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Abstract. It is well known that in medical image analysis, only a small
number of high-quality labeled images can be often obtained from a large
number of medical images due to the requirement of expert knowledge
and intensive labor work. Therefore, we propose a novel semi-supervised
adversarial learning framework (SSALF) for diabetic retinopathy (DR)
screening of color fundus images. Specifically, our proposed framework
consists of two subnetworks, an extended network and a discriminator.
The extended network is obtained by extending a common classification
network with a generator used for unsupervised image reconstruction.
Thus, the extended network can utilize some labeled and lots of unlabeled
fundus images. Then the discriminator is attached to the generator of
the extended network to judge whether a reconstructed image is real
or fake, introducing adversarial learning into the whole framework. Our
framework achieves promising utility and generalization on the datasets
of EyePACS and Messidor in a semi-supervised setting: we use some
labeled and lots of unlabeled fundus images to train our framework. And
we also investigate the effects of image reconstruction and adversarial
learning on our framework by implementing ablation experiments.

1 Introduction

In many countries, diabetic retinopathy (DR) is the most common cause of blind-
ness in adults. Fortunately, early diagnosis and timely treatment can effectively
prevent the occurrence of blindness. With the development of color fundus pho-
tography, experienced ophthalmologists can observe various DR lesions in fundus
images, rate the severity of DR, and decide corresponding treatments. To reduce
the burden of ophthalmologists, various automatic DR screening methods [1]
have been proposed. Recently, deep learning has become a leading methodology
for medical image analysis and also has achieved promising performance [4] in
DR screening. As we all know, a superior deep neural network usually involves
large numbers of medical images with corresponding high-quality annotations.
However, the process of obtaining these annotations not only is time-consuming,
but also requires large amounts of expert knowledge. Hence, it is a challeng-
ing task to use a small number of labeled fundus images to achieve superior
performance of DR screening.
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Fig. 1. Schematic of our semi-supervised adversarial learning framework (SSALF) for
DR screening. Components of the extended network and the discriminator are in the
purple and green solid boxes. ResNet34 and ‘Fusion’ are also showed in the red and yel-
low dotted boxes, where ‘Block’ represents multiple stacked residual modules. (Color
figure online)

Many works have been conducted to address the relative tasks [10,12,14,18,
19]. To reduce the number of images that need to be labeled, Yang et al. [18]
exploited deep active learning to select the most effective medical images to be
labeled. To utilize some labeled and lots of unlabeled images, Ladder network [12]
and SWWAE [19] were proposed to simultaneously minimize the sum of the clas-
sification term and the reconstruction term in a semi-supervised setting. As the
generative adversarial network (GAN) [3] becomes a research hotspot in semi-
supervised and unsupervised learning, many researchers [6,10,14] proposed the
GAN-based classification networks, such as ImprovedGAN [14]. In these net-
works, researchers unified a discriminator of GAN and a classifier into a single
network. The new discriminator could predict N+1 classes, where N means cat-
egories of medical images, and 1 means whether a medical image is real or fake.
Thus, during the training phase, these networks were trained with labeled med-
ical images to predict N classes, and were trained with unlabeled and generated
medical images to judge whether a medical image is real or fake. Lecouat et
al. [8] proposed a patch-based semi-supervised classification approach to recog-
nize abnormal fundus images, which was based on ImprovedGAN. TripleGAN |[2]
proposed a tripartite adversarial model, including three separated networks: a
classifier, a generator and a discriminator. In fact, TripleGAN divided a discrim-
inator of ImprovedGAN into two parts, the discriminator of TripleGAN and the
classifier of TripleGAN, while adding an adversarial mechanism between the two
parts. In these mentioned GAN-based methods, all the relationships between a
generator and a classifier/a discriminator were cascading.
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However, it is also worthy of further study for DR screening to unify a clas-
sifier and a generator of GAN into a single network. Since the common GAN
generator [10,11,14] takes noise as input but the common classification network
a image, it is necessary to ensure they have the same input. Thus, a GAN-
based image reconstruction network [9] (a variant of GAN), where the generator
reconstructs input images as much as possible while the discriminator strives to
distinguish between input images and reconstructed images, attracts our atten-
tion. Naturally and intuitively, we attempt to extend a common classification
network by combining a GAN-based image reconstruction network.

