
The Channel Attention Based Context
Encoder Network for Inner Limiting

Membrane Detection

Hao Qiu1,2, Zaiwang Gu3, Lei Mou2, Xiaoqian Mao2, Liyang Fang2,
Yitian Zhao2, Jiang Liu3, and Jun Cheng2(B)

1 School of Mechatronic Engineering and Automation,
Shanghai University, Shanghai, China

2 Cixi Institute of Biomedical Engineering,
Ningbo Institute of Industrial Technology,

Chinese Academy of Sciences, Ningbo, China
Chengjun@nimte.ac.cn

3 Department of Computer Science and Engineering,
Southern University of Science and Technology, Shenzhen, China

Abstract. The optic disc segmentation is an important step for retinal
image based disease diagnosis such as glaucoma. The inner limiting mem-
brane (ILM) is the first boundary in the OCT, which can help to extract
the retinal pigment epithelium (RPE) through gradient edge information
to locate the boundary of the optic disc. Thus, the ILM layer segmenta-
tion is of great importance for optic disc localization. In this paper, we
build a new optic disc centered dataset from 20 volunteers and manu-
ally annotated the ILM boundary in each OCT scan as ground-truth. We
also propose a channel attention based context encoder network modified
from the CE-Net [1] to segment the optic disc. It mainly contains three
phases: the encoder module, the channel attention based context encoder
module, and the decoder module. Finally, we demonstrate that our pro-
posed method achieves state-of-the-art disc segmentation performance
on our dataset mentioned above.

Keywords: Disc segmentation · ILM layer detection · Channel
attention based context encoder

1 Introduction

Glaucoma is the second leading cause of blindness globally, which may result in
vision loss and irreversible blindness. The number of people suffering from glau-
coma is estimated to increase to 80 million in 2020 [2]. As the disease progresses
asymptomatic in the early stages, the majority of the patients are unaware until
an irreversible visual loss occurs. Thus, early diagnosis and treatment for glau-
coma is utmost essential for preventing the deterioration of vision. While there
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Fig. 1. Optic nerve head structure in a cropped OCT slice. The red curve denotes the
ILM boundary. The blue points refer to the boundary points of the optic disc. ILM:
Inner limiting membrane. (Color figure online)

are various approaches to diagnose glaucoma such as vessel distribution, FFT/B-
spline coefficients, most of the known literature has endeavoured to assess the
cup-to-disc ratio (CDR).

There have been a number of attempts at automatically detecting the optic
disc in ocular images. Many proposed optic disc detection approaches concen-
trate on segmenting the optic region in color fundus images. For example, Liu
et al. [3] proposed Variational level set approach for segmentation of optic disc
without reinitialization. Xu et al. [4] employed the deformable model technique
through minimization of an energy function to detect the disc. Cheng et al. [5]
used the state-of-the-art self-assessed disc segmentation method combined three
methods to segment the disc. However, these proposed approaches face chal-
lenges when the optic disc does not have a distinct color in the fundus image.

Optical coherence tomography (OCT), an important retinal imaging method
with non-invasive, high-resolution characteristics, provides the fine structure
within the human retina [6]. A single image of OCT slice is shown in Fig. 1.
Some optic disc segmentation methods are applied to 3-D OCT volumes. For
example, Lee et al. [7] applied a K-NN classifier to segment the optic disc cup
and neuroretinal. Fu et al. [8] provided a Low-rank reconstruction to automati-
cally detect optic disc in OCT slices.

With the development of convolutional neural network (CNN) in image and
video processing [9], automatic feature learning algorithms using deep learn-
ing have emerged as feasible approaches and are applied to handle the image
analysis. Recently, some deep learning based segmentation algorithms have been
proposed to segment medical images [10], [1]. Based on the U-Net, a recent
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Fig. 2. Illustration of the proposed CACE-Net. Firstly, the images are fed into a feature
encoder module, where the residual network (ResNet) block was employed as the back-
bone for each block, and then followed by a max-pooling layer to increase the receptive
field for better extraction of global features. Then the features from the encoder mod-
ule are fed into the proposed channel attention based context encoder module. Finally,
the decoder module was used to enlarge the feature size and output a mask, the same
size as the original input.

