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Abstract. Path querying on Semantic Networks is gaining increased
focus because of its broad applicability. Some graph databases offer sup-
port for variants of path queries e.g. shortest path. However, many appli-
cations have the need for the set version of various path problem i.e.
finding paths between multiple source and multiple destination nodes
(subject to different kinds of constraints). Further, the sets of source
and destination nodes may be described declaratively as patterns, rather
than given explicitly. Such queries lead to the requirement of integrating
graph pattern matching with path problem solving. There are currently
existing limitations in support of such queries (either inability to express
some classes, incomplete results, inability to complete query evaluation
unless graph patterns are extremely selective, etc).

In this paper, we propose a framework for evaluating generalized path
queries - gpgqs that integrate an algebraic technique for solving path
problems with SPARQL graph pattern matching. The integrated alge-
braic querying technique enables more scalable and efficient processing
of gpgs, including the possibility of support for a broader range of path
constraints. We present the approach and implementation strategy and
compare performance and query expressiveness with a popular graph
engine.

Keywords: Algebraic interpretation - Path query + Graph pattern
matching

1 Introduction

Many applications have to find connections between entities in datasets. In graph
theoretic terms, this amounts to querying for paths in graphs, between multiple
sources and destinations. Often the sets of sources and destinations cannot be
easily given explicitly but rather in terms of patterns to be matched in graphs.
For example, to assess security risks for flights, security officials may want to
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know about relationships between pl = passengers on any flights to a particular
destination within a particular time window who purchased one-way tickets by
cash, and p2 = countries on the CIA watchlist. Here pl and p2 are patterns
describing the set of sources and destinations of interest. Such inquiries also
commonly occur when dealing with biological networks as well as in several non-
traditional emerging applications e.g. networking. For the latter example, sup-
pose there is a network composed of SDN ASs (Autonomous Systems), where
an AS controller may want to compute a domain-level path from one node to
another for an application where the query includes constraints related to busi-
ness relationships with potential transit domains. Another feature of path queries
as demonstrated by the networking example is that, there can be constraints on
paths e.g. avoid domains of type T or constraints on path disjointedness (link-
or node-disjoint for specific resilience level) or other structural constraints. Such
constraints are more expressive than the property path queries which require a
regular expression of the properties in path being searched for. In a sense, these
queries are traditional path queries generalized to include graph patterns and
path constraints. We refer to such queries as Generalized Path Queries - gpgs.

Property path expressions in SPARQL are also motivated by the need for
graph traversal queries. However, they are fundamentally different from path
queries in that the result of a property path expression is not paths but rather
sets of endpoint nodes connected by paths that match the property path pat-
tern. G-Core [15] presents a good discussion of different classes of graph queries.
Existing graph-based query engines such as Neo4j [9], StarDog [13], Allegrogaph
[14], AnzoGraph [6], Virtuoso [18] provide varying degrees of support for path
querying. Some other platforms such as [19,21-24,30] have focused exclusively
on the path querying.

A common thread across existing path querying evaluation strategies is that
they are built on traditional graph algorithms. The challenge with graph theo-
retic interpretations of such queries is that the different constraints in gpgs may
translate to different classes of graph problems, requiring different algorithms.
For example, shortest path algorithms vs. subgraph isomorphism algorithms vs.
subgraph homeomorphism, etc. From the point of view of query processing, this
is a limited approach because of the limited opportunity for decomposition and
reusability. On the other hand, adopting an algebraic perspective allows prob-
lems to be interpreted in a more generalized form. This also allows for more nat-
ural integration with algebraic graph pattern query engines. Considering such
a strategy makes sense once one observes that gpqs are essentially comprised
of four elements: graph pattern matching, joining/filtering of graph patterns,
path computation, path filtering. Some existing platforms like [13] do partially
interpret gpq-like queries algebraically. However, the absence of a complete alge-
braic query interpretation framework results on falling back on traditional graph
algorithms in many situations.

