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Abstract. Microvascular changes are one of the early symptoms of reti-
nal diseases. Recently developed optical coherence tomography angiog-
raphy (OCTA) technology allows visualization and analysis of the reti-
nal microvascular network in a non-invasive way. However, automated
analysis of microvascular changes in OCTA is not a trivial task. Cur-
rent approaches often attempt to directly segment the microvasculature.
These approaches generally have problems in cases of poor image qual-
ity and limited visibility of the vasculature. Evaluating the quality of
the results is also challenging because of the difficulty of manually trac-
ing the microvasculature, especially in cases of low image quality or
with images with a larger field of view. In this work, we develop an
automated deep-learning approach to assign each pixel within human
OCTA en-face images the probability of belonging to a microvascular
density region of each of the following categories: avascular, hypovas-
cular, and capillary-dense. The AUCs (area under the receiver operat-
ing characteristic curves) were 0.99 (avascular), 0.93 (hypovascular), and
0.97 (capillary-dense) for segmenting each of the categories. The results
show very good performance and enables global and region-based quan-
titative estimates of microvascular density even in relatively low-quality
en-face images.

Keywords: OCT-Angiography · Capillary density · Deep learning

1 Introduction

The retinal microvascular network supplies the retina with oxygen and nutri-
tion. Ocular diseases including diabetic retinopathy [1], glaucoma [2], age-related
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macular degeneration [3], and radiation retinopathy [4,5] often show changes in
the microvasculature. Traditionally, fluorescein angiography (FA) is widely used
for assessing retinal micro-circulation. However, this technique is invasive and
doesn’t distinguish microvasculature in superficial retinal layers from the deeper
plexus. OCT angiography (OCTA) is a modality increasingly used for assessing
retinal vasculature pathologies in retinal studies [6–8].

Many existing approach for measuring capillary density from en-face OCTA
images – including the use of fractal analysis [9,10], vessel enhancement filters
[11], and a convolutional-neural-network approach [12] – attempt to first directly
segment the microvasculature. However, because the quality of OCTA images
varies and is susceptible to noise or artifacts, a direct measurement of vessels in
OCTA en-face images is often not feasible. Figure 1 shows an example compar-
ison of good quality en-face images (Fig. 1(a), (b)) and an image with a poorly
visible microvascular network (Fig. 1(c)). These differences can be common in
the analysis of patients with diseases such as radiation retinopathy [4].

Other strategies for providing an overall sense of vessel density from an OCTA
en-face image include directly detecting the fovea avascular zone (FAZ) or non-
FAZ avascular regions using filters and/or fractal analysis [13–15] and a recent
deep-learning approach to detect avascular areas [16]. However, these approaches
do not take into consideration of the possibility of reduced (but not completely
avascular) capillary density in regions. Also, location-dependent artifacts are
often not addressed.

Fig. 1. Example variability of OCTA en-face image quality. (a) An example image
from a healthy subject showing vessels clearly. (b) and (c) are en-face images from the
unaffected and affected eye of a patient with radiation retinopathy. (c) shows an image
with a lower signal-to-noise ratio (SNR) and less visible capillaries.

In this work, to address the frequent limited visibility of individual capil-
laries in OCTA images but to also allow for characterization of differing den-
sity levels at each pixel, we train and evaluate a deep-learning-based approach
(using a modified U-net architecture) to segment avascular, hypovascular, and
capillary-dense areas from OCTA en-face images. We train and evaluate our app-
roach (using 10-fold cross-validation) on a challenging dataset of uveal melanoma
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patients (including those with radiation retinopathy) and controls whereby, as
shown in Fig. 1, the visibility of the capillaries can vary substantially.

2 Methods

2.1 Preprocessing

In each OCTA scan we use in this work, there is a volumetric structural OCT
scan showing the macular tissue and a corresponding split spectrum amplitude-
decorrelation angiography (SSADA) scan showing the vesselness. We use the raw
OCT and SSADA data to segment and form the en-face projection angiogram
of superficial layers. More specifically, to obtain the layer information, a graph-
based layer segmentation algorithm [17] is used to segment the superficial layers
in the corresponding OCT volumes. In this approach, we follow the definition
from Camino et al. [18] and use the superficial layers as the combination of retinal
nerve fiber layer (RNFL) to inner plexiform layer (IPL). Figure 2(a) shows the
SSADA information overlaid on a b-scan in the segmented layers. To generate
the projection images, we use the maximum intensity in each column in these
layers. An example result can be seen in Fig. 2(b).

Because the deep learning approach we use prefers pixel dimensions divisible
by 32, the generated en-face images are also unified to dimensions of 480 × 480
by upsampling with cubic spline interpolation to preserve more details.

Fig. 2. An example OCTA image. (a) OCT b-scan showing the superficial layers used
in this study. The superficial layers are shown between the red and green boundaries,
and only the SSADA information shown in red scatters between the boundaries are
used. (b) The en-face projection angiogram of the superficial layers of the structural
OCT volume indicated in (a). (Color figure online)
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2.2 Input Data Generation

For the input of our deep network, in addition to the en-face images, to help the
network deal with potential location-specific artifacts, such as signal dropout on
the temporal side (Fig. 3(a)), we also provide a radial location map (providing the
distance from the center), as shown in Fig. 3(c), and a temporal-to-nasal location
map (providing the distance from the temporal side), as shown in (Fig. 3(d)).
By providing such additional inputs, we can help to avoid results such as that in
Fig. 3(b) whereby the regions with signal dropout would incorrectly be classified
as avascular or hypovascular regions.

In the training stage, rotation, flipping, and cropping are applied to each
input image before each training iteration. The original en-face image is first is
augmented with random rotations in range (−180◦, 180◦). A random horizontal
flip is then applied. The training image is then randomly cropped to a fixed size
of 256× 256 pixels and, to further help address the possibility of regional signal
dropout, a local contrast change is also applied.

