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Preface

The 6th International Workshop on Ophthalmic Medical Image Analysis (OMIA 2019)
was held in Shenzhen, China, on October 17, 2019, in conjunction with the 22nd
International Conference on Medical Image Computing and Computer-Assisted
Intervention (MICCAI).

Age-related macular degeneration, diabetic retinopathy, and glaucoma are the main
causes of blindness in both developed and developing countries. The cost of blindness
to society and individuals is huge, and many cases can be avoided by early
intervention. Early and reliable diagnosis strategies and effective treatments are
therefore a world priority. At the same time, there is mounting research on the retinal
vasculature and neuro-retinal architecture as a source of biomarkers for several
high-prevalence conditions like dementia, cardiovascular disease, and of course
complications of diabetes. Automatic and semi-automatic software tools for retinal
image analysis are being used widely in retinal biomarkers research, and increasingly
percolating into clinical practice. Significant challenges remain in terms of reliability
and validation, number and type of conditions considered, multi-modal analysis (e.g.,
fundus, optical coherence tomography, scanning laser ophthalmoscopy), novel imaging
technologies, and the effective transfer of advanced computer vision and machine
learning technologies, to mention a few. The workshop addressed all these aspects and
more, in the ideal interdisciplinary context of MICCAI.

This workshop aimed to bring together scientists, clinicians, and students from
multiple disciplines in the growing ophthalmic image analysis community, such as
electronic engineering, computer science, mathematics, and medicine, to discuss the
latest advancements in the field. A total of 36 full-length papers were submitted to the
workshop in response to the call for papers. All submissions are double-blind
peer-reviewed by at least three members of the Program Committee. Paper selection
was based on methodological innovation, technical merit, results, validation, and
application potential. Finally, 22 papers were accepted for orals (8 papers) and posters
(14 papers) at the workshop and chosen to be included in this Springer LNCS volume.

We are grateful to the Program Committee for reviewing the submitted papers and
giving constructive comments and critiques, to the authors for submitting high-quality
papers, to the presenters for excellent presentations, and to all the OMIA 2019
attendees for coming to Shenzhen from all around the world.

September 2019 Huazhu Fu
Mona K. Garvin

Tom MacGillivray
Yanwu Xu

Yalin Zheng
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Dictionary Learning Informed Deep
Neural Network with Application

to OCT Images

Joshua Bridge1, Simon P. Harding1,2, Yitian Zhao3, and Yalin Zheng1,2(B)
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Liverpool L7 8TX, UK

{joshua.bridge,s.p.harding,yalin.zheng}@liverpool.ac.uk
2 St. Paul's Eye Unit, Royal Liverpool University Hospital, Liverpool L7 8XP, UK

3 Cixi Institute of Biomedical Engineering, Ningbo Institute of Industrial
Technology, Chinese Academy of Sciences, Ningbo 315201, Zhejiang, China

yitian.zhao@nimte.ac.cn

Abstract. Medical images are often of very high resolutions, far greater
than can be directly processed in deep learning networks. These images
are usually downsampled to much lower resolutions, likely losing useful
clinical information in the process. Although methods have been devel-
oped to make the image appear much the same to human observers, a lot
of information that is valuable to deep learning algorithms is lost. Here,
we present a novel dictionary learning method of reducing the image
size, utilizing DAISY descriptors and Improved Fisher kernels to derive
features to represent the image in a much smaller size, similar to tradi-
tional downsampling methods. Our proposed method works as a type of
intelligent downsampling, reducing the size while keeping vital informa-
tion in images. We demonstrate the proposed method in a classification
problem on a publicly available dataset consisting of 108,309 training
and 1,000 validation grayscale optical coherence tomography images. We
used an Inception V3 network to classify the resulting representations
and to compare with previously obtained results. The proposed method
achieved a testing accuracy and area under the receiver operating curve
of 97.2% and 0.984, respectively. Results show that the proposed method
does provide an accurate representation of the image and can be used as
a viable alternative to conventional downsampling.

Keywords: Dictionary learning · Deep neural network · DAISY
descriptors · Improved Fisher Kernels · OCT

1 Introduction

Routinely collected medical images are usually high resolution, far exceeding
computational capabilities, meaning that these images must be downsampled to
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2 J. Bridge et al.

much lower resolutions for most deep learning applications. Any downsampling
will inevitably lose information [5]. There is a need for data efficient, intelligent
downsampling techniques which can downsample images while keeping as much
relevant information as possible. Traditional image downsampling techniques
focus on making the image appear the same to a human observer (for example,
bicubic interpolation [7]). However, there is often a difference between features
that humans and algorithms perceive to be important. We aim to develop a
new method that is data efficient and preserves the features that a deep neural
network finds useful in challenging tasks.

This paper proposes a novel method largely inspired by Albarrak et al. [1],
which aims to provide a better method of image downsampling. Albarrak et al.
[1] proposed a method of volumetric image classification, which involved decom-
posing 3D volumetric images into homogeneous regions and then representing
each region with a Histogram of Oriented Gradients (HOG). They then used
Improved Fisher Kernels (IFK) [13] to create one feature vector for each image.
Contrary to Albarrak et al. [1], our method utilizes DAISY descriptors to provide
a 2D representation of images in a 3D space. IFK is then used to choose the best
value in the third dimension of the DAISY feature maps, finally resulting in a
2D image. This method results in a 2D representation, which is of a significantly
smaller size than the original image. The representation can then be passed
through a deep learning network for classification. The method is illustrated in
Fig. 1. Our method is demonstrated on a publicly available dataset, consisting
of Optical Coherence Tomography (OCT) images [6]. We compare our results
with their published results obtained previously on this dataset and achieve
improved accuracy. Our main contribution can be summarised as follows. First,
we propose a new dictionary learning approach for intelligent image downsam-
pling based on DAISY descriptors and Fisher Vectors; second, we demonstrate
that the proposed approach is compatible with deep learning algorithms; third,
we show promising results in OCT images to improve disease classification.

The remainder of the paper is organized as follows. Section 2 gives a brief
outline of previous work. Section 3 describes the methods used to create the
image representation. In Sect. 4, we apply our method to a dataset of OCT
images and give results compared to previously obtained results. Finally, Sect. 5
briefly discusses our findings and concludes.

2 Previous Work

There are a variety of well-established image downsampling techniques, includ-
ing nearest neighbor, bilinear, and bicubic interpolation [7]. Downsampling tech-
niques mainly focus on reducing image dimensions while still providing an accu-
rate representation of the image. Other downsampling methods, such as adaptive
downsampling [9], focus on enabling the image to be reconstructed to the origi-
nal size. Previously, these methods have been evaluated based upon how similar
they are to the ground truth, using performance measures such as peak signal
to noise ratio and root mean square error. However, these performance measures
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Fig. 1. The proposed framework. Previously, large images would need to be down-
sampled to avoid an out of memory error. The new framework aims to avoid random
downsampling by introducing a more data efficient approach. The new image represen-
tation may not be more intuitive to a human observer; however, it may be more useful
for a classification algorithm.

fail to evaluate how well the method captures features that may be useful in a
classification task.

Methods such as Histogram of Oriented Gradients (HOG) [19], Scale Invari-
ant Feature Transformation (SIFT) [10], dictionary learning [1], and deep learn-
ing [3], have been proposed as a method of reducing image dimension before
classification. These methods have some success in producing excellent classifi-
cation performance. A modified version of DAISY has previously been used in a
logo classification problem [8], where it was used to produce edge maps. A linear
support vector machine (SVM) was then used for classification. This method
produced state-of-art results, which were superior to other SIFT-like methods.
We differ from this method by using Fisher vectors to reduce the DAISY repre-
sentation back to an image; this allows us to use already well-developed image
classification algorithms.

3 Methods

The proposed new dictionary learning image representation consists of two steps.
The first step utilizes DAISY descriptors to describe the image densely in three
dimensions, creating a dictionary. The second step uses Fisher kernels to choose
the most significant value in the third dimension of the DAISY features. This
produces a much smaller image that resembles the original to some degree. While
the generated image may not be insightful to human graders, its enhanced fea-
tures may be more useful to a computer than the original image.

3.1 DAISY

DAISY is an efficient image descriptor [16], which works in a similar way to
the more widely known algorithms, SIFT, and GLOH [15]. DAISY descriptors
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are named because of the flower like pattern they produce. DAISY begins by
selecting a dense grid of uniformly spaced pixels, calculating orientation maps
for each of the chosen pixels and convolving them with Gaussian kernels. This
produces a vector for each chosen pixel. The DAISY algorithm results in a 3D
tensor, with the first two dimensions storing the horizontal and vertical location
of the chosen pixels and the third dimension storing the descriptor values. A
visual representation of DAISY is shown in Fig. 2. The use of Gaussian kernels
makes this algorithm efficient to compute, and it is well suited to providing dense
representations [15].

For an image of size (I1, I2), and given parameters step size s, radius r, rings
p, histograms h, and orientations o, the DAISY algorithm returns an array of
size (D1,D2,D3), where

D1 =
⌈I1 − r2

s

⌉
, D2 =

⌈I2 − r2

s

⌉
, D3 = (p × h + 1) × o.

In our experiments, the DAISY algorithm was implemented using scikit-
image 0.15.0 [17], with a step size of 5, a radius of 5, one ring, 8 histograms,
and 4 orientations. These parameters were chosen after some initial testing on a
small subset of 5000 images, more intensive testing may provide better parameter
choices. Each direction consisted of 298 pixels, resulting in a 298 × 298 × 36
feature map.

Fig. 2. Visual representation of DAISY descriptors on an example image. A sparse
representation is used so that the pattern is easily observed.

3.2 Fisher Vectors

The Fisher kernel combines generative statistical models with discriminative
methods, making it both generalizable and flexible [13]. It has previously been
applied to a variety of problems, including image representation. Since its cre-
ation, the Fisher kernel has been improved to provide higher accuracy in real-
life classification, using L2 normalization and changing the linear kernel with
a non-linear additive kernel [13]. This Improved Fisher Kernel (IFK) is used
here to reduce the image dimension further. In brief, for a set of feature vectors



Dictionary Learning Informed Deep Neural Network 5

F = (x1, . . . , xN ) in D dimensions, such as those extracted by DAISY, we fit a
Gaussian Mixture Model (GMM) with K kernels, Γ = (μk, Σk, πk; k = 1, . . . , k).
The GMM calculates posterior probabilities for each feature vector:

pnk =
exp

[− 1
2 (xn − μk)TΣ−1

g (xn − μk)
]

∑K
i=1 exp

[− 1
2 (xn − μi)TΣ−1

k (xn − μi)
] .

Then for each kernel k and dimension d, the mean and covariance are calculated:

mdk =
1

N
√

πk

N∑
n=1

pnk
xdn − μdk

σdk
,

cdk =
1

N
√

2πk

N∑
n=1

pdk

[(
xdn − μdk

σdk

)2

− 1

]
.

In order to reduce computation, we apply Fisher vectors with one kernel,
giving qi = 1. A Fisher Vector is calculated per image, meaning that md1 = 0,∀d.
Hence, for our application, Fisher Vectors can be described with one vector:

cd1 =
1

N
√

2π1

N∑
n=1

[(
xdn − μd1

σd1

)2

− 1

]
.

This vector is then used to reconstruct a grayscale image. This is a special case
of IFK; otherwise, we can use more kernels and which would produce a longer
feature vector.

4 Experimental and Results

4.1 Data

The proposed method is demonstrated on a publicly available dataset consisting
of OCT images [6]. OCT is a similar concept to ultrasound; however, it uses
light instead of sound to produce a cross-sectional view of tissue composition
with micrometre resolution [2]. In this dataset, each image is labeled as either
normal, Choroidal Neovascularisation (CNV), Diabetic Macular Edema (DME),
or drusen, corresponding to the disease that they display. CNV is a leading retinal
disease that can cause irreversible sight loss. There are various causes of CNV,
with the main form of CNV being wet age-related macular degeneration(AMD)
[4,18]. DME, also called Diabetic Macula Oedema (DMO), is a common cause
of vision loss in patients with diabetes. DME is characterized by intraretinal
fluid, causing a thickening in the retinal layers [11]. Drusen are subretinal lipid
deposits and are indicative of AMD [12]. Examples of each of the four classes
are shown in Fig. 3.

The training dataset consists of 37,205 CNV images, 11,348 DME images,
8,616 drusen images, and 51,140 healthy images. The testing dataset comprised
of 250 images from each class and was collected from patients separate from
the training dataset [6]. Same as used by Kermany et al. [6] we use this as a
validation dataset to evaluate performance.
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Fig. 3. Examples of the four classes in the OCT dataset. Arrows indicate the prominent
features that lead to the diagnosis.

4.2 Experiments Setup

All experiments were conducted on a Linux machine using Ubuntu 18.04, with
a Titan X 12 GB GPU and 32 GB of memory. Python 3.6 and Keras 2.2.4 were
used to implement the method and in the deep learning network. For compar-
ison, we followed the work of Kermany et al. [6] who used an Inception V3
network [14], pretrained on Imagenet, with the Adam optimizer to classify the
images according to the disease they displayed. Inception V3 is a popular deep
learning network consisting of 159 layers. The Inception V3 is based on previ-
ous Inception networks, introducing new design principles to increase accuracy
while reducing computational complexity, such as. During the training of the
classification model, early stopping, with a patience of 10 epochs, and model
checkpoints were used to prevent overfitting and to select the best model. Class
weights were used to balance the training dataset.

4.3 Results

The output of the DAISY algorithm was a 298 × 298 × 36 tensor. A Fisher
vector generalized mixed model was then applied in the third dimension, with
kernel dimension 1. The final output resulted in a final size of 298 × 298, which
is close to our target of 299×299. Each image took an average of 2.1 s to process
offline in this way. We used the classification method described by Kermany et
al. [6], which allowed us to compare our results directly with theirs.

To assess the performance of the proposed method, accuracy, macro-average
multi-class area under the receiver operating characteristic (AUC), sensitivity,
and specificity were calculated and compared with previously reported results
by Kermany et al. [6], shown in Table 1. Our method achieved an AUC of 0.984
and outperformed [6] in terms of specificity (99.1%) and accuracy (97.2%).

5 Discussion and Conclusions

This novel method aims to reduce image size while keeping important informa-
tion useful to the classification. DAISY descriptors provide a dense representa-
tion of the image and Fisher kernels further reduce the size of that representation
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Table 1. Multiclass classification performance metrics in the testing dataset. Values
in bold indicate the best score for that metric.

Method Accuracy AUC Sensitivity Specificity

Kermany et al. [6] 96.6% - 97.8% 97.4%

Our model 97.2% 0.984 97.1% 99.1%

of that image. The results presented here achieve improved accuracy and speci-
ficity over the previous results by Kermany et al. [6], which utilized traditional
downsampling methods. This demonstrates that the proposed method success-
fully captures useful information in images and may provide a better alternative
to traditional downsampling methods. Our method achieves improved specificity
at the expense of some sensitivity. Principal Component Analysis was used as
an alternative to the Fisher kernels, however we were not able to obtain good
results and these are not presented here. DAISY has the advantage of providing
dense representations, while also being computationally inexpensive. The use
of DAISY descriptors may also provide a more robust representation against
both photometric and geometric transformations compared to other descriptor
algorithms, as observed by Tola et al. [15].

The biggest current limitation of this method is the time taken to process the
images; speed increases may be possible if DAISY descriptors can be calculated
on a GPU. The effect of DAISY hyperparameters such as step size and radius
are yet to be fully explored, and improved results may be possible. More work
needs to be carried out to confirm if the proposed method generalizable to other
imaging modalities such as color fundus, which contains more features than
OCT.

In conclusion, we have successfully demonstrated that our new method may
provide a viable alternative to downsampling images before training a deep learn-
ing network. Our method has increased accuracy over previous work when tested
on a public dataset. Future work will concentrate on further optimizing the model
in terms of speed and optimal parameters and in seeking other applications.
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Abstract. Optical coherence tomography (OCT) is a common imag-
ing examination in ophthalmology, which can visualize cross-sectional
retinal structures for diagnosis. However, image quality still suffers from
speckle noise and other motion artifacts. An effective OCT denoising
method is needed to ensure the image is interpreted correctly. However,
lack of paired clean image restricts its development. Here, we propose an
end-to-end structure-aware noise reduction generative adversarial net-
work (SNR-GAN), trained with un-paired OCT images. The network is
designed to translate images between noisy domain and clean domain.
Besides adversarial and cycle consistence loss, structure-aware loss based
on structural similarity index (SSIM) is added to the objective function,
so as to achieve more structural constraints during image denoising. We
evaluated our method on normal and pathological OCT datasets. Com-
pared to the traditional methods, our proposed method achieved the best
denoising performance and subtle structural preservation.

Keywords: Optical coherence tomography · Image denoising ·
Generative adversarial network

1 Introduction

Optical coherence tomography (OCT), with its noninvasive visualization of cross-
sectional tissue structures, has been regarded as one of the most effective tools
for monitoring the retinal structures and their pathological changes [1]. Although
OCT imaging has been improved markedly in both hardware and software,
images still suffer from speckle noise brought by its intrinsic imaging mode and
other motion artifacts during OCT inspect [1]. Image noise may obscure subtle
but important structural details which are helpful to clinical diagnosis. There-
fore, OCT image denoising has been extensively studied for improving visual
examination and the performance of automatic analysis.

