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Abstract. With the continuous growth of the Linked Data Cloud,
adequate methods to efficiently explore semantic data are increasingly
required. Faceted browsing is an established technique for exploratory
search. Users are given an overview of a collection’s attributes that can
be used to progressively refine their filter criteria and delve into the data.

However, manual facet predefinition is often inappropriate for at least
three reasons: Firstly, heterogeneous and large scale knowledge graphs
offer a huge number of possible facets. Choosing among them may be
virtually impossible without algorithmic support. Secondly, knowledge
graphs are often constantly changing, hence, predefinitions need to be
redone or adapted. Finally, facets are generally applied to only a subset
of resources (e.g., search query results). Thus, they have to match this
subset and not the knowledge graph as a whole. Precomputing facets for
each possible subset is impractical except for very small graphs.

We present our approach for automatic facet generation and selection
over knowledge graphs. We propose methods for (1) candidate facet gen-
eration and (2) facet ranking, based on metrics that both judge a facet
in isolation as well as in relation to others. We integrate those methods
in an overall system workflow that also explores indirect facets, before
we present the results of an initial evaluation.

Keywords: Faceted browsing - Facet ranking - Knowledge graph -
Exploratory search

1 Introduction

A facet is by definition' a particular aspect or feature of something. In the
present work, this is applied to a set of resources that could be viewed under
different aspects. Each aspect is called a facet and consists of several categories,
facet values, which can be used to filter the initial resource set. The number of
resources that are associated with a certain facet value is called value size.

! Oxford Dictionaries: https://en.oxforddictionaries.com/definition /facet.
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Considering an example, a list of books can be viewed under the aspect of
their genre. Choosing the facet value science fiction, books of this specific genre
would be selected. The number of selected resources then corresponds to the
value size of the facet value science fiction. The same list could be viewed under
the aspect of their publication year, with each sublist containing only books
published in one particular year. These two aspects, genre and publication year,
are just two of the many possible facets for books.

To obtain different facets, we assume each resource to have properties
assigned, linking them either to other resources (genre, with, e.g., a descrip-
tion for itself) or plain literal values (publication year). While our method works
on any resource set possessing such properties, we use semantic models as rig-
orous formulation. In particular, we consider knowledge graphs (KGs). They
provide significant advantages for the creation of facets: First of all, assuming
the resources are drawn from a rich KG, we automatically get a large amount of
direct resource information from their properties. The values of those properties
may be resources themselves and can be used to generate indirect facets over the
initial resource set. For example, an indirect facet for books can be an author’s
place of birth, where place of birth is linked to author, not to the book itself.

However, considering continuously changing and heterogeneous resources,
manually predefining facets is often impractical. Using concepts from large KGs,
e.g., the Linked Data Cloud, for semantic annotation induces a large number of
possible facets. Hence, an automated method has to rank the large number of
candidate facets to be able to pick the most suitable ones among them.

Nevertheless, determining the single, best facet is not enough. Users generally
expect a list of facets to choose from. Moreover, this list should not be extremely
long, and its items should be “useful” both individually and as collection. Were
it not for the requirement of usefulness also as collection, simply choosing the
top-k highest-ranked facets would be sufficient. However, avoiding facets that
are semantically very close to each other is important as well. After their iden-
tification, criteria need to be defined to decide which of the candidates to drop
to arrive at the final list of facets.

We propose an approach for dynamic facet generation and facet ranking over
KGs. Our ranking is based on intra- and inter-facet metrics to determine the
usefulness of a facet, also in the presence of others. A key aspect is exploiting
indirect properties to find better categorizations. Since inter-facet metrics have
not been satisfactorily addressed so far, we present semantic similarity as a
usefulness criterion.

Based on our previously proposed workflow [1], we integrated all methods
into an initial prototypical implementation [2]. While this leverages data from
a specific KG, i.e., Wikidata [3], the methods we describe and use are generally
applicable without or with only minimal changes to a wide range of KGs. Possi-
ble applications include exploratory browsing of a data catalog of semantically
annotated datasets, or the reduction of a search result set using facets as filters.

In Sect. 2 we first revisit some of the related works in this direction. We then
discuss methods we used for candidate facet generation and ranking in Sect. 3
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and propose our workflow in Sect.4. We present evaluation results in Sect. 5.
Finally, we conclude and discuss future work in Sect. 6.

