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Abstract
Advancements in musculoskeletal analysis
have been achieved by adopting deep learning
technology in image recognition and analysis.
Unlike musculoskeletal modeling based on
computational anatomy, deep learning-based
methods can obtain muscle information
automatically. Through analysis of image
features, both approaches can obtain muscle
characteristics such as shape, volume, and
area, and derive additional information by ana-
lyzing other image textures. In this chapter, we
first discuss the necessity of musculoskeletal
analysis and the required image processing
technology. Then, the limitations of skeletal
muscle recognition based on conventional
handcrafted features are discussed, and
developments in skeletal muscle recognition
using machine learning and deep learning
technology are described. Next, a technique
for analyzing musculoskeletal systems
using whole-body computed tomography
(CT) images is shown. This study aims to
achieve automatic recognition of skeletal
muscles throughout the body and automatic
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classification of atrophic muscular disease
using only image features, to demonstrate an
application of whole-body musculoskeletal
analysis driven by deep learning. Finally, we
discuss future development ofmusculoskeletal
analysis that effectively combines deep
learning with handcrafted feature-based
modeling techniques.
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Importance of Musculoskeletal
Analysis and Skeletal Muscle
Analysis

Musculoskeletal analysis is important in various
situations. Muscles are divided into skeletal mus-
cle, myocardium, and smooth muscle. In particu-
lar, the muscles that make up the heart are called
the myocardium, while the muscles that make up
the visceral organs are called the smooth muscles,
and the smooth muscles have nomuscle ganglion.
Because skeletal muscle, which is the focus of
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this chapter, adheres to bone and is directly in-
volved in exercise, it is a fundamental focal point
in musculoskeletal analysis.

In the field of orthopedics, analysis of bone
itself is also important, and there are various
bone analysis methods ranging frommodel-based
segmentation to segmentation by deep learning
[1–3]. We previously described the importance
of skeletal muscle segmentation for orthopedic
intervention and proposed model-based skeletal
muscle recognition [4]. However, compared to
the number of approaches that use deep learning
for analysis of bone regions, there are far fewer
approaches that use deep learning for skeletal
muscle segmentation. Therefore, this chapter pro-
poses a method of muscle recognition and analy-
sis using deep learning.

Diseases related to skeletal muscle include
myopathy, a myogenic disease, which is
distinguished from neuropathy, a neurogenic
disease; both diseases affect muscle function.
Although most symptoms of myopathy involve
atrophy, differentiating them from atrophy that
occurs normally with aging is an important and
difficult problem. Additionally, amyotrophic
lateral sclerosis (ALS) and other similar
afflictions focused on in this chapter are atrophic
muscular diseases in which differential diagnoses
do not exist; moreover, progress inhibitors have
recently been approved by the U.S. Food and
Drug Administration (FDA) [5], and treatment
plans must appropriately differentiate muscular
diseases with treatable atrophy. Themeasurement
of skeletal muscle itself has become an important
problem, because such measurements facilitate
treatment of muscular diseases with atrophy; in
turn, these treatments help patients live longer,
healthier lives. Therefore, the measurement of
skeletal muscle was addressed in a field study
on the health and lifestyle habits of the elderly in
Japan, which aimed to identify effective measures
for improving their overall health [6].

Although the measurement of skeletal muscle
quantity is required inmusculoskeletal analysis as
described above, accurate measurement of skele-
tal muscle quantity and automatic measurement
of the muscle at each position are achievable for
only a limited number of muscles, representing an
unsolved problem in whole-body muscle analy-

sis. Because skeletal muscle exists throughout the
body, it is depicted in medical images obtained
through various modalities. In tomographic CT
images and MRIs, it will be difficult to search
cross sections in which skeletal muscle is not
depicted. However, CT images and tomographic
MRIs that depict skeletal muscle photographed
for the purpose of observing lesions can be uti-
lized in support of automatic muscle analysis.
In addition, because skeletal muscle is depicted
in various cross sections of tomographic images,
it is useful in automatic recognition of adjacent
skeletal muscle as preprocessing for organ and
lesion detection systems in computer-aided diag-
nosis (CAD) systems.

