
Deep Learning in Medical Image
Analysis

Heang-Ping Chan, Ravi K. Samala, Lubomir M. Hadjiiski,
and Chuan Zhou

Abstract
Deep learning is the state-of-the-art machine
learning approach. The success of deep learn-
ing in many pattern recognition applications
has brought excitement and high expectations
that deep learning, or artificial intelligence
(AI), can bring revolutionary changes in health
care. Early studies of deep learning applied to
lesion detection or classification have reported
superior performance compared to those by
conventional techniques or even better than
radiologists in some tasks. The potential of
applying deep-learning-based medical image
analysis to computer-aided diagnosis (CAD),
thus providing decision support to clinicians
and improving the accuracy and efficiency of
various diagnostic and treatment processes,
has spurred new research and development ef-
forts in CAD. Despite the optimism in this new
era of machine learning, the development and
implementation of CAD or AI tools in clinical
practice face many challenges. In this chapter,
wewill discuss some of these issues and efforts
needed to develop robust deep-learning-based
CAD tools and integrate these tools into the
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clinical workflow, thereby advancing towards
the goal of providing reliable intelligent aids
for patient care.
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Introduction

Medical imaging is an important diagnostic tool
for various diseases. Roentgen discovered that
X-rays could non-invasively look into the hu-
man body in 1895 and X-ray radiography be-
came the first diagnostic imaging modality soon
after. Since then many imaging modalities were
invented, with computed tomography, ultrasound,
magnetic resonance imaging, and positron emis-
sion tomography among the commonly used, and
more andmore complex imaging procedures have
been developed. Image information plays a cru-
cial role in decision making at many stages in the
patient care process, including detection, char-
acterization, staging, treatment response assess-
ment, monitoring of disease recurrence, as well
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as guiding interventional procedures, surgeries,
and radiation therapy. The number of images
for a given patient case increases dramatically
from a few two-dimensional (2D) images to hun-
dreds with 3D imaging and thousands with 4D
dynamic imaging. Application of multi-modality
imaging further increases the amount of image
data to be interpreted. The increasing workload
makes it difficult for radiologists and physicians
to maintain workflow efficiency while utilizing
all the available imaging information to improve
accuracy and patient care. With the advances in
machine learning and computational techniques
in recent years, developing effective and reliable
computerized methods to assist radiologists and
physicians in image analysis at various stages
of disease diagnosis and management during the
patient care process has been recognized as an
important area of research in medical imaging.

The attempt of using computers to automati-
cally analyze medical images emerged as early
as the 1960s [1–4]. Several studies demonstrated
the feasibility of applying computer to medical
image analysis but the work did not attract much
attention, probably because of the limited access
to high quality digitized image data and computa-
tional resources. Doi et al. in the Kurt Rossmann
Laboratory at the University of Chicago began
systematic development of machine learning and
image analysis techniques for medical images in
the 1980s [5], with the goal to develop computer-
aided diagnosis (CAD) as a second opinion to
assist radiologists in image interpretation. Chan
et al. developed a CAD system for detection
of microcalcifications on mammograms [6] and
conducted the first observer performance study
[7] that demonstrated the effectiveness of CAD
in improving breast radiologists’ detection per-
formance of microcalcifications. The first CAD
commercial system was approved by the Food
and Drug Administration (FDA) for use as a sec-
ond opinion in screening mammography in 1998.
CAD and computer-assisted image analysis have
been a major area of research and development in
medical imaging in the past few decades. CAD
methods have been investigated for various ap-
plications including disease detection, character-
ization, staging, treatment response assessment,
prognosis prediction, and risk assessment for var-

ious diseases and with various imaging modali-
ties. The work in the CAD field has been steadily
increasing as can be seen from the trend of publi-
cations in peer-reviewed journal articles found by
literature search in the Web of Science (Fig. 1).

Although the research in CAD has been
increasing, very few CAD systems are used
routinely in the clinic. One of the major
reasons may be that CAD tools developed with
conventional machine learning methods may
not have reached the high performance that
can meet physicians’ needs to improve both
diagnostic accuracy and workflow efficiency.
With the success of deep learning in many
machine learning applications such as text and
speech recognition, face recognition, autonomous
vehicles, chess and Go game, in the past
several years, there are high expectations that
deep learning will bring breakthrough in CAD
performance and widespread use of deep-
learning-based CAD, or artificial intelligence
(AI), to various tasks in the patient care process.
The enthusiasm has spurred numerous studies
and publications in CAD using deep learning.
In this chapter, we will discuss some issues
and challenges in the development of deep-
learning-based CAD in medical imaging, as
well as considerations needed for the future
implementation of CAD in clinical use.

Deep Learning for Medical Image
Analysis and CAD

CAD systems are developed with machine learn-
ing methods. Conventional machine learning ap-
proach to CAD in medical imaging used image
analysis methods to recognize disease patterns
and distinguish different classes of structures on
images, e.g., normal or abnormal, malignant or
benign. CAD developers design image process-
ing and feature extraction techniques based on
domain knowledge to represent the image char-
acteristics that can distinguish the various states.
The effectiveness of the feature descriptors often
depends on the domain expertise of the CAD
developers and the capability of the mathematical
formulations or empirical image analysis tech-
niques that are designed to translate the image
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Fig. 1 Literature search for publications in peer-reviewed journals by Web of Science from 1900 to early July of 2019
using key words: ((imaging OR images) AND (medical OR diagnostic)) AND (machine learning OR deep learning
OR neural network OR deep neural network OR convolutional neural network OR computer aid OR computer assist
OR computer-aided diagnosis OR automated detection OR computerized detection OR computer-aided detection OR
automated classification OR computerized classification OR decision support OR radiomic) NOT (pathology OR slide
OR genomics OR molecule OR genetic OR cell OR protein OR review OR survey))

characteristics to numerical values. The extracted
features are then used as input predictor variables
to a classifier, and a predictive model is formed
by adjusting the weights of the various features
based on the statistical properties of a set of
training samples to estimate the probability that
an image belongs to one of the states. Conven-
tional machine learning approach has limitations
in that the human developer may not be able to
translate the complex disease patterns into a finite
number of feature descriptors even if they have
seen a large number of cases from the patient
population. The hand-engineered features may
also have difficulty to be robust against the large
variations of normal and abnormal patterns in the

population. The performance of the developed
CAD system is often limited in its discriminative
power or generalizability, resulting in high false
positive rate at high sensitivity or vice versa.

