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Abstract. The large size of raw 3D optical coherence tomography
(OCT) volumes poses challenges for deep learning methods as it can-
not be accommodated on a single GPU in its original resolution. The
direct analysis of these volumes however, provides advantages such as
circumventing the need for the segmentation of retinal structures. Previ-
ously, a deep learning (DL) approach was proposed for the detection of
glaucoma directly from 3D OCT volumes, where the volumes were signif-
icantly downsampled first. In this paper, we propose an end-to-end DL
model for the detection of glaucoma that doubles the number of input
voxels of the previously proposed method, and also boasts an improved
AUC = 0.973 over the results obtained using the previously proposed
approach of AUC = 0.946. Furthermore, this paper also includes a quan-
titative analysis of the regions of the volume highlighted by grad-CAM
visualization. Occlusion of these highlighted regions resulted in a drop in
performance by 40%, indicating that the regions highlighted by gradient-
weighted class activation maps (grad-CAM) are indeed crucial to the
performance of the model.
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1 Introduction

Glaucoma is the second leading cause of irreversible blindness worldwide. The
number of worldwide glaucoma patients, aged 40–80 years, is estimated to be
approximately 80 million in 2020 with about 20 million increase since 2010 [4].
This disease is characterised by optic nerve damage, the death of retinal ganglion
cells [3], and the ultimate loss of vision. It is a slowly progressing disease, with
a long asymptomatic phase, where patients do not notice the increasing loss of
peripheral vision. Since glaucomatous damages are irreversible, early detection
is crucial.
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Spectral-domain OCT imaging provides clinicians with high-resolution
images of the retinal structures, which are employed for diagnosing and moni-
toring retinal diseases, evaluating progression, and assessing response to therapy
[5]. While the previous approaches around the detection of glaucoma have pri-
marily depended on segmented features such as the thickness of the retinal nerve
fibre layer (RNFL) and the ganglion cell layer (GCL), there have been limited
efforts around evaluating the utility of deep learning (DL) models in improving
the diagnostic accuracy and early detection of glaucoma using 3D OCT scans.

For example, in [2] and [16], DL networks were proposed to diagnose early
glaucoma using retinal thickness features. Similarly in [11] and [1], pretrained
models (trained on ImageNet [14]) were used for the detection task. In fact,
none of these techniques use the raw volumes for DL training. Rather, they
rely entirely on segmented features or measurements generated by the SD-OCT
scanners. One limitation for this is the segmentation error propagation where
failure rate increases with the disease severity and co-existing pathologies. This
also does not allow the diagnosis model to learn other unknown features exist-
ing within the image data. The only end-to-end DL model which uses the 3D
raw scans was proposed by Maetschke et al. [9] (referred to as CAM-3D-CNN).
This approach utilised 3D convolutional layers in the CNN, but was forced to
downsample the volumes by nearly a factor of 80 to enable CAM and train the
model on a GPU (due to memory constraints on the GPU itself).

Another important aspect of DL is the clinical interpretability and trans-
parency [12] of the models developed. Class activation mapping (CAM) [18] and
gradient-weighted class activation maps (grad-CAM) [13] have been recently pro-
posed to reveal insights into the decisions of deep learning models. Both of these
techniques identify areas of the images that the networks relied on heavily to
generate the classification. However, CAMs requires a specific network architec-
ture, namely the use of a global average pooling layer prior to the output layer.
Grad-CAM is a generalized form of CAM and can be used with any CNN-based
architecture without any additional requirements. In this regard, the visualiza-
tion of DL model for glaucoma detection has been studied in two papers [1,9].
An et al. [1] identified pathologic regions in 2D thickness maps using grad-CAM
[13], which have shown to be in agreement with the important decision making
regions used by physicians. Similarly, Maetschke et al. [9] implemented 3D-CAM
[18] to identify the important regions in 3D OCT volumes. The maps were how-
ever, in a coarse resolution that matched the downsampled input image. This
method also employed specific architecture changes to accommodate the require-
ments of CAM generation. It is also noteworthy that neither of these approaches
analysed the CAMs in any systematic fashion, and merely used the heat maps
to validate findings in a small number of images that were qualitatively assessed.

In this paper, we propose an end-to-end 3D-CNN for glaucoma detection
trained directly on 3D OCT volumes (gradCAM-3D-CNN). This approach con-
tinues to avoid the dependency on segmented structural thicknesses, but also
improves on previously approached techniques by doubling the size of the input
volumes [9], and also improves on the performance in a direct comparison
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between gradCAM-3D-CNN and CAM-3D-CNN models. The use of 3D grad-
CAM [13] allows for the visualization of the important regions of the 3D OCT
cubes in a higher resolution than was not available before. Crucially, we validate
the grad-CAM heat maps in a quantitative fashion, by occluding regions iden-
tified in the heat maps and assessing the impact of this on the performance of
the model.