2 Related Work

Faceted browsing over KGs has been the subject of various research efforts,
e.g., [4]. Prominent approaches such as Ontogator [5] or mSpace [6] use statically
predefined facets for data navigation and do not consider continuously changing
data sources. Moreover, their evaluation scenarios suppose data homogeneity
and domain-dependent collections like cultural artifacts [5] or classical music [6].

Other projects include BrowseRDEF, Parallax, gFacet, Faceted Wikipedia,
VisiNav, Rhizomer, SPARKLIS, SemFacet, Grafa, MediaFaces, and Hip-
palus ([7-17], resp.). Facets are either dynamically selected from a precomputed
set of facets or dynamically generated on the fly. The latter type of facets relies
on building dynamic SPARQL queries and executing them on the respective
SPARQL endpoints. Grafa [15] proposed a selection strategy to precompute
only a subset of possible facets to avoid indexing of all data.

Some of these projects assume a homogeneous data source [7,17], using
very specific data sets from the domains of, e.g. species [17], other contribu-
tions account for domain heterogeneity [8-16] and base their work on large
scale KGs such as Wikidata [3], Dbpedia [18], or Freebase [19]. However, in
some projects [9,10,12,13], an initial interaction (resource type specification) is
required, before any facets are generated.

Various aspects of facet generation are discussed. This includes facet rank-
ing [7,10-12,15-17], entity type pivoting® [8,9,11-14], visualization [8,9,11-13],
indirect facet generation [6,7,9,13,14], or performance issues [10,13,15].

Facet ranking is of particular importance for dynamic facet generation in
order to select from the considerable number of facet candidates. Frequency-
based ranking was adopted by [10-12,15]. In Faceted Wikipedia [10], facet values
are ranked based on the value sizes. For facet ranking, the most frequent facets
corresponding to the selected type are candidates. They are ranked based on
their most frequent facet value. Note that a ranking is applied only in case of
resource type selection, otherwise generic facets are displayed. VisiNav [11] also
adopts a frequency-based approach to rank facets and facet values inspired by
PageRank [20]. The respective scores are calculated based on the PageRank
score of the data sources [21]. Rhizomer [12] defines relevant facets based on
the properties usage frequency in the resource type instances and the number
of different facet values. In Grafa [15], facets are ranked according to the num-
ber of search result resources that have a value for the specific facet and facet
values are ordered by PageRank. BrowseRDF [7] proposes three metrics to mea-
sure the quality of facets: (1) predicate balance, considering faceted browsing
as the operation of traversing a decision tree where the tree should be well bal-
anced (2) object cardinality, the number of facet values as also considered in [12]

2 Switching the focus type, e.g., from a set of books to the set of their authors.
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(3) predicate frequency similar to [10,12,15]. The metrics are combined to a final
score that is used to rank facets. In MediaFaces [16], facets are ranked based on
the analysis of image search query logs and users tags of Flickr® public images.
Hippalus [17] introduces a different ranking approach involving user interactions
where users rank facets and facet values according to their manually defined
preferences.

We notice that all the previously described efforts concerning facet ranking
only involve intra-facet metrics that rate facets individually without taking into
consideration the significance of facet co-occurrence, or in other words inter-facet
metrics. To the best of our knowledge, only Facetedpedia [22] includes a metric
for measuring the collective usefulness of a facets collection. However, it does
not take advantage of KGs or semantically annotated collections, but generates
facets over Wikipedia® pages based on the Wikipedia category system. They
consider the navigational cost, i.e. the number of edges traversed, as an intra-
facet metric that is based on the number of steps required to reach target articles
and the number of choices at each step. Furthermore, facets are penalized if they
have a low coverage, i.e., not all the articles can be reached using the considered
facet. Besides the navigational cost, the average pairwise similarity is proposed
as an inter-facet metric. However, the used metric is specifically designed to be
applied on the Wikipedia category system and is not generic enough to express
semantic similarity in the sense of arbitrary KGs.

3 Methods

Before presenting our proposed workflow, this section provides details on the
employed methods. This includes initial candidate facet generation, handling of
literal facet values, and the metrics used to compare facets. The latter discussion
is split into two parts: Intra-facet metrics evaluate a facet in isolation, whereas
inter-facet metrics judge facets in relation to others.