Therefore, we propose a novel semi-supervised adversarial learning frame-
work (SSALF) for diabetic retinopathy (DR) screening of color fundus images.
Our proposed framework consists of two subnetwork, an extended network and
a discriminator. In order to utilize some labeled and lots of unlabeled fundus
images, we extend a common classification network for classification and recon-
struction by U-net’s “fusion” [13], and call it the extended network. Thus, the
extended network comprises two components, a classifier for supervised classifi-
cation and a generator for unsupervised image reconstruction. Then like a com-
mon GAN, we attach the discriminator to the generator of the extended network
to judge whether a reconstructed image is real or fake, which introduces adver-
sarial learning into the whole framework. In summary, our contribution are as
follows: (i) We propose a novel semi-supervised adversarial learning framework
for DR screening, extending a common classification network by combining a
GAN-based image reconstruction network. (ii) We also propose an appropri-
ate training strategy to effectively and efficiently train our framework. (iii) Our
framework achieves promising utility and generalization on the datasets of Eye-
PACS and Messidor in a semi-supervised setting: we use some labeled and lots of
unlabeled fundus images to train our framework. We also investigate the effects
of image reconstruction and adversarial learning on our framework by imple-
menting ablation experiments.

2 Methods

2.1 Common Networks for Classification

With the rapid development of deep convolution neural networks (DCNNs), some
common classification networks [5,7,15,16] were proposed successively. Nowa-
days, many works [17] modified these common networks according to specific
medical image analysis tasks, and achieved promising results. Thus, considering
convergence speed and memory overhead, we exploit ResNet34 [5] (denoted as
C) as the base model, and use the binary cross entropy loss as a loss function:

Lers(C) = =(ylog C(X) + (1 - y)log(1 — C(X)), (1)

where y is a class label of an input image X from a supervised subset.
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2.2 Semi-supervised Adversarial Learning Framework

Uunlike the aforementioned GAN-based methods [2,6,8,10,14], our framework
focuses on unifying a classifier and a generator of GAN into a single network,
instead of dividing them into two cascading models. Our framework consists
of two subnetworks, i.e., (1) an extended network for classification and recon-
struction, and (2) a discriminator for introducing adversarial learning. For the
extended network, we use ResNet34 as a backbone architecture (which is served
as a supervised classifier (donated as C)) and extend it with an unsupervised
generator (donated as G). Specifically, we use ResNet34 as our classifier, but the
fully connected layer of ResNet34 is modified to output two-dimension values.
Then we use the U-net’s “fusion” (See Fig.1) and deconvolution to upsample
from the last convolutional layer of our classifier until the output size is con-
sistent with the input image, which constructs our generator and makes it can
combine low-level and high-level features to reconstruct input images. In our
point of view, the generator not only acts as a regularizer [19], but also forces
the classifier to focus on abstract invariant features on the higher level [12] by
utilizing the “fusion”. For the discriminator (donated as D), following the rules
in [11], we design a simple seven-layer DCNN. We aim to add a regularization
item, which can learn the distribution of real fundus images, to the extended net-
work by introducing adversarial learning. Our framework schematic is depicted
in Fig. 1, and is theoretically easy to deploy to the other aforementioned common
networks.

Our pipeline is that the extended network outputs results of classification
and reconstruction simultaneously, and that then the discriminator determines
whether a fundus image is reconstructed by the extended network or not. There-
fore, the classification and the GAN-based image reconstruction are unified into
a single framework.