Various OCT image denoising algorithms have been developed based on tra-
ditional computer vision theories, including spatial-based (e.g. nonlinear diffu-
sion filtering [2]) and transform-based methods (e.g. wavelet transform [3]). To
c© Springer Nature Switzerland AG 2019
H. Fu et al. (Eds.): OMIA 2019, LNCS 11855, pp. 9–17, 2019.
https://doi.org/10.1007/978-3-030-32956-3_2
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achieve better edge-preserving performance, several methods apply local image
representation (e.g. image patches) for noise reduction [4,5]. The non-local means
(NLM) performs weighted averaging within image patches extracted by a prede-
fined searching window [4], and block-matching and 3D filtering (BM3D) groups
similar patches into 3D format and performs collaborative filtering on each
group to achieve the speckle noise reduction [5]. However, most existing methods
require parameter tuning to match different noise distributions in OCT images
[6], which restricts their usage in practice.

Recently, image denoising methods based on deep convolutional neural net-
works (CNN) have been developed, which eventually make it possible to achieve
OCT noise reduction in an end-to-end manner [7,8]. A custom network, with the
advantage of U-Net, residual learning and dilated convolution, is proposed to
denoise single frame OCT B-scans [7]. Based on conditional generative adversar-
ial networks (cGAN) [9], an edge-sensitive cGAN is proposed to noise reduction
for OCT images and obtains remarkable denoising performance [8]. However,
these CNN denoising frameworks need paired OCT images (noisy images and
corresponding clean images) for training. The more commonly used method is to
obtain clean images through registration and averaging of multi-frame B-scans
[8]. In addition to requiring longer scanning time, this approach has two potential
drawbacks. Firstly, field of interest cannot be absolutely aligned due to volun-
tary or involuntary eye movement during multiple scans. Secondly, some small
pathological area (e.g. hyper reflection) could be blurred or totally removed after
averaging. Instead, some methods synthesize noisy images with additive noise
assumption (e.g. Gaussian noise in [7]), which does not make sense, because most
OCT images are suffered from speckle noise or mixed noise sources.

In this paper, we propose a structure-aware noise reduction GAN (SNR-
GAN) for unpaired OCT image denoising. The established adversarial network,
inspired by cycle GAN [10], learns the mapping function between two domains
(the clean and the noisy) rather than pixel-wise correspondence between paired
images. We train the network with unpaired OCT images, which significantly
reduce the difficulty of collecting training samples. Furthermore, we add an extra
structural loss to preserve the fine structure of retinal tissues. Finally, the denois-
ing performance is evaluated by visual inspection and quantitative metrics.

2 Proposed Method

In this section, we introduce the proposed network architecture, including
the custom objective function with adversarial loss, cycle consistence loss and
structure-aware loss. An overview of the proposed framework is illustrated in
Fig. 1.

2.1 Design and Network Architecture

GAN can be considered as minimization-maximization game between generator
and discriminator [11]. A generator creates new samples to maximize the prob-
ability of fooling the discriminator, while discriminator is trained to identify if
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Fig. 1. Model architecture and loss function of our proposed SNR-GAN for unpaired
OCT images (x, y). GXY and GY X are generators, DX and DY are discriminators.
Ladv XY , Ladv Y X , Lcyc, and Lstru are the subcomponents of objective function.

the samples are real or fake. Cycle GAN has been proved as an effective way
for unpaired image translation [10]. Different from traditional GANs, which only
have one set of generator and discriminator, cycle GAN is composed of two sets of
generators and discriminators to guarantee cycle-consistent translation between
unpaired cross-domain images. Motivated by cycle GAN, we consider OCT noise
reduction as image translation between clean and noisy image domains.

Suppose we have two OCT image domains, clean domain xi ∈ X and noisy
do-main yi ∈ Y . The proposed SNR-GAN is composed of two generators, GXY

and GY X , and two discriminators DX and DY . Firstly, two generators learn the
image mappings between clean and noisy domain. GY X translates the noisy OCT
images to the clean image, while GXY performs the inverse task. The network
architecture for both generators is U-shape fully convolutional neural network,
containing series of down and up sampling convolutional blocks. In this study, we
used 8 convolution blocks for both down and up sampling, and each convolutional
block has a stride of 2. Then, two discriminators are binary classifiers which
distinguish the translated and the real images, in order to push generators to
create realistic images. DX calculates and compares the probability of x and
GY X(y) being considered as clean images, and vice versa. Both discriminators
are composed of 5 convolutional blocks.

2.2 Objective Function

The original objective function of cycle GAN includes two portions, adversarial
and cycle consistence loss [12]. We introduce extra penalty based on structural
similarity index (SSIM) [12] to preserve subtle features during noise reduction.

Adversarial loss can be subdivided into two parts for different mapping func-
tions, GXY : X �→ Y and GY X : Y �→ X. Here we only describe the loss function
Ladv XY for GXY and the corresponding discriminator DY , because it can be
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easily transplanted to get the loss function Ladv Y X for GY X and DX following
the same rule. Adversarial loss Ladv XY for GXY and DY is expressed as below:

Ladv XY = EY [log DY (y)] + EX [log 1 − DY (GXY (x))]

where E[.] is the mathematical expectation. GXY aims to minimize this loss
function while DY tries to maximize it.

Cycle consistence loss is the item that reduces the space of possible mapping
function during translation between unpaired images. Without cycle consistence
loss, the mapping function can be trained to translate input images into any
random sub-distribution of images in target domain. By adding this term, both
generators need not only translate images into target domain but also translate
them back which are almost identical to their inputs, i.e. GY X(GXY (x)) ≈ x and
GXY (GY X(y)) ≈ y. Cycle consistence loss is expressed as the equation below:

Lcyc = EX [‖GY X(GXY (x)) − x‖1] + EY [‖GXY (GY X(y)) − y‖1]
where E[.] is the mathematical expectation and ‖.‖1 is the L1 norm.

In our application, we aim to remove noises instead of distorting or losing
vital structural features. Even subtle structural features are important which
may have influence on doctor diagnosis. SSIM is a commonly used indicator to
assess structural similarity between two images [12], which is defined as follows:

SSIM =
(2μx + 2μy + C1)(2σxy + C2)
(μ2

x + μ2
y + C1)(σ2

x + σ2
y + C2)

where μx and μy denote mean, σx and σy denote standard deviation, and σxy

denotes covariance for two input images. C1 and C2 are constants. Based on
SSIM calculation, we propose structure-aware loss to avoid geometrical distortion
during image translation. SSIM loss is expressed as the equation below:

Lssim = −EX [SSIM(GXY (x), x)] − EY [SSIM(GY X(y), y)]

As defined above, SSIM loss performs the comparison between original image
and corresponding translated image only through one generator, while cycle
consistence loss compares the original image with its corresponding translated
images created by concatenated operation of two generators.

SSIM loss mentioned above is calculated on entire image, but more attention
is deserved in the critical regions during denoising. An ideal noise reducer tends
to remove all noise on background while enhance the signal in foreground. We
therefore introduce regional SSIM loss which calculates SSIM in the dedicated
regions instead of the whole image. Regional SSIM loss is then defined as below:

Lr−ssim = −EX [SSIM(sub(GXY (x), sub(x)))] − EY [SSIM(sub(GY X(u), sub(u)))]

where sub(.) stands for sub-region, and its location is manually marked with
bounding box on retinal area. Finally, the full objective function is defined as:

Ltotal = Ladv + λ1Lcyc + λ2Lstru

= Ladv XY + Ladv Y X + λ1Lcyc + λ2(Lssim + 0.5 ∗ Lr−ssim)
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where coefficients λ1 and λ2 are used to control the relative importance of three
items. Each item plays different roles in creating high quality images. Adver-
sarial loss Ladv enables the network to learn the different distributions of image
domains and builds the mapping functions between clean domain and noisy
domain. Cycle consistence loss Lcyc adds constrains during image translation
so that the translated images are distributed evenly in target domain. Finally,
structure-aware loss Lstru adds more structural constrains on the translation by
comparing original and translated images directly.

3 Experiments and Results

In our experiments, the training and testing images were acquired using a Spec-
tralis OCT device (Heidelberg Engineering, Germany). We compared denoising
performance of our method with traditional methods including BM3D [5], NLM
[4] and K-SVD [13]. The quantitative validation was performed on normal and
pathological images, via the metrics of signal-to-noise ratio (SNR), contrast-to-
noise ratio (CNR) and SSIM. We did not compare our method with existing
CNN based denoising method, since strictly paired data is not available.

3.1 Implementation Details

We selected 250 clean images and 210 noisy images for training based on SNR
of entire image. Images that have SNR larger than 30 dB are considered as
clean, while less than 20 dB are considered as noisy. Data were exported from
Spectralis system and saved as 8-bits depth images. The image resolution is
768*497. All images were padded to square and then re-sized to 512*512. The
study was approved by the medical ethics committee of the hospital. No data
augmentation was applied during training. Adam solver with initial learning
rate 2e-4 was applied to optimize the adversarial networks. After trial and error,
the coefficients λ1 and λ2, mentioned in objective function, were set to 10 and
5 empirically. We trained the network for 50 epochs with batch size of 1. The
proposed network was implemented in Python with Tensorflow and trained by
using 4 NVIDIA Tesla P100 GPUs.

Because there are no paired OCT images, we define the denoising metrics of
SNR and CNR on designated signal and background regions. These regions of
interest (ROIs) were manually marked on each image, as shown in Figs. 2(a) and
3(a), where red rectangles represent signal regions and blue rectangle represents
background region. For normal images, three red rectangles locate in retinal
neural fiber layer, inner retina and retinal pigment epithelium (Fig. 2(a)). For
pathological images, three red rectangles locate in typical abnormal regions such
as hyperreflective foci and subretinal fluid (Fig. 3(a)). SNR reflects the level of
noise in an image, which is defined as:

SNR = 10 log10(
max(I)2

σ2
b

)
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Fig. 2. Denoising results in a normal image. Original noisy image with selected ROIs
for SNR and CNR calculation (a), and denoised images by BM3D (b), NLM (c), K-SVD
(d), our methods without Lstru(e) and with Lstru(f). Region with yellow rectangle is
zoomed. External limiting membranes (ELM) is marked for visual inspection. (Color
figure online)

where max(I) denotes the maximum grayscale in signal region and σb denotes
standard deviation of the background region on the same image. CNR stands
for the contrast between signal and background, which can be calculated as:

CNRi = 10 log10(
|μi − μb|√

σ2
i − σ2

b

)

where μi, μb and σi, σb denote mean and standard deviation for i-th signal region
and background region, respectively. We averaged SNR and CNR over three
selected signal regions. And we applied SSIM to evaluate structural fidelity.

3.2 Results

The validation was performed on 50 normal OCT images and 50 pathological
OCT images with varying degrees of noise. We compared the denoising perfor-
mance among three traditional denoising methods and our proposed methods.
Figures 2 and 3 show the denoising results in normal and pathological datasets,
respectively. And Table 1 shows the quantitative comparison among different
denoising methods in both datasets.

By visual inspection, all methods suppressed the noises to some extend in
background and retinal areas, while enhanced the contrast between retinal lay-
ers. These subjective impressions were confirmed by the metrics of SNR and
CNR. All denoising methods had higher SNR and CNR compared to the orig-
inal images (Table 1), while the highest SNR and CNR was achieved by the
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Fig. 3. Denoising results in a typical pathological image. Original noisy image with
selected ROIs for SNR and CNR calculation (a); and denoised images with BM3D (b),
NLM (c), K-SVD (d), our methods without Lstru(e) and with Lstru(f). Region with
yellow rectangle is zoomed. Fiber and hyper reflection are marked for visual inspection.
(Color figure online)

proposed SNR-GAN without Lstru. Higher SNR indicates relatively higher level
of signal compared with noise level, and higher CNR means better contrast
for image observation. Our proposed method cleaned up most of speckle noise
on background region (Fig. 2(e–f), Fig. 3(e–f)), while BM3D, NLM and K-SVD
were only capable of removing part of noise, that actually created inhomogeneous
background in both datasets (Fig. 2(b–d), Fig. 3(b–d)).

Structural fidelity is another metric for noise reduction, especially for the
fine retinal structures. In Figs. 2 and 3, it was obvious that BM3D, NLM and
K-SVD tended to over smoothing noisy images which destroyed the textures. In
normal images, the external limiting membrane layer (marked in Fig. 2(f)) was
retained after denoising by our SNR-GAN with Lstru. Meanwhile, in pathological
images, there are still some fibrous connective tissues (marked in Fig. 3(f)) within
subretinal fluid, which is very important to evaluate the stage of disease during
clinical diagnosis. Our SNR-GAN with Lstru preserved these subtle tissues while
reducing image noise effectively, intuitively shown by the highest SSIM index in
Table 1 and visual inspection, while original cycle GAN tended to remove subtle
fibrous connective tissues, shown in Fig. 3(e).

In general, our SNR-GAN with Lstru achieved the best denoising performance
while considering noise reduction as well as fine structural preservation. There
is a slight decay in SNR and CNR, compared to the performance of original
cycle GAN, mainly because minor noise in background is reserved by adding
structural constraints. Besides, our method has the advantage in time efficiency.
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Using SNR-GAN, the average processing time for each single image is 0.3 s, while
other methods take 30 s or even longer under the same test environment.

Table 1. Quantitative comparison of different denoising methods in two datasets.

Normal dataset Pathological dataset

Method SNR CNR SSIM SNR CNR SSIM

Original 19.52 5.31 N/A 19.30 2.32 N/A

BM3D 28.62 8.22 0.52 28.09 5.88 0.40

NLM 23.96 6.87 0.79 27.72 6.07 0.54

K-SVD 20.34 5.82 0.48 24.74 3.85 0.56

SNR-GAN without Lstru 38.31 9.44 0.65 35.10 6.97 0.61

SNR-GAN with Lstru 31.36 9.05 0.84 31.50 6.31 0.80

4 Conclusion

In this paper, we introduced an end-to-end deep network for OCT image denois-
ing. Our method was motivated by cycle GAN, but denoising performance was
further improved by introducing global and regional SSIM loss. Compared to
other methods, we achieved better noise reduction performance as well as fine
structural preservation in both normal and pathological OCT datasets. The
greatest advantage of our proposed method lies in that it does not re-quire
paired training samples. Related denoising works done by other researchers,
using cGAN [8] or other convolutional neural network [7], always require paired
training samples. Paired samples could not be obtained easily and strictly paired
data is not available. In fact, there are ways to get large amount of un-paired
clean and noisy OCT images. Our proposed method is a novel and quite practi-
cal framework to collect training data and obtain high-quality denoising model,
which can be used for OCT images and even other medical image modalities.
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Abstract. Microvascular changes are one of the early symptoms of reti-
nal diseases. Recently developed optical coherence tomography angiog-
raphy (OCTA) technology allows visualization and analysis of the reti-
nal microvascular network in a non-invasive way. However, automated
analysis of microvascular changes in OCTA is not a trivial task. Cur-
rent approaches often attempt to directly segment the microvasculature.
These approaches generally have problems in cases of poor image qual-
ity and limited visibility of the vasculature. Evaluating the quality of
the results is also challenging because of the difficulty of manually trac-
ing the microvasculature, especially in cases of low image quality or
with images with a larger field of view. In this work, we develop an
automated deep-learning approach to assign each pixel within human
OCTA en-face images the probability of belonging to a microvascular
density region of each of the following categories: avascular, hypovas-
cular, and capillary-dense. The AUCs (area under the receiver operat-
ing characteristic curves) were 0.99 (avascular), 0.93 (hypovascular), and
0.97 (capillary-dense) for segmenting each of the categories. The results
show very good performance and enables global and region-based quan-
titative estimates of microvascular density even in relatively low-quality
en-face images.

Keywords: OCT-Angiography · Capillary density · Deep learning

1 Introduction

The retinal microvascular network supplies the retina with oxygen and nutri-
tion. Ocular diseases including diabetic retinopathy [1], glaucoma [2], age-related
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macular degeneration [3], and radiation retinopathy [4,5] often show changes in
the microvasculature. Traditionally, fluorescein angiography (FA) is widely used
for assessing retinal micro-circulation. However, this technique is invasive and
doesn’t distinguish microvasculature in superficial retinal layers from the deeper
plexus. OCT angiography (OCTA) is a modality increasingly used for assessing
retinal vasculature pathologies in retinal studies [6–8].

Many existing approach for measuring capillary density from en-face OCTA
images – including the use of fractal analysis [9,10], vessel enhancement filters
[11], and a convolutional-neural-network approach [12] – attempt to first directly
segment the microvasculature. However, because the quality of OCTA images
varies and is susceptible to noise or artifacts, a direct measurement of vessels in
OCTA en-face images is often not feasible. Figure 1 shows an example compar-
ison of good quality en-face images (Fig. 1(a), (b)) and an image with a poorly
visible microvascular network (Fig. 1(c)). These differences can be common in
the analysis of patients with diseases such as radiation retinopathy [4].

Other strategies for providing an overall sense of vessel density from an OCTA
en-face image include directly detecting the fovea avascular zone (FAZ) or non-
FAZ avascular regions using filters and/or fractal analysis [13–15] and a recent
deep-learning approach to detect avascular areas [16]. However, these approaches
do not take into consideration of the possibility of reduced (but not completely
avascular) capillary density in regions. Also, location-dependent artifacts are
often not addressed.

Fig. 1. Example variability of OCTA en-face image quality. (a) An example image
from a healthy subject showing vessels clearly. (b) and (c) are en-face images from the
unaffected and affected eye of a patient with radiation retinopathy. (c) shows an image
with a lower signal-to-noise ratio (SNR) and less visible capillaries.