3.1 Candidate Facet Generation

We aim to generate facets over a set of resources given by their respective Inter-
nationalized Resource Identifiers (IRIs) within the KG. In such a graph we treat
the relations of the given resources as their properties and thus any applicable
property path is equivalent to a candidate facet. To achieve a better categoriza-
tion of resources, we consider not only the direct properties (i.e., values that
are connected to the resource by a single link), but also indirect properties (i.e.,
chained links are needed to connect a resource and a value). As an example,
consider a set of resources referring to people. A direct property can be derived
from a relation place of birth pointing to instances of a class city. An indirect
property could then also exploit an existing link between city and country® to

3 https://www.flickr.com/.
* https://www.wikipedia.org/.
5 Assuming there is no direct link between persons and their country of birth.
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arrange the connected cities into possibly fewer categories®. Indirect properties
are only possible, if the range of the associated relation is not a literal, as those
can not be the subject of further statements in the standard RDF model.

A candidate facet is now given by a property path within the KG. In case
of direct properties this path is of length one, whereas for indirect properties
any path length greater than one is possible. However, longer paths loosen the
connection between resources and facets values. At some point this renders a
facet useless for the given task or at least makes it unclear to users how that facet
is supposed to support them. Furthermore, longer paths increase the number
of candidates and thus require more computations in later phases. For these
reasons, we limit the path length for candidates by a threshold 7.

We categorize candidate facets into two types: (1) Categorical facets that
result from property paths connecting exclusively to other resources and (2)
quantitative facets whose values are given by literals. While we allow quantitative
candidates for numeric or date literals, we exclude string literals. The rationale
is that those oftentimes contain labels or descriptions specific to single resources
and, hence, are barely shared between different ones. As facets rely on common
values to categorize the given input set, these properties will only rarely provide
a suitable candidate facet. If a string value is common to multiple resources,
there is a high chance, that this should have been modeled as a distinct resource
instead of a literal. Of course, resources are often not modeled perfectly. Future
work might need to include these to be able to cope with this type of data.

3.2 Clustering of Quantitative Facets

As mentioned before, facets can be created from numeric or date literals. Unlike
categorical facets, it is highly unlikely that the number of distinct values is suf-
ficiently small to generate a useful facet. However, these values can be clustered
by dividing their continuous range into discrete subranges.

The clustering step is only applied to quantitative facets. It replaces the
associated values with value ranges. The number of these clusters is determined
by the optimum value cardinality as defined by the respective intra-facet met-
ric (see Subsect. 3.3). The clustering technique itself is a consequence of the
rationale behind another intra-facet metric, the value dispersion. It assembles
approximately the same number of values in each cluster.

3.3 Intra-Facet Metrics

To select the most useful facets among the candidates, we define metrics to
judge their usefulness. The first set of metrics presented here assigns scores to
individual candidates independently of each other. Each metric is designed to
reflect one intuition of what constitutes a useful facet.

The first requirement concerns the applicability of the facet. For each facet
we also include an unknown value. This accumulates the resources that do not

5 Cities belonging to the same country will be grouped into one category.
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support the respective property path, i.e., at least one of the corresponding rela-
tions is missing for this resource. For heterogeneous resource sets, the unknown
value size will be non-zero for most facets. However, for a facet to be useful, it
should apply to as many resources as possible. So we strive for the value size of
unknown to be small in comparison with the overall size of the resource set.

These thoughts lead to the definition of predicate probability of a facet f,
SCOT€predicate Prob, a5 given in Eq. 1. It calculates, for a randomly chosen resource,
the probability to support the property path of a given facet.

|supporting resources|
SCOTepredicateProb(f) =

|resources| (1)
Our next requirement deals with the number of facet values. We consider a
facet with only a single value as not useful, as it can not be used to narrow down
the given set of resources. But then again, facets with too many values provide
little help as well. Here, users have to scan through a long list of possible options,
which may even rival the number of input resources. We believe that there is a
number of values that is optimal in the sense that it balances between a concise
categorization and a sufficient number of options to choose from.

