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Preface

Deep learning is at the leading edge of artificial intelligence (AI) and is
developing rapidly. In recent years, it has played an increasingly important
role in medical image analysis. Deep learning is a subfield of machine
learning and is based on deep neural networks (DNNs)—neural networks
with more than one hidden layer. Convolutional neural networks (CNNs)
are a subclass of DNNs that are especially useful for image recognition
and classification and have been attracting a lot of interest from industry,
academia, and clinicians.

In 2017, we organized the first mini-symposium on “Emerging Methods
in Medical Image Analysis” at the 39th International Conference of the
IEEE Engineering in Medicine and Biology Society (EMBC) held in Jeju,
Korea. The main objectives of the mini-symposium were to bring together
researchers in the field to explore current issues in medical image analysis
and to report the latest research directions. The symposium was met with
great interest and enthusiasm from the audience and researchers in the field.
In 2018, we organized the second mini-symposium on “Emerging Methods
in Medical Image Analysis” at the 40th EMBC International Conference held
in Honolulu, Hawaii. With the overwhelming support from the research com-
munity and presenters, the mini-symposium had grown to double the session
length of the first mini-symposium. In this second symposium, deep learning
was the most popular technique reported among the research presented. This
was largely because CNNs can self-learn high-level representations of image
contents and achieve good performance in medical imaging tasks without the
need to construct handcrafted features or acquire field knowledge about the
image data. Skills in this area are also highly sought after by both industry and
academia. Due to the widespread interest in this topic, many people, including
Springer Publishing, have asked us to publish an edited book based on the
mini-symposium presentations. Subsequently, a meeting was held among the
presenters in Honolulu after the symposium. The publication of a book was
supported by the majority. We have also invited other lead researchers in the
field to contribute to the book.

This book aims at providing overviews of the use of deep learning in
medical image analysis; sampling the roles of medical image analysis in
key clinical applications and emerging applications; giving implementation
examples and insights of medical image analysis studies; highlighting issues
and challenges encountered by researchers and clinicians; as well as surveying
and discussing practical approaches in general and for specific applications.
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vi Preface

We hope that this book will provide a helpful reference for academics,
clinicians, and researchers, as well as a useful learning resource for young
researchers and graduate students in AI, medical image analysis, biomedical
engineering, and other related areas.

We would like to thank Merry Struber, Editor, for her dedicated assistance
in getting this book project off the ground and Deepak Ravi, Production
Editor, for his tireless efforts in getting this book through the stages of
production. We thank all the contributors for their enthusiastic support of
this book. This book would not have appeared if not for all their efforts. We
are particularly grateful to them for accommodating waves of short deadlines
that were sprung on them. Finally, we hope that readers will find this book
interesting, insightful, and helpful.

Adelaide, SA, Australia Gobert Lee
Gifu, Japan Hiroshi Fujita
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Part I

Overview and Issues



Deep Learning in Medical Image
Analysis

Heang-Ping Chan, Ravi K. Samala, Lubomir M. Hadjiiski,
and Chuan Zhou

Abstract
Deep learning is the state-of-the-art machine
learning approach. The success of deep learn-
ing in many pattern recognition applications
has brought excitement and high expectations
that deep learning, or artificial intelligence
(AI), can bring revolutionary changes in health
care. Early studies of deep learning applied to
lesion detection or classification have reported
superior performance compared to those by
conventional techniques or even better than
radiologists in some tasks. The potential of
applying deep-learning-based medical image
analysis to computer-aided diagnosis (CAD),
thus providing decision support to clinicians
and improving the accuracy and efficiency of
various diagnostic and treatment processes,
has spurred new research and development ef-
forts in CAD. Despite the optimism in this new
era of machine learning, the development and
implementation of CAD or AI tools in clinical
practice face many challenges. In this chapter,
wewill discuss some of these issues and efforts
needed to develop robust deep-learning-based
CAD tools and integrate these tools into the

H.-P. Chan (�) · R. K. Samala · L. M. Hadjiiski
C. Zhou
Department of Radiology, University of Michigan, Ann
Arbor, MI, USA
e-mail: chanhp@umich.edu

clinical workflow, thereby advancing towards
the goal of providing reliable intelligent aids
for patient care.

Keywords
Machine learning · Deep learning · Artificial
intelligence · Computer-aided diagnosis ·
Medical imaging · Big data · Transfer
learning · Validation · Quality assurance ·
Interpretable AI

Introduction

Medical imaging is an important diagnostic tool
for various diseases. Roentgen discovered that
X-rays could non-invasively look into the hu-
man body in 1895 and X-ray radiography be-
came the first diagnostic imaging modality soon
after. Since then many imaging modalities were
invented, with computed tomography, ultrasound,
magnetic resonance imaging, and positron emis-
sion tomography among the commonly used, and
more andmore complex imaging procedures have
been developed. Image information plays a cru-
cial role in decision making at many stages in the
patient care process, including detection, char-
acterization, staging, treatment response assess-
ment, monitoring of disease recurrence, as well

© Springer Nature Switzerland AG 2020
G. Lee, H. Fujita (eds.), Deep Learning in Medical Image Analysis,
Advances in Experimental Medicine and Biology 1213,
https://doi.org/10.1007/978-3-030-33128-3_1
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as guiding interventional procedures, surgeries,
and radiation therapy. The number of images
for a given patient case increases dramatically
from a few two-dimensional (2D) images to hun-
dreds with 3D imaging and thousands with 4D
dynamic imaging. Application of multi-modality
imaging further increases the amount of image
data to be interpreted. The increasing workload
makes it difficult for radiologists and physicians
to maintain workflow efficiency while utilizing
all the available imaging information to improve
accuracy and patient care. With the advances in
machine learning and computational techniques
in recent years, developing effective and reliable
computerized methods to assist radiologists and
physicians in image analysis at various stages
of disease diagnosis and management during the
patient care process has been recognized as an
important area of research in medical imaging.

The attempt of using computers to automati-
cally analyze medical images emerged as early
as the 1960s [1–4]. Several studies demonstrated
the feasibility of applying computer to medical
image analysis but the work did not attract much
attention, probably because of the limited access
to high quality digitized image data and computa-
tional resources. Doi et al. in the Kurt Rossmann
Laboratory at the University of Chicago began
systematic development of machine learning and
image analysis techniques for medical images in
the 1980s [5], with the goal to develop computer-
aided diagnosis (CAD) as a second opinion to
assist radiologists in image interpretation. Chan
et al. developed a CAD system for detection
of microcalcifications on mammograms [6] and
conducted the first observer performance study
[7] that demonstrated the effectiveness of CAD
in improving breast radiologists’ detection per-
formance of microcalcifications. The first CAD
commercial system was approved by the Food
and Drug Administration (FDA) for use as a sec-
ond opinion in screening mammography in 1998.
CAD and computer-assisted image analysis have
been a major area of research and development in
medical imaging in the past few decades. CAD
methods have been investigated for various ap-
plications including disease detection, character-
ization, staging, treatment response assessment,
prognosis prediction, and risk assessment for var-

ious diseases and with various imaging modali-
ties. The work in the CAD field has been steadily
increasing as can be seen from the trend of publi-
cations in peer-reviewed journal articles found by
literature search in the Web of Science (Fig. 1).

Although the research in CAD has been
increasing, very few CAD systems are used
routinely in the clinic. One of the major
reasons may be that CAD tools developed with
conventional machine learning methods may
not have reached the high performance that
can meet physicians’ needs to improve both
diagnostic accuracy and workflow efficiency.
With the success of deep learning in many
machine learning applications such as text and
speech recognition, face recognition, autonomous
vehicles, chess and Go game, in the past
several years, there are high expectations that
deep learning will bring breakthrough in CAD
performance and widespread use of deep-
learning-based CAD, or artificial intelligence
(AI), to various tasks in the patient care process.
The enthusiasm has spurred numerous studies
and publications in CAD using deep learning.
In this chapter, we will discuss some issues
and challenges in the development of deep-
learning-based CAD in medical imaging, as
well as considerations needed for the future
implementation of CAD in clinical use.

Deep Learning for Medical Image
Analysis and CAD

CAD systems are developed with machine learn-
ing methods. Conventional machine learning ap-
proach to CAD in medical imaging used image
analysis methods to recognize disease patterns
and distinguish different classes of structures on
images, e.g., normal or abnormal, malignant or
benign. CAD developers design image process-
ing and feature extraction techniques based on
domain knowledge to represent the image char-
acteristics that can distinguish the various states.
The effectiveness of the feature descriptors often
depends on the domain expertise of the CAD
developers and the capability of the mathematical
formulations or empirical image analysis tech-
niques that are designed to translate the image
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Fig. 1 Literature search for publications in peer-reviewed journals by Web of Science from 1900 to early July of 2019
using key words: ((imaging OR images) AND (medical OR diagnostic)) AND (machine learning OR deep learning
OR neural network OR deep neural network OR convolutional neural network OR computer aid OR computer assist
OR computer-aided diagnosis OR automated detection OR computerized detection OR computer-aided detection OR
automated classification OR computerized classification OR decision support OR radiomic) NOT (pathology OR slide
OR genomics OR molecule OR genetic OR cell OR protein OR review OR survey))

characteristics to numerical values. The extracted
features are then used as input predictor variables
to a classifier, and a predictive model is formed
by adjusting the weights of the various features
based on the statistical properties of a set of
training samples to estimate the probability that
an image belongs to one of the states. Conven-
tional machine learning approach has limitations
in that the human developer may not be able to
translate the complex disease patterns into a finite
number of feature descriptors even if they have
seen a large number of cases from the patient
population. The hand-engineered features may
also have difficulty to be robust against the large
variations of normal and abnormal patterns in the

population. The performance of the developed
CAD system is often limited in its discriminative
power or generalizability, resulting in high false
positive rate at high sensitivity or vice versa.

Deep learning has emerged as the state-of-
the-art machine learning method in many appli-
cations. Deep learning is a type of representa-
tion learning method in which a complex multi-
layer neural network architecture learns repre-
sentations of data automatically by transform-
ing the input information into multiple levels
of abstractions [8]. For pattern recognition tasks
in images, deep convolutional neural networks
(DCNN) are the most commonly used deep learn-
ing networks. With a sufficiently large training
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set, DCNN can learn to automatically extract
relevant features from the training samples for
a given task by iteratively adjusting its weights
with backpropagation. DCNN therefore discovers
feature representations through training and does
not require manually designed features as input.
If properly trained with a large training set that
are representative of the population of interest,
the DCNN features are expected to be superior to
hand-engineered features in that they have high
selectivity and invariance [8]. Importantly, since
the learning process is automated, deep learning
can easily analyze thousands or millions of cases
that even human experts may not be able to see
and memorize in their lifetime. Deep learning can
therefore be more robust to the wide range of
variations in features between different classes to
be differentiated as long as the training set is large
and diverse enough for it to analyze.

CNN can trace its origin to the neocognitron
proposed by Fukushima et al. in the early 1980s
[9]. LeCun first trained a CNN by backpropa-
gation to classify patterns of handwritten digits
in 1990 [10]. CNN was used in many appli-
cations such as object detection, character, and
face recognition in the early 1990s. Lo et al.
first introduced CNN to the analysis of medical
images in 1993 and trained aCNN for lung nodule
detection in chest radiographs [11, 12]. Chan et al.
applied CNN to microcalcification detection [13,
14] onmammograms in the same year and tomass
detection in the following year [15–18]. Zhang et
al. applied a similar shift-invariant neural network
for the detection of clusters of microcalcifications
in 1994 [19]. Although these early CNNs were
not very deep, the pattern recognition capability
of CNN in medical images was demonstrated.

Deep CNN was enabled by several impor-
tant neural network training techniques devel-
oped over the years, including layer-wise un-
supervised pre-training followed by supervised
fine-tuning [20–22], use of rectified linear unit
(ReLU) [23, 24] as activation function in place
of sigmoid-type activation functions, pooling to
improve feature invariance and reduce dimen-
sionality [25], dropout to reduce overfitting [26],
and batch normalization [27] that further reduces
the risk of internal covariate shift, vanishing gra-

dient and overfitting, as well as increases train-
ing convergence speed. These techniques allow
neural networks with more and more layers and
containing millions of weights to be trained. In
2012, Krizhevsky et al. [28] proposed a CNN
with five convolutional layers and 3 fully con-
nected layers (named “AlexNet”) containing over
60 million weights and achieved breakthrough
performance in the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) [29] that clas-
sified over 1000 classes of everyday objects on
photographic images. AlexNet demonstrated the
pattern recognition capability of the multiple lay-
ers of a deep structure. DCNNs with increasing
depth were developed since AlexNet. He et al.
[30] proposed residual learning and showed that
a residual network (ResNet) with 110–152 layers
could outperform several other DCNNs and won
the ILSVRC in 2015. Sun et al. [31] showed that
the learning capacity of a DCNN increased with
depth but the capacity could be utilized only with
sufficiently large training data.

The success of deep learning or AI in per-
sonal devices and social media, self-driving cars,
chess, and Go game have raised unprecedented
expectations of deep learning in medicine. Deep
learning has been applied to many medical image
analysis tasks for CAD [32–34]. The most com-
mon areas of CAD application using deep learn-
ing include classification of disease and normal
patterns, classification of malignant and benign
lesions, and prediction of high risk and low risk
patterns of developing cancer in the future. Other
applications included segmentation and classifi-
cation of organs and tumors of different types,
classification of changes in tumor size or texture
for assessment of treatment response, or predic-
tion of prognosis or recurrence. Because there are
relatively large public data sets available for chest
radiographs, thoracic CT, and mammograms, a
large number of studies were conducted for lung
diseases and breast cancer using the public data
sets. Deep-learning-based image analysis has also
been applied to fundus images or optical com-
puted tomography for detection of eye diseases
[35], or histopathological images for classifica-
tion of cell types [36]. Most of the studies re-
ported very promising results, further boosting
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the hype of deep-learning-based CAD. This new
generation of CAD is called AI although these
CAD tools still behave like a very complex math-
ematical model that memorizes information in its
millions of weights and far from being “intelli-
gent.”

Challenges in Deep-Learning-Based
CAD

CAD or AI is expected to be useful decision
support tools in medicine in the near future. Other
than detection and characterization of abnormali-
ties, applications such as pre-screening and triag-
ing, cancer staging, treatment response assess-
ment, recurrence monitoring, and prognosis or
survival prediction are being explored. Although
no CAD systems with new AI techniques have
been subjected to large scale clinical trials to date,
experiences from CAD use in screening mam-
mography may provide some insights into what
may be expected of CAD tools in the clinic [37].

The conventional machine-learning-based
CAD for detection of breast cancer in screening
mammography is the only CAD application in
widespread clinical use to date. These systems
have been shown to have sensitivity comparable
to or higher than that of radiologists, especially
for microcalcifications, but they also mark a
few false positives per case on average [38].
Although the performances of CAD systems are
moderate, they may detect lesions of different
characteristics than those by radiologists. The
complementary detections by the radiologist
and CAD can improve the overall sensitivity
when radiologist reads with CAD. Studies have
shown that radiologists’ accuracy was improved
significantly when reading with CAD [5]. CAD
systems were therefore approved by FDA for
use as a second opinion but not as a primary
reader or pre-screener. Early clinical trials [39,
40] to compare single reading with CAD to
double reading showed promising results. In
the CADET II study by Gilbert et al. [39], they
conducted a prospective randomized clinical
trial at three sites in the United Kingdom. A
total of over 28,000 patients were included.

The screening mammograms of each patient
were independently read in two arms; one was
single reading with CAD and the other was
their standard practice of double reading. The
experiences of the single readers in the CAD arm
were matched to those of the first readers’ in
the double reading arm. Arbitration was used in
cases of recall due to the second reader or CAD.
They found that arbitration was performed in
1.3% of the cases in single reading with CAD.
The average sensitivity in the two arms were
comparable at 87.2% and 87.7%, respectively.
The recall rates at two centers were comparable in
the two arms, 3.7% versus 3.6% and 2.7% versus
2.7%, respectively, but one of the centers had a
significantly higher recall rate for single reading
with CAD, 5.2% versus 3.8%. The overall recall
rate therefore increased in the single reading
with CAD from 3.4% to 3.9%. Gromet et al.
[40] performed a retrospective review of the
sensitivity and recall rate by single reading with
CAD after CAD implementation in comparison
to those of double reading before CAD use as
historical control for the same group of nine
radiologists in a single mammography facility.
The first reading in their double reading protocol
was also analyzed and treated as single reading
without CAD. The study cohort contained over
110,000 screening examinations in each group.
Arbitration by a third subspecialty radiologist was
a part of their standard double reading protocol.
A second radiologist was consulted for 2.1% of
the cases interpreted by single reading with CAD
but the consult might or might not be related to
CAD marks. They reported that the sensitivity
of single reading with CAD was 90.4%, higher
than the sensitivities of either single reading
alone (81.4%) or double reading (88.0%). The
recall rate was 10.6% for single reading with
CAD, slightly higher than the recall rate of single
reading alone (10.2%) but lower than that of
double reading (11.9%). These relatively well-
controlled studies showed that single reading
with CAD is potentially an alternative to double
reading, with a gain in sensitivity but at the
expense of increased recalls, which can be
reduced by arbitration similar to that in double
reading.
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Table 1 Odds ratios (95% confidence interval) of increase in cancer detection rate and increase in recall rate obtained
by comparison of single reading with CAD and double reading to single reading alone by Taylor et al. [41]

Odds ratio of increase in cancer detection
rate

Odds ratio of increase in recall rate

Single reading with CAD

Matched (N = 5) 1.09 (0.92, 1.29) 1.12 (1.08, 1.17)

Unmatched (N = 5) 1.02 (0.93, 1.12) 1.10 (1.08, 1.12)

Double reading

Unilateral (N = 6) 1.13 (1.06, 1.19) 1.31 (1.29, 1.33)

Mixed (N = 3) 1.07 (0.99, 1.15) 1.21 (1.19, 1.24)

Arbitration (N = 8) 1.08 (1.02, 1.15) 0.94 (0.92, 0.96)

N: the number of studies included in each group
Matched studies: the assessment before and after using CAD was on the same mammograms
Unmatched studies: the performance of mammography facilities after the introduction of CAD was compared to that
before CAD implementation as historical controls. Different mammograms were interpreted in the two conditions

Taylor et al. [41] conducted a meta-analysis
of clinical studies comparing single reading with
CAD or double reading to single reading alone.
They compared the cancer detection rate per
1000 women screened (CDR) and the recall rate,
and estimated the average odds ratios weighted
by sample size over the studies in each group
(Table 1). The results showed that double reading
with arbitration improved the CDR without
increasing the recall rates. Single reading with
CAD for the matched studies increased the CDR
but with a wide variation; however, without the
benefit of arbitration, the recall rate increased
significantly. The increase in recall rate for double
reading without arbitration was more than twice
of that for single reading with CAD.

Taylor et al. revealed that there are large vari-
ations in the impact of CAD on the cancer detec-
tion rate ranging from 0% to 19%, and the recall
rate ranging from 0% to 37%. Other than the
differences in the study designs and radiologists’
experiences in the studies, the variations may also
be attributed to the varied ways that radiologists
used CAD in the clinic. Some users might have
misunderstood the limitations and performance of
the CAD systems. Theymight have over-relied on
the CAD marks and thus did not maintain their
vigilance in searching for lesionswhile increasing
their recalls. Others might have used CAD as a
pre-screener or first reader to increase workflow.
Although there were no systematic studies of how
CAD was used in the clinic, Fenton et al. [42]

noted that “radiologists with variable experience
and expertise may use CAD in a nonstandardized
idiosyncratic fashion,” and “Some community
radiologists, for example, may decide not to recall
women because of the absence of CAD marks
on otherwise suspicious lesions.” Lehman et al.
[43] compared reading digital mammogramswith
and without CAD by 271 radiologists in 66 fa-
cilities of the Breast Cancer Surveillance Con-
sortium (BCSC). They reported that the average
sensitivity decreased by 2.3% and the recall rate
increased by 4.5% with the use of CAD. The
decrease in sensitivity was a clear indication that
the radiologists did not use CAD as a second
opinion, which require the users to maintain their
vigilance in interpretation and thus their sensitiv-
ity, but over-relied on the CAD marks for recall
decisions. The authors acknowledged that “Prior
reports have confirmed that not all cancers are
marked by CAD and that cancers are overlooked
more often if CAD fails to mark a visible lesion”
and that “CAD might improve mammography
performance when appropriate training is pro-
vided on how to use it to enhance performance.”

The study by Cole et al. [38] demonstrated
another facet of using CAD. They conducted
an observer study to compare single reading
with and without CAD using two commercial
CAD systems applied to 300 screening cases
(150 cancers and 150 benign or normal)
from the Digital Mammographic Imaging
Screening Trial (DMIST). All participating
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Table 2 Observer performance study by Cole et al. [38] comparing single reading with and without CAD using two
commercial CAD systems and 300 screening mammography cases (150 cancer and 150 benign or normal) from DMIST

CAD system A CAD system B

Standalone performance 75% sensitivity at 0.79 FPs/image 73% sensitivity at 0.77 FPs/image

Radiologists N = 14 N = 15

Without CAD With CAD Without CAD With CAD

Average AUC 0.71 0.72 0.71 0.72

Average sensitivity 49% 51% 51% 53%

Average specificity 89% 87% 87% 86%

None of the changes were statistically significant. AUC = area under the receiver operating characteristic curve.
N = number of radiologists in the study

readers were experienced breast radiologists and
had been using CAD in their clinical practice.
As summarized in Table 2, they found that
the changes in the radiologists’ sensitivity or
specificity with CAD were only 1% to 2%. The
standalone sensitivity of both CAD systems were
25% higher than the radiologists with or without
CAD but had an average of more than 2 false
positive marks per case. These results were very
different from those observed in the early days
of CAD development when radiologists were
enthusiastic about CAD. They appeared to show
that after radiologists used CAD in the clinic for
a period of time, the many false positive CAD
marks they have seen may have desensitized their
attention and most of the marks were dismissed
including true positives. In a screening setting,
the time a radiologist has to spend to exclude over
2000 false positive marks in order to gain one or
two cancers per 1000 examinations is considered
not cost-effective by many radiologists. This
study indicated that the specificity of a decision
support tool has to be high to avoid inducing
fatigue on clinicians’ response to the computer’s
recommendations.

Although these clinical experiences of CAD
were observed from screening mammography,
they reveal the many challenges of implementing
CAD or AI tools in the clinic and may provide
some guidance on the development of the new
generations of CAD for various applications in
general. Accuracy and workflow efficiency are
important considerations in clinical practice. User
training is crucial to ensure their understanding
of the limitations and capability of CAD and thus
avoid improper use or disillusion. Clinicians’

experiences and level of enthusiasm with CAD
also strongly impact on whether they will accept
a CAD tool and how they may respond to its
recommendation. Performance standards and
acceptance testing should be established to
ensure the CAD tool can meet certain criteria
before routine clinical use. Quality assurance is
needed to monitor the consistency and accuracy
of the CAD tool over time, as well as to prevent
improper use that may impact patient safety. Fully
automated medical decision systems are ideal,
but experienced clinicians’ supervision is vital as
many clinical cases may not evolve following a
statistical model and require human intelligence
to determine the best course of action based on the
individual patient’s conditions and medical his-
tory. The AI community has recently scaled back
the expectation and defines a less ambitious term
as “narrowAI” or “Augmented Intelligence,” rec-
ognizing the supporting role of machine learning
algorithms. Regardless of CAD, narrow AI, or
general AI, there are many challenges of develop-
ing machine-learning-based tools for medicine.
Some of the challenges are discussed below.

Data Collection

The majority of the studies to date on the applica-
tion of deep learning to medical imaging reported
very promising results that often exceeded clini-
cians’ performance, raising high expectations of
AI tools. However, most of the studies used small
training set and the trained models have not been
subjected to rigorous validation with large real
world test data. The generalizability of these deep
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learning models to new patients or to different
clinical settings is still unknown.

One of the basic requirements to develop
a robust machine learning algorithm is a
sufficiently large training sample set with verified
reference truth that are representative of the
characteristics of the population of interest.
Training deep learning is even more demanding
because of the extremely large number of weights
in a DCNN structure. Even with effective
regularization methods to reduce overfitting,
how general the feature representations it has
learned still depends on how much the training
set covers. AlexNet has over 60 million weights
and the “ImageNet” data set for training includes
over 1.2 million images with annotations. Sun et
al. [31] showed that the performance of a DCNN
increased linearly with the orders of magnitude of
the training data and the performance of a DCNN
with large learning capacity continued to increase
even when the training set increased to over 300
million images.

Collection of medical imaging data that are
representative of the patient population and with
reliable annotation or reference truth is costly.
While it is relatively easy to collect a large num-
ber of normal cases for a screening modality, it
is difficult to collect sufficient abnormal cases,
especially that the different classes in the data
set ideally should be balanced. For example, for
disease such as breast cancer that is the most
prevalent cancer in women, there are only several
cases per thousand in the screening population. It
is difficult to collect enough breast cancer mam-
mograms or tomosynthesis that can cover the
variabilities in image features due to factors such
as patient age, breast density and size, habitus,
race, ethnicity, imaging protocols, and processing
methods. The collection of normal and abnormal
cases with special imaging modalities such as
MR or PET is even more challenging because a
relatively small number of patients will have these
examinations and the availability may depend on
the protocols for different types of diseases in
different health systems.

Studies have demonstrated the feasibility of
collecting a large number of annotated cases by
data mining and natural language processing of

the electronic medical record (EMR) [44] and
clinical annotations in picture archiving and com-
munication system (PACS) [45]. The accuracy
and usefulness of the labels or annotations ob-
tained from these methods not only depend on
the methods used but also how the information is
generated and stored in the systems. It has been
shown that automatically mined disease labels
or annotations can include substantial noise in
a data set, as in the large public set of chest
radiographs [46]. In the Digital Mammography
DREAM Challenge (2016–2017) that aimed at
building a model to help reduce the recall rate
for breast cancer screening [47], the participants
were provided with over 640,000 training mam-
mograms from over 86,000 women. The training
set only included breast-level labeling without le-
sion annotation. The winning teams all used deep
learning approach but the highest performance
only reached an area under the receiver operat-
ing characteristic curve (AUC) of 0.8744, and a
sensitivity of 80% at specificity of 80.8%. The
false positive rate, and thus potentially the recall
rate, was much higher than that of an experienced
breast radiologist at comparable sensitivity even
for the top deep learning model. This example
illustrates that, although the total number of im-
ages appeared to be large, the lack of high qual-
ity labeling may reduce its effectiveness in deep
learning training. In general, weakly supervised
training, unsupervised training, or using training
set with substantial labeling errors is not as ef-
fective as supervised training with well-curated
cases for the same training sample size; a much
larger sample size is required to achieve similar
performance for a DCNNmodel as a well-curated
training set.

Data mining of the unstructured text and non-
standardized reporting in current EMR or PACS
systems is challenging, especially for more com-
plex CAD task such as treatment response mon-
itoring, in which a case may include multiple
stages of diagnosis and treatment involving mul-
tiple imaging examinations and clinical tests. To
generate reference standards for CAD develop-
ment, one needs to correlate the imaging and
clinical test data with outcomes at the various
stages. It is a difficult process even if performed
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manually. Automation will be useful but it may
require the development of an intelligent data
mining tool. For patient cases that have been
transferred between different hospitals, the in-
complete prior or follow-up information may in-
troduce errors into data curation. To facilitate
collecting big data for development of AI towards
precisionmedicine in the future, it will be prudent
for the vendors and users to establish standard-
ized reporting methods and structures among the
various data archiving systems. In addition, es-
tablishing standardized protocols for secure elec-
tronic transmission of patient files among hos-
pitals for referral patients will not only improve
the health care of referral patients by transferring
patient data accurately and efficiently, but also
improve the accuracy of data mining for these
cases. Ultimately, multi-institutional collabora-
tion may be the best approach to building big
database, which can cover the wide ranges of
heterogeneous imaging protocols and equipment,
clinical settings, and patient characteristics, to
accelerate the development of robust deep learn-
ing models for each type of diseases that may
be more readily applicable to various clinical
environments.

Transfer Learning

Transfer learning is a common approach that deep
learning developers use when the training set was
small. In transfer learning, a DCNN that has been
well trained with a large training set from a source
domain is adapted to a new target task by fine-
tuning the DCNN using a relatively small training
set from the target domain. DCNN is considered a
feature extractor that learns representation of the
input data by extractingmultiple levels of abstrac-
tions by its convolutional layers. Yosinski et al.
[48] showed that the learned features in the shal-
low layers are more generic, whereas the learned
features in the deeper layers become increasingly
specific to the task that the DCNN is being trained
for. Since the features are decomposed into nu-
merous components in a DCNN, andmost images
are composed of some common basic elements,
the knowledge learned by a trained DCNN in

extracting features is shown to be transferrable
to images from different domains. The transfer-
ability of features decreases as the differences
between the source domain and the target do-
main increase. However, even for very different
source and target tasks, transfer learning by ini-
tializing a DCNN with weights trained for an-
other source task can outperform the sameDCNN
trained with randomly initialized weights for the
target task.

For training deep learning models in medical
imaging, the majority of studies used transfer
learning due to the limited data available. To date,
the largest annotated public data set available is
the ImageNet data, which contained photographic
images containing over 1000 classes of everyday
life objects such as animals, vehicles, plants,
ships, planes, etc. Most of the DCNN models
in medical imaging were trained by transfer
learning using models initialized with ImageNet-
pretrained weights and fine-tuned by limited
medical image data. Transfer learning was
generally found to be useful in improving
the training convergence and robustness of
the DCNNs. In some cases, the pretrained
DCNNs were used as feature extractor without
fine-tuning; the deep features extracted from
deploying the pretrained DCNN to the image
data of the target domain were used as predictor
variables to train an external classifier for the
target task.

Although transfer learning can alleviate the
problem of limited data to a certain degree, a
large training set is still needed to achieve a high
performance DCNNmodel for a given target task.
Samala et al. [49] conducted a study to evalu-
ate the effect of training set size on the perfor-
mance of a transfer-trained DCNN for the target
task of classifying malignant and benign breast
masses in digital breast tomosynthesis (DBT).
The ImageNet-pretrained AlexNet with 5 con-
volutional layers and 3 fully connected layers
was appended with 2 additional fully connected
layers (total of 5 fully connected layers) to re-
duce the classes from over 1000 to 2 (malignant
and benign) and transfer-trained for the target
task. Because the DBT data set was small and
mammogram data were relatively abundant, the
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Fig. 2 The effect of different number of layers of the DCNN being frozen during transfer learning of ImageNet-
pretrained AlexNet to classify malignant and benign masses on mammograms. The area under the receiver operating
characteristic curve (AUC) for the test ROIs was plot as box-and-whisker plots of 10 repeated experiments under each
condition. The training set and the test set consists of 12,360 and 7272 ROIs after augmentation, respectively.C0 denotes
no layer was frozen, i.e., the pretrainedweights in all layers were allowed to be updated.C1 denotes the first convolutional
layer was frozen, C1–Ci (i = 2, 3, 4, 5) denotes the C1 to Ci convolutional layers were frozen during transfer training.
The result shows that C1-frozen training provided the best test AUC for this task (reprint with permission [49])

pretrained AlexNet was transfer-trained in the
first stage for the classification of masses on
mammograms, which brought the AlexNet from
an unrelated classification task on non-medical
ImageNet data to a task (mammography) much
closer to the target task (DBT). A small DBT
set was then used for a second-stage transfer
training to the target task. Their mammography
set contained 2242 unique views (craniocaudal or
mediolateral oblique) with 2454 regions of inter-
est (ROIs) containing breast masses. The DBT
set contained 324 unique views with 1585 ROIs
(5 slices or ROIs from each mass), which was
partitioned by case into a training set of 1140
ROIs and an independent test set of 445 ROIs.
Each ROI was flipped and rotated to obtain 8
augmented versions to reduce noise. To evalu-
ate the training sample size effects on stage 1
and stage 2 fine-tuning, several transfer learning
strategies were compared: (A) single-stage trans-
fer learning with mammography data, in which
the first convolutional layer (C1) of AlexNet was
frozen and all other layers were allowed to be
fine-tuned, (B) two-stage transfer learning with

mammography data in stage 1 and DBT training
set in stage 2, in which C1 was frozen in both
stages, (C) two-stage transfer learning similar to
(B) except that convolutional layersC1 to F4 were
frozen in stage 2, and (D) single-stage transfer
learning with DBT training set, in which C1 was
frozen, was also trained as a baseline for compar-
ison. The results are summarized in Figs. 2, 3, 4,
and 5.

Figure 2 shows the dependence of the test per-
formance, in terms of AUC, of the transfer-trained
AlexNet on the number of layers being frozen
during transfer training for the classification of
masses onmammograms. The AUCwas the high-
est when only C1 was frozen. However, if all lay-
ers were allowed to be re-trained (C0), the transfer
trained AlexNet did not perform well, probably
because the mammography data was not large
enough to fine-tune the large number of weights.
Figure 3 shows the dependence of the test AUC
on the sample size of the training mammography
data. The test AUC was obtained by applying
the AlexNet transfer-trained with mammography
data directly to classify the masses on DBT with-
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Fig. 3 Dependence of test AUC on mammography training sample size using strategy (A) transfer training. The varied
training sample size was simulated by random drawing by case of a percentage (ranging from 1% to 100%) from the
entire set of 19,632 mammography ROIs. The ROI-based AUC performance for classifying the 9120 DBT training ROIs
(serve as a test set at this stage) for three transfer networks at Stage 1. The data point and the upper and lower range
show the mean and standard deviation of the test AUC resulting from ten random samplings of the training set of a given
size from the original set (reprint with permission [49])

Fig. 4 ROI-based AUC on the DBT test set while varying the mammography sample size available for transfer training.
The data point and the upper and lower range show the mean and standard deviation of the test AUC resulting from ten
random samplings of the training set of a given size from the original set. “A. Stage 1 (MAM:C1)” denotes single-
stage training using mammography data and the C1-layer frozen during transfer learning without stage 2. “B. Stage 2
(DBT:C1)” denotes stage 2 C1-frozen transfer learning at a fixed (100%) DBT training set size after Stage 1 transfer
learning (curve A). “C. Stage 2 (DBT:C1-F4)” denotes Stage 2 C1-to-F4-frozen transfer learning at a fixed (100%) DBT
training set size after stage 1 transfer learning (curve A) (reprint with permission [49])
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Fig. 5 ROI-based AUC on the DBT test set while varying the simulated DBT sample size available for transfer training.
The data point and the upper and lower range show the mean and standard deviation of the test AUC resulting from ten
random samplings of the training set of a given size from the original set. “D. Stage 1 (DBT:C1)” denotes single-stage
training using DBT data with the C1-layer frozen during transfer learning without Stage 2. “B. Stage 2 (DBT:C1)”
denotes Stage 2 C1-frozen transfer learning after Stage 1 transfer learning with a fixed (100%) mammography training
set. “C. Stage 2 (DBT:C1-F4)” denotes Stage 2 C1-to-F4-frozen transfer learning after Stage 1 transfer learning with a
fixed (100%) mammography training set (reprint with permission [49])

out the second-stage fine-tuning with DBT. The
test AUC increased steadily as the training sample
size increased. For a given training set size, the
test AUC decreased as more andmore layers were
frozen, indicating that the learning capacity of the
DCNN was restricted and insufficient knowledge
was learned from the mammography data. Fur-
thermore, the test AUC on the DBT set (Fig. 3)
was higher than that on the mammography test set
(Fig. 2) at the corresponding training sample size
and frozen layers, indicating that mammography
is an effective auxiliary domain for transfer train-
ing to DBT and that malignant and benign masses
in DBT are easier to be distinguished by DCNN,
similar to that by human vision.

Figures 4 and 5 compared the two-stage trans-
fer learning to one-stage transfer learning on the
classification of masses in the DBT test set. Sev-
eral observations can be made. First, the test AUC
increases with training sample size either in stage
1 or stage 2. Second, when the training set in
the target domain is small, the additional stage

of pre-training with data of auxiliary domain can
improve the overall performance at all training
sample sizes in the range studied (compare curves
A and B in Fig. 4, and curves B and D in Fig. 5).
Third, when too many layers are frozen during
transfer learning, the performance of the DCNN
after two-stage training may not reach the same
level as that of the DCNN with less layers frozen
using the same training sample sizes (compare
curves B and C in Fig. 4), indicating that the
DCNN cannot learn adequately from the training
data if the learning capacity of the DCNN is
overly restricted. Fourth, on the other hand, when
the DCNN is well trained in the source domain
and the training set in the target domain is very
small, freezing most of the layers during transfer
training may be beneficial by avoiding the loss
of the pretrained knowledge without adequate
learning from the target domain data (compare
the small sample size region of curves B and C in
Fig. 5). Although one can expect that the training
sample size required for transfer training for a
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given taskwill depend onmany factors such as the
complexity of the tasks and the DCNN structure,
the differences in the characteristics between the
source and the target domains, the relative train-
ing sample sizes between the tasks, the relative
trends observed from this study will likely be
applicable to many transfer learning applications,
and multi-stage transfer training with data from
similar domains should be helpful if the training
data of the target domain is too scarce.

Data Augmentation

Data augmentation generates multiple slightly
different versions of images from each image
in the original training set. Data augmentation
may use techniques such as flipping the image in
various directions, translating the image within a
range of distance, cropping the image in different
ways, rotating the image within a range of
angles, scaling the image over a range of factors,
generating shape- and intensity-transformed
images by linear or non-linear methods. Data
augmentation can be implemented on-line or
off-line and an augmentation operation in a
specified range can be performed randomly or
by fixed increments. For off-line augmentation,
the augmented versions of the images are pre-
generated and mixed with the original data into
a larger training set, which is randomly grouped
as mini-batches for the DCNN training. If the
various techniques are applied in combinations,
the apparent number of training images can
increase easily to hundreds or thousands of
times. For on-line augmentation, the various aug-
mentation techniques are usually implemented
as a part of the DCNN pipeline with user-
selectable probability and range. The original
training set is input in mini-batches but each
image in a batch is randomly altered according
to the pre-selected probability and range of the
augmentation techniques. The number of times
an image is augmented in a given training run
will depend on the number of training epochs
chosen and the pre-selected probabilities for the
different augmentation techniques. The choice

between off-line and on-line augmentation may
depend on the tradeoffs between computational
resources and storage space or memory;
off-line augmentation is more practical if the
available training set is small as it requires
more space and memory for the augmented
set, while on-line augmentation is preferred for
large training sets if computational resource
is plentiful. Data augmentation introduces
variations or jittering to the original data, thereby
reducing the risk of overfitting to a small
training set and improving generalizability [28,
50, 51]. However, it is important to note that
augmenting the training set to a certain size is
not equivalent to having a set of independent
training samples of comparable size. Since the
features in the augmented versions of an image
are highly correlated and the CNN learning is
invariant to many of these small variations, the
augmented images do not provide much new
knowledge for the DCNN to learn in comparison
to new independent images. In particular, if
the original small training set does not include
representative samples of certain characteristics,
data augmentation will not generate samples of
the missing types for the DCNN training; for
example, if there are no spiculated nodules in
the original data, augmentation cannot generate
spiculated nodules for the DCNN to learn.
Other more sophisticated data augmentation
methods are also being considered, such as
generative adversarial networks (GANs) that can
generate imageswithmixed features learned from
different images after training on the available
sample images [52], digitally generate artificial
lesions inserted into normal images [53, 54], or
inserting real lesions to other locations of normal
or abnormal images [55]. Investigations are
needed to evaluate issues such as how effective
the data augmentation methods are compared
to one another for a given sample size, whether
the features learned from the artificial lesions,
especially texture features, may help or hinder
DCNN learning of real features, whether real
lesions inserted at other locations can contribute
new features to learn, and whether the usefulness
of the augmented data for deep learning depends
on the target task.
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Training, Validation,
and Independent Testing

During training of a machine learning model in-
cluding deep learning, a validation set is generally
used for guiding the optimization of the param-
eters. The validation set is used to compare the
performances of models with different parameter
sets, or to monitor the changes in the performance
or cost during iterative training of the model
weights. The validation set may be split from
the training set by cross validation or by hold-
out. Regardless of the methods, the validation
set is a part of the training process because it is
repeatedly used to guide training, and the model
structure and parameters are usually chosen to
maximize the performance on the validation set. It
is well known in machine learning that the train-
ing or validation performance is generally opti-
mistically biased [56–61]. To estimate the true
performance of the trained model in unknown
cases, one has to use an independent test set that
has not been seen by the model in the training
process and is representative of the population
to which the trained model will be applied. To
date, most of the published studies only include
cross validation results, and even in studies with a
“hold-out” test set, the test set will be turned into a
validation set if the same test set is used for evalu-
ation many times during model development and
eventually the best model is chosen based on the
performance of the test set. The American Asso-
ciation of Physicists in Medicine (AAPM) CAD
Subcommittee (renamed as Computer-Aided Im-
age Analysis Subcommittee in 2018) has pub-
lished an opinion paper to discuss the training and
evaluation methodology for development of CAD
systems [62]. The importance and the strategy
of collecting a representative independent test set
and the potential biases on the reported “test”
result due tomultiple repeated use of the same test
set are discussed in more details. Deep-learning-
based CAD or AI follows similar general prin-
ciples as conventional machine learning meth-
ods, and the need for independent testing will be
even more important due to the vast capacity of
deep learning to extract and memorize informa-
tion from the training set.

Acceptance Testing, Preclinical
Testing, and User Training

If properly trained with a large data set, deep
learning is expected to be more robust and more
accurate than conventional machine learning
approaches. However, studies showed that deep
learning in medical imaging, or machine learning
in general, can learn non-medical features that
are not related to the medical conditions of
the patient but other properties such as image
acquisition protocols or equipment, image
processing techniques, or even other markings
and accessories related to the facilities or patient
comorbidity that are recorded in the images [63].
As a result, a deep learning algorithmwell trained
and independently tested showing high accuracy
using data collected from the same site(s) may
not be generalizable to different clinical sites
that may have different population or imaging
characteristics. Even if a CAD or AI algorithm
is approved by FDA for clinical use, a clinical
site should conduct acceptance testing, similar
to the installation of a new medical device or
equipment, using a set of representative local
data to verify that its performance for the local
patient population can pass a certain standard or
reference level before clinical implementation.
In addition, after the AI tool is implemented in
the clinical workflow, the users should allow
for a test period in which they refrain from
being influenced by the CAD output. The users
should familiarize themselves with the output
of the CAD tool and quantitatively, if possible,
assess the performance of the CAD tool on a
large number of consecutive clinical cases. The
users should evaluate critically the strengths and
weaknesses of the CAD tool based on follow-
up review of the outcomes of the cases, so as
to recognize the characteristics of cases that the
CAD tool makes mistakes or the CAD tool makes
correct recommendations whereas the clinician
may have failed. The hands-on experience of
the performance of the CAD tool will allow
the users to learn how to reduce the risk of
accepting erroneous recommendation while
taking advantage of the recommendations for
cases that the CAD tool is useful. The test period
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will serve both as a real world evaluation of
the CAD tool on the local population and user
training. With better understanding of the AI’s
limitation and capability, the users may be able
to establish proper expectation and confidence
level on the CAD tool and thus reducing the risk
of improper use or negative outcomes of using
CAD.

