an important consequence to the
interpretation of the endurant types in a model: since events are immutably tied to the
endurants on which they specifically depend, and since events accumulate over time,
related endurants must also accumulate over time. In other words, by introducing events
in the model, our universe of discourse contains not only the entities that exist in a
given circumstance but also all entities that have existed in that history of our universe
of discourse up to that point (a view aligned with the so-called Growing Block Universe
theory [19]), shifting from a purely “current semantics” to a “historical semantics”.

A modeling consequence of “historical semantics” is that “termination” of an
endurant should be considered a change in phase rather than “removal” from the uni-
verse of discourse. The termination of an endurant in the profile is represented with
the introduction of the �termination� stereotype which relates an event type to a
class stereotyped �phase� which is instantiated by the endurant when it takes on a
“historical” nature. In such a phase, endurants have immutable properties not unlike
past events. Figure 4 shows an example concerning the creation and termination of
pieces of legislation by congress. Pieces of legislation may be terminated by means of a
Legislation Repeal. When terminated, a Piece of Legislation instantiates the
Repealed Piece of Legislation �phase� permanently.

Roles of Participants. The role an endurant instantiates in virtue of having partici-
pated in an event of a particular type can be modeled explicitly with the stereotype
�historicalRole�. Figure 5 revisits the example in Fig. 3 introducing the Composer
historical role. A historical role is required to be related to an event type through a
�participation� association. In this case, the minimum cardinality of the associa-
tion end attached to the event type must be one, reflecting that, for an endurant to play
the role, it mandatorily has participated in an event of that type. In this model, any

Events as Entities in Ontology-Driven Conceptual Modeling 475

Fig. 4. Creation and Termination of a Piece of Legislation

Composer has a participation in at least one Act of Composition (which does not
apply to Person in general as shown in Fig. 3). Further, according to the model, only
one Composer participates in a certain Act of Composition. The pattern of historical
role and participation in Fig. 5 makes it explicit that a person is considered a composer
in virtue of his/her participation in the act of composition.

Fig. 5. Participation of a Person into Acts of Composition playing the Composer role

Historical roles can also be used to make explicit the variety of roles that endurants
may play in events of a certain type. Figure 6 shows a model in which soccer players
participate in soccer matches, along with a possible referee. Participation of referees is
optional according to this model to cope with those informal settings when no referee
is present. The model makes explicit that a person may participate in a Soccer Match
in different roles (Soccer Match Player or Referee). (A constraint enforcing that a
person does not participate in both capacities in the same match is usually required.)

Fig. 6. Participation of Soccer Players and Referees in Soccer Matches

Furthermore, introducing historical roles allows us to distinguish explicitly between
role playing in the scope of a (current) relationship and role playing in (past) events.
For example, we are able to distinguish the notion of soccer player as a participant

476 J. P. A. Almeida et al.

of a Soccer Match, i.e., someone whose dispositions were manifested in a soccer
match (Soccer Match Player), and, soccer player as a hired professional, i.e., some-
one that maintains an employment relationship with a Soccer Club (Hired Soccer
Player). As shown in Fig. 7, Hired Soccer Player is stereotyped �role�, and
is thus associated through a �mediation� to an Employment (�relator�), while
Soccer Match Player is stereotyped �historicalRole� and is thus associated
through a �participation� to a Soccer Match (�event�). If we consider that
only “current” employments are represented, when fired by a Soccer Club, a Person
no longer instantiates Hired Soccer Player. However, having played in a Soccer
Match, a Person will always instantiate Soccer Match Player.

Fig. 7. Roles in virtue of relations versus historical roles

In [12], the authors discuss the duality between relators and events that are their
manifestations. For example, a marriage as an event is the manifestation of proper-
ties of the marriage as a relator (mutual commitments and claims). As previously dis-
cussed, relators (and endurants in general) can change their (contingent) properties
while remaining the same; events, in contrast are immutable, i.e., they cannot change
in any way while keeping their identity. This aspect of (un)changeability gives us a
methodological guideline for chosing to model an event or its endurant counterpart.

3.3 Mereological Relations Between Events

Following Pribbenow [18], we identify different ways in which a whole may be decom-
posed into parts. Pribbenow discusses that parts may be: (i) “structure dependent”, in
which case the whole-part relations belong to the definition of the decomposed entity,
e.g., the chapters of a book or the functional parts of a machine, (ii) or otherwise “con-
structed”, in which case the whole-part relations are derived or induced using internal
features of the parts or external schemes of reference. In the case of “constructed parts”,
by using internal features, we partition an entity into parts called “portions”. For exam-
ple, we may consider the “portions” of a house according to their colors. In this case,
we would identify “red” parts, “brown” parts, “white” parts, etc. By using external
schemes, we induce parts called “segments”. An example of such external scheme is a
spatial frame, so we may decompose a house into its “segment” that lies within 5m of
the road, and the rest of it (the “segment” that lies over 5m from the road).

We use the classification proposed by Pribbenow to understand the ways in which
an event can be decomposed in UFO-B, reflecting ultimately on our modeling rec-
ommendations. In the case of structure dependent decompositions (for example, that

Events as Entities in Ontology-Driven Conceptual Modeling 477

between a Soccer Match and a Goal, or between a Soccer Championship and each
Soccer Match), no stereotype is used. Differently, for constructed decompositions,
we distinguish between participational and temporal decompositions and introduce the
�participational� and �temporal� stereotypes for part-whole relations.

Fig. 8. Structural and participational decompositions involving Soccer Matches

In the case of the decomposition of an event into participations, we have “con-
structed” “portions”, which are projected out of the whole considering their formal
relation of dependence on specific endurants. Consider a meeting with multiple partici-
pants. The participation of each participant is a “portion” of the meeting in this sense. A
portion is maximal with respect to the property under consideration: the portion of the
meeting that is John’s participation in the meeting covers all events that are part of the
meeting and that depend solely from John. It is further disjoint from other portions of
the meeting using the same criterion (that must per definition be participations of other
participants, and hence disjoint from John’s participation.) This kind of event decom-
position is marked with the stereotype �participational�. The maximum cardinality
in the association end attached to the participant is always one, reflecting the rule in
UFO-B that participations depend exclusively on a single endurant. Figure 8 shows the
combined use of structural and participational decompositions in the soccer example.

In the case of the decomposition of an event into temporal parts, we have “con-
structed” “segments” using temporal schemes as external reference. For example, the
temporal “segments” may be projected out of the whole by reference to a fixed time
interval, durations, or temporal relations to other events. Consider segmenting a day-
long meeting into two “segments”: before and after noon. The meeting’s afternoon
“segment” is disjoint from the meeting’s morning “segment”. In addition, similarly to
participational portions, temporal segments are maximal with respect to the temporal
relations under consideration: in this case, there are no parts of the meeting that are fully
contained in the considered time interval that are not part of the segment under consid-
eration. This kind of event decomposition is marked with the stereotype �temporal�.

Since events cannot be involved in part-whole relations with endurants (and vice-
versa), any class stereotyped with�event� can only participate in part-whole relations
with other classes stereotyped �event�. Further, temporal relations can be inferred
from the part-whole relations between events. More specifically, following UFO-B, the
begin point of the whole must precede or coincide with the begin point of the part and
the end point of the part must precede or coincide with the end point of the whole.
Further, since whole part relations between events follows extensional mereology, the

478 J. P. A. Almeida et al.

weak supplementation principle must be enforced. This means that the sum of lower
bounds of parts must be equal to or greater than two.

3.4 Historical Dependence Between Events

A final stereotype (�historicalDependence�) is defined to capture historical depen-
dence between events. An event b depends historically on a whenever: (i) a (or one of its
parts) brings about the situation that triggers b (or one of its parts); (ii) a (or one of its
parts) brings about a situation that is necessary—but not sufficient—to trigger b (or one
of its parts); (iii) a (or one of its parts) brings about a situation that is necessary—and
more than sufficient—to trigger b (or one of its parts); or, (iv) b depends historically on
an event z that depends historically on a.

Condition (i) encompasses direct causation, and, together with (iv), encompass indi-
rect causation, which are grounds for historical dependence. Take, for instance, the rela-
tion between penalty kicks and goals. A particular Goal may be historically dependent
on a Penalty Kick by being caused by it. Conditions (ii) and (iii) cover the cases of
historical dependence in which there is dependence but not causation. Consider, e.g.,
the relation between penalties and penalty kicks. A penalty is necessary but not suffi-
cient to cause a penalty kick (e.g., because authorization of the referee is required). A
model capturing these historical relations between events is shown in Fig. 9. It captures
the fact that every penalty kick is historically dependent on a penalty, and that some
goals (penalty goals) are historically dependent on a penalty.

Fig. 9. Historical dependence between events of certain types in a soccer match.

4 Applying the Profile to Model Software Testing Processes

In this section, we revisit the model presented in [20], more specifically the fragment
that represents software Testing Processes, the activities that comprise them, arti-
facts used and produced by those activities, and the people involved. Figures 10 and 11
present this fragment re-engineered using the profile previously discussed.

As Fig. 10 shows, a Testing Processes is structurally decomposed into activ-
ities (events) of the following types: Test Case Design, Test Coding, Test
Execution, and Test Result Analysis. To uniformly represent the temporal
attributes of the events represented in the model, we included an abstract Event super-
class that has two attributes, one stereotyped �begin� and the other stereotyped
�end�, capturing the temporal boundaries of the events (see Sect. 3.1). The historical
dependencies shown in Fig. 10 reflect the fact that some activities use artifacts produced

Events as Entities in Ontology-Driven Conceptual Modeling 479

Fig. 10. Software Testing Process Model Revisited – Composition and Dependencies

by others, as shown in Fig. 11. For example, Test Execution historically depends on
Test Coding, since Test Execution uses Test Code produced in Test Coding.

The participations of endurants in the activities that compose the testing process are
detailed in Fig. 11. The model makes explicit the historical roles related to the partic-
ipation of a Person (Test Case Designer, Test Coder, Test Executor, Test
Result Analyst) in each activity of the Testing Process. These activities also
involve the participation of several types of artifacts (Document and Code), some of
which are created (�creation�) during the corresponding activity (e.g., Test Code
was created during Test Coding); or simply participated (�participation�) in the
activities (e.g., Test Codewas used in Test Execution). The model omits the histor-
ical roles played by those artifacts in the corresponding activities for brevity. An excep-
tion is the case of Tested Code, which is the historical role of a Code when tested in a
Test Execution activity. This was included to capture the difference between Tested
Code and Test Code. While the former is the historical role played by a Code due to its

Fig. 11. Software Testing Process Model Revisited – Participations

480 J. P. A. Almeida et al.

participation in a Test Execution activity, the latter (Test Code) is a �subkind�
of Code that was developed specifically for the purpose of testing.

5 Related Work

The approaches that are most closely related to ours are [5], and [17], both of which
focus on UML and, similarly to our approach, treat events as entities with “identity and
properties” which “may participate in relationships” and “can be specialized”.

In [5], we have: (a) the representation of part-whole relations between events; (b)
the temporal succession of events, also with start and ending events; (c) the modeling of
participants of events. Regarding (a), the proposal allows for partonomy structures and
define parthood as a subtype of the Allen during relation, a point that is in conformance
with UFO-B. The authors, however, are not explicit regarding the semantics of the part-
hood relations. For example, it is unclear under what conditions two occurrences are
the same in their approach and, there seems to be no constraint proscribing the creation
of an occurrence A that is composed of one single sub-occurrence B, which is different
from A (thus, breaking the so-called weak supplementation axiom, a basic axiom in
mereology). Since our approach is grounded in UFO-B, it makes clear that our seman-
tics of composition is one of extensional mereology. Regarding (b), both approaches
can represent Allen relations (although the authors only explicitly consider the case of
before and during). However, we believe the modeling choice adopted here is supe-
rior in terms of clarity and flexibility. By marking the begin and end point of events as
(immutable) attributes, we can: use different types of datatypes for representing tempo-
ral points; easily represent instantaneous events without the need for an extra construct;
make explicit that all Allen relations are derived (and provide OCL derivation rules
for all of them). Still regarding (b), our approach differentiates the derived relation of
temporal precedence from the much stronger relation of historical dependence, which
can be used to represent direct and indirect causation. Regarding (c), the authors rep-
resent participation by making occurrence types a specialization of UML association
classes. On one hand, this makes clear that the author recognizes that occurrences are
existentially dependent on its participants. On the other hand, it inherits all the problems
of association classes (see [10]), including making them identical to the association to
which are connected, and their consequent inability to properly model anadyc relations
(e.g., we could not model an occurrence type that would have a variable number of
participants from instance to instance). Moreover, since participations are modeled as
association ends, there is no systematic connection between participation and parthood.

In [17], aspect (a) is simply not discussed. However, once events are represented
as standard classes, one can easily represent parthood between events using, for exam-
ple, UML’s relations of composition and aggregation. Moreover, since events for Olivé
et al., have all their properties immutable, the correct relation in this case would cor-
respond to one of the interpretations of the composition construct in UML (the whole
would be existentially dependent on its sparts). Since they do not explicitly discuss part-
hood for events, the authors also do not discuss the semantics on this relation for events.
There is, however, an even more problematic issue. For the authors, events are always
instantaneous and, hence, even if we can represent mereologically complex events, we

Events as Entities in Ontology-Driven Conceptual Modeling 481

are restrict to events which all parts happen at the exact same instant and, hence, there
would be no way to represent events that unfold in time with their parts as well as
non-convex events. Regarding (b), the authors represent effects of events by invoking
operations. This can be seen as a sort of direct causality (which implies temporal prece-
dence of the cause). However, the events that are the effects on an event are not them-
selves modeled as events in the same sense(!) but as operations of other classes to be
invoked. As such they are not subject to all the benefits of explicit event modeling.
Additionally, despite implicitly dealing with direct causality and, hence, also implicitly
with temporal precedence, the authors do not discuss the modeling of all the remain-
ing Allen relations. Regarding (c), object participation in events is modeled via regular
(immutable) associations. Here, once more, there is no connection between participa-
tion and parthood and, in particular, also due to the aforementioned limitations, no way
to represent mereologically complex participations. Although Olivé et al. [17] briefly
considers a semantics for events in which they permanently exist as instances of the
model, none of these approaches analyze the (non-trivial) consequences of introducing
events in structural models. As discussed in [12], events are locked in the past and, as a
consequence, introducing them in structural models changes the semantics of the model
to a historical semantics, affecting not only them but also the objects to which they
are necessarily connected. Here, we make explicit the connection between event par-
ticipation and (some aspects) of dynamic endurant type instantiation, including phase
changes and role playing. However, we make clear the use of events as truthmakers for
role playing entails a special semantics of historical role. It is in this latter sense that,
for example, in Wikipedia, Paul Newman “is an actor” with active years (1953–2008).

6 Final Considerations

This paper makes a contribution to conceptual modeling by proposing a profile for the
representation of events in structural conceptual models. This profile was developed to
address modeling requirements collected from observing the practice of the OntoUML
community while creating ontology-driven conceptual models (claim to relevance).
By employing a well-tested language engineering method, this profile was developed
to reflect the ontological distinctions and formal semantics put forth by the founda-
tional ontology UFO-B (claim to ontological adequacy). The proposed profile is then
employed here to model a fragment of an existing reference model in the area of Soft-
ware Testing. As this exercise demonstrates, the profile is able to provide specialized
semantics to the various relations between events and between events and endurants.
The nature of these relations remained implicit in the original model (claim to applica-
bility).

Finally, this work is part of a research program aimed at addressing a fuller evo-
lution of OntoUML [11,14]. As discussed in [14], the development of new ontologi-
cal foundations for OntoUML and the systematic redesign of its metamodel creates a
number of possibilities regarding approaches to mappings from OntoUML to codifica-
tion languages (e.g., OWL), model verbalization, model simulation, support for patterns
and detection of anti-patterns. Revisiting the current modeling support for OntoUML in
light of the developments discussed in this paper is part of our current research program.

482 J. P. A. Almeida et al.

Acknowledgments. This work has been partially supported by CNPq (407235/2017-5,
312123/2017-5), CAPES (23038.028816/2016-41), FAPES (69382549) and FUB (OCEAN
Project).

References

1. Allen, G.N., March, S.T.: The ontological treatment of the ‘Event’ construct: implications
for system analysis and design. In: Proceedings of the 5th Symposium on Research Systems
Analysis and Design (2000)

2. Allen, G.N., March, S.T.: The effects of state-based and event-based data representation on
user performance in query formulation tasks. MIS Q. 30, 269–290 (2006)

3. Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26(11), 832–
843 (1983)

4. Benevides, A.B., Bourguet, J.R., Guizzardi, G., Peñaloza, R., Almeida, J.P.A.: Representing
a reference foundational ontology of events in SROIQ. Appl. Ontol. 14(3), 293–334 (2019).
https://content.iospress.com/articles/applied-ontology/ao190214

5. Bock, C., Odell, J.: Ontological behavior modeling. J. Object Technol. 10(3), 1–36 (2011)
6. Cabot, J., Olivé, A., Teniente, E.: Representing temporal information in UML. In: Stevens, P.,

Whittle, J., Booch, G. (eds.) UML 2003. LNCS, vol. 2863, pp. 44–59. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45221-8_5

7. Carvalho, V.A., Almeida, J.P.A., Guizzardi, G.: Using reference domain ontologies to define
the real-world semantics of domain-specific languages. In: Jarke, M., et al. (eds.) CAiSE
2014. LNCS, vol. 8484, pp. 488–502. Springer, Cham (2014). https://doi.org/10.1007/978-
3-319-07881-6_33

8. Galton, A.: Processes as continuants (abstract). In: Thirteenth International Symposium on
Temporal Representation and Reasoning (TIME 2006), p. 187, June 2006

9. Guarino, N., Guizzardi, G.: “We need to discuss the relationship”: revisiting relationships as
modeling constructs. In: Zdravkovic, J., Kirikova, M., Johannesson, P. (eds.) CAiSE 2015.
LNCS, vol. 9097, pp. 279–294. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
19069-3_18

10. Guizzardi, G.: Ontological foundations for structural conceptual models. Ph.D. thesis, CTIT,
Centre for Telematics and Information Technology, Enschede (2005)

11. Guizzardi, G., Fonseca, C.M., Benevides, A.B., Almeida, J.P.A., Porello, D., Sales, T.P.:
Endurant types in ontology-driven conceptual modeling: towards OntoUML 2.0. In: Trujillo,
J., et al. (eds.) ER 2018. LNCS, vol. 11157, pp. 136–150. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-00847-5_12

12. Guizzardi, G., Guarino, N., Almeida, J.P.A.: Ontological considerations about the represen-
tation of events and endurants in business models. In: La Rosa, M., Loos, P., Pastor, O. (eds.)
BPM 2016. LNCS, vol. 9850, pp. 20–36. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-45348-4_2

13. Guizzardi, G., Wagner, G., Falbo, R.A., Guizzardi, R.S.S., Almeida, J.P.A.: Towards onto-
logical foundations for the conceptual modeling of events. In: Ng, W., Storey, V.C., Trujillo,
J.C. (eds.) ER 2013. LNCS, vol. 8217, pp. 327–341. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-41924-9_27

14. Guizzardi, G., et al.: Towards ontological foundations for conceptual modeling: the Unified
Foundational Ontology (UFO) story. Appl. Ontol. 10(3–4), 259–271 (2015)

15. Lyons, J.: Semantics, vol. 2. Cambridge University Press, Cambridge (1977)
16. Nardi, J.C., et al.: A commitment-based reference ontology for services. Inf. Syst. 54, 263–

288 (2015)

https://content.iospress.com/articles/applied-ontology/ao190214
https://doi.org/10.1007/978-3-540-45221-8_5
https://doi.org/10.1007/978-3-319-07881-6_33
https://doi.org/10.1007/978-3-319-07881-6_33
https://doi.org/10.1007/978-3-319-19069-3_18
https://doi.org/10.1007/978-3-319-19069-3_18
https://doi.org/10.1007/978-3-030-00847-5_12
https://doi.org/10.1007/978-3-030-00847-5_12
https://doi.org/10.1007/978-3-319-45348-4_2
https://doi.org/10.1007/978-3-319-45348-4_2
https://doi.org/10.1007/978-3-642-41924-9_27
https://doi.org/10.1007/978-3-642-41924-9_27

Events as Entities in Ontology-Driven Conceptual Modeling 483

17. Olivé, A., Raventós, R.: Modeling events as entities in object-oriented conceptual modeling
languages. Data Knowl. Eng. 58(3), 243–262 (2006)

18. Pribbenow, S.: Parts and wholes and their relations. In: Mental Models in Discourse Process-
ing and Reasoning. Advances in Psychology, vol. 128, pp. 359–382. North-Holland (1999)

19. Sider, T.: Quantifiers and temporal ontology. Mind 115(457), 75–97 (2006)
20. Souza, E., Falbo, R.A., Vijaykumar, N.: ROoST: reference ontology on software testing.

Appl. Ontol. 12(1), 59–90 (2017)
21. U.S. Department of Defense (DoD): Data Modeling Guide (DMG) for an Enterprise Logical

Data Model (ELDM). U.S. Department of Defense (DoD) Report (2011)

Parallel Clique-Like Subgraph Counting
and Listing

Yi Yang1, Da Yan2, Shuigeng Zhou1(B), and Guimu Guo2

1 Shanghai Key Lab of Intelligent Information Processing,
and School of Computer Science, Fudan University, Shanghai 200433, China

{yyang1,sgzhou}@fudan.edu.cn
2 Department of Computer Science, The University of Alabama at Birmingham,

Birmingham, USA
{yanda,guimuguo}@uab.edu

Abstract. Cliques and clique-like subgraphs (e.g., quasi-cliques) are
important dense structures whose counting or listing are essential in
applications like complex network analysis and community detection.
These problems are usually solved by divide and conquer, where a task
over a big graph can be recursively divided into subtasks over smaller
subgraphs whose search spaces are disjoint. This divisible algorithmic
paradigm brings enormous potential for parallelism, since different sub-
tasks can run concurrently to drastically reduce the overall running time.

In this paper, we explore this potential by proposing a unified frame-
work for counting and listing clique-like subgraphs. We study how to
divide and distribute the counting and listing tasks, and meanwhile, to
balance the assigned workloads of each thread dynamically. Four appli-
cations are studied under our parallel framework, i.e., triangle counting,
clique counting, maximal clique listing and quasi-clique listing. Extensive
experiments are conducted which demonstrate that our solution achieves
an ideal speedup on various real graph datasets.

Keywords: Dense subgraph mining · Parallel computation · Unified
framework

1 Introduction

Dense subgraphs of a network often contain important information about the
communities or modules in the network, and as a result, counting and listing
dense subgraphs has received a lot of interest from the research community in
the last decade [8,9,11,13,22,25]. One example of a dense subgraph is a clique,
where every pair of vertices are connected by an edge.

However, these problems have a high computational complexity [17], often
NP-hard due to the reduction to the maximum clique problem [18]. Recent
studies focus on speeding up the computation by parallel computing [10,12,23,
26]. Since the original problem has an exponential computational complexity,

c© Springer Nature Switzerland AG 2019
A. H. F. Laender et al. (Eds.): ER 2019, LNCS 11788, pp. 484–497, 2019.
https://doi.org/10.1007/978-3-030-33223-5_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33223-5_40&domain=pdf
https://doi.org/10.1007/978-3-030-33223-5_40

Parallel Clique-Like Subgraph Counting and Listing 485

after dividing it into multiple subproblems, either the number of subproblems
or the time cost of an individual subproblem must be exponential. Accordingly,
existing works can be categorized into two aspects.

1. Polynomial Number of Subproblems. This kind of work often uses sim-
ple task prepartitioning (e.g., on top of MapReduce [10,23,24] or Pregel-like
systems [15,27]). Since the time cost of individual subproblems are exponential,
they often suffer from imbalanced workload distribution (e.g., the last-reducer
problem) [21] especially on power-law graphs with a heavily skewed degree dis-
tribution. However, since the number of subproblems is polynomial, it is not time
costly to rearrange the subproblems in order (e.g., vertex ordering schemes are
applied [11,25,26]). After rearrangements, the time costly subproblems will be
handled in parallel firstly, and the less costly subproblems will be handled in par-
allel lastly. As a result, the workloads are almost balanced, with the differences
between the running time of the last few subproblems.

2. Exponential Number of Subproblems. This kind of work often uses
dynamic task partitioning [19] and dynamic load balancing [7,20], or they will
suffer from exponential memory consumption storing the fully partitioned sub-
problems [8]. The dynamics is usually ensured by recursive partitioning, i.e. a
subproblem can be further divided into smaller subproblems. Since the number
of final subproblems is exponential, the granularity of the partitioning should be
carefully chosen (e.g. coarse-grained partitioning leads more load differences and
fine-grained partitioning leads more communication cost). The optimal solution
usually lays out between extremes, which requires a proper cost model for both
communication and computation, and requires an optimization method to find
out the optimal solution of the cost model [8].

Contributions. In this paper, we present a unified framework for counting and
listing clique-like subgraph in parallel, which takes both of the advantages of
the previous two aspects. More specifically, on one hand, we propose a new task
partitioning method called pivot path partitioning, which gradually partition the
original task into a polynomial number of subtasks, then three vertex ordering
schemes are compared. On the other hand, the pivot path partitioning method
automatically partitions the original task into a proper granularity, without deal-
ing with a cost model and its optimization. More over, the pivot path partitioning
method enables general clique counting, which is little explored previously. We
focus on the setting of multi-threaded computation within a single machine (i.e.,
a shared-memory environment). Our contribution can be summarized as follows.

– A unified parallel framework is proposed.
– The pivot path partitioning method is developed.
– First attempt on general clique counting.

2 Preliminaries

This section first defines our graph notations and terminology, and then intro-
duces the clique-like problems that we solve on top of our parallel framework.

486 Y. Yang et al.

2.1 Notations and Terminology

Graphs. Let G = (V,E) be a simple undirected graph with a vertex set V and
an edge set E, and let n = |V | and m = |E| be the number of vertices and edges
in G, respectively. We use N(v) to denote the set of the neighbors of vertex v,
i.e. the set of vertices each of which has an edge connecting to v. We also use
d(v) = |N(v)| to denote the degree of vertex v.

Vertex Ordering. We define a total ordering o over the vertices, where o(v)
denotes the rank of vertex v, i.e., 1 plus the number of vertices that are before v
in the ordering. Obviously, 1 ≤ o(v) ≤ n. Given an integer i, we use vi to denote
the vertex with rank i, i.e., o(vi) = i. Given a vertex v, we use N−(v) = {u | u ∈
N(v), o(u) < o(v)} to denote the set of neighbor vertices of v which are ranked
before v.

Subgraphs. Given a subset V ′ ⊆ V of vertices, we define G(V ′) as the subgraph
of G induced by vertex set V ′, i.e., the edge set of G(V ′) equals E′ = {(u, v) |
u ∈ V ′, v ∈ V ′, (u, v) ∈ E}. We use G(v) (resp. G−(v)) to denote the subgraph
of G induced by vertex set N(v) (resp. N−(v)), i.e., G(v) = G(N(v)) (resp.
G−(v) = G(N−(v))).

Cliques. If G(V ′) is a complete graph where every pair of vertices are connected
(i.e. |E′| = |V ′| · (|V ′| − 1)/2), we call G(V ′) a clique in G, and call |V ′| the size
of the clique. In particular, if |V ′| = 3, then we call G(V ′) a triangle. We use
c(G) to denote the size of the largest clique in G.

Maximal Cliques. Let C be a clique in G, and we also abuse the notation C
to denote the vertex set of this clique. If there does not exist another clique C ′

in G, such that C ′ ⊃ C, then we say that clique C is a maximal clique in G.

Quasi-cliques. Given a density threshold γ ≤ 1 and a subgraph G(V ′) of G,
if for every vertex v′ ∈ V ′, its degree in the subgraph G(V ′) satisfies d(v′) ≥
γ · (|V ′| − 1), then we say that G(V ′) is a γ-quasi-clique in G. To ensure the
γ-quasi-clique to be a connected graph, we require γ ≥ 0.5.

Intuitively, a quasi-clique relaxes the requirement of a clique where every
vertex is connected to every other vertex, into that every vertex is connected
to the majority of other vertices in V ′. It is a more realistic model for a social
community.

k-core. The k-core of a graph G is the maximal subgraph such that every vertex
has degree at least k. It can be found by keeping removing vertices that have
degree less than k. We call k(G) as the core number of G if k is the largest
integer such that the k-core of G is not empty.

2.2 Problem Statement

Without loss of generality, this work studies four specific problems on top of our
parallel framework, and we use the graph in Fig. 1 to illustrate the concepts.

Parallel Clique-Like Subgraph Counting and Listing 487

Fig. 1. An example input graph

Triangle Counting. The problem counts the number of triangles in an input
graph G. For example, there are 5 triangles {v1, v2, v3}, {v1, v2, v4}, {v1, v2, v5},
{v1, v3, v4} and {v2, v3, v4} in Fig. 1.

Clique Counting. The problem counts the number of cliques in G with different
sizes of 1, 2, 3, . . . , c(G), respectively. In Fig. 1, there are 5 size-1 cliques (i.e., all
5 vertices), 8 size-2 cliques (i.e., all 8 edges), 5 size-3 cliques (i.e., 5 triangles)
and 1 size-4 clique (i.e., {v1, v2, v3, v4}) in the example graph.

Maximal Clique Listing. The problem lists all the maximal cliques in G. For
example, there are 2 maximal cliques {v1, v2, v3, v4} and {v1, v2, v5} in Fig. 1.

Quasi-clique Listing. Given a real number 0.5 ≤ γ ≤ 1 and an integer s, the
problem lists all the γ-quasi-cliques in G whose sizes are at least s. For example,
there are 3 γ-quasi-cliques {v1, v2, v3, v4}, {v1, v2, v3, v5} and {v1, v2, v4, v5} in
Fig. 1 with γ = 0.6 and s = 4.

3 The Parallel Framework

Overview. In this section, we introduce our parallel framework generic clique-
like subgraph counting and listing, which consists of three phases: tasks parti-
tioning, parallel execution and result aggregation, which are described as follows:

– Task Partitioning. The framework first loads an input graph G from a
file, and then computes a total ordering of the vertices in G. It then divides
the computation workloads into multiple tasks each with a bounded cost,
and adds them into a concurrent queue [16] to be fetched and processed
concurrently by the computing threads.
We will discuss the vertex ordering schemes in Sect. 3.1, and introduce our
task partitioning method in Sect. 3.2.