Following these considerations, we define the wvalue cardinality,
8COT€yalueCard, Of a facet f with a number of values ¢y as given in Eq.2. The
minimum cardinality is denoted by minCard and the optimal one by optCard.
Note that we chose an asymmetric function that favors facets with fewer values
rather than more. This follows the intuition that better categorizations tend to
have fewer categories. The parameter § # 0 allows to adjust the preference for
value sizes between minCard and optCard.

0 if cy < minCard

cy—optCard

SCOT€palueCard(f) = e o2 if minCard < cy < optCard (2)
m if ¢y > optCard
Our final requirement follows the principle of self-balancing search trees:
Each decision made while traversing the tree should eliminate roughly the same
number of results from consideration. In other words, no leaf node (representing
a specific result) is preferred over others in terms of steps needed to reach it
from the root node. Similarly, we do not want to favor any specific category.
For a facet, this means that all value sizes within a single facet should be
approximately equal”. As a measure for the variance in value sizes, we employ the
coefficient of variation ¢, (see Eq.3). We chose this coefficient over the plain stan-
dard deviation, as it allows to better compare across multiple facets with possibly
different value sizes. Using this, we define the value dispersion, scoreg;spersion

" The subsets induced by the different facet values do not have to be disjoint. A single
resource may be linked to several such values. Consider, e.g., the relation part of
that relates country and continent. Here, the individual Russia is connected to two
continents, Asia and Furope, thus appearing as part of both facet values’ results.
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as given in Eq.4. Here, N is the number of facet values, x; denotes the value
size of the ith facet value, and T is the average of all value sizes. We exclude the
value size of the special facet value unknown from this calculation, as this value
is already exploited in scorepredicateProb-

3)

1
T 1+ a(f) @)

All presented metrics are designed to return only values in the range between
zero and one. In order to combine them into a single metric used in the ranking
process (see Sect.4), we can use a weighted average as shown in Eq. 5. With the
individual weights summing up to one as well, we assure that the final score is
also between zero and one.

SCOT€(djispersion (f)

score(f) = WpredicateProb X SCOT€predicate Prob
+ Wdispersion X SCOT€djispersion

+ WyalueCard X SCOT€yalueCard (5)

3.4 Inter-Facet Metrics

In contrast to their intra-facet counterparts, inter-facet metrics assess the rela-
tionship between different candidate facets. We use semantic similarity of facets
as an inter-facet metric. The motivation is to prevent facets that are too close to
one another and thus would provide about the same partitioning of the resource
set. Moreover, semantically distant facets increase the chances of meeting users’
information need and/or mindset.

Generally, no restrictions are imposed on the semantic similarity measure
chosen to be included in the current facet generation workflow. However, we
base our workflow on a structure-based measure that combines the shortest
path length and the depth. In particular, we consider the one proposed by [23]
as reference similarity metric between two concepts c; and c;, defined as follows:

eB-depth(cics) _ o—B-depthicics)

—alength(ci,cj) (6)
: eﬁ'dffpth(clcs) —+ efﬁ'dEPth(clcs)

sim(ci,cj) =e

where length(c;, ¢;) is the shortest path length between ¢; and ¢; and depth(cics)
is the shortest path length between the Least Common Subsumer (LCS) of the
two concepts, ¢jcs and the root concept. & > 0 and 5 > 0 are used to adjust
the importance assigned to the shortest path length and the depth, respectively.
Based on the correlation evaluation conducted by [23], the optimal parameters
are « = 0.2 and § = 0.6.



Automatic Facet Generation and Selection over Knowledge Graphs 317

The previously defined semantic similarity metric takes a pair of concepts
as input. Therefore, a mapping between properties and concepts needs to be
available. For this purpose, we exploit a particular characteristic of Wikidata’s
data model: Properties are annotated with a matching entity. For example, the
property author (P50) is itself linked to the entity author (Q482980). This
allows us to retrieve entities corresponding to the property path of a facet.

When comparing two facets, we first retrieve the respective entities for the
first property in their property paths. We then calculate the semantic similarity
between the entity pair. Two entities are considered similar, if sim is larger than
a defined threshold o. Since we calculate the similarity over Wikidata taxonomy,
we only consider links using subclass of (P279) and instance of (P31) here.

