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Abstract. Monitoring the condition of retinal vascular network based
on a fundus image plays a vital role in the diagnosis of certain oph-
thalmologic and cardiovascular diseases, for which a prerequisite is to
segment out the retinal vessels. The relatively low contrast of retinal
vessels and the presence of various types of lesions such as hemorrhages
and exudate nevertheless make this task challenging. In this paper, we
proposed and validated a novel retinal vessel segmentation method uti-
lizing Separable Spatial and Channel Flow and Densely Adjacent Ves-
sel Prediction to capture maximum spatial correlations between vessels.
Image pre-processing was conducted to enhance the retinal vessel con-
trast. Geometric transformations and overlapped patches were used at
both training and prediction stages to effectively utilize the informa-
tion learned at the training stage and refine the segmentation. Publicly
available datasets including DRIVE and CHASE_DB1 were used to eval-
uate the proposed approach both quantitatively and qualitatively. The
proposed method was found to exhibit superior performance, with the
average areas under the ROC curve being 0.9826 and 0.9865 and the
average accuracies being 0.9579 and 0.9664 for the aforementioned two
datasets, which outperforms existing state-of-the-art results.
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1 Introduction

Retinal vascular network is the only vasculature which can be visualized and
photographed in vivo. Retinal vascular imaging is able to provide clinically prog-
nostic information for patients with specific cardiovascular and ophthalomologic
diseases [1]. Segmenting out the retinal vessels is a prerequisite for monitoring
the condition of retinal vascular network. Currently, retinal vessel segmenta-
tion highly relies on the manual work of experienced ophthalmologists, which is
tedious, time-consuming, and of low reproducibility. As such, a fully-automated
and accurate retinal vessel segmentation method is urgently needed to reduce the
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workload on ophthalmologists and provide objective and precise measurements
of retinal vascular abnormalities.

Several factors make this task challenging. The lengths and calibers of the
vessels vary substantially from subject to subject. The presence of various types
of lesions including hemorrhages, exudate, microaneurysm and fibrotic band can
be confused with the vessels, so do the retinal boundaries, optic disk, as well as
fovea. Furthermore, the relatively low contrast of the vessels and the low quality
of some fundus images further increase the segmentation difficulties.

Numerous methods have been proposed for retinal vessel segmentation, both
unsupervised and supervised. Unsupervised methods typically rely on mathe-
matical morphology and matched filtering [2]. In supervised methods, ground
truth data is used to train a classifier based on pre-identified features to clas-
sify each pixel into either vessel or background [3]. In the past few years, deep
learning methods have seen an impressive number of applications in medical
image segmentation, being able to learn sophisticated hierarchy of features in an
end-to-end fashion. For example, Ronneberger et al. proposed U-Net to perform
cell segmentation, which has become a baseline network for biomedical image
segmentation, including retinal vessel segmentation [4]. Liskowski et al. used
a deep neural network containing Structured Prediction trained on augmented
retinal vessel datasets for retinal vessel segmentation [5]. Oliveria et al. com-
bined the multi-scale analysis provided by Stationary Wavelet Transform with
a fully convolutional network (FCN) to deal with variations of the vessel struc-
ture [6]. These approaches applying deep learning methods have significantly
outperformed previous ones, achieving higher segmentation accuracies and com-
putational efficiencies.

Despite their significant progress, existing deep learning approaches are fac-
ing the dilemma of effectively extracting vessels with small calibers versus main-
taining high accuracy. Aforementioned approaches suffer from low capabilities
of detecting thin vessels. Zhang et al. introduced an edge-aware mechanism by
adding additional labels, which yielded a considerable improvement on predict-
ing thin vessels but a decreased overall accuracy [7]. This is due to the fact that
FCNs do not make use of spatial information in the pixel-wise prediction stage,
but deploy a fully connected layer to each pixel separately. In such context, we
propose a novel method for fundus image based retinal vessel segmentation uti-
lizing a FCN together with Separable Spatial and Channel Flow (SSCF) and
Dense Adjacently Vessel Prediction (DAVP) to capture maximum spatial cor-
relations between vessels. Geometric transformations and overlapped patches
are used at both training and prediction stages to effectively utilize the infor-
mation learned at the training stage and refine the segmentation. Our method
is quantitatively and qualitatively evaluated on the Digital Retinal Images for
Vessel Extraction (DRIVE) [8] and Child Heart and Health Study in England
(CHASE_DB1) datasets [9].
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2 Method

2.1 Image Pre-processing

Although convolutional neural networks (CNNs) can effectively learn from raw
image data, clear information and low noise enable CNNs to learn better. For
a fundus image, its green channel is often used since it shows the best contrast
in physiological structures with blood. And the blue channel contains relatively
little physiological information. As such, simple but effective pre-processing is
applied via p; ; = 0.257; ; +0.75g; j, where p; ; denotes the resulting pixel value
at position (¢,j) and r; j, g;; respectively stand for the red channel value and
the green channel value. Data augmentation is conducted to enlarge the training
set by rotating each image patch by 90°, 180° and 270°.