– Parallel Execution. Multiple threads are executed concurrently in this
phase. Threads are numbered with IDs i = 1, 2, 3, ..., t, where t is the total
number of threads. The threads keep fetching tasks from the queue for pro-
cessing, until the task queue becomes empty.
We will discuss how to compute the tasks in Sect. 3.3. Once the queue is
empty, the idle threads will steal works from the busy threads, so that the
workloads are dynamically balanced. The threads will terminate when they
all become idle and the task queue is empty.

488 Y. Yang et al.

– Result Aggregation. For listing problems, each thread will store the sub-
graph results in a local buffer of bounded size, and will flush them to disk
when the buffer is full, to empty the buffer for keeping more results. After all
threads finish running, we can obtain the final results by concatenating the
output files of all threads. For counting problems, each thread will maintain
its own counter, and their values are summed in the end to get the final count.

3.1 Vertex Ordering Schemes

We assign ranks to vertices using three ordering schemes that are commonly
used in existing work [25,26] as listed below. However, our novelty lies in that we
further adjust the resulting ordering by putting a pivot vertex and its neighbors
in front of all the other vertices. We will compare all of these ordering schemes
in Sect. 4.

– Scheme 1: Original Ordering. This ordering scheme simply assigns the
rank of the vertices according to the order that they appear in the input file
(which is an edge list). Namely, the two end vertices of the first edge in the
input file are ranked with 1 and 2, and the two end vertices of the second
edge are ranked with 3 and 4 (if they are different from the first two vertices),
and so on.

– Scheme 2: Static Degree Ordering. This ordering scheme arranges the
vertices by descending order of their original degree in the input graph.
Namely, the vertex with the highest degree is ranked with 1, and the ver-
tex with the second highest degree is ranked with 2, and so on.

– Scheme 3: Dynamic Degree Ordering. This ordering scheme arranges
each vertex v according to its degree in the subgraph induced by v plus those
vertices ranked before v. Namely, the vertex with the lowest degree in the
original graph is ranked with n, and the vertex with the lowest degree in the
subgraph induced by the remaining n − 1 vertices is ranked with n − 1, and
the vertex with the lowest degree in the subgraph induced by the remaining
n − 2 vertices is ranked with n − 2, and so on.

Pivot Vertex Reordering. After vertices are ordered as above, we propose to
further adjust the order of the vertices by prioritizing a pivot vertex and all of
its neighbors to the top. After making this adjustment, a selected pivot vertex v
is ranked with 1, and its neighbors are ranked with 2, 3, ..., d(v)+1, respectively
(in an arbitrary order), and then the remaining vertices are ranked with d(v) +
2, d(v) + 3, ..., n respectively (keeping the same order as in the original ordering
scheme). We select the vertex v with the highest degree as the pivot vertex, since
v tends to have the heaviest workload and the task partitioning method to be
described in Sect. 3.2 will separate it from the rest of the workloads for further
divide-and-conquer to distribute the workload among multiple threads.

Parallel Clique-Like Subgraph Counting and Listing 489

3.2 Task Partitioning

For simplicity, let A(G′, S) be the task of counting or listing clique subgraphs in
G′ given that vertices in S are already assumed to be included in a clique sub-
graph found by the task. Typically, S refers to those vertices already considered.

Let us denote Vi = {v1, v2, . . . , vi}. Then, we can divide the “root” task of
computing A(G, ∅) into two subtasks as follows:

A(G, ∅) = A(G(Vn), ∅)
→ A(G(Vn−1), ∅) ∪ A(G−(vn), {vn}). (1)

In other words, we consider two disjoint cases: (1) A(G(Vn−1), ∅) finds those
clique-like subgraphs that do not contain vn, where Vi = {v1, v2, ..., vi}, and
(2) A(G−(vn), {vn}) finds those clique-like subgraphs that contain vn.

We can similarly divide the first subtask A(G(Vn−1), ∅) as follows:

A(G(Vn−1), ∅)
→ A(G(Vn−2), ∅) ∪ A(G−(vn−1), {vn−1}). (2)

In general, we can keep recursively dividing the first subtask A(G(Vn−i), ∅)
as:

A(G(Vn−i), ∅)
→ A(G(Vn−i−1), ∅) ∪ A(G−(vn−i), {vn−i}). (3)

In the end, we will obtain:

A(G, ∅)

→ A(G(Vd(v1)+1), ∅) ∪
n⋃

i=d(v1)+2

A(G−(vi), {vi}). (4)

If v1 is the pivot vertex with the highest degree, and its d(v1) neighbors
are also ordered right after v1 as done by our pivot vertex reordering app-
roach, then task A(G(Vd(v1)+1), ∅) in Eq. (4) essentially performs the original
listing/counting task on the 1-ego network of v1. We call this task as the pivot
task, and call

⋃n
i=d(v1)+2 A(G−(vi), {vi}) the list of minor tasks.

When pivot vertex reordering is used together with our vertex ordering
Scheme 3 “dynamic degree ordering”, we can show that the size of a minor
task is bounded by k(G), the core number of G. This result is formalized by
Lemma 1 below.

Lemma 1. Given a graph G−(vi) (i > d(v1) + 1) of a minor task, the number
of vertices in the graph is bounded by k(G).

Proof. According to our scheme of dynamic pivot vertex reordering, vertex vn

has the lowest degree, followed by vn−1, and so on. Therefore, our recursive divi-
sion steps are equivalent to iteratively removing a vertex with the lowest degree
at a time. This corresponds exactly to the algorithm of k-core decomposition
[14], and thus at any step, d(vi) ≤ k(G) and thus G−(vi) has no more than k(G)
vertices.

490 Y. Yang et al.

Table 1. Maximum degree v.s. core number

Dataset n m d(v1) k(G)

Google 875713 4322051 6353 44

Youtube 1134890 2987624 28754 51

Patents 3774768 16518947 793 64

Flixster 2523386 7918801 1474 68

Skitter 1696415 11095298 35455 111

Wiki 2394385 4659565 100032 131

In a real graph, the maximum degree d(v1) is often much larger than k(G)
(which is typically not much larger than 100), and thus most workload is
attributed to the pivot task. In other words, the pivot task may need further
divide-and-conquer to distribute its workload; while a minor task can directly
be processed by a single thread. We show the maximum vertex degree and the
core number of the 6 real graphs used in our experiments in Table 1, where we
see that d(v1)
 k(G).

Even though Lemma 1 may not always hold for the other two vertex ordering
schemes, the pivot task is the same and is always the bottleneck of computing
workloads, and thus our solution of partitioning the pivot task is still valid.
For quasi-cliques, the task partitioning method still works but G−(v) should be
computed using v’s two-hop neighborhood (rather than one-hop).

Pivot Task Partitioning. Refer back to Eq. (4) again. For maximal
clique/quasi-clique counting/listing, the pivot task A(G(Vd(v1)+1), ∅) is equiv-
alent to A(G(Vd(v1)+1 −{v1}), {v1}), i.e., assuming v1 is in a clique/quasi-clique
found and continues to examine the subgraph induced by v1’s neighbors. This is
because v1 is connected to every vertex in G(Vd(v1)+1) and thus any clique/quasi-
clique in it without v1 cannot be maximal.

Similarly, for triangle counting, the pivot task A(G(Vd(v1)+1), ∅) can be
divided into two cases: (1) count the triangles that contain v1, which is essen-
tially the number of edges in G(Vd(v1)+1 − {v1}) (as the two end vertices of an
edge also connects to v1); (2) count the triangles that do not contain v1, which
essentially counts triangles in G(Vd(v1)+1 −{v1}), another triangle counting task
that can be recursively solved. The overall count is just their sum.

To summarize, unlike in Eq. (1) where a task generates two subtasks, a pivot
task A(G(Vd(v1)+1), ∅) only generates one subtask computed over the graph
G(Vd(v1)+1 − {v1}).

Since a pivot task can be time-consuming, we can recursively divide the pivot
task over G′ = G(Vd(v1)+1−{v1}) into a new pivot task and a list of minor tasks.
Specifically, we can perform dynamic pivot vertex reordering in G′; let v′

1 be the
new pivot vertex with the maximum degree in G′, then we can obtain a level-2
pivot task for v′

1 and a list of minor tasks. The pivot task for v′
1 can be further

partitioned if its graph is still too big.

Parallel Clique-Like Subgraph Counting and Listing 491

Fig. 2. Task partitioning

In general, for a task with a set S of already-selected vertices, we call |S| = �
the level of the task. The pivot task at level-� can generate a level-(� + 1) pivot
task and a list of level-(�+1) minor tasks. While a minor task is always processed
by a single thread.

Task Representation. After phase 1 “task partitioning” we obtain at most
one pivot task at each level, as well as a list of minor tasks. Since there are many
minor tasks (e.g., up to n at level-1), it is costly to enqueue them one by one
to the task queue, and for computing threads to fetch them one at a time. To
reduce this cost, we represent a group of minor tasks at each level by a range; for
example, the group of all minor tasks

⋃n
i=d(v1)+2 A(G−(vi), {vi}) can be simply

denoted by [d(v1) + 2, n].
Generally, for a minor task at level � = |S| over graph G′ with n′ vertices and

v′
1 be the pivot vertex, the complete group of tasks at this level can be denoted

by range [d(v′
1) + 2, n′], where we abuse d(.) to measure vertex degree in G′.

While a minor task is usually efficient to compute, a group of them may
contain much workload and may need to be distributed to multiple cores for
concurrently processing. In this case, we may evenly split the task range into
subranges and assign them to different computing threads.

Therefore, in the task queue, it is sufficient to use 〈�, [a, b]〉 to denote a batch
of tasks at level-� and with range [a, b], and this is the basic unit to be fetched
by computing threads for processing (though the batch can be split to create
new batches for fetching when another thread is idle).

Task Initialization. From level 1, we keeps partition the pivot task at each
level until when a newly-generated pivot task has an empty graph. Let the last
level be �max, then this task initialization approach generates �max group of
minor tasks. Figure 2 illustrates this task generation process.

492 Y. Yang et al.

Table 2. Dataset sizes and properties

Dataset n m d(v1) k(G) c(G)

Google 875713 4322051 6353 44 44

Youtube 1134890 2987624 28754 51 17

Patents 3774768 16518947 793 64 11

Flixster 2523386 7918801 1474 68 31

Skitter 1696415 11095298 35455 111 67

Wiki 2394385 4659565 100032 131 26

3.3 Task Computation

As long as the task queue Q is not empty, a computing thread will keep dequeue-
ing a batch of minor tasks 〈�, [a, b]〉 from Q for computation. The thread will
compute the tasks within the range [a, b] one by one. Each task is computed
by a serial recursive counting/list algorithm, which consumes a stable and small
amount of memory as the search space tree is traversed in a depth-first manner.

Subgraph Construction. The pivot tasks’ subgraphs G1, G2, ..., G�max
are

kept in the memory after task partitioning, so that computing threads can read
them whenever needed. The subgraph of a level-� (minor) task can thus be incre-
mentally constructed from G�−1 for serial processing, rather than constructed
from scratch from G. We remark that the former is faster since we only need to
examine a smaller graph (and thus less edges/adjacency list items).

4 Performance Evaluation

This section evaluates the performance of the various algorithms on top of par-
allel framework using large real graph datasets. All the experiments were run
on a Linux server with 40 3 GHz CPU cores and 32 GB memory. The programs
were written in C++ and compiled with GCC.

For quasi-clique listing, we use parameters γ = 0.8 and s = k(G) (i.e., G’s
core number), which essentially finds quasi-cliques from the γ(s − 1)-core of G.
We report computation time in the unit of seconds.

Datasets. We used 6 graph datasets in our experiments as shown in Table 2,
which correspond to different types of real-world networks.

Specifically, Google [1] is a web graph of Google; Youtube [2] is the social
network of Youtube users and their connections; Patents [3] is the US Patent
citation network; Flixster [4] is the social network of a movie rating site; Skitter
[5] is an Internet topology graph; and finally, Wiki [6] is a user communication
network from Wikipedia.

In Table 2, d(v1) means the maximum degree, k(G) means the core number,
and c(G) means the size of the maximum clique. The datasets are listed in
ascending order of their core numbers k(G).

Parallel Clique-Like Subgraph Counting and Listing 493

Table 3. The computation cost

Problem Dataset Original Static Dynamic

Triangle counting Google 52.86 42.76 40.03

Youtube 64.74 41.07 38.23

Patents 223.32 214.82 182.26

Flixster 181.86 135.34 119.70

Skitter 312.54 210.47 189.48

Wiki 174.88 86.70 78.90

Clique counting Google 66.72 67.84 63.75

Youtube 47.53 47.26 45.64

Patents 190.76 173.27 155.68

Flixster 285.04 238.15 189.00

Skitter 3052.21 2868.00 2759.43

Wiki 2949.47 2823.36 2179.24

Maximal clique listing Google 210.37 203.82 211.82

Youtube 188.20 185.88 186.74

Patents 593.28 601.10 606.32

Flixster 1201.00 1055.19 905.90

Skitter 8287.91 8348.78 7590.01

Wiki 10619.76 10160.41 7973.61

Quasi-clique listing Google 47840.84 47532.52 48344.17

Youtube 62716.50 75432.17 65563.62

Wiki 126553.08 94453.64 82456.81

4.1 Experiments on Vertex Ordering Schemes

We first conduct experiments to compare different vertex ordering schemes. For
each problem and each dataset, we run a single-threaded program with each of
our 3 proposed ordering schemes “original order”, “static degree”, and “dynamic
degree”, respectively (c.f. Sect. 3.1). The ordering is adjusted by moving the pivot
vertex and its neighbors ahead.

Table 3 reports the computation time of various problems on various datasets
using the 3 schemes. We do not report the time of quasi-clique listing on Patents,
Flixster and Skitter since they ran over 48 h due to the giant search space [17]
and are thus killed.

From Table 3, we can see that the dynamic degree ordering scheme (along
with pivot vertex reordering) is a clear and consistent winner, and therefore we
adopt this vertex ordering scheme in the following experiments.

Comparison with Existing Work on Clique Counting. The works of [10,
11] proposed an algorithm called FFFk for counting cliques with small sizes k.

494 Y. Yang et al.

Table 4. Comparison on clique counting

Dataset FFF7 Our algorithm Speedup

Google 48.62 70.82 0.69

Youtube 38.33 54.10 0.71

Patents 105.62 186.21 0.57

Flixster 458.68 246.38 1.86

Skitter 5491.22 2890.53 2.20

Wiki 4220.07 2832.20 1.49

Table 5. Comparison on maximal clique listing

Dataset Existing approach Our approach Speedup

Google 361.07 244.30 1.48

Youtube 236.90 217.01 1.09

Patents 769.63 780.18 0.99

Flixster 1146.16 972.42 1.18

Skitter 9571.65 7693.29 1.24

Wiki 9676.89 8017.03 1.21

The ordering scheme they used is essentially the static degree ordering defined
in our Sect. 3.1 (without pivot vertex reordering).

To explore whether pivot vertex reordering reduces the workload, we com-
pare our clique counting algorithm with FFFk. Since the largest k used in their
experiments is k = 7, we run our clique counting algorithm with static degree
ordering plus pivot vertex reordering as an equivalence to FFF7. Note that
we are counting cliques with very large sizes up to c(G) = 67. The results are
reported in Table 4, where we can see that our computation time is compara-
ble to FFF7 when the computation time is short, but much faster when the
computation time is long, which justifies the need of pivot vertex reordering.

Comparison with Existing Work on Maximal Clique Listing. The work
of [25,26] proposed an algorithm for maximal clique listing. They explored the
static and dynamic degree ordering schemes described in our Sect. 3.1. They
decompose the task into subtasks M(G−(v))⊕{v} for all v ∈ V , and for each sub-
task, they solve it using pivot vertex reordering. However, pivot vertex reordering
is not performed on the root task M(G), and it is interesting to see how this
affects the amount of overall workloads.

Table 5 reports the computation time of our algorithm with/without root-
task pivot vertex reordering, and we can see that after applying the pivot vertex
reordering for the root task, the computation time is consistently improved.

Parallel Clique-Like Subgraph Counting and Listing 495

Another problem with [25,26] is that they do not support recursive parti-
tioning of a pivot task which usually contains a lot of workloads needing parallel
computation.

Table 6. Parallel computation on Wiki dataset

Problem # of threads 1 2 4 8 16 32

Triangle counting Time 78.89 39.49 21.86 11.09 7.35 5.83

Speedup 1.00 2.00 3.61 7.12 10.74 13.53

Clique counting Time 2179.24 1206.20 612.21 323.43 181.88 119.99

Speedup 1.00 1.81 3.56 6.74 11.98 18.16

Maximal clique Time 7973.61 4608.41 2311.60 1228.39 657.33 443.84

Speedup 1.00 1.73 3.45 6.49 12.13 17.96

Quasi-clique Time 82500.23 45493.54 24127.00 14223.90 8202.75 5139.22

Speedup 1.00 1.81 3.42 5.80 10.06 16.05

4.2 Experiments on Parallel Computation

We now explore how our parallel framework scales up with the number of threads
using various applications and datasets. We run our programs with 1, 2, 4, 8, 16
and 32 threads, respectively, for testing vertical scalability. We report both the
computation time and speedup ratio (w.r.t. single-threaded execution). Dynamic
degree ordering plus pivot vertex reordering is used for task partitioning in all
the following experiments. Due to the space limitation, we only report the results
on Wiki dataset.

Table 6 shows the computation time and the corresponding speedup ratio
w.r.t. single-threaded execution. We can see that the speedup ratio increases
near-linearly with the number of threads all the way till 16, but the increment
of the speedup trend slows down when we run 32 threads, possibly because
the overheads of task generation and fetching stand out compared with the
significantly amortized task computation time. The increment of the speedups
are similar for clique counting and quasi-clique listing. Overall, our framework
demonstrates a near-optimal speedup.

Compared with maximal clique listing where the vertical scalability slows
down at 32 threads, triangle counting slows down earlier at 16 threads mainly
because the computing workloads of triangle counting is much lower than that
of maximal clique listing, and thus the other overheads stand out sooner.

5 Conclusion

In this paper, we proposed a framework of task partitioning and workload balanc-
ing for triangle counting, clique counting, maximal clique listing and quasi-clique

496 Y. Yang et al.

listing. For task partitioning, we proposed pivot path partitioning, which recur-
sively explores a node in the search tree which has the most heavily workload. For
workload distribution, we dynamically balanced the workload by a work steal-
ing strategy. Our experiments showed that our pivot path partitioning strategy
reduced the total amount of work to be computed. We also demonstrated that
our parallel executions have a almost ideal speedup ratio for up to 32 threads.

Acknowledgements. Yang and Zhou were supported by National Natural Science
Foundation of China (NSFC) under grant No. U1636205, Yan and Guo were partially
supported by NSF OAC-1755464 and NSF DGE-1723250.

References

1. https://snap.stanford.edu/data/web-Google.html
2. https://snap.stanford.edu/data/com-Youtube.html
3. https://snap.stanford.edu/data/cit-Patents.html
4. http://konect.uni-koblenz.de/networks/flixster
5. https://snap.stanford.edu/data/as-skitter.html
6. https://snap.stanford.edu/data/wiki-Talk.html
7. Blumofe, R.D., Leiserson, C.E.: Scheduling multithreaded computations by work

stealing. J. ACM 46(5), 720–748 (1999). https://doi.org/10.1145/324133.324234
8. Cheng, J., Zhu, L., Ke, Y., Chu, S.: Fast algorithms for maximal clique enumeration

with limited memory. In: The 18th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD 2012, Beijing, China, 12–16 August
2012, pp. 1240–1248 (2012). https://doi.org/10.1145/2339530.2339724

9. Du, N., Wu, B., Xu, L., Wang, B., Pei, X.: A parallel algorithm for enumerating all
maximal cliques in complex network. In: Workshops Proceedings of the 6th IEEE
International Conference on Data Mining (ICDM 2006), Hong Kong, China, 18–22
December 2006, pp. 320–324 (2006). https://doi.org/10.1109/ICDMW.2006.17

10. Finocchi, I., Finocchi, M., Fusco, E.G.: Counting small cliques in mapreduce. CoRR
abs/1403.0734 (2014). http://arxiv.org/abs/abs/1403.0734

11. Finocchi, I., Finocchi, M., Fusco, E.G.: Clique counting in mapreduce: algorithms
and experiments. ACM J. Exp. Algorithmics 20, 1.7:1–1.7:20 (2015). https://doi.
org/10.1145/2794080

12. Khosraviani, A., Sharifi, M.: A distributed algorithm for γ-quasi-clique extractions
in massive graphs. In: Pichappan, P., Ahmadi, H., Ariwa, E. (eds.) INCT 2011.
CCIS, vol. 241, pp. 422–431. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-27337-7 40

13. Kumpula, J.M., Kivela, M., Kaski, K., Saramaki, J.: Sequential algorithm for fast
clique percolation. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 78(2), 026109
(2008)

14. Matula, D.W., Beck, L.L.: Smallest-last ordering and clustering and graph coloring
algorithms. J. ACM 30(3), 417–427 (1983). https://doi.org/10.1145/2402.322385

15. McCune, R.R., Weninger, T., Madey, G.: Thinking like a vertex: a survey of vertex-
centric frameworks for large-scale distributed graph processing. ACM Comput.
Surv. 48(2), 25:1–25:39 (2015). https://doi.org/10.1145/2818185

16. Michael, M.M., Scott, M.L.: Simple, fast, and practical non-blocking and blocking
concurrent queue algorithms. In: Proceedings of the Fifteenth Annual ACM Sym-
posium on Principles of Distributed Computing, Philadelphia, Pennsylvania, USA,
23–26 May 1996, pp. 267–275 (1996). https://doi.org/10.1145/248052.248106

https://snap.stanford.edu/data/web-Google.html
https://snap.stanford.edu/data/com-Youtube.html
https://snap.stanford.edu/data/cit-Patents.html
http://konect.uni-koblenz.de/networks/flixster
https://snap.stanford.edu/data/as-skitter.html
https://snap.stanford.edu/data/wiki-Talk.html
https://doi.org/10.1145/324133.324234
https://doi.org/10.1145/2339530.2339724
https://doi.org/10.1109/ICDMW.2006.17
http://arxiv.org/abs/abs/1403.0734
https://doi.org/10.1145/2794080
https://doi.org/10.1145/2794080
https://doi.org/10.1007/978-3-642-27337-7_40
https://doi.org/10.1007/978-3-642-27337-7_40
https://doi.org/10.1145/2402.322385
https://doi.org/10.1145/2818185
https://doi.org/10.1145/248052.248106

Parallel Clique-Like Subgraph Counting and Listing 497

17. Pardalos, P.M., Rebennack, S.: Computational challenges with cliques, quasi-
cliques and clique partitions in graphs. In: Festa, P. (ed.) SEA 2010. LNCS, vol.
6049, pp. 13–22. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
13193-6 2

18. Pardalos, P.M., Xue, J.: The maximum clique problem. J. Global Optim. 4(3),
301–328 (1994)

19. Ribeiro, P.M.P., Silva, F.M.A., Lopes, L.M.B.: Efficient parallel subgraph count-
ing using G-tries. In: Proceedings of the 2010 IEEE International Conference on
Cluster Computing, Heraklion, Crete, Greece, 20–24 September 2010, pp. 217–226
(2010). https://doi.org/10.1109/CLUSTER.2010.27

20. Schmidt, M.C., Samatova, N.F., Thomas, K., Park, B.: A scalable, parallel algo-
rithm for maximal clique enumeration. J. Parallel Distrib. Comput. 69(4), 417–428
(2009). https://doi.org/10.1016/j.jpdc.2009.01.003

21. Svendsen, M., Mukherjee, A.P., Tirthapura, S.: Mining maximal cliques from a
large graph using mapreduce: tackling highly uneven subproblem sizes. J. Parallel
Distrib. Comput. 79–80, 104–114 (2015). https://doi.org/10.1016/j.jpdc.2014.08.
011

22. Tsourakakis, C.E., Bonchi, F., Gionis, A., Gullo, F., Tsiarli, M.A.: Denser than
the densest subgraph: extracting optimal quasi-cliques with quality guarantees.
In: The 19th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD 2013, Chicago, IL, USA, 11–14 August 2013, pp. 104–112
(2013). https://doi.org/10.1145/2487575.2487645

23. Wu, B., Yang, S., Zhao, H., Wang, B.: A distributed algorithm to enumerate all
maximal cliques in mapreduce. In: Fourth International Conference on Frontier of
Computer Science and Technology, FCST 2009, Shanghai, China, 17–19 December
2009, pp. 45–51 (2009). https://doi.org/10.1109/FCST.2009.30

24. Xiang, J., Guo, C., Aboulnaga, A.: Scalable maximum clique computation using
mapreduce. In: 29th IEEE International Conference on Data Engineering, ICDE
2013, Brisbane, Australia, 8–12 April 2013, pp. 74–85 (2013). https://doi.org/10.
1109/ICDE.2013.6544815

25. Xu, Y., Cheng, J., Fu, A.W.: Distributed maximal clique computation and man-
agement. IEEE Trans. Serv. Comput. 9(1), 110–122 (2016). https://doi.org/10.
1109/TSC.2015.2479225

26. Xu, Y., Cheng, J., Fu, A.W., Bu, Y.: Distributed maximal clique computation. In:
2014 IEEE International Congress on Big Data, Anchorage, AK, USA, 27 June–2
July 2014, pp. 160–167 (2014). https://doi.org/10.1109/BigData.Congress.2014.31

27. Yan, D., Bu, Y., Tian, Y., Deshpande, A.: Big graph analytics platforms. Found.
Trends Databases 7(1–2), 1–195 (2017). https://doi.org/10.1561/1900000056

https://doi.org/10.1007/978-3-642-13193-6_2
https://doi.org/10.1007/978-3-642-13193-6_2
https://doi.org/10.1109/CLUSTER.2010.27
https://doi.org/10.1016/j.jpdc.2009.01.003
https://doi.org/10.1016/j.jpdc.2014.08.011
https://doi.org/10.1016/j.jpdc.2014.08.011
https://doi.org/10.1145/2487575.2487645
https://doi.org/10.1109/FCST.2009.30
https://doi.org/10.1109/ICDE.2013.6544815
https://doi.org/10.1109/ICDE.2013.6544815
https://doi.org/10.1109/TSC.2015.2479225
https://doi.org/10.1109/TSC.2015.2479225
https://doi.org/10.1109/BigData.Congress.2014.31
https://doi.org/10.1561/1900000056

Modal Schema Graphs for Graph
Databases

Stephan Mennicke(B)

Technische Universität Braunschweig, Institut für Informationssysteme,
Mühlenpfordtstraße 23, 38106 Braunschweig, Germany

mennicke@ifis.cs.tu-bs.de

Abstract. Although graph databases are conceived schema-less, addi-
tional knowledge about the data’s structure and/or semantics is ben-
eficial in many graph database management tasks, from efficient stor-
age, over query optimization, up to data integration. Today’s commonly
used graph data models do not represent primal suspects regarding their
lack of schema prior to data population. More than 20 years ago, also
semistructured data has been introduced without an a-priori conceptual
modeling phase. Neat models, called schema graphs, have been proposed
and proven useful, yet heavily relying on the employed data model, which
had been rooted labeled graphs. We generalize schema graphs in two
respects: (1) Our notions are based on labeled graphs because the root
node assumption is invalid in the spirit of modern graph data models. (2)
We propose and study modal schema graphs to increase the expressive
power of the original model. Modal schema graphs allow for (conditional)
structural requirements without an otherwise necessary logical device.
Furthermore, we elaborate on the consequences of our expressiveness
enhancement with respect to applications and algorithmic complexity.

Keywords: Graph databases · Schema graphs · Modal specifications

1 Introduction

Since the early years, graph databases have been considered as unstructured or
semistructured data collections, having no fixed schema before populating the
database [2,5]. This allows for a flexible data integration by adding information
at will and availability. The conceptual modeling process has, however, not van-
ished but is postponed to query formulation time, which has now to cope with
issues regarding heterogeneity or even incompleteness [22,23]. Beyond query for-
mulation, meta information about the data stored in a graph database has been
considered useful for query decomposition and optimization [13,26], but also for
data translation and integration [6].

The lack of schemata in semistructured data got the attention of Buneman
et al., proposing schema graphs [2,8] to the rescue. They designed schema graphs
as meta data for rooted labeled graphs, back then the prevalent graph data

c© Springer Nature Switzerland AG 2019
A. H. F. Laender et al. (Eds.): ER 2019, LNCS 11788, pp. 498–512, 2019.
https://doi.org/10.1007/978-3-030-33223-5_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33223-5_41&domain=pdf
http://orcid.org/0000-0002-3293-2940
https://doi.org/10.1007/978-3-030-33223-5_41

Modal Schema Graphs for Graph Databases 499

model [1,7]. Conformance between graph databases and schema graphs forms
the basis of object classification and the type of conformance they chose has
excellent algorithmic properties. However, crucial to their methodology is the
rooted data model, making schema graphs hardly a useful tool for today’s graph
data models [4,5]. The main obstacle is the existence of root nodes in both,
data and schema graph. A node that reaches any other node in the graph via a
directed path is called a root node. Such a node is only rarely observed in modern
graph databases, except for those building on XML [2]. Generalizing the notions
of schema graphs and schema graph conformance is, thus, the first goal of this
paper (Sect. 3). Buneman et al.’s schema graphs express structural upper bounds,
i.e., a schema limits the allowed structure of a database instance but cannot
enforce certain key properties [2,8]. Therefore, our second goal is to extend
schema graphs in a conservative fashion (Sect. 4) and analyze its consequences
w.r.t. expressive power and complexity (Sect. 5).

We contribute knowledge graph-ready schema graphs, preserving as many
as possible properties from the schema graphs presented more than 20 years
ago for semistructured data. Furthermore, we directly integrate so-called key
properties [22,23], that are edges required by a database instance of a given
schema, an aspect that was missing in [8]. We employ the well-established theory
of modal specifications [18] to distinguish allowed from required structure in an
integrated schema model. While may and must modalities allow us to formulate
quite flexible schema graphs, deciding schema subsumption, i.e., whether one
schema is more specific than another one w.r.t. their database instances, becomes
intractable [19]. We still identify a prominent subclass of schema graphs with
tractable subsumption, namely deterministic schema graphs [26], and define the
precise semantics of the resulting model.