4 Workflow

We consider the facet generation to be part of larger applications. In particu-
lar, we assume that the retrieval of an initial resource set is subject to other
independent components. Hence, details of the resource retrieval process are out
of scope at this point. For the sake of argument, we base our workflow on the
results of a keyword-based full text search over the string properties of entities
in the KG. Its result is represented as a set of IRIs, each identifies a single result
item or resource and forms the input to our proposed facet generation workflow.
We structured the overall process into four phases as shown in Fig. 1.

Phase 1 Phase 2 Phase 3 Phase 4
. . Intra-facet scoring Selection of better Inter-facet scoring
Candidate generation . . .
and ranking categorization and filtering

Fig. 1. Phases of the facet generation process.

Phase 1: Candidate Generation

This first phase enumerates possible facets by querying for a list of property-
paths associated with the input list of resources. As the predicate probabil-
ity scorepredicateProb is a simple metric, we choose to include it as part of the
query. Candidates that have a scorepredicateProb below a predefined threshold,
minPredProb, are already removed in this phase. This reduces the necessary
data transfers and the calculation of computationally expensive metrics. The
result is a list of candidates, each comprised of a basic graph pattern (BGP), that
describes the facet, and a score to reflect the fraction of resources it applies to.

Phase 2: Intra-Facet Scoring and Ranking
As a prerequisite for the remaining intra-facet metrics, now the facet values
along with the respective value size are retrieved from the SPARQL endpoint.
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We distinguish between object and data properties® at this point. The latter
are subjected to the clustering described in Subsect.3.2 to derive comparable
characteristics with regard to intra-facet metrics.

After augmenting the facets with their respective values, the remaining intra-
facet metrics, scoregispersion and scoreygiuecard, are calculated for all candidates.
This allows us to compute the final intra-facet score, score(f), and accordingly
rank all facets in decreasing order.

Phase 3: Selection of Better Categorization

The number of necessary inter-facet metrics calculations grows quadratically
with the remaining number of candidates. To reduce the list of candidates before
the next step, we exploit a key characteristic of the semantic similarity metric.
The similarity only depends on the first direct property of each facet. Con-
sequently, out of all candidates sharing the direct property, only one will be
chosen for the final result, as all others will be too similar to it. Leveraging this
observation, we can group the candidates by their direct properties and only
choose the best-ranked one within each group.

Phase 4: Inter-Facet Scoring and Filtering
The final result is derived by consecutively applying inter-facet metrics to chosen
pairs of candidates. Calculating semantic similarities is rather expensive. To
minimize the comparisons required, facets are selected in a greedy fashion.

Let C be the list of candidates in decreasing order w.r.t. the intra-facet metric
scoring of Phase 2 and S be the final collection of facets as returned by Phase 4.

(i) Initialize S with the best-ranked facet.
(ii) Take the next facet out of C' and compare it with the facets in S.

(iii) If it is not closely semantically similar to any facet in S, add it to S.

(iv) Continue with Step (ii) until the desired number of facets is reached or there

are no more candidates left.

Finally, S will contain a subset of facets deemed most suitable for the given
input set of resources. The suitability has been determined by employing both
the intra- and inter-facet metrics, which can be extended or changed without
affecting the corresponding workflow. S can now be presented to users. Note that
selecting specific value and subsequently reducing the result set will trigger a new
facet generation process, as the basis for our calculations—the input resource
set—might have changed substantially.

5 Evaluation

The methods described in Sect.3 were implemented in a prototype that
issues dynamic SPARQL queries to the public SPARQL endpoint of Wikidata
(WDQS)?. The source code is available online [2], under an MIT license.

8 Data properties using string literals have already been excluded in the candidate
generation. That means, only numeric and date literals are considered here.
9 https://query.wikidata.org/.
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Table 1. Number of candidates depending on path length and number of IRIs.

#IRIs ‘ 100 1000 2000 3000 4000
T=1 37 52 65 66 75
T=2| 901 1643 2039 2342 2648
T =316076 31543 39318 44619 50843

60 s —

s Other

50 s [ Semantic similarity (Phase 4)
e Facet value retrieval (Phase 2)
s Candidate generation (Phase 1)

1,000 1,500 2,000 2,500 3,000 3,500

Fig. 2. Benchmark results: average timings depending on the input IRI size.