Quality Assurance and Performance
Monitoring

With the new generation of CAD, there are high
expectations that they will be far more robust than
the conventional CAD systems, especially that
many of the studies reported performance higher
than those of clinicians. Although the initial con-
cerns of AI algorithms replacing radiologists have
tamped down, the expectations of using AI to
improve workflow efficiency or reduce workload
are prevalent. A recent observer study [64] com-
pared breast cancer detection in DBT by radi-
ologist alone to radiologist using deep-learning-
based CAD as a concurrent reader that marked
suspected lesions and showed the confidence of
malignancy on the DBT slices. A data set of 260
DBT cases including 65 cancer, 65 benign, and
130 normal cases were read by 24 radiologists.
The experimental concurrent CAD had a case-
based sensitivity of over 90% and a specificity
of over 40%, which are higher than all of the
CAD tools currently used in screening DM. They
demonstrated that reading with CAD could pro-
vide all the benefits a radiologist would hope for:
reducing the average reading time by more than
50% for a DBT case, increasing sensitivity and
specificity, as well as reducing recall rate. In an-
other study [65], researchers developed a DCNN
to identify normal mammograms from screening
cases. With 10-fold cross validation, they showed
that the DCNN could identify 34% and 91% of
the normal mammograms at a negative predictive
value (NPV) of 0.99 for a cancer prevalence of
15% and 1%, respectively. The study showed the
potential of using DCNN to improve radiologists’

workflow efficiency by excluding the negative
mammograms from reading.

For an AI model to be a useful routine clinical
tool, it is crucial to validate that its performance
in clinical settings can meet certain standards and
is consistent over time, similar to other medi-
cal devices, especially for any AI model that is
designed to operate as a decision maker, rather
than as a decision support tool or a second opin-
ion. The acceptance testing or preclinical test-
ing described above can serve as the baseline
performance on the local population. Since the
performance of DCNN is affected by the prop-
erties of the input images, which may be deter-
mined by a number of factors such as the imag-
ing techniques or equipment and the image pro-
cessing or reconstruction software or parameters
that may change intentionally or unintentionally
due to many factors, periodic quality assurance
(QA) procedures should be established tomonitor
the performance of the CAD tool as well as the
performance of clinicians using CAD over time.
TheAAPMCADSubcommittee has published an
opinion paper on the quality assurance and user
training on CAD devices in clinical use [66]. The
discussions have not attracted much attention,
probably because of the limited use of CAD in
the clinic at that time. Currently FDA has no post-
market monitoring and regulations on the con-
sistency or accuracy of CAD software as second
opinion in clinical use after it is approved and
there is no control of off-label use. As CAD/AI
tools are anticipated to have widespread use in
health care in the future, either as second opinion
or automated decisionmaker in some applications
such as pre-screening or triaging, their impact
on patient care or welfare can be much greater.
It will be important for organizations such as
the American College of Radiology (ACR), the
Radiological Society of North America (RSNA),
the European Society of Radiology, and AAPM
to provide leadership to establish performance
standards, QA and monitoring procedures, and
compliance guidance, to ensure safety and ef-
fectiveness for implementation and operation of
CAD tools in clinical practice.
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Interpretability of CAD/AI
Recommendations

The DCNN learns multiple levels of feature rep-
resentations from the input data by using the deep
architecture of convolutional layers. At present
a DCNN model is mostly operated like a black-
box as there is no easy way to explain how and
what the DCNN has learned to perform a specific
classification task. Researchers have developed
methods to visualize the feature maps at each
convolutional layer [67, 68] and to highlight the
target objects recognized by the DCNN with a
class activation map [69]. The feature maps il-
lustrate the deep features [70] extracted by the
DCNN and the class activation map may be cor-
related with the target location or the locations
of the most important features for classification.
These visualization tools are the first steps to
explore the inner workings of deep learning but
they are still far from being able to translate
the deep learning output to interpretable clinical
decisions, especially for tasks more complex than
lesion detection. For CAD/AI to be more widely
acceptable as a clinical decision support tool, it
should be able to more intelligently present the
recommendation to clinicians with reasons, cor-
relating the findings with the medical conditions
and data of the patient, and ideally, be able to
present further explanations if the clinician has
questions on the recommendation. Uncovering
the relationship between the machine findings
with medical conditions of the patient or even
utilizing deep learning and big data analytics to
discover new links between disease and clinical
data or symptoms will be an important area of
research to enable CAD to deliver interpretable
diagnosis to clinicians and advance CAD towards
true AI in medicine.

Summary

Deep learning is expected to revolutionize CAD
and image analysis in medicine. Although ma-
chine learning has been applied to CAD and med-
ical image analysis for over three decades, CAD

has not been commonly used in the clinic due to
the limited performance of conventional machine
learning approaches. The recent success of deep
learning technology spurs new efforts to develop
CAD or AI tools for many applications in health
care. Numerous studies have reported promising
results. Amid the high expectations of the accu-
racy and efficiency that AI can bring to medicine,
many challenges have yet to be overcome in order
to integrate the new generation of CAD tools
into clinical practice and to minimize the risk
of unintended harm to patients. The discussion
in this chapter is not limited to computer-aided
lesion detection. Similar considerations are appli-
cable to any CAD tools in general, such as those
for disease characterization, staging, treatment
planning, surgical guidance, treatment response
assessment, recurrence monitoring, and progno-
sis or survival prediction. Big databases have to
be collected to provide sufficient training and
validation samples to develop robust deep learn-
ing models and independent testing with internal
and externalmulti-institutional data to assess gen-
eralizability; performance standards, acceptance
testing, and quality assurance procedures should
be established for each type of applications to
ensure the performance of a deep learning model
can meet the requirements in the local clinical
environment and remains consistent over time;
adequate user training in local patient population
is vital to allow users to understand the capa-
bility and limitations of the CAD tool, establish
realistic expectations, and avoid improper use
or disillusion; CAD recommendation has to be
interpretable to allow clinicians to make informed
decisions. More importantly, workflow efficiency
and costs are major considerations in health care.
A decision support tool will not be acceptable if
it requires additional time and/or costs without
significant clinical benefits. It is important for
CAD researchers and developers to understand
the preferred mode of assistance by clinicians
for each type of clinical tasks, design effective
CAD tools, and deliver interpretable outputs by
taking into consideration the practical issues in
clinical settings. If properly developed, validated,
and implemented, it can be expected that the
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efficient data analytics from CAD or AI tools can
complement the human intelligence of clinicians
to improve the accuracy and workflow and thus
patient care.
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Abstract
Medical images have been widely used in clin-
ics, providing visual representations of under-
skin tissues in human body. By applying dif-
ferent imaging protocols, diverse modalities
of medical images with unique characteris-
tics of visualization can be produced. Consid-
ering the cost of scanning high-quality sin-
gle modality images or homogeneous multiple
modalities of images, medical image synthe-
sis methods have been extensively explored
for clinical applications. Among them, deep
learning approaches, especially convolutional
neural networks (CNNs) and generative ad-
versarial networks (GANs), have rapidly be-
come dominating for medical image synthesis
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in recent years. In this chapter, based on a
general review of the medical image synthesis
methods, we will focus on introducing typical
CNNs and GANs models for medical image
synthesis. Especially, we will elaborate our
recent work about low-dose to high-dose PET
image synthesis, and cross-modality MR im-
age synthesis, using these models.

Keywords
Deep learning · Medical image synthesis ·
Machine learning · Convolutional neural
networks (CNNs) · Generative adversarial
networks (GANs) · Magnetic resonance
imaging (MRI) · Positron emission
tomography (PET) · Brain

Introduction

As a technology to produce the visual repre-
sentations of anatomical and pathological struc-
tures and their functions in human body, medical
imaging is widely applied in clinics for disease
diagnosis and treatment planning. It consists of
various imaging protocols which have their spe-
cific insights to produce different modality im-
ages. For example, computed tomography (CT)
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creates the images of internal organs, bones, soft
tissue, and blood vessels to show electron density
and physical density [22]; magnetic resonance
imaging (MRI) provides diverse contrasts of soft
tissues through setting different scanning param-
eters [33]; positron emission tomography (PET)
enables the visualization of metabolic processes
of scanned body part [12]. Due to their differ-
ent and sometimes complementary characteris-
tics, multiple modalities are usually utilized in
the analysis of clinical applications. However,
the acquisition of some modality images, such
as PET and CT, increases the risks of radiation
exposure, especially when patients have to take
these imaging scanning multiple times during
the entire treatment [37]. Thus, the high-quality
and human-safe medical images are not easy to
acquire in the practical applications. Besides, due
to the different imaging protocols and the cost of
multi-modality image acquisition, sufficient and
consistent modalities are not always accessible
for every patient [57]. To handle these issues,
medical image synthesis, which is defined as an
approach to modeling a mapping from the given
source images to the unknown target images, has
been widely explored by researchers [18].

Medical image synthesis has been used in
various applications, e.g., estimation of missing
images [43], knowledge transformation across
modalities [53], image super-resolution [24], and
annotated dataset creation [14]. Here, according
to its applications, we roughly classify medical
image synthesis into two main categories, i.e.,
within-modality synthesis and cross-modality
synthesis. Specially, the within-modality synthe-
sis usually aims at generating the higher-quality
images from the input within-modality images
of relatively lower quality. In contrast, the cross-
modality synthesis targets to capture the useful
structuring information in the source-modality
to generate the target-modality image. Although
these two categories are applied in different prac-
tical tasks, the underlying synthesis principles are
similar. The conventional synthesis approaches
exploit diverse nonlinear models, e.g., dictionary
learning [45] and random forest [26], to process
the handcrafted medical image features which

are manually selected by professional experts
during the synthesis. However, these handcrafted
features have limited power to represent the
complex visual information in medical images
and therefore adversely affect the synthesis per-
formance. Recently, deep learning based methods
have mitigated this issue through automatically
learning the task-specific features having
sufficient descriptive power with the training of
the mapping models [41, 55]. Through designing
advanced deep learning models, the performance
of medical image synthesis has been greatly
improved.

In Table 1, a list of works that utilized deep
learning models for medical image synthesis are
presented. Here, we mainly focus on the synthe-
sis applications for three major imaging modal-
ities, i.e., CT, MR, and PET. The timeline for
the development of these methods is summa-
rized in Fig. 1. As shown in Table 1 and Fig. 1,
deep learning approaches started to be popular
for medical image synthesis in 2015 [42]. Af-
ter two years of exploration, a large category
of models, especially deep convolutional neural
networks (CNNs) based architectures, became
dominating for both within-modality and cross-
modality synthesis in 2017 [10, 11, 20, 28, 31, 32,
51]. Before the end of 2017, a novel family of
CNN based models, i.e., generative adversarial
networks (GANs), attracted the attention of re-
searchers and achieved promising results [3,4,7].
In 2018, more complicated CNN models were
further explored in the conventional way [8,9,58].
At the same time, numerous GAN models with
different frameworks were proposed in 2018 and
2019, and this research trend becomes more and
more popular now.

In the rest of this chapter, we first discuss two
typical types of deep learning models for medical
image synthesis in section “Deep Learning
Models for Medical Image Synthesis”. Following
that, we introduce four of our recent works for
within-modality and cross-modality synthesis,
respectively, in sections “Within-Modality
Synthesis” and “Cross-Modality Synthesis.”
Finally, a brief conclusion about this chapter
is given in section “Conclusion.”
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Table 1 Medical image synthesis publications with deep learning models

Publication Method Dataset Organ

Within-modality synthesis
CT (low-dose to full-dose)

Chen et al. [11] Custom three layer-CNN NBIAa Multiple body parts

Chen et al. [10] CNN based residual encoder-
decoder

NBIAa Multiple body parts

Kang et al. [28] CNN for wavelet domain denois-
ing

low-dose CTb Head, chest and abdomen

MRI (super-resolution or 3T to 7T)

Zend et al. [58] Residual CNN Brainwebc

NAMICd
Brain

Chaudhari et al. [9] Residual CNN OAI [39] Knee

Nie et al. [37] Cascade GANs – Brain

PET (low-dose to full-dose)

Xiang et al. [51] Cascade CNNs – Brain

Wang et al. [46] 3D cGAN – Brain

Wang et al. [47] 3D cGAN with locality-adaptive
module

– Brain

Cross-modality synthesis
MR to CT or CT to MR

Nie et al. [36] 3D CNN-FCN – Pelvic

Han et al. [20] U-net – Brain

Leynes et al. [31] U-net – Pelvic

Liu et al. [32] CNN based autoencoder – Brain

Chartsias et al. [7] cycleGAN MM-WHSf Cardiac

Nie et al. [37] Cascade GANs ADNIe Brain and pelvic

Emami et al. [17] cGAN – Brain

Hiasa et al. [21] cycleGAN with gradient loss – Musculoskeletal

Zhang et al. [59] cycleGAN with segmentors – Cardiac

CT to PET or PET to CT

Ben et al. [3] FCN-cGAN – Liver

Bi et al. [4] cGAN with tumor label input – Thorax

Armanious et al. [2] cGAN with CasNet generator – Brain

MR to PET or PET to MR

Choi et al. [13] cGAN (pix2pix) ADNIe Brain

Wei et al. [49] Cascade GANs – Brain

Cross-modality MR ( T1, T2, FLAIR, and MRA)

Van et al. [42] Location-sensitive CNN NAMICd Brain

Chartsias et al. [8] CNN based encoder and decoder ISLES2015g

BRATS2015h

IXIi

Brain

Dar et al. [16] cGAN (pix2pix) MIDAS [5]
BRATS2015h

IXIi

Brain

Olut et al. [38] cGAN IXIi Brain

Mok et al. [35] cGAN (two generators and four
multi-scale discriminators)

BRATS2015h Brain

(continued)
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Table 1 (continued)

Publication Method Dataset Organ

Yang et al. [52] cGAN BRATS2015h Brain

Welander et al. [50] cycleGAN and UNIT Human
Connectomej

Brain

Yu et al. [56] 3D cGAN BRATS2015h Brain

Yu et al. [57] 3D cGAN with edge map adver-
sarial learning

BRATS2015h

IXIi
Brain

a https://dcm.bmia.nl/ncia/login.jsf
b https://www.aapm.org/GrandChallenge/LowDoseCT/
c http://www.bic.mni.mcgill.ca/brainweb/
d http://hdl.handle.net/1926/1687
e www.adniinfo.org
f http://www.sdspeople.fudan.edu.cn/zhuangxiahai/0/mmwhs/
g http://www.isles-challenge.org/ISLES2015/
h https://sites.google.com/site/braintumorsegmentation/home/brats2015
i http://brain-development.org/ixi-dataset/
j https://ida.loni.usc.edu/login.jsp.

LSDN [43]

2015

Deeper CNNs
and U-net

[10,20,28,31,32,52]

2017

3 D CNN-FCN [36]

2016

cGANs
and cycleGANs

[3,4,7]

2017

residual CNNs and
more complicated

CNNs [8,9,59]

2018 cascade GANs,
cycleGANs, 3D

cGAN…
[2,13,16,17,21,35,37,
38,46,48,50,51,53,57,

58,60]

2018-2019

Fig. 1 The development of deep learning models for medical image synthesis

Deep LearningModels for Medical
Image Synthesis

The state-of-the-art medical image synthesis
methods usually use convolutional neural
networks (CNN) [29]. With the delicate design,
they can be exploited for whole-image or large-
patch based synthesis to capture the implicit
dependency among pixels/voxels in the same
input during the end-to-end training. Among
them, the most typical CNN architecture is U-
net [40]. More recently, a number of CNN based
generative adversarial networks (GANs) further
improve the medical image synthesis results [55].
Therefore, this section will present the details of
the typical conventional CNN model, i.e., U-net,
and the basic GAN model in the research area of
medical image synthesis.

Convolutional Neural Networks

TheU-net model can extract the global contextual
information from the source image and also re-
serve the spatially continuous details in the target
image. As illustrated in Fig. 2, the original U-net
model consists of the contracting and expanding
paths. The number of convolutional layers in the
contracting path is same to that in the expanding
path. Between these two paths, multiple skip-
connections are built to bridge them. With this
structure, the U-net model can acquire the multi-
depth information of the input source image. In
addition, the gradient vanishing problem which
is commonly shown during the training of deep
learning models is mitigated, since the gradient of
the deeper layers can be directly back-propagated
to the shallower layers via the skip-connections.

https://dcm.bmia.nl/ncia/login.jsf
https://www.aapm.org/GrandChallenge/LowDoseCT/
http://www.bic.mni.mcgill.ca/brainweb/
http://hdl.handle.net/1926/1687
www.adniinfo.org
http://www.sdspeople.fudan.edu.cn/zhuangxiahai/0/mmwhs/
http://www.isles-challenge.org/ISLES2015/
https://sites.google.com/site/braintumorsegmentation/home/brats2015
http://brain-development.org/ixi-dataset/
https://ida.loni.usc.edu/login.jsp
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Fig. 2 Original 2D U-net model taken from [40]

This specific CNN architecture extracts the hier-
archical visual clues from the input and is par-
ticularly suitable for the medical image synthesis
tasks.

Generative Adversarial Networks

In 2014, the original GANs were first proposed
for the generic image synthesis tasks [19]. Differ-
ent from the common CNN based deep learning
models, a GAN model consists of two agents,
i.e., a generator G and a discriminator D, and is
trained by the adversarial learning, as shown in
Fig. 3. The original GAN model aims to learn a
mapping from an input random noise to a target
image that follows the distribution pdata of real
images. In order to condition the GAN model
on an input data of auxiliary information which
could guide the mapping processing, conditional
generative adversarial networks (cGANs) were
then proposed [34]. When the input data is a
source image x ∼ pdata(x), the cGANs can

be trained to synthesize its corresponding target
image y ∼ pdata(y) with the specific control from
x. This is a process of paired image-to-image
synthesis.

Most existing GAN models for medical image
synthesis [14, 16, 46, 57] follow a representative
work pix2pix [25] and achieve very promising re-
sults. As a cGAN model, it synthesizes an image
G(x) from the given source image x to resemble
the real target image y by its generator G. At
the same time, its discriminator D is trained to
differentiate between the synthesized image pair
(x, G(x)) and the corresponding real image pair
(x, y). Therefore, the synthesis performance can
be improved through the adversarial competition
between these two agents. The training loss of the
generator G is formulated as follows:

LG
cGAN = Ex∼pdata(x)[log (1 − D(x, G(x)))

+ λl1Ex,y∼pdata(x,y)[‖y − G(x)‖1],
(1)

where the symbolE denotes mathematical expec-
tation, and G(·) and D(·) accordingly refer to the
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Fig. 3 Original GAN model

outputs of the generator and the discriminator. In
Eq. (1), the generator G is trained to synthesize a
realistic image which could fool the discriminator
D via the first term. In its second term, the gen-
erator G tries to enforce the intensity similarity
between the synthesized and real images through
an L1-norm penalty on the pixel-wise intensity
difference. The symbol λl1 is a hyper-parameter
to balance these two terms.

The loss function of the discriminator D is
defined as follows:

LD
cGAN = −Ex,y∼pdata(x,y)[log D(x, y)]

− Ex∼pdata(x)[log (1 − D(x, G(x)))].
(2)

In Eq. (2), different from the generator G, the
discriminator D is trained to estimate the correct
labels (0 or 1) for the synthesized or real image
pairs. Thus, the adversarial competition between
G and D conforms to a two-player min-max
game.

In this cGANmodel, the two sub-jobs of image
generation and image discrimination are achieved
together. Therefore, the final loss function inte-
grates the above two objectives as follows:

LcGAN = LG
cGAN + LD

cGAN. (3)

Both the generator and the discriminator in
this cGAN model are CNN based to capture the
powerful deep learning features. Specially, the
generator has a U-net-like architecture to obtain
the hierarchical contextual information from the
input source images and then generate the better
target images.

Within-Modality Synthesis

In this section, we present our two recent works
for within-modality synthesis. These two works

aim to synthesize high-quality positron emission
tomography (PET) images to reduce the dose of
radioactive tracer during the PET scanning. Since
PET is widely exploited to visualize metabolism
processes of human in clinics and research, it
is important to get the clear PET images for
patients. Before the PET image scanning, a full-
dose radioactive tracer on a biologically active
molecule is injected into the patient’s body.
During the scanning, the gamma rays which are
emitted from the radioactive tracer in the body
can be detected by the PET scanner. After that,
the PET scanner analyzes the detected gamma
rays of the full-dose tracer and constructs a
high-quality three-dimensional (3D) PET image.
However, the injected full-dose radioactive tracer
brings up the risk of radioactive exposure and
also raises the concerns about potential health
hazards. As reported in “Biological Effects of
Ionizing Radiation (BEIR VII),”1 one full-dose
radioactive tracer for every brain PET scan
will improve the potential of lifetime cancer
by 0.04%. When patients should take multiple
times of PET scanning during their treatment,
these risks will even accumulate, especially for
the pediatric patients. To handle the radiation
exposure issue, some researchers have lowered
the injected dose of the tracer to the half of the
full-dose, which inevitably decreases the quality
of scanned PET images. The comparison of the
full-dose PET image (F-PET) and the low-dose
PET image (L-PET) is given in Fig. 4. Therefore,
this high-quality PET image synthesis task aims
to estimate the F-PET images from the given
L-PET images.

1http://www.nap.edu/catalog/11340/health-risks-from-
exposure-tolowlevels-of-ionizing-radiation.

http://www.nap.edu/catalog/11340/health-risks-from-exposure-tolowlevels-of-ionizing-radiation
http://www.nap.edu/catalog/11340/health-risks-from-exposure-tolowlevels-of-ionizing-radiation
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Fig. 4 Comparison between the low-dose PET (L-PET) image and the corresponding full-dose PET (F-PET). Taken
from [47]

3D cGAN

Many cGANmodels for medical image synthesis
are 2D based [4,14,16,54].When they are applied
to the 3D medical imaging data, like PET and
MRI, these methods first separate the 3D source
image into axial slices and then separately map
these source slices to the 2D target slices. After
the concatenation of these synthesized 2D slices,
a 3D target image can be reconstructed. Thus, the
coronal and the sagittal slices of the reconstructed
3D target image are formed by the independently
synthesized lines from the estimated axial planes.
This will inevitably cause the loss of contextual
information along the sagittal and coronal direc-
tions and the strong discontinuities in the final
image. To mitigate this issue, our work in [46]
proposes a 3D cGAN model to estimate the high-
quality F-PET image from the L-PET image.

Framework
The framework of 3D cGAN model is illustrated
in Fig. 5. Similar to the aforementioned cGAN
model, this 3D cGAN consists of two agents:
a 3D U-net-like generator G and a 3D CNN
based discriminator D. The generator G pro-
cesses a given L-PET image which is the source
image and generates a synthesized F-PET image
to approximate a real F-PET image. Simultane-
ously, the discriminatorD is trained to distinguish
between the synthesized F-PET-like image pair

and the real F-PET image pair. The adversar-
ial learning in the 3D cGAN follows the com-
petition between two sub-tasks, i.e., the image
generation of G and the image discrimination
of D.

Experimental Results
As reported in [46], the 3D cGAN is evaluated
on a real human brain dataset, which contains
two categories: eight normal subjects and eight
subjects diagnosed as mild cognitive impairment
(MCI). Experiments are conducted in the widely
used “Leave-One-Subject-Out cross-validation”
strategy, i.e., in each experiment one subject is
used as test data and the other 15 subjects are ap-
plied for training. To acquire sufficient 3D train-
ing data, 125 large image patches of size 64 ×
64 × 64 are extracted from every original PET
image of size 128 × 128 × 128 with the stride
of 16. In the final synthesized 3D PET image,
the overlapped regions are averaged from the
estimated large patches. To evaluate the PET syn-
thesis performance, peak signal-to-noise (PSNR)
and normalized mean squared error (NMSE) are
used.

To validate the effectiveness of the 3D model,
2D cGANs are compared with the 3D cGAN
model. These 2D cGANs are separately trained
with the 2D slices from the corresponding axial,
coronal, and sagittal views. One visual example
of synthesized results by the compared methods
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Fig. 5 Framework of training a 3D cGAN to estimate the full-dose PET image from low-dose counterpart. Taken
from [46]

Fig. 6 Qualitative comparison between the results estimated by 2D cGANs and 3D cGANs. In the axial and coronal
images, the left side of the image is the right side of the brain, and the right side of the image is the left side of the brain,
taken from [46]

is given in Fig. 6. As shown, the results by 3D
cGAN, which are presented in the blue block,
have high visual quality in all three views. In
contrast, these three 2D cGANs only produce

good results in their corresponding trained views
as indicated in the red circles, but get blurred
synthesized views along the other two directions.
The given example shows that the 2D cGANs
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Fig. 7 Quantitative comparison between 2D cGANs and 3D cGANs, in terms of PSNR and NMSE, taken from [46].
Error bar indicates the standard deviation

Fig. 8 Quantitative comparison between the existing PET estimation methods and the proposed method, in terms of
PSNR and NMSE, taken from [46]. Error bar indicates the standard deviation

cause the discontinuous estimation across slices
and lose the 3D structural information during the
synthesis. The quantitative results of PSNR and
NMSE are separately reported on the normal and
the MCI data in Fig. 7. 3D cGAN achieves the
best PSNR and NMSE results on both two cat-
egories of PET data, which consistently indicates
that the 3D information captured in 3D cGAN can
boost the synthesis.

Three state-of-the-art PET synthesis methods
are compared with the 3D cGAN. They
are (1) mapping based sparse representation
(m-SR) [44], (2) semi-supervised tripled
dictionary learning method (t-DL) [45], and
(3) common CNN based method [51]. The

quantitative comparison results are reported in
Fig. 8. 3D cGAN performs best among all four
methods in terms of both PSNR and NMSE,
which demonstrates the superiority of the 3D
cGAN in full-dose PET image synthesis.

Locality Adaptive Multi-Modality
GANs

Recent research reports that using multiple
modalities, like PET and MRI, benefits the
medical image quality enhancement [23]. In
addition, different from PET, scanning MRI
would not raise the risks of radioactive exposure
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Fig. 9 Overview of locality adaptive multi-modality GANs, taken from [47]

for patients. Thus, medical images of T1-
weighted MRI (T1-MRI), fractional anisotropy
diffusion tensor image (FA-DTI), and mean
diffusivity DTI (MD-DTI) are applied to assist
the synthesis of high-quality F-PET images
from L-PET images. Traditionally, the image
convolution in CNN based GANs is performed
on these multiple images (input channels) in a
global manner. That is to say, the common multi-
channel based GANs apply the same convolution
filter to all image locations of each input modality
for producing the feature maps which will be
combined in deeper layers. As a result, these
multi-channel models would not consider the
location-varying contributions from the various
input modalities. To handle this issue, locality
adaptive multi-modality GANs (LA-GANs) are
proposed in [47] for PET image synthesis.

Framework
The LA-GANs model includes three modules:
(1) the locality-adaptive fusion network, (2) the
generator network, and (3) the discriminator
network, as illustrated in Fig. 9. The newly added
locality-adaptive fusion network processes L-
PET, T1-MRI, FA-DTI, and MD-DTI images
as input channels and estimates a fused image

by learning different convolutional kernels
at different image locations. Specifically, the
module of locality-adaptive fusion network
first separately partitions the entire input L-
PET, T1-MRI, FA-DTI, and MD-DTI images
into N non-overlapped small patches which
are accordingly denoted by P L

i , P T1
i , P FA

i , and
PMD

i (i = 1, . . . , N). These small patches from
different locations are indicated by different
colors in Fig. 9. After that, the patches at the
same location from the four input modalities are
separately convolved by four different 1 × 1 × 1
filters with parameters ωL

i , ωT1
i , ωFA

i , and ωMD
i ,

respectively. Through this locality-adaptive
convolution, a fused patch P C

i can be calculated
as follows:

P C
i = ωL

i P L
i + ωT1

i P T1
i + ωFA

i P FA
i + ωMD

i PMD
i ,

s.t. ωL
i + ωT1

i + ωFA
i + ωMD

i = 1,

ωL
i , ωT1

i , ωFA
i , ωMD

i > 0, i = 1, . . . , N.

(4)

Therefore, N groups of different convolution
filters for the N ∗ 4 small patches at N locations
from four modalities can be learned.
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Fig. 10 Visual comparison with multi-channel GANs method, taken from [47]

Table 2 Quantitative comparison with the multi-channel GANs method on normal and MCI subjects

Methods PSNR SSIM

Mean (std.) Med. Mean (std.) Med.

Normal subjects L-PET 19.88 (2.34) 20.68 0.9790 (0.0074) 0.980

Multi-channel 24.36 (1.93) 24.78 0.9810 (0.0065) 0.983

LA-GANs 24.61 (1.79) 25.32 0.9860 (0.0053) 0.987
MCI L-PET 21.33 (2.53) 21.62 0.9760 (0.0102) 0.979

subjects Multi-channel 24.99 (2.03) 25.36 0.9795 (0.0098) 0.982

LA-GANs 25.19 (1.98) 25.54 0.9843 (0.0097) 0.988

Mean (standard deviation), Median. The paired t-test of PSNR shows that our improvement against the multi-channel
one is statistically significant with p < 0.05 (p = 0.048 for NC subjects and p = 0.016 for MCI subjects). For SSIM,
our method also presents the significant improvement, with p-value 0.051 for NC subjects and 0.037 for MCI subjects,
respectively

After the above locality-adaptive fusion, the
final fused image is applied as the input of the
generator to generate F-PET-like images. The
generator and the discriminator in our LA-GANs
work similarly to those in the aforementioned 3D
cGAN.

Experimental Results
To evaluate the effectiveness of the newly
added locality-adaptive fusion network module,
the common multi-channel GANs model is
compared with the LA-GANs. Figure 10 gives
an example of visual results obtained by these
two methods. We can observe that the LA-
GANs model synthesizes the F-PET-like image
with less artifacts than the compared multi-
channel model, which are clearly indicated by red
rectangles. The quantitative results of these two
methods are reported in Table 2 via the evaluation

measures of PSNR and structural similarity index
(SSIM) [48]. The top part gives the results on
normal subjects, and the bottom part reports
the results on MCI subjects. These results show
the superiority of the locality-adaptive fusion
network module over the common multi-channel
processing, in terms of both PSNR and SSIM. In
addition, through conducting the paired t-test, all
these improvements are statistically significant at
the significance level of 0.05. Both the visual and
quantitative results demonstrate the effectiveness
of locality-adaptive fusion network in cGAN
models for the full-dose PET synthesis task.

Moreover, the LA-GANs model is compared
with four state-of-the-art methods, i.e., (1)
mapping based sparse representation method (m-
SR) [44], (2) tripled dictionary learning method
(t-DL) [45], (3) multi-level CCA method (m-
CCA) [1], and (4) auto-context CNN method
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Fig. 11 Qualitative comparison with the state-of-the-art PET estimation methods in terms of PSNR, taken from [47].
† indicates p < 0.01 in the paired t-test while � means p < 0.05

(auto-CNN) [51], as shown in Fig. 11. The highest
PSNR values of the LA-GANs indicate that it has
the best performance among all the compared
methods.

Cross-Modality Synthesis

Our two recent cross-modality synthesis works
are presented in this section. They are utilized
in cross-modality MR image synthesis that
aims to better visualize the scanned body parts
from diverse imaging perspectives and facilitate
the following clinical applications, e.g., tumor
segmentation. When setting different scanning
parameters, MRI can generate multiple-modality
images (e.g., T1-weighted, T2-weighted, and
FLAIR) which show the diverse contrasts
of soft tissues. Since each modality image
provides the unique visual representation of
scanned body parts, these multiple modalities
are usually studied together in the subsequent
analysis for disease diagnosis [15] and treatment
planning [30]. However, due to the potential
of modality loss in clinics, the quality of the
analysis will be adversely affected. Therefore,
cross-modality MR image synthesis is highly
desirable to synthesize the unknown target-
modality MR images from the given source-
modality images [26, 53].

3D cGANwith Subject-Specific Local
Adaptive Fusion

Our work in [56] proposes a 3D cGAN based
cross-modality MR image synthesis method to
boost brain tumor segmentation performance.
Compared with the single synthesis task, this
is more challenging and requires the higher
quality of synthesized images because of two
main reasons. First, due to the arbitrary location
and appearance of brain tumor, the pathology
involved MR images raise the difficulty of
synthesis in contrast to the healthy subject
images. Second, the source-modality images
may lack some important pathology-related
information which can be seen in the target-
modality. For example, as shown in Fig. 12,
the diffuse changes around tumor parts are only
observed in the FLAIR image. Thus, [56] presents
an additional approach to the 3D cGAN, which is
called subject-specific local adaptive fusion. This
fusion approach aims to polish the local details in
the synthesized target-modality-like images from
the 3D cGAN through a linear combination of the
real target-modality images among the training
set for approximation. During the combination,
the combination weights are estimated from the
synthesized target-modality-like images which
are the outputs of the 3D cGAN model. In this
way, this local and adaptive approach can improve
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Fig. 12 A brain T1 image (a) and the corresponding FLAIR image (b)

Fig. 13 Framework of subject-specific local adaptive fusion

the quality of synthesized images and further raise
the segmentation performance.

Framework
The framework of this subject-specific local
adaptive fusion is illustrated in Fig. 13. Here,
we take T1-to-FLAIR synthesis task as an
example, and the synthesized FLAIR-like image
from the 3D cGAN and the final fused FLAIR-
like image are called FLAIR-like-1 image and
FLAIR-like-2 image, respectively. Before this
fusion, for each test subject that only has its
real T1 image, its corresponding FLAIR-like-
1 image is partitioned into non-overlapped
small patches of size 16 × 16 × 16. Each
FLAIR-like-1 patch S te,gan of this test subject
is approximated by the convex combination
of the patches S

tr,gan
1 , S

tr,gan
2 . . . , S

tr,gan
Ntr

at the

same location from the FLAIR-like-1 images
of training subjects. The symbol Ntr denotes
the number of all training subjects. This
approximation is achieved through the following
optimization:

min
w

‖
Ntr∑

i=1

wiS
tr,gan
i − S te,gan‖2

2

s.t.
∑

wi = 1, wi ≥ 0.

(5)

Therefore, the combination weights wi

(i = 1, . . . , Ntr) are learned via Eq. (5).
Since the FLAIR-like-1 image is generated to
resemble the corresponding real image, these
combination weights could be further applied to
linearly combine the real FLAIR training patches
Rtr

1 , Rtr
2 . . . , Rtr

Ntr
at the same location to polish
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the final FLAIR-like-2 patch S te,cc through the
following equation:

S te,cc =
Ntr∑

i=1

wiR
tr
i . (6)

In this way, a better polished target-modality-
like image is estimated and used together with its
corresponding real source-modality image in the
subsequent brain tumor segmentation.

Experimental Results
This work is evaluated on BRATS2015
dataset [33], which includes 274 subjects of four
modality images, i.e., T1, T1C, T2, and FLAIR,
with size of 240 × 240 × 155, and additional
brain tumor labels. In this work, 230 subjects are
randomly selected as training data and the rest
44 subjects are test data for the T1-to-FLAIR
synthesis task. The brain tumor segmentation
model from [27] is utilized to evaluate the
segmentation performance of the synthesized
FLAIR images. During the synthesis task, 3D
large patches of 128 × 128 × 128 are extracted
from images to increase the training samples for
3D cGAN. The evaluation measures of PSNR
and NMSE on the synthesized whole brains and
tumor regions are utilized.

To study the contribution of the subject-
specific local adaptive fusion, it (i.e.,3D cGAN
(128)+local adaptive fusion) is compared with
another two methods for ablation study. They
are: (1) 3D cGAN trained on large patches
(1283) and (2) local non-linear mapping (3D
cGAN on patches with the size of 323) applied
after the method (1). The synthesis results are
reported in Table 3. As shown, the 3D cGAN

(128)+local adaptive fusion outperforms the other
two methods, demonstrating the effectiveness of
subject-specific local adaptive fusion in T1-to-
FLAIR image synthesis task. The results also
indicate that using the linear combination in the
local adaptive fusion can obtain better results
than the local non-linear mapping of 3D cGAN
(32). Table 4 gives the segmentation results on
whole tumor parts and tumor core regions by
the above three methods, which consistently
indicates the better performance of the 3D
cGAN (128)+local adaptive fusion approach.
The results by using the single modality of
T1 are also reported. The paired t-test result
verifies that the improvement on the tumor
core part is statistically significant. Therefore,
the quantitative results of both synthesis and
segmentation tasks show the advantage of 3D
cGAN (128)+local adaptive fusion approach
in synthesizing FLAIR images from T1, and
the benefits of using the synthesized FLAIR
images to improve the T1-based brain tumor
segmentation.

Edge-Aware GANs

The aforementioned cGAN models enforce the
pixel/voxel-wise intensity similarity between the
real and the synthesized images through using
an L1-norm penalty during training. However,
the structure of image content, like the textural
information in MRI [6], is not sufficiently cap-
tured by these models. The edge information in
an image provides the details about the textu-
ral structure of image content through capturing
the local intensity changes and the boundaries

Table 3 Quantitative evaluation results of the synthesized images

Methods Synthesis quality (PSNR/NMSE%)

Whole brain Tumor

3D cGAN (128) 20.45/25.08 19.13/12.68

3D cGAN (128)+3D cGAN (32) 19.94/24.99 18.73/13.45

3D cGAN (128) + local adaptive fusion 20.68/22.67 19.27/11.86

Values with underline indicate they are statistically significantly different from 3D cGAN (128)+local adaptive fusion,
according to a two-sided, paired t-test (solid line p < 0.05). t-Test values are given as follows: (1) proposed method
over 3D cGAN: (a) whole brain (1.17e − 1/4.59e − 2); (b) tumor (1.17e − 2/8.13e − 4). (2) Proposed method over 3D
cGAN(128) + (32): (a) whole brain (8.75e − 7/5.59e − 4); (b) tumor (2.1e − 3/6.12e − 5)
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Table 4 Quantitative evaluation results of segmentation

Methods Segmentation (dice ratio%)

Whole tumor Core

3D cGAN (128) . . . . . .66.35 72.09

3D cGAN (128)+3D cGAN (32) . . . . . .66.61 72.14

T1 67.18 63.00

T1+real FLAIR (ideal scenario) 82.17 85.49

3D cGAN (128) + local adaptive fusion 68.23 72.28

Values with underline indicate they are statistically significantly different from 3D cGAN (128)+local adaptive fusion,
according to a two-sided, paired t-test (solid line p < 0.05, dotted line p < 0.1). t-Test values are given as follows:
(1) proposed method over 3D cGAN: (a) whole tumor (0.0643); (b) core (0.886). (2) Proposed method over 3D
cGAN(128)+ (32): (a) whole tumor (0.0672); (b) tumor (0.912). (3) Proposedmethod over T1: (a) whole tumor (0.262);
(b) tumor (9.44e − 5)

(a) (b) 

Fig. 14 A brain FLAIR image (a), and its corresponding edge map (b) after the 3D Sobel edge detection, taken
from [57]. The contour of abnormal tissues can be depicted clearer by the edge map, which is shown as the zoomed
regions

between different tissues. Thus, maintaining the
edges during the synthesis can help to sharpen
the synthesized target-modality MR images. Es-
pecially, for a pathology involved MR image,
the edge details benefit to distinguish between
the normal and the abnormal tissues, which is
important to depict the contour of the arbitrary
pathological regions. For example, Fig. 14 shows
that the zoomed gliomas tumor is very clear in
the edge map of a brain MR image. Therefore,
our work in [57] proposes new cGAN models to
enforce edge preservation for cross-modality MR
image synthesis. This work adds an extra con-
straint to 3D cGANmodels to realize edge-aware
generative adversarial networks (Ea-GANs) by
ensuring the similarity of the edge maps extracted
from the real and the synthesized images dur-
ing training. These edge maps are calculated via
the commonly applied Sobel filters as shown in
Fig. 15. These three 3 × 3 × 3 Sobel filters, i.e.,
Fi , Fj , and Fk , are applied to convolve a given

image A to produce its three edge maps which
correspond to the intensity gradients along i, j ,
and k directions, respectively. After that, a final
edge map S(A) of A is obtained by merging the
three-direction edge maps through the following
equation:

S(A) =
√

(Fi ∗ A)2 + (Fj ∗ A)2 + (Fk ∗ A)2,

(7)

where ∗ denotes the convolution operation.

Framework
As shown in Fig. 16, [57] proposes two different
frameworks, i.e., a generator-induced Ea-GAN
(gEa-GAN) and a discriminator-induced Ea-
GAN (dEa-GAN), according to the different
strategies of using the edge maps. Both of these
two Ea-GANs are composed of three modules:
(1) a generator G, (2) a discriminator D, and (3)
a Sobel edge detector S.
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Fig. 15 Three-dimensional Sobel operator, taken from [57]. (a) Fi . (b) Fj . (c) Fk

Fig. 16 Frameworks of Ea-GANs, taken from [57]

For the gEa-GANmodel, when given a source-
modality image x and its target-modality counter-
part y as the groundtruth for the cross-modality
MR image synthesis task, its generator G tries
to synthesize target-modality-like images G(x)
that can be misclassified by its discriminator D

through the adversarial learning. The L1-norm
penalty through G is applied to ensure the voxel-
wise intensity similarity between the real and
the synthesized images, similar to the 3D cGAN
model. Additionally, another L1-norm penalty is
used to discourage the difference between their

corresponding Sobel edge maps which are ex-
tracted from S during the training of gEa-GAN.
Therefore, the loss function of the generator G is
formulated as follows:

LG
gEa−GAN = Ex∼pdata(x)[log (1 − D(x, G(x)))

+ λl1Ex,y∼pdata(x,y)[‖y − G(x)‖1]
+ λedgeEx,y∼pdata(x,y)

[‖S(y) − S(G(x))‖1],
(8)
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where the hyper-parameters, λl1 and λedge, are
used to balance the three terms in Eq. (8).