2 Materials and Methods

2.1 Dataset

The dataset contained 1248 OCT scans from both eyes of 624 subjects, acquired
on a Cirrus SD-OCT Scanner (Zeiss; Dublin, CA, USA). 138 scans with signal
strength less than 7 were discarded. The final dataset contained 263 scans on
healthy eyes and 847 scans with primary open angle glaucoma (POAG). The
scans were centered on the optic nerve heard (ONH) and had 200× 200× 1024
(a-scans× b-scans×depth) voxels per cube covering an area of 6× 6× 2 mm3.

2.2 Network Architecture

The proposed CNN model receives input scans with a resolution of
256× 128× 128 (depth×b-scans× a-scans) to classify an OCT volume as
healthy or glaucoma. The network consists of eight 3D-convolutional layers,
where each is followed by ReLU activation [6], batch-normalization [8] and max-
pooling in order. The 3D convolutional layers have incremental number of the
filters of 16-16-32-32-32-32-32-32 with kernel sizes of 3-3-3-3-5-5-3-3 in order,
and stride of 1 for all layers. Also, 3D max-pooling layers has size of 2 and stride
of 2. Finally, two fully-connected layers connect all the activated neurons in the
previous layer to the next layer with 64 and 2 units respectively.

2.3 Evaluation: Training and Testing

The 1110 OCT volumes were downsampled to size 256× 128× 128 and split into
a training, validation and testing subsets, containing 889 (healthy: 219, POAG:
670), 111 (healthy: 23, POAG: 88) and 110 (healthy: 21, POAG: 89) scans,
respectively. The proposed 3D-CNN model was trained using the RMSprop opti-
mizer with a learning rate of 1e−4. Training was performed with a batch of size
four through 50 epochs. Data was stratified per epoch by down-sampling to
obtain balanced training samples. After each epoch, the area under the curve
(AUC) was computed for the validation set and the network is saved if an
improvement in AUC is observed.
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2.4 DL Visualization

We implemented 3D grad-CAM [13] for visual explanations of the proposed
model. We do not use CAM as it requires adding the global average pooling
(GAP) after the last convolutional layer (i.e. conv#8) which restricts the network
architecture design. Further, CAM would generate visualization only for feature
map of conv#8, which in our case has a size of 2× 1× 1. Hence, when resizing
and overlaying on the original cube of size 200× 200× 1024 will not provide any
meaningful results. In this paper, we calculated the heat map for each of the first
6 convolutional layers (conv#1-6) separately, following the explanation provided
in [13]. We did not compute grad-CAM for conv #7 and #8 layers due to the
very small size of the corresponding heat maps (conv#7: 8× 4× 4 and conv#8:
4× 2× 2). The generated heat maps have the same size as the feature map of
the corresponding convolutional layer. Instead of clipping the negative values in
the resulted heat maps, as performed in the grad-CAM paper [13], we used the
absolute value. To get rid of noisy gradients and to highlight only the important
decision regions, we clipped the smallest 30% values and then resize the heat
map to the original cube size.

To validate the generated heat maps, we occluded the input volumes by
zeroing the rows and columns with the highest weights. Specifically, we extracted
a set of indices with the highest weights per each dimension. This was done by
spatial dimension reduction using average pooling. For example, a heat map with
size 1024× 200× 200 was reduced to a vector of size 1024× 1× 1 by averaging the
values of each 200× 200 map to get a single value. The indices of the top highest
values (top x) in the resulted vector represent the most important region for this
dimension. We applied this process on the b-scans and depth dimensions with
x values of 64 and 256 respectively, while we considered the 200 a-scan columns
were all important. This means that a fixed region of size 256× 64× 200 was
occluded for each volume. Finally, the network was examined by evaluating the
performance using the test set and its occluded volumes (2× 110 scans).

3 Experiments and Results

3.1 The Glaucoma Detection Model

The proposed gradCAM-3D-CNN model as well as the CAM-3D-CNN model
described in [9] were implemented using Python, Keras with Tensorflow [7] and
nuts-flow/ml [10] on a single K80 GPU. Performance of both models were evalu-
ated using five statistical measures, namely, area under the curve (AUC), accu-
racy, Matthews correlation coefficient (MCC), recall, precision and F1-score. We
computed the weighted average measures to avoid biased resulting from the
class size imbalance in the data. The threshold with the highest validation F1-
score was chosen for calculating the performance measures. The proposed model
achieved an AUC of 0.973 for the test set (110 scans).