Musculoskeletal Recognition
by Handcrafted Features and Its
Limitations

Most skeletal muscle recognition methods that
have been developed to date rely on handcrafted
features. In the Computational Anatomy Project
[7], we are performing computer-aided organ and
disease recognition using CT images, where we
adopted a method based on automatic recognition
of normal structure. That is, similar to an analysis
conducted by a doctor, by detecting the normal
structure of the human body as a model in a
computer (computational anatomy model), it is
possible to detect an abnormality in an unknown
case. Because the main purpose of this project
was to construct a CAD system targeting the
organ area, skeletal muscle was treated as one
of the normal structures. In particular, in CT
images, the density value distribution of the
skeletal muscle overlaps with the density value
distribution of the organ region, and thus it is
difficult to segment the skeletal muscle and the
other organ region using only the density value.
Therefore, a muscle modeling technique that
employs a shape model and probability model
is commonly used [8]. In the Computational
Anatomy Project, we have also achieved some
success using computational models and muscle
recognition for analysis of superficial and deep
muscles [9]. In this study, we focused on the
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anatomical attachment point of the muscle,
i.e., the origin and the insertion, and realized
automatic recognition of muscles according to
their position using a technique that arranged
the shape model on the basis of the origin and
the insertion. Automatic recognition of skeletal
muscle was realized in surface and deep muscles
of the thoracicoabdominal region. However, as
described above, variations in skeletal muscle
result not only from individual differences, but
also from inter-individual differences due to
aging, daily activities, and the characteristics
of organs. Therefore, only a limited number
of regions in the case database can be used
for constructing a computational anatomical
model of skeletal muscle with high recognition
accuracy. In particular, there were only a
limited number of scenarios in which shapes
were comparatively clear or the boundaries
between adjacent organs and adjoining muscle
were clear.

In recent years, the Computational Anatomy
Project has been developed into the Multi-
disciplinary Computational Anatomy Project,
with the purpose of achieving comprehensive
understanding of the human body using medical
image information over the four axes of space,
time, function, and pathology [10]. Skeletal
muscle recognition in theMultidisciplinary Com-
putational Anatomy Project was designed with
an emphasis on multi-axis awareness rather than
computational anatomy. Muscle modeling ranges
from micro to macro and considers the functional
aspects of muscles [11]. In addition, in this mul-
tidimensional Computational Anatomy Project,
we worked toward the automatic recognition and
analysis of skeletal muscles with extendedmuscle
regions and in contact with muscles and complex
contour shapes [11]. In these computational
anatomy modeling projects, nine regions (surface
muscle: sternocleidomastoid muscle, trapezius
muscle, supraspinous muscle, large pectoral mus-
cle, intercostal muscle, oblique abdominal mus-
cle, rectus abdominis muscle; deep muscle: psoas
major muscle, iliac muscle) of skeletal muscle
modeling-based segmentation were realized.

Figure 1 shows a conceptual diagram of
skeletal muscle recognition by handcrafted

feature modeling, which was realized during
the Computational Anatomy Project and the
Multidisciplinary Computational Anatomy
Project. As Fig. 1 shows, we realized recognition
and analysis of various muscles using torso CT
images and whole-body CT images; however,
the features of the muscles are one-dimensional
points (landmarks; LM), two-dimensional
running (muscle running), and three-dimensional
shapes used to represent muscle features, i.e.,
the landmarks are acquired from the bone
corresponding to the origin and insertion of
the skeletal muscle, the running of the muscle
is expressed by connecting LM on the bone,
and the shape model based on gray values and
probability distributions is arranged according to
the running. In a technique based on handcrafted
features, all the procedures from 1D to 3D
worked sequentially until recognition according
to the position of skeletal muscle was achieved.
Therefore, it can be said that many dependent
procedures must be performed to obtain initial
information such as muscle quantity and
intramuscular fat quantity, which are necessary
for the site analysis of skeletal muscle. In general,
the accuracy of each procedure greatly affects the
accuracy of the final result.

As described above, when using handcrafted
features in the recognition of skeletal muscle ac-
cording to site, the 2D cross section or the shape
of the muscle became a limited region with an
easy-to-model shape.We then tackled recognition
and analysis of themuscle usingmachine learning
and deep learning techniques in the later stage of
the multiple calculation anatomy project. The fol-
lowing sections describe recognition and analysis
ofmuscles withmore complicated shapes through
deep learning technology.