Similar to the case of 3D cGAN model, the
loss function of its discriminator D is defined as
follows:

LD
gEa−GAN = −Ex,y∼pdata(x,y)[log D(x, y)]

− Ex∼pdata(x)[log (1 − D(x, G(x)))].
(9)

Thus, the final objective function of gEa-GAN
integrates the above two loss functions of the
generator and the discriminator as follows:

LgEa−GAN = LG
gEa−GAN + LD

gEa−GAN. (10)

Different from the gEa-GAN that maintains
the edge similarity only by its generator during
training, the dEa-GAN model additionally brings
the edge information into the adversarial learn-
ing between its generator and discriminator. In
this way, its discriminator could also perceive
the edge details of the synthesized images and
further benefit the synthesis processing. Specif-
ically, the edge maps of the real and the synthe-
sized target-modality images are correspondingly
concatenated with the real and the synthesized
image pairs as the real triplet (x, y, S(y)) and
the synthesized triplet (x,G(x), and S(G(x)). The
discriminator D of dEa-GAN tries to distinguish
between these two kinds of triplets, and this in
turn enforces its generatorG to estimate the better
edge details for synthesis.

For dEa-GAN, its generator G is also trained
by the adversarial loss, the voxel-wise intensity
difference loss, and the edge difference loss for
synthesis, following the designed objective:

LG
dEa−GAN

= Ex∼pdata(x)[log (1 − D(x, G(x), S(G(x))))

+ λl1Ex,y∼pdata(x,y)[‖y − G(x)‖1]
+ λedgeEx,y∼pdata(x,y)[‖S(y) − S(G(x))‖1].

(11)

Different from the gEa-GAN model, the edge
map S(G(x)) in dEa-GAN is implicitly utilized in

the first term of Eq. (11) through calculating the
loss error of the outputs from its discriminator D.

The objective function of the discriminator D

is accordingly designed as:

LD
dEa−GAN = −Ex,y∼pdata(x,y)[log D(x, y, S(y))]

− Ex∼pdata(x)

[log (1 − D(x, G(x), S(G(x)))].
(12)

Finally, the objective for training the entire
dEa-GAN model is

LdEa−GAN = LG
dEa−GAN + LD

dEa−GAN. (13)

Experimental Results
The Ea-GANs are evaluated on BRATS2015
dataset by the way of 5-fold cross validation.
They are compared with five methods: (1)
handcrafted feature used replica [26], (2)
common CNN based multimodal [8], (3) 2D
cGAN based pix2pix [25], (4) 3D cGAN, and
(5) gradient loss utilized gradient cGAN. The
evaluation measures of PSNR, NMSE, and SSIM
are separately applied on the synthesized whole
images including the background and the brain
part. Two synthesis tasks, T1-to-FLAIR and T1-
to-T2, are conducted to show the performance
of Ea-GANs for cross-modality MR image
synthesis. Their quantitative and visual results
are presented in Table 5, Fig. 17, Table 6, and
Fig. 18.

When comparing two Ea-GANs with the 3D
cGAN model through the given quantitative re-
sults, the Ea-GANs produce higher-quality im-
ages than 3D cGAN with the significant im-
provements of PSNR from 29.26dB (3D cGAN)
to 30.11dB (dEa-GAN), SSIM from 0.958 (3D
cGAN) to 0.963 (dEa-GAN), and NMSE from
0.119 (3D cGAN) to 0.105 (dEa-GAN), respec-
tively, in the T1-to-FLAIR task. Similarly, these
two Ea-GANs also outperform the 3D cGAN
in the T2 image synthesis task. These results
demonstrate the effectiveness of preserving edge
information in the synthesized images. Addition-
ally, the dEa-GAN model performs better than
the gEa-GAN model in both of two synthesis
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Table 5 Quantitative
evaluation results of the
synthesized FLAIR-like
from T1 on the
BRATS2015 dataset
(mean± standard
deviation)

Methods PSNR NMSE SSIM

Replica [26] 27.17± 2.60 0.171± 0.267 0.939± 0.013

Multimodal [8] 27.26± 2.82 0.184± 0.284 0.950± 0.014

Pix2pix [25] 27.46± 2.55 0.144± 0.189 0.940± 0.015

3D cGAN 29.26± 3.21 0.119± 0.205 0.958± 0.016

Gradient cGAN 29.38± 3.25 0.116± 0.204 0.960± 0.017

gEa-GAN 29.55± 3.24 0.115± 0.199 0.960± 0.017

dEa-GAN 30.11± 3.22 0.105± 0.174 0.963± 0.016

The paired t-test is conducted between dEa-GAN and a com-
pared method at the significance level of 0.05. When the im-
provement of dEa-GAN over the method is statistically signif-
icant, the result of that compared method will be underlined. t-
Test values of proposed dEa-GAN over the following methods:
(a) Replica: 7.96e−53; 3.94e−13; 3.67e−106. (b) Multimodal:
9.10e − 39; 1.75e − 12; 2.11e − 41. (c) Pix2pix: 7.72e − 67;
8.50e − 21; 8.71e − 131. (d) 3D cGAN: 1.05e − 63; 6.62e − 6;
6.84e−42. (e) Gradient cGAN: 5.29e−30; 1.08e−2; 1.80e−22.
(f) gEa-GAN: 3.41e − 25; 9.15e − 4; 1.67e − 15

Fig. 17 Visual comparison of the synthesized FLAIR images between Ea-GANs and other state-of-the-art methods
taken from [57]: (a) axial slices, (b) zoomed parts of axial slices, (c) coronal slices, (d) zoomed parts of coronal slices,
and (e) sagittal slices, (f) zoomed parts of sagittal slices

tasks, showing the necessity of bringing the edge
information into the training of the discriminator.
Furthermore, the superiority of the Ea-GANs is
consistently shownwhen comparedwith the other
four state-of-the-art methods in terms of all the
three measures. When looking into the visual
comparison examples in Figs. 17 and 18, from
all the three views, it can be seen that the Ea-
GANs synthesize sharper edges and more local
details than the compared methods as indicated.
Therefore, both the quantitative and visual results

demonstrate that the Ea-GANs synthesize better
MR images by using edge maps via two different
strategies in cGAN models than the compared
methods.

Conclusion

In this chapter, we focus on presenting deep
learning approaches for medical image synthesis.
Through the experimental results in our four
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Table 6 Quantitative
evaluation results of the
synthesized T2-like images
from T1 on the
BRATS2015 dataset
(mean± standard
deviation)

Methods PSNR NMSE SSIM

Replica [26] 26.92± 2.36 0.158± 0.324 0.946± 0.015

Multimodal [8] 27.31± 2.39 0.140± 0.229 0.951± 0.016

Pix2pix [25] 28.12± 2.45 0.110± 0.220 0.953± 0.014

3D cGAN 29.34± 3.23 0.095± 0.199 0.964± 0.017

Gradient cGAN 29.43± 3.28 0.097± 0.210 0.966± 0.017

Proposed gEa-GAN 29.58± 3.29 0.093± 0.218 0.966± 0.018

Proposed dEa-GAN 29.98± 3.37 0.088± 0.223 0.967± 0.016

The paired t-test is conducted between dEa-GAN and a compared
method at the significance level of 0.05. When the improvement of
dEa-GAN over the method is statistically significant, the result of that
compared method will be underlined. t-Test values of proposed dEa-
GAN over the following methods: (a) Replica: 4.03e − 41; 4.21e − 7;
1.85e − 72. (b) Multimodal: 4.25e − 48; 4.32e − 23; 1.49e − 78. (c)
Pix2pix: 1.90e−42; 2.19e−9; 2.44e−106. (d) 3D cGAN: 4.25e−30;
1.54e − 4; 3.43e − 40. (e) Gradient cGAN: 2.24e − 33; 3.77e − 10;
2.28e − 16; (f) gEa-GAN: 8.59e − 18; 1.82e − 7; 3.72e − 5

Fig. 18 Visual comparison of the synthesized T2 images between Ea-GANs and other state-of-the-art methods taken
from [57]: (a) axial slices, (b) zoomed parts of axial slices, (c) coronal slices, (d) zoomed parts of coronal slices, and
(e) sagittal slices, (f) zoomed parts of sagittal slices

works, we can see that using the recent GAN
based models achieves better medical image
synthesis performance than the conventional
CNN based models. Besides, we can also
conclude two main factors that benefit the
successful application of the presented GAN
models in within-modality and cross-modality
synthesis. First, due to the 3D structure ofmedical
images, the 3D architecture of GAN models
can preserve continuous contextual information
along all the three directions and therefore

improve the synthesis results. Second, in order
to synthesize more realistic images, additionally
exploiting the spatially local details in the source
or the target images for different subjects can
further boost the synthesis performance of the
GAN based methods, since the subtle visual
difference in medical images is essential in
clinical applications. In summary, deep learning
based medical image synthesis, especially the
recent GAN based one, has become an active
research topic. With the participation of more
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researchers, it is expected that new synthesis
approaches and methods will be developed in the
coming years to further boost its performance
and efficiency.
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Deep Learning for Pulmonary Image
Analysis: Classification, Detection,
and Segmentation
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Abstract
Image-based computer-aided diagnosis
(CAD) algorithms by the use of convolutional
neural network (CNN) which do not require
the image-feature extractor are powerful
compared with conventional feature-based
CAD algorithms which require the image-
feature extractor for classification of lung
abnormalities. Moreover, computer-aided
detection and segmentation algorithms by
the use of CNN are useful for analysis of lung
abnormalities. Deep learning will improve the
performance of CAD systems dramatically.
Therefore, they will change the roles of
radiologists in the near future. In this article,
we introduce development and evaluation
of such image-based CAD algorithms for
various kinds of lung abnormalities such as
lung nodules and diffuse lung diseases.
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Background of Lung Diseases

Lung diseases include many disorders affecting
lungs, such as infections like pneumonia, chronic
obstructive lung disease (COPD), lung cancer,
and interstitial lung diseases. There are various
factors that cause lung diseases. Viruses and bac-
teria cause pneumonia.Mutations cause lung can-
cer. Especially smoking causes various lung dis-
eases such as lung cancer, COPD, and so on.
Many people in the world are killed by lung dis-
eases. In the top ten global causes of death, 2016,
the third was COPD, fourth was infections, sixth
was lung cancer, and tenthwas tuberculosis [1]. In
general, early diagnosis of lung diseases improves
the prognosis. For example, in the national lung
screening trial of USA, CT screening was able to
reduce lung cancer deaths by 20% [2].

Lung diseases in images are roughly divided
into two categories, one is localized diseases such
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as lung nodules, and the other is diffuse lung
diseases. A lung nodule is a localized lesion sur-
rounded by lung. Lung nodules include not only
malignant nodules like lung cancer but also be-
nign nodules. By using X-ray images, it is dif-
ficult for radiologists to detect small nodules or
nodules overlapping ribs or mediastinum. By us-
ing CT images, such nodules are easy to detect
compared with X-ray images. However, many
small nodules can be detected in CT lung cancer
screening, and this burdens to radiologists. So, the
CAD system to diagnose lung nodules is expected
for radiologists. The lung nodules are divided
into three types based on the proportion that con-
tains solid component and ground-glass opacity
(GGO) component: solid nodule, sub-solid nod-
ule, and GGO nodule. Sub-solid nodule includes
both of solid and GGO components. The size of
the nodule and the proportion of GGO component
are important for diagnosing benign or malignant
nodules. Diffuse lung diseases spread both the
left and right lungs and contain many diseases
such as interstitial lung diseases, infectious dis-
eases, and lung cancers. They reveal a variety
of opacity patterns such as consolidation, GGO,
honeycombing, emphysema, and nodular. These
opacity patterns are important for the diagnosis
of diffuse lung diseases. So, the CAD system
to diagnose lung nodules is also expected for
radiologists.

Introduction

The image recognition ability of the deep
learning approach was noticed in the 2012
ImageNet Large-Scale Visual Recognition
Challenge (ILSVRC), in which convolutional
neural networks (CNNs), one of the deep learning
models, were first used. The image recognition
accuracy of Hinton’s team from the University
of Toronto gained substantial attention as a result
of beating the other teams by 10% or more [3].
All top winners in the ILSVRC events since
then have been based on CNNs. Furthermore,
in the 2015 ILSVRC, the team of Microsoft
Research Asia achieved a misclassification
rate of 3.6% using CNN of 152 layers, which
was 5.1% lower than human misclassification

rate. The recognition ability of CNN is already
considered to be superior to human recognition
ability in natural image classification, and high
discrimination ability is expected in recognition
in medical image diagnosis. We have developed
and evaluated the performance of such image-
based CAD algorithms by the use of CNN for
various kinds of lung abnormalities such as lung
nodules and diffuse lung diseases.

For assisting radiologists’ diagnoses, CAD
systems include three types of algorithms such
as “classification” that differentiate abnormal
lesions into benign or malignant, or histological
subtypes, “detection” that find abnormal
lesions, and “segmentation” that extract organs
or abnormal areas (Fig. 1). In usual CAD
algorithms, designing an image-feature extractor
is important. However, this task is difficult for
medical engineers. On the other hand, CAD
algorithm by the use of CNN does not require
the image-feature extractor (Fig. 2). In this
study, we have developed image-based CAD
algorithms for classification, detection, and
segmentation of lung abnormalities by the use
of CNN. We evaluated the performance of
such CAD algorithms for various kinds of lung
abnormalities such as lung nodules and diffuse
lung diseases.

Methods

Classification of Lung Abnormalities

Classification is to classify the main object cate-
gory such as a lung nodule or diffuse lung opacity
within an image. When classification of diffuse
lung opacities is performed by CNN, it is not nec-
essary to design image features for each opacity.
We classified diffuse lung opacities into five rep-
resentative abnormal opacity patterns (consolida-
tion, ground-glass opacity (GGO), honeycomb-
ing, emphysema, diffuse nodular) and normal
lung using high-resolution CT (HRCT) images.
As training data for CNN, we selected slices of
HRCT images with each of diffuse lung opacity
and three radiologists independently annotated
areas where each opacity was considered to be
present. We extracted regions where at least two
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Fig. 1 Three types of CAD algorithms for assisting radiologists’ diagnoses. (a) Classification, (b) Detection,
(c) Segmentation
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Fig. 2 For classification of lung abnormalities, conventional feature-based CAD algorithm requires the image-feature
extractor, however, image-based CAD algorithm by the use of CNN does not require the image-feature extractor

of three radiologists’ annotations coincided as the
ground truth (Fig. 3). For the ground truth area,
we set the region of interest (ROI) of 32 pixels on
one side for each opacity pattern. The number of
ROIs obtained at this point was different for each

opacity, so it was unified to 500. However, since
the number of ROIs of about 500 is not enough to
train CNN, data augmentation of the training data
by rotation and reflection is performed to prepare
4000 training data for each opacity. The CNN
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Fig. 3 Annotation of
diffuse lung opacities. At
first, three radiologists
annotated each slice
independently. Ground
truth was defined as a
coincided annotated area
by two or more of three
radiologists

Radiologist #3Radiologist #2Radiologist #1

Input 
images

Output 
images

m
ax pooling 

average pooling1 

fully-connected 

convolutions2 

convolutions1 

convolutions3 

average pooling2 

Fig. 4 Proposed CNN model. The CNN model we used had three convolution layers, max-pooling layer, two average
pooling layers, and a fully connected layer

model we used had three convolution layers, max-
pooling layer, two average pooling layers, and a
fully connected layer (Fig. 4). As a result of the
fivefold cross-validation, themean discrimination
rate of 84.7 ± 0.7% was obtained (Table 1). In
addition, since the distribution of opacities in the
lungs is also important in the diagnosis of diffuse
lung diseases, we classified opacity patterns by
sliding the ROI to all pixels in the lung. It was
shown that this result coincided well with the
radiologists’ annotation (Fig. 5) [4].

The benign/malignant classification of lung
nodules is a common and important task in
daily clinical practice. Figure 6 shows benign
and malignant lung nodules on HRCT images
used for comparison of a feature-based CAD
using speeded up robust features (SURF) and
bag-of-features, and an image-based CAD using
CNN [5]. In this study, when classification
was performed using feature-based CAD, the
classification rate was almost the same as the

random selection of 55%. However, image-
based CAD achieved a high classification rate
of 86% (Table 2). Furthermore, when benign and
malignant nodules were divided into solid and
sub-solid types, respectively, the classification
rate of feature-based CAD was the same as the
random selection at 25%. While image-based
CAD was 58% compared to the conventional
method (Table 3). Since the number of nodules
used in this experiment was relatively small,
transfer learning with AlexNet [3] was used.
Transfer learning is a method that uses a pre-
trained model with large-scale image data such
as ImageNet, and is a useful method when
collecting large-scale images is difficult, such
as medical images. The result indicated the
usefulness of image-based CAD for classification
of benign and malignant lung nodules. Since
lung nodules have a three-dimensional (3D)
structure, CNN-based image classification using
3D input images is considered to be useful. We
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Table 1 The
classification result of
diffuse lung opacities using
CNN

CON GGO HCM EMP NOD NOR Accuracy (%)

CON 3828 86 73 2 0 11 95.7±0.4

GGO 102 3340 183 32 254 89 83.5±1.1

HCM 81 160 3593 152 14 0 89.8±0.7

EMP 7 37 221 3431 201 103 85.8±0.9

NOD 15 212 36 103 2929 705 73.2±0.9

NOR 2 68 11 78 630 3211 80.3±1.0

Estimation by CNN

D
ia
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os

is
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y 
ra
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io
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Mean accuracy: 84.7±0.7%

CON consolidation,GGO ground-glass opacity,HCM honeycombing, EMP emphy-
sema, NOD diffuse nodular, NOR normal

Fig. 5 Classification of
diffuse lung opacities by
sliding the ROI to all
pixels in the lung. The
classification results
indicate each diffuse lung
opacity patterns resemble
radiologists’ annotations.
In each image, radiologists
annotated only one of the
diffuse lung opacities.
CON consolidation, GGO
ground-glass opacity, HCM
honeycombing, EMP
emphysema

CON 
Precision: 62.0% 
Recall: 99.2%

RadiologistsCNN

GGO 
Precision: 52.7% 
Recall: 85.6%

HCM 
Precision: 77.9% 
Recall: 84.6%

EMP 
Precision: 92.6% 
Recall: 72.6%

Benign Nodules Malignant Nodules

Solid Sub-solid Solid Sub-solid

Fig. 6 Benign and malignant lung nodules on HRCT images. Nodules can be divided into solid and sub-solid types,
respectively
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Table 2 Comparison of feature-based CAD and image-based CAD

Feature-
based CAD

Benign Malignant

Benign 13 8

Malignant 10 10

Image-
based CAD

Benign Malignant

Benign 19 2

Malignant 4 17

Accuracy = 86%Accuracy = 55% <
Classification of benign and malignant nodules

Table 3 Comparison of feature-based CAD and image-based CAD

Feature-
based 
CAD

B-Solid B-Sub M-Solid M-Sub

B-Solid 2 2 2 0

B-Sub 2 2 0 2

M-Solid 2 1 1 2

M-Sub 1 3 1 1

Image-
based 
CAD

B-Solid B-Sub M-Solid M-Sub

B-Solid 4 2 0 0

B-Sub 1 2 1 2

M-Solid 0 0 5 1

M-Sub 0 0 3 3

Accuracy = 58%Accuracy = 25% <
Classification of solid and sub-solid of lung nodules. B-Solid benign solid, B-Sub benign sub-solid, M-Solid malignant
solid, M-Sub malignant sub-solid

Malignant

Benign

m
ax pooling

fully-connected

convolutions 2

convolutions 1 1

convolutions 3

m
ax pooling

2

convolutions 5

convolutions 4

average pooling

Input 
image

Fig. 7 Proposed CNNmodel. The CNNmodel we used had five convolution layers, twomax-pooling layers, an average
pooling layer, and a fully connected layer

attempted to discriminate between benign and
malignant lung nodules using the images of The
Lung Image Database Consortium and Image
Database Resource Initiative (LIDC-IDRI). The
lung nodules we used were 635 rated in five
grades by three or four radiologists. We used the
3D CNN model with five convolution layers, two
max-pooling layers, an average pooling layer,
and a fully connected layer to classify benign or
malignant nodules (Fig. 7). The result of threefold
cross-validation was 79.4 ± 3.5%, and the
results were well correlated with the radiologists’
evaluation [6]. Analysis using 3D images is useful
to evaluate thewhole nodule, but using 3D images

as input has a large computational cost with a
limited GPU memory, and also it cannot use pre-
trained networks for transfer learning. For this
reason, some methods have been devised that use
the largest split planes from multiple directions
such as axial, coronal, sagittal, etc. as the input
images [7].

Detection of Lung Abnormalities

Detection is to classify the object category and
locate the position using a bounding box for every
object within an image. In 2014, Girshick et al.
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proposed a regions with CNN features (R-CNN)
to which the CNN algorithm was applied [8].
The following year, Fast R-CNN [9] and Faster
R-CNN [10], an improvement of R-CNN, were
proposed, and YouOnly LookOnce (YOLO) [11]
and Single Shot MultiBox Detector (SSD) [12]
were also proposed.

R-CNN is an object detection framework,
which uses a CNN to classify regions within
an image. In our previous study, we used a
sliding window for the classification of lung
abnormalities on CT images. Instead of using a
sliding window, the R-CNN detector only deals
with those regions that are likely to contain an
object. In R-CNN, a large number of object
candidate areas are set based on gray scale
information or texture information in the images,
these object candidate areas are resized to a fixed
size, and the CNN performs feature extraction
and the object position in the image (Fig. 8). The
results of applying this method to lung nodules

(Fig. 9) and diffuse lung diseases (Fig. 10) are
shown [13]. In the conventional method, when
the nodule attached to the chest wall or stuck
in the azygoesophageal recess, it is necessary
to devise an algorithm for separating the nodule
from the chest wall attached to it. In addition, it
is necessary to devise an algorithm for detecting
nodules with air-bronchogram or GGO. However,
such a device is unnecessary in the method using
R-CNN. In addition, even in the case of diffuse
lung diseases, it is possible to detect opacities as
shown in the figure without defining the features
for each opacity pattern.

Segmentation of Lung Abnormalities

Segmentation is to identify the object category
of each pixel for every known object within an
image. As an algorithm for image segmentation,
fully convolutional network (FCN), which is

Fig. 8 Lung nodule detection by R-CNN. In the first step, candidate regions are generated (region proposals), and in
the second step, lung nodule is determined by the use of CNN

Fig. 9 Examples of lung nodules detected by R-CNN. (a) Nodule attached to the chest wall, (b) Nodule with air-
bronchogram, (c) GGO nodule
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Fig. 10 Examples of
diffuse lung opacities
detected by R-CNN. (a)
Consolidation, (b)
Honeycombing

a CNN not using a fully connected layer,
was proposed by Long et al. [14], and the
FCN architecture became widespread. Region
extraction can be performed with images of any
size, and many modified architectures have been
announced since then.

For diffuse lung opacities, it is possible to
segment diffuse lung opacities by sliding the ROI
to all pixels and to classify the opacity patterns.
However, with this method, we need to set the
fixed size of the ROI, which cannot be changed
freely for each pixel. On the other hand, we
used U-Net to segment each opacity pattern of
diffuse lung diseases. U-Net was proposed by
Ronneberger et al. for the purpose of segmen-
tation in medical images in 2015 [15]. U-Net
has an encoder-decoder structure. In the encoder
part, the feature extraction from the images is
performed, and in the decoder part, the feature
is held and the image is restored. Since the cor-
responding feature maps of the encoder part and
the decoder part are connected, there is a feature
that position information can be included when
restoring the images. We also used residual U-
Net, proposed by Zhang et al. using residual units
to improve training problems in deep layers [16].
The opacities we used were consolidation, GGO,
honeycombing, emphysema, diffuse nodular, and
normal lungs. As the training data, we used coin-
cided areas annotated by three radiologists as we
used in the classification by the use of CNN [4].
Furthermore, data augmentation using reflection
and homography transformation was performed
on these images, and the same number of im-
ages were randomly selected for each opacity as
training data. The structure of U-Net proposed by

us has 19 convolution layers and 4 max-pooling
layers (Fig. 11). The structure of residual U-Net
proposed by us has 11 convolution layers and the
two max-pooling layers were configured to be
shallower than U-Net (Fig. 12). The results were
in good agreement with the radiologist’s annota-
tion (Fig. 13). The average of Dice coefficients for
all opacities were 0.800 ± 0.101 for U-Net, and
0.854 ± 0.065 for residual U-Net (Table 4) [17].

Noh et al. proposed deconvolution network
[18] in 2015, and Milletari et al. proposed V-
Net [19] in 2016, both models are for image
segmentation. Like the CNN used in image clas-
sification, the first half of this network is the
convolution network, and the image features of
the target are extracted. However, the area map
is created using the image features in the decon-
volution network of the second half (Fig. 14).
V-Net is a method proposed for the purpose of
medical image segmentation as well as U-Net.
While U-Net targets two-dimensional images, V-
Net targets 3D images (Fig. 15). As the difference
between the two models, deconvolution network
uses the pooling layer and the unpooling layer
during image compression and decompression.
However, V-Net uses a convolution layer of two
kernel sizes and strides and a deconvolution layer.
In addition, deconvolution network shares the
pooling index in the encoder part and the decoder
part, and the feature map is shared in V-Net. We
segmented lung nodules from 3D images using
deconvolution network and V-Net. As training
images, the images annotated under the guidance
of a radiologist were used, which were cut out
into 128 × 128 × 64 pixels centering on the
gravity of the nodule. The extraction results of
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Fig. 11 Proposed U-Net model. The U-Net model we used had 19 convolution layers and 4 max-pooling layers
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Fig. 12 Proposed residual U-Net model. (a) The residual U-Net model we used had 11 convolution layers and two
max-pooling layers. (b) The structure of a residual unit. BN Batch normalization
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Radiologists U-Net                           Residual U-Net

Honeycombing

Emphysema

Dice index 0.693

Dice index 0.669 Dice index 0.856

Dice index 0.836

Fig. 13 Examples of segmentation results by the use of U-Net and residual U-Net. Segmentation results coincided well
with the radiologists’ annotation
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Input 
image
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image

Pooling index

Deconvolution 
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Fig. 14 Proposed deconvolution network model. The first half of this network is the convolution network, and the
second half is the deconvolution network. BN Batch normalization

deconvolution network and V-Net coincided well
with the radiologist’s annotation (Fig. 16). The
average Dice coefficients were 0.740± 0.012 and
0.810 ± 0.016, respectively [20, 21].

Conclusion

In image-based CADs by the use of CNN,
classification of lung abnormalities was superior
to feature-based CAD. Moreover, image-based

Table 4 Comparison of segmentation accuracy for dif-
fuse lung opacities by use of U-Net and residual U-Net

Opacity Dice index

U-Net Residual U-Net

CON 0.911 ± 0.024 0.854 ± 0.074

GGO 0.735 ± 0.088 0.767 ± 0.070

HCM 0.768 ± 0.090 0.871 ± 0.045

EMP 0.679 ± 0.183 0.831 ± 0.109

NOD 0.745 ± 0.139 0.820 ± 0.131

NOR 0.963 ± 0.005 0.979 ± 0.004

Mean ± SD 0.800 ± 0.101 0.854 ± 0.065
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Fig. 15 Proposed V-Net model. The first half of this network is the encoder, and the second half is the decoder. BN
Batch normalization

Deconvolution Network V-Net

V-Net

(A)

(B)

Radiologist

Radiologist Deconvolution Network

Fig. 16 Examples of segmentation results by the use of deconvolution network and V-Net. Segmentation results were
coincided well with the radiologist’s annotation. (a) A nodule attached to the aortic arch, (b) A GGO nodule

CAD by the use of R-CNN showed high
performance for detection of lung abnormalities,
and also, image-based CADs by the use of
FCN, U-Net, deconvolution network, and V-Net
showed high performance for segmentation

of lung abnormalities. Image-based CAD
algorithms are promising for classification,
detection, and segmentation of various kinds
of lung abnormalities such as lung nodules and
diffuse lung diseases.
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Deep Learning Computer-Aided
Diagnosis for Breast Lesion in Digital
Mammogram

Mugahed A. Al-antari, Mohammed A. Al-masni,
and Tae-Seong Kim

Abstract
For computer-aided diagnosis (CAD), detec-
tion, segmentation, and classification from
medical imagery are three key components
to efficiently assist physicians for accurate
diagnosis. In this chapter, a completely
integrated CAD system based on deep
learning is presented to diagnose breast
lesions from digital X-ray mammograms
involving detection, segmentation, and
classification. To automatically detect breast
lesions from mammograms, a regional deep
learning approach called You-Only-Look-
Once (YOLO) is used. To segment breast
lesions, full resolution convolutional network
(FrCN), a novel segmentation model of deep
network, is implemented and used. Finally,
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three conventional deep learning models
including regular feedforward CNN, ResNet-
50, and InceptionResNet-V2 are separately
adopted and used to classify or recognize
the detected and segmented breast lesion
as either benign or malignant. To evaluate
the integrated CAD system for detection,
segmentation, and classification, the publicly
available and annotated INbreast database
is used over fivefold cross-validation tests.
The evaluation results of the YOLO-based
detection achieved detection accuracy of
97.27%, Matthews’s correlation coefficient
(MCC) of 93.93%, and F1-score of 98.02%.
Moreover, the results of the breast lesion
segmentation via FrCN achieved an overall
accuracy of 92.97%, MCC of 85.93%, Dice
(F1-score) of 92.69%, and Jaccard similarity
coefficient of 86.37%. The detected and
segmented breast lesions are classified via
CNN, ResNet-50, and InceptionResNet-V2
achieving an average overall accuracies of
88.74%, 92.56%, and 95.32%, respectively.
The performance evaluation results through
all stages of detection, segmentation, and
classification show that the integrated CAD
system outperforms the latest conventional
deep learning methodologies. We conclude
that our CAD system could be used to assist
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radiologists over all stages of detection,
segmentation, and classification for diagnosis
of breast lesions.

Keywords
Medical image analysis · Mammograms ·
Breast lesion · Computer-aided diagnosis
(CAD) · Deep learning · Full resolution
convolutional network (FrCN) · Detection ·
Segmentation · Classification

Introduction

Breast cancer is the second most common cancer
affecting the life of women worldwide [1]. In
2019, breast cancer is statistically categorized
among the highest causes of all other cancers, ac-
counting for 30%of estimated new cases and 15%
of death cases [1]. Early detection of breast cancer
is a crucial requirement to reduce the mortality
rate among women [1]. Up to date, digital X-ray
mammography is the standard and most reliable
tool to screen out the suspicious breast masses
and microcalcifications for patients [2]. In 2015,
the American Cancer Society (ACS) updated its
breast cancer screening roles. Currently, ACS rec-
ommends women over 45 years to undergo breast
screening one time per year using double views of
mammograms: Mediolateral Oblique (MLO) and
Cranio-Caudal (CC). Whereas, women with age
of 54 years or elder are encouraged to undergo
breast screening every 2 years [3]. In the diagno-
sis of breast abnormalities, clinical experts clas-
sify suspicious masses as benign or malignant.
This task presents a daily challenge for radiolo-
gists due to the huge number of mammograms
as well as the time and effort to examine each
view of a mammography [4]. Through the use of
second opinion or reading by a computer-aided
diagnosis (CAD) system, the overall accuracy
as well as the false positives and negatives of
mass detection, segmentation, and classification
could be improved [2]. In the literature, several
conventional CAD systems have been developed
separately for breast lesion detection, segmenta-
tion, or classification [5]. However, there are few
studies over a completely integrated CAD system

including detection, segmentation, and classifi-
cation all together. Firstly, detection of breast
lesion is an important initial stage to identify the
potential region of interest (ROI) of breast lesion
in any CAD system. In fact, detection task is
still challenging due to the variation of the breast
lesions within the surrounding tissues in terms of
shape, texture, size, and location in the mammo-
grams [6]. Recently, novel detection approaches
based on deep learning were introduced into a
CAD system to overcome the challenging tasks of
mass detection frommammograms [7]. Secondly,
segmentation of breast lesions plays a critical role
to accurately extract the specific shape of breast
lesions excluding other surrounding normal tis-
sues [8]. Many studies involving mass segmenta-
tion have utilized region growing, active contour,
and Chan-Vese methods [8]. Unfortunately, these
methods still lack performance in handling mass
segmentation automatically, because the simple
hand-crafted or semi-automatic features based on
prior knowledge cannot deal with complex shape
variations and different density distribution of
the breast lesions. Recently, a few deep learn-
ing studies have presented as alternative method-
ologies for breast lesions segmentations. Indeed,
deep learning models have capability to directly
extract deep high-level hierarchy feature maps
from the input image [8]. Lastly, the majority of
CAD systems have been developed to classify the
manual extracted breast lesions as either benign
ormalignant utilizing conventional classifiers [9].
To build such systems, a set of hand-crafted or
semi-automatic features describing the charac-
teristics of breast lesions are required. In fact,
these conventional CAD systems suffered due to
the high degree of similarity of different breast
tissues [10]. Alternatively, a few deep learning
CAD systems have recently been produced to
handle the breast lesion classification task [5].
These systems can learn and extract deep features
from input mammograms to achieve better classi-
fication performance.

A fully integrated CAD system based on
deep learning detection, segmentation, and
classification is presented in this chapter. The
rest of this chapter is organized as follows. First,
You-Only-Look-Once (YOLO) is adopted and
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used to detect the breast lesions [11]. Second,
a newly deep learning model of full resolution
convolutional network (FrCN) is produced for
breast lesion segmentation. One advantage of
FrCN is to preserve the high resolution of feature
maps especially at object edges. Finally, three
deep learningmodels includingCNN,ResNet-50,
and InceptionResNet-V2 are separately adopted
and used to distinguish benign and malignant
breast lesions. The presented fully integrated
CAD system is evaluated using a public INbreast
dataset [12] and its performance is compared
with the latest deep learning methodologies of
detection, segmentation, and classification.

RelatedWork

Diagnosis of breast cancer via a CAD system
could be improved using the capability of deep
learning to accurately represent the high-level
deep features of breast lesions in mammograms
[4]. Detection of breast lesions is an important
task to detect the potential abnormalities for any
CAD system [4]. Unfortunately, this task is still a
big challenging for researchers and has not been
fully resolved yet [8]. Previously, manual detec-
tion of breast lesions was widely used in building
CAD systems even for deep classification CNN
[13]. Most of these CAD systems achieved better
classification performance against the traditional
machine learning techniques [14]. However, the
need to automatically detect breast lesions was
recently addressed in the several studies [7, 8, 14].
Few studies based on deep learning present auto-
maticmethods to detect breast lesions from the in-
put mammograms [8, 14]. Our preliminary detec-
tion results of breast lesions via YOLO utilizing
the Digital Database for Screening Mammogra-
phy (DDSM) are presented in [15]. The detection
performance via YOLO was better in comparison
to the latest deep learning detection methods [8,
11]. In [16], a new deep learning model called
region-based CNN (R-CNN) was used to auto-
matically detect the breast lesions [16]. In [8],
another automatic method using a very complex
cascade of deep learning models was introduced
to detect breast lesions based on R-CNN.

For segmentation, several conventional works
have been presented to segment the boundaries
of breast lesions from the X-ray mammography
images such as growing regions, active contour,
and Markov random field (MRF) [17]. However,
all of these approaches have shortcomings
because they required a prior knowledge of breast
lesion contours. Recently, few deep learning
studies have been presented and achieved better
segmentation results for semantic and medical
images [8]. These segmentation models are
introduced by adopting and converting the
classification functionality of VGG-16 to the
segmentation purpose. However, these models
suffer from the loss of spatial resolution of the
generated feature maps due to the multiple layers
of max-pooling and subsampling. Although the
utilized max-pooling and subsampling layers
reduce the dimensions of derived feature maps
and minimize the computation expenses, the
spatial resolution of those maps are exponentially
decreased [5]. In [18], deep learning model
of FCN was used to segment skin lesions
from dermoscopy images [18]. Inspired by the
structure of FCN, another segmentation model
called U-Net was introduced to segment neural
brain images including encoder and decoder deep
convolutional layers [19]. The extracted feature
maps from each encoder layer were combined
with the corresponding one in the decoder
network. Then, decoder up-sampling and decon-
volutional layers were performed to overcome
the resolution loss of feature maps [19]. In [20], a
deep learning segmentation model called SegNet
is presented to segment the semantic images.
The SegNet model also consisted of encoder and
decoder convolutional network stages. Despite
the promising segmentation results of these
models, they have not yet been applied for
breast lesion segmentation. Up to date, only few
attempts have been presented for breast lesion
segmentation from mammograms based on deep
learning.

Breast lesion classification is the last stage of
any CAD systems. The aim of this stage is to
recognize or classify the breast lesions as either
benign or malignant. Indeed, the performance
of classification process mainly depends on the
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efficient representations of the derived features
[5]. In 2017, Yu et al. presented that a very deep
learning model achieved better classification
performance with relatively similar computa-
tional cost comparing the shallower models [18].
Recently, few integrated CAD systems based on
deep learning have been introduced including
detection, segmentation, as well as classification
for breast lesions [5, 8, 14]. In [21], a hybrid
CAD system was introduced based on the
combination of deep and hand-crafted features
using CNN-based conditional random forest
(CRF) to detect the potential lesion ROIs, region
growing based on active contour to segment the
lesion boundaries, and CNN to classify the breast
lesions. This CAD system achieved diagnosis
performance in terms of AUCwith 94.10%. In [8,
14], an integrated CAD system for breast cancer
detection, segmentation, and classification was
presented. For breast lesion detection, a complex
cascade structure of deep learning was utilized
involving multi-scale deep belief network (DBN)
with Gaussian mixture (GM) classifier, two
stages of R-CNN, two stages of CRF classifier,
and a refinement algorithm based on R-CNN
[8]. For segmentation, another cascade of deep
learning techniques was utilized involving two
stages of DBN-based CRF and a refinement
method using Chan-Vese active contour [8]. For
classification, a regular feedforward version of
CNN was used to classify the breast lesions
as either benign or malignant. Despite the
successes of these CAD systems for breast cancer

diagnosis, the remaining challenges still exist
including high complexities of memory, practical
implementation, and long prediction time.

Materials andMethods

Our integrated CAD system for breast cancer
diagnosis includes detection, segmentation, and
classification in a single framework. First, an
automatic mass detection based on YOLO is per-
formed. Then, a novel deep learning FrCN seg-
ments breast lesions. Finally, an automatic breast
lesion classification is performed via the convo-
lutional neural networks. A schematic diagram of
the integrated CAD system is depicted in Fig. 1.

Dataset

A public X-ray mammography database,
INbreast [12], is used in training and evaluation
of our integrated CAD system. The classification
label and localization ground truth (GT) of
the breast lesions for all mammograms in the
INbreast database are available and accurately
annotated by the experts [12]. All mammograms
were collected to represent real breast data with
pixel size of 70 μm (microns), and contrast res-
olution of 14-bit. According to the breast size of
the patient, the mammogram size is 3328 × 4084
or 2560 × 3328 pixels. The INbreast dataset
includes 410 mammograms (i.e., normal, benign,
and malignant) with both views of MLO and CC

(3) Breast Lesion
Classifica n

Deep Convolu onal

Input
Mammogram

CAD Final
Decision

Malignant

YOLO Predic on

(1) Breast Lesion
Detec on

(2) Breast Lesion
Segmen on

System
FrCN Deep Learn-

ing Model Network

Fig. 1 Schematic diagram of the fully integrated computer-aided diagnosis (CAD) system based on deep learning
detection, segmentation, and classification for breast lesions
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from 115 patients (cases) [12]. From 90 cases two
images (MLO and CC views) are collected for
each breast, and from 25 cases only two views
(MLO and CC) from one breast having cancer
were collected. To evaluate our CAD system,
we utilized all mammograms having lesions or
masses (benign and malignant) from both views
to collect in a total of 107 cases (34 benign and 73
malignant cases) [12]. In INbreast dataset, only
two benign and three malignant cases contain two
lesions. For benign cases, both CC views are col-
lected from two different patients. For malignant
cases, two mammogram views of CC and MLO
are collected from the same breast of patient
ID: “d713ef5849f98b6c_MG_L,” while one CC
view is collected from the different patient with
ID: “45c7f44839fd9e68_MG_R.” Both breast
lesions that are visible on both CC and MLO
views are used in this study. Thus, 36 benign
breast lesions with BI-RAD ∈ {2, 3} and 76 ma-
lignant breast lesions with BI-RAD ∈ {4, 5, 6} are
collected. Because some of benign and malignant
cases have more than one breast lesion, thereby, a
total of 112 breast lesions are collected [5, 8, 14].

Datasets Preparation: Training,
Validation, and Testing

For data preparation in this work, we randomly
divide benign and malignant breast images into
three groups: 70% (25 benign and 53 malignant)
for training, 10% (4 benign and 8 malignant) for
validation, and 20% (7 benign and 15 malignant)
for testing as previously performed [8, 14]. In
addition, unbiased double cross-validation strat-
egy is utilized as follows. Trainable parameters of
the proposed deep learning models are optimized
during the training process using only training
and validation datasets [14]. Then, the final per-
formance of the presented CAD system is only
evaluated using the testing dataset. In fact, double
cross-validation is very important for parameters
optimization and selections due to the following
reasons. First, to be sure testing dataset is totally
isolated during the training process. Second, to
avoid any bias that may occur during the training
process. Third, to ensure that the overall perfor-

mance of the presented CAD system is robust
and reliable for real testing as well. In this study,
fivefold cross-validation tests are also carried out
with training, validation, and testing sets, which
are generated by stratified partitioning to ensure
that each breast image gets tested equally and
to prevent any bias error for training and testing
tasks. For each fold, those breast lesions that are
visible on the same mammogram view or on both
CC andMLO views from the same patient should
be categorized in one set of training, testing, or
validation to avoid the system bias as well.

Preprocessing

Preprocessing of all mammograms is achieved
using the following steps. First, Otsu’s threshold-
ing is used separating the breast region from its
background to exclude the unwanted information
[5]. Second, contrast limited adaptive histogram
equalization (CLAHE) technique has been
successfully used to enhance the image contrast
between the suspicious lesions and their sur-
rounding normal tissues [5, 8]. Indeed, CLAHE
is an image contrast enhancement method which
depends on the histogram equalization process
[5]. There are two sequential steps to apply
CLAHE for breast image enhancement. First, the
histogram of the entire mammogram is divided
into multi-regions at certain thresholds. Then, the
histogram equalization process is locally applied
over each region. Same preprocessing strategy is
used for all mammograms that used in this study
without subsampling.