Further, to validate the performance of the proposed model (gradCAM-3D-
CNN), we trained the CAM-3D-CNN architecture, proposed in [9] using same
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Conv#1 Conv#4 Conv#1 Conv#4
POAG case Normal case

Fig. 1. 3D grad-CAM visualization results. Rows 1–4 show the b-scan slices #50, #100,
#110, and #140 in order; 5th row displays the enface of the overlay of grad-CAM heat
map on the original 3D cube; 6th row displays the enface of the occluded region (refer
to Sect. 2.4 for the occlusion method). Note: scans are resized for display.

data split. Table 1 has the performance measures for each model using the same
test set. The table shows that the proposed model outperforms the CAM-3D-
CNN model with an increase of 3%, 5%, and 9% in the AUC, accuracy and F1-
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Table 1. Performance measures of the proposed model and the literature 3D-CNN
model [9]

Val. Thresh. Accuracy MCC Recall Precision F1-score AUC

Proposed network 0.394 0.923 0.879 0.964 0.963 0.963 0.973

3D-CNN network [9] 0.424 0.879 0.657 0.864 0.902 0.873 0.946

Table 2. Occlusion results for CAM and gradCAM heat maps (AUC of original model
is 0.973)

Map size Accuracy MCC Recall Precision F1-score AUC

GradCAM-Conv6-lyr19a 16× 8× 8 0.520 0.032 0.459 0.705 0.509 0.596

GradCAM-Conv4-lyr11a 64× 32× 32 0.534 0.053 0.495 0.713 0.546 0.624

GradCAM-Conv5-lyr15a 32× 16× 16 0.534 0.054 0.482 0.714 0.532 0.638

CAM-Conv5a 64× 32× 32 0.570 0.110 0.555 0.733 0.602 0.647

GradCAM-Conv1-lyr0a 256× 128× 128 0.570 0.110 0.555 0.733 0.602 0.647

GradCAM-Conv2-lyr3a 256× 128× 128 0.582 0.132 0.618 0.737 0.657 0.633

GradCAM-Conv3-lyr7a 128× 64× 64 0.589 0.142 0.600 0.742 0.642 0.649
arefers to occlusion of heat map using top x b-scans and depth rows.

score respectively. We should note that CAM-3D-CNN has shown to outperform
the conventional machine learning with an increase of 5% in the AUC measure
[9].

Figure 1 visualizes grad-CAM heat maps for two convolutional layers: conv#1
and conv#4 for healthy and glaucoma cases. It is clear from the table that the
last/deeper convolutional layers yield general and global important regions across
all cubes, while the first convolutional layers give more detailed highlights which
are comparable to the segmentation of retinal layers. The field of view of the
deeper layers is larger than the more superficial layers, but the size of the heat
maps are smaller in the deeper layers. This contributes to the generation of heat
maps highlight larger swathes of the retina, but also lacks detail. For example,
the heat map size for conv#1 is 256× 128× 128 while it is 16× 8× 8 for conv#6.
The 2nd column in Table 2 shows the heat map size for each convolutional layer.
In the heat maps generated from conv#4 we see that the optic disc region is
highlighted, which is a region known to be affected by glaucoma.

3.2 Occlusion Experiment

To quantitatively assess different grad-CAM visualization results, we calculated
the performance measure drops of gradCAM-3D-CNN model using the occluded
set resulted from each convolutional layer. We also computed the occluded
test set using CAM heat map generated from CAM-3D-CNN model. In total,
7 different occluded sets were generated and the corresponding performance
measures drops are reported in Table 2. From the table, the highest drop in
accuracy is 40%, achieved by gradCAM-conv#6 layer, followed by gradCAM-
conv#4, gradCAM-conv#5, CAM, gradCAM-conv#1, gradCAM-conv#2, and
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Table 3. Occlusion results for different grad-CAM variants using Conv#6 (AUC of
original model is 0.973)

Accuracy MCC Recall Precision F1-Score AUC

Gradsa 0.520 0.032 0.459 0.705 0.509 0.596

Relu-gradsa 0.526 0.041 0.468 0.709 0.519 0.636

Guided-gradsa 0.529 0.045 0.473 0.711 0.523 0.627

Grads-posa 0.529 0.045 0.473 0.711 0.523 0.628

Grads-absa 0.531 0.050 0.477 0.713 0.528 0.616

Grads-nega 0.534 0.054 0.482 0.714 0.532 0.610
arefers to occlusion of heat map using top x b-scans and depth rows.

gradCAM-conv#3 with accuracy drop of 39%, 39%, 35%, 35%, 34% and 33%
in order. Further, heat map of gradCAM-conv#6 was also used to occlude the
least important decision region, where the performance drop was only 4%, 3%
and 4% in the AUC, accuracy and F1-score measures respectively. This confirms
the effectiveness of grad-CAM for highlighting important decision regions.