Of course there are other proposals adding and using schema knowledge for
graph databases. Calvanese et al. extend schema graphs of [8] to overcome some
limitations, including a form of requirement expressions [9]. They use description
logics to complement a single schema graph, also enabling for certain cardinality
constraints. They stay, however, in the realm of tree-shaped graph data and
spend a lot of effort in extending the labeling alphabet. In contrast, we stay
inside a simple yet flexible graphical formalism by introducing a second type
of edges to reach the desired expressiveness. Abiteboul et al. highlight that a
logical system, like Datalog or description logics, is capable of expressing many
more constraints, even those not classifying as pure schema information [2].
Annotative extensions of RDF, e.g., RDF schema [25], may be used to provide
meta data, but such annotations do not reflect on the graph data’s internal
structure. Data guides use a summary-based approach [14]. After the database
has been populated, they try to derive a summary of the link structure, useful
for navigating through the data. Such summaries have recently been exploited
as indexing structures for semistructured data [27].

A large corpus of literature and technologies has been forged around the
pattern matching technology. Akhtar et al. formalize the concept of functional
dependencies as well as equality generating dependencies for RDF [3]. At the

500 S. Mennicke

Fig. 1. A movie and DVD product graph database sample

core, they employ graph patterns that are matched against a database, i.e.,
graph-homomorphic instances are obtained, and then evaluated towards seman-
tic properties like keys or functional dependencies. Also Fan et al. [10,12] created
a matching-based method for keys and dependencies, incorporating literals and
recursive key constraints. The W3C recommends shapes (graph patterns) and
constraints to express the semantics of graph (RDF) data, which has resulted in
SHACL [17]. SHACL’s validation, as well as the other proposals, have a schema
graph pattern that is matched against the database. Besides intractable valida-
tion [10,12], this methodology automatically requires every edge present in the
schema also to be present in the database. In contrast, schema graphs here and
20 years ago are rather thought of as specifying allowed structures [8] by simply
exchanging the direction of validation, now called conformance. This means that
a graph database is matched against the schema, implementing a natural notion
of allowed structure. Only some key properties are required, which we picture
here by means of a modal extension.

2 Graph Data Models

In consideration of the wide variety of graph data models [5,15], we choose
directed edge-labeled graphs, or simply labeled graphs, G = (V,Σ,E). V is a finite
set of nodes, Σ a finite labeling alphabet, and E ⊆ V × Σ × V the directed and
labeled edge relation of G. We use v

a−→G w as a shorthand for (v, a, w) ∈ E.
A sequence of nodes, π = v0v1 . . . vk−1vk ∈ V + (k ∈ N), is a path between v0
and vk if there are a1, a2, . . . , ak ∈ Σ, such that vi−1

ai−→G vi or vi
ai−→G vi−1

(1 ≤ i ≤ k). π is a directed path from v0 to vk if only forwards edges vi−1
ai−→ vi

(1 ≤ i ≤ k) are used. We say that vk is reachable from v0 if there is a directed

Modal Schema Graphs for Graph Databases 501

path from v0 to vk. The set of all reachable nodes from v0 is denoted RG(v0). G
is connected iff for any two nodes v, w ∈ V , there is a path between v and w.

We call a labeled graph G = (V,Σ,E) a rooted labeled graph if there is a
(root) node r ∈ V such that RG(r) = V , i.e., every node in G is reachable from
r. Sometimes, a rooted labeled graph is denoted G = (V,Σ,E, r), where r ∈ V is
the designated root node of G. By a (rooted) graph database DB we understand
a (rooted) labeled graph (ODB , Σ,EDB) that collects some objects as the set of
nodes ODB �= ∅ and relates them via directed and labeled edges. Consider our
small graph database sample depicted in Fig. 1. The database objects are movies,
actresses, products, or product-related attribute values. Relations range from
actsIn, a relationship symbol usually relating actresses to movies they acted in,
over content, which here relates DVD products to its movie contents, up to price
and edition, which associates products (DVDs) with their prices and editions.
The dotted graph database part mimics an artificial root node, making the
overall graph rooted. Node root reaches any other node. We dispense a concrete
labeling of the edges from the root node.

3 Schema Graphs: Then and Now

Fig. 2. A rooted schema graph follow-
ing Abiteboul et al. [2]

Figure 2 depicts a schema graph for the
rooted graph database in Fig. 1. Note
that the schema graph possesses a root
node, but otherwise may contain cycles,
just as rooted graph databases. Database
instances are required to exhibit a similar
structure as the schema graph. Thereby,
the schema graph represents a structural
upper bound. If we removed the edge,
labeled by content , between the types
dvd and movie, the graph in Fig. 1 would
no longer be an instance of the resulting
schema graph since every DVD node has an edge to some movie node, labeled by
content . If we removed the edge, labeled by lead , between movie and actress,
our graph database would still conform to the schema graph with the side-effect
that actress 3 does not conform to actress according to this schema.

Schema graphs have been developed in light of tree-shaped graph databases,
as apparent in XML document collections. Hence, also schema graphs were
defined as rooted labeled graphs S = (TS ,Π,ES , rS), where the elements of TS

are called types and Π is a special alphabet containing first-order sentences [8].
These first-order sentences allow a single labeled edge to describe many different

actual labels in Σ. For instance, suppose we have an edge v
ev(x)−→ w with the

predicate label ev(x) that evaluates to true whenever an even number is given
as x. The only restriction, Π must obey, has been to include predicates from
a decidable first-order theory [8]. We exclude this extension since the obstacles

502 S. Mennicke

of schema graphs migrating from rooted to general graphs are not found in the
chosen labeling alphabet.

By design, a schema graph describes the permitted structure but cannot
likewise enforce certain substructures [2]. For instance, the schema graph in
Fig. 2 allows for linking products to their movie contents, but does not enforce
this edge. Conversely, if an edge is not present in the schema graph, it must not
exist in the respective database. More precisely, a database object conforms only
to a type forbidding a property if itself does not exhibit it. Assessing this notion of
graph database instances is based on schema graph conformance. Buneman et al.
define that a graph database DB conforms to schema graph S, denoted DB �S,
iff there is a rooted simulation between DB and S [8]. A rooted simulation between
two rooted labeled graphs DB = (ODB , Σ,EDB , rDB) and S = (TS , Σ,ES , rS)
is a binary relation R ⊆ ODB × TS , such that (i) the roots are related by R,
i.e., (rDB , rS) ∈ R, and (ii) for all (p, q) ∈ R, if p

a−→DB p′, then there is a node
q′ ∈ VS with q

a−→S q′ and (p′, q′) ∈ R. These simulations not only provide
upper bounds to the structure of graph database instances, but also come with
Ptime algorithms for their evaluation [16]. A rooted simulation between the
graph database in Fig. 1 and the schema graph in Fig. 2 is given by

̂R =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(root,root), (actress 1,actress), (actress 2,actress),
(actress 3,actress), (movie 1,movie), (movie 2,movie),
(DVD 1,dvd), (DVD 2,dvd), (DVD 3,dvd), (special,type),
(regular,type), (7$,pricing), (9$,pricing)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

.

Crucial to Buneman et al.’s conformance notion is the existence and place-
ment of root nodes. Without condition (i), the empty simulation (i.e., R∅ = ∅)
would always establish a viable witness for conformance. In the realm of general
graph databases we miss designated root nodes and, thus, must be careful when
adopting the existing notions. Introducing artificial roots to graph databases or
schemas appears infeasible, as for instance, update anomalies are foreseeable:
whenever the graph database is subject to change, the root node’s incidence
must be adjusted accordingly. Fortunately, integrating a small feature of root
nodes, namely keeping the graph connected, to the schema-side suffices. This
makes our methodology applicable to existing graph databases as we do not
impose any change upon them.

Definition 1 (Schema Graph). A labeled graph S = (TS , Σ,ES) is a schema
graph if S is a connected graph and TS �= ∅.
From a formal perspective, types in TS are chosen arbitrarily, i.e., with no special
structure in mind. From a practical point of view, they will follow a universe of
discourse-kind of argument. Since TS �= ∅, every schema graph S has at least
one type, but may have an empty structure. Connectedness of schema graphs
will guarantee meaningful (i.e., non-empty) simulations witnessing conformance,
even transitively. However, we still have to cope with an important aspect of
graph simulations: they are insensitive to leaf nodes. Consider the node 7$ in
Fig. 1, being a leaf node as there are no outgoing edges from 7$. The desired type

Modal Schema Graphs for Graph Databases 503

of 7$ is pricing, which is verified by the simulation ̂R above. However, every
leaf node, especially 7$, can be simulated by every type of the schema graph,
making 7$ an object of type movie, dvd, or even root. The reason is that 7$
has no outgoing edges which implies that every type automatically fulfills (ii).
What makes 7$ an object of type pricing is the incoming edge labeled price.

We observe that adopting the reachability characteristic of root nodes from
rooted graphs is a crucial requirement when it comes to assessing conformance.
To meet the requirement, it suffices to also consider edges going backwards from
nodes in the graph database, which excludes situations as described for 7$. Fortu-
nately, simulations can easily be adapted to also consider edges going backwards
from nodes to be simulated, without losing their algorithmic properties [21].

Definition 2 (Schema Graph Conformance). Let S = (TS , Σ,ES) be a
schema graph. A graph database DB = (ODB , Σ,EDB) is an instance of S,
denoted DB�S, iff there is a non-empty dual simulation between DBand S, that
is a binary relation R ⊆ ODB ×TS such that for every (p, q) ∈ R, (i) p

a−→DB p′

implies a q′ ∈ TS with q
a−→S q′ and (p′, q′) ∈ R, and (ii) p′ a−→DB p implies

a q′ ∈ TS with q′ a−→S q and (p′, q′) ∈ R. We call R a conformance witness
between DBand S.

An empty-structured graph database DB with at least one object trivially con-
forms to any schema graph. Conversely, every graph database conforms to the
unit schema graph, that is a schema graph with a single node and a Σ-self loop,
as depicted in Fig. 3. Type u simulates every object of a database, indicated by
the self-loop labeled by Σ, which is a wildcard for any label a ∈ Σ. Hence, the
unit schema graph may be a good start when designing a schema for graph data
from scratch.

Fig. 3. The unit schema graph

By schema graph conformance we have
an answer of how to assess whether a graph
database is an instance of a given schema pat-
tern. But, based on conformance, how can
we use the information for a classification of
objects in the database? To this end, we give
a similar answer as given by Abiteboul et al.
[2]. An object o of DB is of type t ∈ TS (of schema graph S) iff there is a
conformance witness R between DB and S with (o, t) ∈ R. The indicated sim-
ulation ̂R, given above, types all actresses in Fig. 1 by actress. This approach
to classification is, however, not too practical since there may be (exponentially)
many conformance witnesses, especially in a big data setting. Having to look
through all of them may become quite a cumbersome task. Fortunately, (dual)
simulations possess the property of being union-closed [21], entailing a unique
maximal dual simulation between a graph database DB and a schema graph S.
Thus, this property transfers to conformance witnesses as they are non-empty
dual simulations.

Proposition 1 (Proposition 2.1 in [21]). Let DB � S. There is a unique
maximal conformance witness ̂R between DB and S.

504 S. Mennicke

Fig. 4. Two modal schema graphs

The proof of the result demonstrates that the maximal conformance witness ̂R
subsumes every other conformance witness R. Hence, in order to get an object
classification for database object o, we compute the maximal conformance wit-
ness ̂R, which can be done in polynomial time, e.g., by HHK [16] or our solu-
tion [24], and obtain from ̂R the set of all types t ∈ TS , o conforms to.

Definition 3 (Object Classification). Let DB = (ODB , Σ,EDB) be a graph
database instance of the schema graph S = (TS , Σ,ES), i.e., DB � S. The max-
imal conformance witness between DB and S, denoted by �DB

S , is the object
classification induced by S onto DB. We write o �DB

S t if (o, t) ∈�DB
S .

Additionally to the structures that are allowed by a schema graph, everything
that is not captured is automatically forbidden. Suppose in the graph in Fig. 4(b)
we removed all dashed edges. Then our graph database no longer conforms to
the resulting schema since for every DVD object, information about pricing
or type is provided. For instance, object DVD 1 cannot be simulated by dvd
because the type does not exhibit a price-labeled edge. Beyond allowed and
forbidden structure, there is another aspect, even Buneman et al. wished to
express, that are key properties [8]. Key properties are those that are required
by the schema in order to assign a certain type to an object in the database. To
increase their expressive power, we introduce modalities to schema graphs.

4 Modal Schema Graphs

Abiteboul et al. highlight that schema graphs usually only cover so-called If con-
straints on the data [2]. But certain types also require to have entities described
by key properties. For instance, representing a book may not require to cap-
ture authors or title of the pieces, but certainly the ISBN is crucial for many
bibliographic tasks. In light of our DVD movie database example, pricing or

Modal Schema Graphs for Graph Databases 505

type may be optional, but the DVDs’ content is not. So far, schema graphs are
not capable of requiring the presence of such properties. Abiteboul et al. sketch
dual schema graphs [2] capturing a core structure to be exhibited by any graph
database instance. Unfortunately dual schema graphs are again rooted graphs,
making it impossible to express conditional key properties. Consider the graph
depicted in Fig. 4(a) and suppose, we are still interested in the typing of dvd
and movie by requiring the content edge between these two types. This time,
we specialize to those DVD movies, whose actresses have won some award, but
only if an actress is listed at all. In the dual schema graph, we also had to enforce
the existence of actress in order to require hasWon.

We aim for a more flexible model that allows us to formulate graph require-
ments altogether with allowed structures in a single model. We achieve the
desired flexibility by employing the theory of modal specifications, initially intro-
duced by Larsen and Thomsen [18]. They aimed for a system description lan-
guage that captures the behavior of a variety of implementations [20]. This
view is quite comparable to ours since schema graphs can be seen as modal
specifications and graph databases as their implementations. Larsen and Thom-
sen employ a may/must dichotomy, translating to allowed and required system
behavior. We use the same dichotomy in our extended schema graph model to
capture allowed and required graph structure.

Definition 4 (Modal Schema Graph (MSG)). S = (TS , Σ,E♦
S , E�

S) is a
modal schema graph (MSG) iff (TS , Σ,E♦

S) is a schema graph and E�
S ⊆ E♦

S .

We write v
a−→♦

S w for (v, a, w) ∈ E♦
S and v

a−→�
S w for (v, a, w) ∈ E�

S . We have
depicted two MSGs in Fig. 4, where may edges are dashed and must edges are
solid edges. The may modality (♦) is thought of as expressing the allowed struc-
tures, the same way as schema graphs do (cf. Definition 1), while the must modal-
ity (�) encodes required edges. In fact, every schema graph S = (TS , Σ,ES) is
an MSG (TS , Σ,ES , ∅). The requirement that E�

S ⊆ E♦
S is called syntactic con-

sistency and owes to the intuition that required structure must be allowed. Other
than syntactic consistency, may and must edges are free to be used throughout
the whole graph. Thereby, we achieve a flexible integration of schema graphs
and (generalized) dual schema graphs.

Conformance between databases and MSGs must obey the may/must
dichotomy. The graph database in Fig. 1 does not conform to Fig. 4(a) since
every movie object has an associated actress, but awards have not been cap-
tured at all. The database does conform to Fig. 4(b) as every edge in the graph
database is allowed and every required edge is also present. If we considered
the lead as a must edge, then the database in Fig. 1 would still conform to the
resulting MSG because of actress 3, movie 2, and DVD 3. The other actresses
and movies are untypable by the altered MSG. Hence, while for may edges we
follow the principles of Sect. 3, must edges of an MSG are simulated by the graph
database, resulting in an alternating-style of dual simulation.

Definition 5 (MSG Conformance). For an MSG S = (TS , Σ,E♦
S , E�

S) and a
graph database DB = (ODB , Σ,EDB), DB is an instance of S, denoted DB �mS,

506 S. Mennicke

iff there is a conformance witness R between DB and (TS , Σ,E♦
S) such that for

all (p, q) ∈ R, (i) q
a−→�

S q′ implies ∃p′ ∈ ODB : p
a−→DB p′ ∧ (p′, q′) ∈ R and

(ii) q′ a−→�
S q implies ∃p′ ∈ ODB : p′ a−→DB p ∧ (p′, q′) ∈ R. We call R a modal

conformance witness between DBand S.

Items (i) and (ii) ensure that whatever structure is required is actually material-
ized in a database instance of the given MSG. The may/must dichotomy implies
three different aspects, now covered in a simple integrated model: allowed,
required, as well as forbidden structure. Database object classification is per-
formed using the same principles as given by Definition 3, justified by a similar
result as Proposition 1. The following results are direct consequences of Defini-
tion 5.

Lemma 1. Let S = (TS , Σ,E♦
S , E�

S) be an MSG. (I) (TS , Σ,E♦
S)�m S and (II)

DB �m S implies DB � (TS , Σ,E♦
S).

(I) follows from syntactic consistency by using the identity function on TS as
modal conformance witness. (II) is implied by the fact that a modal conformance
witness R is a conformance witness.

5 Expressive Power

So far, we only considered conformance and object classification. Since a single
graph database may conform to more than one schema graph, we want to assess
when one schema graph is more specific than another. According to Buneman
et al., these and other questions may be answered considering the semantics a
schema graph. In their case, the set of all graph database instances of the schema
S formed their semantics [8], defined for MSG S by

�S� := {DB | DB �m S}. (1)

Schema S2 is, thus, more general than schema S1 if �S1� ⊆ �S2�. Consequently, S1

and S2 are equivalent if �S1� = �S2�. This section is dedicated to finding sufficient
conditions to characterizing these inclusions for MSGs, in favor of a tractable
decision procedure. Therefore, we exploit the concept of conformance (�m) in
a more general context, namely in terms of refinement between schemata [8].
MSG conformance naturally extends to refinement between MSGs, which we can
employ for (partially) deciding subsumption as well as equivalence. Compared
to MSG conformance, now both input models contain must edges. Hence, in
S1 �m S2, S1 must not exceed what is allowed by S2. Conversely, S1 cannot
forbid what is required by S2.

Definition 6 (MSG Refinement). Let Si = (Ti, Σ,E♦
i , E�

i) (i = 1, 2) be
MSGs. S1 refines S2, denoted S1 �m S2, iff there is a non-empty dual simu-
lation R between (T1, Σ,E♦

1) and (T2, Σ,E♦
2), such that for (p, q) ∈ R, (i) if

q
a−→�

2 q′, then there is a p′ ∈ V1 with p
a−→�

1 p′ and (p′, q′) ∈ R and (ii) if
q′ a−→�

2 q, then there is a p′ ∈ V1 with p′ a−→�
1 p and (p′, q′) ∈ R. We call R a

modal refinement witness between S1 and S2.

Modal Schema Graphs for Graph Databases 507

Note that, except for (i) and (ii), MSG refinement requires conformance between
S1 and S2, ignoring their must edges (cf. Definition 2). MSG refinement coin-
cides with a dual simulation version of modal refinement [18,20], except for
the presence of root nodes. As a consequence, �m is not in general a preorder
between graphs exhibiting modalities. The reason is that, although the concate-
nation of (modal) refinement/conformance witnesses R1 and R2 is guaranteed
to be a dual simulation [21], R1 ◦ R2 may be empty, disqualifying it as a refine-
ment/conformance witness. As we require modal schema graphs to be connected,
R1 ◦ R2 is guaranteed to yield a non-empty dual simulation. This is what we
prove in the following soundness result for MSGs and their instances.

Lemma 2. Let S1, S2 be MSGs. If S1 �m S2, then �S1� ⊆ �S2�.

Proof. Let Si = (Ti, Σ,E♦
i , E�

i) (i = 1, 2) and DB�mS1 by conformance witness
R1 and S1 �m S2 by refinement witness R2. We need to show that R1 ◦ R2 is
a modal conformance witness between DB and S2. Since, R1 and R2 are dual
simulations, R1 ◦ R2 is guaranteed to be a dual simulation. It remains to be
shown that (I) it is non-empty and (II) obeys the requirements of Definition 5.

Let us first tackle (II) and pick any (u,w) ∈ R1 ◦ R2 with w
a−→�

S2
w′

(w′ a−→�
S2

w, analogously). By construction, there is some v ∈ T1 with (u, v) ∈
R1 and (v, w) ∈ R2. As R2 is a modal refinement witness, there must be a v′ ∈ T1

with v
a−→�

S1
v′ and (v′, w′) ∈ R2. As R1 is a modal conformance witness, there

is a u′ ∈ ODB with u
a−→DB u′ and (u′, v′) ∈ R1. Thus, (u′, w′) ∈ R1 ◦ R2.

Towards a contradicition of (I), assume R1 ◦R2 = ∅, which is only possible if
for every pair (u, v) ∈ R1, there is no matching pair (v, w) ∈ R2. Let (u, v) ∈ R1.
Since R2 �= ∅, there is at least one pair, say (v0, w0) ∈ R2. We show that for every
path π = v0v1 . . . vk, there is a wk ∈ T2 such that (vk, wk) ∈ R2. Thus, non-
existence of w with (v, w) ∈ R2 implies that S1 is disconnected, contradicting
the assumption that S1 is an MSG. By induction on the length of π.

Base: For π = v0, we have (v0, w0) ∈ R2 by assumption.
Step: Let π = v0v1 . . . vn be a path between v0 and vn. Then π = π′ · vn

with π′ = v0v1 . . . vn−1. By induction hypothesis, there is a wn−1 ∈ T2

such that (vn−1, wn−1) ∈ R2. As π is a path, either vn−1
a−→♦

S1
vn or

vn
a−→♦

S1
vn−1. Since R2 is a modal refinement witness, there is a wn ∈ T2

with wn−1
a−→♦

S2
wn (wn

a−→♦
S2

wn−1, resp.) and (vn, wn) ∈ R2.

Hence, there is a w ∈ T2 with (v, w) ∈ R2, implying R1 ◦ R2 �= ∅. �
Hence, there is a sound schema refinement process as follows. Start with some
initial modal schema S0 and refine it to S1, S2, . . . , Sk (k ∈ N) with Si � Si−1

(1 ≤ i ≤ k) with the guarantee that �Sj� ⊆ �Si� (1 ≤ i < j ≤ k).
Unfortunately, there are MSGs S1 and S2 with �S1� ⊆ �S2� but S1 ��m S2.

This is a well-known problem inherited from modal refinement. Every refinement
notion fixing it would turn the refinement problem into an intractable one [19].
The modal schema graphs depicted in Fig. 5 are adapted and extended versions

508 S. Mennicke

n
b

n
a b

k m
a b

l

a

Fig. 5. Completeness counterexample of modal refinement

of the counterexample given by Larsen et al. [19] as the original counterexample
cannot cope with the dual simulation aspect of MSG refinement. Let S1 be a
schema graph according to Fig. 5(b) and S2 to Fig. 5(c). Of course S1��mS2 since
in any refinement witness R must contain (n,m). But m requires b whereas n
has only a b-labeled may edge. Nevertheless, it holds that �S1� ⊆ �S2� because
databases conforming to S1, that do not include a b-labeled edge, also conform
to S2 by exploiting the non-determinism in node k. Node l perfectly simulates
every node with an incoming a-labeled but missing outgoing b-labeled edge.

Excluding non-determinism as apparent in Fig. 5(c) does, unfortunately, not
suffice to evade all non-determinism. Consider now S1 to be Fig. 5(a), and take
S2 as before. Also S1��m S2 but again �S1� ⊆ �S2�. The reason is that n must be
simulated by m (impossible as m requires b), but when it comes to instances (of
S1) that solely consist of isolated nodes, S2 may switch to node k to simulate iso-
lated nodes. Here, the non-determinism is based on an arbitrary switch between
the nodes that ought to simulate other schemata or their instances. Hence, (1)
is not the semantics of MSGs up to �m.

We, nevertheless, provide a solution by requiring S1 and S2 to be determin-
istic, which excludes the first kind of non-determinism. In order to exclude the
second type as well, we will introduce a single entrance type for S1 and S2, say x
and y, and require the existence of a modal refinement witness R with (x, y) ∈ R.
An edge relation E ⊆ V × Σ × V is deterministic iff v

a−→ w1 (w1
a−→ v, resp.)

and v
a−→ w2 (w2

a−→ v, resp.) implies w1 = w2.

Definition 7 (Deterministic MSG). A quintuple S[x] = (TS , Σ,E♦
S , E�

S , x) is
a deterministic MSG iff S = (TS , Σ,E♦

S , E�
S) is an MSG with E♦

S is deterministic
and x ∈ TS. The set of all objects o ∈ ODB with o �DB

S x is denoted by S[x](DB).
Let S′[y] be another deterministic MSG. S[x] refines S′[y], denoted S[x]�d

mS′[y],
iff S �m S′ by modal refinement witness R with (x, y) ∈ R.

For deterministic modal schema graphs, we are able to complete the theory of
instances. Regarding our counterexamples, we make the fact, that node n types
isolated nodes while node m is incapable of doing so, observable. Switching to
node k in S2 is allowed but the set of objects typed by m in a database with
only isolated objects is empty.

Modal Schema Graphs for Graph Databases 509

Lemma 3. Let S1[x], S2[y] be deterministic MSGs. If for every instance DB �m

S1, DB �m S2 and S1[x](DB) ⊆ S2[y](DB), then S1[x] �d
m S2[y].

Proof. Let S1[x] = (T1, Σ,E♦
1 , E�

2 , x) and DB1 = (T1, Σ,E♦
1). DB1 �m S1 (cf.

Lemma 1), thus, DB1 �m S2 and x ∈ S2[y](DB1) by assumption. Towards a
contradiction, suppose S1[x]��

d
m S2[y], i.e., there is no modal refinement witness

R between S1 and S2 with (x, y) ∈ R. Hence, there are paths of minimal length,
π1 = t0t1t2 . . . tk of S1 and π2 = u0u1u2 . . . uk of S2 (k ≥ 0), such that (I) t0 = x

and u0 = y, (II) ti−1
ai−→♦

S1
ti and ui−1

ai−→♦
S2

ui (0 < i ≤ k), but (III) for
no t ∈ T1, either uk

a−→�
S2

u and tk
a−→�

S1
t, or u

a−→�
S2

uk and t
a−→�

S1
tk.

We construct DB�from π1 as the smallest instance of S1 that contains all the
edges (ti−1, ai, ti) used in (II). It holds that DB�contains the path π1 with all
its nodes, from x to tk, with x ∈ S1[x](DB�), but neither an incoming a-edge
to nor an outgoing a-edge from tk. Note, DB�may contain more edges than the
ones in (II) to preserve must structures incident to ti (0 ≤ i ≤ k).

Because S1[x](DB�) ⊆ S2[y](DB�), the maximal modal conformance witness
̂R between DB�and S2[y] contains the element (x, y). Because S2[y] is determin-
istic, the only path of S2, dual simulating π1, is π2. But (tk, uk) /∈ ̂R because uk

requires an incoming/outgoing a-edge not present in DB�. But then every prefix
of π1 cannot be simulated by a prefix of π2. Hence, (x, y) /∈ ̂R which contradicts
the assumption that S1[x](DB) ⊆ S2[y](DB) for all DB �m S1.

Thus, S1[x] �d
m S2[y] holds, given that all instances DB of S1 are instances

of S2 with S1[x](DB) ⊆ S2[y](DB). �
Note that the proof only exploits S2[y] to be deterministic, enabling for an
even stronger claim. However, as soon as we assess equivalence of S1[x] and
S2[y], both need to be deterministic. Lemmas 2 and 3 culminate to the following
characterization of modal refinement for deterministic MSGs.

Theorem 1. Let S1[x], S2[y] be deterministic MSGs. S1�d
mS2 iff for all DB �m

S1, DB �m S2 and S1[x](DB) ⊆ S2[y](DB).

Proof. Many of the claims are already proven by Lemmas 2 and 3. It remains to
be shown that S1[x](DB) ⊆ S2[y](DB) for all DB �m S1 if S1[x] �d

m S2[y]. Let
DB �m S1 and o �DB

S1
x. As S1[x] �d

m S2[y], there is a modal refinement witness
R between S1 and S2, such that (x, y) ∈ R (cf. Definition 7). Hence, following
the proof of Lemma 2, �DB

S1
◦R is a conformance witness between DB and S2.

Thus, �DB
S1

◦R ⊆�DB
S2

and, therefore, o �DB
S2

y. �
This result reveals the assumed semantics of graph schemas (cf. (1)) as invalid
for (deterministic) modal schema graphs. Additionally to the instances, we have
to include the objects typed by the designated type of interest.

Definition 8 (MSG Semantics). The semantics of deterministic MSGs S[x]
is defined by

�S[x]�m := {(DB ,X) | DB �m S ∧ X = S[x](DB)}. (2)

510 S. Mennicke

6 Conclusions

We have revised the notion of schema graphs by Buneman et al. [2,7] for today’s
exemplars of graph data, e.g., knowledge graphs. We generalized schema graph
conformance to not requiring a root node in the graph database, without losing
its properties, i.e., conformance checking as well as database object classification
in Ptime. We integrated key properties, i.e., edges whose existence is required for
typing, by means of the must modality of modal specifications [18]. Thereby, we
do not leave the realm of Ptime conformance and object classification problems.

We found that the original notion of conformance, based on simulations,
is not robust to small changes in the graph data model or the schema model.
While removing the root node assumption did not entail harm to the theory, we
found that adding modalities required a different perspective on the semantics
of schema graphs. For deterministic MSGs, we were able to deliver a concise
characterization of their semantics. A characterization of the semantics of general
MSGs is left for future work.

Although conformance and object classification is in Ptime, it is not imme-
diately clear how the existing algorithms scale with today’s knowledge bases. We
have some experience in dual simulation matching of patterns against databases
for different query tasks, which can be done reasonably fast [24]. But schema
graph conformance turns around the game since the database (usually large)
fills the position of a query while the schema graph (smaller) provides us with
matches. Furthermore, whenever nodes and/or edges are updated, possibly the
whole classification must be recomputed [11].