In this paper, we propose an algebraic query evaluation technique for gpgs
that delineates the four gpgs subquery elements and their mapping to algebraic
query operations so that gpgs query planning translates to composition and
ordering of query operations. More specifically, the paper presents.
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— a conceptual query evaluation model that integrates algebraic graph pattern
matching with algebraic path problem solving.

— an implementation model that perturbs the plan for graph pattern matching
query generated by a SPARQL query compiler by splicing in algebraic path
querying operators to produce a gpgs query plan. Another advantage of this
strategy is that current SPARQL parsers and existing graph pattern matching
compiler can be adopted without modification. An example implementation
strategy using Apache Jena’s query compiler and Apache Tez’ DAG for phys-
ical execution is presented.

— comparison of the performance and expressiveness of the integrated platform
with a popular engine.

Section 2 presents the background on algebraic path problem solving and
graph pattern matching. The relevant work, existing graph querying engines and
their limitations are provided in Sect. 3. Section4 discusses our approach both
conceptually as well as the implementation model with evaluation presented in
Sect. 5. Conclusion is in Sect. 6.

2 Background

2.1 Algebraic Path Problem Solving in Directed Graphs

We begin with a brief review of an efficient algebraic path problem solving app-
roach due to [34]. An edge e in a directed labeled graph G = (V, E) is denoted
as e = (v1,v9) with label A(e) = l., where vi,v2 € V and e € E. A path p,
in this graph G = (V, E), is defined as an alternating sequence of nodes and
edge labels terminating in a node p = {v1,le,,v2,len, - Un,le, s Uny1}, Where
V1,V2,...,Un,Unt1 €V and ey, e, ...,e, € E. A path expression of type (s,
d), PE(s, d) [34] is a 3-tuple (s, d, R), where R is a regular expression over
the set of edges defined using the standard operators union(U), concatenation(e)
and closure(x) such that the language L(R) of R represents paths from s to
d, where s,d € V. For example in Fig.1(a) borrowed from [21], PE(2, 7) =
(2,7,((bece f)uU(ie f))) is path expression of type (2,7) (for brevity, only
edges are captured in the regular expression, no nodes). Path expressions may or
may not be complete in terms of the subset of paths represented. For example,
PE(2, 7) only represents two of the several paths between 2 and 7.

If a graph is ordered using any numbering scheme, path information can
be represented using a particular ordering of path expressions called a Path-
Sequence (PS) [21,34]. Figure 1(b) shows the path-sequence that represents the
example graph in Fig.1(a). It can be observed that some path expressions are
simple, e.g. representing only a single edge, while others are more complex.
The formalization of a path sequence [34] defines what path expressions are in
a path sequence. A particularly appealing property of a path-sequence is that
many path problems can be solved using a simple propagation SOLVE algorithm
[21,34], that assembles path information as it scans the path-sequence from left
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Fig. 1. Example explaining path-sequence and expression (a) Example graph (b) Path-
sequence for the graph (c) Partial path expression for paths between nodes 2 to 7

to right. At every iteration of the SOLVE algorithm the following step is per-
formed PE(s,w;) U (PE(s,v;) @ PE(v;,w;))— > SA[w;], where an existing path
expression for (s, w;) is extended using concatenation of two subpath expressions
and/or union of new path expression capturing additional paths for (s,w;). At
the end of the scan and propagation phase, we are guaranteed completeness of
the source node used to drive the propagation phase. The original single source
SOLVE algorithm was generalized in [21] to multiple sources, with a particu-
lar emphasis on sharing computation across sources where subexpressions were
common.

One of the main issues with graph computation is that every problem requires
a different algorithm. A nice property of this algebraic framework as shown by
[34] is that multiple path problems can be solved using the same algorithm by
interpreting Union(U) and concatenation(e) operators appropriately. For exam-
ple, the shortest path problem has a very straightforward interpretation in terms
of the Union(U) operator, where rather than union multiple path expressions you
ignore all but that with the least cost. Some problems can also be interpreted
in terms of manipulation of the path expression produced by the unconstrained
path problem. [17,21,23] all describe some examples. For problems in this cat-
egory, a critical issue is that computationally efficient representations of path
expressions are used rather than mere string representations. For example, there
is a natural mapping from regular expressions to abstract syntax trees (AST)
where the operators like union(U) and concatenation(e) form the internal nodes
while the edges form the leaves of the tree. Figure 1(c) shows the AST for the PE
shown earlier. In this context, path filter operators can then be defined in terms
of manipulation of path expression representations.
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2.2 Algebraic Query Evaluation of Graph Pattern Matching