The total loss of the extended network is formulated as:

Wr(C,G) = LGEs(C) + p(Lyrsy (G) + ALYRE(@)), (2)
where
, woa
’CuMnglep(G) = WH Z Z(I:c,y - G(Iz,y))z, (3)
rz=1y=1
LY5'E(G) = —log D(G(X)), (4)

where L/e7 (G) and L%/ 5(G) indicate the image reconstruction loss of the

generator and the adversarial loss of the generator in an unsupervised subset,
respectively. L7 ¢(C) represents the binary cross entropy loss of the classifier in
a supervised subset. p and A refer to the weighting coefficients of the unsuper-
vised loss and the adversarial loss, respectively. And W and H denote the size
of a input image A while I, , indicates the image pixel value.

The adversarial loss of the discriminator is formulated as:

LYDH(D) = —(log D(X) +log(1 — D(G(X)))). ()
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2.3 Appropriate Training Strategy

Training a deep neural network is also non-trivial. Therefore, we propose the
following steps to effectively and efficiently train our framework.

1. We use weights of ResNet34 pre-trained on the ILSVRC to initialize the
extended network [17], and train it only for image reconstruction.

2. We use the weights trained in step 1 to reinitialize the extended network.

3. We fix the extended network, and then train the discriminator once with
minimization of L4155 (D).

4. We fix the discriminator, and then train the extended network once with
minimization of L3$%4(C, G).

5. We iterate the step 3 and 4 until the extended network converges.

Among the above steps, step 1 has been demonstrated to be quite effective
in [17], and step 2 is extremely crucial for semi-supervised DR screening, which
will be demonstrated in Sect. 3.2. Pytorch! is adopted to implement our proposed
framework. Scaling radius, random crop, random translation, random rotation
and random flip are applied to preprocess and augment our dataset. Besides, all
the fundus images are resized to 448 x 448 x 3. Our framework is trained on a
Nvidia GTX 1080Ti of 11 GB memory with a batch size of 16. The Nesterov SGD
algorithm with an initial learning rate of le—3, a momentum of 0.9 and a weight
decay of 5e—4 is used to optimize the extended network and the discriminator
during the training. p is set as 50 initially and will be reduced later in order to
keep the ratio of losses between the classifier and the generator more than 4:1.
And ) is set as 3e-4.

3 Experiments

3.1 Dataset Description

Our framework is evaluated on two publicly available datasets: the dataset
of ‘Kaggle Diabetic Retinopathy Detection’ (EyePACS)? and the Messidor
dataset?.

The EyePACS dataset contains 35,126 training images with graded labels and
53,576 test images without graded labels. The presence of the diabetic retinopa-
thy in each image has been graded by a clinician into one of the five stages: no
DR, mild, moderate, severe, and proliferative DR. Here we only focus on the
non-referable DR stage (including the no DR stage and the mild stage) and the
referable DR stage (including the moderate stage, the severe stage, and prolifer-
ative DR stage). We divide the training images into three subsets: kaggle-train
(the first 21,076 images), kaggle-val (the middle 7026 images), and kaggle-test
(the last 7026 images). In our semi-supervised setting, we randomly select 500,

! https://github.com /pytorch/pytorch.
2 https://www.kaggle.com/c/diabetic-retinopathy-detection/data.
3 http://www.adcis.net /en/Download- Third-Party /Messidor.html.
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Table 1. AUC of different methods on the EyePACS dataset.

Method 500 1000 | 2000 |3000
ResNet34 0.773 10.833 | 0.869 |0.886
ImprovedGAN | 0.806 | 0.858 | 0.876 | 0.890
SSALF (ours) |0.800 | 0.854 |0.883 | 0.900

Table 2. Ablation experiments on the EyePACS dataset.

Method 500 1000 2000 3000
AUC |SSIM |AUC |SSIM |AUC |SSIM |AUC |SSIM
ResNet34 0.773 | - 0.833 0.869 0.886

ResNet34+Rec* | 0.751 |0.748 |0.828 |0.841 |0.871 |0.892 |0.887 |0.905
ResNet34+Rec |0.791 | 0.891 |0.847 |0.892 |0.879 | 0.929 |0.895 |0.939
SSALF (ours) 0.800 | 0.893 | 0.854 | 0.910 | 0.883 | 0.939 | 0.900 | 0.932

1000, 2000 and 3000 images from the kaggle-train as supervised subsets respec-
tively. Meanwhile, we only use the entire kaggle-train as a unsupervised subset.
These subsets are balanced by oversampling (random crop).