Data Balancing and Augmentation

To develop deep learning models, a large amount
of annotated dataset is required for parameter
optimization and selection during training pro-
cess [7, 8, 14]. To avoid any bias during train-
ing process, data balancing and augmentation
are widely used as regularization strategies for
deep learning models. Indeed, data balancing and
augmentation strategy are applied only for train-
ing dataset [5, 8, 14]. That means the original
breast lesion and its many representations (i.e.,
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augmented data) are only included in the training
set. Whereas, the testing set is only used with-
out augmentation to evaluate the proposed CAD
system over detection, segmentation, and classi-
fication stages. As aforementioned, the training
dataset from INbreast is unbalanced containing
25 benign and 53 malignant cases. Balancing of
training dataset means generating almost an equal
number of breast images from both benign and
malignant classes. Due to that, all breast benign
mammograms from the INbreast training dataset
are vertically flipped to balance benign and ma-
lignant cases. Thus, 103 mammograms (i.e., 50
benign and 53 malignant) are generated. Then,
the balanced training datasets are augmented 22
times using the following strategies. First, all
mammograms are rotated eight times around the
origin center with the angle of �θ = 45◦ (i.e., 0◦,
45◦, 90◦, 135◦, 180◦, 225◦, 270◦, and 315◦) [7,
8]. Second, left-right and up-down flipping are
applied for all rotated mammograms with 90

◦
and

270
◦
. Third, random scaling and translations are

applied ten times for all original breast images.
In the total, 2266 mammograms are generated
from INbreast to train our CAD system over five-
fold cross-validation for all stages of detection,
segmentation, and classification. For each k-fold,
the strategies of data splitting, balancing, and
augmentation are applied in the same ways.

Initialization of Trainable Parameters
for Deep LearningModels

To accelerate and avoid overfitting that may occur
during training process of all deep learning mod-
els, the trainable parameters of convolutional and
fully connected (FCs) layers should be initialized
[5, 8]. In the literature, several strategies to initial-
ize the trainable parameters of deep learningmod-
els were used such as random initialization and
transfer learning [5, 8, 14]. In this study, transfer
learning is used to initialize the parameters in two
consecutive steps. First, all deep learning models
are pre-trained using a large annotated computer
vision dataset (i.e., ImageNet [22]). Second, these
models are fine-tuned using our augmented anno-
tated dataset (i.e., mammograms).

Breast Lesion Detection via YOLO

Detection of breast lesion is the first critical task
for the CAD system to identify all potential le-
sions from entire mammograms. In this chapter,
we adopt and use a deep learning model called
YOLO, a regional ROI-based CNN technique, to
perform the detection task [11]. Our preliminary
works using YOLO has proven that this technique
is effective for breast lesion detection tasks using
a public X-ray mammography dataset, DDSM [5,
15]. Since the INbreast dataset includes accurate
ground truth, YOLO could be a good choice for
detection of breast lesions due to the following
reasons. First, YOLO has a robust ability to di-
rectly detect the breast lesions from the entire
mammograms [15]. Second, detected bounding
boxes via YOLO accurately align the breast le-
sions, thereby, a low rate of false positives is
achieved compared with other studies [14]. Third,
YOLO can detect the most challenging cases
of breast lesions even when they exist over the
pectoral muscles or inside dense regions. Fourth,
required testing time and memory are extremely
lower than other more complex deep learning
models [14].

Breast Lesion Segmentation via FrCN

Once the breast lesions are detected from the
previous detection stage of our CAD system, they
are directly passed into the novel segmentation
model, FrCN, to segment the breast lesions end-
to-end. FrCN composes of two main consecutive
encoder and decoder networks. The encoder net-
work involves thirteen convolutional layers, while
decoder is built using three convolutional layers.
Unlike the previous deep learning models, the
max-pooling and subsampling layers are removed
from the both encoder and decoder networks to
preserve the full spatial resolution of the original
input image (i.e., breast lesion) as well as the
details of the objects. This is a key modification
to prevent any information loss during feature
map generation. Therefore, the high-level deep
feature maps in each block are generated utilizing
only the convolutional process, preserving the full
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Fig. 2 Segmentation deep learning model of a full resolution convolutional network (FrCN). The input image is a
detected breast lesion ROI highlighted with its ground truth (red), while the output image is the corresponding segmented
ROI

resolution of the input images. By this modifi-
cation, FrCN is able to maintain the details and
edges especially for the tiny objects. Because the
convolutional layers on the full resolution of the
input images without subsampling in the encoder
network are used, up-sampling and deconvolu-
tional layers in the decoder network are not re-
quired. The final output of deep feature maps is
directly passed into a softmax function to obtain
the probability for each image pixel. Finally, a
non-linear activation function of rectified linear
unit (ReLU) is utilized after each block in the
encoder and decoder networks. The schematic
diagram of our deep learning FrCN segmentation
model is shown in Fig. 2. To evaluate the over-
all segmentation performance of FrCN, a direct
comparison against other existing deep learning
models such as FCN [23], SegNet [20], and U-
Net [19] is presented using the same dataset from
the INbreast database [12].

Breast Lesion Classification via Three
Convolutional Neural Networks

Once breast lesions are detected as well as seg-
mented, deep learning models of our feedforward
CNN [5], ResNet-50 [24], and InceptionResNet-
V2 [25] are separately used to classify the breast

lesions as benign or malignant. These deep learn-
ing models are used to perform the classifica-
tion task of our CAD system. Indeed, we use
the regular feedforward CNN presented in our
recent study [5]. Also the deep learning models of
ResNet-50 and InceptionResNet-V2 are adopted
replacing their last two layers by other four layers
of global average pooling (GAP) layer, two dense
layers with ReLU activation functions, and a lo-
gistic regression layer of softmax. Deep learning
models such as ResNet-50 and InceptionResNet-
V2 are recently introduced with very deep convo-
lutional layers to improve the classification per-
formance preserving the computational burden
to be similar as in the shallower CNNs [26].
The main principle of the Inception networks
is to produce multiple feature maps from the
input images using different parallel pathways
with different convolutional filters [26]. By using
these remedies with the Inception models, their
execution time overcomes other state-of-the-art
deep learning models of CNN and ResNet-50
[24]. Since the residual connections are inher-
ently important to train very deep architectures,
the filter concatenation stage of Inception models
is replaced by the residual ones producing the
InceptionResNet models [26]. Training of the In-
ception models is significantly accelerated using
the residual connections as demonstrated in [26].
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Meanwhile, the classification performance of the
residual Inception models is slightly better com-
paring the Inception modules without the residual
connections [26].

Experimental Settings

For evaluation of the CAD system, fivefold cross-
validation tests are carried out in each stage of
the CAD system using training, validation, and
testing datasets. These sets are generated by strat-
ified partitioning to ensure that each mammo-
gram gets tested equally preventing any bias er-
ror [14]. To avoid any bias that may occur dur-
ing training process, weights optimization pro-
cess utilizing a weighted cross-entropy loss func-
tion as well as double cross-validation are used
[5, 14].

Detection Experimental Settings

Due to the different sizes of both mammogram
views, all breast images are resized into a fixed
size of 448 × 448 pixels [5]. The YOLO-based
CAD system is trained for 135 epochs and mini-
batch size of 64 using only training and validation
datasets. Also, stochastic gradient descent (SGD)
optimizer is used with momentum and decay of
0.9 and 0.0005, respectively. The breast lesions
are considered to be correctly detected if the inter-
section over union (IoUExt.

GT ) between the extracted
and ground truth bounding boxes is greater than
or equals 50%. Moreover, the false positive can-
didates of breast lesions are manually excluded
before the segmentation and classification stages
of the CAD systems as previously applied in [5, 8,
14]. This is because there is a lack of ground truth
information of falsely detected lesions to derive
the performance evaluation metrics especially for
the segmentation stage [8]. Thus, the evaluation
results of segmentation and classification tasks
are computed with the exception of the falsely
detected cases of breast lesions.

Segmentation Experimental Settings

Similar to the detection stage, the same fivefold
cross-validation is performed for all segmentation
deep learning models: FCN [23], SegNet [20],
U-Net [19], and FrCN. To train all of these deep
learning models, Adam optimizer is used with a
learning rate of 0.001. Meanwhile, 135 epochs
and 20 mini-batches are used to optimize and
select the model parameters with the training and
validation datasets. As shown in Fig. 2, a dropout
of 0.5 is added after the first and second convo-
lutional layers in the decoder network to prevent
overfitting [5].

Classification Experimental Settings

All detected and segmented breast lesions are
normalized and resized using bi-cubic interpola-
tion into a fixed size of 128 × 128, 224 × 224,
and 299 × 299 pixels for CNN, ResNet-50, and
InceptionResNet-V2, respectively. Then, all these
breast lesions are directly fed into the classifica-
tion stage producing the final prediction of our
CAD system. In fact, these deep learning models
are adopted to compare the recognition perfor-
mance of shallower CNN against the deeper mod-
els of ResNet-50 and InceptionResNet-V2. This
comparison is performed under the same training
and testing settings for all deep learning models.
To verify the CAD system for classification, the
same fivefold cross-validation is performed sim-
ilar to the detection and segmentation stages. For
training, Adam optimizer with the initial learn-
ing rate of 0.0001 and weight decay of 0.0005
is used. The learning rate is reduced by 50%
if the loss function does not decrease by 0.001
every 10 epochs. The mini-batch size and number
of epochs are set to 24 and 130, respectively.
Dropout of 0.3 is used for both fully connected
layers in all deep learning models to prevent over-
fitting as well as accelerate the training process
[5, 8].
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Implementation Environment

All these experiments are performed on a PC
with the following hardware specifications: In-
tel(R) Core (TM) i7-6850K with 16 GB RAM,
clock speed of CPU @ 3.360 GHz, and GPU of
NVIDIA GeForce GTX 1080. The CAD system
is implemented in Python 2.7.14 and C++ on
the Ubuntu 16.04 operating system. The imple-
mentation of all deep segmentation models is
achieved utilizing Theano [27] and Keras [28]
deep learning libraries, while the detection and
classification models are implemented under the
Tensorflow environment [29].

Experimental Results
and Discussion

EvaluationMetrics

Each detection, segmentation, and classification
stage of the CAD system gets separately eval-
uated using an overall accuracy (Acc.), sensi-
tivity (Sen.), specificity (Sep.), F1-score (Dice),
Jaccard (Jac.), and Matthews correlation coeffi-
cient (MCC). Moreover, area under ROC curve
(AUC) is also used to evaluate the CAD system
over segmentation and classification stages. The
definition and criteria for all of these evaluation
metrics are available in [5].

Breast Lesion Detection Results

The detection performance of breast lesions via
YOLO over fivefold cross-validation tests with
the testing dataset is reported in Table 1. The
false detection cases presented in Table 1 indicate
the cases when IoUExt.

GT < 50%. This means that
the final extracted breast lesion has no enough
overlap ratio with its GT [5, 7, 8]. Fortunately,
YOLO detects at least one bounding box indicat-
ing breast lesion from all testing mammograms.
In this study, the false detection cases are ex-
cluded over each test fold for the next stages
of segmentation and classification. An average
overall detection accuracy of 97.27% at 0.25 false

positive per image (FPI), MCC of 93.93%, and
F1-score of 98.02% present the reliable detection
performance of the YOLO detector. Examples
of the qualitative breast lesion detection results
via YOLO identifying the potential breast lesion
ROIs are shown in Fig. 3. It is clearly shown
that YOLO can accurately detect and align the
detected bounding boxes surrounding the breast
lesions with high prediction confidence score and
high overlapping ratio of IoU. In fact, confidence
score indicates the probability of the presence of
breast lesions, while overlapping ratio indicates
how much the lesion detection localization is
accurate. Moreover, a comparison of the detec-
tion results using YOLO against the other latest
deep learning methods is listed in Table 2. It is
clearly shown that YOLO achieved much better
detection accuracy with higher prediction speed
in comparison to other deep learning detection
methods. Also, YOLO can detect even the most
challenging cases when the breast lesions exist
over the pectoral muscles or inside the breast
dense tissues as depicted in Fig. 3(a) and (b),
respectively. Therefore, the YOLO detector plays
a critical role in the CAD system, achieving the
best detection performance of breast lesions com-
paring the latest deep learning models.

Breast Lesion Segmentation Results

The average segmentation performance results
of our FrCN segmentation model against FCN,
SegNet, andU-Net over fivefold tests are reported
in Table 3. For comparison, the results of all
deep learning models are achieved without
any refining pre- and/or post-processing. The
quantitative measurements of all metrics are
computed per pixel of the segmented maps
with the same resolution of the input detected
breast lesions. FrCN obviously outperformed
other methods with an average Dice index of
92.36%, Jaccard coefficient of 85.81%, overall
accuracy of 92.69%, and MCC of 85.36%. U-Net
achieved better segmentation results comparing
SegNet in terms of all evaluation metrics. In
addition, SegNet achieved better segmentation
performance in terms of specificity with 96.38%.
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Table 1 The detection performance of the breast lesions over fivefold cross-validation using YOLO detection model
on the test sets from the INbreast dataset

Benign Malignant Total Metrics (%)

Fold test True False True False True False Acc. MCC F1-score

1st Fold 6
85.71%

1
14.29%

15
100%

0
0.0%

21
95.45%

1
4.55%

95.45 89.64 96.77

2nd Fold 7
100%

0
0.0%

14
93.33%

1
6.67%

21
95.45%

1
4.55%

95.45 90.37 96.56

3rd Fold 7
100%

0
0.0%

15
100%

0
0.0%

22
100%

0
0.0%

100 100 100

4th Fold 6
85.71%

1
14.29%

15
100%

0
0.0%

21
95.45%

1
4.55%

95.45 89.64 96.77

5th Fold 7
100%

0
0.0%

15
100%

0
0.0%

22
100%

0
0.0%

100 100 100

Avg.(%) 94.28 5.71 98.67 1.33 97.27 2.73 97.27 93.93 98.02
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Fig. 3 Examples of detected breast lesions from the INbreast dataset via the YOLO detector. Detected breast lesions
exist over the pectoral muscle and inside the breast dense tissues as shown in (a) and (b), respectively. Detected breast
lesions (magenta) and their ground truths (yellow) are superimposed on the original mammograms

Table 2 The detection performance comparison between the YOLO detector against the other latest studies on the test
sets from the INbreast

Reference Method Dataset
Prediction time per
image (Sec.) Detection accuracy (%)

Dhungel et al. [8],
Carneiro et al. [14]

Cascade deep learning F-RCN,
DBN, and CRF

INbreast 39 90.0 at 1.0 FPI

Kozegar et al. [30] Adaptive threshold with some
of machine learning techs

INbreast 108 87.0 at 3.67 FPI

Our presented
method

YOLO-based CAD system INbreast 0.014 97.27 at 0.25 FPI
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Table 3 The average breast lesion segmentation performance over fivefold cross-validation on the test sets from the
INbreast dataset

Evaluation metrics (%)

Fold test Deep learning method Dice Jac. Sen. Spe. Acc. AUC MCC

Avg. (%) FCN 88.05 79.14 82.06 95.10 88.95 89.52 80.30

SegNet 89.40 81.83 83.52 96.83 90.26 90.26 82.04

U-Net 90.98 83.77 87.03 95.70 91.91 91.72 83.24

Our FrCN 92.36 85.81 92.94 92.47 92.69 92.70 85.36
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Fig. 4 Examples of qualitatively breast lesion segmentation results via our deep learning model of FrCN against the
FCN, U-Net, and SegNet are shown in (a) and (b), while (c) presents the evaluation performance of all deep learning
models in terms of ROC curves with their AUCs. The counters in (a) and (b) indicate the ground truth (red), FrCN
(yellow), U-Net (green), SegNet (magenta), and FCN (blue)

Moreover, examples of the qualitative breast
lesion segmentation results for FrCN against
FCN, SegNet, and U-Net are depicted in Fig. 4 (a)
and (b). Moreover, the segmentation performance
of FrCN against all other methods is evaluated
by the AUC over all test folds. Figure 4(c)
shows an example of the ROC curves with
AUCs from the 2nd test fold for comparison
among all segmentation models. As presented in
Table 3 and Fig. 4(c), the performance of breast
lesion segmentation via FrCN outperformed all
other methods in terms of AUC with 92.70%. In
addition, FrCN achieved faster training time with
6.42 h than FCN, SegNet, and U-Net with 12.94,
6.81, and 8.03 h, respectively. For testing, FrCN
segments the individual breast lesion in 8.51 s

comparing 10.25, 10.48, and 10.66 s for FCN,
SegNet, and U-net, respectively. Despite U-Net
achieved better segmentation results than SegNet,
but it is slightly slower to perform training and
testing tasks. FrCN overcomes the limitations
of the latest deep learning segmentation
models in terms of preserving high resolution
and better performance for large and tiny
objects.

Breast Lesion Classification Results

Once the detected lesions are segmented via
FrCN, deep learning convolutional networks
of CNN, ResNet-50, and InceptionResNet-
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Table 4 Breast lesion classification performance as an average over fivefold cross-validation on the test sets from the
INbreast dataset

Benign class Malignant class Weighted metrics

Fold test Method Sen. Spe. Dice Sen. Spe. Dice ACC AUC MCC

Avg. (%) CNN 84.75 90.57 82.19 90.57 84.76 91.77 88.74 87.67 74.17

ResNet-50 91.42 93.24 88.35 93.24 91.43 94.52 92.56 92.33 84.10

Inception ResNet-V2 90.47 97.33 92.16 97.33 90.47 96.64 95.32 93.91 89.39

Table 5 Comparison performance classification results of the fully integrated CAD system against others through all
stages of detection, segmentation, and classification

Reference Prediction classes

Prediction
time per
image (Sec.)

Overall classification
accuracy and (AUC) (%) Hardware specs

Dhungel et al.
[8]

Benign/Malignant 41 91 and (76) Intel Core i5-2500k, 8GB RAM,
3.30 GHz, and GPU of NVIDIA
GeForce GTX 460 SE 4045 MB

Carneiro et al.
[14]

Normal/Benign/
Malignant

41 NA and (78) → Benign
Vs. Malignant NA and
(86) → Malignant Vs.
(Normal + Benign)

Intel Core i7, 8GB RAM, 2.3 GHz,
and GPU of NVIDIA GeForce GT
650M 1024 MB

Our CAD
system

Benign/Malignant 9.32 95.32 and (93.91) Intel Core i7-6850K, 16GB RAM,
3.360 GHz, and GPU of NVIDIA
GeForce GTX 1080

V2 are used to classify these lesions as either
benign or malignant. Table 4 shows the average
breast lesion classification performance for each
class of benign and malignant over fivefold
tests. The evaluation results presented in Table
4 are computed for the correctly detected
breast lesions. It is obviously noted that the
deep learning model of InceptionResNet-
V2 achieved better classification results in
terms of sensitivity of 97.33%, specificity of
90.47%, overall accuracy of 95.32%, F1-score
of 94.40%, and AUC of 93.91%, whereas the
shallower model of CNN achieved the lowest
classification performance results in comparison
to other deeper models of ResNet-50 and
InceptionResNet-V2 in terms of all evaluation
metrics. This means that the deeper models
achieve better classification performance against
the shallower ones. However, the promising
classification performance of our fully integrated
CAD system is achieved due to many reasons as
follows. First, the potential breast lesion ROIs
are accurately detected and aligned using the
prediction model of YOLO. Second, the robust
segmentation deep learning model of FrCN plays
a critical role to extract the specific region of

breast lesions minimizing the false positive and
negative pixels from the surrounding normal
tissues. Third, the high deep level feature maps
derived using the state-of-the-art deep learning
models highly contribute to improvement of
the overall diagnostic performance of the CAD
system. Finally, a comparison between our
fully integrated CAD system with respect to
the latest studies based on the deep learning
is presented in Table 5. All these studies are
evaluated using the INbreast dataset through
each stage of detection, segmentation, and
classification. It is clearly shown that our CAD-
based deep learning could handle all these stages
achieving a higher performance as well as much
faster prediction time. Therefore, the promising
prediction performance of the CAD system
seems to make it more feasible towards practical
applications.

Conclusion

In this chapter, a fully integrated CAD system
based on deep learning including detection, seg-
mentation, and classification is presented for au-
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tomatic diagnosis of the breast lesions in a sin-
gle framework. To automatically detect breast
lesions from the entire mammograms, the YOLO-
based lesion detection could be used. Due to
the segmentation capability of the FrCN model,
the CAD system could achieve a much better
diagnostic results. Hence, the detection and seg-
mentation end-to-end of breast lesions could be
a key to minimize the false positive and negative
rates and then improve the overall performance
of our integrated CAD system. Moreover, classi-
fication based on the convolutional deep learning
contributes to accurately classify breast lesions.
A fully integrated CAD system based on deep
learning methodologies could be beneficial for
practical applications of future medical imaging
systems.
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Decision Support System for Lung
Cancer Using PET/CT andMicroscopic
Images
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Abstract
Lung cancer is the most common cancer
among men and the third most common
among women in the world. Many diagnostic
techniques have been introduced to diagnose
lung cancer. Positron emission tomography
(PET)/computed tomography (CT) exami-
nation is an image diagnostic method that
performs automatic detection and distinction
of lung lesions. In addition, pathological
examination by biopsy is performed for
lesions that are suspected of being malignant,
and appropriate treatment methods are applied
according to the diagnosis results. Currently,
lung cancer diagnosis is performed through
coordination between respiratory, radiation,
and pathological diagnosis experts, but there
are some tasks, such as image diagnosis,
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that require a large amount of time and
effort to complete. Therefore, we developed
a decision support system using PET/CT
and microscopic images at the time of
image diagnosis, which leads to appropriate
treatment. In this chapter, we introduce the
proposed system using deep learning and
radiomic techniques.

Keywords
Lung cancer · Nodule · Detection ·
Classification · PET/CT · CT · Cytology ·
Deep learning · Convolutional neural
network

Introduction

Worldwide, lung cancer is the most common
cancer among men and the third most common
among women [1]. In 2018 alone, there were
two million new cases diagnosed. Currently,
lung cancer is the leading cause of death among
mankind in the USA, Europe, and many Asian
countries, making it a serious health problem
across the world.

Currently, computed tomography (CT) is
widely used for lung cancer screening [2].
According to the results of a national lung
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screening trial [3], low-dose CT scan-based
screening reduces deaths by 20%, and thus it
is regarded as a suitable diagnostic tool for
the early detection of lung cancer. Recently, in
some countries, positron emission tomography
(PET)/CT has also been adopted as a mass
screening tool for the diagnoses of cancers [4, 5].
In this combined technique, PET images provide
functional information, while CT images render
anatomical information, making it possible
to detect pulmonary nodules precisely and to
classify between benign and malignant nodules.
Wever et al. reported on the clinical effectiveness
of PET/CT in detection and characterization [6].
In the near future, PET/CT examination will be
widely used for screening.

If a suspicious lesion is found by radiological
examinations, a subsequent pathological diagno-
sis is performed to check the lesion in detail [7].
Cytological diagnosis and histological diagnosis
are conducted to determine whether it is benign
or malignant and to determine cancer type us-
ing a specimen made from tissue, respectively.
The major tissue types of lung cancer are adeno-
carcinoma, squamous cell carcinoma, small cell
carcinoma, and large cell carcinoma in that or-
der. Other than small cell carcinoma, these types
are often treated in the same manner. Surgery
is performed for non-small cell carcinomas of
removable size, and small cell carcinomas with
high metastases are selected for drug therapy and
radiation therapy. Recently, molecularly targeted
drugs and immunotherapies have been added to
drug treatment options and have achieved good
therapeutic results. For these two therapies, ge-
netic testing is performed to determine the geno-
type of cancer cells, and appropriate drugs are
selected.

Therefore, in the current diagnosis and treat-
ment of lung cancer, early detection of a lesion
and accurate analysis of the lesion can lead to
correct treatment and improve the prognosis of
the patient. Currently, lung cancer diagnosis is
performed through coordination between respi-
ratory, radiation, and pathological diagnosis ex-
perts, but there are some tasks, such as image
diagnosis, that require a large amount of time
and effort to complete. Therefore, we developed
a decision support system using PET/CT and
cytological images at the time of image diagnosis,
which leads to appropriate treatment.

In this chapter, we introduce some of our work.
First, an outline of the decision support system for
lung cancer diagnosis is given in section “Outline
of Decision Support System.” In sections “Au-
tomated Detection of Lung Nodules in PET/CT
Images Using Convolutional Neural Network and
Radiomic Features” and “Automated Malignancy
Analysis of Lung Nodules in PET/CT Images
Using Radiomic Features,” automatic detection
of lung nodules using PET/CT images and be-
nign/malignant discrimination methods are intro-
duced. Classifications of benign/malignant cells
and lung cancer type are described in sections
“Automated Malignancy Analysis Using Lung
Cytological Images” and “Automated Classifica-
tion of Lung Cancer Types from Cytological Im-
ages.” Finally, this chapter is concluded in section
“Conclusion.”

Outline of Decision Support System

Figure 1 illustrates the concept of the decision-
making system for lung cancer diagnosis. Auto-
matic detection of nodules is performed using two

PET/CT
exam.

Nodule
detection

Malignancy
analysis

Malignancy
analysisBiopsyPET/CT

images
Classification
of cancer type

Microscopic
images

PET/TT CT
images

Fig. 1 Schematic diagram of decision support system for lung cancer
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types of images obtained by PET/CT examina-
tion, and benign and malignant detected nodules
are then classified automatically. If the result is
malignant, microscopic images are obtained via
pathological examination. After analyzing the be-
nign and malignant cell images, classification of
lung cancer type is performed for malignant cells.
Physician confirmation is made on the output of
each automated scheme, and a final diagnosis is
made.

Automated Detection of Lung
Nodules in PET/CT Images Using
Convolutional Neural Network
and Radiomic Features

Background

Lung cancer is the leading cause of cancer-related
deaths among men [1]. Recently, PET/CT ex-
amination is currently being used as a cancer
screening tool [4, 5] in some countries. PET/CT
is useful for the early detection of lung cancer.
However, interpretation using a large amount of
PET/CT images is burdensome, and a technique
for obtaining high diagnostic accuracy with little
effort is required.

We are currently developing a method for
the automatic detection of lung nodules from
PET/CT images [8–10]. In our previous studies,

nodules were detected independently from CT
and PET images, and they were integrated
to obtain initial candidate regions. Then,
handcrafted features were extracted from them
and false positives (FPs) were deleted using a
support vector machine (SVM). Nodule detection
ability was 9.8 false positives/case when the
detection sensitivity was 90% [9], and it was a
challenge to improve FP reduction performance.

As a method of classifying false positives and
nodules, we focused on the convolutional neu-
ral network (CNN), which is an artificial intelli-
gence technology with high performance in im-
age recognition tasks. In this section, we will
introduce the novel scheme of lung nodule de-
tection from PET/CT images using a CNN and
radiomic features [11].

Method Overview

An overview of the detection of lung nodules is
shown in Fig. 2. First, initial nodule candidates
are detected separately from the PET and CT
images using algorithms specific to each image
type. Then, candidate regions obtained from the
two images are combined. FPs contained in the
initial candidates are eliminated by an ensemble
method using multistep classifiers on radiomic
features obtained by a shape/metabolic analysis
and a CNN.

CT images

PET images

×

Nodule detection in CT images

Nodule detection in PET images

CT images

×

Nodule detection in PET images

Lung maskThresholding Initial candidates

Nodule enhancement Initial candidates
+ Ensemble

FP reduction
Final
candidates

Fig. 2 Outline of nodule detection scheme
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Initial Nodule Detection

With regard to the detection in CT images, the
massive region was first enhanced using an ac-
tive contour filter (ACF) [9], which is a type
of contrast-enhancement filter with a deformable
kernel shape, as shown in Fig. 3. The active
contour involves several nodes that are connected
to each other. We define the evaluation function
of the active contour as the maximum pixel value
along the connected lines. The nodes move itera-
tively to minimize the evaluation function. Thus,
the active contour encloses the nodule without
touching normal organs, such as blood vessels
and the lung wall. The final output of the ACF
is the difference between the maximum pixel
value on the active contour and the pixel value
at the center of the filter kernel. Subsequent to
image enhancement, the initial nodule regions are
segmented by thresholding and labeling (top of
Fig. 2).

The PET images are subsequently binarized
using a predetermined cut-off value to detect re-
gions of increased uptake. Here, candidate re-
gions other than the lungs are eliminated using
the lung regions obtained by CT images (bottom
of Fig. 2).

Initial candidate regions detected by CT and
PET are represented as binary images. The two
images are then combined using the logical OR
function. Following pixel-by-pixel confirmation
of regions on both images, a region detected by at
least onemodality is treated as an initial candidate
region.

Fig. 3 Active contour filter for nodule enhancement

False Positive Reduction

Among the initial candidate regions, there is a
large number of FPs. FPs included in the initial
candidates are composed of bronchi and blood
vessels in the lung regions. In addition, most of
the FPs of the initial candidates in PET images are
due to physiological uptakes in organs adjacent to
the lungs. Therefore, the integration of both shape
features from CT images and metabolic features
from PET images can be used to eliminate FPs
[8]. However, the features of FPs and nodules
overlap, and there is a limit in FP reduction us-
ing only these handcrafted radiomic features. To
eliminate FPs while maintaining the true positive
(TP) rate, this study employed a CNN, which
is a type of deep learning architecture [12]. The
CNN was inspired by biological processes and
specifically designed to emulate the behavior of
visual systems. CNNs have a function that auto-
matically performs feature extraction from image
data and learns the representation of input data.
In some image recognition trials, results were
dramatically improved by employing CNNs [13,
14]. Studies have indicated that CNNs can be used
to reduce FPs by generating novel valid features
not generated by the shape and metabolic fea-
tures used in conventional FP reduction methods.
Therefore, the ensemble FP reduction method
was developed for this study by combining a
CNN with our previous FP reduction technique,
which uses handcrafted radiomic features, as il-
lustrated in Fig. 4.

 

CNN

Initial candidate volume (PET and CT)

Calculation of 
radiomic features

Rule-based classifier

SVM#1 SVM#2

Final candidates

Fig. 4 Flowchart of ensemble FP reduction
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Fig. 5 Architecture of convolutional neural network (CNN)

Classification Using a Convolutional
Neural Network
The architecture of the CNN used for FP
reduction is illustrated in Fig. 5. It is composed of
three convolution layers, three pooling layers, and
two fully connected layers. The three sectional
CT and PET images are fed to the input layer
of the CNN. Axial and sagittal images are then
introduced for the CT images. Because PET
images provide limited anatomical information
and low spatial resolution, it is more important
to identify the existence of high uptake regions
than the three-dimensional structure. Therefore,
we used a maximum-intensity projection (MIP)
image along the body axis of the PET images.
The input to the first convolutional layer is
32× 32× 3 images, where CT-axial, CT-sagittal,
and PET-MIP images are each resized to 32 × 32
pixels.

Convolution layer 1 uses 32 filters with a
5 × 5 × 3 kernel, resulting in a feature map of
32 × 32 × 32 pixels. Pooling layer 1 conducts
subsampling, which outputs the maximum
value in the 3 × 3 kernel for every 2 pixels,
reducing the matrix size of the feature map to
16 × 16 × 32. After the three convolution layers
and three pooling layers, there are two fully
connected layers, each consisting of a multi-
layer perceptron. After all layers are completed,
the probabilities of TP and FP are obtained
from the output. By training the convolution
and fully connected layers, two separate outputs
can represent the probabilities of judgment for
FP and TP.

Handcrafted Radiomic Features
For each candidate region, shape and metabolic
features are calculated as handcrafted radiomic
features. A total of 18 features are obtained from
the CT images, including sectional areas in the
three planes (X-Y,X-Z, andY-Z), volume, surface
area, contour pixels in the three planes, compact-
ness, convergence in the three planes, and CT
values (max, center, and standard deviation) in the
candidate region [8]. A total of 8 metabolic fea-
tures are obtained from the PET images, includ-
ing the standardized uptake value (SUV) [15] at
the center of the candidate region, the maximum
and mean values of SUV in the candidate region,
the sectional areas in the three planes, volume,
and surface area in the candidate region.

Classification
Using the CNN output and handcrafted radiomic
features, FPs are eliminated from the initial can-
didate region. First, the handcrafted radiomic fea-
tures are fed to the rule-based classifier to elimi-
nate the obvious FPs [8]. FPs are then identified
by setting simple low and high limits for each
feature.

The remaining candidate regions are then fed
to the two SVMs, where the TPs and FPs are
classified as shown in Fig. 4. The initial candi-
date regions detected only by CT images indicate
that there are no high uptake regions in the PET
images. Therefore, many features obtained by
PET are set to zero. In contrast, for the initial
candidates detected by PET images, morphologi-
cal changes are usually observed in CT images.
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Because the properties of the obtained features
and the number of effective features are differ-
ent under the two conditions, two SVMs were
introduced. A total of 22 features (including all
features obtained by CT, three SUV features by
PET, and the CNN output) are fed to the first
SVM, which is referred to as SVM #1, and all
features obtained by the proposed method are
fed to the second SVM, which is referred to as
SVM #2, based on the above discussion. In this
study, LIBSVM, which is a library of SVMs,
was introduced [16]. We used C-support vector
classification as an SVM algorithm and the radial
basis function as a kernel function.

Results

Image Datasets
A total of 104 Japanese individuals who under-
went whole-body PET/CT during cancer screen-
ing programs from 2009 to 2012 were included
in this study. The images were acquired during
a cancer screening program at the East Nagoya
Imaging Diagnosis Center (Nagoya, Japan) using
a Siemens TruePoint Biograph 40 with standard
clinical settings. The spatial resolution of the PET
imageswas 4.0× 4.0× 2.0mm3, while that of the
CT images was 0.97 × 0.97 × 2.0 mm3. A total
of 183 nodules were detected in 84 patients. The
average values of diameter, CT value, and SUV
max for these nodules were 18.9 ± 15.6 mm,
25.3 ± 384.4, and 4.01 ± 4.70, respectively. The
center coordinate (x-y-z) of nodules was provided
by the radiologist.

This study was approved by an institutional
review board, and patient agreements were ob-
tained under the condition that all data would be
anonymized.

EvaluationMetrics
The data pertaining to candidate regions were
randomly divided into five sets and evaluated
using the cross-validation method. A candidate
nodule was considered correctly detected if the
center coordinates of the nodule marked by a
doctor existed inside the candidate region (area)
obtained by the proposed method. An initial can-
didate region was considered to be an FP when

no registered nodules were assigned to the region.
With regard to the detection parameters, themaxi-
mum filter radius of ACF was set at 25 mm, while
the number of nodes was set at 8. For detection
with PET, the threshold was set at 2.0. These
parameters were determined in a previous study,
which is based on preliminary experiments and
the knowledge of radiologists.

The automated detection calculation was per-
formed using in-house CAD software using an
Intel Core i7-6700K processor (4 CPU cores,
4 GHz) with 16 GB of DDR4 memory. For the
ensemble FP reduction method, the training of
the CNN was conducted using a dedicated train-
ing program bundled in the Caffe package [17],
which is accelerated by aGPU (NVIDIAGeForce
GTX 970 with 4 GB of memory).

Detection Results
In the initial detection, among 181 nodules, 163
and 80 were detected through CT images and
PET images, respectively. Among these detected
nodules, 67 nodules were detected through both
images; total sensitivity was 97.2%. In addition,
7575 FPs were contained in the initial candidates,
so the number of FPs/case was 72.8.

The free-response receiver operating charac-
teristic (FROC) curves made by changing the
parameters of the FP reduction method are shown
in Fig. 6. To conduct a comparative evaluation,
the FROC curve of the previous method, which
does not employ a CNN, is also shown [9]. The
sensitivity of our proposed method was 90.1%
with 4.9 FPs/case. Examples of nodules detected
or missed by our proposed method are shown in
Fig. 7. Figure 7(a) shows three nodules detected
by both our previous and proposed methods; Fig.
7(b) indicates three nodules newly detected by
this method, and Fig. 7(c) shows three nodules
missed by our proposed method. In Fig. 7(c), the
left and center images are of nodules missed at
the initial detection stage, and the right one is of
a nodule missed at the FP reduction stage.

In the present system, initial detection of nod-
ules from CT and PET images was performed au-
tomatically by in-house software. There were no
manual interactions involved that required judg-
ment of the operator. The processing time for
initial nodule detection was approximately 340 s
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Fig. 6 Free-response
receiver operating
characteristic (FROC)
curves of the (a) proposed
and (b) previous methods
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Fig. 7 Examples of detected and missed nodules in pairs of transverse views of CT (left) and PET (right) images

per case, and ensemble FP reduction took 35 s
per case. The CNN training took approximately
24 min on the GPU.

Discussion

In this section, we describe the nodule detection
method for PET/CT images using a CNN and
conventional handcrafted features. In terms of the

overall performance using the ensemble FP re-
duction technique with a CNN and radiomic fea-
tures as shown in Fig. 6, sensitivity exceeded 90%
with 4.9 FPs/case. The proposed CAD scheme
therefore appears to be useful for image diagnosis
by radiologists during screening and follow-up
examinations.

Comparing the proposed method and conven-
tional methods in terms of FPs/case at the same
detection sensitivity, our previously proposed
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method [9] without a CNN had 9.8 FPs/case.
Our ensemble FP reduction method using the
CNN technique eliminates approximately half
the FPs existing in the previous method. In a state
that has sufficiently high detection sensitivity,
this improvement is noteworthy. These results
indicate that our method may be useful for
computer-aided detection of lung tumors in
clinical practice.

AutomatedMalignancy Analysis
of Lung Nodules in PET/CT Images
Using Radiomic Features

Introduction

PET/CT examination is performed for detailed
analysis of lung disease. In this combined
technique, PET images provide functional
information, while CT images render anatomical
information, thereby facilitating a comprehensive
analysis of the malignancy of nodules.

However, fluorodeoxyglucose (FDG) PET im-
ages of benign nodules, such as those associated
with inflammatory diseases, often exhibit high
uptake values similar to those of malignant nod-
ules. Furthermore, they are anatomically similar
in structure. Therefore, it is often difficult to
differentiate between benign and malignant nod-
ules [18]. In such cases, a bronchoscopic biopsy
is performed; however, this is invasive, and the
patient faces great physical hardship.

In these cases, if the CT and PET images
can be analyzed in detail to quantify the degree
of malignancy of the nodules, the need for an
excessive biopsy with its accompanying physical
hardship can be reduced. Therefore, in this study,
we focused on the automated analysis of the ma-
lignant potential of lung nodules using PET/CT
images.

Many studies have reported on benign/malig-
nant differentiation of lung nodules by image
analysis [19–24]. Armato et al. proposed the au-
tomated analysis of lung nodules using linear
discriminant analysis with characteristic features
obtained from CT images [19]. They evaluated
470 CT scans and revealed that the area under

the ROC curve was 0.79. Shen et al. introduced
a deep learning multi-crop convolutional neu-
ral network model to classify lung nodules [23].
They used 880 benign nodules and 495 malignant
nodules from the Lung Image Database Con-
sortium and Image Database Resource Initiative
(LIDC/IDRI) dataset and achieved an accuracy of
87.14%. Nie et al. developed a semi-automated
scheme for distinguishing between benign and
malignant lung nodules by integrating PET and
CT information [24]. The study evaluated three
computer-aided diagnosis schemes based on an
artificial neural network to distinguish between
benign and lung nodules using clinical informa-
tion and image features; it was seen that diagnos-
tic accuracy using both PET and CT was better
than using either alone.

However, to the best of our knowledge, auto-
mated analysis of lung nodules based on radiomic
features obtained from both PET and CT images
has not been developed so far. The automated
classification of lung nodules could have great
practical value. Therefore, in this section, we will
introduce an automated classification scheme for
lung nodules using CT and PET images [25].

Materials andMethods

Image Dataset
We collected 36 early and delayed phase PET/CT
images from patients with suspected lung can-
cer diagnoses. In addition, conventional CT im-
ages at maximal inspiration were also analyzed.
The cases chosen were those where differential
diagnosis was difficult with diagnostic imaging
alone, and the final diagnosis was made by bron-
choscopy and biopsy specimen analysis.

The PET/CT imaging studies were performed
at the Fujita Health University Hospital (Toyoake,
Japan) using Siemens True Point mCT from
2012 to 2014. Both images were obtained with
a matrix size of 200 × 200 pixels (voxel size
was 4.07 × 4.07 × 2.00 mm3 and scan time
was 2.0 min/table) and under free breathing.
Image reconstruction was performed using
the 3D-OSEM reconstruction algorithm. In
addition, the point-spread function and time-
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of-flight correction (PSF + TOF) and attenuation
correction by CT images were performed. PET
images were converted to the voxel size of
the CT images after reconstruction. Early and
delayed PET imaging was performed 60 min and
120 min, respectively, after the administration of
3.7 MBq/kg of FDG. These PET and CT images
were aligned automatically by the PET/CT
scanner.

Conventional CT imaging was performed
using Aquilion ONE (Toshiba) with a matrix
size of 512 × 512 pixels (voxel size was
0.625 × 0.625 × 0.500 mm3) with the lung
kernel. If CT examination was performed more
than once, we selected images taken at the time
closest to the PET/CT examination.

Of the total 18 benign cases, 13were finally di-
agnosed by biopsy, and 5 cases were confirmed to
be benign by follow-up examinations over 3 years
or more. There were 18malignant cases, of which
there were 13 cases of adenocarcinoma, 4 cases of
squamous cell carcinoma, and one case of small
cell carcinoma. The age of a patient in the malig-
nant nodule group was 72.2 ± 7.6 years, and in
the benign nodule group it was 65.3± 10.2 years.

This study was approved by the institutional
review board, and patient agreements were ob-
tained under the condition that all data would be
anonymized (No. HM17–002).

Methods Overview
An overview of the proposed method is illus-
trated in Fig. 8. In this method, regions of PET
and CT images designated as suspicious by the
doctor were analyzed using several characteristic

features and were automatically classified and
identified as benign or malignant.

Volume of Interest (VOI) Extraction
The position and diameter of the nodule to be
analyzed using conventional CT images and the
PET/CT images were specified by the physician.
Based on that information, segmentation of the
volume of interest (VOI) around the lung nodule
from the CT and PET images was conducted and
employed for analysis. The center coordinates of
the VOIs extracted from conventional CT and
PET/CT images were manually set while check-
ing the multiplanar reconstruction (MPR) image
of each CT image. First, the trans-axial image
with the largest nodule area was searched, and
its center coordinates were specified manually.
Then, we set the longest diameter in the image as
Dxy in the x-y direction (trans-axial plane) of the
nodule. Subsequently, while changing the slice
position in the body axis direction, we obtained
the range of the slice in which the nodule exists
and set it as Dz. We extracted the VOI whose
number of pixels on each side was 2Dxy, 2Dxy,
and 2Dz from the original image.

Extraction of Characteristic Features

Checkpoints in Malignancy Diagnosis
Table 1 lists the checkpoints for distinguishing
between benign and malignant nodules [26, 27].
The physicians created this scheme by referring
to the pixel values, such as the uptake value of
the PET images and the CT values. Furthermore,
consideration was given to nodule components

Extraction of
hand-crafted features

• Pixel intensities
• Nodule shape
• Contrast of border
• Spicula
• Texture

Classification

Benign

Malignant

Extraction of VOI

CT VOI

VOIs of early
and delayed
phase PET

CT
images

Early and delayed
phase PET images

Random forest

・・・

Fig. 8 Overview of nodule classification method
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Table 1 Checkpoints of features in benign and malignant nodules

FDG uptake CT value Component Shape Border Spicule

Benign Low Low GGO Line-like Clear Few

Malignancy High increase at delayed phase High Solid Ball-like Unclear Many

(GGO or solid), shapes (roundness), clarity of the
nodule border, spicules, etc. In this study, these
points were quantified as characteristic features.