Deep learning has emerged as the state-of-
the-art machine learning method in many appli-
cations. Deep learning is a type of representa-
tion learning method in which a complex multi-
layer neural network architecture learns repre-
sentations of data automatically by transform-
ing the input information into multiple levels
of abstractions [8]. For pattern recognition tasks
in images, deep convolutional neural networks
(DCNN) are the most commonly used deep learn-
ing networks. With a sufficiently large training
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set, DCNN can learn to automatically extract
relevant features from the training samples for
a given task by iteratively adjusting its weights
with backpropagation. DCNN therefore discovers
feature representations through training and does
not require manually designed features as input.
If properly trained with a large training set that
are representative of the population of interest,
the DCNN features are expected to be superior to
hand-engineered features in that they have high
selectivity and invariance [8]. Importantly, since
the learning process is automated, deep learning
can easily analyze thousands or millions of cases
that even human experts may not be able to see
and memorize in their lifetime. Deep learning can
therefore be more robust to the wide range of
variations in features between different classes to
be differentiated as long as the training set is large
and diverse enough for it to analyze.

CNN can trace its origin to the neocognitron
proposed by Fukushima et al. in the early 1980s
[9]. LeCun first trained a CNN by backpropa-
gation to classify patterns of handwritten digits
in 1990 [10]. CNN was used in many appli-
cations such as object detection, character, and
face recognition in the early 1990s. Lo et al.
first introduced CNN to the analysis of medical
images in 1993 and trained aCNN for lung nodule
detection in chest radiographs [11, 12]. Chan et al.
applied CNN to microcalcification detection [13,
14] onmammograms in the same year and tomass
detection in the following year [15–18]. Zhang et
al. applied a similar shift-invariant neural network
for the detection of clusters of microcalcifications
in 1994 [19]. Although these early CNNs were
not very deep, the pattern recognition capability
of CNN in medical images was demonstrated.

Deep CNN was enabled by several impor-
tant neural network training techniques devel-
oped over the years, including layer-wise un-
supervised pre-training followed by supervised
fine-tuning [20–22], use of rectified linear unit
(ReLU) [23, 24] as activation function in place
of sigmoid-type activation functions, pooling to
improve feature invariance and reduce dimen-
sionality [25], dropout to reduce overfitting [26],
and batch normalization [27] that further reduces
the risk of internal covariate shift, vanishing gra-

dient and overfitting, as well as increases train-
ing convergence speed. These techniques allow
neural networks with more and more layers and
containing millions of weights to be trained. In
2012, Krizhevsky et al. [28] proposed a CNN
with five convolutional layers and 3 fully con-
nected layers (named “AlexNet”) containing over
60 million weights and achieved breakthrough
performance in the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) [29] that clas-
sified over 1000 classes of everyday objects on
photographic images. AlexNet demonstrated the
pattern recognition capability of the multiple lay-
ers of a deep structure. DCNNs with increasing
depth were developed since AlexNet. He et al.
[30] proposed residual learning and showed that
a residual network (ResNet) with 110–152 layers
could outperform several other DCNNs and won
the ILSVRC in 2015. Sun et al. [31] showed that
the learning capacity of a DCNN increased with
depth but the capacity could be utilized only with
sufficiently large training data.

The success of deep learning or AI in per-
sonal devices and social media, self-driving cars,
chess, and Go game have raised unprecedented
expectations of deep learning in medicine. Deep
learning has been applied to many medical image
analysis tasks for CAD [32–34]. The most com-
mon areas of CAD application using deep learn-
ing include classification of disease and normal
patterns, classification of malignant and benign
lesions, and prediction of high risk and low risk
patterns of developing cancer in the future. Other
applications included segmentation and classifi-
cation of organs and tumors of different types,
classification of changes in tumor size or texture
for assessment of treatment response, or predic-
tion of prognosis or recurrence. Because there are
relatively large public data sets available for chest
radiographs, thoracic CT, and mammograms, a
large number of studies were conducted for lung
diseases and breast cancer using the public data
sets. Deep-learning-based image analysis has also
been applied to fundus images or optical com-
puted tomography for detection of eye diseases
[35], or histopathological images for classifica-
tion of cell types [36]. Most of the studies re-
ported very promising results, further boosting
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the hype of deep-learning-based CAD. This new
generation of CAD is called AI although these
CAD tools still behave like a very complex math-
ematical model that memorizes information in its
millions of weights and far from being “intelli-
gent.”

Challenges in Deep-Learning-Based
CAD

CAD or AI is expected to be useful decision
support tools in medicine in the near future. Other
than detection and characterization of abnormali-
ties, applications such as pre-screening and triag-
ing, cancer staging, treatment response assess-
ment, recurrence monitoring, and prognosis or
survival prediction are being explored. Although
no CAD systems with new AI techniques have
been subjected to large scale clinical trials to date,
experiences from CAD use in screening mam-
mography may provide some insights into what
may be expected of CAD tools in the clinic [37].

The conventional machine-learning-based
CAD for detection of breast cancer in screening
mammography is the only CAD application in
widespread clinical use to date. These systems
have been shown to have sensitivity comparable
to or higher than that of radiologists, especially
for microcalcifications, but they also mark a
few false positives per case on average [38].
Although the performances of CAD systems are
moderate, they may detect lesions of different
characteristics than those by radiologists. The
complementary detections by the radiologist
and CAD can improve the overall sensitivity
when radiologist reads with CAD. Studies have
shown that radiologists’ accuracy was improved
significantly when reading with CAD [5]. CAD
systems were therefore approved by FDA for
use as a second opinion but not as a primary
reader or pre-screener. Early clinical trials [39,
40] to compare single reading with CAD to
double reading showed promising results. In
the CADET II study by Gilbert et al. [39], they
conducted a prospective randomized clinical
trial at three sites in the United Kingdom. A
total of over 28,000 patients were included.