Skeletal Muscle Segmentation
Using Deep Learning

This section describes skeletal muscle segmenta-
tion using deep learning. As described previously,
the problem of segmenting skeletal muscles in
CT images is essentially the same as the problem
of automatic recognition of organs. However, as
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Fig. 1 Outline of the computational anatomy model for skeletal muscles analysis

described above, when the recognition of skeletal
muscle by region is considered, the shape is com-
plicated, and difficulties result from the juxtapo-
sition of the organ region and skeletal muscle as
well as the connection between skeletal muscles.
In addition, very large individual differences in

muscle mass cause difficulties in model-based
skeletal muscle recognition. Prior to discussing
skeletal muscle segmentation by deep learning,
this section introduces the segmentation of erec-
tor spinae using random forest, the well-known
machine learning algorithm.
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The cross-sectional area of the erector spinae
muscle is smaller in patients with COPD than in
healthy individuals, and it has been found that
this cross-sectional area indicates the progno-
sis of COPD patients [12]. However, the erector
spinae is a very large group of muscles originat-
ing from the sacrum and located along the left
and right vertebral columns. Therefore, manual
measurement of the transverse area of the erec-
tor spinae is a time-consuming and error-prone
task. We performed 3D recognition of the erector
spinae muscle using the iterative random for-
est method and multiple sources of information
[13]. Here, the original image and the probability
map of the erector spinae, which is repeatedly
refined, were used as sources, and improvements
in recognition accuracy and high-speed segmen-
tation were realized. During the learning pro-
cess, three classifiers are trained. Classifier 1
is trained using low-resolution appearance fea-
tures extracted from downsampled CT images.
Then, the appearance features and probability
map obtained by classifier 1 are combined to
create trained classifier 2. Concurrently, the prob-
ability map obtained from classifier 1 is upsam-
pled, and learned classifier 3 is obtained together
with high-resolution appearance features. Thus,
the final erector spinae segmentation results were
obtained by combining classifiers 1 and 2, which
are learned with low-resolution data, and classi-
fier 3, which is trained with high-resolution data.
Ten training cases were randomly selected from
torso CT images from 20 cases. These were eval-
uated in 10 test cases, in which the average Dice
coefficient (DC) was 93.0± 2.1% and the Jaccard
similarity coefficient (JSC) was 87.0 ± 3.5%.
Thus, highly accurate segmentation of the erector
spinae muscle was achieved with 10 learning
images and very limited data. Figure 2 shows
the recognition result using proposed iterative
random forest method. It was shown that ma-
chine learning-based segmentation according to
the position of the skeletal muscle could be a
robust technique for analyzing large and complex
muscles for which shape models are difficult to
generate.

The following describes deep learning-based
automatic recognition of the erector spinae in

Fig. 2 Erector spinae muscle segmentation result using
multi-scale iterative random forest method (left: recogni-
tion result, right: ground truth)

the cross sections of the 12 thoracic vertebrae.
As stated above, the cross-sectional areas of the
erector spinae muscle in the 12 thoracic sections
indicate the prognosis of COPD patients. There-
fore, we segmented the erector spinae muscle in
the cross sections of the 12 thoracic vertebrae,
and performed the segmentation of the muscle
using deep learning and two-dimensional images
[14]. The FCN-8s fully convolutional network
(FCN) was used in order to utilize the results of
the middle layer, in which detailed shape features
are expected to be found. One-thousand correct
images from 40 cases were prepared for learning
of the erector spinae muscle in the cross sections
of the 12 thoracic vertebrae; because the erector
spinae muscle exists in the back, the learning was
concentrated in the back half of the original im-
age. Segmentation accuracy was evaluated using
test images from 29 cases, and the average con-
cordance rate of JSC was 82.4%. Figure 3 shows
the segmentation of the erector spinae muscle
in the cross section of the 12th thoracic verte-
bra. From top to bottom, the figure shows the
original image from the top, the recognition re-
sult obtained by the model-based method, and
the recognition result obtained by FCN-8s. Blue
indicates a correct result, yellow indicates over-
extraction, and red indicates unextracted areas.
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Fig. 3 Erector spinae muscle segmentation at the 12 tho-
racic vertebrae section using deep learning in cases with
unclear skeletal muscle boundaries (upper: original CT,
middle: model-based method, lower: deep CNN-based
method (blue: matched, red: unextracted, yellow: over-
extracted))

Because the boundary with the latissimus dorsi
muscle is unclear, the conventional model-based
method causes over-extraction during region ex-
pansion. With deep learning, it is proven that the
target region is recognized even in these boundary
areas.