It is well known that RDF admits a directed graph model. SPARQL [29] is
the standard RDF query language with its main query primitive being a graph
pattern. Evaluation of graph pattern matching query is usually performed using
operators with an algebraic query plan where we typically use relational-like
query operators. The graph patterns are compiled into an algebraic logical plan
representation, which is generally a sequence of query operators with an implied
execution ordering. For example, Jena ARQ [4,28] is a popular query engine that
supports SPARQL queries and it creates a SPARQL Syntax-Expression(SSE) as
an algebraic logical query plan. The last step in query evaluation is transforming
the logical plan to a physical plan which depends on the physical execution
environment.

3 Related Work

[16,35] provides a good survey of graph query languages. For running queries that
have both graph pattern matching and path computation components, in most
cases, users have to use two different platforms. Those platforms that do allow
both components mostly focus on finding shortest paths and not necessarily all
paths. Platforms like Virtuoso [18], RDFPath [30], Blazegraph [5] use property
paths [12] supported by SPARQL 1.1 [25]. However, using property paths, it is
only possible to know the specific sources and destination, but not the exact
paths. Also, the users would need to write a regular expression of the properties
in the paths they are looking for, requiring the user to know the exact properties
in the path as well as have some idea of the sequence of these properties. Gremlin
[32], the query language for JanusGraph [8] and Neptune [2] also requires the
predicates of the path to be specified in the query. Oracle’s PGQL [10,11,31,33]
finds paths using general expressions over vertices and edges of the graph. The
user needs to have knowledge of the sequence of edges in the paths being searched
for in this case as well.

Neodj [9], AgensGraph [1] use Cypher [7,20] as their query language. Cypher
uses a fast bidirectional breadth-first search algorithm for optimizing path
queries. However, this fast algorithm is used only in certain scenarios like finding
shortest path. When finding all paths, Cypher uses a much slower exhaustive
depth-first search algorithm. Even for shortest path queries, the fast algorithm
is used only if the predicates in the path query can be evaluated on the fly. For
path queries, with predicates for which they need to examine the whole path
before making a decision on filtering, Cypher’s query evaluation falls back to
exhaustive search. Cypher has another drawback, where its shortest path algo-
rithm produces incomplete results when the start and end nodes are the same.
Such a scenario might occur when performing a shortestPath search where the
sources and destinations are overlapping sets of nodes.

Stardog [13] uses more traditional SPARQL operators for query evaluation.
For any path query with start and end variable patterns Stardog first finds all
possible paths that match P@Q which is a regular expression similar to that used
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Original query SSE produced by Jena after parsing and compiling
PREFIX akt:<http://www.aktors.org/ontology/ (prefix ((akt:http://www.aktors.org/ontology/portal#)
portal#> (rdf :http://www.w3.0rg/1999/02/22-rdf -syntax-ns#))
PREFIX rdf:<http://www.w3.org/1999/02/22-rdf- (project (?s1 7s)
syntax-ns#> (product
(join
SELECT * WHERE { (BGP
?s1 rdf:type akt:Affiliated-Person . [triple ?sl1 rdf:type akt:Affiliated-Person]
?s1 akt:full-name "Wendy E. Mackay" . [triple ?sl1 akt:full-name "Wendy E. Mackay"l)
?s akt:has-author ?sl . (BGP
?s2 akt:full-name "Irene Greif" . [triple ?s akt:has-author ?s1]
?s2 akt:has-affiliation 7d . )
(BGP
?s 7pathVar 7d . [triple ?s2 akt:full-name "Irene Greif"]
} [triple ?s2 akt:has-affiliation ?7d])))

(a) (b)

Fig. 2. (a) An example path query in our implementation of the integrated platform.
(b) The SSE produced by Jena’s parser and compiler

by property paths. The resulting set of paths is then joined with the end graph
pattern, followed by the start graph pattern. This approach of applying filter
first and then joining with source and destination patterns might be useful when
the filter is highly restrictive. However, if the path query filter is not restrictive
it will produce a large resultset resulting in poor performance when joining with
the start and end patterns.