The screening mammograms of each patient
were independently read in two arms; one was
single reading with CAD and the other was
their standard practice of double reading. The
experiences of the single readers in the CAD arm
were matched to those of the first readers’ in
the double reading arm. Arbitration was used in
cases of recall due to the second reader or CAD.
They found that arbitration was performed in
1.3% of the cases in single reading with CAD.
The average sensitivity in the two arms were
comparable at 87.2% and 87.7%, respectively.
The recall rates at two centers were comparable in
the two arms, 3.7% versus 3.6% and 2.7% versus
2.7%, respectively, but one of the centers had a
significantly higher recall rate for single reading
with CAD, 5.2% versus 3.8%. The overall recall
rate therefore increased in the single reading
with CAD from 3.4% to 3.9%. Gromet et al.
[40] performed a retrospective review of the
sensitivity and recall rate by single reading with
CAD after CAD implementation in comparison
to those of double reading before CAD use as
historical control for the same group of nine
radiologists in a single mammography facility.
The first reading in their double reading protocol
was also analyzed and treated as single reading
without CAD. The study cohort contained over
110,000 screening examinations in each group.
Arbitration by a third subspecialty radiologist was
a part of their standard double reading protocol.
A second radiologist was consulted for 2.1% of
the cases interpreted by single reading with CAD
but the consult might or might not be related to
CAD marks. They reported that the sensitivity
of single reading with CAD was 90.4%, higher
than the sensitivities of either single reading
alone (81.4%) or double reading (88.0%). The
recall rate was 10.6% for single reading with
CAD, slightly higher than the recall rate of single
reading alone (10.2%) but lower than that of
double reading (11.9%). These relatively well-
controlled studies showed that single reading
with CAD is potentially an alternative to double
reading, with a gain in sensitivity but at the
expense of increased recalls, which can be
reduced by arbitration similar to that in double
reading.
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Table 1 Odds ratios (95% confidence interval) of increase in cancer detection rate and increase in recall rate obtained
by comparison of single reading with CAD and double reading to single reading alone by Taylor et al. [41]

Odds ratio of increase in cancer detection
rate

Odds ratio of increase in recall rate

Single reading with CAD

Matched (N = 5) 1.09 (0.92, 1.29) 1.12 (1.08, 1.17)

Unmatched (N = 5) 1.02 (0.93, 1.12) 1.10 (1.08, 1.12)

Double reading

Unilateral (N = 6) 1.13 (1.06, 1.19) 1.31 (1.29, 1.33)

Mixed (N = 3) 1.07 (0.99, 1.15) 1.21 (1.19, 1.24)

Arbitration (N = 8) 1.08 (1.02, 1.15) 0.94 (0.92, 0.96)

N: the number of studies included in each group
Matched studies: the assessment before and after using CAD was on the same mammograms
Unmatched studies: the performance of mammography facilities after the introduction of CAD was compared to that
before CAD implementation as historical controls. Different mammograms were interpreted in the two conditions

Taylor et al. [41] conducted a meta-analysis
of clinical studies comparing single reading with
CAD or double reading to single reading alone.
They compared the cancer detection rate per
1000 women screened (CDR) and the recall rate,
and estimated the average odds ratios weighted
by sample size over the studies in each group
(Table 1). The results showed that double reading
with arbitration improved the CDR without
increasing the recall rates. Single reading with
CAD for the matched studies increased the CDR
but with a wide variation; however, without the
benefit of arbitration, the recall rate increased
significantly. The increase in recall rate for double
reading without arbitration was more than twice
of that for single reading with CAD.

Taylor et al. revealed that there are large vari-
ations in the impact of CAD on the cancer detec-
tion rate ranging from 0% to 19%, and the recall
rate ranging from 0% to 37%. Other than the
differences in the study designs and radiologists’
experiences in the studies, the variations may also
be attributed to the varied ways that radiologists
used CAD in the clinic. Some users might have
misunderstood the limitations and performance of
the CAD systems. Theymight have over-relied on
the CAD marks and thus did not maintain their
vigilance in searching for lesionswhile increasing
their recalls. Others might have used CAD as a
pre-screener or first reader to increase workflow.
Although there were no systematic studies of how
CAD was used in the clinic, Fenton et al. [42]

noted that “radiologists with variable experience
and expertise may use CAD in a nonstandardized
idiosyncratic fashion,” and “Some community
radiologists, for example, may decide not to recall
women because of the absence of CAD marks
on otherwise suspicious lesions.” Lehman et al.
[43] compared reading digital mammogramswith
and without CAD by 271 radiologists in 66 fa-
cilities of the Breast Cancer Surveillance Con-
sortium (BCSC). They reported that the average
sensitivity decreased by 2.3% and the recall rate
increased by 4.5% with the use of CAD. The
decrease in sensitivity was a clear indication that
the radiologists did not use CAD as a second
opinion, which require the users to maintain their
vigilance in interpretation and thus their sensitiv-
ity, but over-relied on the CAD marks for recall
decisions. The authors acknowledged that “Prior
reports have confirmed that not all cancers are
marked by CAD and that cancers are overlooked
more often if CAD fails to mark a visible lesion”
and that “CAD might improve mammography
performance when appropriate training is pro-
vided on how to use it to enhance performance.”