Features Regarding Pixel Intensities of PET
and CT Images
Manymalignant nodules have high pixel intensity
in PET and CT images. Therefore, the SUVs [15]
of early and delayed PET images were defined as
ESUV and DSUV, respectively. Furthermore, the
difference in SUV between the delayed phase and
early phase was defined as ΔSUV. In the mea-
surement of SUV, we introduced two methods:
SUVmax (hottest voxel) and SUVpeak (maximum
average SUV within a 1 cm3 spherical volume).
In the CT images, the CT value at the center of
the nodule (CTcentre) and the maximum CT value
inside the nodule (CTmax) were calculated.

Features Regarding Nodule Shape
Malignant nodules often have a ball-like shape,
and benign nodules have a line-like shape. To
evaluate the ball-like and line-like shapes, a Hes-
sian matrix method was proposed [28]. The Hes-
sian matrix was obtained by taking the second
order differential of the three-dimensional image
as follows:

H =
⎡

⎣
Fxx Fxy Fxz

Fyx Fyy Fyz

Fzx Fzy Fzz

⎤

⎦. (1)

Then, three eigenvalues (λ1, λ2, λ3) were ob-
tained from the matrix. Finally, the ball-like and
line-like features (Lmass and Lline) were calculated
using the eigenvalues as follows:

Lmass = |λ3| /λ1 (2)

Lline = |λ2| (λ2 − λ3) / |λ1| . (3)

Features Regarding Contrast of the Nodule
Border
The border of a malignant nodule is often unclear.
Therefore, the contrast of borders was evaluated
using the difference between the CT values of
the outer and inner border lines of the nodules.
To calculate this, the average CT values at the
pixels belonging to the inner edge R1 (CTR1)
and the peripheral region R2 (CTR2) were ob-
tained, and the difference between the two values
|CTR1−CTR2|was defined as the contrastCb (Fig.
9(a)). To obtain R1 and R2, the image was first
binarized and the contour was extracted by the
Sobel operator. Then, the set of pixels on the
outline was defined as R2. Next, the binarized
region was shrunk by a morphological operation
(erosion) with a structural element having a radius
of 1 pixel, and the contour of the reduced region
was extracted in the same manner as described
above; the set of these pixels was used as R1.

Features Regarding Spicules
When there is a spicule around a nodule, it is more
likely to be malignant. In this study, spicules in
CT images were detected using a Gabor filter [29,
30]. By applying theGabor filter, line patterns and
their orientations were obtained (Fig. 9 (b-2) and
(b-3)). From the two images, radial line patterns
were extracted (Fig. 9 (b-4)), and the numbers
of radial components and their ratios were calcu-
lated as the features of spicules SP1 and SP2.

Texture Features
The texture pattern of the lung lesion is important
for evaluating malignancy. Textures can be ana-
lyzed in several ways.We used amethod based on
the gray level co-occurrence matrix (GLCM) pro-
posed by Haralick et al. [31]. The matrix element
P(i,j) of GLCM is the set of second order statis-
tical probability values for changes between gray
levels i and j at a particular distance d and angle
θ , where θ represents the counter-clockwise angle
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(b-1) Original CT image (b-2) Intensity output 
of Gabor filter

(b-3) Angle output 
of Gabor filter

(b-4) Detected 
spicula
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179
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Fig. 9 Handcrafted features

from the X axis. The GLCM can be used to assess
properties such as texture uniformity, direction-
ality, and contrast based on the distribution of
the values of the matrix elements. Haralick et al.
proposed 14 characteristic features using GLCM.
In this study, it was necessary to limit the num-
ber of characteristic features because the number
of cases collected was small. To obtain texture
features concerning direction, we calculated the
following five features T1 − T5 using θ values of
0 (T1_0 − T5_0) and 90 degrees (T1_90 − T5_90) in
the trans-axial plane of CT images:

• Contrast

T1 =
∑

i

∑
j
P (i, j) |i − j |2 (4)

• Dissimilarity

T2 =
∑

i

∑
j
P (i, j) |i − j | (5)

• Correlation

T3 =
∑

i

∑
j
(i − μi)

(
j − μj

)
P (i, j) /σiσj ,

(6)

where

μi =
∑

i

∑
j
iP (i, j) , μj =

∑
i

∑
j
jP (i, j)

(7)

σi =
√∑

i

∑
j
P (i, j) (i − μi)

2,

σj =
√∑

i

∑
j
P (i, j)

(
j − μj

)2
(8)

• Homogeneity

T4 =
∑

i

∑
j
P (i, j) / (1 + |i − j |) (9)

• Energy

T5 =
√∑

i

∑
j
P (i, j)2 (10)
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Classification
Identification as benign or malignant was con-
ducted using the obtained characteristic features.
In this study, we used the random forest algorithm
for classification [32]. The random forest is an
ensemble learning method for classification and
regression that operates by constructing multiple
decision trees and outputting the class that is
the mode of the classes of the individual trees.
Practically, the input for the random forest was
the 25 characteristic values, and a judgment result
(benign or malignancy) was obtained from the
output. In this study, the maximum number of
trees was set to 20.

In addition, to analyze the distinguishing char-
acteristics of this method, we evaluated three
kinds of classification methods: (1) classification
using CT images alone, (2) classification using
CT images and early phase PET images, and
(3) classification using CT images and early and
delayed phase PET images.

Results

To confirm whether individual feature values
were useful for distinguishing between benign
and malignant nodules, we calculated the mean,
median, and standard deviation (SD) of the values
in the two groups. Then, effect sizes [33] were
calculated. Furthermore, t-values and p-values
were calculated using the t-test (double-sided
test). The results are listed in Table 2.

There was a significant difference between the
characteristic features of benign and malignant
nodules with regard to SUV. The SUV obtained
by PET examination was the most significant
and was confirmed as useful for distinguishing
between benign and malignant cells. In addition,
some texture features showed significant differ-
ences between benign and malignant nodules,
indicating their effectiveness. The differences in
features with regard to spicules were of low sig-
nificance. Furthermore, the average CTmax in be-
nign nodules was higher than that in malignant
nodules.

Then, the nodule classification scheme was
evaluated using the ROC curve. In the curve, the

TP rate was defined as the ratio of the number of
corrected malignancy nodules to the total number
of malignancy nodules. FP rate was defined as
the ratio of the number of misclassified benign
nodules to the total number of benign nodules.
Furthermore, performance was evaluated by the
leave-one-out cross-validation method.

To analyze the distinguishing characteristics
of our method, we evaluated three methods: (1)
classification using CT images alone, (2) classi-
fication using CT images and early phase PET
images, and (3) classification using CT images
and early and delayed phase PET images. The
ROC curves for each of the above methods are
shown in Fig. 11. The area under the curve (AUC)
formethods (1), (2), and (3) was 0.730, 0.860, and
0.895, respectively. Considering the accuracy rate
of malignant nodules being 0.944, the accuracy
rates of benign nodules for methods (1), (2), and
(3) were 0.277, 0.611, and 0.722, respectively.
The CT and PET images in the trans-axial plane
(with accuracy rates for benign and malignant
nodules of 0.722 and 0.944, respectively) are
shown in Fig. 10. Regarding the significant differ-
ences among the three ROC curves, the p-values
between (1) and (2), (2) and (3), and (1) and (3)
were 0.032, 0.104, and 0.021, respectively.

Discussion

As can be seen in Table 2, there was a significant
difference between the characteristic features of
the benign and malignant nodules with regard to
SUV. The SUVobtained by PET examinationwas
confirmed to be useful for distinguishing between
benign and malignant. However, inflammatory
diseases can also produce high SUVs; hence,
SUVs should be combined with other features for
correct classification. In addition, some texture
features were effective for distinguishing between
benign and malignant nodules. The difference
in features with regard to spicules was of low
significance. This is because many spicules are
observed even in inflammatory diseases. Further-
more, the average CTmax in benign nodules was
higher than that in malignant nodules. This is due
to calcification inside the benign nodules. The
distributions of all characteristic features over-
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Table 2 Basic statistics and t-test results

Feature Benign Malignant t-value p-value Effect size

Mean Median SD Mean Median SD

ESUVmax 3.31 2.28 2.27 11.66 9.95 6.58 5.242 <0.001 3.685

DSUVmax 3.81 2.37 3.08 14.29 11.76 8.3 5.165 <0.001 3.395

ESUVpeak 2.31 1.69 1.42 7.66 5.49 4.78 4.684 <0.001 3.764

DSUVpeak 2.51 1.56 1.79 9.46 6.83 6.29 4.638 <0.001 3.886

�SUVmax 0.5 0.21 0.88 2.63 1.96 1.87 4.49 <0.001 2.4

�SUVpeak 0.2 0.05 0.44 1.8 1.05 2.04 3.348 0.003 3.663

T4_0 0.0651 0.0602 0.0239 0.045 0.0418 0.0117 3.289 0.003 0.839

T4_90 0.0655 0.0614 0.0234 0.0459 0.0437 0.0114 3.274 0.003 0.834

T5_0 0.0345 0.0305 0.0192 0.0209 0.0184 0.0084 2.837 0.009 0.708

Dxy 17.2 17.5 3.8 22.1 22.8 6.7 2.771 0.01 1.279

T5_90 0.0342 0.0301 0.0179 0.0211 0.0193 0.008 2.92 0.08 0.732

Cb 0.0811 0.0844 0.0305 0.0941 0.0964 0.0137 1.692 0.104 0.425

T2_0 33.53 33.9 8.27 36.8 37.21 3.09 1.615 0.121 0.394

Lmass 56 22.6 104.4 193.2 47.1 365.9 1.574 0.131 1.313

CTmax 983.9 661.3 710.7 727.3 535.5 448.8 1.333 0.193 0.361

T3_0 0.63 0.668 0.154 0.575 0.576 0.104 1.31 0.2 0.362

T2_90 34.36 32.58 8.63 37.02 35.3 4.408 1.198 0.242 0.308

T1_0 2616.2 2536.8 1096 2885.4 2855.9 395.9 1.009 0.324 0.245

Dz 18.1 16.5 7.9 20.6 19.5 8.1 0.955 0.346 0.312

CTcentre 0.3 19.9 151 26.1 35.9 34.1 0.729 0.475 0.171

T3_90 0.612 0.674 0.187 0.58 0.604 0.093 0.671 0.508 0.171

T1_90 2734.4 2500.2 1205.3 2916.3 2761.6 619.5 0.586 0.563 0.15

SP2 0.0195 0.0216 0.0104 0.0147 0.0184 0.0161 0.359 0.722 0.101

SP1 73.7 42 103.5 82.7 75.5 52.8 0.338 0.738 0.086

Lline 42.5 24.4 57.8 43.4 28.9 33.6 0.061 0.952 0.016

ESUVmax maximum standardized uptake value (SUV) of early PET images, DSUVmax maximum SUV of delayed PET
images, ΔSUVmax difference between ESUVmax and DSUVmax, ESUVpeak peak SUV of early PET images, DSUVpeak
peak SUV of delayed PET images, ΔSUVpeak difference between ESUVpeak and DSUVpeak, CTmax maximum CT value
inside the nodule, CTcentre CT value at the center of the nodule, Dxy and Dz nodule diameters in trans-axial plane and
z-directions, respectively, Lmass ball-like feature, Lline line-like feature,CbCTR1-CTR2, SP1 and SP2 features of spicules,
T1_0∼T5_0 texture features for horizontal direction, T1_90∼T5_90 texture features for vertical direction

Benign cases

Malignant cases

Correctly classified

Benign cases

Malignant cases

Missclassified

5.1 / 5.9 1.5 / 1.0 1.8 / 2.2

4.3 / 5.0 4.4 / 5.26.6 / 8.2

8.0 / 10.1 4.9 / 6.5

2.3 / 3.0

Fig. 10 Classification results. Images on the left are CT images, and images on the right are early phase PET images.
The two values under each image are the standardized uptake values (SUVs) of the early and delayed PET images
(early/delayed)
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Fig. 11 ROC curves of
classification

lapped between the two classes, which makes it
difficult to distinguish between the two classes
using a single feature. Therefore, integration of
multiple characteristic features using a classifier
would be more effective.

From the ROC curves (Fig. 11), the proposed
method using the CT image and two-phase PET
images shows that the incorrect rate of detection
for benign nodules was 0.278 (accuracy rate of
0.722 for benign nodules), whereas the accuracy
rate of malignant nodule detection was 0.944.
The target nodules in this study were “difficult
nodules” for differentiation by image diagnosis
using CT and PET/CT. Most of the benign cases
were not confirmed in follow-up examinations
but were confirmed after biopsy. Our results in-
dicate that biopsy examination with its accompa-
nying physical hardship to the patient, especially
in benign cases, could be reduced by 72.2%.

In addition, compared to classification using
only CT images, the result of using PET images
together with CT improved the AUC of the ROC
curves, as shown in Fig. 11. This proves the effec-
tiveness of using both anatomical and functional
information together. Based on the results of the
p-values of the ROC curves, we found a signifi-
cant difference between analysis using CT alone
and analysis using both CT and PET images.

These results indicate that the proposed
method may be useful for improving the accuracy
of malignancy analysis.

AutomatedMalignancy Analysis
Using Lung Cytological Images

Introduction

To improve the survival rate among lung cancer
patients, early-stage detection and treatment are
necessary. CT examination is an effective diag-
nostic tool for the early detection of lung cancer
[1, 2]. If a suspicious lesion is found by CT
examination, a subsequent pathological diagnosis
is performed to check the lesion in detail.

To give a pathological diagnosis, cytological
diagnosis is first conducted using sputum,
pleural effusion, and brush during bronchoscopic
biopsy [34]. However, this is performed by
cytotechnologists and cytopathologists in a
procedure that presents some challenges. First,
these experts must detect abnormal cells among
many cells, and variations in cell morphology
further complicate the detection. The final
diagnosis by the cytopathologist usually confirms
specimens with a suspected abnormality pointed
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out by the cytotechnologist. Therefore, FNs
should be minimized at the first stage. Although
cytopathologists play an important role in
precision medicine, there is global shortage
of such professionals [35], which is a burden
on early diagnosis. Therefore, the automatic
analysis of cytological images to quantify the
grade of malignancy from samples may improve
diagnostic accuracy and shorten diagnosis time.

In this study, we developed an automated
method for classification of lung cells in
cytological images. The automated classification
for benign and malignant cells in cytology is
an important computer assisted technology not
only for cytopathologists but also for screeners.
However, to the best of our knowledge, the
classification of benign and malignant lung cells
using deep learning has not been implemented
to date. Therefore, in this section, we propose
an automated method for classification for
benign and malignant cells in lung cytological
images [36].

Materials andMethods

Image Dataset
We collected 46 cases of lung tissues and
cells by interventional cytology under either
bronchoscopy or CT-guided fine needle aspi-
ration cytology at the Fujita Health University
Hospital (Toyoake, Japan) from 2012 to 2014,
comprising 18 benign and 28 malignant cases.
The cytological specimens were prepared with
liquid-based cytology using the BD SurePathTM

Liquid-based Pap Test (Beckton Dickinson and
Company, Franklin Lakes, New Jersey) and
they were stained by the Papanicolaou method.
Using a digital still camera with matrix size of
1280 × 960 pixels (DP20, Olympus Corporation,
Tokyo, Japan) attached to a microscope (BX53,
Olympus Corporation) with ×40 objective lens,
we collected 197 images of benign and 220
images of malignant cells. To generate the image
dataset for the DCNN, patch images of 224× 224
pixels were cut from the original microscopic
images without overlapping. The patch images
were checked by a cytopathologist; an image
with at least one malignant cell was considered to
be malignant. Consequently, only when all cells
were benign was the whole image considered as
benign. The final dataset consisted of 621 patch
images, 306 of benign and 315 of malignant cells.

Network Architecture
We employed the VGG-16 DCNN model for
classification using patch images. It was released
in 2014 by the Visual Geometry Group at the
University of Oxford [37]. This model achieved
second place in the 2014 ImageNet Large-Scale
Visual Recognition Challenge due to its high per-
formance, despite it being a sequential model
with very simple architecture. In this study, we
fine-tuned a VGG-16 model pretrained on the
ImageNet dataset, which has a much larger num-
ber of training image samples than our original
dataset. For classification, we replaced the fully
connected layers of the original VGG-16 model
with three layers having 1024, 256, and 2 units,
as shown in Fig. 12. The output was given by a

Fig. 12 DCNN architecture for classification of lung cytological images (VGG-16 model)



88 A. Teramoto et al.

Fig. 13 ROC curve of patch-based classification

softmax layer. The parameters of the replaced lay-
ers were randomly initialized and fitted without
changing the parameters of other layers.

The proposed method was implemented using
the Keras and TensorFlow artificial intelligence
platforms. Training was conducted using a mini-
batch size of 32, optimization based on stochastic
gradient descent (SGD), a learning rate of 10−5,
and a momentum of 0.9. We set batch size as 32
out of 16, 32, 64, and 128 so that training loss
smoothly decreased.

Results and Discussion

The ROC curves of the patch-based classification
are shown in Fig. 13. Also, Table 3 describes the
confusion matrix of the patch-based classifica-
tion. The AUCs of the patch-based classification
using the original and augmented images were
0.801 and 0.872, respectively. The accuracies of
the patch-based classification for steps one, two,
and three of a threefold cross validation were
86.9%, 81.0%, and 70.0%, respectively. Figure
14 shows sample images of benign cells and
malignant cells.

As a result of experiments, classification ac-
curacy regarding the analyzed cases was approx-
imately 80.0%. Compared to other CNN archi-
tectures, VGG-16 has the highest classification
ability. Thus, the proposed method provides com-

Table 3 Confusion matrix of patch-based classification

Predicted Accuracy [%]

Benign Malignant

Actual Benign 194 112 63.4 Overall: 79.2

Malignant 17 298 94.6

plementary characteristics to diagnosis by cy-
topathologists and retrieves high malignancy dis-
crimination rates.

In future work, to improve classification ac-
curacy, we will increase the number of cases for
training the DCNN. Furthermore, it is possible to
apply a DCNNwith more layers. In this study, we
acquired images using a microscope with a ×40
objective lens and a standard-resolution camera
for general pathological examination. However,
improved accuracy can be expected by classify-
ing images obtained from a high-magnification
objective lens and a high-resolution camera. In
addition, in the practical diagnosis of cytology,
it is difficult to clearly classify cells as benign
or malignant due to atypical cells. In the future,
we would like to consider adding the category of
“atypical cells” to the actual diagnosis.

In this section, we proposed an automated
DCNN-based classification scheme formalignant
lung cells using microscopic images. Evaluation
results retrieved a sensitivity, specificity, and ac-
curacy of 94.6%, 63.4%, and 79.2%, respectively.
These results reveal that the proposed method
can effectively identify malignant cells in micro-
scopic cytological images.

Automated Classification of Lung
Cancer Types from Cytological
Images

Introduction

Primary lung cancers are divided into two major
types: small cell lung cancer and non-small cell
lung cancer. Recently, advances in chemotherapy
and radiation therapy [38] have resulted in the
latter being further classified into adenocarci-
noma, squamous cell carcinoma, and large cell
carcinoma [39]. It is often difficult to exactly
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Fig. 14 Sample images of (a) benign cells and (b) malignant cells

differentiate between adenocarcinoma and squa-
mous cell carcinoma in terms of morphological
characteristics, meaning an immunohistochemi-
cal evaluation is required. Furthermore, there are
many varieties of morphologies among these can-
cer cells. Therefore, computer-aided diagnosis
(CAD) can be a useful tool for avoiding misclas-
sification. Among the four major types of lung
cancer, large cell carcinoma is the easiest to detect
because it has severe atypism. In this study, we fo-
cused on automated classification of cancer types
(adenocarcinoma, squamous cell carcinoma, and
small cell carcinoma) using microscopic images
for cytology.

Various studies that apply CAD methods to
pathological images have been conducted [40–
43]. However, to the best of our knowledge,
no method has been developed to classify lung
cancer types from cytological images. Also,
“deep learning” is well known to give better
performances than conventional image classifi-
cation techniques. For example, Krizhevsky et al.
[13] won the 2012 ImageNet Large-Scale Visual
Recognition Challenge using a DCNN to classify
high-resolution images. Many research groups
have investigated the application of DCNNs to

medical images [11, 44–46]. In this study, we
developed an automated classification scheme
for lung cancers in microscopic images using a
DCNN [47].

Materials andMethods

Image Dataset
76 cases of cancer cells were collected by ex-
foliative or interventional cytology under bron-
choscopy or CT-guided fine needle aspiration cy-
tology. They consisted of 40 cases of adenocar-
cinoma, 20 cases of squamous cell carcinoma,
and 16 cases of small cell carcinoma. Final di-
agnosis was made in all cases via a combination
of histopathological and immunohistochemical
diagnoses.

The cytological specimens were prepared
with a liquid-based cytology (LBC) system
using the BD SurePath liquid-based Pap Test
(Beckton Dickinson, Durham, NC, USA) and
were stained using the Papanicolaou method.
Using a digital still camera (DP70, Olympus,
Tokyo, Japan) attached to a microscope (BX51,
Olympus) with a ×40 objective lens, 82 images
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Fig. 15 Architecture of the deep convolutional neural network used for cancer-type classification

of adenocarcinoma, 125 images of squamous cell
carcinoma, and 91 images of small cell carcinoma
were collected in JPEG format. The initial matrix
size of each JPEG image was 2040× 1536 pixels.

Subsequently, 768 × 768-pixel square images
were generated by cropping. Finally, they were
resized to 256 × 256 pixels.

Network Architecture
The architecture of the DCNN used for cancer-
type classification is illustrated in Fig. 15. It con-
sists of three convolution layers, three pooling
layers, and two fully connected layers. Color mi-
croscopic images are fed to the input layer of
the DCNN. The filter size, number of filters, and
stride for each layer are specified in Table 4. In
the last layer, the probabilities of cancer types
(adenocarcinoma, squamous cell carcinoma, and
small cell carcinoma) are obtained using a soft-
max function. During training, we employed the
dropout method (dropout rate = 50% for fully
connected layers) to prevent overfitting.

Results and Discussion

For classification of the three cancer types,
the DCNN was trained and evaluated using
augmented data. Its classification performance
was evaluated via threefold cross validation. In
this process, 298 images were randomly divided
into three groups. However, images taken from
the same specimen belonged to the same group.
By data augmentation, the number of images in

Table 4 Filter size, number of filters, and stride for each
layer of DCNN

Layer Kernel Stride Output size

Input – – 256 × 256

Convolution 1 5 × 5 × 3 1 × 1 256 × 256 × 32

Pooling 1 3 × 3 2 × 2 128 × 128 × 32

Convolution 2 5 × 5 × 32 1 × 1 128 × 128 × 32

Pooling 2 3 × 3 2 × 2 64 × 64 × 32

Convolution 3 5 × 5 × 32 1 × 1 64 × 64 × 64

Pooling 3 3 × 3 2 × 2 32 × 32 × 64

Fully connected 1 – – 64

Fully connected 2 – – 3

each class was unified to approximately 5000.
Figure 16 shows sample images of correctly
classified and misclassified cancer types obtained
using the proposed method. The classification
confusion matrix is described in Table 5. It can
be seen that squamous cell cancer was often
mistaken for adenocarcinoma.

As a result of experiments, 70% of lung
cancer cells were classified correctly. Most of
the correctly classified images had typical cell
morphologies and arrangements. In traditional
cytology, pathologists perform classification
of small cell carcinoma and non-small cell
carcinoma. The classification accuracy rate in this
case is 255/298 = 85.6%, which is considered
to be sufficient. Of the three types of lung
cancers, classification accuracy was highest for
adenocarcinoma and lowest for squamous cell
carcinoma. This result may be related to the
variation of images used for training. Therefore,
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Fig. 16 Sample images of
correctly classified and
misclassified carcinomas.
(a) adenocarcinoma; (b)
squamous cell carcinoma;
(c) small cell carcinoma

(a) A denocarcinoma

(b) Squamous cell carcinoma

(c) Small cell carcinoma

Correctly classified
images

Misclassified
images

Correctly classified
images

Misclassified
images

Correctly classified
images

Misclassified
images

Table 5 Confusion matrix of classification results

Adenocarcinoma Squamous cell carcinoma Small cell carcinoma

Adenocarcinoma 73 (89.0%) 8 (9.8%) 1 (1.2%)

Squamous cell
carcinoma

35 (28.0%) 75 (60.0%) 15 (12.0%)

Small cell carcinoma 7 (7.7%) 20 (22.0%) 64 (70.3%)

we plan to increase the number of cases of
adenocarcinoma and squamous cell carcinoma
used in future studies. Small cell carcinoma
has distinctive features, such as only a few
cytoplasms and a small nucleus. Therefore, its
image characteristics could be understood by the
DCNN from even a small number of images.

The classification accuracy of 71.1% is com-
parable to that of a cytotechnologist or pathologist

[48, 49]. It is worth noting that the DCNN is
able to understand cell morphology and place-
ment of cancer cells solely from images without
prior knowledge or experience of biology and
pathology. This is a satisfactory result because
cytological diagnosis of lung cancer is a difficult
task for pathologists. Therefore, our method will
be useful in assisting cytological examinations for
lung cancer diagnosis.
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To summarize this section, we developed an
automated classification scheme for lung cancers
in microscopic images using a DCNN. Evalua-
tion results showed that approximately 70% of
images were classified correctly. These results
indicate that the DCNN is useful for classifica-
tion of lung cancer in cytodiagnosis. In future
studies, we plan to analyze the image features
that the DCNN focuses on during classification
in order to reveal the classification mechanism
in detail. Also, we hope to develop a method
to comprehensively classify cells and arrays of
cells.

Conclusion

In this chapter, we introduced a decision support
system for lung cancer using PET/CT and micro-
scopic images. PET/CT gives useful information
for detection of lung lesions and evaluation of
malignancy, and pathological diagnosis can be
conducted comprehensively by combining exam-
inations, such as cytology and histopathology.
We believe that this system, which supports such
diagnoses, will help to diagnose lung cancer more
quickly and more accurately.

Currently, we are developing technologies that
can achieve better performance, even with a small
amount of data [50]. Because each of the in-
troduced methods was evaluated using different
cases, in the future we will proceed with verifi-
cation of whether the pipeline from detection to
definitive diagnosis works effectively using many
cases.
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Lesion Image Synthesis Using
DCGANs for Metastatic Liver Cancer
Detection

Keisuke Doman, Takaaki Konishi, and Yoshito Mekada

Abstract
This chapter proposes a method to detect
metastatic liver cancer from X-ray CT images
using a convolutional neural network (CNN).
The proposed method generates various lesion
images by the combination of three kinds
of generation methods: (1) synthesis using
Poisson Blending, (2) generation based on CT
value distributions, and (3) generation using
deep convolutional generative adversarial
networks (DCGANs). The proposed method
constructs two kinds of detectors by using
synthetic (fake) lesion images generated by
the methods as well as real ones. One of the
detectors is a 2D CNN for detecting candidate
regions in a CT image, and the other is a
3D CNN for validating the candidate regions.
Experimental results showed that the proposed
method gave 0.30 improvement from 0.65 to
0.95 in terms of the detection rate, and 0.70
improvement from 0.90 to 0.20 in terms of the
number of false detections per case. From the
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results, we confirmed the effectiveness of the
proposed method.

Keywords
Cancer diagnosis · Metastatic liver cancer ·
Cancer detection · CT image · Lesion image
synthesis · CNN · DCGAN · Poisson
Blending

Introduction

Machine learning-based lesion detection is use-
ful for liver cancer diagnosis, because cancer
diagnosis is mainly performed by doctor’s visual
check and takes much time. In the field of object
recognition, highly accurate models of convolu-
tional neural networks (CNNs), such as VGG [1],
inception [2], and ResNet [3], were proposed. We
focus on a CNN-based method to accurately de-
tect liver cancer lesions. These machine learning
techniques including CNNs, however, generally
require a massive number of training images, and
it is difficult to collect such CT or MRI case
images.

Data augmentation is performed to increase
the appearance variation of training images by
applying geometric transformations such as trans-
lation and rotation. A lesion actually has an ar-
bitrary size and occurs at an arbitrary position
in an organ, and moreover the internal condition
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Fig. 1 GANs architecture
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of a lesion differs in individual cases. Therefore,
simple data augmentation cannot cover a variety
of the lesion appearance.

In this chapter, we propose the combination
of three kinds of methods for generating
pseudo-lesions at arbitrary position and with
an arbitrary size, and show that it is effective
to use a large amount of images generated by
the proposed method for metastatic liver cancer
detection.

One of the generation methods uses Poisson
Blending [4] in order to overlay lesion images
with real lesion areas on healthy subjects’
CT images [5]. Although the method can
improve the detection accuracy, it cannot
generate various appearances of liver cancers
because it does not add any change to overlaid
lesions. Another one of the generation methods
generates lesion images considering the CT
value distribution of a liver cancer region [6].
Most of small lesions have spherical shapes,
and their concentration profiles often have
bathtub-type distributions of CT values. The
method generates lesion images based on the
distribution, and consequently, can improve
the detection accuracy. However, the problem
on over-fitting of a resultant detector may be
caused by using images generated by the method
because of the lack of variation in the generated
lesions. The last one of the generation method
uses generative adversarial networks (GANs)
[7, 8]. As shown in Fig. 1, GANs include two
kinds of networks: one is a generator that
generates fake but real-looking images, and the
other is a discriminator that distinguishes real
images from fake ones generated by the generator.
Although the generator is designed to generate
images similar to real ones in cooperation
with the discriminator, GANs have a problem

on the convergence of the learning process,
which leads to the difficulty of generating high-
quality images. A model of deep convolutional
generative adversarial networks (DCGANs) [9]
with convolution layers was proposed as one of
the solutions. In the framework of DCGANS,
noise vectors are input to a generator network,
and fake images are generated by using a
CNN with up-sampling layers. On the other
hand, a discriminator network is a CNN that
distinguished between real and fake images.
In the same mechanism as GAN, the generator
network can finally generate real-looking images,
whereas the discriminator network can finally
recognize fake images as fake.

As for metastatic liver cancer detection from
X-ray CT images, a method using fully con-
volutional networks (FCN) was proposed [10].
The method, however, has a problem on the de-
tection accuracy for small lesions with the low
liver-lesion contrast. For accurate metastatic liver
cancer detection, it is necessary to construct a
detector with training images containing the 3D
shape features of liver cancer, which requires
more variety of lesion images than the case of
2D liver cancer detection. Regarding this issue,
we propose a two-stage method for detecting
metastatic liver cancer: the first stage is to de-
tect candidate regions using a 2D CNN, and the
second stage is to validate the candidate regions
using a 3D CNN. We report the effectiveness of
the proposed method for 20 cases of liver cancer
with lesions of equal to or less than 20mm in
diameter.

This chapter is organized as follows.
Section “Proposed Method” describes the
proposed method. Next, experimental results
are reported in section “Experiments.” Finally,
section “Conclusion” concludes this chapter.
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ProposedMethod

The proposed method is composed of two steps:
one is a training step, and the other is a detection
step. Each step uses abdominal CT images of the
portal phase as shown in Fig. 2. The dataset used
in this research and the details of each step are
described below.

Dataset

We use the abdominal CT images of the portal
phase, released through the CAD contest of the
Japanese Society ofMedical Imaging Technology
(JAMIT) [11]. The contest was held for the
purpose of facilitating machine learning for liver
cancer detection. The JAMIT dataset contains
43 CT images (3D volumes) for metastatic
liver cancer. Note that each image (volume)
contains one or more metastatic liver cancer
lesions. We use these images as well as 20 CT
images for metastatic liver cancer, extracted from
3Dircadb [12]. We finally use 106 metastatic liver
cancer lesions as the dataset. The image resolu-
tion is 512 × 512. The slice thickness is 1.0mm.
The pixel spacing is in the range of 0.61mm to
0.79mm.

Lesion Image Generation

The proposed method generates various lesion
images by the combination of the following three
methods:

Method 1: Synthesis using Poisson Blend-
ing [5]
Method 2: Generation based on a CT value
distribution [6]
Method 3: Generation using DCGANs [8]

Each method is described below in details.

Method 1: Synthesis Using Poisson
Blending
Method 1 synthesizes the image region of
metastatic liver cancer with a normal CT image
using PoissonBlending [4]. First, themethod uses
GrabCut [13] in order to interactively extract the
lesion area. Next, the method resizes the lesion
area for the scale variation of the lesion, and
then overlays the lesion area (foreground region)
on a normal CT image (background region) at a
possible position. Here, the density values in the
foreground region may be largely different from
those in the background one, which leads to the
discontinuity of the density value distribution in
the synthesized image. Considering that point,

Fig. 2 Example of
metastatic liver cancer in a
CT image (the rectangles
indicate lesion regions)
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Fig. 3 Example of a lesion image generated by Method 1. (a) Original image. (b) Synthetic image
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Fig. 4 Example of the CT value profile of a metastatic liver cancer region

the method adjusts the density values of the
background region in order that the average CT
value in the foreground is equal to that in the
background. Figure 3 shows an example of an
image generated by the method.

Method 2: Generation Based on a CT
Value Distribution
The one-dimensional CT value profile of
metastatic liver cancer generally has a bathtub-
like shape because of its spherical shape, as
shown in Fig. 4. Lesion images with such a shape
can be simulated by the following function:

g(p) = f (p) − k

1 + exp(r − n(r))h(p)
(1)

n(r) = r0 + N(0, σ 2
1 ) (2)

h(p) = λ + N(0, σ 2
2 ), (3)

where p = (x, y, z) is the center coordinates of a
shadow (foreground) region, and g(p) is the out-
put CT value atp. f (p) is the original CT value at
p, and k is a parameter for controlling the contrast
between the foreground and the background, and
r is the distance between p and the center of the
synthesized lesion. N(0, σ 2) is a random value
following a normal distribution with zero mean
and a standard deviation σ . Figure 5 shows an ex-
ample of a CT value profile simulated by Eq. (1)
with n(r) = 0.
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Method 2 generates lesion images based on
Eq. (1). Figure 6 shows an example of a real lesion
image and a generated one synthesized with a
healthy person’s CT image together with their CT
value profiles.

Method 3: Generation Using DCGANs
Method 3 uses DCGANs to generate 32 × 32 le-
sion images from an input 100-dimensional value
whose element is in the range of [−1, 1]. The
network structure of DCGANs used in Method 3
is shown in Fig. 7, and the loss function of the
DCGANs is as follows:

min
G

max
D

V (D, G) = Ex∼pdata(x)

[
log D(x)

]

+ Ex∼pz(z)

[
log (1 − D(G(z)))

]
,

(4)
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Fig. 5 Example of the CT value profile simulated by
Eq. (1) with n(r) = 0

where G is a generator, D is a discriminator, and
x and z are training data and noise values, respec-
tively. The generator is trained for minimizing the
appearance difference between real and synthetic
images, and consequently, is expected to generate
synthetic images similar to real ones. Figure 8
shows an example of lesion images generated by
Method 3.

Selection of the Region of Interest
for Lesion Synthesis

Methods 1 and 2 overlay a lesion-like shadow on
the region of interest in a real CT image, which
enables to generate lesion images similar to real
ones. However, in the case of generating a lesion-
like shadow near blood vessels, the generated
shadow (pseudo-lesion) may be similar to a he-
mangioma rather than a metastatic liver cancer.
Thus, we should first detect blood vessels in a
CT image, and then select the region of interest
from those sufficiently away from thick blood
vessels. We use the multiscale filter [14] in order
to extract linear structures based on the Hessian
matrices calculated from a liver region. Let I be
an image obtained by convoluting a 3D Gaussian
filter of a scale s, and the Hessian matrix H at p
is described as follows:

(a) (b)
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Fig. 6 Examples of a real lesion CT image and a synthesized one generated by Method 2 (s1 = 0, H = λ, k = 80, and
r0 = 15). (a) Real image. (b) Synthetic image. (c) CT value profile
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H =
⎛

⎝
I (p)xx I (p)xy I (p)xz

I (p)yx I (p)yy I (p)yz

I (p)zx I (p)zy I (p)zz

⎞

⎠, (5)

where each element of the matrix is second-order
partial derivatives at p. Then, the output of the
multiscale filter Vs(p) is defined by

Fig. 7 Network structure of the DCGANs used in Method 3. (a) Generator. (b) Discriminator

Vs(p) =
⎧
⎨

⎩

0 if λ2 > 0 or λ3 > 0(
1 − exp(− R2

A

2α2
)

)
exp

(
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B

2β2

)(
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(
− S2

2γ 2

))
otherwise

,

where

RA = |λ2|
|λ3| ,

RB = |λ1|√|λ2λ3| ,
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√∑

j<D

λ2
j .
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Fig. 8 Examples of synthetic CT images generated by Method 3 using DCGANs in comparison with real ones. (a)
Real. (b) Synthetic

Fig. 9 Example of the
detection result of blood
vessel regions

Here, λi (i = 1, 2, 3) is the eigenvalue of the
matrix (|λ1| < |λ2| < |λ3|). Note that the above-
mentioned filter can emphasize CT image pixels
whose λ1 is close to zero and whose λ2 and λ3

are large values. In the experiment described later,
α = 5.0, β = 5.0, and γ was set to half the
value of the maximum Hessian norm. Figure 9
shows an example of a blood vessel region ex-
tracted in a liver region. Based on the result for
the blood vessel region detection, we can prevent
the region of interest from overlapping blood
vessels.

DetectionMethod

Figure 10 shows the detection process flow of the
proposed method. In the training step, a 2D CNN
and a 3D CNN are both trained using synthetic
lesion images generated by the three methods
described above in addition to real ones. The
detection step is divided into three stages. The
first one is candidate region detection by the 2D
CNN with a sliding window manner. The second
one is the integration of the candidate regions into
one volume by using mean shift clustering [15],
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Detection stepTraining step

Detection result

CT image

Candidate region estimation
by 2D-CNN

Integration of detection windows

Identification by 3D-CNN

2D-CNN

3D-CNN

Lesion area extraction

Lesion image generation

CT image

Fig. 10 Detection process flow of the proposed method

Fig. 11 Integration of detected regions into one volume (red dots indicate detected regions by the 2D CNN, and green
dots indicate the integrated volume)

as shown in Fig. 11. The last one is the validation
of the resultant regions by the 3D CNN. Here, the
network structures of the CNNs are both 8-layer
based on VGG [1] as shown in Fig. 12.

Experiments

We evaluated the effectiveness of the proposed
method through experiments in terms of the de-
tection rate and the number of false detections
per case (FDPC). The training data are shown in
Table 1. We used 106 cases of metastatic liver
cancer (section “Dataset”) for training, and used
20 cases of metastatic liver cancer, which were
the evaluation data in the JAMIT dataset [11], for

test. Also, We used 32 × 32 and 32 × 32 × 20
lesion CT images for training the 2D CNN and
the 3D CNN, respectively. The negative samples
for training were randomly extracted from liver
regions in non-diseased regions in CT images. For
comparative evaluation of the detection accuracy,
we constructed six detectionmodels (Models A to
F) using synthetic lesion images in addition to real
ones, while changing the combination of the three
generation methods (section “Lesion Image Gen-
eration”). Model A was a comparative method
which did not generate lesion images. Models B
to E were the modified versions of the proposed
method which used one or two of Methods 1 to 3.
Model F was the proposed method which used all
of Methods 1 to 3. Note that we did not use 3D
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Fig. 12 Network structures of the 2D CNN and the 3D CNN used in the proposed method. (a) 2D CNN. (b) 3D CNN

Table 1 Training data in
the experiments

images generated byMethod 3 for training the 3D
CNN because of too few real images to generate
valid synthetic ones.

Results

Experimental results are shown in Table 2.
Comparing Model F (the proposed method) with
Model A (the comparative one), the proposed
method gave 0.30 improvement from 0.65 to
0.95 in terms of the detection rate, and 0.70
improvement from 0.90 to 0.20 in terms of FDPC.
The increase of the positive samples would
contribute to improve the detection accuracy,
because the difference between Models A and
F was the number of positive samples for
training. The proposed method outperformed
all of the other methods. These results showed
the effectiveness of the proposed method.

Discussion

We discuss why Model F (the proposed method)
achieved the highest detection accuracy among
the detection models. Figure 13 shows the de-
tection results obtained by Models A, E, and F.
Both Models A and E could not detect the cancer
lesion, and moreover, Model E detected one false
positive. Model F, which generated lesion images
by the combination of the three generation meth-
ods, could correctly detect without false positives.
With this regard, we confirmed that Method 3
could simulate cancer lesion at the peripheral
region of the liver, which can be also seen from
Fig. 8.Method 3 generates lesion images by using
the DCGANs, which should contribute the im-
provement of the detection accuracy.

In addition, we analyzed the effectiveness
of using the DCGANs from another point of
view. We calculated the zero mean normalized

Positive samples

Synthetic lesion

Detector Real lesion Method 1 Method 2 Method 3 Negative samples

2D CNN 737 3000 3000 3000 4000

3D CNN 106 1000 1000 – 1500
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Table 2 Experimental results: detection accuracy

Image generation False detections per case

Detection model Method 1 Method 2 Method 3 Detection rate (FDPC)

A 0.65 0.90

B � 0.75 0.60

C � 0.85 0.70

D � 0.75 0.50

E � � 0.90 0.35

F � � � 0.95 0.20

Bold values show that the values are the detection accuracy obtained by the proposed method (Model F)

Fig. 13 Detection results obtained by the detection models: Models A, E, and F (the red, blue, and green rectangles
indicate a true positive, a false positive, and a false negative, respectively). (a) Model A. (b) Model E. (c) Model F

cross-correlation (ZNCC) between real lesion
images and synthetic ones for each generation
method. Figure 14 shows an example of real
lesions which could be detected by Model F.
The highest ZNCCs between the lesion image
and those generated by Methods 1, 2, and 3 were
0.69, 0.62, and 0.86, respectively. This means that
a synthetic image generated by the DCGANs was
most similar to real one among those generated
by Methods 1 and 2, which also indicates the
effectiveness of using Method 3.

Examples of the detection results obtained by
Model F are shown in Fig. 15. Model F correctly
detected the liver cancer region in the image
shown in Fig. 15a, and falsely detected at the
organ boundary in the image shown in Fig. 15b.
This would be because Model F could not suffi-
ciently learn the shape variation of liver cancer.
Also, Model F could not detect the liver cancer
region in the image shown in Fig. 15c because of

the low contrast between the liver and the lesion,
which can be improved by introducing contrast
enhancement as a preprocessing.