Different variants of grad-CAM were implemented to enhance the heat maps
by removing noisy gradients by either back propagating only positive gradients
(relu-grads) [17] or positive gradients and positive input (guided-grads) [15].
Table 3 shows the impact of occlusion using different grad-CAM variants on the
performance of the proposed model. We also investigated the impact of using
different gradient modifiers, such as positive, negative, and absolute gradients, on
the classification performance of the model. For example, in the case of absolute
gradients we used the absolute values of the feature map gradients to compute the
heat map. Table 3 shows that occlusion using grad-CAM without any modifier
results in the highest drop in the performance.

4 Conclusion and Future Work

We present an end-to-end 3D CNN classification model that is able to effectively
distinguish between healthy and glaucoma cases using 3D raw volumes. This
approach improves on the accuracy of previously proposed methods [9], but also
used an input that was double the size. This allowed for better CAMs to be
generated using grad-CAM, which highlighted important regions of the retina.
Further, grad-CAM heat maps were analyzed and quantitatively validated using
the occlusion assessment method. In particular, the occlusion assessment method
confirmed the effectiveness of grad-CAM in highlighting crucial decision regions.
In the future, we will improve the evaluation using a cross-validation study, as
well as extend this study to include other ocular diseases. We also plan to train
the DL model on the important sub-volumes guided by grad-CAM results. We
will also study the effect of fusing grad-CAM for different convolutional layers.



3D-CNN for Glaucoma Detection Using Optical Coherence Tomography 59

References

1. An, G., et al.: Glaucoma diagnosis with machine learning based on optical coher-
ence tomography and color fundus images. J. Healthc. Eng. 2019, 1–9 (2019)

2. Asaoka, R., et al.: Using deep learning and transfer learning to accurately diagnose
early-onset glaucoma from macular optical coherence tomography images. Am. J.
Ophthalmol. 198, 136–145 (2019)

3. Davis, B.M., Crawley, L., Pahlitzsch, M., Javaid, F., Cordeiro, M.F.: Glaucoma:
the retina and beyond. Acta Neuropathol. 132(6), 807–826 (2016)

4. Flaxman, S.R., et al.: Global causes of blindness and distance vision impairment
1990–2020: a systematic review and meta-analysis. Lancet Glob. Health 5(12),
e1221–e1234 (2017)

5. Fujimoto, J., Swanson, E.: The development, commercialization, and impact of
optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 57(9), OCT1–OCT13
(2016)

6. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Pro-
ceedings of the Fourteenth International Conference on Artificial Intelligence and
Statistics, pp. 315–323 (2011)

7. Gulli, A., Pal, S.: Deep Learning with Keras. Packt Publishing Ltd, Birmingham
(2017)

8. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

9. Maetschke, S., Antony, B., Ishikawa, H., Garvani, R.: A feature agnostic approach
for glaucoma detection in OCT volumes. arXiv preprint arXiv:1807.04855 (2018)

10. Maetschke, S., Tennakoon, R., Vecchiola, C., Garnavi, R.: Nuts-flow/ml: data pre-
processing for deep learning. arXiv preprint arXiv:1708.06046 (2017)

11. Muhammad, H., et al.: Hybrid deep learning on single wide-field optical coherence
tomography scans accurately classifies glaucoma suspects. J. Glaucoma 26(12),
1086–1094 (2017)

12. Razzak, M.I., Naz, S., Zaib, A.: Deep learning for medical image processing:
overview, challenges and the future. In: Dey, N., Ashour, A.S., Borra, S. (eds.)
Classification in BioApps. LNCVB, vol. 26, pp. 323–350. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-65981-7 12

13. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-
CAM: visual explanations from deep networks via gradient-based localization. In:
Proceedings of the IEEE International Conference on Computer Vision, pp. 618–
626 (2017)

14. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

15. Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for simplic-
ity: the all convolutional net. arXiv preprint arXiv:1412.6806 (2014)

16. Wang, J., et al.: SD Net: joint segmentation and diagnosis revealing the diagnostic
significance of using entire RNFL thickness in glaucoma. In: Conference on Medical
Imaging with Deep Learning (MIDL) (2018)

17. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks.
In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS,
vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10590-1 53

18. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep fea-
tures for discriminative localization. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2921–2929 (2016)

http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1807.04855
http://arxiv.org/abs/1708.06046
https://doi.org/10.1007/978-3-319-65981-7_12
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1412.6806
https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1007/978-3-319-10590-1_53

	3D-CNN for Glaucoma Detection Using Optical Coherence Tomography
	1 Introduction
	2 Materials and Methods
	2.1 Dataset
	2.2 Network Architecture
	2.3 Evaluation: Training and Testing
	2.4 DL Visualization

	3 Experiments and Results
	3.1 The Glaucoma Detection Model
	3.2 Occlusion Experiment

	4 Conclusion and Future Work
	References