2.2 Patch Extraction

Several studies have shown that CNNs can benefit from using overlapped patches
extracted from large images for tasks that ignore contextual information [4,
6,7,11]. Given that the mean and variance of small image patches within a
fundus image differ little, overlapped patches can also be applied to retinal vessel
segmentation. Furthermore, a large amount of image patches can boost a CNN’s
performance by enlarging the sample size. In this work, a total of 1000 image
patches of size 48 x 48 are randomly sampled from each training image. Center
sampling is used and zero padding is performed if the center is located on image
boundaries.

2.3 Fully Convolutional Network

FCNs can take input of arbitrary size and produce an output of the correspond-
ing size with efficient inference and training by local connectivity and weight
sharing [4]. FCNs typically have both down-sampling and up-sampling modules,
which are used to respectively extract multi-scale features and reconstruct spa-
tial information. In this work, we use U-Net as our baseline framework, which
employs multiple skip connections to refine the detailed information lost in up-
sampling modules [4]. As shown in Fig. 1, our overall architecture includes five
stages. Extraction stage extracts low-level information from input images. Pro-
jection stage gradually projects multi-scale features into low-resolution feature
maps that lie in high dimensional spaces. Mapping stage performs several non-
linear mappings to explore more semantic information, providing guidance for
pixels with low contrast and intensity. Refinement stage embeds spatial informa-
tion into feature maps that have rich high-level information. By concatenating
feature maps, this stage refines the semantic boundary. Reconstruction stage
utilizes refined features to perform predictions, producing segmentation results.



Fast and Accurate FCN for Retinal Vessel Segmentation 115

- -

| |

| |

| |

| | = o < < 3 @ |

& ) @ @ 0 &
o < | — N 2] < < (o) ~ ~ 13 o
6y | < 2| | % * Q < < < |

] S S ] S -]
gl l2ll,)sl,[58],]5 = 5 shlel, el Llglle

o o o T =) °2 °2
el =] | = = S S ol ol ol el
? 2 o o L A A L e o | @ Q
allalllgl gl |g & & FAREARE: & s

a a a a a a

| |4 a a a a a | |

| |

| |

| |

- -
\ J \\ J \ AN / \\ J
Extraction Projection Mapping Refinement Reconstruction

Fig. 1. Overall architecture of the proposed network. SSCF-A, SSCF-B, SSCF-C are
detailed in Fig. 2. Please note, at Mapping stage, there can be any number of SSCF-B
blocks, and we use two in our proposed network.

2.4 Separable Spatial and Channel Flow

Convolutional layers are designed to learn filters in a 3-dimension space (two spa-
tial dimensions and one channel (grayscaled image intensity) dimension). Thus,
a single convolution kernel should perform spatial and channel transformations
jointly. However, filters in a single kernel usually conduct these two tasks implic-
itly, which may be vague and inefficient for high dimensional spaces. As such,
we decouple the mappings of spatial correlations and cross-channel correlations
sufficiently by factoring a kernel into a series of operations to perform those
two mappings separately [10]. Specifically, we propose a block called Separa-
ble Spatial and Channel Flow (SSCF) and apply it to Projection, Mapping and
Refinement stages, as shown in Fig. 2. Three depth-wise separable convolutional
layers and one residual connection are contained in a SSCF block. Each depth-
wise separable convolutional layer performs a depth-wise convolution followed
by a point-wise convolution. A depth-wise convolution works as:

Pijk = Z Xiti—[51,5+m—[ 51k Witi—[515+m—T51.k (1)
0<l,m<s

where X; j k., P; j , respectively denote the input and result at position (4, j) and
channel k&, W; ;. denotes the corresponding weight for x; ;. and s denotes the
filter size. A point-wise convolution is written as:

c
Yije™ Zpi,j,kWiJ,k,C (2)
k=1

where C' denotes the number of input channels, p; ; ; stands for the input at
position (i, j) and channel k, y, ; . denotes the output at position (i, j) and
channel ¢ which can be any integer no larger than the total number of output
channels. W; ; 1. . stands for the corresponding weight at position (4, j) for input
channel k£ and output channel c. By stacking depth-wise separable convolutional
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layers, SSCF not only enables spatial and channel information within the feature
maps to flow separately, but also reduces redundant parameters and computa-
tional complexity. Furthermore, a residual shortcut between feature maps with
smaller semantic and resolution gap can provide a better feature fusion.

2.5 Dense Adjacently Vessel Prediction

Despite the fact that the channel-wise spatial relations have an impact on predic-
tion, pixels are classified individually in FCN. A pixel representing background
is less likely to be surrounded by pixels of vessels since retinal vasculature is
structurally continuous [5]. Inspired by this prior knowledge, we propose a dense
prediction cell named Dense Adjacently Vessel Prediction (DAVP), as shown in
Fig.2. In addition to a 1 x 1 convolutional layer, an extra 5 x 5 convolution
with non-linearity is introduced to filter redundant information. Then another
5 x 5 convolution utilizes spatial relations between pixels to perform prediction,
refining the result from a 1 x 1 convolution branch via an element-wise addition.
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Fig. 2. Details of SSCF and DAVP employed in the proposed method.