4 Approach

Introducing a new query class would typically require the extension of query
language and processing framework. However, we adopted an approach of intro-
ducing a syntactic sugar that avoided the need for changing SPARQL’s query
syntax. A second simplifying but reasonable strategy is the use of a fixed order
between the graph pattern matching phase and the path computation phase.
The rationale here is that in gpqgs, pattern matching serves to compute the set
of sources, destinations and/or intermediate nodes in constraints. In other words,
the output of graph pattern matching can be seen as input to the path problem
phase. Interpreting this in terms of query plans implies that the path computa-
tion and path filter operators will always be at the root of the tree for any gpgs
query plans. In the sequel, we elaborate our realization of the above implied
strategy.

4.1 Identifying GPQ Sub-Query Components in SPARQL* Queries

Our syntactic sugar is based on adopting a pre-defined variable name ?pathVar
as the path operator. We acknowledge the risk of other users using this variable
in their queries, but assume this risk to be small. Since this a legal variable that is
recognized by the graph pattern matching platform’s parser, the unaltered parser
can parse and compile path queries without failing due to syntax issues. Here,
we refer to SPARQL with our pre-defined variable ?pathVar as SPARQL*.
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Implementation Strategy: In this section, we describe the approach followed
to identify the source and destination variables using the pre-defined path vari-
able ?pathVar and then project them out from the graph patterns. The last
triple pattern in example query in Fig. 2(a), (?s ?pathVar ?d) denotes the path
computation between all bindings to the variable ?s and the variable ?d. Pres-
ence of the ?pathVar variable in the predicate position implies that it is a path
query. Now, we must keep track of the position of the source and destination
variables in the graph patterns and finally, after all the joins have taken place
we must project out only the bindings of the source and destination variables.
These bindings would then go into the path operator. To do this, we create the
required datastructures to hold the position information of the source and des-
tination variables in the query. This information will be later required when we
create the final physical plan of the query.

For our proof-of-concept prototype, we implemented by integrating Sem-
storm [27] as the graph pattern matching platform and Serpent [21,23] as the
path query computation platform. Semstorm uses the below two main datas-
tructures as query plan representation to hold the position information of the
different triple patterns in the submitted query.

— subjObjListMap holds the mapping between the subjects and the corre-
sponding objects in the query. The subjObjListMap for the query in Fig. 2(a)
would be

subjObjListMap: {?s=[[7s1]], ?sl=[["Wendy E. Mackay"l],
?s2=[["Irene Greif"], [7d]]}

— subjPropListMap holds the mapping between the subjects and the prop-
erties or predicates in the triple patterns in the query. The subjPropListMap
of the query in Fig. 2(a) would be

subjPropListMap: {?s=[has-author], ?sil=[full-name],
?s2=[full-name, has-affiliation]}

In addition to these, the following datastructures have been added to facil-
itate path computation and provide required location information to the path
operator.

— pathSrcDst is a map that shows the mapping between the source variable
and its corresponding destination variable. For the query in Fig.2(a), the
pathSrcDst would be

pathSrcDst: {?7s=[7d]}

— srcMap contains the source variable in the key position and a list of inte-
gers in the value position. The list of integers denote the exact position of
the source variable in the subjObjListMap datastructure. The srcMap of the
query in Fig. 2(a) would be

srcMap: {?7s=[[0, -1]1}



108 A. Bhattacharyya et al.

— dstMap is similar to the srcMap, except that its key contains the destination
variable and the list of integers in its value position denote the position of
the destination variable. The dstMap of the query in Fig. 2(a) would be

dstMap: {?d=[[2, 111}

— cndMap is also same as the srcMap and dstMap except that it hold the con-
straints information. For example, some query might want to restrict paths
to the ones which contain at least one akt:has-affiliation property or pred-
icate. Then, this triple will be a part of the constraints and the position of
this triple would be captured in the cndMap. The query in Fig.2(a) is not a
constrained query and hence, its cndMap would be empty.