5.1 Benchmarking

To evaluate the performance of our prototype we used a collection of IRIs
extracted from Wikidata (instances of novel (Q8261) or its subclasses).

First, we examined the change in the number of candidates depending on
the path length 7 and number of input IRIs. Results are shown in Table1. As
expected, the number of candidates increases significantly —about 20-fold— for
each additional hop in the paths. However, a growth in input IRIs yields only a
small effect in comparison. These figures and the considerations of Subsect. 3.1,
led to a path length of 7 = 2 for the remainder of the evaluation.

Subsequently, we looked at the run-time of our prototype for varying sizes of
input IRIs. We fixed the semantic similarity threshold (¢ = 0.70), the parameters
for value cardinality scoring (optCard = 10, minCard = 2, and 6 = 3), and
the predicate probability threshold (minPredProb = 0.1). Figure2 shows a
breakdown of the measured execution times, averaged over about 350 individual
measurements over the course of a week. We observe a less than linear growth
of run-time depending on the input IRI size. The most expensive operations are
(1) candidate generation, (2) facet value retrieval, and (3) semantic similarity.
Other operations such as intra-facet metric calculation and selection of better
categorization do not contribute significantly. A detailed analysis revealed that
the execution times are largely dominated by querying the SPARQL endpoint.

Overall, we acknowledge that the current performance prohibits any pro-
ductive use. However, the overwhelming impact of query response times on the
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*Suppose that the following facets are already displayed. Which one of the two alternatives
would you add to the facets list ?

film

200 results

+ director of
photography

I The Day After Tomorrow

+ production
designer SKYFALL Skfall
2012j0mes

+number of Vi V for Vendetta
seasons Fg/EM)ErTA 2005 Bitish dystopian thrite im directed by James McTeigue

Previous 2 3 4 5 6 Next

@ Choose one of the following answers

L)
+genre + camera operator

Fig. 3. User evaluation: Fictitious interface for facet selection task.

overall execution time indicates potential for improvement. Further paralleliza-
tion and caching of reoccurring queries might prove fruitful.

5.2 User Evaluation

Setup. In a survey-based user evaluation, we examined whether facets generated
by the proposed workflow match user expectations. Based on a fictitious scenario,
we assumed an initial search with the keyword “film”.

After introducing users to the general concepts of faceted search and the
given scenario, we asked for user preferences in a series of questions categorized
into two kinds of situations: one for facet selection and one for facet ranking.
In facet selection (cf. Fig.3), users were presented with a static user interface
that resembles a common search engine and includes three different facets, e.g.,
director of photography, production designer, and number of seasons. They were
then given two more facets, e.g., genre and camera operator, and were asked
which would be a better addition to the existing three facets. In facet ranking,
we presented three to four different facets per question and asked users to rate
their usefulness in the given scenario using a five point Likert scale [24].

Unlike facet selection, where only facet headers are shown, facet ranking also
includes facet values. Unless noted otherwise, all facets and their values are
modeled according to the data present in Wikidata as of February 2019 using a
path length of 7 = 2. The facets are generated by an initial, prototypical imple-
mentation of the workflow, but were manually adapted to reflect the respective
evaluation intent to emphasize specific intra-facet scores.

Using these situations, the following order of questions was used in the survey.
Overall, we created a pool of 43 questions, out of which a random subset of 15
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Fig. 4. Usage of facets. An option “never” was provided, but not chosen by any user.

was chosen for each user. This approach is intended to reduce the bias that might
arise from certain terms used throughout.

In a first set of questions we focus on inter-facet comparisons using facet
selection. In particular, this evolves around the selection of better categorization
(Phase 3 in Sect. 4) and semantic similarity (Subsect. 3.4).

A second set of questions uses facet ranking with facets modeled after Wiki-
data. This compares multiple indirect facets with their respective direct coun-
terparts. Here, the indirect facets also vary in their intra-facet scores, allowing
us to evaluate our strategy in the selection of better categorization.

Finally, we used facet ranking, this time with abstract facets, i.e., replacing
facet headers with “Facet 1”7 etc. and values with “Value 1”7 etc. The reason is
again to reduce bias stemming from the actual semantics of the proposed facets.
In this last part of the evaluation, we issued questions, where the proposed facets
differed only with respect to one intra-facet metric'®. In a similar fashion, we
also examined combinations of two and all three proposed intra-facet metrics.