Signal dropout

(a) (b) (c) (d)

Fig. 3. Motivation for use of location maps as additional input. (a) OCTA en-face
image from a healthy control subject with local signal dropout on temporal side. (b)
Segmentation result without additional location-specific maps as input. (c) Radial loca-
tion map. (d) Temporal-to-nasal location map.

2.3 Network Structure

Here, we develop a fully automated deep-learning based approach. A modi-
fied version of U-Net [19] is applied to do a pixel-based separation of avascular
regions, hypovascular regions (i.e., regions with capillary dropout) and capillary-
dense regions. The overall network structure of this work is shown in Fig. 4. The
inputs are the en-face image and two location maps as discussed above and the
outputs are three probability maps for the avascular region, hypovascular region,
and capillary-dense region.

Our modifications to the original U-net are, in part, inspired by recent work
by Iglovikov et al. [20] that showed that using a deeper VGG11 network as the
encoder can increase the segmentation accuracy compared to the original U-Net.
Here we use a similar network structure. We also add batch normalization (BN)
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Fig. 4. The modified version of U-Net with dilated convolutions used in this work.

layers [21] to improve the numerical stability. Another modification is changing
the convolutions in some of the layers to be dilated convolutions introduced by
Yu et al. [22]. This convolution model enables a larger receptive field for the
network without requiring additional parameters to be learned. Therefore, we
change the conventional 3× 3 convolutions in some layers of the U-Net to 3× 3
with a dilation factor of 2.

For the loss function, a combination of binary cross-entropy (BCE) loss and
Dice loss is used, thus we can simultaneously maximize the per-pixel prediction
as well as the overall intersection between the predicted probability maps and
the manual tracing.

3 Experiments and Results

A total of 166 macular OCTA scan sets (structural OCT volumes and corre-
sponding SSADA data) acquired with AngioVue (Optovue, Inc., Fremont, CA)
from 59 human subjects are used in the study. Within the subjects, 43 are uveal
melanoma patients and 16 are control cases. All procedures involving human
subjects in this study were approved by the Institutional Review Boards (IRB)
and the Human Subjects Office at the University of Iowa.

The OCT volumes and SSADA scans from all control subjects and 37/43
uveal melanoma subjects have dimensions of 400×400×640 and 400×400×160,
respectively, corresponding to physical dimensions of 6 mm× 6mm× 2mm. The
OCT volumes and SSADA scans from the remaining six uveal melanoma subjects
have dimensions of 304×304×640 and 304×304×160, respectively. As mentioned
in Sect. 2.1, all the generated en-face images are rescaled to a unified size of
480 × 480 before further processing. For training and evaluation purposes, the
capillary-dense regions, hypovascular (capillary dropout) and avascular regions
are also manually identified in each en-face image.

To train the network, we use Adam optimizer to train the network from
scratch, with an initial learning rate of 1e-4. The learning rate changed to 1e-5
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Fig. 5. Example results from the proposed deep-learning approach. (a–c) show an
example result from a radiation retinopathy patient, and (d–f) are for a control subject.
(a), (d) The en-face OCTA image (enhanced for increased visibility). (b), (e) The
manual tracing for the image. (c), (f) The segmentation result of the three classes. Red
= avascular. Orange = hypovascular. Green = capillary-dense. (Color figure online)

after 500 epochs and 1e-6 at 700 epochs. A total of 1000 epochs are used for
the total training on a single Nvidia GeForce 1080 Ti GPU. It takes around 3
hours to train one network, and approximately a day to train all the U-Nets for
the cross-validation experiment. In the testing phase, for each 480× 480 en-face
image, it takes about 0.1s to run on GPU and 3 s to run on a CPU. Because the
U-net structure is fully convolutional, while training is performed with 256×256
cropped images, testing can be directly performed with 480 × 480 images.

To evaluate the results, area under the pixel-based receiver operating char-
acteristic (ROC) curves (AUC) are used in a 10-fold cross-validation approach.
The first nine folds each have images from 53 randomly chosen subjects as the
training set and images from 6 subjects as the test set. The remaining fold has
54 subjects for training and 5 for testing. Among the ROCs, the prediction of
avascular regions has the best performance, with an AUC of 0.99 and the pre-
diction of the capillary-dense regions has the second-best performance, with an
AUC of 0.97. The hypovascular prediction generally gives a slightly lower AUC
of 0.93. This is partially because the tracing is more subjective than the tracing
of avascular areas as it is sometimes hard to distinguish hypovascular regions.

An example of the original image, the manual tracing, and the corresponding
result can be seen in Fig. 5. Visually, this approach offers clean predictions for
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avascular regions marked in red. In fact, the regions are slightly more consistent
and detailed than manual tracings. On the other hand, the predicted hypovas-
cular regions in orange are less confident and have some misclassified regions.

4 Discussion and Conclusions

In this work, we develop a region-based segmentation method to identify dif-
ferent microvascular densities within OCTA en-face projection images. A deep
neural network is used to simultaneously find these categories. The first main
contribution of this work is that by tracing and training on OCTA en-face images
as different density regions, we can avoid the difficulty to distinguish individual
capillaries giving us the ability to still obtain density estimates on lower-quality
OCTA images where individual vessels are not visible. The second contribution
is that by adding additional location maps to the inputs of the deep learning net-
work, the segmentation network can successfully avoid some OCTA artifacts to
generate better results. To the best of our knowledge, this trained deep-learning
approach is the first fully automated approach to categorize multiple levels of
vascular density in OCTA images. The results show very accurate predictions
for the avascular and normal regions in uveal melanoma patients and a slightly
lower accuracy in predicting hypovascular regions.
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