popular medical image segmentation architecture, CE-Net employs multi-scale
atrous convolution and pooling operations to improve the segmentation perfor-
mance. And it achieves some state-of-the-art performance in some medical image
segmentation tasks, such as optic disc segmentation and OCT layers segmenta-
tion. The original context extractor module in CE-Net was consist of a dense
atrous convolution (DAC) module and a residual multi-kernel pooling (RMP)
module. However, the original DAC and RMP accounted for abundant channels
to enrich the semantic features representations. Each channel of the features at
the classification layer can be regarded as a specific-class response since we add
the supervision signal on this layer. These abundant channels could be further
embedded to produce the global distribution of channel-wise feature responses.
In this paper, in order to extract more high-level semantic features, we introduce
the channel attention mechanism to enhance the context extractor module of the
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CE-Net, and propose a channel attention based context encoder network (called
CACE-Net) for inner limiting membrane detection.

The major contributions of this work are summarized as follows:

(1) We annotate 20 3D-OCT scans (both of them are right eye scans) centered
at optic disc.

(2) we leverage the ability of CACE-Net to accurately segment the inner limiting
membrane (ILM) in our dataset, which is defined as the boundary between
the retina and the vitreous body. This is necessary for our further work
to detect the optic disc boundary points. The segmentations on database
of OCT images are demonstrated to be superior to those from some known
state-of-the-art methods. And we will release our code and dataset on Github
later.

2 Proposed Method

The CE-Net [1] achieves the state-of-the-art performances in some 2D medical
image segmentation tasks, such as optic disc segmentation, retinal vessel detec-
tion, lung segmentation and cell contour extraction. The proposed CACE-Net
is modified from the CE-Net, which mainly contains three phases: the encoder
module, the channel attention based context encoder module, and the decoder
module, as shown in Fig. 2. The feature encoder module includes four encoder
blocks, and the residual network (ResNet) block was employed as the backbone
for each block, and then followed by a max-pooling layer to increase the receptive
field for better extraction of global features. Then the features from the encoder
module are fed into the proposed channel attention based context encoder mod-
ule. Finally, the decoder module was used to enlarge the feature size and output
a mask, the same size as the original input.

2.1 Channel Attention Based Context Extractor Module

The original context extractor module in CE-Net [1] employed four cascade
branches with multi-scale atrous convolution to capture multi-scale semantic
features, followed by various size pooling operations to further encode the multi-
scale context features. This module accounts for abundant channels to enrich the
semantic features representations, which could be further embedded to generate
the global distribution of channel-wise feature responses. Therefore, motivated
by the SE-Net [11], we propose a channel attention based context extractor
module, introducing the relationship between channels.

In this section, we mainly introduce how to exploit the interdependencies
of channel maps, as illustrated in Fig. 2. The proposed channel attention based
context extractor module employs channel attention mechanism to allow the
network to perform feature recalibration of aggregated context features, with the
basis of original DAC block. Specially, the CACE module utilizes four cascade
branches with multi-scale atrous convolution and channel attention module, to
gain high-level features.
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Fig. 3. Illustration of the channel attention module.

As illustrated in Fig. 3, the extracted feature map F ∈ R
C×H×W in channel

attention module is first calculated directly by the global average pooling to
generate channel-wise statistics z ∈ R

C :

zc =
1

H × W
ΣH

i=1Σ
W
j=1fc(i, j) (1)

where H×W represents the spatial dimensions of features and C is the number of
channels. Then, the two linear transformations W1,W2 and a sigmoid activation
function σ are employed to obtain the squeeze and excitation statistics s ∈ R

C :

sc = σ(W2δ(W1zc)) (2)

where δ refers to the ReLU function, W1 ∈ R
C
r ×C and W2 ∈ R

C×C
r . Finally,

a matrix multiplication between the statistics s ∈ R
C and the feature F ∈

R
C×H×W is added to obtain the final output in each branch of the proposed

channel attention DAC module, followed by the RMP block for further context
information with multi-scale pooling operations.

2.2 Feature Decoder

Instead of directly upsampling the features to the original image dimensions, we
follow the CE-Net [1] to introduce a feature decoder module that restores the
dimensions of the high level semantic features layer by layer. In each layer, we
use ResNet block as the backbone of the decoder block which is followed by a 1
× 1 convolution, a 3 × 3 transposed convolution, a 1 × 1 convolution. Similar
to U-Net [12], we add a skip connection between each layer of the encoder and
decoder. Finally, the feature decoder module could generate the prediction of
the same size as the original input.