References

1. Abiteboul, S.: Querying semi-structured data. In: Afrati, F., Kolaitis, P. (eds.)
ICDT 1997. LNCS, vol. 1186, pp. 1–18. Springer, Heidelberg (1997). https://doi.
org/10.1007/3-540-62222-5 33

2. Abiteboul, S., Buneman, P., Suciu, D.: Data on the Web: From Relations to
Semistructured Data and XML. Morgan Kaufmann Publishers Inc., San Francisco
(2000)

3. Akhtar, W., Cortés-Calabuig, Á., Paredaens, J.: Constraints in RDF. In: Schewe,
K.-D., Thalheim, B. (eds.) SDKB 2010. LNCS, vol. 6834, pp. 23–39. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-23441-5 2

4. Angles, R., Arenas, M., Barceló, P., Hogan, A., Reutter, J., Vrgoč, D.: Foundations
of modern query languages for graph databases. ACM Comput. Surv. 50(5), 68:1–
68:40 (2017). https://doi.org/10.1145/3104031

5. Angles, R., Gutierrez, C.: Survey of graph database models. ACM Comput. Surv.
40(1), 1:1–1:3 (2008). https://doi.org/10.1145/1322432.1322433

6. Beeri, C., Milo, T.: Schemas for integration and translation of structured and semi-
structured data. In: Beeri, C., Buneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp.
296–313. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49257-7 19

7. Buneman, P.: Semistructured data. In: Proceedings of the Sixteenth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,
PODS 1997, pp. 117–121. ACM, New York (1997). https://doi.org/10.1145/
263661.263675

https://doi.org/10.1007/3-540-62222-5_33
https://doi.org/10.1007/3-540-62222-5_33
https://doi.org/10.1007/978-3-642-23441-5_2
https://doi.org/10.1145/3104031
https://doi.org/10.1145/1322432.1322433
https://doi.org/10.1007/3-540-49257-7_19
https://doi.org/10.1145/263661.263675
https://doi.org/10.1145/263661.263675

Modal Schema Graphs for Graph Databases 511

8. Buneman, P., Davidson, S., Fernandez, M., Suciu, D.: Adding structure to unstruc-
tured data. In: Afrati, F., Kolaitis, P. (eds.) ICDT 1997. LNCS, vol. 1186, pp.
336–350. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-62222-5 55

9. Calvanese, D., Giacomo, G.D., Lenzerini, M.: Extending semi-structured data. In:
SEBD (1998)

10. Fan, W., Fan, Z., Tian, C., Dong, X.L.: Keys for graphs. Proc. VLDB Endow.
8(12), 1590–1601 (2015). https://doi.org/10.14778/2824032.2824056

11. Fan, W., Hu, C., Tian, C.: Incremental graph computations: doable and undoable.
In: Proceedings of the 2017 ACM International Conference on Management of
Data, SIGMOD 2017, pp. 155–169. ACM, New York (2017). https://doi.org/10.
1145/3035918.3035944

12. Fan, W., Lu, P.: Dependencies for graphs. In: Proceedings of the 36th ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS
2017, Chicago, IL, USA, 14–19 May 2017, pp. 403–416 (2017). https://doi.org/10.
1145/3034786.3056114

13. Fernández, M.F., Suciu, D.: Optimizing regular path expressions using graph
schemas. In: ICDE (1997). https://doi.org/10.1109/ICDE.1998.655753

14. Goldman, R., Widom, J.: Dataguides: enabling query formulation and optimization
in semistructured databases. In: Proceedings of the 23rd International Conference
on Very Large Data Bases, VLDB 1997, pp. 436–445. Morgan Kaufmann Publishers
Inc., San Francisco (1997)

15. Gutiérrez, C., Hidders, J., Wood, P.T.: Graph data models. In: Sakr, S., Zomaya,
A.Y. (eds.) Encyclopedia of Big Data Technologies, pp. 830–835. Springer, Cham
(2019). https://doi.org/10.1007/978-3-319-77525-8 81

16. Henzinger, M., Henzinger, T., Kopke, P.: Computing simulations on finite and infi-
nite graphs. In: FOCS 1995, pp. 453–462. IEEE Computer Society (1995). https://
doi.org/10.1109/SFCS.1995.492576

17. Knublauch, H., Kontokostas, D.: Shapes constraint language (SHACL). W3C Rec-
ommendation (2017). https://www.w3.org/TR/shacl/

18. Larsen, K.G., Thomsen, B.: A modal process logic. In: Proceedings of the Third
Annual Symposium on Logic in Computer Science, pp. 203–210 (1988). https://
doi.org/10.1109/LICS.1988.5119

19. Larsen, K.G., Nyman, U., W ↪asowski, A.: On modal refinement and consistency. In:
Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 105–119.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74407-8 8

20. Larsen, K.G.: Modal specifications. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407,
pp. 232–246. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-52148-
8 19

21. Ma, S., Cao, Y., Fan, W., Huai, J., Wo, T.: Strong simulation: capturing topology
in graph pattern matching. ACM Trans. Database Syst. 39(1), 4:1–4:46 (2014).
https://doi.org/10.1145/2528937

22. Mennicke, S., Kalo, J.-C., Balke, W.-T.: Querying graph databases: what do graph
patterns mean? In: Mayr, H.C., Guizzardi, G., Ma, H., Pastor, O. (eds.) ER 2017.
LNCS, vol. 10650, pp. 134–148. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-69904-2 11

23. Mennicke, S., Kalo, J.C., Balke, W.T.: Using queries as schema-templates for
graph databases. Datenbank-Spektrum 18(2), 89–98 (2018). https://doi.org/10.
1007/s13222-018-0286-9

24. Mennicke, S., Kalo, J.C., Nagel, D., Kroll, H., Balke, W.T.: Fast dual simulation
processing of graph database queries. In: 35th IEEE International Conference on
Data Engineering, ICDE 2019, Macau, China, 8–12 April 2019 (2019)

https://doi.org/10.1007/3-540-62222-5_55
https://doi.org/10.14778/2824032.2824056
https://doi.org/10.1145/3035918.3035944
https://doi.org/10.1145/3035918.3035944
https://doi.org/10.1145/3034786.3056114
https://doi.org/10.1145/3034786.3056114
https://doi.org/10.1109/ICDE.1998.655753
https://doi.org/10.1007/978-3-319-77525-8_81
https://doi.org/10.1109/SFCS.1995.492576
https://doi.org/10.1109/SFCS.1995.492576
https://www.w3.org/TR/shacl/
https://doi.org/10.1109/LICS.1988.5119
https://doi.org/10.1109/LICS.1988.5119
https://doi.org/10.1007/978-3-540-74407-8_8
https://doi.org/10.1007/3-540-52148-8_19
https://doi.org/10.1007/3-540-52148-8_19
https://doi.org/10.1145/2528937
https://doi.org/10.1007/978-3-319-69904-2_11
https://doi.org/10.1007/978-3-319-69904-2_11
https://doi.org/10.1007/s13222-018-0286-9
https://doi.org/10.1007/s13222-018-0286-9

512 S. Mennicke

25. Schreiber, G., Raimond, Y.: RDF 1.1 primer. Technical report, W3C (2014)
26. Tajima, K.: Schemaless semistructured data revisited. In: Tannen, V., Wong, L.,

Libkin, L., Fan, W., Tan, W.-C., Fourman, M. (eds.) In Search of Elegance in
the Theory and Practice of Computation. LNCS, vol. 8000, pp. 466–482. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-41660-6 25

27. Tran, T., Ladwig, G., Rudolph, S.: Managing structured and semistructured RDF
data using structure indexes. IEEE Trans. Knowl. Data Eng. 25(9), 2076–2089
(2013). https://doi.org/10.1109/TKDE.2012.134

https://doi.org/10.1007/978-3-642-41660-6_25
https://doi.org/10.1109/TKDE.2012.134

A Systematic Approach to Generate
Diverse Instantiations for Conceptual

Schemas

Loli Burgueño1,2(B), Jordi Cabot3, Robert Clarisó1, and Martin Gogolla4

1 Universitat Oberta de Catalunya, Barcelona, Spain
{lburguenoc,rclariso}@uoc.edu

2 Institut List, CEA, Université Paris-Saclay, Paris, France
3 ICREA, Barcelona, Spain
jordi.cabot@icrea.cat

4 University of Bremen, Bremen, Germany
gogolla@uni-bremen.de

Abstract. Generating valid instantiations for a conceptual schema is
instrumental in ensuring its quality by means of verification, validation
or testing. This problem becomes even more challenging when we also
require that the computed instantiations exhibit significant differences
among them, i.e., they are diverse. In this work, we propose an auto-
matic method that guarantees synthesizing a diverse set of instantia-
tions from a conceptual schema by combining model finders, classifying
terms and constraint strengthening techniques. This technique has been
implemented in the USE tool for UML/OCL.

Keywords: Methodologies and tools for conceptual design · Quality
of conceptual models · Integrity constraints

1 Introduction

Verification, validation and testing are different mechanisms to ensure the quality
of a conceptual schema. These approaches typically require the same resource:
creating one or more instantiations of the conceptual schema. With “instantia-
tion” we refer to an example for an information base of a conceptual schema [16].
These instantiations can be used as illustrations to better understand the model,
to explain its behavior or to simulate it; as counterexamples that describe invalid
configurations; and as test cases to capture scenarios that should be checked.

A key property of any set of instantiations to be used in a quality assurance
process is its diversity. That is, the instantiations in the set should cover a broad
spectrum of different configurations and scenarios. Otherwise, relevant corner
cases might be missed, causing faults and/or wrong conclusions.

This work is partially funded by the H2020 ECSEL Joint Undertaking Project
“MegaM@Rt2: MegaModelling at Runtime” (737494) and the Spanish Research Project
TIN2016-75944-R.
c© Springer Nature Switzerland AG 2019
A. H. F. Laender et al. (Eds.): ER 2019, LNCS 11788, pp. 513–521, 2019.
https://doi.org/10.1007/978-3-030-33223-5_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33223-5_42&domain=pdf
https://doi.org/10.1007/978-3-030-33223-5_42

514 L. Burgueño et al.

Asking a domain expert to create instantiations manually can be very time-
consuming and is usually not feasible. Instead, dedicated tools called model find-
ers [12,18] can be used to automatically compute (valid) instantiations of a con-
ceptual schema that satisfy all its integrity constraints. Model finders rely on
different techniques like constraint solvers, theorem provers or search algorithms
to perform this computation [12]. While model finders automate the generation
process, they do not guarantee diverse solutions.

One approach that helps model finders generate a diverse output is called
classifying terms (CT) [14]. Classifying terms are properties that can be used
to partition the solution space. Intuitively, a CT is an expression or property
defined in such a way that two instantiations yielding different values for the
classifying term will be (very) dissimilar. The partitions induced by classifying
terms can guide the model finder and direct it to select canonical representatives
from each partition, rather than arbitrary instantiations. Thus, a proper choice
of classifying terms ensures a good partition and, thus, model diversity. Never-
theless, proposing suitable classifying terms requires domain knowledge. Thus,
it is not trivial to automate and requires the participation of a domain expert.

To overcome this issue, this work proposes a method for automatically gen-
erating relevant classifying terms for a given conceptual schema. The approach
arises from the observation that classifying terms are typically related to the
integrity constraints in the schema. Therefore, we propose to mutate the schema’s
integrity constraints in a structured way in order to generate classifying terms.
In particular, we extend and adapt the work on constraint strengthening [6] to
produce these mutants of interest.

Our approach, combining constraint strengthening, classifying terms and
model finders, enables the automatic generation of diverse instantiations from a
conceptual schema. This result is useful in many areas of conceptual modeling
beyond information systems. To describe the method, and without loss of gen-
erality, we will consider conceptual schemas expressed as UML class diagrams
enriched with OCL constraints to describe integrity constraints.

The rest of the paper is structured as follows. Section 2 discusses the state of
the art. Section 3 presents our method for synthesizing classifying terms and
Sect. 4 describes its implementation. Section 5 discusses the advantages and
shortcomings of this method. Finally, Sect. 6 concludes and discusses the future
work.

2 State of the Art

Some works on general purpose satisfiability solvers are focused on random sam-
pling [5,7,8]), i.e., finding diverse satisfying assignments to boolean formulas.

In the specific context of model finders, there are many approaches for finding
valid instances for a model [12] but only a few consider diversity. Some strategies
that have been used are symmetry breaking [18], distance metrics [9], abstract
graph shapes [17] or random restarts [2]. One of these approaches lets the designer
control diversity by defining classifying terms [14]: relevant boolean or integer

An Approach to Generate Instantiations for Conceptual Schemas 515

expressions that partition the set of solutions by exhibiting different results for
instantiations that are dissimilar.

Testing methods also rely on model finders to synthesize test cases [1,3]. This
process may require mutating constraints, selecting edit operators randomly from
a predefined catalog. Instead, in this paper we modify constraints in a structured
way [6] in order to strengthen them. Besides, we explore the (complex) partitions
defined by classifying terms instead of simply defining ranges of “meaningful
values” for inputs as in [10,15].

Fig. 1. Diverse instantiations through two Boolean classifying terms

3 Our Generative Method

Our method adapts and combines techniques from two previous works: classify-
ing terms (CT) [14] and the strengthening of integrity constraints [6].

CTs are employed to explore the set of possible correct or incorrect instan-
tiations of a conceptual schema in order to obtain a few diverse instantiations
instead of many similar ones. The approach enables the generation of instanti-
ations that satisfy all constraints (positive test cases) as well as instantiations
in which some constraints fail (negative test cases). However, until now, CTs
had to be manually written by the developer, which limited the usability of the
approach. To address this limitation, this work uses the existing integrity con-
straints in the model as an input and strengthen them (i.e., it mutates them to
generate a more restrictive version of the constraint) for obtaining meaningful
CTs. That is, CTs that generate interesting equivalence classes that can be then
taken as input for the generation of diverse instantiations in which border cases
become clear. For example, one instantiation where a particular constraint holds
and another one where the same constraint fails.

Figure 1 explains the basic idea behind our new approach. As an example,
we consider two invariants invA and invB and assume two strengthened versions
of them invA+ and invB+ have been identified. By considering the strengthened
versions as CTs, one will ideally construct four model equivalence classes and
obtain four diverse instantiations that show different behavior with respect to
the two CTs. The next sections illustrate each step of this process in more detail
using a running example.

516 L. Burgueño et al.

3.1 Running Example

As a running example throughout the paper we use the simple conceptual schema
depicted in Fig. 2, representing a simplified cloud provisioning model. Different
cloud providers offer a number of CloudServices to the potential Customers who
put Orders based on their data volume needs. To ensure the integrity of the
provisioning, a number of constraints are defined on top of the schema. For
instance, we check that orders must be within the Customer budget (constraint
orderWithinBudget) or that premium customers have at least one order with a
data volume higher or equals to 5. Due to space constraints we only show three
invariants below, the rest are available in our Git repository [4].
context Customer inv orderWithinBudget :

s e l f . ord−>fo rA l l (o |
s e l f . budget >= o . dataVol ∗o . s e rv . un i tPr i c e)

context cs1 , cs2 : CloudServ ice inv uniqueProviderMaxDataVol :
cs1<>cs2 imp l i e s
cs1 . provider<>cs2 . prov ider or cs1 . maxDataVol<>cs2 . maxDataVol

context Customer inv minimumDataVolCompany :
s e l f . premium imp l i e s s e l f . ord−>ex i s t s (o | o . dataVol>=5)

Fig. 2. A simple cloud provisioning schema

3.2 Derivation of Classifying Terms via Constraint Strengthening

Mutation is a technique used in the context of software testing. This process
starts from a software artifact, usually a program or function, and systemat-
ically introduces small changes to produce new versions of the artifact called
mutants. These syntactic changes, called mutation operators, are intended to
mimic frequent developer errors. Then, it is possible to check whether a test
suite is capable of detecting that the original artifacts and the mutants do not
have the same behavior.

In the context of OCL integrity constraints, strengthening [6] is a method
for structured mutation. By construction, strengthening guarantees that any
mutant it produces is more restrictive than the original OCL constraint, taking
into account the semantics of OCL (including OCL’s 4-valued logic [13], which
considers invalid and undefined values). This is achieved by ensuring that this
property holds for each mutation operator.

As an example, below we show sample strengthening candidates (noted using
the + symbol) applied to two expressions including the boolean operator or (left)

An Approach to Generate Instantiations for Conceptual Schemas 517

and the relational operator >= (right). Note that, when the subexpressions are
boolean, potential strengthenings may require to strengthen some of its subex-
pressions. A complete list of candidate strengthenings can be found in [6].

[exp1 or exp2]+ → exp1 and exp2

exp1

[exp1]
+

or exp2

[exp1 >= exp2]+ → exp1 > exp2
exp1 = exp2
exp1 > exp2 + 1

Strengthening was originally proposed as a way to suggest fixes for integrity
constraints that were found to be too lax. Here, we adapt this method to gener-
ate classifying terms for a conceptual model. Notice that we are not interested
in classifying terms that are more lax than the integrity constraints: if an instan-
tiation does not satisfy an integrity constraint, it will be discarded as invalid.
On the other hand, stronger versions of integrity constraints will produce valid
instances, which is exactly what we need and the reason why we use invariant
strengthening to generate classifying terms.

A first adaptation is that classifying terms are not restricted by a context type
like OCL invariants. Thus, we have to rewrite the OCL constraints to provide
a meaning for the “self” object via allInstances. For instance, the invariant
orderWithinBudget has to be rewritten as:
Customer . a l l I n s t an c e s −>fo rA l l (c |

c . ord−>fo rA l l (o | c . budget >= o . dataVol ∗o . s e rv . un i tPr i c e))

Once the invariants are rewritten, we apply the strengthenings to obtain the
classifying terms. As an example, we show below the resulting classifying term
after applying three strengthenings to the three invariants presented above:
-- budget : strengthening '>=' -> '='
Customer . a l l I n s t a n c e s ()−>fo rA l l (c | c . ord−>fo rA l l (o |

c . budget = o . dataVol ∗o . s e rv . un i tPr i c e))
-- uniqueness : strengthening 'or ' -> ' and '
CloudServ ice . a l l I n s t a n c e s ()−>fo rA l l (cs1 , cs2 | cs1<>cs2 imp l i e s

cs1 . provider<>cs2 . prov ider and cs1 . maxDataVol<>cs2 . maxDataVol))
-- minimum : strengthening 'A implies B ' -> 'B '
Customer . a l l I n s t a n c e s ()−>fo rA l l (c | c . ord−>fo rA l l (o | o . dataVol >= 5))

3.3 Constructing Diverse Instantiations

As stated before and in [14], a classifying term is a closed OCL query expression
that computes a Boolean or an Integer value, i.e., an OCL expression with-
out free variables that, when evaluated in an instantiation, gives a Boolean or
an Integer result. Given a collection of classifying terms CT1, . . . , CTn for a
conceptual model, the model finder internally operates as follows:

1. Compute an instantiation of the model respecting the stated OCL invariants.
2. Evaluate the classifying terms in the current instantiation (values v1, . . . , vn).
3. Internally add a new constraint forbidding that the classifying terms take the

values of the found instantiation: (CT1 <> v1) or . . . or (CTn <> vn).
4. Repeat the process until no more instantiations can be found.

518 L. Burgueño et al.

In the running example, the three constructed Boolean classifying terms
budget, uniqueness and minimum will yield eight (23) instantiations where in a
single instantiation each classifying term is either false or true. Figure 3 shows
two of the eight instantiations and the result of evaluating the three classifying
terms in each instantiation.

4 Tool Support

Our method has been implemented inside the USE tool [11]. USE is implemented
in Java and provides, among other features: a GUI; packages to load, modify
and inspect models and instantiations; and commands to invoke the KodKod
relational solver [18] for model finding.

budget=false
uniqueness=false
minimum=false

budget=false
uniqueness=true
minimum=true

Fig. 3. Two generated instantiations for the Cloud Provisioning example

The input of our tool is a UML class diagram annotated with OCL invariants.
This model is specified using the textual format employed by USE (.use). The
output is a set of diverse instantiations of the model, which can be visualized as
object models within USE. Our implementation is divided into three steps:

1. Candidate generation: First, we strengthen each OCL integrity constraint by
means of a post-order traversal of its abstract syntax tree (AST). For each
boolean expression in the AST, we generate the candidate strenghtenings by
combining the strenghtenings of its subexpressions (see Sect. 3.2). The list of
candidates for the root of the AST is the list of potential classifying terms
for that invariant.

2. Candidate selection: Next, we select the subset of candidates to be used as
classifying terms to compute instantiations. This choice can be performed in
different ways: randomly; using heuristics (e.g. choosing the classifying terms
that involve the more constrained elements in the model); or with the help of
a domain expert (note that choosing classifying terms from a list of candidates
requires much less effort than proposing them).

An Approach to Generate Instantiations for Conceptual Schemas 519

3. Computation of instantiations: Finally, we provide the classifying terms to the
model finder, which uses them to find representative instantiations in each of
the equivalence classes induced by the partition. This process is automated
within USE using the command mv -scrollingAllCT <properties_file>, which
receives as parameters the properties file in which the verification bounds are
stated; asks for the classifying terms; and invokes the Kodkod model finder
to generate instantiations.

Our running example has been analyzed using this tool implementation,
which is available for download from [4].

5 Discussion

Correctness and Completeness. The classifying terms are always added on
top of the existing integrity constraints in the schema. Therefore, any solution
obtained using classifying terms satisfies all constraints. This guarantees the
correctness of any generated instantiation.

Regarding the expressiveness of integrity constraints, our method supports
all features of OCL 2.4 except for ordered collections (Sequence, OrderedSet) or
recursively defined queries. Without loss of generality, we have focused on the
generation of boolean classifying terms but a similar process could be applied
for the generation of integer classifying terms.

Performance. Computing the classifying terms adds a performance overhead
to the solution generation process, but it is negligible. The classifying term gen-
eration time was 151 milliseconds for our running example, which was 1–2 orders
of magnitude faster than the time it took to compute a single valid instantiation.

Given that this second task (computing the instantiation) is the bottleneck,
any approach aiming to reduce the number of times we need to trigger the gener-
ation of a new instantiation to ensure diversity in the result set1, will significantly
reduce the overall computing time.

Heuristics for the Selection of Classifying Terms. The automatic appli-
cation of our method can generate a very large number of potential classifying
terms. Any of them can be used to enforce diverse solutions but a manual explo-
ration of the generated classifying terms quickly reveals some that seem more
promising than others (in terms of the degree of diversity they could generate).

The definition of a set of heuristics able to filter the set of classifying terms
and propose the best ones is left for further work.

Combination Strategies for Classifying Terms. Given two or more clas-
sifying terms, we could adapt our approach to change the way in which the
equivalent classes are traversed in the solution generation process. For instance,
we could focus first on one of the classifying terms and generate diverse examples
1 Most solvers will generate by default very similar results when repetitively prompted

for new solutions [5,7,8]. Rather than (potentially unsuccessful) solver-specific tun-
ings, this work proposes a solver-independent solution to achieve diverse results.

520 L. Burgueño et al.

only considering that classifying term alone (i.e. emphasizing local diversity). Or
we could combine all classifying terms and generate solutions that explore equiv-
alent classes taking into account the value of different classifying terms at the
same time (i.e. emphasizing global diversity).

6 Conclusions

We have presented a new approach to enforce the generation of a diverse set of
instantiations from a given schema. Diversity plays an important role in a vari-
ety of scenarios such as model exploration, simulation, testing, validation and
verification. In our approach, diversity is guaranteed by the systematic genera-
tion of classifying terms that partition the solution space of a model into a set
of equivalent classes. Such classifying terms are derived from the strengthening
of existing integrity constraints in the schema.

In principle, all constraints can be used as “seed” constraints to generate
the CTs. Nevertheless, depending on the application scenario, some constraints
are potentially more useful than others. For instance, in a model-based testing
context, one may want to prioritize constraints over the more restricted parts
of the model to maximize the chances of finding errors. Identification of such
restricted parts/constraints left as future work. As stated in the previous section,
we also plan to work on the definition of strategies to optimally select and
combine different CTs and guide the exploration of model solutions for each
combination. Again, depending on the goal, a breadth-first strategy may be
preferable over a depth-first one (or the other way round). Finally, large case
studies must check the usefulness of our proposal and improve its applicability.

References

1. Aichernig, B.K., Salas, P.A.P.: Test case generation by OCL mutation and con-
straint solving. In: QSIC 2005, pp. 64–71 (2005)

2. Ali, S., Zohaib Iqbal, M., Arcuri, A., Briand, L.C.: Generating test data from OCL
constraints with search techniques. IEEE TSE 39(10), 1376–1402 (2013)

3. Brucker, A.D., Krieger, M.P., Longuet, D., Wolff, B.: A specification-based test
case generation method for UML/OCL. In: Dingel, J., Solberg, A. (eds.) MODELS
2010. LNCS, vol. 6627, pp. 334–348. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-21210-9_33

4. Burgueño, L., Clarisó, R., Cabot, J., Gogolla, M.: Constraint mutation source code
and examples (2019). http://hdl.handle.net/20.500.12004/1/C/ER/2019/562

5. Chakraborty, S., Fremont, D.J., Meel, K.S., Seshia, S.A., Vardi, M.Y.: On parallel
scalable uniform SAT witness generation. In: Baier, C., Tinelli, C. (eds.) TACAS
2015. LNCS, vol. 9035, pp. 304–319. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46681-0_25

6. Clarisó, R., Cabot, J.: Fixing defects in integrity constraints via constraint muta-
tion. In: QUATIC 2018, pp. 74–82 (2018)

7. Dutra, R., Laeufer, K., Bachrach, J., Sen, K.: Efficient sampling of SAT solutions
for testing. In: ICSE 2018, pp. 549–559 (2018)

https://doi.org/10.1007/978-3-642-21210-9_33
https://doi.org/10.1007/978-3-642-21210-9_33
http://hdl.handle.net/20.500.12004/1/C/ER/2019/562
https://doi.org/10.1007/978-3-662-46681-0_25
https://doi.org/10.1007/978-3-662-46681-0_25

An Approach to Generate Instantiations for Conceptual Schemas 521

8. Ermon, S., Gomes, C., Selman, B.: Uniform solution sampling using a constraint
solver as an oracle. In: UAI 2012, pp. 255–264 (2012)

9. Ferdjoukh, A., Galinier, F., Bourreau, E., Chateau, A., Nebut, C.: Measurement
and generation of diversity and meaningfulness in model driven engineering. Int.
J. Adv. Softw. 11(1/2), 131–146 (2018)

10. Fleurey, F., Baudry, B., Muller, P.A., Le Traon, Y.: Qualifying input test data for
model transformations. SoSyM 8(2), 185–203 (2007)

11. Gogolla, M., Büttner, F., Richters, M.: USE: a UML-based specification environ-
ment for validating UML and OCL. Sci. Comput. Program. 69(1–3), 27–34 (2007)

12. González, C.A., Cabot, J.: Formal verification of static software models in MDE:
a systematic review. Inf. Softw. Technol. 56(8), 821–838 (2014)

13. Object Management Group: Object Constraint Language specification (version
2.4). https://www.omg.org/spec/OCL/2.4/

14. Hilken, F., Gogolla, M., Burgueño, L., Vallecillo, A.: Testing models and model
transformations using classifying terms. SoSyM 17(3), 885–912 (2018)

15. Jackson, E.K., Simko, G., Sztipanovits, J.: Diversely enumerating system-level
architectures. In: EMSOFT 2013, pp. 1–10, September 2013

16. Olivé, A.: Conceptual Modeling of Information Systems. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-39390-0

17. Semeráth, O., Varró, D.: Iterative generation of diverse models for testing specifi-
cations of DSL tools. In: FASE 2018, pp. 227–245, April 2018

18. Torlak, E., Jackson, D.: Kodkod: a relational model finder. In: Grumberg, O., Huth,
M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 632–647. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-71209-1_49

https://www.omg.org/spec/OCL/2.4/
https://doi.org/10.1007/978-3-540-39390-0
https://doi.org/10.1007/978-3-540-71209-1_49

Requirements Modeling

Factors Affecting Comprehension
of Contribution Links in Goal Models:

An Experiment

Sotirios Liaskos(B) and Wisal Tambosi

School of Information Technology, York University,
4700 Keele Street, Toronto M3J 1P3, Canada

{liaskos,tambosi}@yorku.ca

Abstract. Goal models have long been regarded to be useful instru-
ments for visualizing and analysing decision problems. Key to using goal
models for the purpose is the concept of satisfaction contribution between
goals. Several proposals have been offered in the literature for repre-
senting contributions and performing inferences therewith. Theoretical
arguments and demonstrative examples are typically used to support
the usefulness and soundness of such proposals. However, the degree to
which users of goal models intuitively understand the meaning of a spe-
cific contribution representation and use it for making valid inferences
constitutes an additional measure of the appropriateness of the represen-
tation. We report on an experimental study to compare the intuitiveness
of two alternative contribution representation approaches via measuring
the degree to which untrained users perform inferences compliant with
the semantics defined by the language designers. We further explore the
role of individual differences such as cognitive style and attitude and
ability with arithmetic in establishing and applying the right semantics.
We find significant differences between the representations under com-
parison as well as effects of various qualities and levels with regards to
individual factors. The results inspire further research on the specific
matter of contribution links and support the overall soundness and oper-
ationalizability of the intuitiveness construct.

Keywords: Conceptual modelling · Goal models · Model
comprehension · Experimental study

1 Introduction

For more than two decades, goal models [4,39] have been extensively studied
as an instrument for capturing and communicating intentional structures for
a variety of purposes within information technology. One of the strengths of
such models is their ability to represent alternative ways by which stakeholder
goals can be materialized into design solutions [26,27,34]. Using goal models
business/systems analysts can reason about and communicate the advantages
c© Springer Nature Switzerland AG 2019
A. H. F. Laender et al. (Eds.): ER 2019, LNCS 11788, pp. 525–539, 2019.
https://doi.org/10.1007/978-3-030-33223-5_43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33223-5_43&domain=pdf
https://doi.org/10.1007/978-3-030-33223-5_43

526 S. Liaskos and W. Tambosi

and disadvantages of alternative solutions with respect to their impact to higher
level business objectives. Multiple proposals for doing such analysis have been
proposed in the literature [3,15,26,27] ([21] for a survey).

To make such analysis possible, goal models employ a concept commonly
referred to as contribution to represent how satisfaction of one goal affects the
satisfaction of another. There is variety with regards to how different goal mod-
elling frameworks treat the representation and meaning of contributions. The
traditional approach for representing contributions is through symbolic labels
(e.g.“+’, “–”) [15,20,39] or words (“help”,“break”) [9] expressing the quality
(positive or negative) and the size of contribution in high-level terms. The use of
numeric values in various ways has also been proposed [3,25,30], whereby, e.g.,
sign and absolute value are used to represent quality and size of contribution.
The approaches vary with regards to both representation and underlying seman-
tics. Theoretical analyses and demonstrations are usually employed to support
the soundness and usefulness of each approach. However, an additional indica-
tion of the quality of the chosen representation and semantics could be the extent
to which untrained users of the model can intuitively understand the meaning
of the representation and use it to make inferences in a way that complies with
the semantics intended by the modelling language designers.