3 Experiments

3.1 Datasets

We evaluated our method on the DRIVE and CHASE_DBI1 public datasets.
DRIVE consists of 40 fundus images of size 584 x 565 taken from both healthy
adults and adults with mild diabetic retinopathy. There are 20 images for train-
ing and 20 images for testing [8]. CHASE_DBI1 consists of 28 fundus images of
size 999 x 960 taken from 14 10-year old children. For both datasets, gold stan-
dard segmentations are available. Since there is no official division into training
and testing sets for CHASE DB1 [9], we performed a 4-fold cross-validation in
this case. The field of view masks for both datasets are publicly available [6], on
which our quantitative evaluations are conducted.
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3.2 Training

During the training process, Adam Optimizer was used to minimize cross entropy
loss:

C
J(y,p) = =Y yrlog(pr) (3)
k=1

where C refers to the number of classes, p and y respectively denote the proba-
bilistic prediction and ground truth. The learning rate decayed by half for every
10 epochs, with an initial value of 0.001. The network was trained for 50 epochs,
taking less than 1h.

3.3 Implementation Details

The proposed method was implemented utilizing Keras with Tensorflow backend.
All training and testing experiments were conducted on a workstation equipped
with NVIDIA GTX Titan Xp.

3.4 Quantitative Results

To compare with other state-of-the-art results, we used four metrics for evalua-
tion: accuracy (Acc), sensitivity (Sn), specificity (Sp) and area under the ROC
curve (AUC-ROC). AUC-ROC is the key metric in retinal vessel segmentation
considering the imbalance of classes. To obtain the binary vessel segmentation,
a threshold of 0.5 is applied to the probability map.

Table 1 demonstrates the performance gains obtained from SSCF and DAVP,
as evaluated on the DRIVE dataset. By decoupling the mappings of cross-channel
correlations and spatial correlations, SSCF boosts the performance of U-Net,
achieving an improvement on AUC-ROC by 0.09%. An incorporation of DAVP
further improves the predictions by taking neighboring pixels into considera-
tion during classification. These results imply SSCF and DAVP are helpful for
embedding more spatial information between vessels. Figure3 visualizes how
SSCF and DAVP work.
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Fig. 3. A test image patch from the DRIVE dataset. From left to right: one of the
original image patches, the segmentation results from the baseline model, the baseline
+ SSCF model, the baseline + SSCF + DAVP model (the proposed) and the ground
truth.
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Table 1. Performance comparisons of different models on DRIVE.

Method AUC-ROC
Baseline(U-Net) 0.9796
Baseline+preprocessing 0.9809
Baseline+preprocessing+SSCF 0.9818
Baseline+preprocessing+SSCF+DAVP | 0.9826

on CHASE_DBI.

Table 2. Performance comparison with state-of-the-art methods on DRIVE, where t1

We also compare our method with several other state-of-the-art methods in
Tables 2 and 3. Our method outperforms all the other methods in terms of both
accuracy and AUC-ROC. Also, reducing redundant parameters via the depth-
wise separable convolutions strikingly shortens the training and inference time,
making the proposed method being 90% faster than existing methods. Figure 4
shows representative segmentation results obtained from the proposed method

and tr respectively denote time consumptions in training and inference.

Table 3. Performance comparison with state-of-the-art methods on CHASE_DBI.

Method AUC-ROC | Acc Sn Sp tr tr
2nd observer [8] N.A. 0.9473 | 0.7760 |0.9725 | N.A.|N.A.
Gu et al. [12] 0.9779 0.9545 | 0.8309 | N.A. N.A. N.A.
Liskowski et al. [5] | 0.9790 0.9535 | 0.7811 |0.9807 |8h |92s
Wu et al. [11] 0.9807 0.9567 | 0.7844 |0.9817 |16h |10s
Oliveria et al. [6] |0.9821 0.9576 |0.8039 |0.9804 | N.A.|N.A.
Proposed method | 0.9826 0.9579 | 0.7940 1 0.9820|1h |1.3s

Method AUC-ROC | Acc Sn Sp

2nd observer [9] | N.A. 0.9560 | 0.7686 |0.9779
Wu et al. [11] 0.9825 0.9637 |0.7538 | 0.9847
Oliveria et al. [6] | 0.9855 0.9653 |0.7779 | 0.9864
Proposed method | 0.9865 0.9664 | 0.7878 | 0.9865
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Fig. 4. Representative segmentation results superimposed on the original fundus
images, obtained from the proposed method on CHASE_DBI1.

4 Conclusion

In this paper, we proposed a novel FCN by incorporating SSCF and DAVP into
U-Net for segmenting retinal vessels. The proposed SSCF and DAVP blocks can
capture maximum spatial correlations between vessels, being able to solve the
dilemma of maintaining high segmentation accuracy versus effectively extracting
thin vessels. We demonstrated that the proposed method has state-of-the-art
segmentation performance and high computational efficiency, which are essential
in practical clinical applications. Future work will involve applying the proposed
method to large-scale clinical studies.
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