In this work, to address the frequent limited visibility of individual capil-
laries in OCTA images but to also allow for characterization of differing den-
sity levels at each pixel, we train and evaluate a deep-learning-based approach
(using a modified U-net architecture) to segment avascular, hypovascular, and
capillary-dense areas from OCTA en-face images. We train and evaluate our app-
roach (using 10-fold cross-validation) on a challenging dataset of uveal melanoma
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patients (including those with radiation retinopathy) and controls whereby, as
shown in Fig. 1, the visibility of the capillaries can vary substantially.

2 Methods

2.1 Preprocessing

In each OCTA scan we use in this work, there is a volumetric structural OCT
scan showing the macular tissue and a corresponding split spectrum amplitude-
decorrelation angiography (SSADA) scan showing the vesselness. We use the raw
OCT and SSADA data to segment and form the en-face projection angiogram
of superficial layers. More specifically, to obtain the layer information, a graph-
based layer segmentation algorithm [17] is used to segment the superficial layers
in the corresponding OCT volumes. In this approach, we follow the definition
from Camino et al. [18] and use the superficial layers as the combination of retinal
nerve fiber layer (RNFL) to inner plexiform layer (IPL). Figure 2(a) shows the
SSADA information overlaid on a b-scan in the segmented layers. To generate
the projection images, we use the maximum intensity in each column in these
layers. An example result can be seen in Fig. 2(b).

Because the deep learning approach we use prefers pixel dimensions divisible
by 32, the generated en-face images are also unified to dimensions of 480 × 480
by upsampling with cubic spline interpolation to preserve more details.

Fig. 2. An example OCTA image. (a) OCT b-scan showing the superficial layers used
in this study. The superficial layers are shown between the red and green boundaries,
and only the SSADA information shown in red scatters between the boundaries are
used. (b) The en-face projection angiogram of the superficial layers of the structural
OCT volume indicated in (a). (Color figure online)
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2.2 Input Data Generation

For the input of our deep network, in addition to the en-face images, to help the
network deal with potential location-specific artifacts, such as signal dropout on
the temporal side (Fig. 3(a)), we also provide a radial location map (providing the
distance from the center), as shown in Fig. 3(c), and a temporal-to-nasal location
map (providing the distance from the temporal side), as shown in (Fig. 3(d)).
By providing such additional inputs, we can help to avoid results such as that in
Fig. 3(b) whereby the regions with signal dropout would incorrectly be classified
as avascular or hypovascular regions.

In the training stage, rotation, flipping, and cropping are applied to each
input image before each training iteration. The original en-face image is first is
augmented with random rotations in range (−180◦, 180◦). A random horizontal
flip is then applied. The training image is then randomly cropped to a fixed size
of 256× 256 pixels and, to further help address the possibility of regional signal
dropout, a local contrast change is also applied.

Signal dropout

(a) (b) (c) (d)

Fig. 3. Motivation for use of location maps as additional input. (a) OCTA en-face
image from a healthy control subject with local signal dropout on temporal side. (b)
Segmentation result without additional location-specific maps as input. (c) Radial loca-
tion map. (d) Temporal-to-nasal location map.

2.3 Network Structure

Here, we develop a fully automated deep-learning based approach. A modi-
fied version of U-Net [19] is applied to do a pixel-based separation of avascular
regions, hypovascular regions (i.e., regions with capillary dropout) and capillary-
dense regions. The overall network structure of this work is shown in Fig. 4. The
inputs are the en-face image and two location maps as discussed above and the
outputs are three probability maps for the avascular region, hypovascular region,
and capillary-dense region.

Our modifications to the original U-net are, in part, inspired by recent work
by Iglovikov et al. [20] that showed that using a deeper VGG11 network as the
encoder can increase the segmentation accuracy compared to the original U-Net.
Here we use a similar network structure. We also add batch normalization (BN)
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Fig. 4. The modified version of U-Net with dilated convolutions used in this work.

layers [21] to improve the numerical stability. Another modification is changing
the convolutions in some of the layers to be dilated convolutions introduced by
Yu et al. [22]. This convolution model enables a larger receptive field for the
network without requiring additional parameters to be learned. Therefore, we
change the conventional 3× 3 convolutions in some layers of the U-Net to 3× 3
with a dilation factor of 2.

For the loss function, a combination of binary cross-entropy (BCE) loss and
Dice loss is used, thus we can simultaneously maximize the per-pixel prediction
as well as the overall intersection between the predicted probability maps and
the manual tracing.

3 Experiments and Results

A total of 166 macular OCTA scan sets (structural OCT volumes and corre-
sponding SSADA data) acquired with AngioVue (Optovue, Inc., Fremont, CA)
from 59 human subjects are used in the study. Within the subjects, 43 are uveal
melanoma patients and 16 are control cases. All procedures involving human
subjects in this study were approved by the Institutional Review Boards (IRB)
and the Human Subjects Office at the University of Iowa.

The OCT volumes and SSADA scans from all control subjects and 37/43
uveal melanoma subjects have dimensions of 400×400×640 and 400×400×160,
respectively, corresponding to physical dimensions of 6 mm× 6mm× 2mm. The
OCT volumes and SSADA scans from the remaining six uveal melanoma subjects
have dimensions of 304×304×640 and 304×304×160, respectively. As mentioned
in Sect. 2.1, all the generated en-face images are rescaled to a unified size of
480 × 480 before further processing. For training and evaluation purposes, the
capillary-dense regions, hypovascular (capillary dropout) and avascular regions
are also manually identified in each en-face image.

To train the network, we use Adam optimizer to train the network from
scratch, with an initial learning rate of 1e-4. The learning rate changed to 1e-5
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Fig. 5. Example results from the proposed deep-learning approach. (a–c) show an
example result from a radiation retinopathy patient, and (d–f) are for a control subject.
(a), (d) The en-face OCTA image (enhanced for increased visibility). (b), (e) The
manual tracing for the image. (c), (f) The segmentation result of the three classes. Red
= avascular. Orange = hypovascular. Green = capillary-dense. (Color figure online)

after 500 epochs and 1e-6 at 700 epochs. A total of 1000 epochs are used for
the total training on a single Nvidia GeForce 1080 Ti GPU. It takes around 3
hours to train one network, and approximately a day to train all the U-Nets for
the cross-validation experiment. In the testing phase, for each 480× 480 en-face
image, it takes about 0.1s to run on GPU and 3 s to run on a CPU. Because the
U-net structure is fully convolutional, while training is performed with 256×256
cropped images, testing can be directly performed with 480 × 480 images.

To evaluate the results, area under the pixel-based receiver operating char-
acteristic (ROC) curves (AUC) are used in a 10-fold cross-validation approach.
The first nine folds each have images from 53 randomly chosen subjects as the
training set and images from 6 subjects as the test set. The remaining fold has
54 subjects for training and 5 for testing. Among the ROCs, the prediction of
avascular regions has the best performance, with an AUC of 0.99 and the pre-
diction of the capillary-dense regions has the second-best performance, with an
AUC of 0.97. The hypovascular prediction generally gives a slightly lower AUC
of 0.93. This is partially because the tracing is more subjective than the tracing
of avascular areas as it is sometimes hard to distinguish hypovascular regions.

An example of the original image, the manual tracing, and the corresponding
result can be seen in Fig. 5. Visually, this approach offers clean predictions for
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avascular regions marked in red. In fact, the regions are slightly more consistent
and detailed than manual tracings. On the other hand, the predicted hypovas-
cular regions in orange are less confident and have some misclassified regions.

4 Discussion and Conclusions

In this work, we develop a region-based segmentation method to identify dif-
ferent microvascular densities within OCTA en-face projection images. A deep
neural network is used to simultaneously find these categories. The first main
contribution of this work is that by tracing and training on OCTA en-face images
as different density regions, we can avoid the difficulty to distinguish individual
capillaries giving us the ability to still obtain density estimates on lower-quality
OCTA images where individual vessels are not visible. The second contribution
is that by adding additional location maps to the inputs of the deep learning net-
work, the segmentation network can successfully avoid some OCTA artifacts to
generate better results. To the best of our knowledge, this trained deep-learning
approach is the first fully automated approach to categorize multiple levels of
vascular density in OCTA images. The results show very accurate predictions
for the avascular and normal regions in uveal melanoma patients and a slightly
lower accuracy in predicting hypovascular regions.
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17. Garvin, M.K., Abràmoff, M.D., Wu, X., Russell, S.R., Burns, T.L., Sonka, M.:
Automated 3-D intraretinal layer segmentation of macular spectral-domain optical
coherence tomography images. IEEE Trans. Med. Imaging 28(9), 1436–1447 (2009)

18. Camino, A., et al.: Automated registration and enhanced processing of clinical
optical coherence tomography angiography. Quant. Imaging Med. Surg. 6(4), 391
(2016)

19. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomed-
ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24574-4 28

20. Iglovikov, V., Shvets, A.: TernausNet: U-Net with VGG11 encoder pre-trained on
ImageNet for image segmentation. arXiv preprint arXiv:1801.05746 (2018)

21. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by
reducing internal covariate shift. In: International Conference on Machine Learning,
pp. 448–456 (2015)

22. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. arXiv
preprint arXiv:1511.07122 (2015)

https://doi.org/10.1080/01658107.2016.1275703
https://doi.org/10.1080/01658107.2016.1275703
https://doi.org/10.1007/978-3-319-24574-4_28
http://arxiv.org/abs/1801.05746
http://arxiv.org/abs/1511.07122


An Amplified-Target Loss Approach
for Photoreceptor Layer Segmentation

in Pathological OCT Scans
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Abstract. Segmenting anatomical structures such as the photoreceptor
layer in retinal optical coherence tomography (OCT) scans is challeng-
ing in pathological scenarios. Supervised deep learning models trained
with standard loss functions are usually able to characterize only the
most common disease appearance from a training set, resulting in sub-
optimal performance and poor generalization when dealing with unseen
lesions. In this paper we propose to overcome this limitation by means
of an augmented target loss function framework. We introduce a novel
amplified-target loss that explicitly penalizes errors within the central
area of the input images, based on the observation that most of the
challenging disease appearance is usually located in this area. We exper-
imentally validated our approach using a data set with OCT scans of
patients with macular diseases. We observe increased performance com-
pared to the models that use only the standard losses. Our proposed loss
function strongly supports the segmentation model to better distinguish
photoreceptors in highly pathological scenarios.

1 Introduction

Supervised deep learning techniques have revolutionized the field of medical
image segmentation [4], particularlly with fully convolutional neural network
architectures such as the U-Net [6]. To learn these networks, a loss function L is
optimized using gradient based approaches and backpropagation. This function
is usually defined in terms of metrics that quantify the discrepancies between a
trustworthy/ground truth labelling and the predicted segmentation.

In this typical framework a loss function is not explicitly tailored to aim for
a specific feature in the target space. Hence, the network firstly learns the domi-
nating characteristics of the target images in the training set, and its remaining
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capacity is gradually devoted to characterize other less prevalent target features.
This becomes an issue when dealing with highly pathological data, where lesions
or disease appearance might significantly differ between patients. To overcome
this limitation, some authors proposed to train segmentation models using a lin-
ear combination of different losses such as cross-entropy and Dice [3]. However,
these metrics are still computed from the same target representation, so they do
not enhance a specific target feature. In this paper we propose to extend this
idea by using the framework of augmented target loss functions, introduced in [1].
Rather than relying on a single or a linear combination of loss functions defined
on the original prediction and target space, Breger et al. [1] proposed to compute
the loss on alternative representations of the predictions and targets, obtained by
applying differentiable transformations T that enhance specific characteristics.

This paper focuses on the application of an augmented target loss function
for photoreceptor layer segmentation in retinal optical coherence tomography
(OCT) scans of patients with macular diseases. OCT is the state-of-the-art tech-
nique for imaging the retina, as it brings volumetric information through a stack
of 2D scans (B-scans) at a micrometric resolution [7]. Ophthalmic disorders such
as diabetic macular edema (DME), retinal vein occlusion (RVO) and age-related
macular degeneration (AMD) gradually affect photoreceptors while progressing.
The abnormal accumulation of fluid due to these diseases significantly alters
the retina, eventually leading to photoreceptor cell death. This last characteris-
tic can be noticed through OCT imaging: first as a pathological thinning of the
photoreceptor layer, and more lately as complete disruptions on it (Fig. 1, right).
It has been observed that these abnormalities are highly correlated with focal
vision impairment [8] and visual accuity loss when located at the central area of
the retina [2]. Hence, the automated characterization of the morphology of the
photoreceptor layer is relevant for efficient quantification of functional loss.

In this paper we build on top of the architectural innovations proposed in [5]
by training such a model using an augmented target loss function. Fitting the
framework we introduce a novel amplified-target loss that induces further penal-
ization to errors within the central area of the B-scans. As the most challenging
pathologies are usually observed at the central area of fovea-centered OCT scans,
our hypothesis is that incorporating this loss function as a kind of regularizer
enforces the network to better characterize disease appearance. We validate our
approach using a series of OCT scans of patients with AMD, DME and RVO.
Our results empirically show that the proposed loss functions improve the perfor-
mance within the central millimeters of the retina compared to using traditional
losses without compromising the performance in the entire volume.

2 Methods

2.1 Augmented Target Loss Functions for Image Segmentation

In a supervised learning problem we aim to learn a function f with fθ(x) ≈ y,
where θ denotes the free parameters and S = {(x, y)(i)}, 1 < i < N is a given
training set with pairs of inputs x and ground truth labels y. In the context
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Fig. 1. Left: scanning laser ophthalmoscopy (SLO) of a patient with RVO. The square
indicates the area captured by the OCT volume and the rings represent the central
subfield (CSF) and the 3 and 6 central millimeters (3 CMM and 6 CMM). The blue line
highlights the B-scan showed in the right side. Right: CSF B-scan with photoreceptor
layer annotation (green) with (a) disruptions and (b) abnormal thinning. The red
heat map represents the weighting strategy applied in our loss function. The central
coordinate of the image is indicated with the yellow dotted line, and a profile of the
weighting strategy is illustrated on top of the B-scan. (Color figure online)

of image segmentation, x corresponds to an input image, y and ŷ are manual
and predicted segmentations and fθ is some segmentation model (e.g. a fully
convolutional neural network such as the U-Net [6]).

To adjust the weights θ from the chosen network structure fθ, a loss function
L is minimized using gradient based optimization. L is a piecewise differentiable
loss function, e.g. cross-entropy (CE) or mean square error (MSE), that measures
the pixel-wise differences between ŷ and y. In standard settings no specific areas
of the images are penalized more than others. Thus, the parameters θ are mostly
adjusted to characterize those features from the training set that have the most
impact on the overall loss. Although this might be helpful to segment healthy
anatomy, in pathological scenarios the network will overfit the prevalent features
unless explicit regularization is imposed during training.

Here, we propose to use the framework of augmented target (AT) loss func-
tions, introduced in [1]. These losses take into account prior knowledge of target
characteristics via error estimation in transformed target spaces. The framework
can be applied to any supervised learning problem based on loss optimization
where additional information about the target data is available, provided it can
be formulated as a transformation function T . The transformation may corre-
spond to any piecewise differentiable function on the target space that yields a
more beneficial representation of some known target characteristic.



Amplified-Target Losses for Photoreceptor Layer Segmentation in OCT 29

Following [1], the AT loss functions LAT is a linear combination of losses
applied to transformed targets. Its general form is:

LAT =
d∑

j=1

λj · Lj
({Tj(yi)}, {Tj(ŷi)}

)
, (1)

where λj > 0 corresponds to some weight, Tj to a specific transformation and
Lj to some loss function, for all j ∈ {1, . . . , d}.

Setting typically T1 to the identity and L1 to a standard loss, the additional
terms in the LAT loss act as amplified target information, yielding a new opti-
mization problem:

θ̂ = arg min
θ

{λ1 · L1

({yi}, {ŷi}
)

+
d∑

j=2

λj · Lj
({Tj(yi)}, {Tj(ŷi)}

)
, (2)

where the weights λ1 and {λj}d
j=2 control the balance between the main loss

and the regularization terms respectively.

2.2 Amplified-Target Loss Functions for Photoreceptor Layer
Segmentation

We experimentally study the AT loss function framework in the context of
photoreceptor layer segmentation in pathological OCT scans. We tailor a so
called amplified-target loss in which a transformation T is designed to bring an
increased penalty to errors within the central area of the images. This loss is
intended to incorporate the prior knowledge that abnormalities such as patho-
logical thinnings and disruptions of the photoreceptor layer are more common in
the central millimeters of the foveal area. To do so, we define a transformation
T (yi) = 〈yi,W 〉, where yi corresponds to the given binary targets and W rep-
resents a weighting matrix that encodes a penalization weight for errors. This
operation can analogously be applied to the predictions ŷi. Figure 1 graphically
illustrates the design of the weighting matrix W . Formally, we define W = Gσ∗V ,
where Gσ stands for a Gaussian filter with standard deviation σ. We define V
as:

Vi,j :=
{

ω for i0 < i < i1 and all j,
1 otherwise, (3)

where ω denotes the maximum weight assigned to the central area and [i0, i1] is
the horizontal interval of the image that is amplified. The Gaussian filter Gσ is
used to smooth the penalization factor within the edges of the interval.

Following the formulation in (2), we can then redefine our empirical risk
minimization problem as

θ̂ = arg min
θ

{λ1 · L1
({yi}, {ŷi}

)
+ λ2 · L2

({〈yi,W 〉, 〈ŷi,W 〉})}, (4)

where we choose λ1, λ2 ∈ R and L1 = L2 as CE or MSE losses.