In this paper, we experimentally explore the intuitiveness of two choices for
representing contribution links in goal models, one symbolic and one numeric.
At the core of the experiment, a series of decision problems modelled in either
of the two ways are presented to untrained users who are asked to use the
contributions to perform inferences and make decisions. We measure the extent
to which their inferences comply with the semantics of each representation. We
further explore how individual differences pertaining to cognitive style, attitude
and ability with mathematics and mental arithmetic as well as overall working
approach taken by the participants affect the degree of success in performing
compliant inferences. Among other things, we find that numeric models evoke
much more compliant responses, especially among participants who claim to
have followed a methodical rather than an intuitive working approach.

The rest of the paper is organized as follows. In Sect. 2 we offer background
on goal models, contribution links and their semantics as well as the concept
of intuitiveness and individual differences that may affect its manifestation. In
Sects. 3 and 4 we describe the experimental design and the results and in Sects. 5
and 6 we review some of the related work and offer concluding remarks.

2 Background

2.1 Goal Models and Contribution Links

The type of goal modelling notation we use in this research is akin to the i* family
of goal modelling notations [4,39]. Two examples can be seen in Fig. 1. The oval-
and cloud-shaped nodes represent actor goals (states of the world the actor wants
to hold in the future), the ovals describing hard-goals and the cloud-shaped ones

Factors Affecting Comprehension of Contribution Links in Goal Models 527

Fig. 1. Goal models with symbolic (left) and numeric (right) contribution links.

soft-goals. As per their standard meaning [39], soft-goals – as opposed to hard-
goals – do not have a precise satisfiability criterion. Further, the goal models
we study follow a specific structural pattern. Specifically, using means-ends and
decomposition links, hard-goals form a decomposition that shows how different
subsets of low-level goals can enable the achievement of the top-level hard-goal.
Soft-goals are recipients of contribution links, the curved directed lines. Such
links can originate from hard-goals or other soft-goals.

A contribution link from goal A to soft-goal B expresses the hypothesis that
evidence of satisfaction or denial of goal A has an effect to our belief about the
satisfaction or denial of soft-goal B. The exact quality (positive or negative) and
level of effect is expressed using a label on top of the contribution link. The
literature offers several proposals for what could be used as a label and what it
would mean. The original approach [4,15,39] is to use symbols “+”, “++”, “−”
and “−−” denoting respectively various levels of positive and negative contri-
bution. As of iStar 2.0 [9] words are used (“help”, “make”, “hurt” and “break”)
in place of symbols. An alternative approach to symbols and words is numbers:
a numerical value in the interval [0.0, 1.0] [15,25] or [−100,+100] [3], describes
the level of contribution of A to B. Of these various labelling options, the two
that are of particular interest here can be seen in Fig. 1. They are henceforth
referred to as the symbolic and the numeric representation (mode).

Even without describing the meaning of the contribution links in any more
precision, the models in the figure can already be used for performing useful
inferences. Focussing on the symbolic model on the left side of Fig. 1, a user who
is only minimally informed to the specifics of the notation and has no knowl-
edge of the precise semantics of “+” and “−−”, can probably infer that the goal
(Choose Schedule) Automatically is preferable to goal (Choose Schedule) Man-
ually when we are interested in the goal Reduce Scheduling Effort. It is easy to
see however that more complex inferences are not possible without an appeal to

528 S. Liaskos and W. Tambosi

more formal and precise semantics. Such precise semantics unambiguously define
a way for performing inferences. In the absence of such semantics, i.e., without
more information about what the labels precisely mean and how they are to be
used, in neither model of Fig. 1 is it easy to confidently infer optimal decisions
vis-à-vis the root goal Overall Scheduling Quality. Various such semantics have
been proposed in the literature with both ontological motivation (to clarify what
contributions really mean, e.g. [16]) and operational motivation (to suggest how
contributions can be used, e.g. [25]). In our study, we pick two proposals of the
latter kind, one for each of the representation modes of Fig. 1.

The semantic framework for symbolic contributions we consider is due to
Giorgini et al. [15]. According to that framework each goal is associated with
two variables, each measuring satisfaction and denial of the goal respectively.
The variables take one of three values: Full evidence (denoted with prefix F),
Partial Evidence (P) and No Evidence (N) – of, respectively satisfaction (suffix
S) or denial (D). For example, we may have partial evidence of satisfaction and
no evidence of denial for one goal (denoted {PS, ND}) and partial evidence
of denial and full evidence of satisfaction for another goal ({FS, PD}); the
inconsistency being perfectly acceptable here and actually one of the strengths
of the framework. Given a symbolic contribution link as described thus far, a
set of rules, seen in Table 1, defines completely what the satisfaction and denial
value of the destination of the link is, given the type of the label (“+”,“++”,
etc.) and the corresponding satisfaction and denial values of the origin goal. No
evidence (NS or ND) in the origin is propagated as-is independent of label.
Multiple incoming links are treated following a precise evidence maximization
principle.

Table 1. Symbolic contribution semantics

Label Effect Label Effect Label Effect Label Effect

++

FS → FS

−−

FS → FD

+

FS → PS

−

FS → PD

PS → PS PS → PD PS → PS PS → PD

PD → PD PD → PS PD → PD PD → PS

FD → FD FD → FS FD → PD FD → PS

While Giorgini et al. offer an equally comprehensive numeric version of their
satisfaction propagation framework we here focus on one used (directly or by
implication) by Maiden et al. [30] and Liaskos et al. [25], following the same logic
as the one followed by the Unified Requirements Notation (URN) [3]. According
to this interpretation each goal has a unique satisfaction value in the real interval
[0.0, 1.0]. The numeric label on the contribution link represents the share of
influence of the satisfaction of the origin goal to the satisfaction of the destination
goal. Thus, when a soft-goal is targeted by one or more contribution links, its
satisfaction is a linear combination of the satisfaction values of the origin goals

Factors Affecting Comprehension of Contribution Links in Goal Models 529

weighted by the labels of the corresponding contribution links, as in:

s(g) =
∑

g′∈Og

{s(g′) × w(g′, g)} (1)

where g is the soft-goal targeted by the links, Og the set of goals g′ from which
the contribution links originate, w(g′, g) the numeric weights of those links, and
s(g) the satisfaction value of a goal g.

2.2 Intuitiveness and Individual Differences

The intent of a developer of visualized conceptual models like the above box-
and-line goal models is to evoke a mental model of how the visualization is
supposed to be understood and used to make inferences about the domain. Our
research question here is whether and to what degree the mental model that is
actually evoked within the reader’s mind is indeed consistent with the designers’
intent, hence promoting “correct” inferences. We use the term intuitiveness to
furthermore refer to attainment of such consistency with limited or no training.
The intuitiveness construct is akin to the concept of semantic transparency as
per Moody’s framework for principled visual design of modeling languages [32]:
an intuitive visualized conceptual modelling language is one that allows its users
recognize and understand the meaning of the language’s constructs based on the
visual appearance of the constructs, thus without reference to additional training
or explanatory material.

Moreover, when users of a modelling notation are asked to guess the meaning
of shapes/symbols and perform inferences therewith, we can hypothesise that
individual differences in terms of skills, attitudes and styles may affect their
choices. One question is whether users attempt to develop a complete and precise
theory of how the notation works and make conscious inferences with it or make
rough gut-feeling ones based on intuition. A construct that attempts to formalize
this distinction is cognitive style [1]. According to that construct the approach
that decision makers take in solving a judgement problem lies in a cognitive
continuum [18] between analytical and intuitive cognitive work. While the former
describes conscious, controlled, systematic, detail-oriented work towards making
an inference, the latter describes quick, approximate, holistic, synthetic and less
conscious approach. While Hammond et al. support that cognitive style is largely
induced by the task at hand [18], Hayes et al. have shown that decision makers
may have a tendency towards one or the other extreme as a personality trait and
have developed the CSI (Cognitive Style Index) to measure it [1]. At the same
time, simple ability and comfort with mental arithmetic can be a predictor of
successful performance of symbol-intensive inferences within a model. Likewise,
math anxiety, i.e. the presence of feelings of fear, tension, and apprehension
with mathematics [19], may affect both how the mathematical/symbolic (e.g.
contribution labels) are interpreted and used.

530 S. Liaskos and W. Tambosi

3 Experimental Design

Overview and Research Questions. The goals of our experimental study are
to (a) compare the intuitiveness of alternative contribution link representations
in the context of assessing optimal decisions within goal models and (b) assess
the role of individual differences to the enablement of intuitiveness in the said
task. Specifically, the experiment has a confirmatory and an exploratory aspect.
We first want to compare the two modes of representation, symbolic (Fig. 1 left,
Table 1) vs. numeric (Fig. 1 right, Eq. 1), with regards to their intuitiveness,
testing the hypothesis that numeric models are bound to be more intuitive for
the purpose of detecting optimal solutions (RQ1). The hypothesis is based on
the belief that the specific numeric representation utilizes participants’ famil-
iarity with numbers and proportions, commonly used in their daily lives. We
further want to explore whether individual differences and ways of working,
specifically ability and attitude towards math, cognitive style as well as followed
approach, affect intuitiveness (RQ2). In the absence of earlier experience, no
explicit hypotheses are made with regards to RQ2. The experimental design is
an extension/revision of an earlier one presented elsewhere [29].

Constructs and Measures. Our central construct is intuitiveness as discussed
above. To measure it, we expose experimental participants to a set of models
and ask them to perform inferences based on the information in the model.
The participants have only basic awareness of the language and the abstract
meaning of its constructs but no knowledge of precise semantics. Intuitiveness is
measured primarily via accuracy of the participant inferences, i.e., the number
of inferences that match the ones that the language semantics dictate. Wherever
applicable, we also measure efficiency, which is the number of accurate (match-
ing) responses divided by the time it took to make the necessary inferences
as well as self-reported confidence levels of the method followed to make the
inferences (method confidence) as well as confidence in the inferences themselves
(response confidence).

With regards to individual difference factors, we administer the 38-point CSI
(Cognitive Style Index) [1] to measure cognitive style (CSI Score) and the 9-
point AMAS (Abbreviated Math Anxiety Scale) [19] to measure math anxiety
(AMAS Level). We further measure ability with arithmetic using a series of cus-
tom non-standard exercises in mental arithmetic. We attempted various types
and scoring methods for these. The ones that turn out to have some effect,
as discussed below, consist of direct multiplication, scored in [0,10] though an
exponentially decaying function of the distance between participant response
and correct answer, comparisons of two two-number products and comparisons
of two linear combinations each containing two terms. Finally the working app-
roach that participants followed, between “using their intuition” and “following
a specific method” was captured through self-reporting.

Experimental Units. To construct our experimental instruments we first
develop a number of goal models. Two (2) sets of models are developed: symbolic
and numeric, each containing only the corresponding type of contribution links.

Factors Affecting Comprehension of Contribution Links in Goal Models 531

All models consist of one (1) OR-decomposition of hard-goals and an hierarchy
of soft-goals to act as criteria for choosing the optimal choice within the OR-
decomposition. The soft-goal hierarchy has a unique root goal (such as “Overall
Scheduling Quality” of Fig. 1) and the contribution labels are chosen such that
one of the alternatives of the OR-decomposition is optimal compared to the oth-
ers, with respect to the top goal. The optimal is calculated by evaluating the
impact of full satisfaction of each of the children of the OR-decomposition to the
satisfaction of the root soft-goal when the satisfaction values of all other decom-
position children are set to N or zero, and then identifying the child that results
to the maximum such satisfaction. The exact mechanics depend on the type
of model and the corresponding semantics. Consider, for example, the Choose
Schedule decomposition of Fig. 1. To evaluate the impact of alternative Manu-
ally in the left model of Fig. 1 we assign it satisfaction values {FS, ND} while
assuming Automatically stays {NS, ND}. Similarly, for the numeric model on
the right we set s(Manually) = 1 and s(Automatically) = 0. We then recursively
apply the propagation rules of Table 1, or, respectively, Eq. 1 for numeric models,
in order to evaluate the satisfaction labels of the higher level goals up to the root
soft-goal which is the goal of interest.

Model Sampling. We developed the models used for the instrument by picking
a goal structure and populating the contribution links with random contribution
labels such that the optimal alternative has a fixed distance from the second
optimal one, as measured by the satisfaction each induces to the root soft-goal.
This is aimed at allowing sufficient difference between the best and second best
to allow for some intuitive detection, but not too obviously.

Calculating the distance from best to second best alternative is straightfor-
ward in the case of numeric models: the choice of each alternative will result
in a number representing the satisfaction value of the root soft-goal for that
alternative; we simply ensure that the largest value is about 0.4 higher than
the second largest. For the symbolic models, however, the comparison is less
straightforward due to the presence of both satisfaction and denial values. Thus,
to allow for comparisons, we aggregate the two values into one. To do so we
firstly associate qualitative satisfaction labels N, P, F with numeric values 0,
1, 2, respectively. Let then sat(g) and den(g) be the resulting numeric satis-
faction and denial values for goal g. The aggregated satisfaction value is then
sat(g)−den(g) which is an integer in [−2, 2]. For example, the aggregated satis-
faction value of a goal g1 with {PS, FD} is sat(g1)−den(g1) = 1−2 = −1 and of
a goal g2 with {FS, ND}, sat(g2)−den(g2) = 2−0 = 2. Given this aggregation
procedure, we demand that our sample models have a distance of 2 satisfaction
levels. For example, a label configuration in which the best alternative makes the
root soft-goal {FS, ND}, hence aggregated value 2−0 = 2, and the second best
makes the root soft-goal {PS, PD}, hence aggregated value 1− 1 = 0, qualifies
as 2 − 0 = 2. To see why this distance matches the one chosen for the numeric
models for a fair comparison, observe first that the maximum distance between
alternatives in the symbolic case in terms of aggregated value is 4 ({FS, ND}
versus {NS, FD}). The distance we demanded in symbolic models is 2, thus

532 S. Liaskos and W. Tambosi

half of that space. Observing now that the corresponding maximum distance in
numeric models is 1.0, it follows that half-space-size distance would be 0.5. How-
ever we end up with 0.4, slightly biasing against numeric models, as for some of
our structures we fail to find label configurations yielding 0.5 distance.

Instrument and Tasks. For the experimental instrument we develop a total
of six (6) model structures, representing decision problems within three (3)
domains: Choosing an Apartment, Choosing a Course, and Choosing a Means of
Transportation. Thus, two (2) structures are dedicated to each domain, a smaller
one with two alternatives and a larger one with three alternatives. For each of
the six structures two sets of labels (henceforth: labelsets) are sampled in either
of the two frameworks (symbolic vs. numeric). In all, two sets of (3 domains)× (2
sizes)× (2 labelsets) = 12 distinct goal models are constructed and placed in two
separate instruments, the symbolic and the numeric.

Each instrument is then organized as follows. Participants are offered two
video presentations introducing them to the concepts of decision alternatives
and criteria, as well as goal models and the high-level meaning of either type
(depending on instrument) of contribution links. Care is taken so that: (a) the
videos are as much as possible identical to each other (e.g. use of same examples
and points, about same length, same narrator, same visuals etc.), (b) the videos
do not prescribe any exact method for interpreting satisfaction propagation that
would allude to specific semantics. Subsequently, participants are sequentially
presented with the goal models and are asked to enter which of the two or three
alternatives they think is optimal. In the end, they are asked if they used a
specific method in making their decision, and what that method is, or whether
they used their intuition. The CSI, AMAS questionnaires and math ability test
precede the aforementioned tasks. We note that midway in the data collection
process, the instrument underwent the following revisions: (a) the math ability
test was changed and moved to the end and (b) two questions asking for the
participants’ confidence in their responses and method followed were added.

Participants. Participation is sought from two sources: (a) undergraduate stu-
dents of the School of Information Technology, York University, attending a
human computer interaction course, and (b) Mechanical Turk (MT) participants
with a US college degree. We argue in support of these choices below.

4 Results

Sample. A total of 102 participants are included in the analysis: 27 students
(21 males and 6 females) and 75 MT participants (41 males and 34 females).
The sample predominantly consists of STEM (Science, Technology, Engineering,
Mathematics – 49 total) and Business/Economics (22) students/graduates, but
also has a mix of Social Science, Humanities, Arts and other backgrounds (31).
Their CSI scores are slightly skewed towards the analytical side – 61 above
(analytical) and 41 below (intuitive) population average. Of the AMAS scores,
44 are above (more anxious) and 58 are below (less anxious) population average.

Factors Affecting Comprehension of Contribution Links in Goal Models 533

Accuracy Analysis. Accuracy is measured as the raw number (out of 12)
of correct (wrt. semantics) choices of optimal alternative. To explore accuracy
we first attempt to fit a linear model [38] including representation (numeric
vs. symbolic), AMAS Level, CSI Score, and approach as main effects, ignoring
interactions for the moment. Most factors seem to offer statistically significant
or near-significant results: representation (F (1, 97) = 72.2, p < 0.001, Cohen
d = 1.51 – numeric more accurate than symbolic), AMAS Score (F (1, 97) =
5.7, p < 0.05, d = 0.33 – the lower the more the accuracy) and working approach
(F (1, 97) = 5.6, p < 0.05, min robust d = 0.39 – methodical approach more
accurate than intuitive approach). The representation effect is very large and
the rest of the effects are small to medium by Cohen’s d. Thus, those with
below average AMAS level (less anxious) score 0.96 more correct questions than
those above average. Finally, accuracy is the only measure in which a certain
type of mathematical ability tests, described earlier, seem to have a marginally
statistically significant effect (p < 0.025 tested as a lone factor in a separate
model): 2.4 more points (out of the 12) in those arithmetic tests results in 1
more correct response in the decision exercises. A small CSI effect detected
presents increased Type I error probability and does not emerge in robust tests;
it is, thus, dismissed.

Extending the model with interactions we observe that working approach
strongly interacts with representation. Specifically, when participants work
methodically (by their declaration), that seems to significantly improve their
accuracy (3.4 out of 12 more correct answers) but only in numeric models
(F (1, 91) = 6.7, p < 0.05, d = 1.38). Seeing this through a simple effects analy-
sis, whereby we fix approach to a value and explore the effect of representation
to accuracy, the representation effect is only present when participants worked
methodically – about 4/5 (symbolic group) and 3/4 (numeric group) of the par-
ticipants.

Efficiency Analysis. Efficiency, operationalized as the ratio of accuracy over
total response time, is considered only for the 27 student sample, where response
time can be reliably measured; the 75 MT participants are not invigilated thus
their exclusive and uninterrupted focus on the experimental tasks cannot be
guaranteed. Representation, CSI level, AMAS level and math ability and their
interactions are explored. Approach is not considered due to it being highly
unbalanced. Representation appears to have a very strong effect to efficiency
(Yuen’s t(9.41) = 3.8, p < 0.01, min robust d = 0.93) with a gain of 3.07 correct
answers per minute in numeric models versus symbolic ones. However, no other
effect or interaction therewith is observed.

Confidence Analysis. Response confidence and method confidence measure-
ments were introduced to the instrument for the last 45 MT participants only
and thus the analysis is based on that sample. They are measured on a 7-point
“Likert”-style scale and treated as ratio as per normal practice [36]. We again
attempt to explain differences in both measures subject to CSI, AMAS, rep-
resentation mode and approach. In the result, highly analytical respondents
have slightly lower response confidence (F (1, 40) = 4.8, p < 0.05, d = 0.42)

534 S. Liaskos and W. Tambosi

as expected [18]. Representation also appears to have a small (d = 0.23) effect
to response confidence but with higher Type I error chance (p < 0.1). Analysis
of method confidence does not yield notable effects.

Summary and Explanatory Remarks. The results present substantial evi-
dence that the numeric representation according to the linear model of Eq. 1
leads to more compliant decision-making inferences by untrained users and faster
than the qualitative one of Table 1. We can attribute this to the familiarity that
users have with numbers and proportions, on which the numeric model is based,
and the lack thereof for symbolic labels. However, the effect emerges (strongly)
only when the participants say they work methodically, which we interpret as
them developing a deeper and more explicit mental model. It follows that in the
symbolic case either the evoked method/model is in strong disagreement with
the authoritative one, or the latter is correctly guessed but poorly executed. At
the same time, the general lack of correlation between arithmetic ability and
accuracy, assuming that our custom instruments have any reliability, may indi-
cate that participants in the numeric group do not perform the exact mental
calculations as per Eq. 1, which would require to strongly utilize their mental
arithmetic skills, but base their success on an evoked heuristic/approximation
that works as well. Furthermore, counter to our expectation that AMAS Level
would affect only the numeric group it seems to affect both groups, implying the
possibility that the requirement for either kind of symbolic inference is akin to
a mathematical task, in which, in turn, highly math-anxious individuals tend to
perform worse. Finally, we fail to observe any notable effect of cognitive style
trait to accuracy, efficiency or even approach taken, indicating that the index
might not be useful for studying the phenomena at hand, possibly also indicat-
ing exploration of alternative cognitive style constructs [11]. However, the strong
effect of self-reported approach taken suggests that cognitive style remains rele-
vant when seen as choice of cognitive strategy inspired by the characteristics of
the task at hand [18] rather than a trait.

Validity Threats. We briefly address the most important of construct, inter-
nal, external and statistical conclusion validity threats. In terms of construct
validity our fundamental assumption that intuitiveness can be measured by the
alignment between participant-supplied and authoritative inferences can be crit-
icised as avoiding examination of what goes on in participants’ minds when
confronted with an unknown notation. A possible response is pragmatic: the
observed substantial effect on representation accuracy and efficiency is immedi-
ately usable even when theoretical clarity is pending: numbers seem to “just”
be more intuitive for the particular task. A further criticism can be extended
to the ad-hoc development of non-standard math ability tests, which, however,
took place in the absence of suitable standard instruments – and are not major
effects regardless. Two main threats to internal validity revolve around the rep-
resentation factor. On one hand, the “difficulty” of the symbolic models (dis-
tance between first and second optimal) is constructed based on an operation
of comparing satisfaction and denial values that may be argued to be arbi-
trary and off-specification (by [15]). However, in our view, insofar as the two

Factors Affecting Comprehension of Contribution Links in Goal Models 535

representations can be used for the same purpose (comparing alternatives) they
cannot be considered incomparable vis-à-vis that purpose. Thus, one still needs
to address the question of what ways, other than the ones adopted here, can be
considered for fairly constructing absolute preferability distance between satis-
faction levels in a two-valued setting. Furthermore, difference in training quality
can be argued to work against one of the conditions. Such bias is difficult to mea-
sure and control for. We are hoping that our carefully scripted, video-recorded
training videos (versus live lectures commonly adopted in similar studies) offer a
first line of defence against this threat. Threats to external validity concentrate
on the choice of participants and models. We first claim that our participants
being non-experts and (some of them) students does not harm generalizability.
On one hand, there seems to be an implicit desire in the goal modelling com-
munity that non-technical stakeholders (users, owners, clients) should be able
to use such models. On the other hand, although we could not find research
that describes the typical characteristics of either business and systems ana-
lysts or their clients, we cannot assume that they are exclusively of a technical
background. We, thus, find that our participants constitute a good sample of
the population that may be a user of goal models. Furthermore, the choice of
models that we used for the instruments brings unavoidable structural, size and
domain commitments. Larger models, for example, may be less advantageous
for numeric representations, when the method followed does not scale in terms
of cognitive effort. Likewise, the tasks we tested them against (picking an opti-
mal alternative) were very particular. Thus, until research with different models
is conducted, generalizations should be carefully done for models and tasks of
similar characteristics. As a final note on statistical conclusion validity, while we
pre-hypothesized the effect of representation format, the rest of the factors and
interactions thereof were the result of some statistical model exploration. This
exploratory attitude aimed at identifying candidate future research directions
rather than firmly confirming hypotheses. Thus, except for the effect of repre-
sentation, the remaining effects continue to be tentative and subject for further
confirmation.

5 Related Work

There are several research efforts dedicated towards exploring the effectiveness
of common conceptual modeling notations including UML and ER diagrams
[8,10,14,35,37] or process models [5,12,13,31]. Much of the research in the area is
based on various understandability constructs, though there does not seem to be
very strong consensus with regards the definition and exact operationalizations
of such constructs [22]. The concept of intuitiveness, as we introduce it here as
a dimension of understandability, is less frequently considered explicitly, as in
work by Jošt et al., for example, where the intuitive understandability of various
modeling methods are empirically compared [23].

Work focussing on goal models specifically has also emerged. Notable works
are by Horkoff and Yu who devise and evaluate an interactive evaluation tech-
nique for goal models [20], by Caire et al. [6] who experimentally assess the

536 S. Liaskos and W. Tambosi

success of visualization choices for modelling constructs, by Hadar et al. [17]
who compare goal diagrams with use case diagrams on a variety of user tasks
and by Carvallo and Franch who studied empirically the development of strategic
dependency i* diagrams by non-technical stakeholders [7].

Compared to these efforts, our research program has been heavily targeted
towards a specific construct, i.e., contribution links. In earlier work [28], for
example, we attempted an investigation of the qualitative propagation rules of
Table 1. Through an experiment of a nature similar to the one described here,
we observed, among other things, that positive labels and satisfaction values
appear to be more readily understandable than negative labels and denial values.
Likewise, we have also compared the various models for quantitative satisfaction
propagation including the one used here and three versions of the one proposed
by Giorgini et al. [2], to find that there is tendency for participants to follow
some models versus others, motivating further research on the subject. Note that
in all this work our focus is not the effectiveness of just perceiving information
about contributions, which is what, e.g., Moody et al. [33] attempt to improve,
but rather understand how contribution is operationally understood and what
reasoning it inspires. In a fashion somewhat more similar to that of Moody, Caire
et al. [6], i.e., focussing on perception effectiveness, we explored graphical (versus
diagrammatic) ways for representing contribution levels and found that simple
combinations of pie-graphs and bar-graphs allow for better accuracy [24].

6 Conclusions

We presented an experiment for comparing the intuitiveness of symbolic versus
numeric goal models vis-à-vis individual differences and working styles of model
users. A number of experimental participants is presented with decision problems
formalized in either notation and are asked to identify the optimal alternative,
without given much information about the precise meaning of the modelling
constructs. Intuitiveness is attained when participant responses accurately match
the ones each kind of model prescribes to be correct. We find that numeric models
lead participants to more accurate responses when the latter are the result of
adopting a specific working method. We further find that mathematics anxiety
has a mild negative correlation with performance irrespective of representation.
Finally while we fail to observe any notable effect of cognitive style as a trait,
we find it to be relevant as a chosen cognitive strategy.

Future work can zero-in on identifying the source of inference errors and
inefficiencies through distinguishing between mental model adoption and mental
model execution, each being exposed to different sets of biases and influencing
factors. For the task, instruments that enhance explanatory analysis need to
be devised beyond our black-box technique. Qualitative methods and protocol
analysis may prove to be of value. However, rather than just understanding a
specialized task within a specific notation, our long-term objective is to develop
an empirical perspective and toolset transferable to the study of other important
classes of notations, such as business process or entity models.