Through deep learning of 2D images as shown
above, automatic segmentation of skeletal muscle
in a two-dimensional section could distinguish
the boundary with the latissimus dorsi muscle,
which could not be distinguished in conventional
muscle modeling. Three-dimensional recognition
of erector spinae by deep learning was carried out
in a subsequent experiment.

In order to recognize the erector spinae as
a volume, three-dimensional deep learning was

used. This method can obtain three-dimensional
recognition results using plural two-dimensional
cross sections; thus, it is referred to as a 2.5-
dimensional method. Here, FCN-8s, which ob-
tained good results in the simultaneous segmen-
tation of multiple organs in torso CT images [15],
was used [16]. Various architectures have recently
been proposed for medical image segmentation
based on machine learning. In particular, U-net
is well known for its efficacy in the field of
medical image segmentation, and features a de-
coder employing an architecture similar to that
of its encoder. Our group achieved automatic
segmentation of multiple organs from torso CT
images using segmentation based on FCN and the
voting principle [17]. In a comparison of segmen-
tation methods based on FCN and U-net, we ob-
tained results showing that FCN and voting-based
methods are realistic methods for segmenting CT
images [17]. In the 2.5-dimensional FCN, three
anatomical sections are input, and the simultane-
ous probability is calculated from the recognition
result in each section; the label value with the
highest simultaneous probability is selected as the
result. By using the simultaneous probability, the
recognition result of each cross section is judged
comprehensively. The average DC and average
JC of the erector spinae recognition results were
89.9± 2.0% and 81.7± 3.2%, respectively, when
evaluated by the leave-one-out method using the
trunk CT images from 11 cases. Figure 4 shows
the results of recognition of the erector spinae
muscle using deep learning. In 10 cases simi-
lar to the three-dimensional recognition of the
erector spinae muscle achieved by the random
forest method described above, less segmentation
was observed compared with the original random
forest method; however, segmentation was suc-
cessful, and boundaries with other skeletal mus-
cles (such as the latissimus dorsi muscle) were
recognized. Such boundaries were not recognized
by the model-based method.

The results show that robust segmentation can
be achieved with only 10 learning images. Skele-
tal muscle segmentation using deep learning is
an effective technique that improves upon the
manual 2D cross-sectional area measurements in-
tended as an alternative measuringmethod to ease
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Fig. 4 Segmentation results of the erector spinae muscles using deep CNN

workloads incurred during automated 3D analy-
sis. In particular, because the technique does not
depend on the additional processing steps men-
tioned in the previous section, it can be said that
high-quality segmentation results can be expected
if a good training image is prepared. Moreover,
high-quality segmentation results can be obtained
in such a small number of cases, it is consid-
ered useful for efficient preparation of learning
images needed for creating correct images used
in developing deep learning-based segmentation
algorithms.

Whole-BodyMuscle Analysis Using
Deep Learning

This section describes whole-body analysis of
skeletal muscle using deep learning. As described
above, the basic requirement for the analysis of
skeletal muscle is the quantitative and automatic
measurement of muscle mass, which is measured
manually in current clinical situations. However,
as previously mentioned, the technology for fully
automated segmental analysis of skeletal muscle
is still under development. Additionally, differen-
tiating between diseases of the muscle itself and
the quality of the muscle appears to be dependent
on image analyses produced by the computer.

We have been working on whole-body muscle
analysis using whole-body CT images. In partic-

ular, for whole-body CT images taken for diagno-
sis of amyotrophic lateral sclerosis (ALS), whole-
body skeletal muscle recognition can be achieved
using the active balloon model and skeletal mus-
cle model [18]. We conducted muscle analysis
[18] using texture analysis employing the Haral-
ick’s features of the region. However, the recogni-
tion of skeletal muscle over the whole body dif-
fers significantly for individual body types, and
highly accurate surface muscle recognition has
not been realized yet. Therefore, the area used for
research on discrimination of myopathy was lim-
ited to limbs inwhichwhole-body skeletal muscle
[18] could be recognized. In this section, we first
introduce a method to automatically classify at-
rophic myopathy through deep learning using the
upper extremities, and then introducewhole-body
musculoskeletal segmentation by deep learning.