The study by Cole et al. [38] demonstrated
another facet of using CAD. They conducted
an observer study to compare single reading
with and without CAD using two commercial
CAD systems applied to 300 screening cases
(150 cancers and 150 benign or normal)
from the Digital Mammographic Imaging
Screening Trial (DMIST). All participating
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Table 2 Observer performance study by Cole et al. [38] comparing single reading with and without CAD using two
commercial CAD systems and 300 screening mammography cases (150 cancer and 150 benign or normal) from DMIST

CAD system A CAD system B

Standalone performance 75% sensitivity at 0.79 FPs/image 73% sensitivity at 0.77 FPs/image

Radiologists N = 14 N = 15

Without CAD With CAD Without CAD With CAD

Average AUC 0.71 0.72 0.71 0.72

Average sensitivity 49% 51% 51% 53%

Average specificity 89% 87% 87% 86%

None of the changes were statistically significant. AUC = area under the receiver operating characteristic curve.
N = number of radiologists in the study

readers were experienced breast radiologists and
had been using CAD in their clinical practice.
As summarized in Table 2, they found that
the changes in the radiologists’ sensitivity or
specificity with CAD were only 1% to 2%. The
standalone sensitivity of both CAD systems were
25% higher than the radiologists with or without
CAD but had an average of more than 2 false
positive marks per case. These results were very
different from those observed in the early days
of CAD development when radiologists were
enthusiastic about CAD. They appeared to show
that after radiologists used CAD in the clinic for
a period of time, the many false positive CAD
marks they have seen may have desensitized their
attention and most of the marks were dismissed
including true positives. In a screening setting,
the time a radiologist has to spend to exclude over
2000 false positive marks in order to gain one or
two cancers per 1000 examinations is considered
not cost-effective by many radiologists. This
study indicated that the specificity of a decision
support tool has to be high to avoid inducing
fatigue on clinicians’ response to the computer’s
recommendations.

Although these clinical experiences of CAD
were observed from screening mammography,
they reveal the many challenges of implementing
CAD or AI tools in the clinic and may provide
some guidance on the development of the new
generations of CAD for various applications in
general. Accuracy and workflow efficiency are
important considerations in clinical practice. User
training is crucial to ensure their understanding
of the limitations and capability of CAD and thus
avoid improper use or disillusion. Clinicians’

experiences and level of enthusiasm with CAD
also strongly impact on whether they will accept
a CAD tool and how they may respond to its
recommendation. Performance standards and
acceptance testing should be established to
ensure the CAD tool can meet certain criteria
before routine clinical use. Quality assurance is
needed to monitor the consistency and accuracy
of the CAD tool over time, as well as to prevent
improper use that may impact patient safety. Fully
automated medical decision systems are ideal,
but experienced clinicians’ supervision is vital as
many clinical cases may not evolve following a
statistical model and require human intelligence
to determine the best course of action based on the
individual patient’s conditions and medical his-
tory. The AI community has recently scaled back
the expectation and defines a less ambitious term
as “narrowAI” or “Augmented Intelligence,” rec-
ognizing the supporting role of machine learning
algorithms. Regardless of CAD, narrow AI, or
general AI, there are many challenges of develop-
ing machine-learning-based tools for medicine.
Some of the challenges are discussed below.

Data Collection

The majority of the studies to date on the applica-
tion of deep learning to medical imaging reported
very promising results that often exceeded clini-
cians’ performance, raising high expectations of
AI tools. However, most of the studies used small
training set and the trained models have not been
subjected to rigorous validation with large real
world test data. The generalizability of these deep
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learning models to new patients or to different
clinical settings is still unknown.

One of the basic requirements to develop
a robust machine learning algorithm is a
sufficiently large training sample set with verified
reference truth that are representative of the
characteristics of the population of interest.
Training deep learning is even more demanding
because of the extremely large number of weights
in a DCNN structure. Even with effective
regularization methods to reduce overfitting,
how general the feature representations it has
learned still depends on how much the training
set covers. AlexNet has over 60 million weights
and the “ImageNet” data set for training includes
over 1.2 million images with annotations. Sun et
al. [31] showed that the performance of a DCNN
increased linearly with the orders of magnitude of
the training data and the performance of a DCNN
with large learning capacity continued to increase
even when the training set increased to over 300
million images.

Collection of medical imaging data that are
representative of the patient population and with
reliable annotation or reference truth is costly.
While it is relatively easy to collect a large num-
ber of normal cases for a screening modality, it
is difficult to collect sufficient abnormal cases,
especially that the different classes in the data
set ideally should be balanced. For example, for
disease such as breast cancer that is the most
prevalent cancer in women, there are only several
cases per thousand in the screening population. It
is difficult to collect enough breast cancer mam-
mograms or tomosynthesis that can cover the
variabilities in image features due to factors such
as patient age, breast density and size, habitus,
race, ethnicity, imaging protocols, and processing
methods. The collection of normal and abnormal
cases with special imaging modalities such as
MR or PET is even more challenging because a
relatively small number of patients will have these
examinations and the availability may depend on
the protocols for different types of diseases in
different health systems.

Studies have demonstrated the feasibility of
collecting a large number of annotated cases by
data mining and natural language processing of

the electronic medical record (EMR) [44] and
clinical annotations in picture archiving and com-
munication system (PACS) [45]. The accuracy
and usefulness of the labels or annotations ob-
tained from these methods not only depend on
the methods used but also how the information is
generated and stored in the systems. It has been
shown that automatically mined disease labels
or annotations can include substantial noise in
a data set, as in the large public set of chest
radiographs [46]. In the Digital Mammography
DREAM Challenge (2016–2017) that aimed at
building a model to help reduce the recall rate
for breast cancer screening [47], the participants
were provided with over 640,000 training mam-
mograms from over 86,000 women. The training
set only included breast-level labeling without le-
sion annotation. The winning teams all used deep
learning approach but the highest performance
only reached an area under the receiver operat-
ing characteristic curve (AUC) of 0.8744, and a
sensitivity of 80% at specificity of 80.8%. The
false positive rate, and thus potentially the recall
rate, was much higher than that of an experienced
breast radiologist at comparable sensitivity even
for the top deep learning model. This example
illustrates that, although the total number of im-
ages appeared to be large, the lack of high qual-
ity labeling may reduce its effectiveness in deep
learning training. In general, weakly supervised
training, unsupervised training, or using training
set with substantial labeling errors is not as ef-
fective as supervised training with well-curated
cases for the same training sample size; a much
larger sample size is required to achieve similar
performance for a DCNNmodel as a well-curated
training set.