Factors Affecting Comprehension of Contribution Links in Goal Models 537

References

1. Allinson, C.W., Hayes, J.: The cognitive style index: a measure of intuition-analysis
for organizational research. J. Manag. Stud. 33(1), 119–135 (1996)

2. Alothman, N., Zhian, M., Liaskos, S.: User perception of numeric contribution
semantics for goal models: an exploratory experiment. In: Mayr, H.C., Guizzardi,
G., Ma, H., Pastor, O. (eds.) ER 2017. LNCS, vol. 10650, pp. 451–465. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-69904-2 34

3. Amyot, D., Ghanavati, S., Horkoff, J., Mussbacher, G., Peyton, L., Yu, E.S.K.:
Evaluating goal models within the goal-oriented requirement language. Int. J.
Intell. Syst. 25(8), 841–877 (2010)

4. Amyot, D., Mussbacher, G.: User requirements notation: the first ten years, the
next ten years. J. Softw. (JSW) 6(5), 747–768 (2011)

5. Birkmeier, D.Q., Klockner, S., Overhage, S.: An empirical comparison of the usabil-
ity of BPMN and UML activity diagrams for business users. In: Proceedings of the
18th European Conference on Information Systems (ECIS 2010), pp. 51–62 (2010)

6. Caire, P., Genon, N., Heymans, P., Moody, D.L.: Visual notation design 2.0:
towards user comprehensible requirements engineering notations. In: Proceedings
of the 21st IEEE International Requirements Engineering Conference (RE 2013),
pp. 115–124, July 2013

7. Carvallo, J.P., Franch, X.: An empirical study on the use of i* by non-technical
stakeholders: the case of strategic dependency diagrams. Requirements Eng. 24(1),
1–27 (2018)

8. Cruz-Lemus, J.A., Genero, M., Manso, M.E., Morasca, S., Piattini, M.: Assessing
the understandability of UML statechart diagrams with composite states—a family
of empirical studies. Empirical Softw. Eng. 14(6), 685–719 (2009)

9. Dalpiaz, F., Franch, X., Horkoff, J.: iStar 2.0 Language Guide. The Computing
Research Repository (CoRR) (2016). arXiv:1605.07767

10. De Lucia, A., Gravino, C., Oliveto, R., Tortora, G.: Data model comprehension
an empirical comparison of ER and UML class diagrams. In: Proceedings of the
16th IEEE International Conference on Program Comprehension (ICPC 2008),
Amsterdam, The Netherlands, pp. 93–102 (2008)

11. Epstein, S., Pacini, R., Denes-Raj, V., Heier, H.: Individual differences in intuitive-
experiential and analytical-rational thinking styles. J. Pers. Soc. Psychol. 71, 390–
405 (1996)

12. Figl, K., Laue, R.: Cognitive complexity in business process modeling. In: Moura-
tidis, H., Rolland, C. (eds.) CAiSE 2011. LNCS, vol. 6741, pp. 452–466. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-21640-4 34

13. Figl, K., Recker, J., Mendling, J.: A study on the effects of routing symbol design
on process model comprehension. Decis. Support Syst. 54(2), 1104–1118 (2013)

14. Genero, M., Poels, G., Piattini, M.: Defining and validating metrics for assessing
the understandability of entity-relationship diagrams. Data Knowl. Eng. 64(3),
534–557 (2008)

15. Giorgini, P., Mylopoulos, J., Nicchiarelli, E., Sebastiani, R.: Reasoning with goal
models. In: Spaccapietra, S., March, S.T., Kambayashi, Y. (eds.) ER 2002. LNCS,
vol. 2503, pp. 167–181. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-45816-6 22

16. Guizzardi, R.S.S., Franch, X., Guizzardi, G., Wieringa, R.: Ontological distinc-
tions between means-end and contribution links in the i* framework. In: Ng, W.,
Storey, V.C., Trujillo, J.C. (eds.) ER 2013. LNCS, vol. 8217, pp. 463–470. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-41924-9 39

https://doi.org/10.1007/978-3-319-69904-2_34
http://arxiv.org/abs/1605.07767
https://doi.org/10.1007/978-3-642-21640-4_34
https://doi.org/10.1007/3-540-45816-6_22
https://doi.org/10.1007/3-540-45816-6_22
https://doi.org/10.1007/978-3-642-41924-9_39

538 S. Liaskos and W. Tambosi

17. Hadar, I., Reinhartz-Berger, I., Kuflik, T., Perini, A., Ricca, F., Susi, A.: Com-
paring the comprehensibility of requirements models expressed in Use Case and
Tropos: results from a family of experiments. Inf. Softw. Technol. 55(10), 1823–
1843 (2013)

18. Hammond, K.R., Hamm, R.M., Grassia, J., Pearson, T.: Direct comparison of the
efficacy of intuitive and analytical cognition in expert judgment. IEEE Trans. Syst.
Man Cybern. 17(5), 753–770 (1987)

19. Hopko, D.R., Mahadevan, R., Bare, R.L., Hunt, M.K.: The abbreviated math anxi-
ety scale (AMAS): construction, validity, and reliability. Assessment 10(2), 178–182
(2003)

20. Horkoff, J., Yu, E.S.K.: Interactive goal model analysis for early requirements engi-
neering. Requirements Eng. 21(1), 29–61 (2016)

21. Horkoff, J., Yu, E.S.: Comparison and evaluation of goal-oriented satisfaction anal-
ysis techniques. Requirements Eng. (REJ) 18(3), 1–24 (2011)

22. Houy, C., Fettke, P., Loos, P.: Understanding understandability of conceptual mod-
els – what are we actually talking about? In: Atzeni, P., Cheung, D., Ram, S. (eds.)
ER 2012. LNCS, vol. 7532, pp. 64–77. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-34002-4 5

23. Jošt, G., Huber, J., Heričko, M., Polančič, G.: An empirical investigation of intu-
itive understandability of process diagrams. Comput. Stand. Interfaces 48, 90–111
(2016)

24. Liaskos, S., Dundjerovic, T., Gabriel, G.: Comparing alternative goal model visu-
alizations for decision making: an exploratory experiment. In: Proceedings of the
33rd Annual ACM Symposium on Applied Computing (SAC 2018), Pau, France,
pp. 1272–1281 (2018)

25. Liaskos, S., Jalman, R., Aranda, J.: On eliciting preference and contribution mea-
sures in goal models. In: Proceedings of the 20th International Requirements Engi-
neering Conference (RE 2012), Chicago, IL, pp. 221–230 (2012)

26. Liaskos, S., Khan, S.M., Soutchanski, M., Mylopoulos, J.: Modeling and reasoning
with decision-theoretic goals. In: Ng, W., Storey, V.C., Trujillo, J.C. (eds.) ER
2013. LNCS, vol. 8217, pp. 19–32. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-41924-9 3

27. Liaskos, S., McIlraith, S., Sohrabi, S., Mylopoulos, J.: Representing and reasoning
about preferences in requirements engineering. Requirements Eng. J. (REJ) 16,
227–249 (2011)

28. Liaskos, S., Ronse, A., Zhian, M.: Assessing the intuitiveness of qualitative contri-
bution relationships in goal models: an exploratory experiment. In: Proceedings of
the 11th ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM 2017), Toronto, Canada, pp. 466–471 (2017)

29. Liaskos, S., Tambosi, W.: Comparing the comprehensibility of numeric versus sym-
bolic contribution labels in goal models: an experimental design. In: Proceedings
of the MODELS 2018 Workshop on Human Factors in Modeling (HuFaMo 2018),
Copenhagen, Denmark, pp. 738–745 (2018)

30. Maiden, N.A.M., Pavan, P., Gizikis, A., Clause, O., Kim, H., Zhu, X.: Making deci-
sions with requirements: integrating i* goal modelling and the AHP. In: Proceed-
ings of the 8th International Working Conference on Requirements Engineering:
Foundation for Software Quality (REFSQ 2002), Essen, Germany (2002)

31. Mendling, J., Strembeck, M.: Influence factors of understanding business process
models. In: Abramowicz, W., Fensel, D. (eds.) BIS 2008. LNBIP, vol. 7, pp. 142–
153. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79396-0 13

https://doi.org/10.1007/978-3-642-34002-4_5
https://doi.org/10.1007/978-3-642-34002-4_5
https://doi.org/10.1007/978-3-642-41924-9_3
https://doi.org/10.1007/978-3-642-41924-9_3
https://doi.org/10.1007/978-3-540-79396-0_13

Factors Affecting Comprehension of Contribution Links in Goal Models 539

32. Moody, D.L.: The “Physics” of notations: toward a scientific basis for constructing
visual notations in software engineering. IEEE Trans. Softw. Eng. 35(6), 756–779
(2009)

33. Moody, D.L., Heymans, P., Matulevičius, R.: Visual syntax does matter: improving
the cognitive effectiveness of the i* visual notation. Requirements Eng. 15(2), 141–
175 (2010)

34. Mylopoulos, J., Chung, L., Liao, S., Wang, H., Yu, E.: Exploring alternatives during
requirements analysis. IEEE Softw. 18(1), 92–96 (2001)

35. Purchase, H.C., Welland, R., McGill, M., Colpoys, L.: Comprehension of diagram
syntax: an empirical study of entity relationship notations. Int. J. Hum. Comput.
Stud. 61(2), 187–203 (2004)

36. Rosnow, R.L., Rosenthal, R.: Beginning Behavioral Research: A Conceptual
Primer, 6th edn. Pearson Prentice Hall, Upper Saddle River (2008)

37. Shoval, P., Frumermann, I.: OO and EER conceptual schemas: a comparison of
user comprehension. J. Database Manag. (JDM) 5(4), 28–38 (1994)

38. Tabachnick, B.G., Fidell, L.S.: Using Multivariate Statistics, 6th edn. Pearson,
London (2012)

39. Yu, E.S.K.: Towards modelling and reasoning support for early-phase requirements
engineering. In: Proceedings of the 3rd IEEE International Symposium on Require-
ments Engineering (RE 1997), Annapolis, MD, pp. 226–235 (1997)

iStar-p: A Modelling Language
for Requirements Prioritization

Cinthya Flório1,2 , Maria Lencastre1 , João Pimentel3(&) ,
and João Araujo4

1 Universidade de Pernambuco, Recife, Brazil
mlpm@ecomp.poli.br

2 Universidade Federal de Pernambuco, Recife, Brazil
ccf@cin.ufpe.br

3 Universidade Federal Rural de Pernambuco, Recife, Brazil
joao.hcpimentel@ufrpe.br

4 Universidade Nova de Lisboa, Lisbon, Portugal
p191@fct.unl.pt

Abstract. This paper proposes the iStar-p model aiming to provide a visual
requirements modelling language with prioritization information. This model
extends i*, a goal-oriented modeling language, by including essential prioriti-
zation information, such as prioritization technique, prioritization criteria, the
involved stakeholders in the prioritization and their weight, as well as the
requirements priority. Early evaluation of the proposal indicates that not only it is
easy to be applied and useful, but it also increases the transparency of the pri-
oritization process, by explicitly expressing the factors used to calculate priorities.

Keywords: Requirements engineering � Requirements prioritization �
Goal oriented requirements engineering

1 Introduction

Cost, staff limitations, market, and user pressures often constrain software development
projects. In this context, requirements prioritization is a fundamental task [7, 8] since it
assists in the selection of the essential requirements, by considering criteria like benefits
to the business, risks involved, frequency of use, legal requirements, as well as cost,
and development time [13, 16].

Studies such as [6, 15], and [2] emphasize the relevance of visual representations of
requirements, in addition to textual ones. In [6] the authors also observe that visual-
ization is a form of computing, the goal of which is to arouse consciousness and
insight; it transforms data for easier assimilation by an individual’s sense of sight.
Nevertheless, there is a lack of visual representations targeting at this specific activity
of the Requirements Engineering (RE) process, as well as to organize, structure and
represent the information that involves the prioritization of requirements [16].

Prioritization of requirements is an often-neglected sub-activity of the analysis and
negotiation phase within the RE process. Four preparatory activities can be established
to accomplish the requirements prioritization: select stakeholders, determine

© Springer Nature Switzerland AG 2019
A. H. F. Laender et al. (Eds.): ER 2019, LNCS 11788, pp. 540–548, 2019.
https://doi.org/10.1007/978-3-030-33223-5_44

http://orcid.org/0000-0002-7417-9248
http://orcid.org/0000-0002-8032-8801
http://orcid.org/0000-0002-7441-0796
http://orcid.org/0000-0001-5914-1631
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33223-5_44&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33223-5_44&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33223-5_44&domain=pdf
https://doi.org/10.1007/978-3-030-33223-5_44

requirements to be prioritized, define prioritization criteria and select the prioritization
technique(s) to be applied [13]. The stakeholder’s selection is of fundamental impor-
tance and should consider a representative of the development team, a project manager,
a representative of the user/client and a quality manager. The application of prioriti-
zation techniques demands time and availability of stakeholders, as well as dependency
information between requirements. However, there is a lack of visual mechanisms to
help requirements engineers defining strategies for executing the prioritization [16].

Although the literature presents many modelling languages specific to the domain
of RE, [17, 19] and [20], they do not support the representation of specific features of
the prioritization of requirements. Characteristics that are not sufficiently available in
these languages include prioritization techniques to be adopted, criteria for application,
stakeholders, and the weight of stakeholders in the prioritization process. However,
some approaches (e.g., [10–12]), have elements and relationships that contribute to the
reasoning and analysis of the prioritization of requirements. Nevertheless, [4] observes
that many aspects of requirements prioritization are still neglected and treated
incompletely or superficially.

The purpose of this work is to provide a visual representation to support require-
ments prioritization in requirements models. Here we focus on social goal models, e.g.,
i* models. The objective is to provide support to the strategic planning of requirements
prioritization through the provision of visual representation, considering that this can
help cognitively in the accomplishment of this activity. The proposal defines the iStar-
p, an extension of the i* language [5, 17] developed not only based on interviews with
practitioners, but also on a systematic mapping review. Early evaluation of the iStar-p
indicates that the proposal is both easy to apply and useful, even though it was con-
sidered too time-intensive due to the lack of tool support.

The organization of this paper is described as follows. Section 2 discusses the
methodology. Section 3 presents the iStar-p proposal. Section 4 shows evaluation
efforts. Section 5 discusses related work. Finally, Sect. 6 presents conclusions and
points out directions for future work.

2 Methodology

The first step was to identify the main concepts of the requirements prioritization
domain. This was achieved through a systematic mapping review (SMR) on the topic,
presented in [3], and through interviews with practitioners [4]. From the 52 concepts
identified, seven were deemed essential: requirements identification, requirements
priority, prioritization technique, prioritization criteria, stakeholder identification,
stakeholders’ weight, and the number of stakeholders. In the SMR, it was also observed
the lack of mechanisms to support the visual representation of the essential components
that are part of the requirements’ prioritization process.

The second step was to decide either to create an entirely new language or to extend
an existing one. We chose to extend the i* modeling language, as we detected that i*
already has some elements that help support the prioritization and that i* current
approaches for prioritization specification lack expressiveness [4]. The i* (iStar) lan-
guage has a broad research community [9]. The iStar 2.0 standard [5] was adopted as

iStar-p: A Modelling Language for Requirements Prioritization 541

the basis for this proposal. Three concepts of the i* language, mainly, make it a good
starting point for prioritizing requirements: actors, refinements and contribution links.

Therefore, the strategy used for this proposal was the extension of the i* language
aiming to support planning and executing requirements prioritization, called iStar-p. It
includes two sub-models: SPlan (sub-model for planning) and SPrio (sub-model for
prioritization). These new sub-models comprehend new elements, making i* more
expressive for the context of requirements’ prioritization. After the iStar-p model went
through the first round of evaluation with practitioners, in a first experiment, a new
version of the model was proposed (see Sect. 3). To assess the suitability of the iStar-p
model, for usage with different requirements prioritization techniques, we analyzed the
most cited and used ones [1].

3 iStar-p: A Model for Requirements Prioritization

The core idea of iStar-p is to include prioritization onto regular i* models. On the one
hand, there is (meta) information about the prioritization process: stakeholders’
weights, prioritization technique, and the weight of each prioritization criteria. On the
other hand, there are the prioritization values assigned by the stakeholders to each
element of the model (i.e., the prioritization itself). SPlan represents the former sub-
model (Fig. 1) and, the SPrio represents the latter sub-model (Fig. 2).

Figure 1 shows an example, using the SPlan model, of a prioritization strategy.
Figure 1A presents a new kind of actor: Prioritization Team. The icons on top of this
actor represent the stakeholders that participate in the prioritization process: project
manager, developers, and users. The circle, on top of each of these icons, represent
their weights: 2, 3, and 5, respectively. The resource element, filled with a “system”
topic, indicates the system (or part of the system) being prioritized (Medi@). The
resource, filled with a “technique” topic, indicates the prioritization technique adopted

(A) (B)

Stakeholder Weight

Project manager 2
Developer 3

User 5

Prioritization technique Wiegers’ Matrix

Prioritization criteria Weight

Benefit 4
Penalty 2

Cost 2
Risk 2

Fig. 1. Meta information instantiated for Wiegers’ Matrix with the SPlan sub-model

542 C. Flório et al.

(Wiegers’ Matrix), together with the prioritization criteria to be used (if any). In this
example, the criteria are benefit (weight 4), penalty (weight 2), cost (weight 2), and risk
(weight 2).

In Fig. 1B, we display the equivalent text information, as a table, for comparison’s
sake. Figure 2 shows the Medi@ example with prioritization elements considering the
three participants and four criteria, according to the strategy defined in Fig. 1. The
prioritization values, assigned to each requirement, are visually displayed as matrices,
where rows represent stakeholders and columns represent prioritization criteria (Fig. 2).
Thus, each cell in a matrix represents the value assigned by a stakeholder to an element,
regarding a particular prioritization criterium. Observe that the participants and criteria,
indicated in the matrix, vary according to the project.

In this example, as defined in the SPlan (Fig. 1), the participants are Project
manager, Developers, and Users. The criteria are Benefit, Penalty, Development Cost,
and Risk. Icons are preferably used instead of text, to prevent bloating the model with
too much text. The prioritization element is linked to its respective element through a
Prioritizes link, labeled with the letter ‘P’.

The iStar-p model can be used both for data gathering and data visualization. In
data gathering, participants must receive a model with empty matrices (as shown in
Fig. 2), where they should write down the values they assign to each requirement/
criterium pair. For data visualization, a consolidated model with the input of every
stakeholder and (possibly) calculated priority values can be used as an input for conflict
identification, negotiation, release planning, and so on. For instance, in the matrices of

Fig. 2. Empty prioritization elements (matrices) - example of an SPrio sub-model

iStar-p: A Modelling Language for Requirements Prioritization 543

Fig. 2, a fifth column could be added with averaged priority values calculated based on
stakeholders’ and criteria’s weights.

4 Evaluation

The iStar-p was evaluated using two experiments (Experiment-I and Experiment-II),
with practitioners of two different university courses: UPE and UFPE (see Table 1).
During the execution phase, the subjects followed these steps: stakeholders’ selection,
scope definition, criteria selection (planning); and fill the qualities matrices, calculate
and rank qualities priorities, analyze qualities impacts on goals and tasks, fill the goal
and task matrices, calculate and rank goals and tasks priorities (prioritization itself). For
uniformity, all subjects used the same prioritization technique: hundred dollars allo-
cation. This one was selected as it is the most cited ordinal scale technique [1].

Regarding Ease of Learning, 60% of respondents strongly agreed that the proposal
is easy to learn, 20% just agreed, and the remaining 20% were neutral. Thus, most of
the respondents stated that the proposal is easy to learn. Moreover, all respondents
agreed that the proposal is easy to use (47% just agreed, and 53% strongly agreed).
Expressly, most respondents agreed that the use of prioritization matrices within i*
models facilitate prioritization: 80% strongly agreed, 13% just agreed, 7% were neutral.

Table 1. Experiment summary

Experiment-I (UPE, Brazil) Experiment-II
(UFPE, Brazil)

Context Master course in Computer Eng. Undergrad course on
Computer Science

Number of
subjects

8 participants 15 participants

Subjects
profile

4 Developers, 1 Tester, 1 Interaction Designer
(UX), 1 Business Analyst and 1 Not specified

5 Developers
4 Users and
6 Not specified

Previous i*
knowledge

No Yes

Experiment
duration

3 h 1 h 50 min

Training 2 classes about: i* Model and Requirements
Prioritization

1 Requirements
Prioritization class

Prioritization
technique

Wiegers Matrix Hundred Dollar
($100)

Used
example

Adapted Media@ system Adapted Media@
system

iStar-p
version

1 2.0 – SPlan and
SPrio sub-models

544 C. Flório et al.

Regarding Transparency, most subjects agreed that the proposal made it clear how
the final priority values are obtained: 40% strongly agreed, 47% just agreed, and 13%
were neutral. Lastly, most respondents considered the proposal satisfactory: 20%
strongly agreed, 73% just agreed, and 7% were neutral. Nonetheless, results regarding
fit for use by the industry were less positive: 13% strongly agreed that the proposal is fit
for use, 40% just agreed, 40% were neutral, and 7% disagreed. We hypothesize four
factors that may have led to this result: (i) the perceived time-effort required to use the
proposal with real examples; (ii) the use of i*, which is not widely adopted by the
industry; (iii) the perceived low importance of prioritization; and (iv) lack of tool
support. Full results are available in Table 2. It shows that the majority of the partic-
ipants agree or fully agree that the proposed model is easy to learn, useful in planning
the prioritization, clear in the execution of prioritization, and understanding the
meaning of the elements, among other aspects. However, some participants claimed
that they would not use the model in a professional environment, because of the
consequences that would be generated by the lack of tooling support (such as more
time and effort). Participants also reported that it took time and effort to carry out the
planning and execution of prioritization.

Table 2. Questionnaire answers with the percentage of each answer

iStar-p model proposal Experiment I Experiment II

1. Easy to learn (A-50%), (D-50%) (SA-60%), (A-20%),
(U-20%)

2. Easy of execute the prioritization (SA-25%), (A-50%),
(U-13%), (D-12%)

(SA-53%), (A-47%)

3. Prioritization matrix along with i* elements
facilitate prioritization

(SA-38%), (A-25%),
(D-25%), (U-12%)

(SA-80%), (A-13%),
(U-7%)

4. Clearness and understandability of the visual
elements’ representation & scale used

(SA-25%), (A-38%),
(U-25%), (D-12%)

(SA-60%), (A-27%),
(U-13%)

5. Clarity about how prioritization is executed
(transparency)

(SA-25%), (A-38%),
(U-25%), (D-12%)

(SA-40%), (A-47%),
(U-13%)

6. Usefulness of documenting the prioritization
strategy (SPlan sub-model)

(SA-38%), (A-37%),
(D-25%)

(SA-47%), (A-33%),
(U-20%)

7. Usefulness as a documentation artefact for
prioritization

(SA-38%), (A-37%),
(U-25%)

(SA-13%), (A-67%),
(U-13%)

8. Fidelity of each visual prioritization element
representation

(SA-25%), (A-38%),
(U-25%), (D-12%)

(SA 47%), (A-33%),
(D-20%)

9. Satisfaction with Prioritizing with the model (SA 25%), (A-50%),
(U-13%), (D-12%)

(SA-20%), (A-73%),
(U-7%)

10. Potential use in professional environments (SA-13%), (A-37%),
(U-25%), (D-25%)

(SA-13%), (A-40%),
(U-40%), (D-7%)

Legend: Strongly agree (SA) - Agree (A) - Undecided (U) - Disagree (D) - Strongly disagree
(SD)

iStar-p: A Modelling Language for Requirements Prioritization 545

Four types of validity threats can be observed: conclusion, internal, construct and
external. Conclusion validity: We had only 8 participants in Experiment-I and 15
participants in Experiment-II, compromising the statistical pertinence of the results. We
plan to perform other experiments with a more significant number of participants,
including experts and practitioners. Internal validity: The results may be compromised
by a fatigue effect as the experiment lasted for almost 2 h; also, each experiment group
has used only one prioritization technique and only one example, which may have an
impact on the results of the evaluation. Construct validity: We defined the experiment
with different tasks (e.g., selection of stakeholders, scope definition, criteria selection,
rank and analyze qualities, calculate and rank goals and task priorities). This could be
confusing for the participants, but we mitigated this threat by providing a tutorial on the
relevant topics for the experiment (requirements prioritization concepts, planning, and
techniques, and the iStar-p language). Also, giving the tutorial may have caused an
evaluation apprehension threat. To mitigate this, we have not informed them about
what was being tested. Also, the lack of a control group reduces the value of this
empirical evaluation since there is no basis upon which to contrast the results of the
treatment group. External validity: The participants had little to no prior knowledge in
requirements prioritization; this can be used to generalize the results for the acceptance
of the approach by non-expert stakeholders.

5 Related Work

There are some approaches that include representations of prioritization elements. [12]
proposes the use of AHP with i* models to obtain quantitative indicators of softgoal
satisfaction. [10] presents an approach to select alternatives on i* models, based on
desired levels of satisfaction of softgoals; so it focuses more specifically on decision
making, than on prioritization. Both [12] and [10] can be used together with iStar-p.
[12] enables the elicitation of precise values for contribution links, which can aid
stakeholders when prioritizing the elements of the model with iStar-p. On the other
hand, users can prioritize qualities with iStar-p and use that information when making
decisions with the approach of [10]. [11] shows the application of a decision-making
technique along with the NFR Framework [18]; this approach is similar to ours, but it is
focused on a specific technique, whereas our proposal is technique agnostic; they can
be considered complementary since ours is not suitable for pair-wise comparison
techniques. [14] provides support for combinatorial optimization in the RE domain; it
allows calculating values, to find solutions to constraints, and to perform queries on
requirements models; whereas it focuses on processing support for automatic evalua-
tion, our proposal focuses on visual support for manual data gathering and
visualization.

546 C. Flório et al.

6 Conclusion and Future Work

In this paper, we propose the iStar-p, a modelling language that extends i* to support
five identified essential elements of requirements prioritization, from [3]. The
remaining two, requirements identification (id) and the number of stakeholders, can be
generated/calculated automatically through tool support. In this context, i* is a suitable
basis, since it can express additional relevant information such as stakeholders’ goals,
the interplay between its elements, and the effect of alternatives on desired qualities.

Even though we carefully designed the concrete syntax of this proposal, a study of
its semiotics is a promising venue to identify further improvement possibilities.
Additional mechanisms can also be analyzed to prevent data overload. We have
conducted an early empirical evaluation with practitioners and undergrad students.
Despite positive results, further evaluation is required not only with more subjects but
also in industry settings, to assess the usefulness of the proposal accurately. Finally, the
development of a supporting tool could facilitate the adoption of the proposal.

Acknowledgements. This study was financed in part by the Coordenação de Aperfeiçoamento
de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001, NOVA LINCS
UID/CEC/04516/2013, and Fundação de Amparo à Ciência e Tecnologia do Estado de Per-
nambuco (FACEPE).

References

1. Achimugu, P., Selamat, A., Ibrahim, R., Mahrin, M.: A systematic literature review of
software requirements prioritization research. Inf. Softw. Technol. 56(6), 568–585 (2014)

2. Carod, N., Cechich, A.: Cognitive profiles in understanding and prioritizing requirements: a
case study. In: IEEE 5th International Conference on Software Engineering Advances (2010)

3. Cavalcanti, C., Lencastre, M., Fagundes, R., Santos, T., Ferreira, D.: Mechanisms to support
requirements prioritization: a systematic mapping review. In: 21st Workshop on Require-
ments Engineering (2018). https://doi.org/10.17771/pucrio.wer.inf2018-52

4. Cavalcanti, C.: Planejamento e Priorização de Requisitos em Modelos i*. Masters
dissertation. University of Pernambuco, Brazil (2017)

5. Dalpiaz, F., Franch, X., Horkoff, J.: iStar 2.0 language guide. arXiv preprint arXiv:1605.
07767 (2016)

6. Gotel, O.C., Marchese, F.T., Morris, S.J.: On requirements visualization. In: 2nd
International Workshop on Requirements Engineering Visualization - REV 2007. IEEE
(2007)

7. Greer, D.: Requirements prioritisation for incremental and iterative development. In:
Requirements Engineering for Sociotechnical Systems, pp. 100–118. IGI Global (2005)

8. Hofmann, H.F., Lehner, F.: Requirements engineering as a success factor in software
projects. IEEE Softw. 4, 58–66 (2001)

9. Horkoff, J., et al.: Taking goal models downstream: a systematic roadmap. In: IEEE RCIS
(2014)

10. Horkoff, J., Yu, E.: Finding solutions in goal models: an interactive backward reasoning
approach. In: Parsons, J., Saeki, M., Shoval, P., Woo, C., Wand, Y. (eds.) ER 2010. LNCS,
vol. 6412, pp. 59–75. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
16373-9_5

iStar-p: A Modelling Language for Requirements Prioritization 547

http://dx.doi.org/10.17771/pucrio.wer.inf2018-52
http://arxiv.org/abs/1605.07767
http://arxiv.org/abs/1605.07767
http://dx.doi.org/10.1007/978-3-642-16373-9_5
http://dx.doi.org/10.1007/978-3-642-16373-9_5

11. Kassab, M.: An integrated approach of AHP and NFRs framework. In: 7th IEEE
International Conference on Research Challenges in Information Science (2013)

12. Liaskos, S., Jalman, R., Aranda, J.: On eliciting contribution measures in goal models. In:
20th IEEE International Requirements Engineering Conference (2012)

13. Pohl, K.: Requirements Engineering: Fundamentals, Principles, and Techniques. Springer,
Heidelberg (2010)

14. Regnell, B., Kuchcinski, K.: A scala embedded DSL for combinatorial optimization in
software requirements engineering. In: First Workshop on Domain Specific Languages in
Combinatorial Optimization, pp. 19–34 (2013)

15. Savio, D., Poothiyot, A.P.: Extended support for visualizing requirements: filtering and
tracing requirements in ReBlock. In: IEEE 5th International Workshop on Requirements
Prioritization and Communication (RePriCo), pp. 11–14. IEEE (2014)

16. Thakurta, R.: Understanding requirement prioritization artifacts: a systematic mapping study.
Requirements Eng. 22(4), 491–526 (2017)

17. Yu, E., Giorgini, P., Maiden, N., Mylopoulos, J. (eds.): Social Modeling for Requirements
Engineering. MIT Press, Cambridge (2011)

18. Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-functional Requirements in Software
Engineering, vol. 5. Springer, Heidelberg (2000). https://doi.org/10.1007/978-1-4615-5269-7

19. Van Lamsweerde, A.: Requirements Engineering: From System Goals to UML Models to
Software. Wiley, Hoboken (2009)

20. Kaiya, H., Horai, H., Saeki, M.: Agora: attributed goal-oriented requirements analysis
method. In: IEEE Joint International Conference on Requirements Engineering (2002)

548 C. Flório et al.

http://dx.doi.org/10.1007/978-1-4615-5269-7

On the Use of Requirement Patterns to Analyse
Request for Proposal Documents

Dolors Costal , Xavier Franch , Lidia López ,
Cristina Palomares , and Carme Quer(&)

Universitat Politècnica Catalunya (UPC-BarcelonaTech), Barcelona, Spain
{dolors,franch,llopez,cpalomares,cquer}@essi.upc.edu

Abstract. Requirements reuse is still today a difficult goal to achieve. One
particular context in which requirements reuse may give more benefits than
costs is that of call for tenders projects, due to the similarity of the requirements
documents (which take the form of requests for proposal documents, RfPs) from
one project to another. In this paper, we present an approach aimed at making
systematic the assessment of RfPs that technology providers need to conduct in
order to decide whether they present a bid or not in a call for tenders project. The
approach extends a metamodel we already defined for the former PABRE
method, which has a similar goal but from the perspective of the organization
that issues the call for tenders. The method is illustrated with an exploratory case
study in the field of the railway systems domain.

Keywords: Requirements reuse � Requirement patterns � Call for tenders �
Request for Proposals � Bidding process

1 Introduction

Reuse is a cornerstone activity in all facets of engineering, and Requirements Engi-
neering (RE) is not an exception. There are several recent works reporting on
approaches to requirements reuse (see [1] for a literature review) and in particular,
evidence exists that in industry, reuse practices are not yet commonplace [2].

One of the contexts where requirements reuse may pay off occurs with call for
tenders processes articulated around the needs for some technological solution exposed
in Request for Proposals (RfPs). Multiple RfPs in a same domain (e.g., railway domain)
or for the same type of systems (e.g., business applications) may be similar to each
other, which opens the way to requirements reuse. In previous work, we have explored
one particular approach to requirements reuse, namely the use of requirement patterns,
in order to help customers to efficiently produce new RfPs [3, 4]. Therefore, the focus
of this previous work has been on the customer side. In this paper, we want to explore
if the adoption of a pattern-based approach to requirements reuse can also be of help to
technology providers when processing the RfP.

© Springer Nature Switzerland AG 2019
A. H. F Laender et al. (Eds.): ER 2019, LNCS 11788, pp. 549–557, 2019.
https://doi.org/10.1007/978-3-030-33223-5_45

http://orcid.org/0000-0002-7340-0414
http://orcid.org/0000-0001-9733-8830
http://orcid.org/0000-0002-6901-9223
http://orcid.org/0000-0003-4722-5584
http://orcid.org/0000-0002-9000-6371
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33223-5_45&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33223-5_45&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33223-5_45&domain=pdf
https://doi.org/10.1007/978-3-030-33223-5_45

2 Background

We consider background on requirement patterns and on RfPs. The seminal book by
Withall [5] proposed a first exhaustive catalogue of patterns and, since then, other
approaches have been proposed [6, 7]. Requirement pattern approaches differ in several
respects, see Barros-Justo et al.’s [8]. The most obvious one is the language used to
express the requirements, being natural language and use cases the two most popular
cases. Other factors that need to be considered are the granularity of the object under
reuse, the intended impact in the RE process and the scope.