30 J. I. Orlando et al.

3 Experimental Setup

3.1 Materials

Our method was trained and tested on an in-house data set with 53 Spectralis
OCT volumes of patients suffering from DME (10), RVO (27) and AMD (10).
Each image comprises 496×512 pixels per B-scan, 49 B-scans per volume. All the
B-scans were manually annotated by certified readers under the supervision of
a retina expert, who modified the labels when necessary to obtain ground truth
segmentations. The set was randomly divided into a training, a validation and a
test set, each of them with 34, 4 and 15 scans, respectively, with approximately
the same distribution of diseases and percentages of disrupted columns per B-
scan (or A-scans).

3.2 Network Architecture and Training Setup

We used the photoreceptor segmentation network described in [5] in our experi-
ments (note that any other architecture could be applied within our framework).
We used as baselines CE and MSE comparing it to the adapted AT loss.

Every configuration was trained at a B-scan level with a batch size of
2 images, using Adam optimization and early stopping. Hence, training was
stopped if the validation loss did not improve for the last 45 epochs. The learn-
ing rate was set to η = 0.0001, and divided by 2 if the validation loss was not
improved during the last 15 epochs. Data augmentation was used in the form
of random horizontal flippings. Binary segmentations were retrieved as in [5]
by thresholding the softmax scores of the photoreceptors class using the Otsu
algorithm.

4 Results and Discussion

We evaluated the performance for segmenting the photoreceptor layer using the
volume-wise Dice index, at the CSF, the 3 CMM, the 3-1 ring and the full volume
(Fig. 1, left). All the experiments with our AT loss functions were conducted
using fixed values for σ = 1

16X, i0 = 1
4X and i1 = 3

4X (with X = 512 being
the horizontal size of the B-scans, in pixels), without optimizing them on the
validation set. Different configurations for ω = 2k, k ∈ {1, ..., 5} and λ1 and λ2 ∈
{0.001, 0.01, 0.1, 1, 2, 4, 8 } were analyzed, and the best configuration according
to Dice index on the validation set was then fixed to allow a fair comparison on
the test set. From this model selection step, we observed that ω = 8, λ1 = 1 and
λ2 = 8 reported the best performance for the AT loss with categorical cross-
entropy (CE), and ω = 32, λ1 = λ2 = 1 for the AT loss with mean square error
(MSE).

Figure 2 depicts boxplots with the quantitative performance of each model on
the test set, compared with their corresponding baselines trained only with CE
and MSE, for each evaluation area. The mean and standard deviation values of
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(a) Cross entropy (b) MSE

Fig. 2. Volume-wise Dice values for all the evaluated models and our proposed approach
in each evaluation area. Circles indicate mean values. CSF: central subfield (1 central
millimeter). 3 CMM: three central millimeter. 3-1 ring: area between CSF and 3 CMM.

Table 1. Volume-wise mean ± standard deviation Dice values in the test set for each
photoreceptor segmentation model in each area.

Method CSF 3 CMM 3-1 ring Full volume

CE loss 0.622 ± 0.271 0.691 ± 0.242 0.708 ± 0.242 0.820 ± 0.118

CE + AT loss

(CE, ω = 8, λ1 = 1, λ2 = 8)

0.656 ± 0.256 0.718 ± 0.218 0.732 ± 0.218 0.828 ± 0.100

MSE loss 0.560 ± 0.303 0.707 ± 0.223 0.727 ± 0.223 0.835 ± 0.096

MSE + AT loss

(MSE, ω = 32, λ1 = λ2 = 1)

0.708 ± 0.254 0.749 ± 0.215 0.760 ± 0.213 0.821 ± 0.102

the Dice index are presented in Table 1. The incorporation of the AT loss allows
to perform consistently better in all the cases, with the best results reported
by the MSE loss. Statistical analysis using one-tail Wilcoxon sign-rank tests
at a significance level α = 0.05 showed that the model trained with MSE +
AT loss reported significantly higher Dice values in the CSF area compared to
using CE + AT loss or only MSE (p < 0.0171). These differences were not
statistical significant with respect to the model trained with CE (p = 0.1902).
When comparing the Dice values at the 3-1 ring, the MSE with AT loss model
reported statistically significant better results than using only CE or MSE (p <
0.0042), which is consistent with its behavior in the 3 CMM (p < 0.0416).
No statistically significant differences in performance were observed at the full
volume level (two-tails test, p > 0.0730).

We qualitatively analyzed the segmentation and score maps using the CE
and MSE combined with the AT loss. Figure 3 depicts segmentation results in a
central B-scan from the test set, with score maps represented as heatmaps. Using
MSE produces noisy scores within the lateral areas of the B-scans, and therefore
spurious elements in the segmentation. CE, on the contrary, results in smoother
score maps, although with few false negatives in the vicinity of subretinal fluid.
This behavior is linked to the one observed in Table 1, where the MSE + AT
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Fig. 3. Qualitative effect of the loss selection in the pixel score values. From left to
right: manual annotation (green), score map (orange) and binary segmentation (yellow)
obtained with MSE + AT loss (MSE, ω = 32, λ1 = λ2 = 1) and CE + AT loss (CE,
ω = 8, λ1 = 1, λ2 = 8). (Color figure online)

Fig. 4. Qualitative results in central B-scans from the test set. From left to right:
manual annotations (green), results with only CE loss (blue) and results with CE +
AT loss (CE, ω = 8, λ1 = 1, λ2 = 8). (Color figure online)

loss model reported higher Dice in the central area than using CE, and smaller
values in the full volume. The model trained with only MSE performs poorly in
the CSF, the 3 CMM and the 3-1 ring, which indicate that it struggles to deal
with pathologies. Similarly, the high performance at a volume level indicates that
it can better characterize normal appearances. When using MSE + AT loss, a
significant reduction in the amount of false negatives occurs at the central areas.
However, as mentioned before, the score maps are noisy at the borders of the
B-scans, which causes a drop in the full volume Dice. The model trained with
CE + AT loss is less accurate at the center than the one trained with MSE +
AT loss, but it still outperforms the baseline approaches. Moreover, at a volume
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basis the CE + AT loss remains competitive with respect to the one trained only
with CE loss.

Finally, Fig. 4 presents qualitative results in exemplary central B-scans from
our test set obtained both by the models trained with CE only and with CE
+ AT loss. Our approach produced more anatomically plausible segmentations
than the standard CE loss in pathological areas with subretinal fluid (Fig. 4(a)
and (b)) or large disruptions (Fig. 4(c)).

5 Conclusions

In this paper we proposed to use the framework of augmented target loss func-
tions for photoreceptor layer segmentation in pathological OCT scans. We define
an amplified-target loss incorporating a transformation that weights the central
area of the input B-scans to further penalize errors commited in this region.
We experimentally observed that this straightforward approach allows to sig-
nificantly improve performance within the central millimeters of fovea-centered
OCT scans, without affecting the overall performance in the entire volume. These
results indicate that the proposed AT loss function acts as a form of regulariza-
tion, better characterizing photoreceptors appearance within highly pathological
regions. We are currently exploring new alternatives to identify the regions to
weight and to learn their corresponding weights. Further experiments are also
performed to evaluate our approach in the context of other OCT based applica-
tions such as fluid segmentation and using OCT scans from other vendors.
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Abstract. Fluorescein Angiography (FA) is an imaging technique that
allows to visualize the vascular structure of the retina. The Foveal Avas-
cular Zone (FAZ) is a vessel-free area located at the center of the fovea
whose shape characteristics are used to diagnose eye-related diseases such
as diabetic retinopathy. Segmentation of the FAZ in FA therefore plays an
important role in clinical decision making. However, manual delineation
is costly and time-consuming. Current methods for automated FAZ seg-
mentation either rely on segmenting the vasculature first, require man-
ual initialization or are tailored to specific image properties. Hence, they
often fail when dealing with images from clinical routine, which were usu-
ally acquired using multiple devices and at different imaging settings. In
this paper we propose to overcome these limitations by means of a mul-
titask learning approach. Our method exploits an additional Euclidean
distance map prediction task to better deal with variable imaging condi-
tions, by benefiting from its regularization effect. Our method is empiri-
cally evaluated using a data set of FA scans from large multicenter clinical
trials with diverse qualities and image resolutions. The proposed model
outperformed a baseline U-Net, achieving an average Dice of 0.805. To
the best of our knowledge, our approach is the first deep learning method
for FAZ segmentation in FA ever published.

1 Introduction

Fluorescein Angiography (FA) is a medical imaging technique that is widely
applied to visualize the vascular structure of the retina [1]. Its acquisition process
starts with the injection of a fluorescein dye to the blood stream in order to
enhance the visibility of the vessels. While the dye reaches the relevant areas
of the eye, a series of images (Fig. 3) are taken using a dye-sensitive camera.
FA images are used for diagnosing diseases that are associated with the retinal
vascular structure, such as diabetic retinopathy (DR) or age-related macular
degeneration (AMD) [1].
c© Springer Nature Switzerland AG 2019
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Located within the center of the retina, the Foveal Avascular Zone (FAZ)
is an area that is devoid of vessels and responsible for sharp, accurate vision
[2]. Normally, the FAZ has a diameter of 0.4–0.5 mm [3]. Enlargements of the
FAZ are associated with DR where the retina is damaged due to occlusion of
perifoveolar capillaries or arterioles [2,3]. Hence, measuring the size, diameter
and shape of the FAZ can aid clinicians to diagnose and monitor DR, which is
usually done by manually analyzing FA images and segmenting the FAZ.

Technological advances in the area of medical image processing, computer
vision and machine learning have led to the development of computer-aided sys-
tems that can automate the process of diagnosis and segmentation in ophthalmic
imaging [4]. These systems can facilitate clinical decision making, reduce intra-
and inter-observer variability, and improve accuracy, compared to manually per-
formed tasks. Several methods have been introduced for FAZ segmentation,
although most of them rely on manual initialization [5–8], explicit anatomical
priors retrieved by other surrogate algorithms (e.g. blood vessel segmentation [6])
or standard image processing [9]. In contrast to these hand-crafted approaches,
supervised deep learning techniques do not need manual initialization and are
not limited to a-priori defined anatomical structures [10]. However, these meth-
ods were never applied before for FAZ segmentation.

Segmenting clinical routine images remains challenging even for conventional
deep learning networks due to the large variation of image properties such as pixel
resolution and size, field of views and contrast (Fig. 3). Furthermore, the size and
shape of the FAZ can vary considerably depending on the age of the patient and
the presence of pathologies (Fig. 3). In general, this difficulty can be alleviated
by means of heavy data augmentation or by collecting abundant training data
with different characteristics. However, selecting an appropriate combination of
data augmentation strategies requires an intense engineering process to simulate
every possible input. Moreover, manually annotating a large, diverse training
set is also prohibitive. Alternatively, data can be standardized to a common
representation to reduce the covariate shift between the training set and the real
life data in which the model will be applied. However, this is also unfeasible
when technical information regarding the acquisition process is missing.

In this paper we propose to overcome these issues by using a multitask learn-
ing approach. Our hypothesis is that representing the target information in the
form of an additional prediction task can aid the learning process as a form of
regularization, allowing the model to better characterize the inputs and therefore
improve results. To this end, we adapted the model described in [11] and pro-
pose to use the prediction of the Euclidean distance map of the FAZ labels as an
auxiliary task. We empirically validated our approach on a set of 96 test images
from large multicenter clinical trials with diverse qualities and image resolutions.
We observed that this method results in a model that has significantly less out-
liers and produces more compact, continuous segmentations of the FAZ. This
approach might be useful when other information that is necessary for image
standardization is not available (e.g., pixel size) or other generalization methods
are not feasible.
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2 Methods

2.1 Image Segmentation with Supervised Deep Learning

Given an input image x, the goal is to predict a binary labeling ŷ of the FAZ.
In supervised learning, a training set S = {(x(i), y(i)), 1 < i < n} with n pairs of
images x(i) and their corresponding manual annotations y(i) is used to train a
deep learning model Fω(x) = ŷ with parameters ω. This is achieved by minimiz-
ing a loss function L(y, ŷ) such as cross-entropy or mean squared error (MSE).

Depending on the characteristics of the training set, the segmentation models
will converge to a specific solution that might not be general enough to be applied
to any other input data. Furthermore, in challenging scenarios such as when deal-
ing with clinical routine data, S is composed of images obtained with different
devices, under variable settings and from patients with different pathologies.
In this scenario, a-priori regularization techniques such as data augmentation
are usually applied to improve generalization. However, the augmentation tech-
niques must be carefully designed to avoid training using unrealistic images,
which might affect the performance of the method when deployed. Additionally,
modeling every possible image appearance is time-demanding and sometimes
unfeasible.

2.2 FAZ Segmentation with Multitask Learning

In this paper we propose to overcome the difficulties of supervised deep learning
models, when dealing with data from clinical routine, by regularization through
multitask learning. We build on top of the segmentation framework proposed by
Tan et al. [11] and adapt it to our specific domain. Contrary to a conventional
U-Net, which has only a single encoder and decoder, such a multitask learning
approach incorporates an additional decoder with its own set of parameters,
which are learned separately for each branch, while sharing a single encoder
between tasks.

Formally, in a multitask learning scenario a model Fω(x) = {ŷ, d̂} is trained to
predict the FAZ labeling and its associated distance map for a given FA scan. The
training data then becomes S = {(x(i), y(i), d(i)), 1 < i < n}, where d(i) is the dis-
tance map associated to the manual labeling y(i). The distance map is computed
by assigning each pixel the Euclidean distance to the nearest pixel of the FAZ
labeling. Given this additional task, the model is trained using a weighted sum
of losses from the two branches with specific parameters for each branch. More
precisely, the model can be defined as Fω(x) = {ŷ, d̂} = {fωs,ωf

(x), gωs,ωg
(x)}

with parameters w = {ws, wf , wg}. ws, wf , wg are the weights of the (shared)
encoder, the mask decoder and the distance map decoder, and fωs,ωf

(x) and
gωs,ωg

(x) are the two prediction tasks for the mask and distance map, respec-
tively. The objective function is then a combination of two losses, defining a new
risk minimization problem:

ω̂ = argmin
ω

{
Lcls(y, fωs,ωf

(x)) + λ ∗ Ldis(d, gωs,ωg
(x)})

}
(1)
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Fig. 1. Schematic representation of our method.

where Lcls(y, ŷ) is the cross-entropy between y and ŷ, Ldis(d, d̂) = ||d− d̂||22 with
d̂ the predicted distance map and λ is a weight that balances the two losses.

In [11], a custom weighting function is also added to the loss function to
further penalize errors that are further away from the segmentation border.
However, this introduces a redundancy in the loss, as this has the same effect
as estimating the differences between the distance maps. In our experiments we
ignored such a weighting. Furthermore, we adapted the model in [11] to be based
on a conventional U-Net [12] with batch normalization after each convolutional
layer, dropout in the bottleneck layer (Fig. 1) and two decoders, one for each
prediction task (the FAZ segmentation mask and the distance map). At test
time, only the segmentation branch is used to retrieve a FAZ labeling.

3 Experimental Setup

3.1 Materials

To validate the performance of our approach to deal with heterogeneous data, we
used a dataset comprising 494 FA images with sizes ranging from 4288×2848 to
512×512 pixels. The scans were taken with devices from seven different vendors.
Figure 3 illustrates some exemplary images from the dataset. Notice that the field
of view differs significantly in some of the images, which affects the variability of
the pixel size (in μm), while others present croppings within specific anatomical
regions and some are full images as obtained from the acquisition device. The
manual labelings of the FAZ were provided by an experienced reader and used
as ground truth. The dataset was randomly split into 318 images for the training
set, 80 images for the validation set and 96 images for the test set. The test set
was annotated independently by three other readers to assess the inter-reader
variability by comparing the ground truth to each of the three additional readers.
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As a preprocessing, all the images were cropped to eliminate borders as much
as possible and resized to a resolution of 512 × 512 pixels. Due to the limited
size of the training set, we performed standard data augmentation in the form
of random horizontal flipping, rotation to a maximum of 10◦, translation to a
maximum of 10% of the image size, and zooming up to 156.25%. As a last step,
a black circle was added around the borders of the image to unify the amount
of information provided in each FA scan.

3.2 Evaluation Metrics

The performance was evaluated in the test set by calculating standard met-
rics such as the pixel-wise area under the Precision-Recall-Curve (AUC), Dice,
precision and recall.

3.3 Training Details and Baselines

We trained our network for 500 epochs using Adam optimization and an ini-
tial learning rate of 10−4. The model yielding the highest Dice on the valida-
tion set was then taken for final evaluation. Different values of λ = 10i, i ∈
{−2,−1, 0, 1, 2} were explored and evaluated on the validation set, with the
model trained with λ = 10 being the best performing one. Finally, we trained a
conventional U-Net as a baseline for comparison purposes in order to show that
incorporating an additional task is useful. The baseline has the same configura-
tion and is therefore equivalent to our network but with a single branch.

4 Results

Table 1 summarizes the quantitative results obtained by our multitask based
approach and the baseline, in terms of precision, recall and Dice. The multitask
model is observed to outperform the baseline in terms of precision and Dice.
The U-Net reported the highest sensitivity but at a significantly lower precision
value, which indicates the presence of several false positives. This behavior is
also observed in Fig. 2 (left), which depicts pixel-wise precision/recall curves
obtained from the score maps produced by each approach. The multitask model
reported higher precision values than the baseline when analyzed at the same
recall values, resulting in an AUC of 0.854 compared to 0.835 reported by the
standard U-Net.