The list of integers in the value position of the srcMap, dstMap and
cndMap all denote the position of the respective variables in subjObjListMap.
For example, {?s=[[0, — 1]]} means the variable ?s is in the first BGP of sub-
jObjListMap (indexing starts at 0) and —1 denotes that it is the subject of the
BGP. {?d=[[2, 1]]} means that the variable ?d is in the third BGP and it is
the second object of that BGP. Sometimes these variables might also be the join
variable between two graph patterns and so, they can exist in multiple BGPs
and the value of the respective maps will have a list of integer pairs, identifying
the position of the variable in subjObjListMap.

4.2 Logical Query Plan Transformation

Our query planning approach is based on transforming the query plan produced
by graph pattern matching engine. The intuition is that the subqueries which
are the graph patterns defining the sets of sources, destinations, etc for path
computation can be translated to query plans in the usual manner. However,
the semantics of such queries will usually imply a cross-product of intermedi-
ate results (since the subgraph patterns will be disconnected). We illustrate this
idea with the example query in Fig.2(a) (but ignoring the last triple pattern
(?s 7pathVar ?7d) which is our syntactic sugar for the path variable triple pat-
tern). Figure2(b) shows the SSE created by Jena’s parser and compiler and

project

product

Fig. 3. Query plan transformation from graph pattern matching query to ggpq
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Fig.3(a) shows the SSE as a tree. To achieve the correct query semantics, the
cross-product and projection operators have to be removed and query operators
associated with path computation introduced. The final operator in the plan
is a path filter operator (if path filtering constraints are specified - absent in
example). The newly introduced components of the query plan are enclosed in
a dotted box in Fig. 3(b).

Implementation Strategy: Our graph pattern matching platform, Semstorm
[27] is an RDF processing platform that is targeted for Cloud-processing and
uses Apache Hadoop/Tez execution environment. Semstorm’s compiler builds
on Jena’s parser, using Jena’s SSE to create a Tez [3] DAG as the physical
query plan based on Semstorm’s query algebra. To achieve an equivalent physical
query plan transformation, similar to the logical plan transformation in Fig. 3,
new physical query operators have to be introduced. Since our physical execution
environment is Tez, the new physical operators are nothing but new Tez Vertices.
The following new Tez vertex types were added that act as the physical query
operators.

— Annotator Vertex for Source, Destination and Constraint Variables.
Semstorm is meant to run SELECT * WHERE queries and so, it propagates
the data for all of the variables in the query. However, the path computation
platform Serpent expects three lists of nodes that denote sources, destinations
and constraints respectively. Hence, annotators were required to identify the
source, destination or constraint variables and then, allow only the bindings

PathComputer::
Src: ?s, Dst: ?d

Annotator -
Source: [[0, -1]]
Packager::
?s,?s1
Annotator Annotator
(?s1):0 (?s1): 1

Annotator -
Destination: [[2, 1]]

TypeScanner::

Fig. 4. The Tez DAG representating the physical plan for the query shown in Fig. 2
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for that variable to pass through, discarding the rest of the bindings. While
this might seem to be a less optimized method, it must be noted that bindings
to other variables cannot be discarded before all joins have completed since
the source, destination or constraint variable may not always be the join
variable.

— PathComputer Vertex. This is the path operator which performs the path
computation. It takes the sources, destinations and constraints as input, con-
verts these into three String arrays as is required by Serpent and then calls
the appropriate method in the Serpent platform. For every path query DAG
this vertex will always be at the root.