Data mining of the unstructured text and non-
standardized reporting in current EMR or PACS
systems is challenging, especially for more com-
plex CAD task such as treatment response mon-
itoring, in which a case may include multiple
stages of diagnosis and treatment involving mul-
tiple imaging examinations and clinical tests. To
generate reference standards for CAD develop-
ment, one needs to correlate the imaging and
clinical test data with outcomes at the various
stages. It is a difficult process even if performed
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manually. Automation will be useful but it may
require the development of an intelligent data
mining tool. For patient cases that have been
transferred between different hospitals, the in-
complete prior or follow-up information may in-
troduce errors into data curation. To facilitate
collecting big data for development of AI towards
precisionmedicine in the future, it will be prudent
for the vendors and users to establish standard-
ized reporting methods and structures among the
various data archiving systems. In addition, es-
tablishing standardized protocols for secure elec-
tronic transmission of patient files among hos-
pitals for referral patients will not only improve
the health care of referral patients by transferring
patient data accurately and efficiently, but also
improve the accuracy of data mining for these
cases. Ultimately, multi-institutional collabora-
tion may be the best approach to building big
database, which can cover the wide ranges of
heterogeneous imaging protocols and equipment,
clinical settings, and patient characteristics, to
accelerate the development of robust deep learn-
ing models for each type of diseases that may
be more readily applicable to various clinical
environments.

Transfer Learning

Transfer learning is a common approach that deep
learning developers use when the training set was
small. In transfer learning, a DCNN that has been
well trained with a large training set from a source
domain is adapted to a new target task by fine-
tuning the DCNN using a relatively small training
set from the target domain. DCNN is considered a
feature extractor that learns representation of the
input data by extractingmultiple levels of abstrac-
tions by its convolutional layers. Yosinski et al.
[48] showed that the learned features in the shal-
low layers are more generic, whereas the learned
features in the deeper layers become increasingly
specific to the task that the DCNN is being trained
for. Since the features are decomposed into nu-
merous components in a DCNN, andmost images
are composed of some common basic elements,
the knowledge learned by a trained DCNN in

extracting features is shown to be transferrable
to images from different domains. The transfer-
ability of features decreases as the differences
between the source domain and the target do-
main increase. However, even for very different
source and target tasks, transfer learning by ini-
tializing a DCNN with weights trained for an-
other source task can outperform the sameDCNN
trained with randomly initialized weights for the
target task.

For training deep learning models in medical
imaging, the majority of studies used transfer
learning due to the limited data available. To date,
the largest annotated public data set available is
the ImageNet data, which contained photographic
images containing over 1000 classes of everyday
life objects such as animals, vehicles, plants,
ships, planes, etc. Most of the DCNN models
in medical imaging were trained by transfer
learning using models initialized with ImageNet-
pretrained weights and fine-tuned by limited
medical image data. Transfer learning was
generally found to be useful in improving
the training convergence and robustness of
the DCNNs. In some cases, the pretrained
DCNNs were used as feature extractor without
fine-tuning; the deep features extracted from
deploying the pretrained DCNN to the image
data of the target domain were used as predictor
variables to train an external classifier for the
target task.

Although transfer learning can alleviate the
problem of limited data to a certain degree, a
large training set is still needed to achieve a high
performance DCNNmodel for a given target task.
Samala et al. [49] conducted a study to evalu-
ate the effect of training set size on the perfor-
mance of a transfer-trained DCNN for the target
task of classifying malignant and benign breast
masses in digital breast tomosynthesis (DBT).
The ImageNet-pretrained AlexNet with 5 con-
volutional layers and 3 fully connected layers
was appended with 2 additional fully connected
layers (total of 5 fully connected layers) to re-
duce the classes from over 1000 to 2 (malignant
and benign) and transfer-trained for the target
task. Because the DBT data set was small and
mammogram data were relatively abundant, the
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Fig. 2 The effect of different number of layers of the DCNN being frozen during transfer learning of ImageNet-
pretrained AlexNet to classify malignant and benign masses on mammograms. The area under the receiver operating
characteristic curve (AUC) for the test ROIs was plot as box-and-whisker plots of 10 repeated experiments under each
condition. The training set and the test set consists of 12,360 and 7272 ROIs after augmentation, respectively.C0 denotes
no layer was frozen, i.e., the pretrainedweights in all layers were allowed to be updated.C1 denotes the first convolutional
layer was frozen, C1–Ci (i = 2, 3, 4, 5) denotes the C1 to Ci convolutional layers were frozen during transfer training.
The result shows that C1-frozen training provided the best test AUC for this task (reprint with permission [49])

pretrained AlexNet was transfer-trained in the
first stage for the classification of masses on
mammograms, which brought the AlexNet from
an unrelated classification task on non-medical
ImageNet data to a task (mammography) much
closer to the target task (DBT). A small DBT
set was then used for a second-stage transfer
training to the target task. Their mammography
set contained 2242 unique views (craniocaudal or
mediolateral oblique) with 2454 regions of inter-
est (ROIs) containing breast masses. The DBT
set contained 324 unique views with 1585 ROIs
(5 slices or ROIs from each mass), which was
partitioned by case into a training set of 1140
ROIs and an independent test set of 445 ROIs.
Each ROI was flipped and rotated to obtain 8
augmented versions to reduce noise. To evalu-
ate the training sample size effects on stage 1
and stage 2 fine-tuning, several transfer learning
strategies were compared: (A) single-stage trans-
fer learning with mammography data, in which
the first convolutional layer (C1) of AlexNet was
frozen and all other layers were allowed to be
fine-tuned, (B) two-stage transfer learning with

mammography data in stage 1 and DBT training
set in stage 2, in which C1 was frozen in both
stages, (C) two-stage transfer learning similar to
(B) except that convolutional layersC1 to F4 were
frozen in stage 2, and (D) single-stage transfer
learning with DBT training set, in which C1 was
frozen, was also trained as a baseline for compar-
ison. The results are summarized in Figs. 2, 3, 4,
and 5.