For the survey, we recruited 26 volunteers differing in age (18-44) and edu-
cational background. In total, they performed 130 facet selections and 936 indi-
vidual facet ratings. Most of the participants stated at least an occasional use of
facets, if they are provided (cf. Fig.4). Consequently, we assume that they are
familiar with the general behavior of faceted browsing.

Results. For each question in facet selection, we derive the percentage of par-
ticipant selections that match the system decision. Figure5 shows the results
of the first question set with each dot representing agreement of one particular
question'!. For the selection of better categorization we see an overall agreement
between the survey users and our system of ~83%.

The average result for semantic similarity is mixed (~63%). How-
ever, when analyzing the agreement per question, we see a more polarized
result. While users most often agree on a specific facet, our system is not
always able to concur with this choice. This leads us to believe that the
survey responses were driven more by the applicability of the individual facet
and not its relation to the already given ones. Yet, this is dependent on the
available information and hence, out of control of the proposed workflow.

In facet ranking, we are not interested in the specific numerical values each
metric provides, but focus on the ranking induced by those metrics. To compare
the ranking determined by our system with the ranking induced by the sur-

10 The respective other metrics did not vary within a small error margin.
1 By experiment design, not all questions received the same number of responses.
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Fig. 5. Agreement of participants and system in facet selection. One dot per question.
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Fig. 6. Rank correlation for facet ranking tasks. One dot per survey question. Value
Cardinality (Card), Value Dispersion (Disp), Predicate Probability (Prop).

vey responses, we encoded the latter using numerical values and calculated an
average rating for each facet. For each question, we ranked the presented facets
according to these ratings, which results in a survey ranking. We then chose
Kendall’s Tau-B'2 to compare our system ranking with this survey ranking.

The survey responses for the second question set, concerned with the selection
of better categorization, are shown in the topmost lane of Fig.6. The overall
result shows no clear support for our approach in this step. When there was
no (obvious) relation between the indirect property and the initial resource set
(e.g., a facet for country of origin/driving side), users rated the facet rather low.
However, the system sometimes favors these facets, as they oftentimes provide
a good categorization with respect to the defined metrics. On other occasions,
like the facet country of origin/continent, both users and the system agree that
this is a helpful facet. This leads us to believe that, although indirect facets are
promising, they require additional refinement to ensure their relevancy.

The final question set verified our metrics independent of semantic biases
induced by real-world facets. Results are shown in the lower parts of Fig.6. In
general, survey participants agree almost completely with our approach. The
only exceptions are due to a tie (Card, Disp) or a different opinion about the
order of one particular pair of facets (Disp, Prob and Card, Disp, Prob).

The user evaluation suggests that the technical criteria seem well suited in
isolation. However, resulting facets not only have to be evaluated against each

12 Kendall’s Tau-B is a variant of Kendall’s Tau that also accounts for possible ties in
the ranking. Values range from +1 for identical rankings to —1 for inverse ones. A
value of 0 hints towards no correlation between the involved rankings.
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other, but also against the semantic context of the input IRIs. While in search
tasks user input can be used to assess this intent, it remains open how this can
automatically be approximated for arbitrary resource sets.

6 Conclusion

We have proposed methods to enable automatic facet generation and ranking
over KGs. In particular, we provided an approach for dynamic candidate facet
generation for arbitrary input sets of resources. We defined intra- and inter-facet
metrics to rank the candidates and reduce the possible facet space by selecting
the most useful ones. We explored indirect properties to find better catego-
rizations and consequently enhance facets’ usefulness. We proposed semantic
similarity as a criterion to select among multiple candidate facets. Finally, we
developed a holistic workflow that integrates all proposed methods.

Initial survey results support the used metrics. While indirect facets show
promise as a helpful addition, their relevancy for the initial resource set needs
to be ensured. This latter issue is also the main focus of our future efforts: How
can we estimate the relatedness to the initial input for indirect facets? Another
prime direction is a performance improvement of our initial prototype, to make
it applicable for real-world systems (e.g., caching and parallelization of queries).
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Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.
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