2.3 Boundary Extractor

The main goal of this method is to detect internal limiting membrane. There-
fore, we need to turn the segmentation prediction to a boundary line, which
corresponds to the internal limiting membrane. We remove the small connected
components to denoise the segmentation prediction, adopting the morphology
method. After this post processing operation, we achieve the final boundary
corresponding to the internal limiting membrane between the retina and the
vitreous body.
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2.4 Loss Function

In this method, we choose binary cross-entropy loss as our loss function LB , since
the method just needs to predict the binary outputs. The binary cross-entropy
loss is as follows:

LB = −Ex∼pdata
[y · log(D(x )) + (1 − y) · log(1 − D(x ))], (3)

where y represents the ground truth, and D(x ) is the prediction.

3 Experiment Results

3.1 Dataset and Metric

20 3D-OCT scans (both of them are right eye scans) centered at optic disc
were collected from 20 volunteers. Each OCT scan consisted of 885 × 512 image
resolution. While there exist methods for extracting multiple retinal layers from
OCT slices, only ILM layer boundaries is needed in our paper. The ILM is
defined as the boundary between the retina and the vitreous body, which is
the first boundary of retinal OCT. The ground-truth optic disc boundary of a
3D-OCT volume is obtained by first manually labeling the optic disc points in
each optic disc centered slice (with a trained labeler and two experts for quality
control). These labeled points were then to generate the ground-truth optic disc
boundary. In our paper, we also randomly take 10 people’s images for training,
and others for testing. In this paper, we follow the same partition of the data
set to train and test our models.

Following the previous approaches [1], we compute the mean absolute error
(mae) between prediction and ground truth as the metric to evaluate the accu-
racy of segmentation algorithms.

error =
1
n

n∑

i=1

|yi − Yi| (4)

where yi represents the ith pixel predicted value of one surface, and Yi represents
that of ground truth.

3.2 Implementation Details

The proposed CACE-Net was implemented on PyTorch library with the NVIDIA
GPU. We choose stochastic gradient descent (SGD) optimization, other than
adaptive moment estimation (Adam) optimization. We use SGD optimization
since recent studies [13] show that SGD often achieves a better performance,
though the Adam optimization convergences faster. The initial learning rate is
set to 0.001 and a weight decay of 0.0001. We use poly learning rate policy where
the learning rate is multiplied by

(
1 − iter

max iter

)power
with power 0.9. All training

images are rescaled to 448 × 448.
In order to demonstrate conclusively the superiority of the proposed method

over the other methods, we compare our method with two algorithms for the
ILM segmentation:
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Fig. 4. Sample results of the ILM segmentation. From left to right: original images,
CE-Net, CACE-Net and Ground-Truth

(1) U-net, a popular neural network architecture for biomedical image segmen-
tation tasks.

(2) CE-Net [1], which achieves the state-of-the-art performances in some 2D
medical image segmentation tasks, such as optic disc segmentation, retinal
vessel detection, lung segmentation and cell contour extraction.

3.3 Results and Discussion

As can be seen in Table 1, we show the performances of three optic disc seg-
mentation algorithms. Compared with other state-of-the-art optic disc segmen-
tation methods, our CACE-Net outperforms the other algorithms based on deep
learning image processing method. From the comparison shown in Table 1, the
CACE-Net achieves 2.199 in the mean absolute error, better than the U-Net.
From the comparison between CE-Net [1] and our CACE-Net, we also observe
that there is a drop of the mean absolute error by 10.8% from 2.467 to 2.199.

Table 1. Performance comparison of the ILM detection (mean± standard deviation)

Method U-Net CE-Net CACE-Net

error 6.404± 16.407 2.467± 1.989 2.199± 1.471
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We also show three sample results in Fig. 4 to visually compare our method
with the most competitive methods, CE-Net. The comparison images show that
our method obtain more accurate segmentation results.

4 Conclusion

In this paper, we have built a manually labeled OCT dataset and proposed an
effective architecture for segmenting the ILM layer in our OCT dataset. The
proposed CACE-Net achieves the mean absolute error of 2.199 in our dataset,
better than other methods.
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