Figure 2 shows the dependence of the test per-
formance, in terms of AUC, of the transfer-trained
AlexNet on the number of layers being frozen
during transfer training for the classification of
masses onmammograms. The AUCwas the high-
est when only C1 was frozen. However, if all lay-
ers were allowed to be re-trained (C0), the transfer
trained AlexNet did not perform well, probably
because the mammography data was not large
enough to fine-tune the large number of weights.
Figure 3 shows the dependence of the test AUC
on the sample size of the training mammography
data. The test AUC was obtained by applying
the AlexNet transfer-trained with mammography
data directly to classify the masses on DBT with-
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Fig. 3 Dependence of test AUC on mammography training sample size using strategy (A) transfer training. The varied
training sample size was simulated by random drawing by case of a percentage (ranging from 1% to 100%) from the
entire set of 19,632 mammography ROIs. The ROI-based AUC performance for classifying the 9120 DBT training ROIs
(serve as a test set at this stage) for three transfer networks at Stage 1. The data point and the upper and lower range
show the mean and standard deviation of the test AUC resulting from ten random samplings of the training set of a given
size from the original set (reprint with permission [49])

Fig. 4 ROI-based AUC on the DBT test set while varying the mammography sample size available for transfer training.
The data point and the upper and lower range show the mean and standard deviation of the test AUC resulting from ten
random samplings of the training set of a given size from the original set. “A. Stage 1 (MAM:C1)” denotes single-
stage training using mammography data and the C1-layer frozen during transfer learning without stage 2. “B. Stage 2
(DBT:C1)” denotes stage 2 C1-frozen transfer learning at a fixed (100%) DBT training set size after Stage 1 transfer
learning (curve A). “C. Stage 2 (DBT:C1-F4)” denotes Stage 2 C1-to-F4-frozen transfer learning at a fixed (100%) DBT
training set size after stage 1 transfer learning (curve A) (reprint with permission [49])
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Fig. 5 ROI-based AUC on the DBT test set while varying the simulated DBT sample size available for transfer training.
The data point and the upper and lower range show the mean and standard deviation of the test AUC resulting from ten
random samplings of the training set of a given size from the original set. “D. Stage 1 (DBT:C1)” denotes single-stage
training using DBT data with the C1-layer frozen during transfer learning without Stage 2. “B. Stage 2 (DBT:C1)”
denotes Stage 2 C1-frozen transfer learning after Stage 1 transfer learning with a fixed (100%) mammography training
set. “C. Stage 2 (DBT:C1-F4)” denotes Stage 2 C1-to-F4-frozen transfer learning after Stage 1 transfer learning with a
fixed (100%) mammography training set (reprint with permission [49])

out the second-stage fine-tuning with DBT. The
test AUC increased steadily as the training sample
size increased. For a given training set size, the
test AUC decreased as more andmore layers were
frozen, indicating that the learning capacity of the
DCNN was restricted and insufficient knowledge
was learned from the mammography data. Fur-
thermore, the test AUC on the DBT set (Fig. 3)
was higher than that on the mammography test set
(Fig. 2) at the corresponding training sample size
and frozen layers, indicating that mammography
is an effective auxiliary domain for transfer train-
ing to DBT and that malignant and benign masses
in DBT are easier to be distinguished by DCNN,
similar to that by human vision.

Figures 4 and 5 compared the two-stage trans-
fer learning to one-stage transfer learning on the
classification of masses in the DBT test set. Sev-
eral observations can be made. First, the test AUC
increases with training sample size either in stage
1 or stage 2. Second, when the training set in
the target domain is small, the additional stage

of pre-training with data of auxiliary domain can
improve the overall performance at all training
sample sizes in the range studied (compare curves
A and B in Fig. 4, and curves B and D in Fig. 5).
Third, when too many layers are frozen during
transfer learning, the performance of the DCNN
after two-stage training may not reach the same
level as that of the DCNN with less layers frozen
using the same training sample sizes (compare
curves B and C in Fig. 4), indicating that the
DCNN cannot learn adequately from the training
data if the learning capacity of the DCNN is
overly restricted. Fourth, on the other hand, when
the DCNN is well trained in the source domain
and the training set in the target domain is very
small, freezing most of the layers during transfer
training may be beneficial by avoiding the loss
of the pretrained knowledge without adequate
learning from the target domain data (compare
the small sample size region of curves B and C in
Fig. 5). Although one can expect that the training
sample size required for transfer training for a
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given taskwill depend onmany factors such as the
complexity of the tasks and the DCNN structure,
the differences in the characteristics between the
source and the target domains, the relative train-
ing sample sizes between the tasks, the relative
trends observed from this study will likely be
applicable to many transfer learning applications,
and multi-stage transfer training with data from
similar domains should be helpful if the training
data of the target domain is too scarce.

Data Augmentation

Data augmentation generates multiple slightly
different versions of images from each image
in the original training set. Data augmentation
may use techniques such as flipping the image in
various directions, translating the image within a
range of distance, cropping the image in different
ways, rotating the image within a range of
angles, scaling the image over a range of factors,
generating shape- and intensity-transformed
images by linear or non-linear methods. Data
augmentation can be implemented on-line or
off-line and an augmentation operation in a
specified range can be performed randomly or
by fixed increments. For off-line augmentation,
the augmented versions of the images are pre-
generated and mixed with the original data into
a larger training set, which is randomly grouped
as mini-batches for the DCNN training. If the
various techniques are applied in combinations,
the apparent number of training images can
increase easily to hundreds or thousands of
times. For on-line augmentation, the various aug-
mentation techniques are usually implemented
as a part of the DCNN pipeline with user-
selectable probability and range. The original
training set is input in mini-batches but each
image in a batch is randomly altered according
to the pre-selected probability and range of the
augmentation techniques. The number of times
an image is augmented in a given training run
will depend on the number of training epochs
chosen and the pre-selected probabilities for the
different augmentation techniques. The choice