Regarding RFPs, there are approaches focused on customers and others on pro-
viders. Lauesen has approached the customer perspective of call for tenders’ processes
in several works (e.g., [9]). He has provided some guidelines for the customer, which
he reports are not always applied. Our PABRE method [3] was designed for supporting
the customer in the preparation of the RfPs. It is based on the creation of pattern
catalogues [10, 11] with a well-defined metamodel [12]. The requirements that are part
of a RfP are created by instantiating the patterns. On the providers side, Paech et al.
[13] report the challenge to deal with large RfPs in a tight period with little or no
communication with the customer. They propose a risk-based approach in which dif-
ferent types of risks are sought and identified in new RfPs. The resulting analysis is the
input to the RfP evaluation and then it is used to decide about the actions to be taken in
the bidding process. From a similar perspective, Breiner et al. [14] propose a 4-phase
process to deal with RfPs in IT providers to be tailored in every individual bidding.
Both providers approaches are similar in their methodological stand, but they lack of a
central repository of knowledge and have little tool support.

In this paper we address the provider perspective to call for tenders processes by
applying a pattern-based approach to the assessment of RfPs. We use assets built in the
PABRE method and evolve them to include the new relevant information.

3 Research Goal and Research Questions

Our goal is to evaluate the benefits of a pattern-based approach on assessing RfPs
from the point of view of technology providers in the context of multiple call for
tenders processes in the same domain. This goal is decomposed into two research
questions:

RQ1. What type of information needs to be added to requirement patterns to help
technology providers in their assessment of RfPs?

RQ2. Does the use of requirement patterns bring benefits to technology providers
when organizing their bidding processes?

4 Patterns in the Railway Domain

As case study for the research questions, we used six RfPs from the railway domain
that the Viennese Siemens Mobility department made available for this research in the
context of the OpenReq EU project [15]. The RfPs are composed of 17,556 candidate

550 D. Costal et al.

requirements, classified depending on whether they were considered as a real
requirement (DEF) or as merely informative (Prose). For each candidate requirement
the document also includes the domain or department of Siemens that is the one that
had to do the analysis of the compliance of the requirement. One example of
requirement is “On the body of the half barrier 3 light units are mounted. Lights on the
half barrier must be visible at night from at least 20 m under normal visibility con-
ditions”, while an example of Prose is “The purpose of the new computerized inter-
locking system is described in the present Requirements”.

From the RfPs we constructed 25 patterns of 6 diverse categories. Table 1 sum-
marizes the classification of these patterns and the number of requirements out of the
RfPs from which each one has been obtained.

One of the constructed patterns, Remove Facility, is depicted in Fig. 1 to present
requirement patterns elements. The Remove Facility pattern can only take one form
(Facility basic pattern form). The pattern form has a core part (Fixed part) that
expresses its basic linguistic template. It also contains three optional extensions to this
core part (Extended parts) to describe the levels of the facility to remove, its size and its

Table 1. Classification of the generated patterns

Type Category Pattern #Reqs

Infrastructure
Management

Facility Removal Remove Facility 3
Equipment Replacement Replace Equipment 18

Supporting
Systems

Video Surveillance System
Installation

Require Video Surveillance System 2
Establish Video Cameras Location 2
Establish Video Cameras Mounting 1

Establish Video Cameras Protection 1
Establish Monitor Computers 1

Establish Monitor Location 2
Establish Monitor Screen 1
Establish Monitor Display Options 1

Establish Network Connection Features 2
Establish Recording Functions 1

Automatic Block Signaling
System Installation

Install Automatic Block Signaling System 10
Modify Automatic Block Signaling System 16

Non-technical Training Make Training Plan 2

Supply Training Documents 2
Supply Training Equipment 2

Establish Trainees 2
Establish Training Language 1
Evaluate and Certify Trainees 1

Warranty Establish Warranty Period 1
Provide Assistance 1

Provide Monitoring Equipment 1
Remove Defects During Warranty Period 5
Replace Product During Warranty Period 1

On the Use of Requirement Patterns to Analyse Request 551

location, respectively. The bold tags enclosed among “%” are representing parameters
that would correspond to specific values in the RfPs (for instance, the parameter %
typeOfFacility% could be instantiated with the value “Watchman’s Post or Family
House”). The Domain and Compliance clauses are explained in the next section.

5 RQ1: Pattern Attributes

As result of RQ1, we plan to extend the metamodel of the existing PABRE method [12]
with new classes, associations and attributes required. Figure 2 shows the result.

We include in the figure only the relevant excerpt of the PABRE metamodel (e.g.,
we hide information about classification schemas) over which we include the new
elements. Original PABRE classes are filled in salmon color and they show the
structure introduced in the previous section: a Requirement Pattern can take one
or more Pattern Forms; each Pattern Form is characterized by a Fixed Part
and one or more Extended Parts. In the metamodel, an abstract class Pattern
Part is introduced for convenience. Dependency allows establishing dependencies
between patterns. Glossary Term and Relationship between terms facilitate to
deal with synonymy, ambiguity, etc. For the rest, we distinguish:

Information at the organization level (classes in white background). This infor-
mation needs to be defined only once by the organization:

• Class Domain. The classification of patterns into domains allows selecting the
department that will assess every requirement in the RfP. More precisely, every
atomic component inside the structure of a pattern, i.e., a part, should be assigned to
one domain. We allow this to be made at three different levels: individually at every
part, at the level of a pattern form (meaning that all the parts of a pattern form
belong to the same domain) and at the level of a pattern (meaning that all the forms
of a pattern – and transitively all of its parts– belong to this domain). To model this
comfortably, we introduce an abstract class Level. One or more Departments

Remove Facility
Goal: Remove a room or an existing building
Pattern form: Facility basic
Fixed part: In %railwayLocation% the contractor shall remove a

%typeOfFacility%.
Extended parts:
EP1: Levels of the facility

Template: The facility is a %facilityLevels% facility.
Compliance: %facilityLevels% is under 9 levels

EP2: Size of the facility
Template: The facility has %units% %unitMeasure%

EP3: Facility location
Template: The facility is identified in the cadastral plot %ca-

dastralIdenfication% of the %districtName%
Compliance: - The facility is located in a place accessible by road

- The facility is situated on a stable ground
Domain: Installation_Local

Fig. 1. Remove Facility requirement pattern

552 D. Costal et al.

will participate in the assessment of all requirements of a given Domain. In Fig. 1,
we show that the Remove Facility pattern has Installation_Local as domain.

• Class Assessment Factor. Companies will assess RfPs with respect to factors
like cost, effort or risk. Its instances are linked to Value so that the values for every
assessment factor can be explicitly defined. For instance, companies can define risk
as Assessment Factor, with six possible values (Type1 to Type6) [13].

• Class Compliance Rule. Every Pattern Part may have, directly or indi-
rectly, either (through its pattern form or its pattern), one or more Compliance
Rules that express a condition to be measured with respect to some Assessment
Factors. The purpose of Compliance Rules is to give providers a checklist to
decide if every (part of a) requirement appearing in the RfP can be eventually
satisfied or not. The class Level is used with the same purpose as in Domain. In
Fig. 1, we show three compliance rules attached to two different extended parts,
expressing a restriction on the number of levels and two restrictions on the facility
location.

Information at the project level (classes in yellow background). This information
needs to be defined at every call for tenders project:

• The RfP includes Requirements that can be decomposed into atomic Parts of
Requirements (PoR). E.g., “on cadastral plot 362, cadastral district Acme
Acres” is a PoR about removing a facility that provides its location.

• Association class Identification. These PoR are the ones matching Pattern
Parts by giving values to the parameters (not shown in the figure): a PoR may
match one Pattern Part, while one Pattern Part can eventually be matched
to several PoR. This matching is kept by the Identification association class.
For instance, the identification “The facility is identified in the cadastral plot
cadastral plot 362 of the Acme Acres district” corresponds to the matching of the
previous PoR example and the Facility location part of the Remove Facility pattern

Fig. 2. Extending the PABRE metamodel with information fit for technology providers (Color
figure online)

On the Use of Requirement Patterns to Analyse Request 553

(see Fig. 1). If a PoR does not match any Pattern Part, this means that this
PoR is not covered by the current catalogue (i.e., must be handled manually).

• Association class Compliance Level. For every Compliance Rule associ-
ated to a Pattern Part identified in a PoR, it is required to propose a Com-
pliance Level in the form of a Value for each of its Assessment
Factors. For the previous Identification example the Compliance
Rules are: “The facility is located in a place accessible by road” and “The facility
is situated on a stable ground”. These rules can be used to propose the Com-
pliance Level of the identification. As a result of this assessment, the PoR will
be labelled as compliant, compliant under conditions or non-compliant. This
assessment will be recorded in the compliant? attribute from the Identifi-
cation association class.

6 RQ2: Preliminary Evaluation

We ran a questionnaire inside Siemens to have a preliminary evaluation of our work.
We used the TAM evaluation questionnaire [16]. Specifically, we use a simplified
version given that the technology is not fully available. We asked the participants to
evaluate their vision on the adoption of the pattern-based approach using two simplified
scenarios that focus on the patterns usage. The scenarios presented a RfP for which the
respondent company wanted to present a bid and described the steps of the pattern
usage proposal with the help of mock ups of an envisaged PABRE system.

Questions can be consulted in the online document that presents the questionnaire1.
Table 2 presents the results of the evaluation The averages computed should be con-
sidered for informal reference purposes only, because the values are given in a Likert
scale 1 (strongly agree) to 7 (strongly disagree), therefore in an ordinal scale, not with a
ratio. However, they are still useful for intuitive explanations. All questions are positive
(i.e., 1 means the most positive answer) except for question 2.2; therefore, in the
averages, we have computed the inverse value of its responses (i.e., from N to
7−N + 1).

The results show that 3 respondents (E2, E3 and E5) were receptive to the sum-
mative Question 6: “Based on the previous scenarios, and assuming that the PABRE
system were available, I would intend to use it”. Instead, E1 and E4 were reluctant.
Respondents with positive attitude were cautious anyway, as clearly stated by E3:
“Although being open-minded, I am not sure whether this approach could work in
practice”. We consider that this position is normal when it comes to considering an
emergent, not yet available technology in a mature and complex process.

On the positive side, we can see that the system is perceived as easy-to-use
(Question 2), even by E1 and E4. E2 likes the general layout of the solution, while E5
nuances that “this will depend on the quality of the pattern identification”. The positive
respondents are unanimously positive with respect to relevance (Question 3) and even
E1 was neutral at this respect. E3 justifies his/her particularly positive rating “because it

1 https://www.upc.edu/gessi/PABRE/OPENREQ-PABRE-Questionnaire.pdf.

554 D. Costal et al.

https://www.upc.edu/gessi/PABRE/OPENREQ-PABRE-Questionnaire.pdf

can potentially increase productivity”. Anyhow, E2 doubts “[…] that all relevant
decisions can be expressed as patterns (due to complexity and efforts)”. This is a valid
point that is in line with our general understanding that patterns cannot be realistically
expected to embed all possible knowledge in a bidding process. Finally, results
demonstrability is also well considered except for E3 (no rationale provided).

On the negative side, respondents were especially concerned with the expected
output quality (Question 4). For instance, E2 expresses, “I think it [the approach]
needs human intelligence to solve the task. Wrong results can do harm!”. Concerning
the two negative respondents, both of them remarked that the separation of require-
ments and prose is considered “a misleading approach. E.g., a header gives the
paragraph the right frame […]” (E4). We consider this not a fundamental problem to a
pattern-based approach but to the way in which we proposed our process in RQ3. We
could then modify the output of the requirements triage in a way that the requirements
list keeps the context of every requirement.

Also, E5 made the point that a particular RfP may not fit well with a pattern-based
approach, e.g., “productivity and effectiveness are expected to vary depending on the
nature of the requirements document and the quality of the pattern recognition”. The
importance of the nature of the requirements document has already been shown in
RQ1, where some RfPs were more aligned to the identified patterns than others.

Table 2. Questions to Siemens practitioners to evaluate the pattern-based solution

Criteria E1 E2 E3 E4 E5 Avg

1. Perceived usefulness 5,00 3,67 3,00 6,00 3,00 4,13
1.1 Productivity 5 4 3 6 3
1.2 Effectiveness 5 4 3 6 3
1.3 Useful 5 3 3 6 3
2. Perceived ease of use 2,33 1,33 6,00 3,33 3,33 3,27
2.1 Understandable 3 2 7 2 2
2.2 Requires a lot of mental effort 6 7 2 2 4
2.3 Easy to use 2 1 5 2 4
3. Relevance 4,00 2,50 3,00 6,00 2,00 3,50
3.1 Pertinent 4 3 3 6 2
3.2 Relevant 4 2 3 6 2
4. Output quality 3,00 6,00 7,00 6,00 3,50 6,38
4.1 High quality 3 6 7 6 3
4.2 No problems with quality 3 6 7 6 4
5. Result demonstrability 4,33 2,00 6,33 2,67 2,33 3,53
5.1 No difficulty to explain 6 2 6 2 2
5.2 Communicate consequences 3 2 6 2 2
5.3 Results apparent 4 2 7 4 3
6. Behavioral Intention 6 3 2 6 3 4,00
6.1 Intent to use 6 3 2 6 3

On the Use of Requirement Patterns to Analyse Request 555

7 Conclusions and Future Work

We have presented a pattern-based approach to support IT providers when assessing
RfPs and deciding whether to bid for them or not. The main results are an extension of
the PABRE metamodel with the information needed to give support to the provider
during the bidding, and the results of a questionnaire to get early feedback from our
proposal.

As threat to validity, we have evaluated our approach only in one case (Sect. 6).
This case has several characteristics: the (type of) domain, the characteristics of the
organization, the size and type of RfP documents and others. Generalizing our results
beyond these contextual characteristics requires careful reflection.

Our future work focuses at the automation of the approach. Our intention is to make
our approach particularly appealing and more prone to scale in contexts where a
considerable number of bidding processes around large RfPs from the same domain
take place. The main functionalities that the platform will support are: requirements
triage, to classify information from RFPs in order to distinguish the requirements from
the document prose; patters identification, that will do the match among requirements
and the specific patterns in a catalogue; and decision-making support, intended to help
in the decision of compliance of requirements in a RfP. Some components are already
available, as the web services to manage the patterns catalogue; others are being
developed as the NLP components to pre-process RfPs.

Acknowledgments. This work has been conducted within the Horizon 2020 project OpenReq,
supported by the European Union under Grant Nr. 732463. We acknowledge Siemens Mobility
(Bierbamer, Obenaus, Sandauer) and Siemens research (Falkner, Schenner) at Wien-Austria for
participating in the evaluation (RQ2).

References

1. Irshad, M., Petersen, K., Poulding, S.: A systematic literature review of software
requirements reuse approaches. Inf. Softw. Technol. 93, 223–245 (2018)

2. Palomares, C., Quer, C., Franch, X.: Requirements Reuse and Requirement Patterns: A State
of the Practice Survey. Empir. Softw. Eng. 22(6), 2719–2762 (2017)

3. Renault, S., Méndez-Bonilla, O., Franch, X., Quer, C.: PABRE: pattern-based requirements
elicitation. In: RCIS (2009)

4. Franch, X., Quer, C., Renault, S., Guerlain, C., Palomares, C.: Constructing and using
software requirement patterns. In: Maalej, W., Thurimella, A. (eds.) Managing Requirements
Knowledge, pp. 95–116. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
34419-0_5

5. Withall, S.: Software Requirement Patterns. Microsoft Press, Redmond (2007)
6. Pacheco, C.L., Garcia, I.A., Calvo-Manzano, J.A., Arcilla, M.: A proposed model for reuse

of software requirements in requirements catalog. J. Softw.: Evol. Process 27(1), 1–21
(2015)

7. Barcelos, L.V., Penteaso, R.D.: Elaboration of software requirements documents by means
of patterns instantiation. J. Softw. Eng. Res. Dev. 5, 3 (2017)

556 D. Costal et al.

http://dx.doi.org/10.1007/978-3-642-34419-0_5
http://dx.doi.org/10.1007/978-3-642-34419-0_5

8. Barros-Justo, J.L., Benitti, B.V., Cravero-Leal, A.L.: Software patterns and requirements
engineering activities in real-world settings: a systematic mapping study. Comput. Stand.
Interfaces 58, 23–42 (2018)

9. Lauesen, S.: COTS Tenders and Integration Requirements. Requir. Eng. J. 11(2), 111–122
(2006)

10. Palomares, C., Quer, C., Franch, X., Renault, S., Guerlain, C.: A catalogue of functional
software requirement patterns for content management systems. In: SAC (2013)

11. Palomares, C., Quer, C., Franch, X., Guerlain, C., Renault, S.: A catalogue of non-technical
requirement patterns. In: RePa (2012)

12. Franch, X., Palomares, C., Quer, C., Renault, S., De Lazzer, F.: A metamodel for software
requirement patterns. In: Wieringa, R., Persson, A. (eds.) REFSQ 2010. LNCS, vol. 6182,
pp. 85–90. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14192-8_10

13. Paech, B., Heinrich, R., Zorn-Pauli, G., Jung, A., Tadjiky, S.: Answering a request for
proposal – challenges and proposed solutions. In: Regnell, B., Damian, D. (eds.) REFSQ
2012. LNCS, vol. 7195, pp. 16–29. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-28714-5_2

14. Breiner, K., Gillmann, M., Kalenborn, A., Müller, C.: Requirements engineering in the
bidding stage of software projects – a research preview. In: Fricker, S.A., Schneider, K.
(eds.) REFSQ 2015. LNCS, vol. 9013, pp. 270–276. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-16101-3_19

15. Felfernig, A., Stetinger, M., Falkner, A., Atas, M., Franch, X., Palomares, C.: OpenReq:
recommender systems in requirements engineering. In: i-Know (2017)

16. Davis, F.F.: Perceived usefulness, perceived ease of use, and user acceptance of information
technology. MIS Q. 13(3), 319–340 (1989)

On the Use of Requirement Patterns to Analyse Request 557

http://dx.doi.org/10.1007/978-3-642-14192-8_10
http://dx.doi.org/10.1007/978-3-642-28714-5_2
http://dx.doi.org/10.1007/978-3-642-28714-5_2
http://dx.doi.org/10.1007/978-3-319-16101-3_19
http://dx.doi.org/10.1007/978-3-319-16101-3_19

iStar4RationalAgents: Modeling Requirements
of Multi-agent Systems with Rational Agents

Enyo Gonçalves1,2(&), João Araujo3, and Jaelson Castro2

1 Universidade Federal do Ceará – Campus Quixadá, Quixadá, Brazil
enyo@ufc.br

2 Universidade Federal de Pernambuco, Recife, Brazil
jbc@cin.ufpe.br

3 Universidade Nova de Lisboa, Lisbon, Portugal
joao.araujo@fct.unl.pt

Abstract. Multi-agent systems (MAS) involve a wide variety of agents that
interact with each other to achieve their goals. Usually, the agents in a MAS can
be reactive or proactive, this choice defines the rationale of its elements.
Rational Agents is the term used to mention a set of four kinds of reactive and
proactive agents. Conceptual models which represent the rational agents’
intentionality can be used to design and analyze MAS in a systematic and
structured manner. Conceptual modelling can be used to uncover mistakes and
gaps in reasoning that are missed or obscured via ad hoc evaluation. However,
the modelling of MAS with different rational agents is a non-trivial task, due to
the specificity of their domain concepts, also at requirements level. This paper
presents an approach to model MAS with rational agents in requirements level
using iStar. This is part of a Model-Driven Development approach which has
been proposed to support the development of MAS with rational agents
involving requirements, architecture, code and test. We extended iStar to sup-
port the modelling of main concepts of this domain in a systematic way based on
a process to conduct iStar extensions. We modelled a MAS to validate and
illustrate the usage of our extension and evaluate the results using a survey with
experienced researchers/developers in MAS.

Keywords: Multi-agent system � Rational agents � Modeling � iStar

1 Introduction

Autonomous software based on artificial intelligence (AI) have been widely applied to
solve a vast set of problems in companies. In this context, agents are complex entities
with behavioral properties, such as autonomy and interaction [7]. Multi-agent system
(MAS) is the area of AI that investigates the behavior of a set of autonomous agents,
aiming to resolve a problem beyond the capacity of a single agent [7].

A simple agent can act based on reactive or proactive behavior and can be classified
according to its internal architecture that determines distinct agency properties, attri-
butes and mental components [11]. Russell and Norvig [11] define four types of agents
according to their internal structure: Simple Reflex Agent, Model-Based Reflex Agent,
Goal-based Agent and Utility-Based Agent. The type of agent is selected according to

© Springer Nature Switzerland AG 2019
A. H. F. Laender et al. (Eds.): ER 2019, LNCS 11788, pp. 558–566, 2019.
https://doi.org/10.1007/978-3-030-33223-5_46

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33223-5_46&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33223-5_46&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33223-5_46&domain=pdf
https://doi.org/10.1007/978-3-030-33223-5_46

the environment characteristics and to the subproblem that the agent will resolve.
A MAS may encompass multiple types of agents [11].

A model-driven approach has been proposed to model MAS with rational agents.
Modelling of the architectural level of MAS with rational agents is supported by MAS-
ML 2.0 [3], the code generation is supported by the approach proposed by [9] and the
test is supported by the proposal of [12]. Therefore, it is important a proposal of
modelling at requirements level to complete the support of the development of MAS
with rational agents. The modelling of requirements for a multi-agent system can be
preferably an extension of a known and trusted modelling language, such as iStar [14].
We have chosen iStar since it supports the modeling of part of the concepts of MAS
with rational agents such as goal, belief, agent, tasks and supports the modeling of
organizational concepts as well. This language has a process to conduct iStar exten-
sions (PRISE1) which makes it easy the proposal of new iStar extensions.

The aim of this paper is to present an iStar extension to model MAS with rational
agents named iStar4RationalAgents. The paper is structured as follows. Section 2 pre-
sents the main concepts of MAS. Section 3 presents related work. iStar4RationalAgents
is described in Sect. 4. In Sect. 5 shows the modelling of the MAS to support the
distance education course of programming people with disabilities. The evaluation of
MAS is presented in Sect. 6. Finally, conclusions and future work are discussed in
Sect. 7.

2 Background

According to Silva et al. [13], organization is an element that groups agents and sub-
organizations. Environment is an element that is the habitat for agents, objects and
organizations. Environment has state and behavior. Agent is an autonomous, adaptive
and interactive element. MAS-ML defines an agent composed of beliefs, goals, plan
and actions. On the other hand, the agent internal structures can be categorized based
on proactive and reactive foundations. In this context, four types of internal agent
architectures were defined by Russell and Norvig [11].

Simple Reflex Agents. A Simple Reflex (or reactive) Agent [11] selects actions
based on the current perception. These perceptions consist of the representation of state
aspects that are used by the agent for making decisions. Model-Based Reflex Agents
have condition-action rules as well. This agent is also able to store its current state in an
internal model (beliefs). A function called next function is introduced to map the
perceptions and the current internal state into a new internal state used to select the next
action. Goal-Based Agents. Goal-Based Agents set a specific goal and select the
actions that lead to that goal. Planning activity is devoted to find the sequence of
actions that is able to achieve the agent’s goals [11]. The sequence of actions previ-
ously established that leads the agent to reach a goal is a termed plan [13]. Thus, the
Goal-Based Agent with planning involves the next function component and also
includes the following elements: Formulate goal function, which receives the state and

1 http://www.cin.ufpe.br/*ler/prise.

iStar4RationalAgents: Modeling Requirements of MAS 559

http://www.cin.ufpe.br/%7eler/prise

returns the formulated goal; Formulate problem function, which receives the state and
the goal and returns the problem; Planning, which receives the problem and uses search
and/or logic approaches to find a sequence of actions to achieve a goal; and Action.
Utility-Based Agents. Considering the existence of multiple goal states, it is possible
to define a measure of how desirable a particular state is. In this case, aiming to
optimize the agent performance, the utility function is responsible for mapping a
possible state (or group of states) to that measure, according to the current goals [11].
Thus, the utility function is incorporated into the architecture. Also, Utility-Based
Agent preserves the same elements as those of a Goal-Based Agent: next function,
formulate goal function, formulate problem function, planning and action.

3 Related Work

Our paper is part of an MDD approach to develop MAS with rational agents. In [3], an
extension to MAS-ML (Multi-Agent Systems Modeling Language [13]) to model MAS
with rational agents in the architectural level is presented. Complementary, an exten-
sion was proposed to JADE framework to support the development of rational agents
and other MAS entities such as organization, environment and agent roles [9]. In
addition, the code generation from MAS-ML models was created by MAS-ML tool to
the JADE extended version. Finally, in [12] an agent-based approach was proposed to
select test cases and test the performance of rational agent. These works cover a great
part of the software development life cycle, but the requirements level is not covered by
them. Also, PRISE (PRocess to conduct iStar Extensions) has been proposed. It is
based on a Systematic Literature Review (SLR) of iStar extensions [2] and interviews
and survey with experts [5]. PRISE is supported by a catalogue of iStar extensions [4]
and a tool for the creation of PRISE artefacts [6]. This paper presents a new iStar
extension that followed the PRISE approach.

4 Extending iStar for Model Rational Agents

We represented the extension in the iStar metamodel and created validation rules. The
extension metamodel and validation rules are available2. We represented each kind of
rational agent and their roles in the metamodel by stereotypes (simple-reflex, model-
based-reflex, goal-based and utility-based) associated with Agent and AgentRole
metaclasses. MAS-ML agent is represented by an agent without any additional stereo-
type. Organization, Environment, Planning, Plan and Perception are represented by new
metaclasses. Therefore, Belief, a metaclass that was removed in iStar 2.0, was added as
an intentional element again. We represented the stereotypes to represent of next-
function, formulate-problem, formulate-goal and utility-function and action. The rela-
tionship neededbywas extended to link beliefs and next-function tasks. The Cause/effect
was included to connect perception and Action (Task metaclass) and connect next-

2 www.cin.ufpe.br/*ler/iStar4rationalagents/metamodel&rules.

560 E. Gonçalves et al.

http://www.cin.ufpe.br/%7eler/iStar4rationalagents/metamodel%26rules

function and action (Task metaclass). Finally, we created a set of validation rules to
analyze the well-formedness of the four kinds of agents and roles.

4.1 Representing the Extension Constructs in the Concrete Syntax

The representations of the extension concepts can be classified into three groups:

1. Constructs represented by iStar constructs as proposed: five domain concepts
are represented by the iStar constructs. They are used to represent an agent being
part of an organization, an agent inhabiting an environment, an organization
inhabiting an environment, an agent playing a role in an organization which inhabits
an environment and a dependency between an agent and an environment. Fur-
thermore, we extended the neededby relationship to connect next-function and
beliefs establishing that beliefs are needed by the next-function;

2. Constructs represented by iStar constructs added with textual markers: These
constructs have a similar meaning of the iStar constructs and specialize them by
textual markers. They are four stereotypes (<<simple-reflex>>, <<model-based-
reflex>>, <<goal-based >> and <<utility-based>>) applied to agents or agent
roles, <<action >> and the specific functions (<<next-function>>, <<formulate-
problem>>, <<formulate-goal >> and <<utility-function>>) applied to task. When
an action is represented inside the agent roles, it can be defined as a right (an action
that can be executed) using the property {type=’right’} or a duty (an action that
should be executed) using the property {type=’duty’}.

3. Constructs represented by new graphical representations of iStar: we found the
Plan in an existing iStar extension and reused it. Four concepts (Environment,
Organization, Perception and Planning) are represented by new symbols. Thus, the
new symbols proposed to these four concepts were created using an experiment
based on the work of Caire et al. [1]. We performed a five-step experiment with 152
participants. All steps of this experiment are available3. Figure 1 presents the final
graphical representations of this experiment, used by the extension.

4.2 How to Use the Extension

The iStar SD model should be created to represent the MAS concepts. An agent can
play a role, inhabit an environment and be part of an organization (Ownership). These
relationships are represented by the iStar link participates-in. The dependencies
between agents, roles, organizations and environment can be expressed too. Figure 2

Fig. 1. Symbols related to environment, organization, perception and planning.

3 www.cin.ufpe.br/*ler/iStar4rationalagents/experiment-representations.

iStar4RationalAgents: Modeling Requirements of MAS 561

http://www.cin.ufpe.br/%7eler/iStar4rationalagents/experiment-representations

shows an agent playing a role (i), an agent being part of an organization (ii), an agent
inhabiting an environment (iii), an organization inhabiting an environment (iv), an
agent playing a role in an organization which inhabits an environment (v) and a
dependency between an agent and an environment. We used simple-reflex agents and
roles, these links can be used with all kinds of agents.

Moreover, the SR model should be created to represent the internal details of the
agents, roles, organizations and environments involved in the Multiagent System, and
representing the relationship between them. The SD model is the starting point to the
creation of this model. In our approach, we consider the modelling of the agents’
intentional elements as a refinement of their internal elements, similar to the approach
used by Mouratidis and Giorgini [10].

The boundaries of the agents should be detailed regarding their intentional ele-
ments. The kind of agent defined by MAS-ML is represented by an agent without any
stereotype and its boundary is composed of goals, beliefs, plans and actions (i). In the
reflex agents (Simple reflex (ii) and Model-based simple reflex (iii)), the perceptions
and actions (and next-function in case of model-based reflex agents) should be related
by the refinement link with the action as the source. Goals of the goal-based (iv) agents
are decomposed on perceptions (which are decomposed on next-function) and planning
(which are decomposed into actions). The same to utility-agents (v), but these ones
have a utility-function related to the planning by an and-refinement. The beliefs are
represented by a neededby link connecting a belief and next-function. Figure 3 presents
an example of the usage of agents on an SR diagram.

The boundaries of roles related to goal-based and utility agents and kind of agent
defined by MAS-ML should represent goals, beliefs and actions related to the role. The
boundary of roles of model-based-reflex agents should contain beliefs and actions
related to the role and the roles of simple-reflex agents should contain actions related to
the role. The actions in roles related to agents should have the information about which
of them are mandatory (duty) and which are optional (right). Figure 3 presents an

Fig. 2. Generic representations of new constructs in SD model.

562 E. Gonçalves et al.

example of the usage of agents on SR diagram. In addition, environment and orga-
nization can be composed of the original iStar nodes and links, an example of envi-
ronment and organization is presented in Fig. 3.