Conclusion

This chapter presented a method to detect
metastatic liver cancer from X-ray CT images
by a CNN. In order to construct an accurate
detector with a small number of training images,
we proposed the combination of three kinds
of image generation methods: (1) synthesis
using Poisson Blending [5], (2) generation
based on a CT value distribution [6], and (3)
generation using DCGANs [8]. The proposed
method detects metastatic liver cancer within
a two-stage detection framework: the first
one is 2D CNN-based detection as candidate
detection, and the second one is 3D CNN-
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Fig. 14 Example of real lesions which could be detected by Model F

Fig. 15 Examples of the detection results obtained by Model F. (a) True positive. (b) False positive. (c) False negative

based detection as validation for the detected
candidates. Experimental results showed that
the proposed method outperformed comparative
ones that used one or partial combination of the
three generation methods, which indicated the
effectiveness of the proposed method.

The future work includes the improvement of
the detection accuracy, for example, by intro-
ducing contrast enhancement as a preprocessing.
Also, we will study another detection frameworks
such as region proposal networks.
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Retinopathy Analysis Based on Deep
Convolution Neural Network

Yuji Hatanaka

Abstract
At medical checkups or mass screenings,
the fundus examination is effective for
early detection of systemic hypertension,
arteriosclerosis, diabetic retinopathy, etc. In
most cases, ophthalmologists and physicians
grade retinal images by the condition of
the blood vessels, lesions. However, human
observation does not provide quantitative
results, thus blood vessel analysis is an
important process in determining hypertension
and arteriosclerosis, quantitatively. This
chapter describes the latest automated blood
vessel extraction using the deep convolution
neural network (DCNN). Diabetic retinopathy
is a common cardiovascular disease and
a major factor in blindness. Therefore,
early detection of diabetic retinopathy is
very important to preventing blindness. A
microaneurysm is an initial sign of diabetic
retinopathy, and much research has been
conducted for microaneurysm detection. This
chapter also describes diabetic retinopathy
detection and automated microaneurysm
detection using the DCNN.

Y. Hatanaka (�)
University of Shiga Prefecture, Hikone-city, Japan
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Keywords
Hypertensive retinopathy · Diabetic
retinopathy · Cardiovascular disease · Retinal
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Introduction

A fundus examination is carried out at mass
screenings and medical checkups, and is effective
for early detection of systemic hypertension,
arteriosclerosis, diabetic retinopathy, glaucoma,
etc. The observation points of a fundus
examination are the condition of the blood
vessels, retina, and macula, and the shape of the
optic disc. For many years, ophthalmologists and
physicians classified retinal images as indicating
hypertension and arteriosclerosis using the Scheie
classification [1], which is shown in Table 1.
Meanwhile, for a number of patients, serious
signs can be reduced by controlling hypertension.
Because mild signs do not have enough basis,
physicians and ophthalmologists cannot give
concrete advice, such as the significance of
controlling hypertension, to patients. Wong and
Mitchell proposed a novel classification based on
a cohort study that established a connection with
grades based on retinal signs and risk factors for
cardiovascular disease [2]. The Wong–Mitchell
classification is shown in Table 2.
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Table 1 Scheie classification

Hypertension (H) Arteriolosclerosis (S)

Grade I Diffuse arteriolar narrowing Broadening of arteriolar light reflex

Grade II Grade I + Focal arteriolar constriction Grade I + Arteriovenous nicking

Grade III Grade II + Hemorrhages, Exudates Copper wire arteries

Grade IV Grade III + Papilledema Silver wire arteries

Table 2 Wong–Mitchell classification

Retinal sign Systemic association

Mild Focal/general arteriolar narrowing, Copper wiring,
Arteriovenous nicking

Mild association with risk of clinical stroke and
cardiovascular mortality

Moderate Hemorrhages, Hard exudate, Cotton wool spots,
Microaneurysm

Strong association with clinical stroke,
cardiovascular mortality and cognitive decline

MalignantOther signs + optic disc edema Strong association with death

Ophthalmologists and physicians often grade
retinal images by subjective judgment based on
visual examination. Therefore, the automated de-
tection of abnormalities and quantitative mea-
surement of tissue have been proposed. In recent
years, deep learning techniques were applied to
retinal analysis methods. This chapter describes
retinal analysis for (1) general arteriolar narrow-
ing detection in hypertension and (2) microa-
neurysm detection in diabetic retinopathy using
deep learning techniques.

General Arteriolar Narrowing
Detection

Focal or general arteriolar narrowing is on reti-
nal image is a marker of microvascular damage
from hypertension. General arteriolar narrowing
is determined by the arteriovenous ratio (AVR),
which has shown to be a useful marker in vas-
cular disease. The smaller the AVR is, the more
serious the general arteriolar narrowing becomes,
because the narrower the focal caliber of an artery,
the more serious the condition of the artery. AVR
classifies a case to normal (over 2/3), grade 1
(2/3 to 1/2), grade 2 (1/2 to 1/3), and grade 3
(under 1/3). However, this grading is only a guide.
Note that a normal AVR is 2/3 or 3/4, because
the differences between graders would be most
likely due to physician clinical experience and
University training. To detect general arteriolar
narrowing, automated measurement methods of

the artery caliber have been developed. This con-
sists of three processes: (1) blood vessel extrac-
tion, (2) automated classification of the artery and
vein, and (3) measurement of the blood vessel
caliber.

Blood Vessel Extraction

RelatedWorks
Many methods have been established for blood
vessel extraction. Most of methods were used
vessel enhanced filter or machine learning. Staal
et al. proposed a method based on image ridge
extraction using a k-nearest neighbor (kNN) clas-
sifier with properties of the patches and line ele-
ments [3]. Soares et al. proposed a method based
on a two-dimensional Gabor wavelet transform
[4]. Rangayyan et al. proposed a method using
the design of a bank of directionally sensitive
Gabor filters [5]. Ricci et al. proposed a method
using two orthogonal line detectors along with
the gray level of the target pixel [6]. Akasaka et
al. proposed a method based on ensemble learn-
ing [7]. Various authors have also proposed sim-
ple methods using a double-ring filter [8], black
top-hat transformation [9], and a combination of
these [10].

In general, determining parameters, such as
optimal filter size and shape, is difficult. A gen-
eral filtering technique depends strongly on a
preset model. The patterns of blood vessels are so
varied that it is not practical to design a flexible
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blood vessel model. Therefore, a method has been
proposed based on high-order local autocorrela-
tion (HLAC) features, which are shift-invariant
and model-free, and are appropriate for center-
shifted hotspot pattern feature extraction [11].

After approximately 2015, deep learning tech-
niques were applied to blood vessel extraction.
Fu et al. proposed a method based on combining
four parallel convolutional layers [12]. Martina
et al. proposed a method using a deep convo-
lutional neural network (DCNN) structured with
four convolutional layers and four pooling lay-
ers [13]. Dasgupta et al. proposed a method us-
ing a fully convolutional network (FCN) [14]. A
method was also proposed using a simple patch-
based DCNN [15]. The method consisted of the
preprocessing and classification of blood vessels
and non-vessels. This chapter describes this sim-
ple method.

Database
The retinal images used in this study were
obtained from the Digital Retinal Images for
Vessel Extraction (DRIVE) database [3]. This
database includes 40 retinal fundus images
that were obtained from a diabetic retinopathy
screening program in the Netherlands and are
equally divided into training and testing sets. The
images were 565× 584 pixels in size, with 24-bit
color. For each image, the manual segmentation
result for blood vessels is provided as a reference
standard.

Preprocessing
Non-uniformly illuminated images, such as reti-
nal images, exhibit local luminosity and contrast

variability. This problem could affect a DCNN,
thus global contrast normalization (GCN) [16] is
applied in general. GCN is based on an estimation
of the luminosity and contrast variability in the
background part of the image, and the subsequent
compensation of this variability in the whole im-
age.

The pixels with a high correlation of the
adjacent pixels should be removed for the DCNN.
Zero component analysis (ZCA) whitening [17],
principal component analysis (PCA) whitening
[18], etc. are well-known preprocessing tech-
niques for DCNNs. A whitening is a linear
algebra operation that reduces the redundancy in
neighboring pixels. Image features are enhanced
by the reduction in redundancy. PCA is global in
space and local in frequency, and ZCA is local
in space and global in frequency [19]. Therefore,
PCA whitening works like a high pass filter.
In the patch image, the blood vessel region is
low frequency, thus ZCA is better. However,
whitening tends to enhance the choroid layer
behind the retina. Therefore, the patch using the
green channel of the color retinal image is input
to the DCNN.

In order to choose the preprocessing method,
LeNet [20] was tested as the DCNN architec-
ture. LeNet is a well-known DCNN architecture.
In this test, LeNet was trained using each of
the 400,000 blood vessel patches and non-vessel
patches of 27 × 27 pixels in the test images
of the DRIVE database. The preprocessing can-
didates were (1) GCN + ZCA, (2) the green
channel image, and (3) the green channel im-
age + median filter, as shown in Fig. 1. The
performances were compared using the area un-

Fig. 1 Examples of preprocessed images. (a) Original. (b) GCN + ZCA. (c) Green channel. (d) Green + median
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der the curve (AUC) of the receiver operating
characteristic (ROC) analysis. The AUCs of (1)–
(3) were 0.936, 0.948, 0.939, respectively. The
GCN + ZCA image shows high contrast. How-
ever, the GCN + ZCA enhanced reflection re-
gion, so that the AUC of this method was less than
that of green channel image. The median filter
removed irregular color, as shown in Fig. 1d, but
it did not contribute to the classification of vessels
and non-vessels. Therefore, the green channel
image represented better preprocessing for blood
vessel extraction using a DCNN, contrary to the
author’s expectations.

Blood Vessel Extraction Using DCNN
Figure 2 shows the workflow of blood vessel
extraction. The green channel of the color retinal
image was extracted, and patches of k × k pixels
were extracted for the DCNN. In this section, two
simple architectures, LeNet and AlexNet [21],
were compared. LeNet consists of a convolutional
layer followed by a pooling layer, another convo-
lution layer followed by a pooling layer, and then
two fully connected layers similar to the conven-
tional multilayer perceptrons. We use a slightly
different version from the original LeNet imple-
mentation, replacing the sigmoid activations with
rectified linear unit (ReLU) activations for the
neurons. Moreover, AlexNet contained eight lay-
ers; the first five were convolutional layers, some
of them followed by max-pooling layers, and the
last three were fully connected layers. For the
training of LeNet and AlexNet, 800,000 patches

of 21 × 21 pixels were randomly selected from
the green channel of the color images. The AUCs
of LeNet and AlexNet were 0.924 and 0.889, re-
spectively. The pooling layer presented the prob-
lem of location invariance so that the blood ves-
sel region tended to get over-extracted when the
number of max-pooling layers was increased.

The patch size is an important parameter of the
DCNN. As a preliminary examination, patches
of 11 × 11, 21 × 21, and 27 × 27 pixels were
tested. The AUCs were 0.943, 0.924, and 0.921,
respectively. Therefore, the patch of 11 × 11
pixels was the best.

Finally, the outputs of the DCNN were bina-
rized using a threshold value with the highest
accuracy, and the small regions were assumed
to be noise, and removed. An example of blood
vessel extraction is shown in Fig. 3. The blood
vessels around the optic disc were extracted well,
as shown in Fig. 3d. Although no peripheral blood
vessels were extracted, they are unnecessary to
diagnosing hypertension.

Table 3 shows the performance of 11 blood
vessel extraction methods. The LeNet-based
method [15] is better than the previous feature-
based methods. The FCN-based method [14] is
the best of these methods. LeNet is a type of
classification neural network, so segmentation is
needed for the binarization process. However,
FCN uses semantic segmentation, and so a
binarization process is unnecessary. If there are
enough training data, FCN will perform better
than a classification neural network.

Fig. 2 The flow of blood vessels extraction. (a) The retinal images were 565 × 584 pixels in size, with 24-bit color.
(b) The color image is changed to gray scale one using the green channel pixel values. (c) All patches in the gray-scale
image are classified into blood vessels and non-vessels by using DCNN (d). The patch sizes are 11 × 11 pixels in
DRIVE and 17 × 17 pixels in INSPIRE-AVR
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Fig. 3 Examples of blood vessels extraction. The output of CNN (c) looks like binarized one, because almost output
values of DCNN were under 0.10 or over 0.9. (a) Original. (b) Ground truth. (c) Output of DCNN. (d) Binarized image

Table 3 Comparison of blood vessel extraction

Method Sensitivity Specificity Accuracy AUC

Feature-based methods:

Human
observer

0.776 0.973 0.947 N/A

Staal [3] 0.719 0.977 0.944 0.952

Soares [4] N/A N/A 0.947 0.961

Rangayyan
[5]

N/A N/A N/A 0.961

Ricci [6] N/A N/A 0.960 0.963

Akatsuka [7] 0.877 0.942 N/A N/A

Hatanaka
[11]

N/A N/A 0.945 0.960

Deep learning-based methods:

Fu [12] 0.715 0.977 0.943 N/A

Martina [13] 0.707 0.980 0.945 0.959

Dasgupta
[14] (FCN)

0.769 0.980 0.953 0.974

Ikawa [15]
(LeNet)

0.700 0.980 0.944 0.964

Detection of Arteriolar Narrowing
Using AVR

RelatedWorks
Niemeijer et al. proposed an AVR measurement
method by classifying arteries and veins based
on color pixels in the centerlines of the blood
vessels [22]. Dashbozorg et al. proposed amethod
correcting the graph representing the vessel tree
by applying rules based on a priori knowledge
of the retinal blood vessels [23]. Vázquez et al.
[24] proposed a classification method based on
a minimal path approach, where the vessels are
segmented, measured, and classified according

to several circumferences concentric to the optic
disc. Authors have also reported the grading of
hypertensive changes based on measurements of
the diameter of arteries and veins [25]. In this
system, the arteries and veins are classified ac-
cording to linear discriminant analysis (LDA) of
eight pixel-based features at the centerline of the
candidate blood vessel. However, this approach
was not sufficient for cases with close contact
between the artery of interest and an imposing
vein. Therefore, additional steps for accurate seg-
mentation of arteries and veins, which were not
identified using the previous method [25], have
been added to better identify major veins in the
red channel of a color image [26]. To identify
major arteries, a decision tree with three features
was used.

In order to jointly segment and classify vessels
as arteries and veins, an FCN was applied for
AVRmeasurement [27, 28]. Inces et al. presented
an approach based on an FCN that was specif-
ically adapted to artery/vein classification [27].
The performance of the method was evaluated on
the RITE dataset [29], and the accuracy was 96%
on thick vessels with an overall accuracy of 84%.
Girarda et al. also proposed a method based on an
FCN [28]. Their method involved two steps: ini-
tial semantic segmentation using a CNN model,
followed by propagation of the CNN output. The
method achieved an accuracy of 94.8% for vessel
segmentation. The A/V classification achieved a
specificity of 92.9% with a sensitivity of 93.7%
on the DRIVE database. A method using a CNN
for the simplification of the arteriovenous clas-
sification process has also been proposed [15].
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On the INSPIRE-AVR database [22], this method
classified 90% of blood vessels as arteries and
veins. This chapter describes the classification of
arteries and veins for AVR measurement.

Database
The INSPIRE-AVR database [22] was used for
the evaluation of the arteriovenous classification
method. This database contains 40 retinal images
at a resolution of 2392 × 2048 pixels, and the
AVR values were added manually by two experts.
The vessel centerlines and the vessel types la-
beled by Dashtbozorg et al. [23] were also used.

Classification of Arteries and Veins
The previous methods [27, 28] jointly extracted
and classified arteries and veins using an FCN.
However, this method extracted and classified
them separately.

The image resolution of the images in
INSPIRE-AVR is higher than those in DRIVE.
Therefore, the images were downsized to one-
quarter size (1196 × 1024 pixels), and the blood
vessels were extracted using LeNet, which is
described in section “Blood Vessel Extraction
Using DCNN.” The patch size of LeNet was
17 × 17 pixels. The binarized image was finally
resized to the original resolution.

The arteries and veins were then classified by a
patch-based DCNN. The difference in pixel value

between arteries and veins is small, so the original
color image was used for the DCNN without
normalization.

In order to determine the DCNN architec-
ture, AlexNet and GoogLeNet [30] were prelim-
inarily evaluated using the RITE database [29].
Both AlexNet and GoogLeNet were trained using
25,738 artery patches and 25,872 vein patches. At
the center of each patch there were blood vessels
labeled as artery or vein. The AUCs of AlexNet
and GoogLeNet were 0.601 and 0.620, respec-
tively. Therefore, AlexNet was applied to the clas-
sification of arteries and veins. In the preliminary
examination, the AUCwas increased by data aug-
mentation. For data augmentation gamma correc-
tion and random erasing were used on each AUC
to increase them to 0.701 and 0.713, respectively.
However, the number of patches in INSPIRE-
AVR was high enough that data augmentation
was unnecessary.

The AVR was measured using the Knudtson
et al. method [31]. The AVR is generally deter-
mined using the six largest arteries and veins on
retinal images centered at the optic disc. The AVR
measurement zone is the ring region centered on
the optic disc, which is the region between twice
the optic disc diameter to three times the optic
disc diameter, as shown in Fig. 4. Only the blood
vessel branches in the AVR measurement zone
were evaluated in this method. The method used

Fig. 4 AVR measurement
zone. AVR is calculated
using each larger six
arteries and veins in this
zone, which is the ring
region centered on the
optic disc, which is the
region between twice the
optic disc diameter to three
times the optic disc
diameter
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Fig. 5 An example of
CRAE calculation. In the
top line, blue boxes show
the highest value and the
lowest one pair. “wa” is
defined in Eq. (2). wa is
102.6 by calculation using
two blue box values

Table 4 Results of classified arteries and veins in AVR
measurement zone

Artery Vein

Number of vessel branches 84/88 64/81

Success ratio 0.955 0.790

Mean of success ratio 0.878

AlexNet to evaluate INSPIRE-AVR images and
labeled data [23]. The size of the patches in the
RGB color images and green images was 41× 41
pixels. The green channel contributed strongly to
the color images, so that patches could not be
classified using DCNN based on the RGB images
and were correctly classified using DCNN based
on the green images. Note that diameters greater
than 15 pixels were used for wider blood vessels.
When the method was evaluated using four-fold
cross validation, the AUC, accuracy, precision,
recall, and f -value reached 0.930, 0.871, 0.867,
0.896, and 0.881, respectively. However, patches
classified as artery and vein were mixed in a
certain vessel branch. Therefore, a certain vessel
branch was classified into artery and vein based
on the majority rule using classified patches. The
results of the classified arteries and veins are
shown in Table 4. The method tends to wrongly
classify narrow veins. The success ratios for the
six largest arteries and veins are shown in Table 5.
93% of arteries and veins were classified, so the
method was proven effective.

Table 5 Results of the six largest classified arteries and
veins in the AVR measurement zone

Artery Vein

Number of vessel branches 56/60 56/60

Success ratio 0.933 0.933

Mean of success ratio 0.933

AVRMeasurement
The AVR is the ratio of the central retinal artery
equivalent (CRAE) and central retinal vein equiv-
alent (CRVE),

AVR = CRAE

CRVE
(1)

where CRAE and CRVE are defined in Eqs. (2)
and (3).

wa = 0.88 × (
wb

2 + ws
2)1/2

(2)

wv = 0.88 × (
wb

2 + ws
2)1/2

(3)

where wb and ws are the wider artery and the nar-
rower artery, respectively. An example of CRAE
calculation is shown in Fig. 5. Six arteries are
sorted in descending order and divided into high
and low groups. The highest and lowest values in
each group are selected, and the arteriole diameter
is calculated using Eq. (2). In the same way,
the second arteriole diameter is calculated using
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Table 6 Results of AVR measurement

Obs. 1 Obs. 2 Niemeijer [22] DCNN

Mean 0.67 0.66 0.67 0.66

Standard
deviation

0.08 0.08 0.07 0.09

Maximum
value

0.93 0.85 0.81 0.89

Minimum
value

0.52 0.45 0.55 0.48

Table 7 Error for observer 1

Obs. 2 Niemeijer [22] DCNN

Mean 0.05 0.08 0.06

Standard deviation 0.04 0.06 0.05

Maximum value 0.29 0.21 0.23

Minimum value 0.00 0.00 0.00

the second highest and lowest values, and the
third arteriole diameter is also calculated. Then,
two arteriole diameters are calculated using three
arteriole diameters. Finally, the CRAE is calcu-
lated using two arteriole diameters. CRVE is also
calculated in the same way as CRAE.

In INSPIRE-AVR, two observers manually
measured AVR. Table 6 shows the results of AVR
measurement by the two observers, using the
Niemeijer et al. method [22] and this method.
The error for observer 1 was calculated, as
shown in Table 7. All results were similar, so
the method based on the DCNN was shown to
work effectively. The method tended to extract a
value wider than the real value of vessels with a
caliber of less than 15 pixels, thus narrow vessels
should be extracted using the DCNN trained on
narrow vessel patches.

INSPIRE-AVR did not classify into the ab-
normal and normal cases. In this section, it was
defined that the case with over 2/3 AVR is nor-
mal, and another case is abnormal. If AVRs of
observer 1 are ground truth, this database in-
cludes 22 abnormal cases and 18 normal ones.
The sensitivity, specificity, and accuracy used
DCNN were 0.77 (17/22), 0.78 (14/18), and 0.78
(31/40), respectively. On the other hands, the
sensitivity, specificity, and accuracy of observer 2
were 0.82 (18/22), 0.56 (10/18), and 0.70 (28/40),
respectively. Observer 2 tended to underestimate
AVR than observer 1, thus 8 normal cases based

on AVRs observer 1 were classified abnormal
using AVRs by observer 2. From the above re-
sults, DCNN could measure AVR quantitatively
and could classify into abnormal and normal like
human observer.

MicroaneurysmDetection

Diabetic retinopathy is a leading cause of vision
loss [32]. Early detection and treatment of dia-
betic retinopathy is critical to prevent vision loss.
It is important to detect microaneurysm early be-
cause it is an early symptom of diabetic retinopa-
thy. In screenings and periodical checkups, non-
contrast retinal images are used. However, mi-
croaneurysms appear as small dark dots in a reti-
nal image. Therefore, microaneurysm detection
in non-contrast retinal images is challenging and
difficult work.

RelatedWork

The Retinopathy Online Challenge competition,
which was focused on microaneurysm detection,
was held at SPIE 2009 [33]. The database con-
sists of 50 training images and 50 test images,
and microaneurysms marked by four people. The
result of one expert was a sensitivity of 0.49 and
1.08 false positives per image [33]. The precision
and f -values were 0.76 and 0.59, thus microa-
neurysm detection on this database was very dif-
ficult. Niemeijer et al. also provided a comparison
of five methods using this database [33].

Several research groups have been developing
automated microaneurysm detection methods us-
ing retinal images [34–39]. Adal et al. proposed
a microaneurysm detection method using two
eigenvalues based on the Hessian matrix [34],
and Antal et al. proposed a method based on
an ensemble of microaneurysm detectors [35].
Seoud et al. proposed a method based on dy-
namic shape features [36], whereas Dai et al.
proposed a method based on density gradient
vector analysis [37]. A method based on gradient
vector concentration has also been proposed [38],
as well as on combining three microaneurysm



Retinopathy Analysis Based on Deep Convolution Neural Network 115

Filter 1:
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Fig. 6 Detection of microaneurysms using DCNN. The initial microaneurysm candidates are determined by the bitwise
and of two DCNNs. Final microaneurysms are determined by false positives reduction based on neural network, which
is 3-layer perceptron, with texture and shape features

detectors: a double-ring filter, Gabor filter, and
shape index [39]. These previous methods had
many parameters to set. However, the DCNNwas
a breakthrough technique in object classification
and pattern recognition. Haloi et al. proposed a
method using deep learning with dropout using
a maxout function [40]. Chudzik et al. proposed
a method based on U-Net using fine tuning [41].
A method using GoogLeNet and feature analysis
has also been proposed [42], and this method
describes in this section.

Database

The Retinopathy Online Challenge database [33]
is quite well known and well used. However, the
ground truth in the test images is not available, so
researchers use the Standard Diabetic Retinopa-
thy Database Calibration level 1 (DIARETDB1)
[43], E-OPHTHA [44]. This section describesDI-
ARETDB1. This database consists of 28 training
images with 83 microaneurysms and 61 test im-
ages with 100 microaneurysms. The image reso-
lution is 1500× 1152 pixels. All microaneurysms
were determined by four experts.

Methods

This method involved preprocessing, microa-
neurysm detection using the DCNN, and
reduction of false positives using 48 image

features, as shown in Fig. 6. In general, a normal
image or an image with applied whitening is
input to the DCNN. Otherwise, the DCNN
learns image features during the training
process. However, a microaneurysm is very
small and low contrast, so the DCNN cannot
learn the microaneurysm feature. The ZCA
cannot enhancemicroaneurysm effectively either.
Therefore, the microaneurysm is enhanced using
specific filters. The DCNN also detects many
false positives because microaneurysm detection
is very difficult. Therefore, another DCNN also
detected microaneurysms, and the candidate
detected by both DCNN was determined to be
microaneurysm candidates. Finally, the false
positives were removed using 48 image features.

Preprocessing
The contrast between a microaneurysm and the
retinal area is highest in the green channel of a
color image. Therefore, we obtained green chan-
nel component images for blood vessel extrac-
tion and microaneurysm detection. Differences
exist in the contrast of microaneurysms in retinal
images. To reduce the adverse effects of these
differences on image processing, a double-ring
filter, Gabor filter, and shape index based on the
Hessian matrix, which were used in a previous
method [39], were applied during preprocessing.

The double-ring filter enhances a microa-
neurysm candidate region using the difference
between the outer-ring region and the inner-circle
region, as shown in Fig. 7.
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Fig. 7 Structure of
double-ring filter. Region
A means a microaneurysm
region, region C means
around of microaneurysm
region, and region B means
a gap of region A and B

O (i, j) = 128 − (TH (i, j) − Amean (i, j)) (4)

where TH(i, j) is the threshold value determined
with the p-tile method in an outer-ring region
(region C), and Amean(i, j) is the mean of the pixel
values in an inner-circle region (region A).

The Hessian matrix is a square matrix of func-
tions derived by second-order partial differentia-
tion. Shape index S is defined using two eigenval-
ues (λ1 ≥ λ2) of the Hessian matrix.

S =
⎧
⎨

⎩

− 2
π

tan−1 (λ1+λ2)

λ1−λ2
(λ1 
= λ2)

− 1 (λ1 = λ2 > 0)

1 (λ1 = λ2 < 0)

(5)

where S = −1 means that the distribution is
cup shaped. The pixel distribution of a typical
microaneurysm is similar to a cup.

TheGabor filter enhances a specific frequency.
It is represented as follows:

g (x, y) = exp

(
−x ′2 + γ 2y ′2

2σ 2

)
cos

(
2π

x ′

λ

)

(6)

where

x ′ = x cos θ + y sin θ, y ′ = −x sin θ + y cos θ

(7)

where λ is the wavelength, γ is the aspect ra-
tio, σ is the standard deviation of the Gaussian

function, and θ is the angle. The filtered image
takes the maximum value of g(x, y) by setting
θ = 0, π /12, 2π /12 . . . , 11π /12. The sizes of
the microaneurysms also vary; thus, three values
of the wavelength λ = λa, λb, λc are defined,
and their outputs are Ga(i, j), Gb(i, j), Gc(i, j),
respectively. In the microaneurysm regions, the
outputs of the Gabor filter are given negative
values. Therefore, the output Ggbr(i, j) is deter-
mined to have the minimum value of the filtered
values.

Ggbr (i, j) = min {Ga (i, j) , Gb (i, j) , Gc (i, j) ,}
(8)

Figure 8 shows examples of a microaneurysm
enhanced by three filters. The shape index is the
strongest enhancer of these filters, but this filter
wrongly enhanced a narrow vessel. By combining
the outputs of three filters, the microaneurysm is
enhanced effectively.

MicroaneurysmDetection Based
on DCNN
Microaneurysms were detected using the DCNN.
It scans the entire image and performs microa-
neurysm prediction for every pixel, based on the
image patch. One DCNN was input with an en-
hanced image patch, and another DCNN was
input with the green channel image of the color
image patch. The size of the patch was 21 × 21
pixels.
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Fig. 8 Examples of enhancedmicroaneurysm. Themicroaneurysm is located in the center of image. (a) Original image.
(b) Double-ring filter. (c) Shape index. (d) Gabor filter

GoogLeNet (Inception-v1) [30] was used
for both DCNNs. GoogLeNet won in the
ILSVRC2014 (ImageNet Large Scale Visual
Recognition Competition), at which time the
inception module was first introduced. The key
of the inception module is to structure multiple
convolutions with multiple filters and pooling
layers simultaneously in parallel within the same
layer (the inception layer). For example, the input
obtained from the previous layer goes through
1 × 1, 3 × 3, and 5 × 5 convolutions, as well as
max pooling simultaneously and is concatenated
together as output. Therefore, users do not have
to think about which filter size should be used for
each layer.

Two hundred forty-six microaneurysms from
the 83 microaneurysms in DIARETDB1 and
the 163 microaneurysms in the Retinopathy
Online Challenge database were used for DCNN
training. Because the number of microaneurysms
was too low, the microaneurysm patches were
augmented from 246 to 2460 microaneurysm
patches using 9 kinds of image processing, which
were horizontal inversion, vertical inversion,
horizontal–vertical inversion, moving themicroa-
neurysm to 4 corners, smoothing, and gamma
correction. In a preliminary examination, 23
kinds of image processing, which were horizontal
inversion, horizontal–vertical inversion, moving
the microaneurysm in 8 directions (4 corners,
upper, lower, right, and left), 2 kinds of gamma
correction, and 11 kinds of rotation (30, 60,
90, . . . , 330 degrees), were tested as data
augmentation techniques. As a result, using 9
kinds of data augmentation was shown to be

better than using 23 kinds of augmentation.
Therefore, we used 2460 normal patches and
2460 augmented microaneurysm patches to train
the DCNN.

Reducing the Number of False Positives
The candidate microaneurysm regions included
so many false positives that the candidates were
classified into microaneurysms and false posi-
tives using three-layer neural network with 48
features [38]. The neural network parameters,
which are objective functions, included the num-
ber of units in the hidden layer, weight decay,
upper number of cycles, random number seed,
and each weights of units, were set by a grid
search. Note that the candidates with clear outlier
feature values were removed before being input
to the neural network.

The 48 features consisted of shape, pixel inten-
sity, location, and statistical texture features. The
shape features were area, circularity, length-to-
width ratio, and the number of labels in a region of
interest, and they were calculated in the binarized
image. The color intensity features were mean
value in RGB, max-min pixel value, contrast,
double-ring filter values, and values of another
double-ring filter [8], and they were each calcu-
lated in the red, green, and blue channel images.
The similarity of blood vessels was calculated
in the green channel image as a gray intensity
feature. The nearest distance from blood vessels,
and the distance to the ordinate and abscissa from
the optic disc were calculated in the binarized
image as location features. Finally, 12 kinds of
Haralick features [44] based on the co-occurrence
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matrix, 2 kinds of Weszka features [45] based
on the gray level difference statistics, and each
of 5 kinds of Galloway features [46] of the 0
and 90 deg run-length matrices were calculated
in the green channel image as statistical texture
features.

Examination
Using test images from the DIARETDB1
database, the method based on the DCNN was
tested using free-response ROC (FROC) curves,
as shown in Fig. 9. The results of the three
filter-based methods [39] and the FCN-based
method [41] are also shown in Fig. 9. The overall
performance of the DCNN-based method was
superior to the other two methods. In this result,
the previous false positive reduction method [39]
was applied to the proposed method with no
change. Therefore, the false positive reduction
method should improve the method.

Figure 10 shows an example of results using
the DCNN with the reduction in false positives.
The DCNN detected many false positives, but
the false positive reduction step removed all false
positives in this case.

The performance results of the proposed
method showed that the sensitivity was 90% for
8.0 false positives per image. One of the problems
of the previous method [39] was the existence of

too many rules. Several parameters, such as the
threshold values of the double-ring filter, Gabor
filter, and shape index, as well as parameters
for combining the microaneurysm detectors,
were all experimentally determined from test
results. In the DCNN-based method, although
it was necessary to determine the parameter
enhancement filter, the other parameters could
be automatically learned. The method could be
further improved by optimizing the network
architecture and adding a post-processing
method.

Conclusion

This chapter describes automated blood vessel
extraction and automated microaneurysm
detection using a DCNN. Although the study
of blood vessel extraction using FCN is popular,
classic DCNNs like LeNet, AlexNet, etc. are also
effective for blood vessel extraction. Moreover,
AlexNet can perform classification of arteries and
veins without over-fitting. It is difficult to detect
microaneurysms because they are very small and
have low contrast. However, the DCNN detects
them by improving the images input into the
DCNN. This chapter showed that the DCNN
works effectively for retinal image analysis. The
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Fig. 10 Example of microaneurysm detection. Left image shows a result of microaneurysm detection using DCNN
without false positives reduction. Right image shows a final result. Green circle shows true microaneurysm, and white
circles show false positives

proposal of a useful method based on the DCNN
is hoped for in the future.
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Diagnosis of Glaucoma on Retinal
Fundus Images Using Deep Learning:
Detection of Nerve Fiber Layer Defect
and Optic Disc Analysis
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Abstract
Early detection of glaucoma is important to
slow down progression of the disease and to
prevent total vision loss. Retinal fundus pho-
tography is frequently obtained for various eye
disease diagnosis and record and is a suit-
able screening exam for its simplicity and low
cost. However, the number of ophthalmolo-
gists who are specialized in glaucoma diag-
nosis is limited. We have been studying au-
tomated schemes for detection of nerve fiber
layer defects and analysis of optic disc defor-
mation, twomajor signs of glaucoma, in assist-
ing ophthalmologists’ accurate and efficient
diagnosis. In this chapter, our recent progress
in computerized methods is discussed.
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Introduction

Glaucoma is the second leading cause of vision
loss in the world, and the number of affected
patients is expected to increase in the aging so-
ciety up to about 80 million by 2020 [1]. Damage
to retinal nerves cannot be recovered; therefore,
the early detection and appropriate treatment are
important to cease or slow down the progres-
sion for preventing total blindness. However, due
to slow progressive nature, patients stay asymp-
tomatic during the early stages, resulting in delay
of diagnosis. In fact, a population-based preva-
lence survey of glaucoma in Tajimi, Japan showed
that 93% of the primary open-angle glaucoma
patients were previously undiagnosed, suggesting
the need for an effective screening paradigm [2].

Retinal examination using fundus photographs
is rather simple and relatively inexpensive way
for screening glaucoma. It is a common exam
performed at general ophthalmologic visits for
diagnosis, clinical record, and treatment follow-
up. Some of the early signs of glaucoma found
in fundus photographs include retinal nerve fiber
layer defect (NFLD) and optic disc deformation.
Generally NFLD development precedes an occur-
rence of morphologic change in optic disc and
visual field defects. NFLD appears as a strip- or

© Springer Nature Switzerland AG 2020
G. Lee, H. Fujita (eds.), Deep Learning in Medical Image Analysis,
Advances in Experimental Medicine and Biology 1213,
https://doi.org/10.1007/978-3-030-33128-3_8

121

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33128-3_8&domain=pdf
mailto:chisako-muramatsu@biwako.shiga-u.ac.jp
https://doi.org/10.1007/978-3-030-33128-3_8


122 C. Muramatsu

Fig. 1 Retinal fundus photograph with NFLD. NFLD is observed between arrows

Fig. 2 Variation in identification of NFLD regions by two ophthalmologists. NFLD regions were marked by two lines.
Ophthalmologist A identified three NFLDs, whereas ophthalmologist B marked only one NFLD

Fig. 3 Non-glaucomatous and glaucomatous disc im-
ages. Cup region (generally more bright region inside the
optic disc) is enlarged in glaucomatous eye

wedge-shaped region darker than the surrounding
retina as shown in Fig. 1. Some early, localized
defects are very subtle, and assessment by experi-
enced ophthalmologists could even differ (Fig. 2).

As the disease progresses, optic cup is en-
larged. Figure 3 shows the non-glaucomatous and

glaucomatous discs. Usually the cupping or rim
thinning is more apparent in upper or lower tem-
poral sides of optic disc in early stages. Therefore,
the ratio of vertical diameters of cup and disc
is considered as a diagnostic index. However, it
is hardly measured during the clinical practice.
Even if it is measured, it is prone to intra-reader
and inter-reader variations [3, 4], as shown in
Fig. 4. Furthermore, the number of ophthalmolo-
gists specialized in glaucoma diagnosis is limited.
Computerized analysis of fundus images could
assist ophthalmologists in accurate, efficient, and
consistent diagnosis by providing suspected con-
dition, location, and quantitative information. We
have been studying the computerized methods
to detect NFLDs and to analyze optic disc for
assisting early diagnosis. In this chapter, our re-
cent progress in the computerized methods is
introduced.
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Fig. 4 Variation in optic disc and cup sketches between three ophthalmologists. Blue and green lines specify disc and
cup regions, respectively

RelatedWorks

There have been many studies on computer anal-
ysis of fundus images for diagnosis of glaucoma.
Conventional analysis on NFL includes studies
for estimatingNFL thickness [5] and for detecting
NFLDs [6, 7] based on image features such as
texture features using classifiers such as a support
vector machine and random forest. Other studies
proposed various methods to segment cup and
disc regions for calculation of cup-to-disc ratio
[8–11].

Recently these methods have been replaced
by ones using deep learning. Panda et al. pro-
posed NFLD detection method based on intensity
profile analysis [12]. After the NFLD boundary
candidates were found, they used a convolutional
neural network to differentiate between true and
false boundary patches.Medeiros et al. trained the
ResNet [13] to estimate average NFL thickness
from retinal fundus images [14]. The input data
were the photographs of the disc region, and
the teacher data were the measurement from the
optical coherent tomography (OCT) of the corre-
sponding patients. They obtained the correlation
coefficient of 0.83 between the predicted values
and OCT measurements.

Since the first-reader or prescreening type of
diagnostic system for diabetic retinopathy has
been approved by the Food and Drug Adminis-
tration, Christopher et al. investigated the possi-
bility of such a system for glaucoma [15]. They
compared the performance of the popular net-
works, namely, VGG16 [16], inception-v3 [17],
and ResNet50 [13] for classification of glauco-

matous optic neuropathy (GON) and non-GON
disc images. They obtained the area under the
receiver operating characteristic curve (AUC) of
0.91 using ResNet. The heatmap analysis indi-
cated the importance of inferior and superior parts
of neuroretinal rim in the classification. Shibata et
al. compared their system, also using the ResNet,
with residents [18]. The classification AUC for
110 test cases by the network was higher than
those by the three residents. The network showed
the high performance for classification of chal-
lenging cases between the myopic glaucoma and
myopic normal patients.

Fu et al. proposed an ensemble network which
consists of four networks that analyze local and
global information [19]. The two networks based
on ResNet architecture take disc region images
and polar transformed disc region images to clas-
sify between glaucoma and normal. The third
network with the u-net [20] architecture takes the
whole fundus images to localize disc region and
to classify between glaucoma and normal with the
branch layers. The fourth network based on the
ResNet takes the whole images for classification
directly. They reported the superior performance
of their ensemble network compared with the
single ones.

NFLD Detection

Background

Asmentioned previously, NFLD is one of the ear-
liest signs of glaucoma that can be found on fun-
dus photographs. We have previously proposed
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a computerized method for detection of NFLDs
using a modified polar transform and the Gabor
filter [6, 21]. In the method, various handcrafted
features were designed for false positive removal
using a classifier and rule-based approach. Al-
though a good performance was obtained, use of
the empirically optimized rules was a concern.
For further improving the detection performance
and achieving robustness, we propose NFLD de-
tection systems using convolutional neural net-
works (CNNs), and discuss two types of net-
works.

ProposedMethod

Segmentation Network
The first network is based on the fully convolu-
tional network (FCN) proposed by Long et al.
[22]. The original network is trained in 3 stages:
FCN-32s consists of 16 convolutional layers and
4 pooling layers in downsampling path and an

upsampling layer with stride 32 in a single step;
FCN-16s, which is fine-tuned from the FCN-32s,
carries out upsampling in two steps and combines
the last layer and 4th pooling layer with stride 16
to output prediction; and FCN-8s, which is fine-
tuned from the FCN-16s, carries out upsampling
in three steps and combines the last layer and
3rd pooling layer with stride 8 to output pre-
dictions. The network weights were initialized
with the VGG net trained with the PASCAL [23]
dataset.

Figure 5 shows the segmentation network
used in this study. The input is the fundus image
clipped to 576 × 576 pixels and the teacher
is the binary image specifying the NFLD and
background regions. Because the NFLD regions
are relatively narrow, we removed the pool4 and
conv5 layers from the original network so that
the images are downsampled to 1/16. Two skip
connections are added from pool2 and pool3
layers. The initial weights were transferred from
the PASCAL-trained VGG16 except for the

Fig. 5 Segmentation network architecture used in this study (modified from [22]). Above the boxes are the number of
filters. Arrows specify skip connections
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removed layers, and the network was trained
at one step.

Detection Network
In our conventional method, the gold standard
was the NFLD regions specified by an expert
ophthalmologist rather than locations (e.g., center
pixels), and hence our output. It seemed natu-
ral to use the segmentation network to identify
NFLD regions. However, the goal of the diag-
nostic system is to suggest presence of possible
NFLDs and their approximate location. For this
purpose, pixel-by-pixel region determination is
unnecessary and box-based object detection is
appropriate. Therefore, we investigated the use of
a detection network and compared the results with
those by the segmentation network.

The network is based on the single shot multi-
box detector (SSD) proposed by Liu et al. [24].
It consists of the VGG layers up to conv5 layers
and several downsampling convolutional layers
to extract features and to detect target objects
at multiple scales. The pretrained weights from
VGG net are also used in the SSD. Because
the NFLD regions generally occupy only small
parts of fundus images, we removed last two

convolutional layers in this study. The network
architecture used is shown in Fig. 6.

CombinedMethod
Using the segmentation network, the probability
of being a part of NFLD regions can be estimated
for each pixel. Such information can be incorpo-
rated as a prior knowledge in the detection net-
work for improving performance. To test the hy-
pothesis, the detection network was trained with
the original image combined with the probability-
weighted image. Both the segmentation and de-
tection networks take color images as input to
utilize the pretrained VGG network. However, the
blue component of fundus images, in general, has
few information while NFLDs are most promi-
nent in the green channel, as shown in Fig. 7.
Hence in this study, we employed the green com-
ponent for all three input planes. In the combined
method, one plane is replaced by a probability-
weighted image as shown in Fig. 8.