Figure 2 (right) includes a boxplot showing the distribution of Dice values
obtained by each method and the three independent readers. Our multitask
approach achieved a median Dice of 0.870 compared to 0.852 obtained by the
standard U-Net. A decrease in the number of low-performing images is also
observed in the figure, with the multitask model reporting consistently less out-
liers.

Figure 3 qualitatively presents exemplary segmentations obtained by our app-
roach, the baseline U-Net and the corresponding manual annotations. It can be
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Table 1. Mean ± standard deviation of recall, precision and Dice for the baseline
U-Net, our approach, and the three manual reader annotations.

Model Precision Recall Dice

U-Net 0.753 ± 0.202 0.871 ± 0.203 0.782 ± 0.179

Multitask Net 0.826 ± 0.204 0.815 ± 0.199 0.805 ± 0.180

Reader 1 0.923 ± 0.081 0.846 ± 0.131 0.874 ± 0.097

Reader 2 0.943 ± 0.071 0.836 ± 0.127 0.878 ± 0.092

Reader 3 0.883 ± 0.111 0.868 ± 0.099 0.867 ± 0.075

Fig. 2. Left: Precision-Recall-Curves for the segmentations. Right: Boxplots of the Dice
values. (1) Baseline, (2) Multitask Network, (3–5) manual reader annotations.

observed that the multitask model improves the appearance of the final seg-
mentations on a diverse set of heterogeneous images. In the top-left image, our
approach generates a more continuous, coherent shape for the FAZ than the
U-Net. The top-right image shows an angiography where the vessels cannot be
clearly seen (contrary to the other three images in the figure). Due to the low
contrast, the baseline U-Net tends to oversegment the FAZ area. In this case, the
multitask approach aids to reduce the size of the segmentation and better fit the
shape of the actual FAZ. The bottom-left FA scan is an example of how small
outliers are deleted when using the auxiliary branch. Finally, the bottom-right
image illustrates that our approach can also manage blurred, low-quality image
with a pathologically increased FAZ.

5 Discussion

In this paper we propose to apply multitask deep supervised learning for FAZ
segmentation in diverse FA images from large multicenter clinical trials. When
working with such heterogeneous scans, data standardization is crucial to reduce
the covariate shift between training and test images. Since this is usually unfea-
sible when dealing with clinical routine data (e.g. due to unknown imaging set-
tings), the alternative is to impose some form of regularization to the model
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Fig. 3. Qualitative comparison of the segmentation result in a set of heterogeneous
FA scans with different contrast, sharpness, field-of-view, and brightness. Red: Manual
reader annotation (ground truth). Blue: Baseline U-Net. Cyan: Our multitask approach.
(Color figure online)

to improve its generalization ability. Heavy data augmentation, for instance,
is the most straightforward technique to learn generic models. However, this
has limitations as it requires to manually craft and model every possible imag-
ing setting. Instead, we propose to improve generalization by incorporating a
multitask method with an auxiliary second branch that predicts the Euclidean
distance map computed from the FAZ labeling. By means of this additional
decoder, our model shows to better generalize in terms of appearance and local-
ization of the region of interest. Incorporating this second task is beneficial on
heterogeneous data for which information such as the pixel size is missing. We
experimentally observed that our multitask approach is better than a standard
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U-Net in this scenario. We hypothesize this is due to the inductive bias of the
regression task, which aids the segmentation branch and acts as a form of reg-
ularization. Further research is being done to improve the segmentation results
by incorporating an adversarial loss and examining the performance in other
vascular imaging modalities such as OCT-A.
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Abstract. Biomedical image segmentation plays an important role in
automatic disease diagnosis. However, some particular biomedical images
have blurred object boundaries, and may contain noises due to the lim-
ited performance of imaging device. This issue will highly affects seg-
mentation performance, and will become even severer when images have
to be resized to lower resolution on a machine with limited memory.
To address this, we propose a guide-based model, called G-MNet, which
seeks to exploit edge information from guided map to guide the cor-
responding lower resolution outputs. The guided map is generated from
multi-scale input to provide a better guidance. In these ways, the segmen-
tation model will be more robust to noises and blurred object boundaries.
Extensive experiments on two biomedical image datasets demonstrate
the effectiveness of the proposed method.

1 Introduction

Biomedical image segmentation plays important role in automatic disease diag-
nosis. In particular, in glaucoma screening, correct optic disc (OD) and optic
cup (OC) segmentation will help obtain an accurate vertical cup-to-disc ratio
(CDR), which is commonly used for glaucoma diagnosis. Moreover, in cataract
grading, lens structure segmentation helps to calculate the density of different
lens parts, and the density quantification is a kind of cataract grading metric
[11].

In recent years, Convolutional neural networks (CNNs) have shown strong
power in biomedical image segmentation with remarkable accuracy. For exam-
ple, [9] proposes a U-shape convolutional network (U-Net) to segment images
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with precise boundaries by constructing skip connections to restore the infor-
mation loss caused by pooling layers. [5] proposes an M-shape convolutional
network, which combines multi-scale inputs and constructs local outputs to link
the loss and early layers. In practice, however, some high-resolution biomedical
images have noises and blurred boundaries, like the anterior segment optical
coherence tomography (AS-OCT) images, which may hamper the segmentation
performance, as shown in Fig. 1. Furthermore, suffering from the limitation of
memory, existing methods usually receive down-sampled images as input and
then up-sample the results back to the original resolution, which, however, may
lead even worse segmented boundaries.

Fig. 1. (a): An AS-OCT image sample with weak nucleus and cortex boundaries. (b):
corresponding histogram equalized image with a lot of noise. (c): segmentation results
of M-Net with low-resolution input. (d): segmentation results of G-MNet.

To address the above issues and hence improve the segmentation perfor-
mance, we seek to exploit guided filter to extract edge information from high-
resolution images. In this way, high-quality segmentation results can be gener-
ated from low-resolution poorly segmented results. Moreover, precise segmented
boundaries can be maintained after up-sampling. Guided filter [6] is an edge-
preserving image filter and has been incorporated into deep learning on several
tasks. For example, [12] formulates it into an end-to-end trainable module, [7]
combines it with superpixels to decrease computational cost. Different from exist-
ing works which use guided filter as post-processing, we incorporate the guided
filter into CNNs to learn better features for segmentation.

Unfortunately, the performance of the guided filter will be affected by noises
and blurred boundaries in images. Therefore, better guidance rather than the
original image is required. In this sense, we design a guided block to produce
an informative guided map, which helps to alleviate the influence of noises and
blurred boundaries. Besides, multi-scale features and multi-scale inputs are also
combined to make model more robust to noise. Thorough experiments on two
benchmark datasets, namely CASIA-2000 and ORIGA datasets, demonstrate
the effectiveness of our method. Our method also achieves the best performance
on CASIA-2000 dataset and outperforms the state-of-the-art OC and/or OD
segmentation methods on ORIGA dataset.



Guided M-Net for High-Resolution Biomedical Image Segmentation 45

2 Methodology

In this section, we provide an overview of our guide-based model, named G-
MNet, in Fig. 2. Then introduce its three components: an M-shape convolutional
network (M-Net) to learn hierarchical representations, a guided block for better
guidance, and a multi-guided filtering layer to filter multi-scale low-resolution
outputs. Our G-MNet firstly generates multi-scale side-outputs by M-Net, then
these side-outputs are filtered to high-resolution through the multi-guided fil-
tering layer. The guided block is exploited to provide better guidance for the
multi-guided filtering layer. After that, an average layer is employed to com-
bine all the high-resolution outputs. At last, the multi-guided filter receives the
combined outputs and produces the final segmentation result.

Fig. 2. Overview of the proposed deep architecture. Firstly, multi-scale side-outputs
are generated by M-Net. Then the multi-guided filtering layer filters these side-output
to high-resolution with the guidance from the guided map. At last, an average layer
is employed to combine all the outputs, and the result is then guided to produce the
final segmented output.

2.1 M-Shape Convolutional Network

We choose the M-Net [5] as the main body of our method, as shown by the red
dashed box in Fig. 2. The M-Net includes a U-Net used to learn a rich hierarchical
representation. Besides, multi-scale input and side-output are combined to better
leverage multi-scale information.
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2.2 Guided Block

In order to provide better guidance and reduce the impact of noise, we design
a guided block to produce guided maps. The guided maps contain the main
structure information extracted from the original images and also remove the
noisy components. Figure 3 shows the architecture of the guided block. The
guided block contains two convolution layers, between which are an adaptive
normalization layer and a leaky ReLU layer. After the second convolution layer,
an adaptive normalization layer [3] is added. The guided block is jointly trained
with the entire network, thus the produced guided maps cooperate better with
the rest of the model compared with the original image.

Fig. 3. Structure of the guided block. The guided block converts three-channel images
to single-channel guided maps which reduce noise interference and provide better guid-
ance.

2.3 Multi-guided Filtering Layer

The Multi-Guided Filtering Layer, take the advantages of guided filter, aims to
transform the structure information contained in guided map and produce high-
resolution filtered output (Oh). The inputs includes low-resolution output (Ol)
the guided maps from the low (Il) and high-resolution (Ih) input image.

Concretely, the guided filter is subjected to an assumption that the low-
resolution filtered output Ô is a linear transform of guided map I in a square
window wk, which is centered at the position k with the radius being r. Oh is
up-sampled from Ô. The definition of Ô with respect to wk is given as:

Ôki = akIli + bk,∀i ∈ wk, (1)

where (ak, bk) are some linear coefficients assumed to be constant in wk and the
radius of window is r.

ak, bk can be obtained by minizing the loss function:

E(ak, bk) =
∑

i∈wk

((akIli + bk − Oli)
2 + εa2

k), (2)

where ε is a regularization parameter penalizing large ak.
Considering that each position i is involved in multiple windows {wk} with

different coeffecients {ak, bk}, we average all the values of Ôki from different
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windows to generate Ôi, which is equal to average the coefficients (ak, bk) of all
the windows overlapping i, i.e.,

Ôi =
1

Nk

∑

k∈Ωi

akIli +
1

Nk

∑

k∈Ωi

bk = Ali ∗ Ili + Bli , (3)

where Ωi is the set of all the windows including the position i, and ∗ is the
element-wise multiplication. After upsampling Al and Bl to obtain Ah and Bh,
respectively, the final output is calcuted as (Fig. 4):

Oh = Ah ∗ Ih + Bh. (4)

Fig. 4. Illustrations of multi-guided filtering layer. With low-resolution input Il, Ol

and hyperparameters r, ε, low-resolution Al, Bl are calculated. By bilinear upsampling
Al, Bl, high-resolution Ah, Bh are generated which are then used to produce the final
high-resolution output Oh with high-resolution guided map Ih.

3 Experiments

3.1 Datasets

(1) CASIA-2000: We collect high-resolution AS-OCT images with weak
boundaries and noise from CASIA-2000 produced by Tomey Co. Ltd. The
dataset contains 2298 images, including 1711 training images and 587 testing
images. All the images are annotated by experienced ophthalmologists.

(2) ORIGA: It contains 650 fundus images with 168 glaucomatous eyes and
482 normal eyes. The 650 images are divided into 325 training images (including
73 glaucoma cases) and 325 testing images (including 95 glaucomas).

3.2 Training Details

We train our G-MNet from scratch for 80 epochs using Adam optimiser with
the learning rate being 0.001. For the experiments on CASIA-2000 dataset, we
set ε = 0.01 and r = 5. The original image size is 2130 × 1864. We crop the
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lens area, which is about 1024 × 1024 pixels, and resize it into 1024 × 1024 and
256 × 256 for high- and low-resolution inputs. For the experiments on ORIGA
dataset, we set ε = 0.9 and r = 2. The original image size is 3072 × 2048. We
train a LinkNet [1] on training set to crop the OD area, and then resize it into
256 × 256 for low-resolution inputs.

3.3 Results on CASIA-2000 Dataset

Segmentation on CASIA-2000 aims to evaluate capsule, cortex and nucleus seg-
mentation performance. Following the previous work in AS-OCT image segmen-
tation [15], we employ the normalized mean squared error (NMSE) between a
predicted shape Sp = {x̂i, ŷi} and the ground truth shape Sg = {xi, yi}, where
the shapes are represented by the coordinates of pixels. NMSE is defined as

NMSE =
1
ng

ng∑

i=1

√
(x̂i − xi)2 + (ŷi − yi)2, (5)

where ng is the number of annotation points. A lower NMSE indicates the net-
work is performing better.

We compare our G-MNet with several state-of-the-art networks. To verify
the efficacy of the guided map, we replace it by the original image in G-MNet,
and named this model G-MNet-Image. To test the performance of guiding in
multi-scale, we construct a special G-MNet, named G-MNet-Single, which only
filters the final averaged result without filtering multi-scale side-outputs. Table 1
shows the performance of different methods. We have the following observations:
Firstly, G-MNet-Single performs better than M-Net, which indicates that guided
filter is able to improve the accuracy of segmentation. Secondly, G-MNet out-
performs G-MNet-Single by 0.16, 0.20 and 0.17 in capsule, cortex and nucleus
boudary, respectively. This demonstrates the effectiveness of the learning strat-
egy in multi-scale. Lastly, G-MNet performs much better than G-MNet-Image,
which is disturbed by noises. This verifies that guided maps are able to provide
better guidance for reducing noises.

Table 1. Segmentation results on CASIA-2000.

Method Capsule Cortex Nucleus

FCN-VGG16 [8] 3.08 ± 4.84 3.34 ± 3.14 11.03 ± 4.08

DeepLabV2-Res101 [2] 3.97 ± 4.08 6.18 ± 4.31 10.88 ± 8.04

PSPNet-Res34 [16] 1.37 ± 0.96 1.73 ± 0.75 8.20 ± 3.97

M-Net [5] 1.37 ± 2.62 1.60 ± 0.93 7.93 ± 3.65

G-MNet-Image (ours) 3.23 ± 1.46 4.39 ± 1.34 9.44 ± 2.75

G-MNet-Single (ours) 0.73 ± 0.72 1.17 ± 0.91 7.62 ± 3.29

G-MNet (ours) 0.57± 0.29 0.97± 0.60 7.45± 3.24
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3.4 Results on ORIGA Dataset

Following the previous work [5], we evaluate the OD and/or OC segmentation
performance and employ the following overlapping error (OE) as the evaluation
metric:

OE = 1 − AGT

⋂
ASR

AGT

⋃
ASR

, (6)

where AGT and ASR denote the areas of the ground truth and segmented mask,
respectively.

We compare our G-MNet to the state-of-the-art methods in OD and/or OC
segmentation, including ASM [14], SP [4], SW [13], U-Net [9], M-Net [5], M-Net
with polar transformation (M-Net + PT) and Sun’s [10].

Following the setting in [5], we firstly localize the disc center, and then crop
640 × 640 pixels to obtain the input images. Inspired by M-Net+PT, Inspired
by M-Net+PT [5], we provide the results of G-MNet with polar transformation,
called G-MNet+PT. Besides, to reduce the impacts of changes in the size of OD,
we construct a method G-MNet+PT+50, which enlarges 50 pixels of bounding-
boxes in up, down, right and left, where the bounding boxes are obtained from
our pretrained LinkNet.

Table 2. Segmentation results on ORIGA.

Method OEdisc OEcup

ASM [14] 0.148 0.313

SP [4] 0.102 0.264

SW [13] − 0.284

Sun’s [10] 0.069 0.213

U-Net [9] 0.115 0.287

M-Net [5] 0.083 0.256

M-Net+PT [5] 0.071 0.230

G-MNet (ours) 0.075 0.229

G-MNet+PT (ours) 0.069 0.213

G-MNet+PT+50 (ours) 0.062 0.211

Table 2 shows the segmentation results, the overlapping errors of other
approaches come directly from the published results. Our method outperforms
all the state-of-the-art OD and/or OC segmentation algorithms in terms of the
aforementioned two evaluation criteria, which demonstrates the effectiveness of
our model. Besides, Our G-Mnet outperforms M-Net by 0.008 and 0.027 in
OEdisc and OEcup, respectively. Simultaneously, Our G-Mnet+PT also performs
better than M-Net+PT. These results indicate that our modification to M-Net
has a great help to the performance.
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4 Conclusions

In this paper, we propose a guide-based M-shape convolutional network, G-
MNet, to segment biomedical images with weak boundaries, noise and high-
resolution. Our G-MNet products high-quality segmentation results by incor-
porating guided filter into CNNs to learn better features for segmentation. It
also benefit from the informative guided maps which provide better guidance
and reduce the influence of noise by extracting the main feature from the orig-
inal images. We further filter multi-scale side-outputs to construct the guided
block more robust to noise and scaling. Thorough epxeriment on two benchmark
datasets demonstrate the effectiveness of our method.
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Abstract. The large size of raw 3D optical coherence tomography
(OCT) volumes poses challenges for deep learning methods as it can-
not be accommodated on a single GPU in its original resolution. The
direct analysis of these volumes however, provides advantages such as
circumventing the need for the segmentation of retinal structures. Previ-
ously, a deep learning (DL) approach was proposed for the detection of
glaucoma directly from 3D OCT volumes, where the volumes were signif-
icantly downsampled first. In this paper, we propose an end-to-end DL
model for the detection of glaucoma that doubles the number of input
voxels of the previously proposed method, and also boasts an improved
AUC = 0.973 over the results obtained using the previously proposed
approach of AUC = 0.946. Furthermore, this paper also includes a quan-
titative analysis of the regions of the volume highlighted by grad-CAM
visualization. Occlusion of these highlighted regions resulted in a drop in
performance by 40%, indicating that the regions highlighted by gradient-
weighted class activation maps (grad-CAM) are indeed crucial to the
performance of the model.