between off-line and on-line augmentation may
depend on the tradeoffs between computational
resources and storage space or memory;
off-line augmentation is more practical if the
available training set is small as it requires
more space and memory for the augmented
set, while on-line augmentation is preferred for
large training sets if computational resource
is plentiful. Data augmentation introduces
variations or jittering to the original data, thereby
reducing the risk of overfitting to a small
training set and improving generalizability [28,
50, 51]. However, it is important to note that
augmenting the training set to a certain size is
not equivalent to having a set of independent
training samples of comparable size. Since the
features in the augmented versions of an image
are highly correlated and the CNN learning is
invariant to many of these small variations, the
augmented images do not provide much new
knowledge for the DCNN to learn in comparison
to new independent images. In particular, if
the original small training set does not include
representative samples of certain characteristics,
data augmentation will not generate samples of
the missing types for the DCNN training; for
example, if there are no spiculated nodules in
the original data, augmentation cannot generate
spiculated nodules for the DCNN to learn.
Other more sophisticated data augmentation
methods are also being considered, such as
generative adversarial networks (GANs) that can
generate imageswithmixed features learned from
different images after training on the available
sample images [52], digitally generate artificial
lesions inserted into normal images [53, 54], or
inserting real lesions to other locations of normal
or abnormal images [55]. Investigations are
needed to evaluate issues such as how effective
the data augmentation methods are compared
to one another for a given sample size, whether
the features learned from the artificial lesions,
especially texture features, may help or hinder
DCNN learning of real features, whether real
lesions inserted at other locations can contribute
new features to learn, and whether the usefulness
of the augmented data for deep learning depends
on the target task.
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Training, Validation,
and Independent Testing

During training of a machine learning model in-
cluding deep learning, a validation set is generally
used for guiding the optimization of the param-
eters. The validation set is used to compare the
performances of models with different parameter
sets, or to monitor the changes in the performance
or cost during iterative training of the model
weights. The validation set may be split from
the training set by cross validation or by hold-
out. Regardless of the methods, the validation
set is a part of the training process because it is
repeatedly used to guide training, and the model
structure and parameters are usually chosen to
maximize the performance on the validation set. It
is well known in machine learning that the train-
ing or validation performance is generally opti-
mistically biased [56–61]. To estimate the true
performance of the trained model in unknown
cases, one has to use an independent test set that
has not been seen by the model in the training
process and is representative of the population
to which the trained model will be applied. To
date, most of the published studies only include
cross validation results, and even in studies with a
“hold-out” test set, the test set will be turned into a
validation set if the same test set is used for evalu-
ation many times during model development and
eventually the best model is chosen based on the
performance of the test set. The American Asso-
ciation of Physicists in Medicine (AAPM) CAD
Subcommittee (renamed as Computer-Aided Im-
age Analysis Subcommittee in 2018) has pub-
lished an opinion paper to discuss the training and
evaluation methodology for development of CAD
systems [62]. The importance and the strategy
of collecting a representative independent test set
and the potential biases on the reported “test”
result due tomultiple repeated use of the same test
set are discussed in more details. Deep-learning-
based CAD or AI follows similar general prin-
ciples as conventional machine learning meth-
ods, and the need for independent testing will be
even more important due to the vast capacity of
deep learning to extract and memorize informa-
tion from the training set.

Acceptance Testing, Preclinical
Testing, and User Training

If properly trained with a large data set, deep
learning is expected to be more robust and more
accurate than conventional machine learning
approaches. However, studies showed that deep
learning in medical imaging, or machine learning
in general, can learn non-medical features that
are not related to the medical conditions of
the patient but other properties such as image
acquisition protocols or equipment, image
processing techniques, or even other markings
and accessories related to the facilities or patient
comorbidity that are recorded in the images [63].
As a result, a deep learning algorithmwell trained
and independently tested showing high accuracy
using data collected from the same site(s) may
not be generalizable to different clinical sites
that may have different population or imaging
characteristics. Even if a CAD or AI algorithm
is approved by FDA for clinical use, a clinical
site should conduct acceptance testing, similar
to the installation of a new medical device or
equipment, using a set of representative local
data to verify that its performance for the local
patient population can pass a certain standard or
reference level before clinical implementation.
In addition, after the AI tool is implemented in
the clinical workflow, the users should allow
for a test period in which they refrain from
being influenced by the CAD output. The users
should familiarize themselves with the output
of the CAD tool and quantitatively, if possible,
assess the performance of the CAD tool on a
large number of consecutive clinical cases. The
users should evaluate critically the strengths and
weaknesses of the CAD tool based on follow-
up review of the outcomes of the cases, so as
to recognize the characteristics of cases that the
CAD tool makes mistakes or the CAD tool makes
correct recommendations whereas the clinician
may have failed. The hands-on experience of
the performance of the CAD tool will allow
the users to learn how to reduce the risk of
accepting erroneous recommendation while
taking advantage of the recommendations for
cases that the CAD tool is useful. The test period
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will serve both as a real world evaluation of
the CAD tool on the local population and user
training. With better understanding of the AI’s
limitation and capability, the users may be able
to establish proper expectation and confidence
level on the CAD tool and thus reducing the risk
of improper use or negative outcomes of using
CAD.