We created the pistar4rationalagents tool4 to support the usage of our extension.

5 A MAS Support Programing Courses in Distance
Education

We modelled a MOODLE MAS with our extension. The modeling of SD-extended
diagram is available5. Figure 3 shows part of the SR diagram to MOODLE MAS. The
complete version is available6. Additionally, the MAS presented in these models were
designed at the architectural level, coded, tested and deployed at Brazilian Open
University, and Universidade Estadual do Ceará.

6 Evaluation by Experienced Researchers

The purpose of this evaluation is to identify the point of view of the researchers in
MAS about our extension by a survey [8]. The universe of this research consists of
authors of papers of the last 5 editions of Brazilian events such as WESAAC,

Fig. 3. Agents, agent role, organization and environment in iStar SR model to MOODLE.

4 https://www.cin.ufpe.br/*ler/piStar4rationalagents/.
5 www.cin.ufpe.br/*ler/iStar4rationalagents/sdmoodle.
6 www.cin.ufpe.br/*ler/iStar4rationalagents/srmoodle.

iStar4RationalAgents: Modeling Requirements of MAS 563

https://www.cin.ufpe.br/%7eler/piStar4rationalagents/
http://www.cin.ufpe.br/%7eler/iStar4rationalagents/sdmoodle
http://www.cin.ufpe.br/%7eler/iStar4rationalagents/srmoodle

AUTOSOFT and BRACIS. Thus, we contacted 164 researchers from 37 different
universities/companies. We received a total of 22 responses from 13 universities and 3
companies. 9 mentioned having advanced knowledge on MAS, 9 intermediate
knowledge and 4 emerging. The structure of this survey is available7. It was submitted
between December 2018 and February 2019. Data of this survey is also available8.

We compared the perception of the participants about the modelling of the MAS
using iStar and the iStar extension. The extension improved the perception of the MAS
constructs. We also analyzed the difficulty level perceived by the participants to
identify the MAS entities and internal nodes and links. The extension reduced the
difficulty level to identify MAS elements in about 50% (see Table 1).

The participants were also asked about the strong points and weaknesses of the
approach. A great part of the participants (13/22–59%) recognized that the extension
facilitates the identification of MAS entities and their internal elements. The weakness
mentioned by two participants was that, with the extension, new concepts are repre-
sented in iStar and there is the need to learn and represent these elements in the models.
We believe it is a general consequence of all extensions.

6.1 Threats to Validity

According to Kitchenham and Pfleeger [8], there are four validity aspects to consider:
Criterion, Construct, Face and Content. Criterion validity: We did not find a previous
quantitative study for this purpose. Thus, we could not compare this evaluation with
previous ones. Construct validity: We created the survey with different kind of
questions: Likert scale questions, measure effort, yes/no/maybe question, open ques-
tions and multiple-choice relation questions. Thus, it could confuse the execution of it
by the participants. We mitigated this threat presenting an explanation of the kind of
questions at the beginning of the survey. Face validity: We tested the survey with a
computer science professor with experience in MAS. We can consider this previous

Table 1. Comparative of correct identification and difficult level.

Criteria Without
extension

With
extension

1. Correct identification of MAS entities (Agents, agent role,
environment and organization)

47.12% 80.1%

2. Correct identification of MAS internal nodes and links (plan,
planning, action, next-function…)

20.7% 62%

3. Difficulty level to identify MAS entities (mean -scale 0–10) 6.3 2.9
4. Difficulty level to identify MAS internal nodes and links
(mean -scale 0–10)

7.5 3.8

7 https://www.cin.ufpe.br/*ler/iStar4rationalagents/evaluationsurvey.
8 www.cin.ufpe.br/*ler/iStar4rationalagents/data.

564 E. Gonçalves et al.

https://www.cin.ufpe.br/%7eler/iStar4rationalagents/evaluationsurvey
http://www.cin.ufpe.br/%7eler/iStar4rationalagents/data

evaluation a limitation because of the small number of participants (1). We mitigated
this threat, however, by asking him to evaluate again after the corrections of his
comments. Content validity: We consider the profile of the participants suitable for
this evaluation since the majority of the participants (18/22) mentioned having
advanced/intermediate expertise in MAS. However, there were not a great number of
participants with expertise in modelling (*50%). We tried to mitigate this threat
presenting iStar in part of the survey.

7 Conclusions

In this paper, we presented the main results of an approach to model MAS with rational
agents in requirements level with an extended version of iStar. We followed PRISE, a
process to conduct iStar extensions, during our proposal. We represented the constructs
as a set of stereotypes and four new symbols proposed by an experiment similar to the
presented by Caire et al. [1]. This approach is supported by piStar4rationalagents tool.
We illustrated our proposal by modelling of a MAS with rational agents in a distance
education course offered using MOODLE. We modeled a MAS with 5 different kinds
of agents, agent roles, organization and environment. Finally, our proposal was eval-
uated by experienced MAS researchers/developers using a survey. We identified that
the extension can ease the identification of these kinds of agents and their elements and
can make the interpretation of the diagrams better than using standard iStar. The
participants agreed that the proposal of an extension is useful to fill a lack of techniques
to represent the MAS with rational agents, the representations of the constructs were
considered good and the extension could be useful to model their next MAS.

Acknowledgments. The authors thank CNPq, CAPES, FACEPE and NOVA LINCS
UID/CEC/04516/2019.

References

1. Caire, P., Genon, N., Heymans, P., Moody, D.: Visual notation design 2.0: Towards user
comprehensible requirements engineering notations. In: RE 2013 (2013)

2. Gonçalves, E., Castro, J., Araujo, J., Heineck, T.: A Systematic Literature Review of iStar
extensions. J. Syst. Softw. 137, 1–33 (2018)

3. Gonçalves, E., et al.: MAS-ML 2.0: supporting the modelling of multi-agent systems with
different agent architectures. J. Syst. Softw. 108, 77–109 (2015)

4. Gonçalves, E., Heineck, T., Araújo, J., Castro, J.: A catalogue of iStar extensions, 21st
Workshop on Requirements Engineering (2018)

5. Gonçalves, E., Monteiro, I., de Oliveira, M.A., Castro, J., Araujo, J.: Understanding what is
important in iStar extensions proposals: the viewpoint of researchers. Requirements Eng. 24,
55–84 (2019)

6. Gonçalves, E., Heineck, T., De Oliveira, L., Araujo, J., Castro, J.: PRISE tool: a tool to
support the proposal of iStar extensions based on PRISE. In: 22nd Workshop on
Requirements Engineering (2019)

iStar4RationalAgents: Modeling Requirements of MAS 565

7. Jennings, N.R.: Coordination techniques for distributed artificial intelligence. In: Founda-
tions of Distributed Artificial Intelligence, pp. 187–210. Wiley (1996)

8. Kitchenham, B., Pfleeger, S.: Principles of survey research. Softw. Eng. Notes 27(5), 17–20
(2002)

9. Lopes, Y.S., Cortés, M.I., Gonçalves, E., Oliveira, R.: JAMDER: JADE to multi-agent
systems development resource. ADCAIJ 7, 63 (2018)

10. Mouratidis, H., Giorgini, P.: Secure tropos: a security-oriented extension of the tropos
methodology. IJSEKE 17, 285–309 (2007)

11. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall, Prentice
Hall (2003)

12. Silveira, F.R.V., Campos, G.A.L., Cortes, M.I.: A problem-solving agent to teste rational
agents: a case study with reactive agents. In: ICEIS 2014, Lisboa (2014)

13. Silva, V., Lucena, C.: From a conceptual framework for agents and objects to a multi-agent
system modelling language. J. Auton. Agents MAS 9(1–2), 145–189 (2004)

14. Yu, E. Modelling strategic relationships for process reengineering. PhD. Thesis in Computer
Science, University of Toronto, Toronto (1995)

566 E. Gonçalves et al.

Author Index

Abbad Andaloussi, Amine 162
Abel, Mara 275
Almeida, Ana Carolina 240
Almeida, João Paulo A. 28, 43, 469
Araujo, David 204
Araujo, João 540, 558

Baião, Fernanda 153, 240
Baião, Fernanda Araujo 363
Bayomie, Dina 136
Ben Hamadou, Hamdi 189
Bentayeb, Fadila 255
Bernasconi, Anna 352
Bon, Philippe 338
Bonifati, Angela 448
Bork, Dominik 311
Bour, Raphaëlle 387
Boussaid, Omar 255
Bravalheri, Anderson 302
Brings, Jennifer 412
Buch-Lorentsen, Jon 162
Burgueño, Loli 513

Cabot, Jordi 513
Campos, Maria Luiza M. 240, 363
Canakoglu, Arif 352
Carbonera, Joel Luis 275
Carvalho, Victorio A. 43
Casanova, Marco A. 7
Castro, Jaelson 558
Ceri, Stefano 352
Chen, Haiming 264
Ciaccia, Paolo 397
Clarisó, Robert 513
Collart-Dutilleul, Simon 338
Costal, Dolors 549

Daun, Marian 412
de Aguiar, Camila Zacché 13
de Almeida Falbo, Ricardo 13
de Almeida Pereira, Dalay Israel 338
de Almeida, Eduardo Cunha 93

de Cesare, Sergio 457
de Oliveira, Rafael P. 240
Debbech, Sana 338
Di Ciccio, Claudio 119, 136

Falbo, Ricardo A. 469
Feng, Shi 287
Filho, Edson Ramiro Lucas 93
Flório, Cinthya 540
Fonseca Garcia, Luan 275
Fonseca, Claudenir M. 28, 43
Franch, Xavier 549
Furniss, Peter 448

Gallinucci, Enrico 189
Gao, Qiao 173
Giebler, Corinna 63
Gogolla, Martin 513
Golfarelli, Matteo 189
Gonçalves, Enyo 558
Greco, Sergio 423
Green, Alastair 448
Gröger, Christoph 63
Guarino, Nicola 28
Guizzardi, Giancarlo 28, 43, 302, 469
Guizzardi, Renata 302
Guo, Guimu 484

Hai, Rihan 225
Harmer, Russ 448
Hartmann, Sven 108
Hildebrandt, Thomas T. 153
Hillenbrand, Andrea 213
Holubová, Irena 439
Hoos, Eva 63

Jamil, Hasan M. 52

Kabachi, Nadia 255
Karagiannis, Dimitris 311
Klettke, Meike 213
Kuehnel, Stephan 378

L. Coelho da Silva, Ticiana 204
La Rosa, Marcello 136
Ladleif, Jan 323
Lavalle, Ana 78
Lee, Mong Li 173
Lencastre, Maria 540
Li, Yeting 264
Liao, Qiao 287
Liaskos, Sotirios 525
Lifschitz, Sergio 240
Lindner, Sebastian 378
Ling, Tok Wang 173
López, Hugo A. 162
López, Lidia 549
Lu, Jiaheng 439

Ma, Hui 108
Macedo, Jose 204
Martinenghi, Davide 397
Masciari, Elio 423
Maté, Alejandro 78
Mendling, Jan 119, 136
Mennicke, Stephan 498
Merz, Felix 108
Mitchell, Andrew 457
Mitschang, Bernhard 63
Möller, Mark Lukas 213
Mou, Xiaoying 264
Musso, Fernando A. 43

Oduro-Afriyie, Joel 52
Oshurko, Eugenia 448

Palomares, Cristina 549
Partridge, Chris 457
Peres, Lucas 204
Perin, Matthieu 338
Pimentel, João 540
Polyvyanyy, Artem 119
Porello, Daniele 28

Quer, Carme 549
Quix, Christoph 225

Ramdane, Yassine 255
Richetti, Pedro H. Piccoli 363
Roca Antunes, Cauã 275
Rodrigues, Fabricio Henrique 275

Saccà, Domenico 423
Sales, Tiago Prince 302
Santoro, Flávia 153
Scherzinger, Stefanie 93
Schrüffer, Christine 311
Schwabe, Daniel 240
Schwarz, Holger 63
Simeonidou, Dimitra 302
Slaats, Tijs 153, 162
Soule-Dupuy, Chantal 387
Souza, Vítor E. Silva 13
Steinmetz, Dietrich 108
Stenkova, Viktoria 412
Storey, Veda C. 3
Störl, Uta 213
Svoboda, Martin 439

Tambosi, Wisal 525
Torlone, Riccardo 397
Trang, Simon Thanh-Nam 378
Trubitsyna, Irina 423
Trujillo, Juan 78

Vallès-Parlangeau, Nathalie 387
Voigt, Hannes 448

Wang, Daling 287
Wang, Dan 225
Weber, Barbara 162
Weske, Mathias 323
Weyer, Thorsten 412

Yan, Da 484
Yang, Yi 484
Yeshchenko, Anton 119

Zhang, Yifei 287
Zhou, Shuigeng 484
Zhou, Xiangmin 287

568 Author Index

	Preface
	Organization
	Invited Talks
	Next Generation Modeling Environments
	State of Permissionless and Permissioned Blockchains: Myths and Reality
	Contents
	Invited Talks
	Data Management in the Era of Digitalization
	Abstract
	1 Introduction
	2 Traditional Data Management
	3 Big Data Management
	4 Blockchain Technology Data Management
	5 Conclusion
	Acknowledgements
	References

	Keyword Search over RDF Datasets
	Abstract
	1 Introduction
	2 Classic Keyword Search Over RDF Datasets
	3 Beyond the Basics: Serendipitous Search
	4 An Interesting Special Case: Entity Relatedness
	5 Final Remarks: What Else?
	Acknowledgments
	References

	Conceptual Modeling
	OOC-O: A Reference Ontology on Object-Oriented Code
	1 Introduction
	2 Baseline
	3 Object-Oriented Code Ontology (OOC-O)
	3.1 OOC-O Core Module
	3.2 OOC-O Class Module
	3.3 OOC-O Class Members Module

	4 Evaluation
	5 Related Works
	6 Final Considerations
	References

	Relations in Ontology-Driven Conceptual Modeling
	1 Introduction
	2 Background: UFO, OntoUML and a New Theory of Relations
	2.1 Limitations of UFO/OntoUML 1.0 Regarding the Modeling of Relations
	2.2 Extending UFO's Original Theory of Relations

	3 A Formal Theory of Relations
	4 Towards a New UML Profile for Modeling Relations
	5 Final Considerations
	References

	Capturing Multi-level Models in a Two-Level Formal Modeling Technique
	1 Introduction
	2 The Classical Two-Level Workaround – The Powertype Pattern
	3 The ML2 Multi-level Modeling Language
	4 A Systematic Two-Level Solution and Its Alloy Implementation
	5 Final Considerations
	References

	An SQLo Front-End for Non-monotonic Inheritance and De-referencing
	1 Introduction
	2 The OR Model
	3 Mapping SQLO to SQL
	3.1 Creating Class Tables
	3.2 Computing Null Closure and Table View
	3.3 Inheritance and Object Traversal in SQL Using Query Rewriting

	4 Conclusion
	References

	Big Data Technology I
	Modeling Data Lakes with Data Vault: Practical Experiences, Assessment, and Lessons Learned
	Abstract
	1 Introduction
	2 Data Vault Basics
	2.1 The Data Vault Model
	2.2 Key Characteristics of Data Vault

	3 Data Vault Modeling for Data Lakes in Practice
	3.1 Manufacturing Domain
	3.2 Finance Domain
	3.3 Customer Service Domain

	4 Lessons Learned and Overall Assessment
	4.1 Lessons Learned and Classification of Issues
	4.2 Assessment and Success Factors for Data Vault in Data Lakes

	5 Related Work and Comparative Evaluation
	5.1 Related Work
	5.2 Comparative Evaluation

	6 Conclusion
	References

	Requirements-Driven Visualizations for Big Data Analytics: A Model-Driven Approach
	1 Introduction
	2 Related Work
	3 A MDA Approach for Visual Analytics
	3.1 User Requirements Model
	3.2 Data Profiling Model
	3.3 Visualization Specification Transformation - (Model to Model)
	3.4 Data Visualization Model
	3.5 Visualization Generation Transformation - (Model to Text)

	4 Case Study
	4.1 Specifying User Requirements
	4.2 Profiling Data Sources
	4.3 Specifying Data Visualizations Requirements

	5 Conclusions and Future Work
	References

	Don't Tune Twice: Reusing Tuning Setups for SQL-on-Hadoop Queries
	1 Introduction
	2 State-of-the-Art
	2.1 SQL-on-Hadoop Engines
	2.2 Tuning Advisers for MapReduce Frameworks

	3 The Code Signature Cache
	3.1 Code Signatures
	3.2 Definitions
	3.3 Cache Hits and Misses

	4 Experiments
	4.1 Recycling Tuning Setups at the Job Level
	4.2 Recycling Tuning Setups at the Query Level
	4.3 Discussion

	5 Related Work
	6 Conclusion
	References

	A Graph Model for Taxi Ride Sharing Supported by Graph Databases
	1 Introduction
	2 Background
	2.1 Data Modeling for Graph Databases
	2.2 Traveler-Taxi Allocation and Taxi Schedule Sequencing
	2.3 Requirements for Our Graph Model

	3 An Intuitive Graph Model for the DTRP
	4 Experimental Evaluation
	5 Conclusion and Future Work
	References

	Process Modeling and Analysis
	Comprehensive Process Drift Detection with Visual Analytics
	1 Introduction
	2 Process Drift Analysis
	2.1 Motivating Example
	2.2 Requirements

	3 Preliminaries
	3.1 Declare Modeling and Mining
	3.2 Clustering and Change Point Detection Algorithms

	4 Technique
	4.1 Mining Declare Windows
	4.2 Slicing the Declare Constraints Space into Time and Behavior Sub-spaces
	4.3 Explaining Drifts

	5 Evaluation
	5.1 Evaluation Setup
	5.2 Detecting Drifts
	5.3 Explaining Drifts
	5.4 Discussion

	6 Conclusions
	References

	A Probabilistic Approach to Event-Case Correlation for Process Mining
	1 Introduction
	2 Related Work
	3 Event Correlation Technique
	3.1 Preliminaries
	3.2 The Problem
	3.3 Multi-level Optimization

	4 Evaluation
	4.1 Design
	4.2 Datasets
	4.3 Results

	5 Conclusion
	References

	DCR-KiPN a Hybrid Modeling Approach for Knowledge-Intensive Processes
	1 Introduction
	2 Preliminaries
	2.1 Running Example
	2.2 Modeling Knowledge-Intensive Processes
	2.3 Modeling Declarative Processes with DCR Graphs

	3 DCR-KiPN
	4 DCR-KiP Notation and Application Scenario
	4.1 Discussion

	5 Conclusion
	References

	Exploring the Modeling of Declarative Processes Using a Hybrid Approach
	1 Introduction
	2 Background and Related Work
	3 Research Method
	4 Findings
	4.1 How Do Users Engage with a Modeling Task Using the Process Highlighter? (RQ1)
	4.2 In What Aspects Can the Highlighter Help to Improve the Quality of Process Models? (RQ2)

	5 Discussion
	6 Conclusion and Future Work
	References

	Query Approaches
	Negation in Relational Keyword Search
	1 Introduction
	2 Preliminaries
	2.1 ORM Schema Graph
	2.2 Query Patterns
	2.3 SQL Generation

	3 Proposed Solution
	3.1 Annotating Query Patterns
	3.2 Generating SQL Statements

	4 Evaluation
	5 Related Work
	6 Conclusion
	References

	Answering GPSJ Queries in a Polystore: A Dataspace-Based Approach
	1 Introduction
	2 Related Literature
	3 Dataspace and Query Modeling
	4 Execution Plan Formulation
	4.1 Determining the Query Graph
	4.2 Defining the Nested Relational Algebra Execution Plan

	5 Discussion and Conclusions
	References

	Ontology-Schema Based Query by Example
	1 Introduction
	2 Von-QBE Framework
	3 Experiments
	3.1 Datasets
	3.2 Evaluation Results

	4 Conclusion and Future Work
	References

	Query Rewriting for Continuously Evolving NoSQL Databases
	1 Introduction
	2 Foundations
	3 Rewriting NoSQL Data
	4 Related Work
	5 Summary and Future Work
	References

	Big Data Technology II
	Relaxed Functional Dependency Discovery in Heterogeneous Data Lakes
	1 Introduction
	2 Preliminaries
	3 Metadata Model and RFD Definition
	4 Our Approach
	4.1 Approach Overview
	4.2 Schema Inference and Dataset Decomposition
	4.3 Pruning Rules
	4.4 Clustering-Based RFD Discovery
	4.5 Inter-RFD Discovery

	5 Evaluation
	5.1 Baseline Comparison of Discovered Dependencies
	5.2 Noise Tolerance and Error Detection

	6 Conclusion
	References

	An Ontological Perspective for Database Tuning Heuristics
	Abstract
	1 Introduction
	2 State-of-the-Art
	3 The Outer-Tuning Conceptual Framework
	3.1 Outer-Tuning Overview
	3.2 Conceptual Models

	4 Case Studies
	5 Conclusion and Future Works
	References

	SkipSJoin: A New Physical Design for Distributed Big Data Warehouses in Hadoop
	1 Introduction
	2 Related Work
	3 Proposal Approach
	3.1 Formalization
	3.2 Selecting #B and Bkey
	3.3 Selecting the Frequent Attributes
	3.4 Building the Partitions and the Buckets
	3.5 Placement of the Buckets

	4 Experiments and Results
	5 Conclusion and Future Research
	References

	Learning k-Occurrence Regular Expressions from Positive and Negative Samples
	1 Introduction
	2 Preliminaries
	3 The Learning Algorithm
	3.1 The Main Algorithm
	3.2 Generating Deterministic k-OAs from Samples
	3.3 Converting Deterministic k-OAs into k-OREs

	4 Conclusion
	References

	Domain Specific Models I
	What Rocks Are Made of: Towards an Ontological Pattern for Material Constitution in the Geological Domain
	1 Introduction
	2 Material Constitution
	3 Ontological Pattern for Geological Knowledge Representation
	4 Related Work and Discussion
	5 Conclusion
	References

	Role-Based Clustering for Collaborative Recommendations in Crowdsourcing System
	1 Introduction
	2 Related Work
	3 Framework of Our Solution
	4 Role-Based Clustering for Task Recommendation
	4.1 Role-Based Clustering
	4.2 Applying CF to the Role-Based Clusters
	4.3 Recommendation Construction and Delivery

	5 Experimental Evaluation
	5.1 Experiment Setup
	5.2 Evaluation Methodology
	5.3 Experimental Results

	6 Conclusion
	References

	A Reference Conceptual Model for Virtual Network Function Online Marketplaces
	1 Introduction
	2 The UFO-S Core Ontology of Services
	3 VNF Marketplace Reference Conceptual Model
	4 Implementation and Validation of the Reference Model
	5 Related Works
	6 Conclusions
	References

	Intuitive Understanding of Domain-Specific Modeling Languages: Proposition and Application of an Evaluation Technique
	1 Introduction
	2 Foundations
	3 An Evaluation Technique for Notation Intuitiveness
	4 Application of the Evaluation Technique
	5 Lessons Learned, Implications and Conclusions
	References

	Domain Specific Models II
	A Unifying Model of Legal Smart Contracts
	1 Introduction
	2 Formalizing Legal Contracts
	2.1 Smart Contract Templates
	2.2 Formalizing Legal Relations

	3 Contract Modeling Languages
	4 Unifying Legal Smart Contract Modeling
	4.1 General Reasoning
	4.2 Unifying Model of Legal Smart Contracts

	5 Applying the Unifying Model
	5.1 Results
	5.2 Discussion
	5.3 Future Challenges

	6 Conclusion
	References

	Formal Specification of Environmental Aspects of a Railway Interlocking System Based on a Conceptual Model
	1 Introduction
	2 Case Study
	3 An Ontology for the Safe Design of Critical Systems
	4 A Methodology for the Formal Relay-Based RIS Specification
	5 From Conceptual Modelling Towards Environmental RIS Specification
	5.1 Conceptual Model of a Relay-Based RIS Case Study
	5.2 Formal Specification of Environmental Aspects of the RIS Case Study

	6 Discussion
	7 Conclusion
	References

	From a Conceptual Model to a Knowledge Graph for Genomic Datasets
	1 Introduction
	2 Building the Genomic Knowledge Graph
	3 Exploration of the Genomic Knowledge Graph
	4 Related Works
	5 Conclusions
	References

	Decision Making
	Decision-Making in Knowledge-intensive Processes: The Case of Value Ascription and Goal Processing
	Abstract
	1 Introduction
	2 KiPO, Goal Processing and Value Ascription
	2.1 The Knowledge-intensive Process Ontology (KiPO)
	2.2 Goal Processing
	2.3 Value Ascription

	3 Goal Processing and Value Ascription Roles in KiPs
	4 The Ontological Nature of Decision-Making in a Real-Life KiP
	5 Conclusions
	References

	Conceptualization, Design, and Implementation of EconBPC – A Software Artifact for the Economic Analysis of Business Process Compliance
	Abstract
	1 Introduction
	2 Research Methodology and Preliminary Work
	3 Design of the Software Artifact EconBPC
	4 Implementation of EconBPC
	5 Evaluation
	6 Conclusion
	References

	DEMOS: A Participatory Design Approach for Democratic Empowerment of IS Users
	Abstract
	1 Introduction
	2 The State of Art
	3 DEMOS: A DEsign Method for demOcratic Information System
	3.1 First Intention: Identify End-Users
	3.2 Second Intention: Define Viewpoints
	3.3 Third Intention: Design a Model by Viewpoint
	3.4 Fourth Intention: Consolidate Viewpoint Models

	4 Discussion
	References

	Complex Systems Modeling
	Finding Preferred Objects with Taxonomies
	1 Introduction
	2 Data Model
	3 Preference Model
	4 Propagation of Preferences
	4.1 Propagation Principle and Rules
	4.2 Rewriting with Respect to the Target T-Schema

	5 Computing the Result
	6 Conclusions
	References

	Generic Negative Scenarios for the Specification of Collaborative Cyber-Physical Systems
	Abstract
	1 Introduction
	2 Generic Negative Scenarios
	3 Application Example
	4 Related Work
	5 Conclusion
	Acknowledgements
	References

	Model Unification
	HIKE: A Step Beyond Data Exchange
	1 Introduction
	2 Background
	2.1 Data Exchange
	2.2 Datalog Extensions

	3 Smart Data Exchange
	4 Complexity Analysis
	5 Smart Analyzer Tool: Building New Data from Data Instances
	6 Conclusion and Future Work
	References

	Unified Management of Multi-model Data
	1 Introduction and Motivation
	2 Related Work
	3 Research Challenges
	3.1 Conceptual Modeling of Multi-model Data
	3.2 Inference of Multi-model Schemas
	3.3 Multi-model Data Querying
	3.4 Evolution Management in Multi-model Environment
	3.5 Autonomous Multi-model Data Management

	4 Conclusion
	References

	Schema Validation and Evolution for Graph Databases
	1 Introduction
	2 PG Schema Language
	3 Schema Validation
	3.1 Schemas and Instances as Property Graphs
	3.2 Schema Validation via Graph Homomorphisms

	4 Property Graph Rewriting
	5 Related Work
	6 Concluding Remarks
	References

	Grounding for an Enterprise Computing Nomenclature Ontology
	Abstract
	1 Introduction
	2 A Brief History of Nomenclatures
	3 Nomenclature’s Type-Token Architecture
	4 Outlining a Nomenclature Ontology
	5 Implementing a Nomenclature Ontology System
	5.1 Lessons Learnt from Mention and Use
	5.2 The Current Patterns of Implementation – A Baseline
	5.3 A Proposed Implementation

	6 Conclusions
	Acknowledgements
	References

	Big Data Technology III
	Events as Entities in Ontology-Driven Conceptual Modeling
	1 Introduction
	2 Background
	3 Extending OntoUML with Event Types
	3.1 Introducing Event Types with the event Stereotype
	3.2 Relations Between Event Types and Endurant Types
	3.3 Mereological Relations Between Events
	3.4 Historical Dependence Between Events

	4 Applying the Profile to Model Software Testing Processes
	5 Related Work
	6 Final Considerations
	References

	Parallel Clique-Like Subgraph Counting and Listing
	1 Introduction
	2 Preliminaries
	2.1 Notations and Terminology
	2.2 Problem Statement

	3 The Parallel Framework
	3.1 Vertex Ordering Schemes
	3.2 Task Partitioning
	3.3 Task Computation

	4 Performance Evaluation
	4.1 Experiments on Vertex Ordering Schemes
	4.2 Experiments on Parallel Computation

	5 Conclusion
	References

	Modal Schema Graphs for Graph Databases
	1 Introduction
	2 Graph Data Models
	3 Schema Graphs: Then and Now
	4 Modal Schema Graphs
	5 Expressive Power
	6 Conclusions
	References

	A Systematic Approach to Generate Diverse Instantiations for Conceptual Schemas
	1 Introduction
	2 State of the Art
	3 Our Generative Method
	3.1 Running Example
	3.2 Derivation of Classifying Terms via Constraint Strengthening
	3.3 Constructing Diverse Instantiations

	4 Tool Support
	5 Discussion
	6 Conclusions
	References

	Requirements Modeling
	Factors Affecting Comprehension of Contribution Links in Goal Models: An Experiment
	1 Introduction
	2 Background
	2.1 Goal Models and Contribution Links
	2.2 Intuitiveness and Individual Differences

	3 Experimental Design
	4 Results
	5 Related Work
	6 Conclusions
	References

	iStar-p: A Modelling Language for Requirements Prioritization
	Abstract
	1 Introduction
	2 Methodology
	3 iStar-p: A Model for Requirements Prioritization
	4 Evaluation
	5 Related Work
	6 Conclusion and Future Work
	Acknowledgements
	References

	On the Use of Requirement Patterns to Analyse Request for Proposal Documents
	Abstract
	1 Introduction
	2 Background
	3 Research Goal and Research Questions
	4 Patterns in the Railway Domain
	5 RQ1: Pattern Attributes
	6 RQ2: Preliminary Evaluation
	7 Conclusions and Future Work
	Acknowledgments
	References

	iStar4RationalAgents: Modeling Requirements of Multi-agent Systems with Rational Agents
	Abstract
	1 Introduction
	2 Background
	3 Related Work
	4 Extending iStar for Model Rational Agents
	4.1 Representing the Extension Constructs in the Concrete Syntax
	4.2 How to Use the Extension

	5 A MAS Support Programing Courses in Distance Education
	6 Evaluation by Experienced Researchers
	6.1 Threats to Validity

	7 Conclusions
	Acknowledgments
	References

	Author Index