Keywords: 3D-CNN · Glaucoma detection · Optical coherence
tomography · Gradient-weighted class activation maps · Visual
explanations

1 Introduction

Glaucoma is the second leading cause of irreversible blindness worldwide. The
number of worldwide glaucoma patients, aged 40–80 years, is estimated to be
approximately 80 million in 2020 with about 20 million increase since 2010 [4].
This disease is characterised by optic nerve damage, the death of retinal ganglion
cells [3], and the ultimate loss of vision. It is a slowly progressing disease, with
a long asymptomatic phase, where patients do not notice the increasing loss of
peripheral vision. Since glaucomatous damages are irreversible, early detection
is crucial.
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Spectral-domain OCT imaging provides clinicians with high-resolution
images of the retinal structures, which are employed for diagnosing and moni-
toring retinal diseases, evaluating progression, and assessing response to therapy
[5]. While the previous approaches around the detection of glaucoma have pri-
marily depended on segmented features such as the thickness of the retinal nerve
fibre layer (RNFL) and the ganglion cell layer (GCL), there have been limited
efforts around evaluating the utility of deep learning (DL) models in improving
the diagnostic accuracy and early detection of glaucoma using 3D OCT scans.

For example, in [2] and [16], DL networks were proposed to diagnose early
glaucoma using retinal thickness features. Similarly in [11] and [1], pretrained
models (trained on ImageNet [14]) were used for the detection task. In fact,
none of these techniques use the raw volumes for DL training. Rather, they
rely entirely on segmented features or measurements generated by the SD-OCT
scanners. One limitation for this is the segmentation error propagation where
failure rate increases with the disease severity and co-existing pathologies. This
also does not allow the diagnosis model to learn other unknown features exist-
ing within the image data. The only end-to-end DL model which uses the 3D
raw scans was proposed by Maetschke et al. [9] (referred to as CAM-3D-CNN).
This approach utilised 3D convolutional layers in the CNN, but was forced to
downsample the volumes by nearly a factor of 80 to enable CAM and train the
model on a GPU (due to memory constraints on the GPU itself).

Another important aspect of DL is the clinical interpretability and trans-
parency [12] of the models developed. Class activation mapping (CAM) [18] and
gradient-weighted class activation maps (grad-CAM) [13] have been recently pro-
posed to reveal insights into the decisions of deep learning models. Both of these
techniques identify areas of the images that the networks relied on heavily to
generate the classification. However, CAMs requires a specific network architec-
ture, namely the use of a global average pooling layer prior to the output layer.
Grad-CAM is a generalized form of CAM and can be used with any CNN-based
architecture without any additional requirements. In this regard, the visualiza-
tion of DL model for glaucoma detection has been studied in two papers [1,9].
An et al. [1] identified pathologic regions in 2D thickness maps using grad-CAM
[13], which have shown to be in agreement with the important decision making
regions used by physicians. Similarly, Maetschke et al. [9] implemented 3D-CAM
[18] to identify the important regions in 3D OCT volumes. The maps were how-
ever, in a coarse resolution that matched the downsampled input image. This
method also employed specific architecture changes to accommodate the require-
ments of CAM generation. It is also noteworthy that neither of these approaches
analysed the CAMs in any systematic fashion, and merely used the heat maps
to validate findings in a small number of images that were qualitatively assessed.

In this paper, we propose an end-to-end 3D-CNN for glaucoma detection
trained directly on 3D OCT volumes (gradCAM-3D-CNN). This approach con-
tinues to avoid the dependency on segmented structural thicknesses, but also
improves on previously approached techniques by doubling the size of the input
volumes [9], and also improves on the performance in a direct comparison
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between gradCAM-3D-CNN and CAM-3D-CNN models. The use of 3D grad-
CAM [13] allows for the visualization of the important regions of the 3D OCT
cubes in a higher resolution than was not available before. Crucially, we validate
the grad-CAM heat maps in a quantitative fashion, by occluding regions iden-
tified in the heat maps and assessing the impact of this on the performance of
the model.

2 Materials and Methods

2.1 Dataset

The dataset contained 1248 OCT scans from both eyes of 624 subjects, acquired
on a Cirrus SD-OCT Scanner (Zeiss; Dublin, CA, USA). 138 scans with signal
strength less than 7 were discarded. The final dataset contained 263 scans on
healthy eyes and 847 scans with primary open angle glaucoma (POAG). The
scans were centered on the optic nerve heard (ONH) and had 200× 200× 1024
(a-scans× b-scans×depth) voxels per cube covering an area of 6× 6× 2 mm3.

2.2 Network Architecture

The proposed CNN model receives input scans with a resolution of
256× 128× 128 (depth×b-scans× a-scans) to classify an OCT volume as
healthy or glaucoma. The network consists of eight 3D-convolutional layers,
where each is followed by ReLU activation [6], batch-normalization [8] and max-
pooling in order. The 3D convolutional layers have incremental number of the
filters of 16-16-32-32-32-32-32-32 with kernel sizes of 3-3-3-3-5-5-3-3 in order,
and stride of 1 for all layers. Also, 3D max-pooling layers has size of 2 and stride
of 2. Finally, two fully-connected layers connect all the activated neurons in the
previous layer to the next layer with 64 and 2 units respectively.

2.3 Evaluation: Training and Testing

The 1110 OCT volumes were downsampled to size 256× 128× 128 and split into
a training, validation and testing subsets, containing 889 (healthy: 219, POAG:
670), 111 (healthy: 23, POAG: 88) and 110 (healthy: 21, POAG: 89) scans,
respectively. The proposed 3D-CNN model was trained using the RMSprop opti-
mizer with a learning rate of 1e−4. Training was performed with a batch of size
four through 50 epochs. Data was stratified per epoch by down-sampling to
obtain balanced training samples. After each epoch, the area under the curve
(AUC) was computed for the validation set and the network is saved if an
improvement in AUC is observed.
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2.4 DL Visualization

We implemented 3D grad-CAM [13] for visual explanations of the proposed
model. We do not use CAM as it requires adding the global average pooling
(GAP) after the last convolutional layer (i.e. conv#8) which restricts the network
architecture design. Further, CAM would generate visualization only for feature
map of conv#8, which in our case has a size of 2× 1× 1. Hence, when resizing
and overlaying on the original cube of size 200× 200× 1024 will not provide any
meaningful results. In this paper, we calculated the heat map for each of the first
6 convolutional layers (conv#1-6) separately, following the explanation provided
in [13]. We did not compute grad-CAM for conv #7 and #8 layers due to the
very small size of the corresponding heat maps (conv#7: 8× 4× 4 and conv#8:
4× 2× 2). The generated heat maps have the same size as the feature map of
the corresponding convolutional layer. Instead of clipping the negative values in
the resulted heat maps, as performed in the grad-CAM paper [13], we used the
absolute value. To get rid of noisy gradients and to highlight only the important
decision regions, we clipped the smallest 30% values and then resize the heat
map to the original cube size.

To validate the generated heat maps, we occluded the input volumes by
zeroing the rows and columns with the highest weights. Specifically, we extracted
a set of indices with the highest weights per each dimension. This was done by
spatial dimension reduction using average pooling. For example, a heat map with
size 1024× 200× 200 was reduced to a vector of size 1024× 1× 1 by averaging the
values of each 200× 200 map to get a single value. The indices of the top highest
values (top x) in the resulted vector represent the most important region for this
dimension. We applied this process on the b-scans and depth dimensions with
x values of 64 and 256 respectively, while we considered the 200 a-scan columns
were all important. This means that a fixed region of size 256× 64× 200 was
occluded for each volume. Finally, the network was examined by evaluating the
performance using the test set and its occluded volumes (2× 110 scans).

3 Experiments and Results

3.1 The Glaucoma Detection Model

The proposed gradCAM-3D-CNN model as well as the CAM-3D-CNN model
described in [9] were implemented using Python, Keras with Tensorflow [7] and
nuts-flow/ml [10] on a single K80 GPU. Performance of both models were evalu-
ated using five statistical measures, namely, area under the curve (AUC), accu-
racy, Matthews correlation coefficient (MCC), recall, precision and F1-score. We
computed the weighted average measures to avoid biased resulting from the
class size imbalance in the data. The threshold with the highest validation F1-
score was chosen for calculating the performance measures. The proposed model
achieved an AUC of 0.973 for the test set (110 scans).

Further, to validate the performance of the proposed model (gradCAM-3D-
CNN), we trained the CAM-3D-CNN architecture, proposed in [9] using same
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Conv#1 Conv#4 Conv#1 Conv#4
POAG case Normal case

Fig. 1. 3D grad-CAM visualization results. Rows 1–4 show the b-scan slices #50, #100,
#110, and #140 in order; 5th row displays the enface of the overlay of grad-CAM heat
map on the original 3D cube; 6th row displays the enface of the occluded region (refer
to Sect. 2.4 for the occlusion method). Note: scans are resized for display.

data split. Table 1 has the performance measures for each model using the same
test set. The table shows that the proposed model outperforms the CAM-3D-
CNN model with an increase of 3%, 5%, and 9% in the AUC, accuracy and F1-
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Table 1. Performance measures of the proposed model and the literature 3D-CNN
model [9]

Val. Thresh. Accuracy MCC Recall Precision F1-score AUC

Proposed network 0.394 0.923 0.879 0.964 0.963 0.963 0.973

3D-CNN network [9] 0.424 0.879 0.657 0.864 0.902 0.873 0.946

Table 2. Occlusion results for CAM and gradCAM heat maps (AUC of original model
is 0.973)

Map size Accuracy MCC Recall Precision F1-score AUC

GradCAM-Conv6-lyr19a 16× 8× 8 0.520 0.032 0.459 0.705 0.509 0.596

GradCAM-Conv4-lyr11a 64× 32× 32 0.534 0.053 0.495 0.713 0.546 0.624

GradCAM-Conv5-lyr15a 32× 16× 16 0.534 0.054 0.482 0.714 0.532 0.638

CAM-Conv5a 64× 32× 32 0.570 0.110 0.555 0.733 0.602 0.647

GradCAM-Conv1-lyr0a 256× 128× 128 0.570 0.110 0.555 0.733 0.602 0.647

GradCAM-Conv2-lyr3a 256× 128× 128 0.582 0.132 0.618 0.737 0.657 0.633

GradCAM-Conv3-lyr7a 128× 64× 64 0.589 0.142 0.600 0.742 0.642 0.649
arefers to occlusion of heat map using top x b-scans and depth rows.

score respectively. We should note that CAM-3D-CNN has shown to outperform
the conventional machine learning with an increase of 5% in the AUC measure
[9].

Figure 1 visualizes grad-CAM heat maps for two convolutional layers: conv#1
and conv#4 for healthy and glaucoma cases. It is clear from the table that the
last/deeper convolutional layers yield general and global important regions across
all cubes, while the first convolutional layers give more detailed highlights which
are comparable to the segmentation of retinal layers. The field of view of the
deeper layers is larger than the more superficial layers, but the size of the heat
maps are smaller in the deeper layers. This contributes to the generation of heat
maps highlight larger swathes of the retina, but also lacks detail. For example,
the heat map size for conv#1 is 256× 128× 128 while it is 16× 8× 8 for conv#6.
The 2nd column in Table 2 shows the heat map size for each convolutional layer.
In the heat maps generated from conv#4 we see that the optic disc region is
highlighted, which is a region known to be affected by glaucoma.

3.2 Occlusion Experiment

To quantitatively assess different grad-CAM visualization results, we calculated
the performance measure drops of gradCAM-3D-CNN model using the occluded
set resulted from each convolutional layer. We also computed the occluded
test set using CAM heat map generated from CAM-3D-CNN model. In total,
7 different occluded sets were generated and the corresponding performance
measures drops are reported in Table 2. From the table, the highest drop in
accuracy is 40%, achieved by gradCAM-conv#6 layer, followed by gradCAM-
conv#4, gradCAM-conv#5, CAM, gradCAM-conv#1, gradCAM-conv#2, and
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Table 3. Occlusion results for different grad-CAM variants using Conv#6 (AUC of
original model is 0.973)

Accuracy MCC Recall Precision F1-Score AUC

Gradsa 0.520 0.032 0.459 0.705 0.509 0.596

Relu-gradsa 0.526 0.041 0.468 0.709 0.519 0.636

Guided-gradsa 0.529 0.045 0.473 0.711 0.523 0.627

Grads-posa 0.529 0.045 0.473 0.711 0.523 0.628

Grads-absa 0.531 0.050 0.477 0.713 0.528 0.616

Grads-nega 0.534 0.054 0.482 0.714 0.532 0.610
arefers to occlusion of heat map using top x b-scans and depth rows.

gradCAM-conv#3 with accuracy drop of 39%, 39%, 35%, 35%, 34% and 33%
in order. Further, heat map of gradCAM-conv#6 was also used to occlude the
least important decision region, where the performance drop was only 4%, 3%
and 4% in the AUC, accuracy and F1-score measures respectively. This confirms
the effectiveness of grad-CAM for highlighting important decision regions.

Different variants of grad-CAM were implemented to enhance the heat maps
by removing noisy gradients by either back propagating only positive gradients
(relu-grads) [17] or positive gradients and positive input (guided-grads) [15].
Table 3 shows the impact of occlusion using different grad-CAM variants on the
performance of the proposed model. We also investigated the impact of using
different gradient modifiers, such as positive, negative, and absolute gradients, on
the classification performance of the model. For example, in the case of absolute
gradients we used the absolute values of the feature map gradients to compute the
heat map. Table 3 shows that occlusion using grad-CAM without any modifier
results in the highest drop in the performance.

4 Conclusion and Future Work

We present an end-to-end 3D CNN classification model that is able to effectively
distinguish between healthy and glaucoma cases using 3D raw volumes. This
approach improves on the accuracy of previously proposed methods [9], but also
used an input that was double the size. This allowed for better CAMs to be
generated using grad-CAM, which highlighted important regions of the retina.
Further, grad-CAM heat maps were analyzed and quantitatively validated using
the occlusion assessment method. In particular, the occlusion assessment method
confirmed the effectiveness of grad-CAM in highlighting crucial decision regions.
In the future, we will improve the evaluation using a cross-validation study, as
well as extend this study to include other ocular diseases. We also plan to train
the DL model on the important sub-volumes guided by grad-CAM results. We
will also study the effect of fusing grad-CAM for different convolutional layers.
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Abstract. It is well known that in medical image analysis, only a small
number of high-quality labeled images can be often obtained from a large
number of medical images due to the requirement of expert knowledge
and intensive labor work. Therefore, we propose a novel semi-supervised
adversarial learning framework (SSALF) for diabetic retinopathy (DR)
screening of color fundus images. Specifically, our proposed framework
consists of two subnetworks, an extended network and a discriminator.
The extended network is obtained by extending a common classification
network with a generator used for unsupervised image reconstruction.
Thus, the extended network can utilize some labeled and lots of unlabeled
fundus images. Then the discriminator is attached to the generator of
the extended network to judge whether a reconstructed image is real
or fake, introducing adversarial learning into the whole framework. Our
framework achieves promising utility and generalization on the datasets
of EyePACS and Messidor in a semi-supervised setting: we use some
labeled and lots of unlabeled fundus images to train our framework. And
we also investigate the effects of image reconstruction and adversarial
learning on our framework by implementing ablation experiments.

1 Introduction

In many countries, diabetic retinopathy (DR) is the most common cause of blind-
ness in adults. Fortunately, early diagnosis and timely treatment can effectively
prevent the occurrence of blindness. With the development of color fundus pho-
tography, experienced ophthalmologists can observe various DR lesions in fundus
images, rate the severity of DR, and decide corresponding treatments. To reduce
the burden of ophthalmologists, various automatic DR screening methods [1]
have been proposed. Recently, deep learning has become a leading methodology
for medical image analysis and also has achieved promising performance [4] in
DR screening. As we all know, a superior deep neural network usually involves
large numbers of medical images with corresponding high-quality annotations.
However, the process of obtaining these annotations not only is time-consuming,
but also requires large amounts of expert knowledge. Hence, it is a challeng-
ing task to use a small number of labeled fundus images to achieve superior
performance of DR screening.
c© Springer Nature Switzerland AG 2019
H. Fu et al. (Eds.): OMIA 2019, LNCS 11855, pp. 60–68, 2019.
https://doi.org/10.1007/978-3-030-32956-3_8
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Fig. 1. Schematic of our semi-supervised adversarial learning framework (SSALF) for
DR screening. Components of the extended network and the discriminator are in the
purple and green solid boxes. ResNet34 and ‘Fusion’ are also showed in the red and yel-
low dotted boxes, where ‘Block’ represents multiple stacked residual modules. (Color
figure online)

Many works have been conducted to address the relative tasks [10,12,14,18,
19]. To reduce the number of images that need to be labeled, Yang et al. [18]
exploited deep active learning to select the most effective medical images to be
labeled. To utilize some labeled and lots of unlabeled images, Ladder network [12]
and SWWAE [19] were proposed to simultaneously minimize the sum of the clas-
sification term and the reconstruction term in a semi-supervised setting. As the
generative adversarial network (GAN) [3] becomes a research hotspot in semi-
supervised and unsupervised learning, many researchers [6,10,14] proposed the
GAN-based classification networks, such as ImprovedGAN [14]. In these net-
works, researchers unified a discriminator of GAN and a classifier into a single
network. The new discriminator could predict N+1 classes, where N means cat-
egories of medical images, and 1 means whether a medical image is real or fake.
Thus, during the training phase, these networks were trained with labeled med-
ical images to predict N classes, and were trained with unlabeled and generated
medical images to judge whether a medical image is real or fake. Lecouat et
al. [8] proposed a patch-based semi-supervised classification approach to recog-
nize abnormal fundus images, which was based on ImprovedGAN. TripleGAN [2]
proposed a tripartite adversarial model, including three separated networks: a
classifier, a generator and a discriminator. In fact, TripleGAN divided a discrim-
inator of ImprovedGAN into two parts, the discriminator of TripleGAN and the
classifier of TripleGAN, while adding an adversarial mechanism between the two
parts. In these mentioned GAN-based methods, all the relationships between a
generator and a classifier/a discriminator were cascading.
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However, it is also worthy of further study for DR screening to unify a clas-
sifier and a generator of GAN into a single network. Since the common GAN
generator [10,11,14] takes noise as input but the common classification network
a image, it is necessary to ensure they have the same input. Thus, a GAN-
based image reconstruction network [9] (a variant of GAN), where the generator
reconstructs input images as much as possible while the discriminator strives to
distinguish between input images and reconstructed images, attracts our atten-
tion. Naturally and intuitively, we attempt to extend a common classification
network by combining a GAN-based image reconstruction network.