Figure 4 shows the final Tez DAG that needs to be generated for the exam-
ple query in Fig.2(a). The TypeScanner::?s vertex in the DAG identifies and
reads all triples that match the pattern {?s akt:has-author ?s1} from the
data file. Similarly, the other TypeScanner vertices read the respective matching
triples. The output of the TypeScanner::?s and TypeScanner::?s1 vertices go to
Annotator(?s1):0 and Annotator(?s1):1 vertices respectively. These annotator
vertices identify the join variable and its position in the graph pattern. The Pack-
ager::%s,%s1 vertex performs the actual join operation between the two graph
patterns and provides the joined output of the two input graph patterns.

If a simple pattern matching query is submitted to Semstorm, it would add
a Producter vertex that would take inputs from the Packager::?s,?s1 and Type-
Scanner::2s2 vertices and the output of the Producter vertex would go into a
Flattener vertex which would write out the final query output to an output file
on disk. In our integrated version, we created a fork at this point, where for a
path query, we do not add the Producter and Flattener vertices. After joins, we
add the Annotator- Source:[[0,—1]] and Annotator-Destination:[[2,1]] to anno-
tate the source and destination respectively. We also add the value from the
srcMap and dstMap to the respective vertex name. Since the destination vertex
in our example is not involved in any joins the destination annotator vertex gets
its input directly from the typeScanner vertex that has the destination variable.
The PathComputer::Src:?s, Dst:?d vertex comes at the root of the DAG since
this will be executed last. While creating this vertex, information about the
source variable ?s and destination variable 7d are added to it using the config-
uration payload. This DAG is submitted to the query execution framework of
Semstorm, which executes the DAG and produces the final path output.

4.3 Path Constraints

Some path constraints can be evaluated by reinterpreting the union and concate-
nation operations during the propagation algorithm (SOLVE) e.g. for shortest
paths. Others will be defined as manipulations over the path expression pro-
duced by unconstrained version of the problem e.g. finding paths that contain
a given set of nodes (no order specified). Those manipulations will be encapsu-
lated in operators that are parent nodes of the pathComputer node in operator
plan tree. The efficiency of the such operations will depend on the nature of
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Number of sources and Destinations
Queries Sources Destinations Queries Sources Destinations
SmallQuery, 25 2 LargeQuery, 13641 907
SmallQuery, 6 LargeQuery, 29974 32583
SmallQuery, 3 LargeQuery, 11793 6
SmallQuery, 29 7 LargeQuery, 29974 2290
SmallQuery. 26 31 LargeQuery, 2290 32582

Fig. 5. Size of source and destination sets for each query

path expression representation e.g. a binary encoded representation. However, a
detailed discussion path constraints is outside scope of this paper.

5 Evaluation

5.1 Test Setup

The primary goal of our evaluation was to compare our integrated system with
an existing platform on the following parameters.

1. Query compilation time comparison for our platform with and without path
operator.

2. Performance, i.e., time taken to run the same queries.

3. Completeness of results, i.e., whether the platform returns all paths expected.

4. Expressiveness, i.e., what level of queries can be expressed in each platform.

Dataset and Queries: Our queries were ran on the BTC500M dataset [26] (size
0.5GB, 2.5 million triples). While formulating queries, we focused on finding
paths that are at least three hops long. The queries we ran varies from small set
of sources and destinations to very large set of sources and destinations. We ran
five small queries and five large queries where small and large indicate the size of
the set of sources and destinations shown in Fig. 5. In the charts Small Queries
and Large Queries have been abbreviated to SQ and LQ respectively. The same
queries were modified to add constraints to run constrained query experiments.

All the comparisons have been done with Stardog. We also considered Neo4j,
but while trying to run queries using Cypher we found that all-paths queries on
this dataset were running indefinitely and causing the Neo4j server to crash. We
were able to run shortest path queries on Neo4j but that result is not included
in this paper as finding shortest path was not an evaluation goal for this paper.

Hardware Configuration: Evaluation was conducted on single node server
running HDFS in a privately owned RedHat Enterprise Server server, housed in
the University’s server lab. The server is equipped with Xeon octa core x86_64
CPU (2.33 GHz), 40 GB RAM, and two HDDs (3.6 TB and 445 GB). All results
have been averaged over five trials. In all the charts our platform has been
labelled as “Sem-Ser”.
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5.2 Evaluation Results

Query Compilation Time Comparison: Figure6 shows the time taken for
query compilation on our platform for queries which have the path operator
compared with the same queries without the path operator. The path operator
does not have much effect on the query compilation time and in most cases the
compilation time increased by less than one second.