Dataset
The images used in this study were obtained
from the database collected as a part of the Eye
Health Care Project in Tajimi, Japan [2], which

Fig. 6 Detection network architecture used in this study (modified from [24])
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Fig. 7 Color components of a fundus image. Top is the original image, and bottom three images are three color
components. Green channel has the most information regarding NFLDs

Fig. 8 Input image for the combined method using the probability-weighted image. Red and blue channels are replaced
by green and probability image, respectively, for a combined input image
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includes the clinical data and eye examination
results such as visual field test, intraocular pres-
sure, and retinal fundus images. The cases used
in the randomized study [2] were not included in
this study. The fundus photographs were obtained
with an IMAGEnet digital fundus camera system
(TRC-NW6S, Topcon, Tokyo, Japan). The origi-
nal image size was 768 × 576 pixels, which was
cropped to 576 × 576 pixels before input to the
networks.

The training set includes 81 images of left
eyes that were identified as having NFLDs on the
basis of the image finding report. These images
were retrospectively reviewed by two ophthal-
mologists independently, and 99 regions identi-
fied as NFLDs by both ophthalmologists were
considered as the gold standard in this study.

Test dataset including images of the right eyes
was collected on the basis of the image finding re-
port. None of the images was of the same patients
in the training set. The dataset includes 130 cases
with NFLDs and 131 age- and gender-matched
cases without NFLDs; one duplicate NFLD case
was excluded. One ophthalmologist reviewed the
images retrospectively and identified 203 NFLD
regions without any clinical information in the
same way as the training set.

Preprocessing
Localized NFLD regions are depicted as dark
strip-like region as shown in Fig. 1. Retinal ves-
sels, also depicted as dark tubes, can often be-
come sources of false positives. As in the con-
ventional study [6], we preprocessed the images
to remove retinal vessels before input to the net-
works. The detailed procedure for creating vessel
erased images has been described elsewhere [25].
Briefly, the retinal vessel regions are detected
using black tophat filter, and the detected regions
are interpolated by the weighted average of the
surrounding pixels. The images before and after
the vessel erasing procedure can be found in Figs.
7 and 8, respectively.

Evaluation
The performance of the proposed networks was
evaluated by the free response receiver operating
characteristic (FROC) analysis. In our previous

study, the NFLD regions were marked by the
ophthalmologists with two enclosing lines, and
the gold standard masks were created by filling
in the two lines. Using the detection network, on
the other hand, the teacher data and the output
were the bounding boxes. For fair comparison,
the NFLD masks and the outputs from the seg-
mentation network were bounded by the smallest
rectangles, and these boxes were used as the gold
standard and the results from the segmentation
network, respectively. If more than a half of the
output box overlappedwith the gold standard box,
it is counted as the true detection.

Results

Detection results using the segmentation network
are shown in Fig. 9. In these cases, the most
of the NFLD regions are correctly detected with
a few small false positives. When the detection
threshold is raised to remove some of these false
positives, true positives are also removed. On the
other hand, lowering the threshold above certain
point would not improve sensitivity as some de-
tected regions would be connected. Figure 10
shows the results by the detection network. At
a low threshold, the high sensitivity is obtained
albeit a large number of false positives. It can be
seen that many overlapped boxes with different
sizes are detected by the network.

For keeping the high sensitivity and decreasing
the false positives, the use of the segmentation
output as input data for the detection network
was proposed. The FROC curves for the three
methods are shown in Fig. 11. By the combined
method, the sensitivity is improved with the small
number of false positives. The sensitivity is 80%
at the 0.59 false positives per image.

Discussion

Fair results were obtained using both networks
with their suitable loss functions. The output
probabilities from the segmentation network
tend to be bipolarized; the pixels are marked
as a part of the NFLD regions with very high
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Fig. 9 Results by the segmentation network. From the first to the bottom rows: original images, the gold standard
regions, probability output from the network, and the detection results (green box: true detection, pink box: false positive
detection)

Fig. 10 Results of the detection network. From the first to the bottom rows: the gold standard boxes, and the detection
results at low, medium, and high thresholds
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Fig. 11 FROC curves of the proposed methods

confidence or very low confidence. Therefore,
at a certain threshold (generally very low), a
large area is detected as one large NFLD. By
the detection network, multi-size boxes are
considered; therefore, the high sensitivity can be
obtained but with a large number of false positive
boxes that are overlapped. In this study, the
probability map from the segmentation network
was employed as an input data for the detection
network because the precise segmentation is
not our goal in this study. Using the combined
method, the sensitivity was improved at
low false positive rate. Although result was
promising, further investigation is needed for
post processing methods and optimization of
the networks. Whether such system can help
physicians in fundus image diagnosis and how
to effectively display the results are our future
studies.

Optic Disc Analysis

Background

Optic disc deformation is another major finding
of glaucoma. When the retinal nerves are
damaged, rim thinning occurs. In our previous
study, we proposed computerized methods for
quantitative measurement of cup-to-disc ratio

(CDR) on stereo fundus photographs [26] and
plain photographs [27]. With the stereo images,
depth images were created, and the disc and
cup regions were segmented using the active
contour method and dynamic programing.
For the plain photographs, intensity profile
was used to determine the cup boundary. The
computed CDRs were effective in distinguishing
between glaucoma and non-glaucoma eyes;
however, it was difficult to evaluate the accuracy
of CDR, because there is no true value and
the measurements by ophthalmologists vary.
In this study, we investigated the classifi-
cation method that directly estimates the
glaucoma probability from the optic disc images
using CNN.

Methods

The network used for the classification is the
AlexNet model [28]. First, a region of interest
with 600 × 600 pixels including optic disc is
clipped on the basis of the automated disc detec-
tion result [26]. We considered three input images
for comparison: (1) an original image, (2) a vessel
erased image, and (3) a depth information com-
posite image. For (1) and (2), input images are
color images, and the vessel erased images were
created as described in the previous section. For
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Fig. 12 Depth image and RGB components of the disc
images. Red channel was replaced by the depth image

(3), depth images were created using the stereo
image pairs as described in [26]. Figure 12 shows
an example of depth image. As shown in Fig. 12,
generally the red component has little information
inside the disc region; therefore, the red plane
image was replaced by the depth image, and
the composite image was employed as the input.
Because of the small dataset, we investigated the
effect of data augmentation by rotation (±5 and
10 degrees) and intensity transformation (gamma
transformation with γ = 0.8, 0.9, 1.1, and 1.2).
The classification performance was evaluated by
ROC analysis.

Dataset

Images used in this study were obtained with
a stereo fundus camera (a prototype of WX-
1; Kowa Company, Ltd.). A stereo image
pair was saved as a single JPEG image with
2144 × 1424 pixels. The images were separated
in the middle, and the left image was employed
in this study, except for depth calculation. As
described earlier, the optic disc location was

automatically detected and the ROI was clipped.
The images were retrospectively reviewed by
two ophthalmologists experienced in glaucoma
diagnosis, and the cases in which diagnosis by
both reviewers and the result of visual field test
agreed were included in this study. The database
consists of 148 glaucomatous and 153 non-
glaucomatous cases. Only one eye per patient was
included.

From both groups, 15 images were selected for
testing and the remaining images were employed
for training. For reducing the selection bias, this
process was repeated for 10 times.

Results

Figure 13 shows the ROC curves. The vessel
removal and the depth information were useful,
although there was no statistical significant dif-
ference in AUCs using the original and vessel
erased images. Table 1 shows the AUC values and
the p-values against the result of the original im-
ages. Data augmentation was also useful; there-
fore, all three processes were performed. The
superior performance with the AUC of 0.92 was
obtained.

Discussion

In this study, we investigated the use of the vessel
erased images as this process was useful in our
previous study for creating depth images. How-
ever, in clinical practice, vessel location is im-
portant information for glaucoma diagnosis. As
the disease progresses and cup region is enlarged,
the vessels are shifted to nasal side. Sometimes,
vessel may appear from the disc edges (bayonet-
ting), as shown in Fig. 14. Although AUC was
slightly improved using the vessel erased images,
utility of the vessel informationmust be examined
in the future. The result indicated the proposed
method is useful in classification of glaucomatous
and non-glaucomatous eyes. Our future study is
to provide the location of suspicious findings that
most contributed in the classification.
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Fig. 13 ROC curves using
different input images and
data augmentation
techniques

Table 1 AUC values and p-values for classification of glaucoma and non-glaucoma images

(1) Original
(2) Vessel
removal

(3) Depth
information

(4) Data
augmentation

(5) Processes (2), (3)
and (4)

AUC 0.846 0.873 0.882 0.891 0.920

p-value – 0.08 0.03 0.008 0.00001

Fig. 14 Cases of nasal shift and bayonetting in which
vessel information is useful for glaucoma diagnosis. The
arrows specify the corresponding findings

Summary

In this chapter, we introduced our progress in
automated analysis of retinal fundus images for
glaucoma diagnosis using CNNs. The proposed
NFLD detection method is more robust and
provided the comparable performance with that
of the conventional method using empirical rules.
Computation of CDR can be useful; however,

the algorithm is trained on the suboptimal gold
standard which includes intra- and inter-reader
variation. Using the disc images, classification
performance was high. It is possible to provide
automatically learned characteristics by the
network. Our study was preliminary study with
rather small datasets. Further investigation is
needed with the large database and improved
networks.
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Automatic Segmentation of Multiple
Organs on 3D CT Images by Using
Deep Learning Approaches

Xiangrong Zhou

Abstract
This chapter focuses on modern deep
learning techniques that are proposed for
automatically recognizing and segmenting
multiple organ regions on three-dimensional
(3D) computed tomography (CT) images.
CT images are widely used to visualize 3D
anatomical structures composed of multiple
organ regions inside the human body in
clinical medicine. Automatic recognition
and segmentation of multiple organs on CT
images is a fundamental processing step
of computer-aided diagnosis, surgery, and
radiation therapy systems, which aim to
achieve precision and personalized medicines.
In this chapter, we introduce our recent works
on addressing the issue of multiple organ
segmentation on 3D CT images by using
deep learning, a completely novel approach,
instead of conventional segmentation methods
originated from traditional digital image
processing techniques. We evaluated and
compared the segmentation performances
of two different deep learning approaches
based on 2D- and 3D deep convolutional
neural networks (CNNs) without and with
a pre-processing step. A conventional method
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e-mail: zxr@gifu-u.ac.jp

based on a probabilistic atlas algorithm, which
presented the best performance within the
conventional approaches, was also adopted
as a baseline for performance comparison. A
dataset containing 240 CT scans of different
portions of human bodies was used for training
the CNNs and validating the segmentation
performance of the learning results. A
maximum number of 17 types of organ regions
in each CT scanwere segmented automatically
and validated with the human annotations by
using ratio of intersection over union (IoU) as
the criterion. Our experimental results showed
that the IoUs of the segmentation results had
a mean value of 79% and 67% by averaging
17 types of organs that were segmented by the
proposed 3D and 2D deep CNNs, respectively.
All results using the deep learning approaches
showed better accuracy and robustness than
the conventional segmentation method that
used the probabilistic atlas algorithm. The
effectiveness and usefulness of deep learning
approaches were demonstrated for multiple
organ segmentation on 3D CT images.

Keywords
CT image · Multiple organs · Image
segmentation · Deep learning · CNN ·
Patch-based training · 2D-FCN · Majority
voting
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Introduction

CT image segmentation, annotation of the target
organ regions on CT images, is a fundamental
step of the medical image analysis that is
required for diagnosis, surgery, and therapy
[1]. It is also one of the most labor-intensive
steps for clinicians. Segmentation of all organ
regions within a 3D CT image is a critical
processing step for realizing precision and
personalized medicines. Although the research
of CT image segmentation had a long history [2–
8], the conventional approaches originated from
digital image processing techniques still showed
weak performances on accuracy, efficiency,
and robustness, especially on automatically
segmenting multiple organs on the CT images
scanned for a wide range of human body.
Recently, deep learning approaches demonstrated
a high performance of scene segmentation
on pictures taken by video cameras [9, 10],
and showed the potentials to address organ
segmentation problem on medical images
[11–15]. However, there are still very few
comprehensive evaluations of segmentation
performance of deep-learning-based approaches
on simultaneously segmenting all of the major
organs on 3D CT images, which may be scanned
on various portions of human body.

CT image segmentation involves a wide range
of research topics that cannot be all covered in
this chapter. Therefore, we limit our discussion
on one of the most challenging issues, simulta-
neous segmentations of multiple organs by us-
ing deep learning [16], which can be simply de-
fined as a voxel-based annotation for all ma-
jor organ types on a 3D CT image that may
present different ranges of the human body. Gen-
erally, the performance of a deep-learning-based
approach highly depends on three factors: (1)
training dataset, (2) model size, and (3) compu-
tational capability (performance and resource of
graphics processing unit: GPU), thus our discus-
sion about deep-learning-based CT image seg-
mentation starts from these factors. In the follow-
ing, we first briefly introduce the current status
on these factors from the perspective of demand

on CT image segmentation, and then we describe
two deep learning approaches [16–20] based on
2D and 3D deep convolutional neural networks
(CNNs) without and with a pre-processing step
to accomplish multiple organ segmentation tasks.
Finally, we show a validation result by using
deep learning approaches on a CT image dataset,
which contains 240 CT scans covered different
portions of human bodies with the accurate pixel-
wise annotations of 17 types of major organs from
radiologists. The results by using a conventional
method [7] that presented the best performance of
the previous generation of methodology besides
deep learning are also presented as a baseline for
performance comparisons.

Issue of Deep Learning for CT Image
Segmentation

The input of a segmentation process is a 3D
CT image, and the output is a label map of the
same size and dimension, in which the anatomical
structures are annotated by a pre-defined set of
labels based on human anatomy. The segmenta-
tion process is simply repeating annotation for
each voxel of the CT images by using a pre-
defined rule that is either defined manually by
human experience or learned automatically from
known CT scans by a computer. Deep learning
acts as a rule-generator and stores the rule as the
parameters of a CNN to accomplish the voxel-
wise annotation. The parameters of the CNN are
learned by trial-and-error on a training dataset
with the known annotations. The structure (called
hyper-parameter) of the CNN is decided by hu-
man design in most cases and never changed dur-
ing the training stage. In general, a bigger model
(deeper CNN structure with more parameters)
trained on a bigger dataset (a larger number of
CT scans with accurate annotations) potentially
has a better performance on image segmentation.
However, the growth of the size of the model and
dataset is constrained by the compute capability
and resource of the computational hardware.

A 3D CT scan is a volumetric image data and
constructed by a series of 2D CT slices. Each
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CT slice is a 512 × 512 image matrix where
the CT numbers are stored in a format of two-
byte integer. A typical CT scan for human torso
includes about 1024 slices and consumesmemory
of 512 Mbytes in a computer or GPU. This data
size is 5000 times larger than the assumption in
most deep learning tasks (a typical input picture
is 24 bits of RGB colors stored in a 224 × 224
matrix and consumes 147Kbytes of memory). On
the other hand, the models used in most research
works for CT image segmentation are based on
the CNN architectures that originally proposed
for 2D picture recognition in computer version
tasks with the same or larger model size. For
example, two models (3D-Unets [12] and V-net
[13]) specialized to accomplish 3D medical im-
age segmentations have about 100M learning pa-
rameters, which is comparable to the other CNN
models used in computer vision research field.

Unfortunately, the current capability of com-
putational hardware (memory size of GPU) is not
sufficient enough to store and process the whole
3D CT image directly for training a deep CNN
model to accomplish a wide range of anatomical
structures recognition. A compromise way is to
divide a 3D CT image into a number of sub-
regions (2D or 3D image patches in a small data
size) and train a CNN model to recognize a large
number of fragments of human anatomy appeared
in those sub-regions. However, dividing a CT
image into a number of small pieces leads to a loss
of the global information of anatomical structures
and increases the variety of image appearances in
the training dataset that affects the performance
of deep learning. Therefore, how to decompose a
CT scan into a number of small image patches to
enable deep learning for CT image segmentation
based on current GPUs is the first issue that needs
to be clarified before considering the techniques
of deep learning.

We proposed two approaches to address the
issue mentioned above, which decompose the 3D
CT scans into patches and apply modern deep
CNNs to accomplish the multiple organ segmen-
tation task. In the next section, we will briefly
introduce our previous works [16, 17] and show
the validation results of the segmentation perfor-
mances based on a CT image dataset.

Two Approaches for Multiple Organ
Segmentations Using 2D and 3D
Deep CNNs on CT Images

Overview

Two approaches (a) decomposing a 3D CT scan
into a number of 2D sections from different ori-
entations [16] and (b) detecting the 3D-bounding
box [21] of each organ and scaling these image
regions within the bounding boxes into a fix-
sized 3D-region-of-interest (ROI) are proposed
to enable deep learning approach [17] to accom-
plish CT image segmentation based on current
GPU hardware. Two modern CNN structures,
fully convolutional network (FCN) [9], and Vnet
[13] that is based on residual network (ResNet)
[10] are used as the templates to construct our
CNN networks. Two loss functions, pixel-based
labeling loss and region-based coincidence (Dice
index) between the segmentation result and the
human annotation, are used to guide the training
process of the CNNs. Two optimization methods,
stochastic gradient descent (SGD) and ADAM
[22], were used for learning the network param-
eters. Details are described in the following sec-
tions.

Deep Learning Anatomical Structures
on 2D Sectional Images

As the core part of the approach (a), a 2D deep
learning method was applied to multiple organ
segmentation on each 2D section of 3D CT scans
[18–20]. Our approach modeled the CT image
segmentation as “multiple 2D proposals with 3D
integration” and got inspiration from the behav-
ior that radiologists interpret a CT scan from
many 2D sections on a screen and reconstruct 3D
anatomical structures mentally [20]. A 2D fully
convolutional network (FCN) [9] extended from
a VGG-16 network was used for generating the
multiple 2D proposals of organ regions from three
body directions on each CT scan independently,
and an organ–label fusion (majority vote of the
proposals) was carried out on each voxel in 3D



138 X. Zhou

Down-sampling Up-sampling

Fully convolutional network (FCN)

Down-sampling Up-sampling

Fully convolutional network (k FCN)

3D->2D image sampling 2D->3D label voting2D segmentations

Automatic recognition and 
segmentation of

anatomical structures in 
3D CT images

Implemented by Caffe deep learning frame work

Running on CUDA toolkit with GeForce GTX TITAN X

Fig. 1 The process flow of multiple organ segmentations on 3D CT images by using 2D FCN with a majority voting
[16]

CT image space [18]. In the training stage, we
decompose the 3DCT scans with annotated organ
regions into several 2D sections in three orthog-
onal body directions and treat each 2D slice with
an annotation as a training sample. The sum of
the pixel-wise classification error on 2D slices
was used as the loss function during the training
process. ADAM [22] was used as the optimiza-
tion method. In the testing stage, we applied the
trained FCN to segment partial organ regions on
each 2D section along three body directions inde-
pendently, and then integrated the segmented 2D

partial organ regions into 3D CT image space by
using a voxel-wise label fusion to obtain the final
3D segmentation result as shown in Fig. 1. The
implementation details of the processing steps
and network structures can be found in [16].

Deep Learning Local Appearances
of Multiple Organs on 3D CT Images

We proposed a 3D deep learning approach for
multiple organ segmentation [17]. Our approach
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Fig. 2 The process flow of multiple organ segmentations by combining organ localization and organ segmentation from
CT image [17]

accomplished organ segmentation through two
steps, as shown in Fig. 2. We decoupled the
organ detection and segmentation functions, and
modeled the multiple organ segmentation pro-
cesses as “detecting the bounding box of dif-
ferent organs first, and then segmenting the or-
gan region within each 3D bounding box.” The
organ detection module used in this work was
presented in our previous work [21]. This method
used a conventional machine-learning approach
based on window sliding and pattern matching in
Haar-like and LBP image feature spaces through
the entire CT image space to detect each organ
region and return the coordinates of a bounding
box as the organ location. Details of our organ
detection method can be found in [21]. The or-
gan segmentation module used a 3D deep CNN
structure derived from VNet [12, 13]. This 3D
deep CNN was constructed using a number of
3D convolutional layers based on ResNet [10]
modules with skip-connections to combine the
information in shallow and deep layers. The Dice
index between the segmented region and ground
truth was used as the loss function, and the SGD

algorithm was used for optimizing the network
parameters. In the training stage, we trained or-
gan localization and segmentation separately. We
generated the ground truth of the bounding box
for each organ type from the manual annota-
tions in each CT scan and trained a set of organ-
specific ad-hoc classifiers that detect the bound-
ing box for each organ type in CT scans. Next,
we cropped the volume-of-interest (VOI) regions
for each organ type based on the bounding box
and resized the VOIs to the same image size
(128 × 128 × 128 voxels) as the input image of
the segmentation model [17]. The annotation of
each organ region was also cropped and resized
in the same manner to retain the correspondence
of the spatial location of each voxel between the
CT image and manual annotation data. The pairs
of VOI and annotation of all organ regions in
CT scans were used as the samples for train-
ing the 3D deep CNN. In the testing stage, our
method detected the bounding boxes of all the
organ regions within a CT scan and segmented
target organ regions within the range of bounding
boxes [17].
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Conventional Image Segmentation
Approach

A conventional method presented by Okada et
al. [7] was used as the baseline for evaluating
the performance of the deep learning approaches.
This conventional method modeled the intensity
(CT number) and shape information of each target
organ by using statistic shape modeling and prob-
abilistic atlas, and combined intra-organ informa-
tion with an inter-organ relationship to guide the
segmentation process. This method was relatively
new and demonstrated the best performance for
abdominal organs segmentation than the other
conventional methods based on a large CT image
dataset [7].

Results

The performance evaluations were based on a
shared dataset produced by a research project ti-
tled “Computational Anatomy [23].” This dataset
consists of 240 CT scans from 200 patients for
the diagnosis of diverse types of lesions, obtained
at Tokushima University Hospital. These CT im-
ageswere scanned for different portions (89 torso,
17 chest, 114 abdomen, and 20 abdomen-with-
pelvis scans) by a multi-slice CT scanner (Aquil-
ion from Toshiba Medical Systems Corporation)
and reconstructed by different protocols and ker-
nel functions, leading to different image resolu-
tions (distributed between 0.625 and 1.148 mm
with 1.0 mm slice thickness) and different image
quality (specialized for lung or abdominal ob-
servations). Contrast media enhancements were
applied in 155 CT scans. The anatomical ground
truth (a maximum of 19 labels that show 17major
organ types and 2 interesting regions inside the
human body) of 240 CT scans was manually
annotated [24] and distributed within the dataset.
Here, we only consider the 17 organ regions as
the segmentation targets for performance evalua-
tions [17].

We directly used the organ localizationmodule
that was generated based on another CT image

dataset in our previous work [21] without any
fine-tuning to adapt to above CT image database.
Because the segmentation approaches used in
this work were based on machine learning, we
used a fourfold cross-validation for performance
evaluation. We used 75% CT scans of the dataset
for training parameters of the different network
structures and tested the trained networks on the
remaining 25% CT scans. CT scans from the
same patient were only used in the same training
or testing stage. The accuracy of the segmen-
tation was evaluated for each organ type and
each CT scan. The intersection over union (IoU)
(also known as the Jaccard similarity coefficient)
between the segmentation result and ground truth
was used as the evaluation measures. Because
a CT scan may contain different organ regions,
we used a comprehensive evaluation of multiple
organ segmentation results for all CT scans by
considering the variance of the organ number
and volume. The measures (mean voxel accuracy,
mean IoU, and frequency-weighted IoU) that are
commonly used in semantic segmentation and
scene parsing [9] were employed in this study for
the evaluations. Let nij be the number of pixels
in target i classified as target j, ncl be the total
number of different targets in a CT case, and
ti = ∑

jnij be the total number of pixels in target
i. These measures are defined as:

• Mean voxel accuracy:

(∑
i
nii/ti

)
/ncl (1)

• Mean IoU:

(∑
i
nii/

(
ti +

∑
j
nji − nii

))
/ncl (2)

• Frequency-weighted IoU:

(∑
k
tk

)−1∑
i
tinii/

(
ti +

∑
j
nji − nii

)
(3)
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Fig. 3 3D views of the anatomical structure segmentation results in a CT scan by using 3D (left side) and 2D (right
side) deep CNN approaches with the human annotation (middle column) as the ground truth [17]

An example of the result of multiple organ
segmentation in a testing CT scan is shown in
Fig. 3 by using a 3D volume rendering method.
The evaluation results of deep CNNs demon-
strated that the average segmentation accuracy
of 17 types of organ over the 240 (4 × 60) test
CT scans was 67% (2D CNN) and 78.8% (3D
CNN) in terms of themean IoUs (refer to Table 1),
84.9% (2D CNN) and 89% (3D CNN) in terms
of the frequency-weighted IoUs, and 86.1% (2D
CNN) and 88.4% (3D CNN) in terms of the mean
voxel accuracy [17].

We tested the conventional method presented
by Okada et al. [7] based on the same training
and testing CT images by using their system for
both model construction and organ segmentation.
Because this conventional method was only ap-
plied to abdominal CT scans, our experiment was
limited to seven organ types including liver, gall-
bladder, left and right kidneys, spleen, pancreas,

and veins. The experimental results showed that
the average segmentation accuracy of seven types
of organs was 59% in terms of the mean IoUs,
which was lower than the results of the 2D and
3D CNN approaches [17].

The deep CNNs used in this work were imple-
mented based on Caffe deep learning framework
[25]. The computing time for training a 3D deep
CNN was about three days. This was longer than
the time taken for training a 2D deep CNN net-
work, which is approximately one and a half days
based on a GPU (NVIDIA Quadro P6000 with 24
GB of memory). The organ segmentation for one
testing 3D CT scan with a 512 × 512 × 221 ma-
trix took approximately 3 min by using a trained
deep CNN. The efficiency in terms of system
development and improvement of 2D and 3D
deep CNN approaches was better than that of
the conventional method that used a CPU based
approach [17].
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Table 1 Accuracy evaluations in terms of mean
value of IoUs for 17 target types between segmenta-
tion and ground truth in 60 test CT cases [17]

Organ type 3D-Deep CNN 2D-Deep CNN

Right lung 95.1 93.9

Left lung 94.4 93.5

Heart 89.0 86.0

Aorta 81.0 72.5

Esophagus 57.4 34.7

Liver 91.1 90.8

Gallbladder 80.6 61.3

Stomach 56.8 46.0

Spleen 91.3 83.5

Right kidney 89.6 83.7

Left kidney 89.6 82.4

Inferior vena cava 74.3 55.6

Portal vein 58.7 33.3

Pancreas 65.7 46.0

Bladder 86.7 68.1

Prostate 74.2 47.0

Uterus 63.7 42.7

Discussions

Segmentation Performances

We confirmed that the most anatomical structures
were segmented correctly by using deep CNN
based approach except for few very small organs
such as gallbladder and prostate. 3D deep CNN
highly related on the bounding box detected by
the pre-processing and showed relatively better
IoUs than 2D deep CNN method. However, we
found the 2D deep CNN was simpler and more
practical. It automatically adapted to the differ-
ent portions of the CT scans and successfully
segmented target organs within the CT images
without any need of operator intervention or pre-
defined parameters that was impossible in the
previous works. Three examples of using the 2D
deep CNN to accomplish the multiple organ seg-
mentations on torso, chest, abdomen CT scans
were shown in Fig. 4. Because the segmentation
targets cover a wide range of shapes, volumes,
and sizes, either with or without contrast enhance-
ment, and come from different locations in the

human body, these experimental results offer an
excellent demonstration of the capability of deep
CNN approaches to recognize the major anatom-
ical structures in the types of CT images actually
used in clinical medicine [16].

We investigated the mean IoUs of each organ
type by using 2D and 3D deep CNN. The IoUs
of the segmentation results have a relation to the
volume of the target region. We found the IoUs of
the organs with larger volumes (e.g., lung, liver)
were satisfied (IoUs were greater than 90%) and
differences between the segmentation results by
2D and 3D deep CNN were not large. However,
for some smaller organs (e.g., gallbladder, uterus)
and stomach contents (which have not previously
been reported), the 3D deep CNN produced a
relatively higher IoU than 2D deep CNN, but
the performance was still not good enough (IoUs
were less than 70%). The significant degrada-
tion on IoU (20% or more) may occur on three
reasons: (1) The spatial resolution of CT images
was not enough to provide rich image textures
for the deep learning to find the discriminative
features for recognition and segmentation of such
small regions. (2) The lower pixel-occupancy of
such small organ regions on CT images caused a
smaller weight in loss value during the training
process, which decides the importance and prior-
ity of target organ during the segmentation pro-
cess. That’s means the small organs sometimes
were ignored by the segmentation process. (3)
The instruction signals for small organs with a 3D
tube- or line-shape were relatively expensive to
be annotated manually and had a smaller number
in our dataset, which may cause an insufficient
learning for segmenting such kinds of organs.
In our approach based on 3D deep CNN, we
used a pre-processing (detecting bounding box
to balance the volumes of background and target
organ on input images and normalize the spa-
tial resolution of each organ type, using a data
augmentation to balance the numbers of differ-
ent organ types in training dataset) to address
these concerns described above, and confirmed a
significant improvement on IoUs on such small
organ types comparing to the results from the 2D
deep CNN [17].
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Fig. 4 (a) Three examples of segmentation by using a 2D deep CNN in 3D CT case covering torso (upper), chest
(middle), and abdomen (lower) regions along with segmented regions labeled with different colors for one 2D coronal
CT slice (middle column) and 3D visualization based on surface-rendering method (right column). (b) Corresponding
ground-truth segmentations for three cases [16]

Training Protocol and Transfer
Learning

In our paper [16], we compared two different
training protocols for 2D deep CNN for CT
image segmentation. We firstly trained a 2D
CNN network based on “learn from scratch” that
was simply initializing all parameters of 2D deep
CNN to a small number with zero mean and
confirmed no convergence was observed within
80,000 learning iterations, and the network then
failed to segment any of the targets in the test
dataset. And then, we fine-tuned our network
using which is pretrained using ImageNet
[26], convergence was achieved after 22,000
iterations. The trained network fine-tuned in
80,000 learning iterations could segment multiple
organs successfully in CT images from both the
testing and training datasets. This demonstrates
that comprehensive knowledge learned from
large-scale, well-annotated datasets [26] can be
transferred to our network to accomplish the CT
image segmentation task.

In the case of training 3D deep CNN, we
have to “learn from scratch” because there was
no pre-trained model that can be used as the start
point for fine-tuning the 3D CNN networks [17].
We tried to use modern initialization methods
[27, 28] at the beginning of training our 3D deep
CNN. The experimental result demonstrated
that the convergence of our 3D deep CNN
was observed after 5000 learning iterations and
the segmentation performance was stable and
satisfied at 40,000 learning iterations. A suitable
initialization was the key to accomplish a suc-
cessful deep learning for CT image segmentation.
We found that these novel initialization methods
[27–29] were also helpful for training a 2D deep
CNN from scratch. The transfer learning based
on pre-trained models was helpful for training
process to reach a convergence of the loss
values quickly and output a useful result,
but it did not affect the final performance
of the trained CNN to accomplish multiple
organ segmentation on CT images in our
works.
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We compared the performance of 2D deep
CNN networks optimized by SGD and ADAM
methods with the same training protocols. The
segmentation results on the test data indicate that
the network trained by ADAM offers slightly
better performance (up by 0.3% in voxel accu-
racy, 0.15% in frequency-weighted IoU) than that
trained by SGD. Because the learning rate does
not need to be tuned in ADAM and the default
parameters are likely to achieve good results [16].

The performance of the CNN network was
affected by the number of training iterations. We
compared the segmentation results on the test
dataset given by 2D deep CNN networks after
80,000, 160,000, and 550,000 training iterations.
We found that 160,000 iterations were sufficient
to train the network. Further training iterations
may improve the segmentation accuracy of some
organ types, but could not improve the overall
performance across all organ types [16].

Comparison to Conventional
Methods

The previous studies most closely related to our
work are those of Udupa et al. [8], Wolz et al. [6],
Okada et al. [7], and Lay et al. [5]. Common to
all these works is that they focused on multiple
organ segmentation in CT images, as in our study
[16, 17]. Among these works, the coarse-to-fine
approach has been used and demonstrated a good
performance. A typical scheme of this coarse-to-
fine approach is to recognize the rough location of
a target organ firstly and then extracts the accurate
organ contour to separate the target region from
the background on CT images. The core part is to
generate some models (e.g., fuzzy model, prob-
abilistic atlas, active shape model) manually to
store distributions of handcrafted features, which
relate to anatomy within a training dataset, and
use these models to guide/constrain the conven-
tional image processing to accomplish multiple
organ segmentations.

We broke down the black-box of learned 2D
deep CNN and aimed to interpret what was inside
the training result (the contents that learned from
the CT dataset) [16]. We surprisingly found that

the learned deep CNN also naturally followed
a coarse-to-fine approach to accomplish the im-
age segmentation as same as the previous works
described above [16]. The 2D deep CNN struc-
ture used for image segmentation in this work
was constructed by two connected blocks: down-
sampling path and up-sampling path (Fig. 5) with
a skip-connection [9, 12]. We found that the CNN
layers in down-sampling path accomplished the
recognition of different organs and outputted a
rough location (score of down-sampling path at
lower part in Fig. 5) of each target region on a CT
image, which likes the function of probabilistic
atlas used in conventional methods. The layers
in up-sampling path of CNN gradually recovered
the contour of each target organ (refer to up-
per part in Fig. 5), which likes the conventional
contour decisions. Because the contour presents
the shape of the target organ, we can say that
the deep CNN learned the organ shapes from
the training CT images and use it to recover
the contour of the target organ regions on an
unseen CT image, which was just the aim and
usage of the shape modeling used in the previous
works. This result demonstrated that the deep
CNN implicitly learned the same policy that had
been proved useful for CT image segmentation
in conventional methods based on the human
experience.

Our experimental results showed that the CNN
models had much better flexibility and capabil-
ity to fit the variance of organ appearances than
the hand-crafted modes [7], which caused a few
failures (IoU was equal to zero) for some organs
segmentation in our testing stage. The improve-
ments on generality of CT image segmentation
by using deep CNNs were demonstrated on the
test CT scans. We believe this improvement was
because of the model size (parameters) of the
deep CNN was much bigger than the handcrafted
models in conventional method [7] and more CT
scans could be used for training the model than
previous works [7].We found that training a CNN
model took more computing time (daily basis
on GPU) than manually generating the atlas and
shape models (hourly basis on CPU) in previ-
ous work [7], large model, efficient model opti-
mization with more CT scans for model training
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Fig. 5 Insight of learned 2D deep CNN [16]. Lower: outputs of middle layers and final result of down-sampling path;
Upper: outputs before and after the first deconvolution layer

demonstrated the advantage of deep learning for
CT image segmentation.

We compared the IoUs of champion data on
major organ types segmented by 2D deep CNN
and the conventional method [7] that used hand-
crafted models. We could not observe a signif-
icant difference. In the cases that only a very
small dataset can be used for system design, the
computation capability of the hardware is not
strong enough, and the target organ for segmenta-
tion has a relatively small variance on CT image
appearance, the conventional approach based on
handcrafted models may be still useful and prac-
tical for developing organ segmentation scheme
on CT images.

Computational Efficiency

Deep CNN based segmentation process showed
a high computational efficiency because of its
simple structure (matrix calculations) that effi-
ciently operated by GPU-based implementation.
The computing time for training a 3D deep CNN

was about three days. This was longer than the
time taken for training a 2D deep CNN network,
which is approximately one and a half days based
on a GPU (NVIDIAQuadro P6000 with 24 GB of
memory). The organ segmentation for one testing
3D CT scan with a 512 × 512 × 221 matrix
took approximately 3 min by using a trained 3D
deep CNN [17]. In the case of 2D deep CNN,
the computing time for multi-organ segmentation
of one 2D CT slice takes approximately 30 ms.
These computing times were much faster than the
conventional method [7] to segment one abdomi-
nal CT scan based on a CPU (Intel core i7).

We found that the efficiency of deep CNN
based approach in terms of system development
and improvement was much better than that of
previous works that attempted to incorporate
human specialist experience into complex
algorithms for segmenting different organs
[16]. Furthermore, neither the target organ
type, number of organs within the image, nor
image size limits the CT images that are used
for the training process. Although labeling
the anatomical structures in CT images as the
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training samples still takes time, this burden can
be reduced using bespoke and advanced semi-
automatic algorithms [16].

Conclusion

We proposed two approaches [16, 17] to ap-
ply modern deep learning techniques to recog-
nize and segment anatomical structures from 3D
CT images based on current computer hardware
(GPU). In our methods, 3D CT images are de-
composed into two kinds of image patches with
small image size and they are fed to 2D and 3D
deep CNNs to accomplish the segmentations for
17 types of organ regions on 240 CT scans. The
accuracy of the segmentation results by using
these approaches was evaluated based on fourfold
cross-validation and compared with a conven-
tional method.

We confirmed that (1) our proposed ap-
proaches combined with deep learning demon-
strated a better performance (especially in terms
of robustness and generality) for CT image
segmentations than the conventional method.
(2) Deep CNN showed capability to learn the
fractional appearance of the 3D anatomical
structures on CT image patches that had a large
variance based on relatively a small number of CT
scans. (3) The performances of 2D and 3D CNN
were comparable for segmenting the massive
organ types with a large volume. A 3D CNN
showed a better accuracy of segmentation for
small volume organ types with a tube- or line-
shape [17].

In conclusion, the deep learning approaches
showed better accuracy and efficiency for multi-
ple organ segmentations on 3D CT images than
the conventional approaches. The issue of CT
image segmentation may be addressed more suc-
cessfully by using deep learning with the growth
of the computational capability and more CT data
for training in the future.
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Abstract
The skin is the largest organ of our body. Skin
disease abnormalities which occur within the
skin layers are difficult to examine visually
and often require biopsies to make a confir-
mation on a suspected condition. Such inva-
sivemethods are not well-accepted by children
and women due to the possibility of scar-
ring. Optical coherence tomography (OCT)
is a non-invasive technique enabling in vivo
examination of sub-surface skin tissue with-
out the need for excision of tissue. However,
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Introduction

Skin is the largest organ of the integumentary
system which acts as an outer covering of our
body. It is composed of three main layers, namely
epidermis, dermis and hypodermis. Epidermis is
the outermost layer that protects the body from
the environment. Its varying thickness depends
on factors such as anatomical sites, age and skin
diseases. The dermis is the next layer located
beneath the epidermis and contains number of
skin cells and structures such as sweat glands,
hair follicles and blood vessels. The last layer,
known as the hypodermis, lies below the dermis
and is used mainly for fat storage and functions
as insulation and padding for our body (Fig. 1).

Skin disease abnormalities mostly occur
within these layers, which is impossible to
examine with naked eye. Hence, histological
analysis through a biopsy is often required to
identify presence of abnormal lesions. Due to the
invasive nature of such analysis, both clinicians
and researchers have keen interest in the use
of non-invasive approaches for skin diagnosis.

Optical coherence tomography (OCT) is one
of the popular non-invasive imaging methods
that enables examination of sub-surface skin
tissue without the need for biopsy. The OCT
imaging technique was first used in the field
of ophthalmology, and proved to be of value
for visualizing changes in retina and cornea
[1, 2]. The technology was then introduced to
other clinical fields and is now increasingly
employed in clinical skin research. Compared
to imaging modalities such as ultrasound and
confocal microscopy, OCT has a resolution of up
to 1 μm and penetration depth of around 1 mm
which is adequate for the analysis of most skin
diseases [3].

Figure 2 shows the OCT images captured from
various anatomical sites, using SkinTell HD-OCT
system (Agfa Healthcare, Mortsel, Belgium). The
skin layer and structures are visible in the OCT
images. Figure 3 (top) shows the OCT image
of forearm, where the dermal-epidermal junction
(DEJ) is clearly defined. Figure 3 (bottom) shows
that the sweat duct can also be captured with OCT
imaging modality.

Skin Layer Segmentation in OCT

Skin layer segmentation in OCT is a key step
in skin analysis and has been one of our main
works. To date, most methods and techniques
developed in this area aremachine learning based.

Fig. 1 Schematic diagram
of skin layers and
structures
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Fig. 2 High-definition OCT images of various anatomi-
cal sites: (a) Forearm, (b) Forehead, (c) Cheek, (d) Finger-
tip, (e) Palm

We previously proposed a method for skin layer
segmentation [4]. In the study, we reported the use
of a weighted least square (WLS)- based edge-
preserving smoothing method to reduce speckle
noise in OCT images, followed by using vertical
intensity gradients to formulate the cost function
which is used with a modified 2D graph-search
algorithm to delineate skin surface in cross-
sectional OCT images [4]. Next, the intersection
between the epidermis and the dermis, known
as the dermis-epidermis junction (DEJ), was
detected by using the local integral projection as
shown in Fig. 4.

The proposed method was evaluated on a
dataset of 5 OCT volumes acquired from the
SkinTell HD-OCT system (Agfa Healthcare,
Mortsel, Belgium). Each volume is comprised
of 512 cross-sectional 2D scans, with the size

of each 2D scan as 200 × 640, at 3 μm voxel
resolution. Comparison was made between
epidermis segmentations performed on the
original and pre-processed images. The average
overlap ratio of 0.744 showed that the removal
of speckle noise in OCT images was useful in
skin layer segmentation. However due to reduced
signal strength from intensity drop-off at the
periphery of the volume as shown in Fig. 5 and
the presence of hair which highly attenuates
the signal from the underlying structures, the
performance of DEJ detection was limited.

Subsequently, to avoid noticeable signal
falloff, a method was proposed to perform ROI
extraction to limit the segmentation to a centre
360 × 360 region as shown in Fig. 6 [5].

Using this modification with the 2D graph-
based segmentation approach proposed earlier
[4], the calculated skin surface roughness showed
close adherence to human visual assessment in
cross-sectional images with good signal quality
which was only marginally affected by shadow-
ing artefacts introduced by the presence of hair in
the volume.

For the images with less visible epidermis, the
segmentation accuracy is not as good as those
withmore visible epidermis. To counter this prob-
lem, we implemented a supervised 3D graph-
based method that can give better segmentation
accuracy in cases where the boundary is not clear
[6]. ROI extraction and removal of speckle noise
were performed and followed by the layer seg-
mentation. As shown in Fig. 7, there are two
phases in the segmentation process, namely train-
ing and testing.