Therefore, we propose a novel semi-supervised adversarial learning frame-
work (SSALF) for diabetic retinopathy (DR) screening of color fundus images.
Our proposed framework consists of two subnetwork, an extended network and
a discriminator. In order to utilize some labeled and lots of unlabeled fundus
images, we extend a common classification network for classification and recon-
struction by U-net’s “fusion” [13], and call it the extended network. Thus, the
extended network comprises two components, a classifier for supervised classifi-
cation and a generator for unsupervised image reconstruction. Then like a com-
mon GAN, we attach the discriminator to the generator of the extended network
to judge whether a reconstructed image is real or fake, which introduces adver-
sarial learning into the whole framework. In summary, our contribution are as
follows: (i) We propose a novel semi-supervised adversarial learning framework
for DR screening, extending a common classification network by combining a
GAN-based image reconstruction network. (ii) We also propose an appropri-
ate training strategy to effectively and efficiently train our framework. (iii) Our
framework achieves promising utility and generalization on the datasets of Eye-
PACS and Messidor in a semi-supervised setting: we use some labeled and lots of
unlabeled fundus images to train our framework. We also investigate the effects
of image reconstruction and adversarial learning on our framework by imple-
menting ablation experiments.

2 Methods

2.1 Common Networks for Classification

With the rapid development of deep convolution neural networks (DCNNs), some
common classification networks [5,7,15,16] were proposed successively. Nowa-
days, many works [17] modified these common networks according to specific
medical image analysis tasks, and achieved promising results. Thus, considering
convergence speed and memory overhead, we exploit ResNet34 [5] (denoted as
C) as the base model, and use the binary cross entropy loss as a loss function:

Lsup
CLS(C) = −(y log C(X ) + (1 − y) log(1 − C(X )), (1)

where y is a class label of an input image X from a supervised subset.
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2.2 Semi-supervised Adversarial Learning Framework

Unlike the aforementioned GAN-based methods [2,6,8,10,14], our framework
focuses on unifying a classifier and a generator of GAN into a single network,
instead of dividing them into two cascading models. Our framework consists
of two subnetworks, i.e., (1) an extended network for classification and recon-
struction, and (2) a discriminator for introducing adversarial learning. For the
extended network, we use ResNet34 as a backbone architecture (which is served
as a supervised classifier (donated as C)) and extend it with an unsupervised
generator (donated as G). Specifically, we use ResNet34 as our classifier, but the
fully connected layer of ResNet34 is modified to output two-dimension values.
Then we use the U-net’s “fusion” (See Fig. 1) and deconvolution to upsample
from the last convolutional layer of our classifier until the output size is con-
sistent with the input image, which constructs our generator and makes it can
combine low-level and high-level features to reconstruct input images. In our
point of view, the generator not only acts as a regularizer [19], but also forces
the classifier to focus on abstract invariant features on the higher level [12] by
utilizing the “fusion”. For the discriminator (donated as D), following the rules
in [11], we design a simple seven-layer DCNN. We aim to add a regularization
item, which can learn the distribution of real fundus images, to the extended net-
work by introducing adversarial learning. Our framework schematic is depicted
in Fig. 1, and is theoretically easy to deploy to the other aforementioned common
networks.

Our pipeline is that the extended network outputs results of classification
and reconstruction simultaneously, and that then the discriminator determines
whether a fundus image is reconstructed by the extended network or not. There-
fore, the classification and the GAN-based image reconstruction are unified into
a single framework.

The total loss of the extended network is formulated as:

Lsemi
EXT (C,G) = Lsup

CLS(C) + μ(Lunsup
MSE (G) + λLunsup

AD G(G)), (2)

where

Lunsup
MSE (G) =

1
WH

W∑

x=1

H∑

y=1

(Ix,y − G(Ix,y))2, (3)

Lunsup
AD G(G) = − log D(G(X )), (4)

where Lunsup
MSE (G) and Lunsup

AD G(G) indicate the image reconstruction loss of the
generator and the adversarial loss of the generator in an unsupervised subset,
respectively. Lsup

CLS(C) represents the binary cross entropy loss of the classifier in
a supervised subset. μ and λ refer to the weighting coefficients of the unsuper-
vised loss and the adversarial loss, respectively. And W and H denote the size
of a input image X while Ix,y indicates the image pixel value.

The adversarial loss of the discriminator is formulated as:

Lunsup
AD D(D) = −(log D(X ) + log(1 − D(G(X )))). (5)
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2.3 Appropriate Training Strategy

Training a deep neural network is also non-trivial. Therefore, we propose the
following steps to effectively and efficiently train our framework.

1. We use weights of ResNet34 pre-trained on the ILSVRC to initialize the
extended network [17], and train it only for image reconstruction.

2. We use the weights trained in step 1 to reinitialize the extended network.
3. We fix the extended network, and then train the discriminator once with

minimization of Lunsup
AD D(D).

4. We fix the discriminator, and then train the extended network once with
minimization of Lsemi

EXT (C,G).
5. We iterate the step 3 and 4 until the extended network converges.
Among the above steps, step 1 has been demonstrated to be quite effective

in [17], and step 2 is extremely crucial for semi-supervised DR screening, which
will be demonstrated in Sect. 3.2. Pytorch1 is adopted to implement our proposed
framework. Scaling radius, random crop, random translation, random rotation
and random flip are applied to preprocess and augment our dataset. Besides, all
the fundus images are resized to 448× 448× 3. Our framework is trained on a
Nvidia GTX 1080Ti of 11 GB memory with a batch size of 16. The Nesterov SGD
algorithm with an initial learning rate of 1e−3, a momentum of 0.9 and a weight
decay of 5e−4 is used to optimize the extended network and the discriminator
during the training. μ is set as 50 initially and will be reduced later in order to
keep the ratio of losses between the classifier and the generator more than 4:1.
And λ is set as 3e-4.

3 Experiments

3.1 Dataset Description

Our framework is evaluated on two publicly available datasets: the dataset
of ‘Kaggle Diabetic Retinopathy Detection’ (EyePACS)2 and the Messidor
dataset3.

The EyePACS dataset contains 35,126 training images with graded labels and
53,576 test images without graded labels. The presence of the diabetic retinopa-
thy in each image has been graded by a clinician into one of the five stages: no
DR, mild, moderate, severe, and proliferative DR. Here we only focus on the
non-referable DR stage (including the no DR stage and the mild stage) and the
referable DR stage (including the moderate stage, the severe stage, and prolifer-
ative DR stage). We divide the training images into three subsets: kaggle-train
(the first 21,076 images), kaggle-val (the middle 7026 images), and kaggle-test
(the last 7026 images). In our semi-supervised setting, we randomly select 500,

1 https://github.com/pytorch/pytorch.
2 https://www.kaggle.com/c/diabetic-retinopathy-detection/data.
3 http://www.adcis.net/en/Download-Third-Party/Messidor.html.

https://github.com/pytorch/pytorch
https://www.kaggle.com/c/diabetic-retinopathy-detection/data
http://www.adcis.net/en/Download-Third-Party/Messidor.html
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Table 1. AUC of different methods on the EyePACS dataset.

Method 500 1000 2000 3000

ResNet34 0.773 0.833 0.869 0.886

ImprovedGAN 0.806 0.858 0.876 0.890

SSALF (ours) 0.800 0.854 0.883 0.900

Table 2. Ablation experiments on the EyePACS dataset.

Method 500 1000 2000 3000

AUC SSIM AUC SSIM AUC SSIM AUC SSIM

ResNet34 0.773 - 0.833 - 0.869 - 0.886 -

ResNet34+Rec* 0.751 0.748 0.828 0.841 0.871 0.892 0.887 0.905

ResNet34+Rec 0.791 0.891 0.847 0.892 0.879 0.929 0.895 0.939

SSALF (ours) 0.800 0.893 0.854 0.910 0.883 0.939 0.900 0.932

1000, 2000 and 3000 images from the kaggle-train as supervised subsets respec-
tively. Meanwhile, we only use the entire kaggle-train as a unsupervised subset.
These subsets are balanced by oversampling (random crop).

The Messidor dataset contains 1,200 color fundus images. Different from the
EyePACS dataset, the Messidor dataset divides all the images into four stages.
Similarly, we can obtain 699 non-referable fundus images and 501 referable fun-
dus images from this dataset. Here we use the whole Messidor dataset as an
independent dataset for test.

3.2 Experiment Results

We perform semi-supervised experiments on the datasets of EyePACS and Mes-
sidor. The area under the receiver operating curve (AUC) and the structural
similarity index (SSIM) are used to quantify the performance of the classifica-
tion and the image reconstruction, respectively.

EyePACS: To evaluate the performance of our proposed framework, we
compare our framework with ResNet34 and ImprovedGAN [14], as shown in
Table 1. To make a fair comparison, we adopt ResNet34 as the discriminator of
ImprovedGAN. For the generator of ImprovedGAN, we use 200-dimension vec-
tors as input and add several deconvolutional layers to the original version [14]
in order to generate 448× 448× 3 fundus images. It is observed in Table 1 that
our SSALF trained with 500 or 1000 labeld fundus images can achieve compara-
ble AUCs with ImprovedGAN while with the increase of labeld fundus images,
our SSALF can achieve more improvements than ImprovedGAN. Furthermore,
in the case of 2000 or 3000 labeled fundus images, ImprovedGAN only achieves
a little improvement compared to ResNet34 while our SSALF doesn’t show sig-
nificant gain reduction.
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Fig. 2. Fake images generated from (a) an input image of the kaggle-test through (b)
ResNet34+Rec and (c) our SSALF, where (d) optic disks are selected for comparison.

Table 3. AUC of different methods on the Messidor dataset.

Method 500 1000 2000 3000

ResNet34 0.817 0.892 0.923 0.932

ImprovedGAN 0.907 0.922 0.934 0.941

SSALF (ours) 0.877 0.910 0.936 0.945

To investigate the effects of the image reconstruction and the adversarial
learning respectively, we conduct several ablation experiments, as shown in
Table 2. ResNet34+Rec (ResNet34+Rec*) indicates the extended network with
(without) the initialization in the aforementioned step 2. We can find in Table 2
that ResNet34+Rec* can only achieve the comparable results with ResNet34.
(1) This shows that without good initialization in the aforementioned step 2, the
generator can’t provide good regularization for the classifier during the training.
Particularly noting, the adversarial learning has no relationship with improving
SSIM, which is also pointed out in [9]. Figure 2 displays the fake images gener-
ated from the kaggle-test by using ResNet34+Rec and our SSALF. A closer look
reveals our SSALF produces thinner but clearer texture, especially texture in
the optic disk. In Table 2 we can also find that with different numbers of labeled
fundus images, ResNet34+Rec can achieve better AUC than ResNet34 while our
SSALF achieves the best AUC. (2) This shows combining the image reconstruc-
tion can indeed improve the performance of DR screening dramatically, while
introducing the adversarial learning can further enhance the performance.

Messidor: In order to demonstrate the generalization ability of our framework,
we also evaluate it on the Messidor dataset, but only use this dataset for testing.
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Results are shown in Table 3. It is observed that all the results from the Messidor
dataset keep the same trend with those from the EyePACS dataset, and that
our SSALF can even achieve an AUC of 0.945. This shows that our framework
has good generalization ability.

4 Conclusions

In this paper, we propose a novel semi-supervised adversarial learning framework
for diabetic retinopathy screening of color fundus images, and an appropriate
training strategy. Experiment results on the datasets of EyePACS and Messidor
show that our framework can achieve comparable or better utility and general-
ization than ImprovedGAN. Our ablation experiments show that combining the
image reconstruction can indeed improve the performance dramatically, while
introducing the adversarial learning can further enhance the performance.
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Abstract. The fovea is an important structure that allows for the high
acuity at the center of our visual system. While the fovea has been well
studied, the role of the foveal pit in the human retina is still largely
unknown. In this study we analyze the shape morphology of the foveal
pit using a statistical shape model to find the principal shape variations
in a cohort of 50 healthy subjects. Our analysis includes the use of scan
geometry correction to reduce the error from inherent distortions in OCT
images, and a method for aligning foveal pit surfaces to remove transla-
tional and rotational variability between the subjects. Our results show
that foveal pit morphology can be represented using less than five princi-
pal modes of variation. And we find that the shape variations discovered
through our analysis are closely related to the main metrics (depth and
diameter) used to study the foveal pit in current literature. Lastly, we
evaluated the relationship between the first principal mode of variation
in the cohort and the axial length from each subject. Our findings showed
a modest inverse relationship between axial length and foveal pit depth
that can be confirmed independently by existing studies.

Keywords: Shape analysis · Distortion correction · Retina · Fovea ·
OCT

1 Introduction

The fovea is a critical structure in the retina that consists of tightly packed
cone photoreceptor cells, which allows for the high acuity at the center of our
visual system. In humans, the fovea is characterized by a depression (foveal pit)
where the retinal ganglion and bipolar cells are displaced. While studies have
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characterized the variability of the fovea [1], the role of the foveal pit in our
visual system is still unclear. Recent studies have shown that subjects who lack
a foveal pit can still maintain cone specialization and normal acuity [2,3]. Given
the importance of the fovea, studying the morphology and structure of the foveal
pit can lead to a better understanding of diseases that affect our central vision.

Foveal pit morphology has been studied in relationship with other retinal
measures such as thickness [4], foveal avascular zone [5], and visual acuity [6].
Notably, Wilk et al. [3] presented a study using multi-modal imaging to evaluate
the relationship between foveal pit morphology from optical coherence tomog-
raphy (OCT) imaging and cone density measures from adaptive optics scanning
laser ophthalmoscopy (AOSLO) from subjects with albinism, showing consider-
able variation between the two measures. One limitation of these existing studies
is their reliance on the evaluation of summary measurements (pit depth, diam-
eter and slope) [7] or parametric models [8] of the foveal pit. Such analysis are
restricted by the location of the measurement or the fit of the model, and do not
observe the 3D local or spatial relationship of the foveal pit morphology across
a population.

OCT offers in-vivo 3D imaging of the retina, and is currently the most effec-
tive imaging modality for observing the shape morphology of the foveal pit.
However, one challenge with studying shape morphology in OCT is the pres-
ence of scan geometry distortion due to the instrument acquiring the images in
a fan-beam pattern, but representing it as a rectangular grid [9,10]. Currently,
such distortions are not corrected before analyzing the shape morphology of the
foveal pit, which can have significant impact on the shape analysis.

Fig. 1. Diagram showing our processing pipeline to extract the foveal pit surface from
each OCT image. (a) shows the raw OCT image and delineations found for the retinal
layers. (b) shows the inner limiting membrane surface prior to scan geometry correction
and (c) shows the surface after the distortion correction. (d) is an extracted 1mm by
1 mm region surrounding the fovea. (e) shows a planar fit to the retinal surface, and
(f) shows the foveal pit surface after using the fitted plane to correct for rotations in
the image.
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The goal of this work is to improve on existing analysis of the foveal pit shape
morphology through the use of a statistical shape model to decompose the prin-
cipal modes of shape variation across a cohort of 50 subjects. In addition, we aim
to improve the general reliability of foveal pit shape analysis by correcting the
OCT geometry of our scans [10] and addressing the translational and rotational
variability of the foveal pit surfaces between subjects.

2 Method

2.1 OCT Geometry Correction and Surface Construction

It is well established that OCT images do not represent a Euclidean space despite
their presentation of the data in a rectangular pattern [9,10]. The individual
columns (A-scans) of an OCT are path measurements that traverse a fan-beam
pattern that spreads out from a central nodal point located in the eye. The
distance between the A-scans are in units of degrees, and in actual Euclidean
space the OCT image would look similar to an ultrasound image, where the top
of the image is more narrow than the bottom. This misrepresentation of the OCT
scan geometry results in a distortion of the retina morphology that can impact
our shape analysis. To address this distortion, we use a digital model [11] of each
of our OCT images to approximate the location of the A-scan nodal point. We
then correct the scan geometry (Fig. 1c) of the OCT using an established model
for distortion correction [10] and interpolating the OCT within this corrected
space. From the OCT we segment the inner limiting membrane and extract a
1 mm by 1 mm region surrounding the fovea to get a surface representation of
the foveal pit (Fig. 1d).