Query compilation time comparison

2
15 |
1
0
sal sQ2 sQ3 sQ4 sQs Lal LQ2 La3 La4 LQs

W With Path Operator Without Path Operator

Time (seconds)

o
o

Fig. 6. Chart showing compilation time comparison

Performance Evaluation: When comparing absolute time taken by our plat-
form with that of Stardog, we found that Stardog performed better in all queries
except for SQq, LQ1 and LQs. LQ- timed out and produced only partial results
on Stardog and took the longest time (5.5 min) and produced the largest number
of paths (0.8 million paths) on our platform. This is mainly because the graph
patterns provided for the source and destination nodes was quite general, thus,
leading to large number of matching sources and destinations. Consequently,
there were a large number of paths connecting these nodes.

Completeness of Results: Figure7(a) and (b) show the number of paths
identified by small and large queries respectively. LQ2 has been marked with an
asterix since it did not finish in Stardog and hence, all the charts have only one
value for this query. For all the queries, Stardog produced incomplete results
and also duplicate paths. This dataset has a lot of triples such as (acm:58567
akt:has-publication-reference acm:58567). In this triple the subject and
the object is the same uri acm: 58567 and hence, this is called a loop or self-loop.
The BTC dataset has a lot of such triples and Stardog does not consider the
self loops in the paths it identifies. For example, suppose we have an RDF graph
consisting of the triples (A p1 A) (A p2 B) (B p3 B) and a path query with A as
source node and B as destination node. On execution of the path query Stardog
will ignore the self-loops (A p1 A) and (B p3 B) and will output only one path (A
p2 B). However, our platform will find four paths (A p2 B), (A p1 A p2 B), (A
p2 B p3 B) and (A p1 A p2 B p3 B). This is the reason behind Stardog mostly
finding less paths as compared to our platform.
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Fig. 7. Chart showing comparison of number of paths identified

In some queries (SQ1, LQ1), Stardog does find more number of paths. How-
ever, these results contain duplicate paths. For example, although Stardog pro-
duces 40 paths for S@Q; the number of unique paths is 6. Since there was a huge
mismatch between the number of paths found by our platform and Stardog we
compared the time taken per path identified rather than the absolute time taken
for executing each query. Figure 8(a) and (b) shows the time per path comparison
for the small and large queries respectively.

Expressiveness: All types of graph patterns can be expressed in Neo4j, Stardog
as well as our platform. However, Stardog does not support constraints such as
ALL, ANY, NONE. Figure 9 shows the comparison of the expressiveness of our
platform with that of Stardog and Neodj. Neodj has predicate functions (all,
any, exists, none, single) which can be used for the same purpose of filtering.
However, since we were not able to run all paths queries on Neo4j it was not
possible to compare constrained queries on our platform with that on Neo4j.
Figure 10 shows the time taken for constrained queries as compared to uncon-
strained queries on our platform. All of the constrained queries understandably
taken longer time to complete query execution, since these queries include an
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Fig. 8. Chart showing the comparison of time taken per path identified
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Fig. 9. Table showing comparison of the level of expressiveness of our platform with
Neo4j and Stardog
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Fig. 10. Execution Time of constrained queries vs unconstrained queries

extra filtering step. For all of the small queries, the increase in execution time is
minimal mainly because the size of the resulting set of paths before filtering is
also small. For the large queries, the increase in execution time is more noticeable
due to the larger size of the resultset prior to filtering.

6 Conclusion

This paper presents an algebraic query evaluation strategy to evaluate general-
ized path queries with declaratively defined source and destination nodes. This
paper also presents a general framework and steps to integrate any existing graph
pattern matching platform with a path computation platform. Lastly, this paper
describes an implementation of such an integrated platform and shows perfor-
mance comparison with this integrated platform with that of popular platforms
that can handle such generalized path queries.
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