Quality Assurance and Performance
Monitoring

With the new generation of CAD, there are high
expectations that they will be far more robust than
the conventional CAD systems, especially that
many of the studies reported performance higher
than those of clinicians. Although the initial con-
cerns of AI algorithms replacing radiologists have
tamped down, the expectations of using AI to
improve workflow efficiency or reduce workload
are prevalent. A recent observer study [64] com-
pared breast cancer detection in DBT by radi-
ologist alone to radiologist using deep-learning-
based CAD as a concurrent reader that marked
suspected lesions and showed the confidence of
malignancy on the DBT slices. A data set of 260
DBT cases including 65 cancer, 65 benign, and
130 normal cases were read by 24 radiologists.
The experimental concurrent CAD had a case-
based sensitivity of over 90% and a specificity
of over 40%, which are higher than all of the
CAD tools currently used in screening DM. They
demonstrated that reading with CAD could pro-
vide all the benefits a radiologist would hope for:
reducing the average reading time by more than
50% for a DBT case, increasing sensitivity and
specificity, as well as reducing recall rate. In an-
other study [65], researchers developed a DCNN
to identify normal mammograms from screening
cases. With 10-fold cross validation, they showed
that the DCNN could identify 34% and 91% of
the normal mammograms at a negative predictive
value (NPV) of 0.99 for a cancer prevalence of
15% and 1%, respectively. The study showed the
potential of using DCNN to improve radiologists’

workflow efficiency by excluding the negative
mammograms from reading.

For an AI model to be a useful routine clinical
tool, it is crucial to validate that its performance
in clinical settings can meet certain standards and
is consistent over time, similar to other medi-
cal devices, especially for any AI model that is
designed to operate as a decision maker, rather
than as a decision support tool or a second opin-
ion. The acceptance testing or preclinical test-
ing described above can serve as the baseline
performance on the local population. Since the
performance of DCNN is affected by the prop-
erties of the input images, which may be deter-
mined by a number of factors such as the imag-
ing techniques or equipment and the image pro-
cessing or reconstruction software or parameters
that may change intentionally or unintentionally
due to many factors, periodic quality assurance
(QA) procedures should be established tomonitor
the performance of the CAD tool as well as the
performance of clinicians using CAD over time.
TheAAPMCADSubcommittee has published an
opinion paper on the quality assurance and user
training on CAD devices in clinical use [66]. The
discussions have not attracted much attention,
probably because of the limited use of CAD in
the clinic at that time. Currently FDA has no post-
market monitoring and regulations on the con-
sistency or accuracy of CAD software as second
opinion in clinical use after it is approved and
there is no control of off-label use. As CAD/AI
tools are anticipated to have widespread use in
health care in the future, either as second opinion
or automated decisionmaker in some applications
such as pre-screening or triaging, their impact
on patient care or welfare can be much greater.
It will be important for organizations such as
the American College of Radiology (ACR), the
Radiological Society of North America (RSNA),
the European Society of Radiology, and AAPM
to provide leadership to establish performance
standards, QA and monitoring procedures, and
compliance guidance, to ensure safety and ef-
fectiveness for implementation and operation of
CAD tools in clinical practice.
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Interpretability of CAD/AI
Recommendations

The DCNN learns multiple levels of feature rep-
resentations from the input data by using the deep
architecture of convolutional layers. At present
a DCNN model is mostly operated like a black-
box as there is no easy way to explain how and
what the DCNN has learned to perform a specific
classification task. Researchers have developed
methods to visualize the feature maps at each
convolutional layer [67, 68] and to highlight the
target objects recognized by the DCNN with a
class activation map [69]. The feature maps il-
lustrate the deep features [70] extracted by the
DCNN and the class activation map may be cor-
related with the target location or the locations
of the most important features for classification.
These visualization tools are the first steps to
explore the inner workings of deep learning but
they are still far from being able to translate
the deep learning output to interpretable clinical
decisions, especially for tasks more complex than
lesion detection. For CAD/AI to be more widely
acceptable as a clinical decision support tool, it
should be able to more intelligently present the
recommendation to clinicians with reasons, cor-
relating the findings with the medical conditions
and data of the patient, and ideally, be able to
present further explanations if the clinician has
questions on the recommendation. Uncovering
the relationship between the machine findings
with medical conditions of the patient or even
utilizing deep learning and big data analytics to
discover new links between disease and clinical
data or symptoms will be an important area of
research to enable CAD to deliver interpretable
diagnosis to clinicians and advance CAD towards
true AI in medicine.

Summary

Deep learning is expected to revolutionize CAD
and image analysis in medicine. Although ma-
chine learning has been applied to CAD and med-
ical image analysis for over three decades, CAD

has not been commonly used in the clinic due to
the limited performance of conventional machine
learning approaches. The recent success of deep
learning technology spurs new efforts to develop
CAD or AI tools for many applications in health
care. Numerous studies have reported promising
results. Amid the high expectations of the accu-
racy and efficiency that AI can bring to medicine,
many challenges have yet to be overcome in order
to integrate the new generation of CAD tools
into clinical practice and to minimize the risk
of unintended harm to patients. The discussion
in this chapter is not limited to computer-aided
lesion detection. Similar considerations are appli-
cable to any CAD tools in general, such as those
for disease characterization, staging, treatment
planning, surgical guidance, treatment response
assessment, recurrence monitoring, and progno-
sis or survival prediction. Big databases have to
be collected to provide sufficient training and
validation samples to develop robust deep learn-
ing models and independent testing with internal
and externalmulti-institutional data to assess gen-
eralizability; performance standards, acceptance
testing, and quality assurance procedures should
be established for each type of applications to
ensure the performance of a deep learning model
can meet the requirements in the local clinical
environment and remains consistent over time;
adequate user training in local patient population
is vital to allow users to understand the capa-
bility and limitations of the CAD tool, establish
realistic expectations, and avoid improper use
or disillusion; CAD recommendation has to be
interpretable to allow clinicians to make informed
decisions. More importantly, workflow efficiency
and costs are major considerations in health care.
A decision support tool will not be acceptable if
it requires additional time and/or costs without
significant clinical benefits. It is important for
CAD researchers and developers to understand
the preferred mode of assistance by clinicians
for each type of clinical tasks, design effective
CAD tools, and deliver interpretable outputs by
taking into consideration the practical issues in
clinical settings. If properly developed, validated,
and implemented, it can be expected that the
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efficient data analytics from CAD or AI tools can
complement the human intelligence of clinicians
to improve the accuracy and workflow and thus
patient care.
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