First, the automatic classification of atrophic
muscular disease in the upper arm and lower arm
using deep learning is shown. Here, as an initial
challenge, the automatic classification of ALS,
which is a neurogenic disease, and myopathy,
which is myogenic atrophy, was carried out [19].
It is an important problem to separate ALS, which
is an intractable disease for which a therapy has
not been established, from other atrophic diseases
for which treatment is possible. Moreover, it is
important to test the deep learning approach for
diseases such as ALS, which can only receive
exclusion diagnoses. Here, the architecture of



172 N. Kamiya

Fig. 5 Segmentation results of whole-body skeletal muscle using 2D U-Net

ResNet-50 was used. Drawing from five ALS
cases and five myopathy cases, training images
of 1678 upper arms and 1150 lower arms were
prepared, and 171 upper and 130 lower arms were
tested. The images were classified into ALS and
myopathy. As a result, we obtained an average
classification accuracy of 90.3% on the right fore-
arm. This demonstrated the possibility of classi-
fying diseases through deep learning with images
of atrophic diseases, even when the differences
were not recognized through visual observation.
However, in order to fully diagnose ALS, it is
necessary to evaluate more cases while consider-
ing the stage and type of the disease. In addition,
methods for distinguishing the type of muscular
atrophy and for analyzing the muscle region in
more detail are necessary. This technique uses
the results, which are roughly divided into 22
surface layer muscle regions [18] obtained by
recognizing the body cavity through the active
balloonmodel for whole-body skeletal muscle us-
ing conventional handcrafted characteristics, and
differentiating the body cavity region from the
whole body [18].

Using the above problems as a framework,
we have been working toward fully automatic
recognition of surface muscles in whole-
body skeletal muscles [20]. As a preliminary
experiment, the axial cross section was learned
and recognized using 2D U-Net. When 50 cases
were divided into training, test, and validation

cases at a ratio of 8:1:1 according to the hold-
out method, the segmentation results showed
that DC was 81.7 ± 0.9% on average in three
experiments. Figure 5 shows the results of whole-
body skeletal muscle segmentation using 2D
U-Net. Although only the axial CT slice was
input, continuous recognition of surface muscle
in the sagittal and coronal sections could be
realized.

Similarly, bone segmentation was performed
using 2D U-Net [21]. A related study has seg-
mented bone from low-dose whole-body CT im-
ages using 2.5DU-Net [22]. Therefore, it is worth
studying bone segmentation on whole-body plain
CTs. The experiments were carried out using
17 whole-body CT images without contrast. A
dataset consists of 12 training cases, two valida-
tion cases, and three test cases. We used whole-
body CT images without contrast and trained
2-D U-Net with axial slices. The average dice
coefficient of bone segmentation was 0.899, and
this method was robust with regard to the position
of hands. Figure 6 shows the segmentation result
that bone segmentation by U-Net using only axial
CT slices provides high performance with plain
CT images. In the future, we will use this method
for muscle segmentation to conduct bone classi-
fication using segmented bone images.

The whole-body musculoskeletal analysis
presented in this section is still preliminary.
However, deep learning has shown sufficient
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Fig. 6 Bone segmentation results in whole-body CT im-
ages using 2D U-Net

potential for classification and segmentation
tasks, which are two major aspects of mus-
culoskeletal muscle analysis. In the following
section, we discuss the techniques needed to
further advance whole-body musculoskeletal
analysis.

Fusion of Deep Learning
and Handcrafted Features
in Skeletal Muscle Modeling

In the previous section, musculoskeletal segmen-
tation and analysis using deep learning were de-
scribed, and the possibility of musculoskeletal
analysis by deep learning was shown.

In order to realize further advancements in
musculoskeletal analysis in the future, deep learn-
ing must be effectively combined with the hand-
crafted features-based skeletal muscle modeling
described at the beginning of this chapter. This
is because correct images are required for deep
learning. However, significant amounts of time
are needed to paint all skeletal muscles and obtain

a sufficient number of learning images, and the
degree of difficulty in producing correct images is
higher than for other organ regions. This section
describes two approaches that aim to address
these problems.