In the training phase, training data were
pre-processed to reduce noise. Thereafter, the
intensity distributions around the boundary were
modelled and used for computing the learned cost
for the graph-based method. During the testing
phase, test data underwent pre-processing and
skin surface segmentation. Next, the learned
cost was added to the gradient-based cost
term to obtain a computed cost. Then, a max-
flow/min-cut algorithm [7] is applied to detect
the DEJ, thereby segmenting the epidermis.
The proposed approach was evaluated on 10
OCT volumes which are captured from posterior
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Fig. 3 Visible skin layers in OCT image of forearm (Top), sweat duct captured in OCT image of fingertip (Bottom)

and anterior forearm and faces of healthy
subjects. The epidermis segmentation result
was compared with two other related works:
2D graph-based OCT segmentation [4] and
unsupervised segmentation [8]. The proposed
method resulted the lowest unsigned error of
4.86 pixels as compared to 13.46 pixels and 5.35
pixels for the 2D and 3D methods, respectively.
Figure 8 shows some of the sample segmentation
results of the proposed method.

Although the proposed method was able to
detect the regions with poorer visibility of the
DEJ, imageswith shadowing due to hair remained
a challenge as the abrupt signal drop-off beneath
the hair did not conform to the modelled distri-

bution, leading to inaccuracies in the detection of
the boundary. Figure 9 shows sample images with
shadowing due to hair.

To address the challenge caused by shadowing
of hairs, a method as shown in Fig. 10 was pro-
posed to segment the topmost layer in OCT im-
ages using 3D graphs with a novel cost function
[9]. The cost function used both intensity gradi-
ents and uniformity of the regions surrounding the
surface. With the context information across the
neighbouring 2D scans, it ensured the smoothness
of the surface across different scans and ignored
any sudden loss of signal or a bump due to hair or
skin scales.
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Fig. 4 Detected skin surface using modified 2D graph-search algorithm (green dotted line in right image); detected
DEJ (yellow dotted line in right image); estimated lower bound of DEJ (blue dotted line in right image). Reproduction
from Li et al. [4] with permission

Fig. 5 Intensity drop-off at the right side the OCT image. Reproduction from Li et al. [4] with permission

Fig. 6 Defining the ROI of skin OCT volume. Reproduction from Yow et al. [5] with permission

A total of 252 scans with shadowing effect
were selected through visual inspection of 26
OCT volumes for evaluation of the accuracy

of this proposed segmentation method and
compared against the 2D-based approach, which
did not consider the presence of hair [4] and a
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Fig. 7 Flowchart of proposed method for automated supervised 3D-graph segmentation. Reproduction from Srivastava
et al. [6] with permission

Fig. 8 Two example results of skin surface (red line) and epidermis segmentation (green line) using the supervised
3D-graph segmentation method. Reproduction from Srivastava et al. [6] with permission

Fig. 9 Four example cases
where there is abrupt signal
drop-off due to shadowing
(yellow arrow).
Reproduction from
Srivastava et al. [9] with
permission
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Fig. 10 Flowchart of the proposed approach for skin surface segmentation and roughness estimation. Reproduction
from Srivastava et al. [9] with permission

Fig. 11 Comparison of
segmentation obtained
using (i) 2D segmentation
method and (ii) the
proposed method. The
encircled regions show
strands of hair incorrectly
segmented. Reproduction
from Srivastava et al. [9]
with permission

generic 3D graph-based surface segmentation
approach [8]. Figure 11 compares the 3D
visualization of the surface as segmented using
the proposed method and the algorithm in [4].
As observed, the proposed method produces
better segmentation being robust to the presence
of hair.

The evaluation showed that the performance of
the proposed method produced better results in
particular with increased robustness to the pres-
ence of hair due to the use of context infor-
mation from neighbouring cross-sectional scans.
The proposed method produces a lower unsigned
mean vertical error of 1.97 pixels, as compared to
the two other works.

There are also other groups studied skin layer
segmentation. One of the earlier works [10] used
a novel shapelet-based image analysis technique
to correlate an image with a kernel which is in
the form of basic image shapes, then automat-
ically identify the upper and lower boundaries
of epidermis in OCT images of skin by using
a column-wise and piece-wise line search algo-
rithms. However, this technique fails to closely

follow all the contours in wavy structures due to
the shapelet kernel which is only processed in a
single direction, normal to surface.

Another work on the segmentation of DEJ in
OCT imaging first applied an automatic thresh-
olding level and successive binary morpholog-
ical openings and closing to help remove arte-
facts introduced from the applied gel between the
probe and the tissue [11]. This was followed by
an edge-following algorithm to trace the surface
boundary, subsequently re-dressing the image to
obtain a flat skin surface. The intensity profile
for the image was computed and the first profile
minima gave an estimation of the boundary po-
sition and then mapped to the OCT eight capture
channels.

A more recent work [12] proposed a semi-
automated approach by selecting start and end
and arbitrary points in skin surface using an in-
teractive framework by a graphical representa-
tion of an attenuation coefficient map through a
uniform-cost search method and applied graph-
based method to identify skin surface and the
same procedure is applied to DEJ detection.
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In another work [13] applied Gaussian and
differential filter to emphasize the skin surface
boundary and further refined by finding the min-
imal intensity values. Thereafter, the surface cur-
vature is estimated and serves as a reference to
produce a flatten OCT image. Real surface is then
detected with differential filter procedure.

Applications: Roughness, ET

Skin layer segmentation is a crucial step in many
dermatological applications and could potentially
increase the clinical diagnostic capability and us-
ability of skin OCT images. The topographic
analysis of skin surface enables the determination
of surface roughness which is useful in moni-
toring skin health and ageing. Furthermore, the
identification and monitoring of epidermis is im-

portant in several clinical applications because
the variation of epidermal thickness could depict
signs of ageing and presence of dermatological
diseases.

The team developed a skin analysis system
[14] to automatically perform 2D segmentation
and assess the skin surface topology and epider-
mal thickness. Skin furrows were extracted from
the segmented skin surface and average furrows
depth was computed by averaging the depth val-
ues at all extracted furrow point. Next epidermal
thickness is defined by finding the average pixel
difference between the segmented skin surface
and DEJ at each column (Fig. 12).

The developed system is evaluated with 5
skin OCT volumes, which were selected from
a pool of healthy forearm skin data. The team
evaluated both skin topographic profile analysis
and the dimensional properties of epidermis.

Fig. 12 Graphical user interface of skin OCT image analysis system. Reproduction from Yow et al. [14] with
permission
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Fig. 13 (Top) Extracted
middle slice of one of the
OCT volumes with
clinician’s manual
measurements; (Bottom)
Measurement extracted
from automated analysis.
Reproduction from Yow et
al. [14] with permission

Three segmented surface profiles were selected
and presented in 3D-form for a senior consultant
from National Skin Centre to visually assess
and rank the images (1 as the least rough
and 3 as the roughest). The computed furrow
depth matches the manual visual appearance
ranking.

In the evaluation of epidermal thickness mea-
surements, the middle slice of the 5 volumes were
extracted as JPEG files and manually measured
thickness (between (xm,ym)surf and (am,bm)epi) at
two distinctive locations in each image as shown
in Fig. 13. These manual measurements are then
compared to the automated measurements ob-
tained. The average error across the entire dataset
was 3.81μmand therewas no apparent difference
if the measurement was applied in the image
centre or at other locationswhich suggests that the
automated system performs consistently across
the image.

The team has also recently applied the 3D
graph-based segmentation [9] to skin roughness
estimation and shows a high correlation of at least

0.95 with manual assessment by 5 clinicians. The
skin roughness estimation also takes into consid-
eration for surfaces slanted at a significant angle
from the x-axis by applying principal component
analysis (PCA) to the points on the segmented
surface.

In another work [13], skin surface roughness
parameters based on ISO 25178 part 2 standard
definitions were used to identify the effect of cos-
metics on human skin. They compared the results
with the PRIMOS device and showed that skin
surface geometry acquired from 3D OCT images
quantified complex wrinkle structure well.

Deep Convolutional Networks
in Skin Imaging

In recent years, there has been an upsurge of
interest in the application of deep convolutional
networks for a variety of tasks. The rapid
development of deep networks was motivated
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by the increasing availability and size of ‘big’
data and images which required more efficient
architectures for tasks such as image classifica-
tion. Features, which were previously manually
designed, would instead be intrinsically extracted
from a multitude of filters optimized directly
from the data. This led to the development of
AlexNet [15], which outperformed all other
techniques at the 2012 ILSVRC (ImageNet
Large Scale Visual Recognition Challenge) by
at least 10%. The interest in deep networks
also led to the realization that large scale
parallel computing could be achieved through
graphic processing units (GPU), motivating
ever-increasing GPU capabilities which enabled
even more complicated network architectures
with improved performance. For an in-depth
overview of the development of application of
deep convolutional networks, the reader is urged
to refer to recent review articles [16].

In medical imaging, the use of deep networks
has been widely reported [17, 18], in fields rang-
ing from radiology [19] and ophthalmology [20]
to cardiology [21] and oncology [22]. In the fol-
lowing sections, we review recent applications of
deep convolutional networks in dermatology.

Deep Learning for Classification
of Dermoscopy Images

The most extensively reported application of
deep learning in dermatology to date has been
in the classification of dermoscopy images.
A dermoscope is a hand-held device used
for the inspection of skin lesions, primarily
for the assessment of melanoma. In [23], the
authors used Google’s Inception v3 CNN
architecture which had been pre-trained on the
2014 ImageNet Challenge (1.28 million images,
1000 classes). Transfer learningwas used to adapt
the pre-trained feature discriminators for the
dermoscopy dataset, which consisted of 129,450
images with 2032 image-level classifications. In
subsequent test of the trained network on a set of
previously unseen, biopsy-confirmed images, the
performance was shown to be on par with board-
certified dermatologists in the identifications

of the most common and the most serious skin
cancers, achieving AUCs in excess of 0.95. A
similar outcome was achieved in [24] when the
performance of a CNN based on InceptionV4was
compared against 58 dermatologists, including
skilled practitioners with more than 5 years of
experience, however using a much smaller test
set of 300 dermoscopy images. Other recent
articles have described the use of different CNN
architectures, such as ResNet [25] or the use of
ensemble networks [26] for similar applications
in dermoscopy images.

Deep Learning for Classification
of Full Field OCT Images

The use of deep learning in OCT imaging for
skin has been comparatively less well-reported.
In Mandache et al. [27], a convolutional neural
network was implemented for the detection of
basal cell carcinoma regions in full field OCT
(FF-OCT) images. FF-OCT is a coherence imag-
ing technique in which en face images of ex vivo
samples are generated with a greater imaging
depth (200 μm) than confocal while achieving a
lateral resolution of up to 1 μm. In this work, the
authors manually annotated 40 FF-OCT images,
which approximately 25% of each image were
labelled as either normal or basal cell carcinoma
(BCC)—a type of skin cancer, while the rest
of the image was left unlabelled. Each FF-OCT
image was split into patches of 256 × 256, and
the patches were then used for training and test-
ing. The authors customized a 10-layer network
and achieved an overall classification accuracy of
95.93%.

Classification of Cross-Sectional OCT
2D Scans

While melanomas are visible on the surface of
the skin and can be identified from the pigmen-
tation of the affected skin area, basal cell carci-
nomas, which occur at the junction of the der-
mis and epidermis, are less apparent from der-
moscopy images. This has been a major motiva-
tion in the development of dermatological OCT
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Fig. 14 BCC cells indicated by red arrows in skin OCT images: (a) Dark blobs, (b) Low intensity structures with
epidermis layer being compressed

Fig. 15 Flowchart of proposed framework for automatic detection of BCC abnormalities in skin OCT images.
Reproduction from Li et al. [29] with permission

systems which enable sub-epidermal visualiza-
tion of the skin structure and any underlying le-
sions [28]. Figure 14 shows sample OCT images
of BCC abnormalities appeared below epidermis
layer.

In a proposed workflow, after acquisition of
the OCT images, a dermatologist reviews the
cross-sectional scans to identify suspicious re-
gions suggestive of BCC. Li et al. proposed a
framework as shown in Fig. 14 to automate the
detection of BCC in cross-sectional OCT scans
[29] (Fig. 15).

A graph-based method was first used to iden-
tify the skin surface, followed by the extraction of
patches from the flattened surface. Four patches
were generated each cross-sectional scan from
a total of seven normal and seven BCC sub-
jects. Pre-trained AlexNet, VGG-16, VGG-19,
and GoogLeNet architectures were used to gen-
erate image features, followed by the use of a
support vector machine for classification. From
Fig. 16, the authors showed that the system using
VGG-16-based image descriptors was the most
optimal with an AUC of 0.935.
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Fig. 16 BCC abnormalities detection results in ROC curves. Reproduction from Li et al. [29] with permission

Semantic Segmentation
in Cross-Sectional OCT Images

In addition to classification, there is often a need
to identify and localize structures or layers of in-
terest in a cross-sectional OCT image. Recently, a
system to automatically determine the volume of
dermal fillers using convolutional neural network
trained on volumetric images generated from a
custom-built OCT was proposed [30]. As dermal
fillers are absorbed by the surrounding tissue over
time, there is interest to non-invasively assess
the absorption rate of the filler material. In this
work, the authors adapted the U-net architec-
ture [31] for segmentation. Briefly, the U-net
architecture adds a parallel up-sampling arm to
the down-sampling arm typically used in image-
based convolutional nets, resulting in the char-
acteristic U-shaped architecture. Connections at
steps between the arms provide high-level con-
text to local features, and U-net-based systems
have been successfully shown to be able to seg-
ment structures on biomedical images, including

corneal structures in anterior segment OCT [32].
For the detection of dermal fillers, the U-net was
trained on manual annotations from 100 volu-
metric OCT datasets recorded from 67 different
dermal filler depots in 24 mice, resulting in a
mean accuracy of 0.9938 and a Jaccard similarity
coefficient of 0.879 from sixfold cross-validation.

Although distinct anatomical layers such as
the strateum corneum, epidermis and dermis can
often be identified from dermal OCT images,
together with structures such as sweat ducts and
hair follicles, the use of convolutional nets for
the detection and semantic segmentation of these
structures has not been widely reported compared
to their use in the detection of structures from
ophthalmic OCT imaging [33].

Challenges

As a data-driven approach, the main challenge in
the development of systems based on deep con-
volutional network architectures was and remains
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the availability and quality of data, particularly
for medical imaging. In general image classifi-
cation, sources of data can include social media
and public online repositories. Further, labels are
often well-defined and specialized training is un-
necessary to identify objects in daily living.

In contrast, datasets are often small in med-
ical imaging. While there have been reports of
large datasets such as in Esteva et al. [23] and
Gulshan et al. [34], medical imaging datasets are
usually several orders smaller than general image
datasets. Further, with increasing awareness of
privacy and regulatory requirements, sharing of
data to augment dataset size is often a compli-
cated process. Medical imaging datasets are of-
ten highly biased. Case-control datasets usually
consist of subjects with late-stage or severe forms
of the condition against normal subjects which is
non-representative of use cases such as screen-
ing. While population-based datasets may be rep-
resentative for screening, the limited numbers
of positive disease cases in a population-based
prevalence model tend to result in unbalanced
datasets which can lead to bias in the trained
model. Another challenge is in the labelling. In
general image datasets, labels are often discrete,
objective and obvious. In diseases, the labelling is
often on a graduated scale ranging from normal to
late-stage, and clinical grading of the severity of
a disease from an image can be subjective.

Semantic annotation is also expensive, labour-
intensive and subjective. In the annotation for se-
mantic segmentation, objects have to be labelled
and discriminated from other objects, sometimes
at a pixel level. However, manual segmentation
is highly time-consuming, in particular for vol-
umetric scans, which can be up to hundreds of
cross-sectional images for a single volume. Ef-
ficient methods for the annotation of volumetric
structures have ranged from interpolating manual
marking at intervals to using a preliminary or
prior segmentation as an initial contour.

Finally, imaging the skin using OCT presents
some unique challenges as well. Due to the opac-
ity of the skin surface and heterogeneity of the
skin, there is high scattering which leads to high
signal falloff with increased imaging depth. This
also affects the visibility of the different layers

which can be difficult to discern. Further, as the
largest organ in the human body, there are dif-
ferences when imaging skin from different parts
of the body, which necessitate the development
of specific associated models, since the structural
appearance of the skin can vary widely. This is in
contrast to OCT imaging used in ophthalmic ap-
plications, where the region of tissue to be imaged
is relatively fixed either posteriorly at the retina
or anteriorly at the cornea and anterior segment
of the eye. As such, ophthalmic OCT imaging
protocols are relatively better established, with
the use of OCT in ocular examinations becoming
a standard clinical routine, having replaced colour
photography in many practices. This also has
implications for OCT image analysis, as consis-
tent imaging protocols favour the development
of image analysis tools for both screening and
prognosis. Comparatively, the use of skin OCT
currently largely remains situational, and clinical
and imaging protocols for the use of skin OCT are
still being developed.

Conclusions

Non-invasive imaging of the skin, which is the
largest tissue in the human body, by optical coher-
ence tomography facilitates investigation into un-
derlying skin conditions which may not be appar-
ent on the surface of the skin. The depth-resolved
OCT imaging technique also allows micrometer-
resolution quantification of skin structures and
characteristics which could be useful in both clin-
ical and cosmeceutical applications. However, the
large volume of data generated in skin OCT re-
quires automated methods for effective analysis.
Currently, most approaches in the analysis of
skin OCT volumetric data have relied on con-
ventional analytic techniques. While deep con-
volutional networks have received a lot of at-
tention and recently have been widely reported
in medical imaging, the use of deep convolu-
tional networks in dermatology is relatively lim-
ited compared to other fields such as ophthal-
mology. This is largely due to limited availability
of skin OCT data and labels, which are the key
challenges in the development of deep networks.
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With rapid developments in OCT imaging tech-
niques, decreasing costs, and increasing traction
in clinical and cosmeceutical applications, there
will be a greater need for advanced analytical
approaches incorporating data-driven techniques
such as deep networks to fully realize the po-
tential of a non-invasive optical biopsy approach
using OCT.
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Deep Learning Technique for
Musculoskeletal Analysis

Naoki Kamiya

Abstract
Advancements in musculoskeletal analysis
have been achieved by adopting deep learning
technology in image recognition and analysis.
Unlike musculoskeletal modeling based on
computational anatomy, deep learning-based
methods can obtain muscle information
automatically. Through analysis of image
features, both approaches can obtain muscle
characteristics such as shape, volume, and
area, and derive additional information by ana-
lyzing other image textures. In this chapter, we
first discuss the necessity of musculoskeletal
analysis and the required image processing
technology. Then, the limitations of skeletal
muscle recognition based on conventional
handcrafted features are discussed, and
developments in skeletal muscle recognition
using machine learning and deep learning
technology are described. Next, a technique
for analyzing musculoskeletal systems
using whole-body computed tomography
(CT) images is shown. This study aims to
achieve automatic recognition of skeletal
muscles throughout the body and automatic
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classification of atrophic muscular disease
using only image features, to demonstrate an
application of whole-body musculoskeletal
analysis driven by deep learning. Finally, we
discuss future development ofmusculoskeletal
analysis that effectively combines deep
learning with handcrafted feature-based
modeling techniques.

Keywords
Skeletal muscle · Musculoskeletal analysis ·
Musculoskeletal segmentation · Surface
muscle · Deep muscle · Random forest ·
FCN-8s · 2D U-Net · 3D U-Net

Importance of Musculoskeletal
Analysis and Skeletal Muscle
Analysis

Musculoskeletal analysis is important in various
situations. Muscles are divided into skeletal mus-
cle, myocardium, and smooth muscle. In particu-
lar, the muscles that make up the heart are called
the myocardium, while the muscles that make up
the visceral organs are called the smooth muscles,
and the smooth muscles have nomuscle ganglion.
Because skeletal muscle, which is the focus of
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this chapter, adheres to bone and is directly in-
volved in exercise, it is a fundamental focal point
in musculoskeletal analysis.

In the field of orthopedics, analysis of bone
itself is also important, and there are various
bone analysis methods ranging frommodel-based
segmentation to segmentation by deep learning
[1–3]. We previously described the importance
of skeletal muscle segmentation for orthopedic
intervention and proposed model-based skeletal
muscle recognition [4]. However, compared to
the number of approaches that use deep learning
for analysis of bone regions, there are far fewer
approaches that use deep learning for skeletal
muscle segmentation. Therefore, this chapter pro-
poses a method of muscle recognition and analy-
sis using deep learning.

Diseases related to skeletal muscle include
myopathy, a myogenic disease, which is
distinguished from neuropathy, a neurogenic
disease; both diseases affect muscle function.
Although most symptoms of myopathy involve
atrophy, differentiating them from atrophy that
occurs normally with aging is an important and
difficult problem. Additionally, amyotrophic
lateral sclerosis (ALS) and other similar
afflictions focused on in this chapter are atrophic
muscular diseases in which differential diagnoses
do not exist; moreover, progress inhibitors have
recently been approved by the U.S. Food and
Drug Administration (FDA) [5], and treatment
plans must appropriately differentiate muscular
diseases with treatable atrophy. Themeasurement
of skeletal muscle itself has become an important
problem, because such measurements facilitate
treatment of muscular diseases with atrophy; in
turn, these treatments help patients live longer,
healthier lives. Therefore, the measurement of
skeletal muscle was addressed in a field study
on the health and lifestyle habits of the elderly in
Japan, which aimed to identify effective measures
for improving their overall health [6].

Although the measurement of skeletal muscle
quantity is required inmusculoskeletal analysis as
described above, accurate measurement of skele-
tal muscle quantity and automatic measurement
of the muscle at each position are achievable for
only a limited number of muscles, representing an
unsolved problem in whole-body muscle analy-

sis. Because skeletal muscle exists throughout the
body, it is depicted in medical images obtained
through various modalities. In tomographic CT
images and MRIs, it will be difficult to search
cross sections in which skeletal muscle is not
depicted. However, CT images and tomographic
MRIs that depict skeletal muscle photographed
for the purpose of observing lesions can be uti-
lized in support of automatic muscle analysis.
In addition, because skeletal muscle is depicted
in various cross sections of tomographic images,
it is useful in automatic recognition of adjacent
skeletal muscle as preprocessing for organ and
lesion detection systems in computer-aided diag-
nosis (CAD) systems.

Musculoskeletal Recognition
by Handcrafted Features and Its
Limitations

Most skeletal muscle recognition methods that
have been developed to date rely on handcrafted
features. In the Computational Anatomy Project
[7], we are performing computer-aided organ and
disease recognition using CT images, where we
adopted a method based on automatic recognition
of normal structure. That is, similar to an analysis
conducted by a doctor, by detecting the normal
structure of the human body as a model in a
computer (computational anatomy model), it is
possible to detect an abnormality in an unknown
case. Because the main purpose of this project
was to construct a CAD system targeting the
organ area, skeletal muscle was treated as one
of the normal structures. In particular, in CT
images, the density value distribution of the
skeletal muscle overlaps with the density value
distribution of the organ region, and thus it is
difficult to segment the skeletal muscle and the
other organ region using only the density value.
Therefore, a muscle modeling technique that
employs a shape model and probability model
is commonly used [8]. In the Computational
Anatomy Project, we have also achieved some
success using computational models and muscle
recognition for analysis of superficial and deep
muscles [9]. In this study, we focused on the



Deep Learning Technique for Musculoskeletal Analysis 167

anatomical attachment point of the muscle,
i.e., the origin and the insertion, and realized
automatic recognition of muscles according to
their position using a technique that arranged
the shape model on the basis of the origin and
the insertion. Automatic recognition of skeletal
muscle was realized in surface and deep muscles
of the thoracicoabdominal region. However, as
described above, variations in skeletal muscle
result not only from individual differences, but
also from inter-individual differences due to
aging, daily activities, and the characteristics
of organs. Therefore, only a limited number
of regions in the case database can be used
for constructing a computational anatomical
model of skeletal muscle with high recognition
accuracy. In particular, there were only a
limited number of scenarios in which shapes
were comparatively clear or the boundaries
between adjacent organs and adjoining muscle
were clear.

In recent years, the Computational Anatomy
Project has been developed into the Multi-
disciplinary Computational Anatomy Project,
with the purpose of achieving comprehensive
understanding of the human body using medical
image information over the four axes of space,
time, function, and pathology [10]. Skeletal
muscle recognition in theMultidisciplinary Com-
putational Anatomy Project was designed with
an emphasis on multi-axis awareness rather than
computational anatomy. Muscle modeling ranges
from micro to macro and considers the functional
aspects of muscles [11]. In addition, in this mul-
tidimensional Computational Anatomy Project,
we worked toward the automatic recognition and
analysis of skeletal muscles with extendedmuscle
regions and in contact with muscles and complex
contour shapes [11]. In these computational
anatomy modeling projects, nine regions (surface
muscle: sternocleidomastoid muscle, trapezius
muscle, supraspinous muscle, large pectoral mus-
cle, intercostal muscle, oblique abdominal mus-
cle, rectus abdominis muscle; deep muscle: psoas
major muscle, iliac muscle) of skeletal muscle
modeling-based segmentation were realized.

Figure 1 shows a conceptual diagram of
skeletal muscle recognition by handcrafted

feature modeling, which was realized during
the Computational Anatomy Project and the
Multidisciplinary Computational Anatomy
Project. As Fig. 1 shows, we realized recognition
and analysis of various muscles using torso CT
images and whole-body CT images; however,
the features of the muscles are one-dimensional
points (landmarks; LM), two-dimensional
running (muscle running), and three-dimensional
shapes used to represent muscle features, i.e.,
the landmarks are acquired from the bone
corresponding to the origin and insertion of
the skeletal muscle, the running of the muscle
is expressed by connecting LM on the bone,
and the shape model based on gray values and
probability distributions is arranged according to
the running. In a technique based on handcrafted
features, all the procedures from 1D to 3D
worked sequentially until recognition according
to the position of skeletal muscle was achieved.
Therefore, it can be said that many dependent
procedures must be performed to obtain initial
information such as muscle quantity and
intramuscular fat quantity, which are necessary
for the site analysis of skeletal muscle. In general,
the accuracy of each procedure greatly affects the
accuracy of the final result.

As described above, when using handcrafted
features in the recognition of skeletal muscle ac-
cording to site, the 2D cross section or the shape
of the muscle became a limited region with an
easy-to-model shape.We then tackled recognition
and analysis of themuscle usingmachine learning
and deep learning techniques in the later stage of
the multiple calculation anatomy project. The fol-
lowing sections describe recognition and analysis
ofmuscles withmore complicated shapes through
deep learning technology.

Skeletal Muscle Segmentation
Using Deep Learning

This section describes skeletal muscle segmenta-
tion using deep learning. As described previously,
the problem of segmenting skeletal muscles in
CT images is essentially the same as the problem
of automatic recognition of organs. However, as
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Fig. 1 Outline of the computational anatomy model for skeletal muscles analysis

described above, when the recognition of skeletal
muscle by region is considered, the shape is com-
plicated, and difficulties result from the juxtapo-
sition of the organ region and skeletal muscle as
well as the connection between skeletal muscles.
In addition, very large individual differences in

muscle mass cause difficulties in model-based
skeletal muscle recognition. Prior to discussing
skeletal muscle segmentation by deep learning,
this section introduces the segmentation of erec-
tor spinae using random forest, the well-known
machine learning algorithm.
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The cross-sectional area of the erector spinae
muscle is smaller in patients with COPD than in
healthy individuals, and it has been found that
this cross-sectional area indicates the progno-
sis of COPD patients [12]. However, the erector
spinae is a very large group of muscles originat-
ing from the sacrum and located along the left
and right vertebral columns. Therefore, manual
measurement of the transverse area of the erec-
tor spinae is a time-consuming and error-prone
task. We performed 3D recognition of the erector
spinae muscle using the iterative random for-
est method and multiple sources of information
[13]. Here, the original image and the probability
map of the erector spinae, which is repeatedly
refined, were used as sources, and improvements
in recognition accuracy and high-speed segmen-
tation were realized. During the learning pro-
cess, three classifiers are trained. Classifier 1
is trained using low-resolution appearance fea-
tures extracted from downsampled CT images.
Then, the appearance features and probability
map obtained by classifier 1 are combined to
create trained classifier 2. Concurrently, the prob-
ability map obtained from classifier 1 is upsam-
pled, and learned classifier 3 is obtained together
with high-resolution appearance features. Thus,
the final erector spinae segmentation results were
obtained by combining classifiers 1 and 2, which
are learned with low-resolution data, and classi-
fier 3, which is trained with high-resolution data.
Ten training cases were randomly selected from
torso CT images from 20 cases. These were eval-
uated in 10 test cases, in which the average Dice
coefficient (DC) was 93.0± 2.1% and the Jaccard
similarity coefficient (JSC) was 87.0 ± 3.5%.
Thus, highly accurate segmentation of the erector
spinae muscle was achieved with 10 learning
images and very limited data. Figure 2 shows
the recognition result using proposed iterative
random forest method. It was shown that ma-
chine learning-based segmentation according to
the position of the skeletal muscle could be a
robust technique for analyzing large and complex
muscles for which shape models are difficult to
generate.

The following describes deep learning-based
automatic recognition of the erector spinae in

Fig. 2 Erector spinae muscle segmentation result using
multi-scale iterative random forest method (left: recogni-
tion result, right: ground truth)

the cross sections of the 12 thoracic vertebrae.
As stated above, the cross-sectional areas of the
erector spinae muscle in the 12 thoracic sections
indicate the prognosis of COPD patients. There-
fore, we segmented the erector spinae muscle in
the cross sections of the 12 thoracic vertebrae,
and performed the segmentation of the muscle
using deep learning and two-dimensional images
[14]. The FCN-8s fully convolutional network
(FCN) was used in order to utilize the results of
the middle layer, in which detailed shape features
are expected to be found. One-thousand correct
images from 40 cases were prepared for learning
of the erector spinae muscle in the cross sections
of the 12 thoracic vertebrae; because the erector
spinae muscle exists in the back, the learning was
concentrated in the back half of the original im-
age. Segmentation accuracy was evaluated using
test images from 29 cases, and the average con-
cordance rate of JSC was 82.4%. Figure 3 shows
the segmentation of the erector spinae muscle
in the cross section of the 12th thoracic verte-
bra. From top to bottom, the figure shows the
original image from the top, the recognition re-
sult obtained by the model-based method, and
the recognition result obtained by FCN-8s. Blue
indicates a correct result, yellow indicates over-
extraction, and red indicates unextracted areas.
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Fig. 3 Erector spinae muscle segmentation at the 12 tho-
racic vertebrae section using deep learning in cases with
unclear skeletal muscle boundaries (upper: original CT,
middle: model-based method, lower: deep CNN-based
method (blue: matched, red: unextracted, yellow: over-
extracted))

Because the boundary with the latissimus dorsi
muscle is unclear, the conventional model-based
method causes over-extraction during region ex-
pansion. With deep learning, it is proven that the
target region is recognized even in these boundary
areas.

Through deep learning of 2D images as shown
above, automatic segmentation of skeletal muscle
in a two-dimensional section could distinguish
the boundary with the latissimus dorsi muscle,
which could not be distinguished in conventional
muscle modeling. Three-dimensional recognition
of erector spinae by deep learning was carried out
in a subsequent experiment.

In order to recognize the erector spinae as
a volume, three-dimensional deep learning was

used. This method can obtain three-dimensional
recognition results using plural two-dimensional
cross sections; thus, it is referred to as a 2.5-
dimensional method. Here, FCN-8s, which ob-
tained good results in the simultaneous segmen-
tation of multiple organs in torso CT images [15],
was used [16]. Various architectures have recently
been proposed for medical image segmentation
based on machine learning. In particular, U-net
is well known for its efficacy in the field of
medical image segmentation, and features a de-
coder employing an architecture similar to that
of its encoder. Our group achieved automatic
segmentation of multiple organs from torso CT
images using segmentation based on FCN and the
voting principle [17]. In a comparison of segmen-
tation methods based on FCN and U-net, we ob-
tained results showing that FCN and voting-based
methods are realistic methods for segmenting CT
images [17]. In the 2.5-dimensional FCN, three
anatomical sections are input, and the simultane-
ous probability is calculated from the recognition
result in each section; the label value with the
highest simultaneous probability is selected as the
result. By using the simultaneous probability, the
recognition result of each cross section is judged
comprehensively. The average DC and average
JC of the erector spinae recognition results were
89.9± 2.0% and 81.7± 3.2%, respectively, when
evaluated by the leave-one-out method using the
trunk CT images from 11 cases. Figure 4 shows
the results of recognition of the erector spinae
muscle using deep learning. In 10 cases simi-
lar to the three-dimensional recognition of the
erector spinae muscle achieved by the random
forest method described above, less segmentation
was observed compared with the original random
forest method; however, segmentation was suc-
cessful, and boundaries with other skeletal mus-
cles (such as the latissimus dorsi muscle) were
recognized. Such boundaries were not recognized
by the model-based method.

The results show that robust segmentation can
be achieved with only 10 learning images. Skele-
tal muscle segmentation using deep learning is
an effective technique that improves upon the
manual 2D cross-sectional area measurements in-
tended as an alternative measuringmethod to ease
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Fig. 4 Segmentation results of the erector spinae muscles using deep CNN

workloads incurred during automated 3D analy-
sis. In particular, because the technique does not
depend on the additional processing steps men-
tioned in the previous section, it can be said that
high-quality segmentation results can be expected
if a good training image is prepared. Moreover,
high-quality segmentation results can be obtained
in such a small number of cases, it is consid-
ered useful for efficient preparation of learning
images needed for creating correct images used
in developing deep learning-based segmentation
algorithms.

Whole-BodyMuscle Analysis Using
Deep Learning

This section describes whole-body analysis of
skeletal muscle using deep learning. As described
above, the basic requirement for the analysis of
skeletal muscle is the quantitative and automatic
measurement of muscle mass, which is measured
manually in current clinical situations. However,
as previously mentioned, the technology for fully
automated segmental analysis of skeletal muscle
is still under development. Additionally, differen-
tiating between diseases of the muscle itself and
the quality of the muscle appears to be dependent
on image analyses produced by the computer.

We have been working on whole-body muscle
analysis using whole-body CT images. In partic-

ular, for whole-body CT images taken for diagno-
sis of amyotrophic lateral sclerosis (ALS), whole-
body skeletal muscle recognition can be achieved
using the active balloon model and skeletal mus-
cle model [18]. We conducted muscle analysis
[18] using texture analysis employing the Haral-
ick’s features of the region. However, the recogni-
tion of skeletal muscle over the whole body dif-
fers significantly for individual body types, and
highly accurate surface muscle recognition has
not been realized yet. Therefore, the area used for
research on discrimination of myopathy was lim-
ited to limbs inwhichwhole-body skeletal muscle
[18] could be recognized. In this section, we first
introduce a method to automatically classify at-
rophic myopathy through deep learning using the
upper extremities, and then introducewhole-body
musculoskeletal segmentation by deep learning.

First, the automatic classification of atrophic
muscular disease in the upper arm and lower arm
using deep learning is shown. Here, as an initial
challenge, the automatic classification of ALS,
which is a neurogenic disease, and myopathy,
which is myogenic atrophy, was carried out [19].
It is an important problem to separate ALS, which
is an intractable disease for which a therapy has
not been established, from other atrophic diseases
for which treatment is possible. Moreover, it is
important to test the deep learning approach for
diseases such as ALS, which can only receive
exclusion diagnoses. Here, the architecture of
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Fig. 5 Segmentation results of whole-body skeletal muscle using 2D U-Net

ResNet-50 was used. Drawing from five ALS
cases and five myopathy cases, training images
of 1678 upper arms and 1150 lower arms were
prepared, and 171 upper and 130 lower arms were
tested. The images were classified into ALS and
myopathy. As a result, we obtained an average
classification accuracy of 90.3% on the right fore-
arm. This demonstrated the possibility of classi-
fying diseases through deep learning with images
of atrophic diseases, even when the differences
were not recognized through visual observation.
However, in order to fully diagnose ALS, it is
necessary to evaluate more cases while consider-
ing the stage and type of the disease. In addition,
methods for distinguishing the type of muscular
atrophy and for analyzing the muscle region in
more detail are necessary. This technique uses
the results, which are roughly divided into 22
surface layer muscle regions [18] obtained by
recognizing the body cavity through the active
balloonmodel for whole-body skeletal muscle us-
ing conventional handcrafted characteristics, and
differentiating the body cavity region from the
whole body [18].

Using the above problems as a framework,
we have been working toward fully automatic
recognition of surface muscles in whole-
body skeletal muscles [20]. As a preliminary
experiment, the axial cross section was learned
and recognized using 2D U-Net. When 50 cases
were divided into training, test, and validation

cases at a ratio of 8:1:1 according to the hold-
out method, the segmentation results showed
that DC was 81.7 ± 0.9% on average in three
experiments. Figure 5 shows the results of whole-
body skeletal muscle segmentation using 2D
U-Net. Although only the axial CT slice was
input, continuous recognition of surface muscle
in the sagittal and coronal sections could be
realized.

Similarly, bone segmentation was performed
using 2D U-Net [21]. A related study has seg-
mented bone from low-dose whole-body CT im-
ages using 2.5DU-Net [22]. Therefore, it is worth
studying bone segmentation on whole-body plain
CTs. The experiments were carried out using
17 whole-body CT images without contrast. A
dataset consists of 12 training cases, two valida-
tion cases, and three test cases. We used whole-
body CT images without contrast and trained
2-D U-Net with axial slices. The average dice
coefficient of bone segmentation was 0.899, and
this method was robust with regard to the position
of hands. Figure 6 shows the segmentation result
that bone segmentation by U-Net using only axial
CT slices provides high performance with plain
CT images. In the future, we will use this method
for muscle segmentation to conduct bone classi-
fication using segmented bone images.

The whole-body musculoskeletal analysis
presented in this section is still preliminary.
However, deep learning has shown sufficient
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Fig. 6 Bone segmentation results in whole-body CT im-
ages using 2D U-Net

potential for classification and segmentation
tasks, which are two major aspects of mus-
culoskeletal muscle analysis. In the following
section, we discuss the techniques needed to
further advance whole-body musculoskeletal
analysis.

Fusion of Deep Learning
and Handcrafted Features
in Skeletal Muscle Modeling

In the previous section, musculoskeletal segmen-
tation and analysis using deep learning were de-
scribed, and the possibility of musculoskeletal
analysis by deep learning was shown.

In order to realize further advancements in
musculoskeletal analysis in the future, deep learn-
ing must be effectively combined with the hand-
crafted features-based skeletal muscle modeling
described at the beginning of this chapter. This
is because correct images are required for deep
learning. However, significant amounts of time
are needed to paint all skeletal muscles and obtain

a sufficient number of learning images, and the
degree of difficulty in producing correct images is
higher than for other organ regions. This section
describes two approaches that aim to address
these problems.

The first approach involves the simultaneous
and automatic recognition of skeletal muscle,
as well as the origin and stop position of
skeletal muscle. Information about muscle
and its adhesion position becomes important
when conducting muscle analysis and muscle
recognition while considering positions specified
by handcrafted features. In particular, model-
based methods provide information on the
placement of muscle models. We carried out
the simultaneous recognition of muscle and bone
attachment positions on the muscle through deep
learning. The 2.5-dimensional FCN employed
in the automatic recognition of erector spinae
was used. The mean DC of the erector spinae was
89.9± 2.0% and the mean JC was 81.7± 3.2% in
11 cases examined by the leave-one-out method.
The average DC of the recognition results of the
attachment area on the skeleton was 65.5 ± 3.3%
and the average JC was 48.8 ± 3.7% [16].
Figure 7 shows the results of recognition of
the attachment site between the erector spinae
and the bone on the erector spinae. Because the
bone attachment site area is small compared
with the skeletal muscle area, the recognition
accuracy is low; nevertheless, the attachment site
of the muscle and bone is captured. Therefore, it
is expected that the model can be applied to the
analysis of muscle travel and the relation between
muscle and disease.

Next, the challenge of classifying muscle
groups obtained by deep learning through
modeling the shape and running of muscle
bundles [23] is shown. As described above, it
is very difficult to create correct images from a
sufficient number of cases for deep learning by
separately painting muscle groups composed of
multiple muscles. The results for the erector
spinae muscle are shown here. Because the
erector spinae muscle is composed of multiple
muscles, it is labor intensive to prepare a learning
image of the whole erector spinae muscle. We
proposed a method to bundle three of the erector



174 N. Kamiya

Fig. 7 Recognition results with origin and insertion on the erector spinae muscle

spinae muscles automatically recognized by
deep learning (iliocostalis lumborum, iliocostalis
thoracis, and longissimus thoracis); these
particular muscles were selected because they
are relatively distant from each other. The
muscle bundle model is an ellipsoid connecting
the beginning and end of each muscle, and
the thickness of the ellipsoid is determined
from the learning case. The erector spinae
muscle can be segmented into three muscles by
constructing a muscle bundle model containing
the three muscles of the erector spinae muscle
and arranging them into the recognized result of
the erector spinae muscle using deep learning.
Figure 8 shows the result of dividing the erector
spinae muscle recognized by deep learning into
three regions using the muscle bundle model.
Green represents the erector spinae, yellow
the iliocostalis lumborum, blue the longissimus
thoracis, and orange the iliocostalis thoracis. Each
modeled muscle bundle is convexly encapsulated
and subdivided to the lower right. Because the
erector spinae is composed of nine muscles,
modeling of other muscles is also necessary.
However, when we evaluated the ratio of the
volume of eachmuscle bundlemodel to that of the
erector spinae region in the convex hull region,
the average Jaccard coefficient was 48.7 ± 6.8%

in the right-hand region and 53.2 ± 4.2% in the
left-hand region. However, as shown in the two-
dimensional cross sections in Fig. 8, the positions
of the muscles constituting the muscle group
are shown, and for skeletal muscles for which
preparing a correct individual muscle image is
difficult, the recognition of the muscle through
deep learning can be said to show the possibility
of dividing muscles into regions according to
position.

This section described the development of a
new muscle analysis method that combines deep
learning and muscle models. In the future, finer
whole-body muscle analysis can be achieved by
effectively using deep learning and modeling in
conjunction with conventional handcrafted fea-
ture.

Conclusion

In this chapter, we described segmentation, recog-
nition, and classification techniques we have de-
veloped to conduct musculoskeletal analysis us-
ing deep learning. Because musculoskeletal ar-
eas are large compared to areas occupied by or-
gans, individual and intra-individual differences
are also large, and it cannot be said that muscu-
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Fig. 8 Dividing the erector spinaemuscle recognized by deep learning into three regions using themuscle bundle model
(yellow: iliocostalis lumborum, blue: longissimus thoracis, orange: iliocostalis thoracis, green: erector spinae)

loskeletal analysis will be overwhelmingly sim-
plified by the introduction of deep learning; how-
ever, handcrafted features also help improve the
developed techniques. There is no doubt that deep
learning techniques complement musculoskele-
tal analysis. As described in the latter half of
the chapter, it is considered that musculoskele-
tal analysis can be markedly improved by effec-
tively combining deep learning-based methods
and handcrafted feature-based methods.
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