The Messidor dataset contains 1,200 color fundus images. Different from the
EyePACS dataset, the Messidor dataset divides all the images into four stages.
Similarly, we can obtain 699 non-referable fundus images and 501 referable fun-
dus images from this dataset. Here we use the whole Messidor dataset as an
independent dataset for test.

3.2 Experiment Results

We perform semi-supervised experiments on the datasets of EyePACS and Mes-
sidor. The area under the receiver operating curve (AUC) and the structural
similarity index (SSIM) are used to quantify the performance of the classifica-
tion and the image reconstruction, respectively.

EyePACS: To evaluate the performance of our proposed framework, we
compare our framework with ResNet34 and ImprovedGAN [14], as shown in
Table 1. To make a fair comparison, we adopt ResNet34 as the discriminator of
ImprovedGAN. For the generator of ImprovedGAN, we use 200-dimension vec-
tors as input and add several deconvolutional layers to the original version [14]
in order to generate 448 x 448 x 3 fundus images. It is observed in Table 1 that
our SSALF trained with 500 or 1000 labeld fundus images can achieve compara-
ble AUCs with ImprovedGAN while with the increase of labeld fundus images,
our SSALF can achieve more improvements than ImprovedGAN. Furthermore,
in the case of 2000 or 3000 labeled fundus images, ImprovedGAN only achieves
a little improvement compared to ResNet34 while our SSALF doesn’t show sig-
nificant gain reduction.
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Fig. 2. Fake images generated from (a) an input image of the kaggle-test through (b)
ResNet34+Rec and (c) our SSALF, where (d) optic disks are selected for comparison.

Table 3. AUC of different methods on the Messidor dataset.

Method 500 1000 | 2000 | 3000
ResNet34 0.817 |0.892 |0.923 |0.932
ImprovedGAN | 0.907 | 0.922 | 0.934 | 0.941
SSALF (ours) [0.877 |0.910 |0.936  0.945

To investigate the effects of the image reconstruction and the adversarial
learning respectively, we conduct several ablation experiments, as shown in
Table 2. ResNet34+Rec (ResNet34+Rec*) indicates the extended network with
(without) the initialization in the aforementioned step 2. We can find in Table 2
that ResNet34+Rec* can only achieve the comparable results with ResNet34.
(1) This shows that without good initialization in the aforementioned step 2, the
generator can’t provide good regularization for the classifier during the training.
Particularly noting, the adversarial learning has no relationship with improving
SSIM, which is also pointed out in [9]. Figure 2 displays the fake images gener-
ated from the kaggle-test by using ResNet34+Rec and our SSALF. A closer look
reveals our SSALF produces thinner but clearer texture, especially texture in
the optic disk. In Table 2 we can also find that with different numbers of labeled
fundus images, ResNet34+4Rec can achieve better AUC than ResNet34 while our
SSALF achieves the best AUC. (2) This shows combining the image reconstruc-
tion can indeed improve the performance of DR screening dramatically, while
introducing the adversarial learning can further enhance the performance.

Messidor: In order to demonstrate the generalization ability of our framework,
we also evaluate it on the Messidor dataset, but only use this dataset for testing.
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Results are shown in Table 3. It is observed that all the results from the Messidor
dataset keep the same trend with those from the EyePACS dataset, and that
our SSALF can even achieve an AUC of 0.945. This shows that our framework
has good generalization ability.

4 Conclusions

In this paper, we propose a novel semi-supervised adversarial learning framework
for diabetic retinopathy screening of color fundus images, and an appropriate
training strategy. Experiment results on the datasets of EyePACS and Messidor
show that our framework can achieve comparable or better utility and general-
ization than Improved GAN. Our ablation experiments show that combining the
image reconstruction can indeed improve the performance dramatically, while
introducing the adversarial learning can further enhance the performance.
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