The first approach involves the simultaneous
and automatic recognition of skeletal muscle,
as well as the origin and stop position of
skeletal muscle. Information about muscle
and its adhesion position becomes important
when conducting muscle analysis and muscle
recognition while considering positions specified
by handcrafted features. In particular, model-
based methods provide information on the
placement of muscle models. We carried out
the simultaneous recognition of muscle and bone
attachment positions on the muscle through deep
learning. The 2.5-dimensional FCN employed
in the automatic recognition of erector spinae
was used. The mean DC of the erector spinae was
89.9± 2.0% and the mean JC was 81.7± 3.2% in
11 cases examined by the leave-one-out method.
The average DC of the recognition results of the
attachment area on the skeleton was 65.5± 3.3%
and the average JC was 48.8 ± 3.7% [16].
Figure 7 shows the results of recognition of
the attachment site between the erector spinae
and the bone on the erector spinae. Because the
bone attachment site area is small compared
with the skeletal muscle area, the recognition
accuracy is low; nevertheless, the attachment site
of the muscle and bone is captured. Therefore, it
is expected that the model can be applied to the
analysis of muscle travel and the relation between
muscle and disease.

Next, the challenge of classifying muscle
groups obtained by deep learning through
modeling the shape and running of muscle
bundles [23] is shown. As described above, it
is very difficult to create correct images from a
sufficient number of cases for deep learning by
separately painting muscle groups composed of
multiple muscles. The results for the erector
spinae muscle are shown here. Because the
erector spinae muscle is composed of multiple
muscles, it is labor intensive to prepare a learning
image of the whole erector spinae muscle. We
proposed a method to bundle three of the erector
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Fig. 7 Recognition results with origin and insertion on the erector spinae muscle

spinae muscles automatically recognized by
deep learning (iliocostalis lumborum, iliocostalis
thoracis, and longissimus thoracis); these
particular muscles were selected because they
are relatively distant from each other. The
muscle bundle model is an ellipsoid connecting
the beginning and end of each muscle, and
the thickness of the ellipsoid is determined
from the learning case. The erector spinae
muscle can be segmented into three muscles by
constructing a muscle bundle model containing
the three muscles of the erector spinae muscle
and arranging them into the recognized result of
the erector spinae muscle using deep learning.
Figure 8 shows the result of dividing the erector
spinae muscle recognized by deep learning into
three regions using the muscle bundle model.
Green represents the erector spinae, yellow
the iliocostalis lumborum, blue the longissimus
thoracis, and orange the iliocostalis thoracis. Each
modeled muscle bundle is convexly encapsulated
and subdivided to the lower right. Because the
erector spinae is composed of nine muscles,
modeling of other muscles is also necessary.
However, when we evaluated the ratio of the
volume of eachmuscle bundlemodel to that of the
erector spinae region in the convex hull region,
the average Jaccard coefficient was 48.7 ± 6.8%

in the right-hand region and 53.2 ± 4.2% in the
left-hand region. However, as shown in the two-
dimensional cross sections in Fig. 8, the positions
of the muscles constituting the muscle group
are shown, and for skeletal muscles for which
preparing a correct individual muscle image is
difficult, the recognition of the muscle through
deep learning can be said to show the possibility
of dividing muscles into regions according to
position.

This section described the development of a
new muscle analysis method that combines deep
learning and muscle models. In the future, finer
whole-body muscle analysis can be achieved by
effectively using deep learning and modeling in
conjunction with conventional handcrafted fea-
ture.

Conclusion

In this chapter, we described segmentation, recog-
nition, and classification techniques we have de-
veloped to conduct musculoskeletal analysis us-
ing deep learning. Because musculoskeletal ar-
eas are large compared to areas occupied by or-
gans, individual and intra-individual differences
are also large, and it cannot be said that muscu-
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Fig. 8 Dividing the erector spinaemuscle recognized by deep learning into three regions using themuscle bundle model
(yellow: iliocostalis lumborum, blue: longissimus thoracis, orange: iliocostalis thoracis, green: erector spinae)

loskeletal analysis will be overwhelmingly sim-
plified by the introduction of deep learning; how-
ever, handcrafted features also help improve the
developed techniques. There is no doubt that deep
learning techniques complement musculoskele-
tal analysis. As described in the latter half of
the chapter, it is considered that musculoskele-
tal analysis can be markedly improved by effec-
tively combining deep learning-based methods
and handcrafted feature-based methods.
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