2.2 Foveal Pit Alignment

A statistical shape model [12] requires that the images from every subject are
aligned into a common space. This allows us to establish correspondences and
remove incidental variation in the data (such as global movement) that should
not be included into the analysis. For our study, we perform a two-step rigid
alignment of the foveal pit surfaces. First, we automatically find the deepest
point in each foveal pit as a landmark, which we refer to as the fovea center.
Each surface is translated such that the fovea center is moved to the origin of
the coordinate system. This ensures that every foveal pit surface is centered and
has a coherent point of reference. However, after translation, the fovea pit may
be tilted in different orientations due to the positioning of the retina and OCT
scanning angle. We address this by first fitting a plane to each retinal surface
(Fig. 1e). The foveal pit is then rotated around the fovea center until the retinal
plane is parallel to the X-Y plane of the coordinate system (Fig. 1f).
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2.3 Principal Shape Decomposition

Given a surface of the foveal pit from each subject, we represent the surface data
as a vector:

X = [x1 y1 z1 x2 y2 z2 ... xV yV zV ], (1)

where (xv, yv, zv) for v ∈ [1, 2...V ] are the 3D positions of each of the V vertices
in the surface. Each surface is resampled such that they have the same number
of vertices and the x and y coordinates fall on a common grid. Given N subjects,
we can then stack the surfaces from each subject into a single data matrix:

D = [X1 X2 X3 ... XN ]T , (2)

where each row of the matrix represents the surface data from each subject.
Using D we can perform a shape decomposition of the foveal pit using principal
component analysis [13] to find the principal modes of variation in the data.
To do this, we first subtract the mean from the data to prevent the principal
components from being directed by the global bias in the data. This is calculated
by evaluating the mean across the surfaces

X =
N∑

n=1

Xn, (3)

and then subtracting it from each surface to create a new data matrix

D̂ = [(X1 − X) (X2 − X) (X3 − X) ... (XN − X)]T , (4)

which has zero mean. Singular value decomposition is then applied to D̂ to find
the linear relationship:

T = D̂W, (5)

where the columns of W are orthogonal unit vectors {w1 . . .wV } of size V that
describe the principal modes of variation (also known as the principal compo-
nents [PC]) in the data, and T is a matrix where each row is the projection of
the data from each subject into the PC space. Thus, each element of tn,v ∈ T is
the PC score of subject n with regard to vth PC. In the next section we show
how each PC can be added to the mean shape of the population to view the
different types of shape variation in the data. In addition, we will demonstrate
how the PC scores of the subjects can be used as a quantitative measure that
can be compared to external metrics of the retina, such as axial length. This
serves as a pilot study for future analysis where we aim to use this technique to
establish relationships between retinal shape and clinical measures of disease.

3 Evaluation and Results

3.1 Data

We analyzed 50 macular OCT images collected from healthy subjects using a
Spectralis (Heidelberg Engineering, Dossenheim, Germany) scanner. Each image
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covered a 30◦ by 20◦ field of view centered on the fovea and had an associated
segmentation of the ILM layer delineated automatically using OCTExplorer [14].
The foveal pit was extracted from each OCT image and aligned to the atlas space
as described in Sect. 2 (and shown in Fig. 1).

3.2 Shape Decomposition of the Foveal Pit

Using the shape decomposition described before, we calculated the primary
modes of shape variation of the foveal pit in our cohort. Figure 2a shows the
percent of shape variation that each PC accounts for across the total shape vari-
ation in the data. We see that the first PC covers over 80% of the total shape
variation, and the first 5 PCs together cover over 97% of the shape variation.
Figure 3 shows a visualization of each of the first 5 PCs as they range from
−2 to +2 standard deviation of the population relative to the mean shape. We
observed that the first PC represented the variability in the depth of the fovea
pit. The second and third PCs represented global tilt (in orthogonal directions)
of the foveal pit. The fourth PC represented the diameter of the pit. And lastly,
the fifth PC represented slight changes in the regions surrounding the foveal pit.

3.3 Correlation with Axial Length

One strength of performing shape decomposition is the ability to compare the
PC shape scores with relevant biometric and clinical measures. Such analyses
allow us to establish relationships between the shape morphology observed in the
images and measures of anatomy or disease. Understanding these relationships
can help us better understand the eye and also provide potential biomarkers
or predictors of disease progression. To demonstrate this type of analysis, we
correlate each PC1 score from our shape decomposition with the axial length
of each individual’s eye. Figure 2b shows a scatter plot of this relationship. We
observe from this analysis that there is a modest (r = 0.51) Pearson’s correlation
between the two measures.

Fig. 2. (a) shows the percentage of the total shape variability accounted for by each
principal mode of variation (PC) in our shape analysis. (b) shows a scatter plot relating
each subject’s PC1 score with their axial length.
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Fig. 3. Visualization of the shape variability represented by the five largest principal
modes of variation (PC) found in our shape analysis. For each PC, we show the mean
foveal pit shape of the population ±2 standard deviations (σ) of the shape variability
observed in the population for that PC.

3.4 Impact of the Geometry Correction

To evaluate the role that the scan geometry correction had on the shape analysis,
we repeated the principal shape decomposition on the foveal pit surfaces without
first correcting for the distortion. Figure 4 shows a comparison of the first PC
when using and not using the geometry correction. From the figure we can see
that there is a significant change to the principal mode of variation. The total
range of the foveal pit depth across two standard deviations appears to be larger
when the geometry is uncorrected. In addition, we note that the order of the
3rd and 4th principal components switched places in the uncorrected case. This
suggests that the variability of the foveal pit diameter (described originally by
the 4th PC) also increased. Lastly, correlating PC1 from the uncorrected analysis
with axial length showed a significant drop in correlation (r = 0.42).

4 Discussion

4.1 Principal Modes of Variation

One notable finding of this study is the relatively small number of principal
components that is required to represent the shape variation in the foveal pit.
PC1, which describes the depth of the foveal pit, covers over 80% of the shape
variation. This is in line with existing analysis of the foveal pit [7,8], which relies
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Fig. 4. Comparison of the first PC when the shape analysis was performed (a) with
and (b) without OCT scan geometry correction. Shown is the mean foveal pit shape of
the population ±2 two standard deviations (σ) of the PC variability observed in the
population.

on explicit measurements or modeling of pit depth and diameter. It is reassuring
to see that our unsupervised analysis was able to automatically find the same
characteristics (PC1 and PC4) of the foveal pit that is deemed important by the
community. However, the advantage of using our PCs over the existing summary
measurements is that each PC covers the shape variation across the entire foveal
pit. From Fig. 3 we see that the primary modes of shape variation are more
complex than simply making a single measurement of depth or diameter. Our
analysis shows other distinct variations that subtly changes the structure of the
pit. This allows us to establish local spatial relationships in the foveal pit that
are not covered by the common summary measurements used in the current
literature.

4.2 Comparison to Existing Literature

In Fig. 2b, we found a modest positive relationship between each subject’s score
for the first principal mode of variation (PC1) and their axial length measure-
ment. From Fig. 3 we see that PC1 has an inverse relationship with foveal pit
depth (the pit becomes more shallow as PC1 increase). Thus, our shape anal-
ysis showed a morphological relationship where foveal pit depth decreases with
increasing axial length. From existing literature, it is well established that axial
length measurements increase with myopia [15]. Likewise, myopic eyes have been
shown to have more shallow foveal pits [16]. Thus, this relationship confirms our
finding that increased axial length is related to smaller foveal pit depths.

5 Conclusion

We performed a study of foveal pit morphology over a cohort of 50 health sub-
jects using shape decomposition. Our analysis showed that the morphology of
the foveal pit can be represented by as few as 5 principal modes of variation.
The modes of variation we found were strongly related with metrics (pit depth
and diameter) commonly used in existing analysis of the foveal pit. A correlative
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study between the first PC and axial length revealed a modest inverse relation-
ship between axial length and foveal pit depth that we were able to independently
confirm from existing studies. Both of these results help confirm the validity and
value of our analysis. Our future goals are to apply these techniques to observe
and characterize shape differences between healthy and disease cohorts.

Acknowledgments. This work was supported by our funding sources NEI/NIH
grants P30EY001583 and U01EY025864.
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Abstract. The presence of drusen is the main hallmark of early/
intermediate age-related macular degeneration (AMD). Therefore, auto-
mated drusen segmentation is an important step in image-guided man-
agement of AMD. There are two common approaches to drusen segmen-
tation. In the first, the drusen are segmented directly as a binary classifi-
cation task. In the second approach, the surrounding retinal layers (outer
boundary retinal pigment epithelium (OBRPE) and Bruch’s membrane
(BM)) are segmented and the remaining space between these two layers is
extracted as drusen. In this work, we extend the standard U-Net archi-
tecture with spatial pyramid pooling components to introduce global
feature context. We apply the model to the task of segmenting drusen
together with BM and OBRPE. The proposed network was trained and
evaluated on a longitudinal OCT dataset of 425 scans from 38 patients
with early/intermediate AMD. This preliminary study showed that the
proposed network consistently outperformed the standard U-net model.

1 Introduction

Age-related macular degeneration (AMD) is a devastating retinal disease and a
leading cause of blindness in the elderly population in the developed world [1].
The clinical hallmark and usually the first finding of AMD is the presence of
waste deposits, called drusen. In the early stages, these drusen begin to accumu-
late in between two anatomical layers of the retina, the outer boundary retinal
pigment epithelium (OBRPE) and the Bruch’s membrane (BM). The drusen
buildup and the consequent AMD progression to late stages are remarkably
variable among affected individuals, resulting in its management being one of
the biggest dilemmas in ophthalmology [2]. Currently, the patient scheduling
frequency is primarily guided by the amount of drusen, which is subjectively
assessed by drusen segmentation in optical coherence tomography (OCT). OCT
is the state-of-the-art imaging modality for assessing the retina in AMD. This fast
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and non-invasive acquisition technique allows to inspect the retina at a microme-
ter resolution, granting the possibility to study not only the retinal layers but also
several disease-related abnormalities, including drusen. Manual drusen segmen-
tation is very time consuming, which creates a need for advanced medical image
computing methods that can measure distinct and pathognomonic changes in
drusen morphology in an accurate, objective and reproducible manner.

Related Work. In recent years, deep learning based and non deep learning
based methods were applied on this task [3–7]. Generally it has been shown that
deep learning based methods, namely convolutional neural networks (CNN),
outperform the previous cost-function based models [3,6,7]. In [3] a basic U-Net
is applied on drusen and layer segmentation. In [6] a combination of a CNN,
graph search based methods and standard classifier is introduced. In [7] a retina
layer segmentation task is tackled by a B-scan level CNN.

Drusen segmentation task can be tackled by segmenting the neighbouring
layers in the retina: BM and OBRPE. An alternative approach is to segment
drusen as an additional class. Our assumption is that this additional class will
not only provide more information about the layers adjacent to drusen class, but
will also help the network to characterize the appearance of both drusen and non-
pathological regions where OBRPE and BM overlap. The size of drusen varies,
meaning a given drusen could either be a small drusen at an early stage or a
large drusen at a later stage. This point is not taken into account by a nor-
mal CNN applied on drusen segmentation. This can cause the network to miss
drusen that are particularly small or, conversely, drusen that exceed the net-
work’s receptive field (Fig. 3). In addition, retinal layers strictly follow the same
topological ordering and drusen has to appear strictly in-between OBRPE and
BM. In CNN models, contextual information and the spatial relation between
different anatomical parts of the retina might be overlooked by the small recep-
tive field of a CNN. The limitations of receptive fields in a CNN is discussed in
more details in [8,9].

A solution is to increase the receptive field in the CNN architecture. This
could be approached in different ways, e.g. by a dilated convolution [10]). In
Pyramid scene parsing network (PSPNet), this is solved by a pyramid pooling
module [8]. Pyramid pooling is applying pooling with different window sizes.
The idea is instead of having one size pooling with common kernel size of 2 ×
2 resulting in halved size feature maps, applying pyramid pooling layer with
different kernel size resulting in a sets of bins in a pyramid order (for example
1 × 1, 2 × 2, 3 × 3, 6 × 6). The coarsest pyramid level (1 × 1) resembles global
pooling that covers the entire image (see Fig. 1(e)). Spatial pyramid pooling is
also used in [9,11].

In [9,11,12] a spatial pyramid pooling layer is used once at the end of the
last convolutional layer of the network. In this paper we take one step further
and use a spatial pyramid pooling layer after each convolutional block of the
encoder of a standard U-Net. We also evaluate the result of segmenting three
classes instead of two classes, i.e. considering drusen as an additional, extra
class. Finally, we use a weighted loss function to train our proposed model. We
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evaluate the performance of our approaches on the task of drusen and layer
segmentation in retinas imaged with OCT. Results showed that the introduced
model outperforms the baselines in term of Dice index of drusen segmentation,
while also producing accurate delineations of the BM and the OBRPE surfaces.

Fig. 1. (a) An input B-scan. (b) Corresponding network prediction output. (c) Final
output after the post-processing. (d) The proposed model architecture. PM shows a
pyramid module that is applied on the feature maps before they are passed to the next
level. In the PM of each convolutional block on the decoder (pink PM), the reference
size for output feature maps is half that of the input image size. In fact, the size of the
feature maps in each layer of the decoder is halved. In the PM used for skip connections
(Brown PM), the reference size is the same as the that of the input image. Therefor,
the size of the feature maps passing through the skip connections does not change. (e)
Five level pyramid module. The feature maps are gone through PM in order to have
five-level bins. These five-level feature maps after up-sampling (UP-S) are concatenated
with the original feature maps. (Color figure online)

2 Methods

U-Net [13] has proven to be a suitable architecture for medical images, as it
uses skip-connections to pass the feature maps from the encoder at the same
level during the reconstruction stage, which makes the model convenient for
segmentation tasks where precise location is needed. Thus, we chose U-Net as a
backbone for our proposed pyramid U-Net with input image size of 256 × 256.

A retina OCT scan is comprised of sequential 2D B-scans. Usually, segmenta-
tion algorithms detect the drusen boundaries in B-scans by segmenting the outer
RPE and BM surfaces, as opposed to segmenting the drusen directly. In order
to provide more information to the network, in this work we define a four-class
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segmentation task: Drusen, RPE region, BM region and Background (Fig. 1(b)).
This is our first implemented approach and we evaluate whether adding the
extra class helps the network to learn how the drusen class interacts with the
neighboring classes.

In case of unbalanced classes, it is crucial to have a weighted loss function
when evaluating multi-class segmentation output. In our work, drusen class pix-
els represent a very small fraction of the total pixels in an image. Thus, in order
to handle the class imbalance, we use the following loss function to train a net-
work that is based on Generalized Dice Coefficient [14]:

− 2
Σ4

c=1 ωc Σnypredcn
ytruecn

Σ4
c=1 ωc Σnypredcn

+ ytruecn
. (1)

where ypredcn
is the prediction by the network and ytruecn is the ground truth

image. c is the number of classes, which in our proposed case is 4 (drusen,
BM, OBRPE, and the background). ωc shows the weight attributed to a class c
which is usually the inverse of the contribution of class c in data space. For the
examined dataset, ωc is set to 70, 20 and 10 for drusen class, OBRPE class and
BM class respectively.

2.1 Pyramid Module

Figure 1 shows the architecture of our proposed model. Each convolutional block
is composed of two convolutional layers with 3 × 3 convolutions. Each convolu-
tional block in the encoder is followed by one Pyramid Module (PM). A PM is
composed of 5 different pooling levels with bins of size (1 × 1), (2 × 2), (3 ×
3), (6 × 6) and (16 × 16). The five-level pyramid module forms five separate
sets of feature maps, each with a different size. Thus, in the first level of the
network there are 5 sets of 32×256×256 feature maps (Fig. 1(e)), i.e., one series
of feature maps for each pooling size. We apply average pooling with kernel size
pool size on these feature maps in each pyramid level in order to have results
with bin size (1 × 1), (2 × 2), (3 × 3), (6 × 6), (16 × 16), respectively.

In each level, a series of feature maps is followed by a separate 1 × 1 con-
volutional to reduce the dimensionality of the feature maps to n. In this paper,
n is set to 32/2 = 16 for the bin (2 × 2 bin) and to 32/4 = 8 in the remaining
pyramid levels (1 × 1, 3 × 3, 6 × 6 and 16 × 16). In each pyramid level, pooling
kernel size will be calculated as: pool size = (input shape/bin size) in order to
get feature maps with the target bin size. Since we are using U-Net as a baseline,
where encoder uses 2 × 2 max pooling in each level of the network, we keep the
feature maps at each level of the network the same size as those in the basic
U-Net. Therefore, all the feature maps of the different bin sizes are combined
with the feature maps obtained by the pooling with kernel size 2×2. The idea is
that the feature maps from different bin sizes will add additional global context
information to the main 2 × 2 pyramid. The same rule applies for the following
levels. If N is the number of the feature maps in each level and n the desired
number of the feature maps from a pooling bin b× b, n is set to N/2 for pooling
with size 2 × 2 and to N/4 for the rest of the pooling bins in the pyramid.
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After applying the 1 × 1 convolution in each pooling level p × p, there are 5
sets of feature maps of different sizes. In order to be able to concatenate these
feature maps, each series of feature maps is up-sampled to the reference size
of S. For the pyramid module in the decoder, S is set to 1/2 × (input size).
The feature maps at each level of the decoder are concatenated with the feature
maps resulting from (2 × 2) max pooling (Fig. 2(a)). After concatenation, these
pyramid feature maps are concurrently fed into the next layer. Conversely, for the
pyramid modules on the skip connections S is set to 1× (input size). Therefore,
these feature maps keep their original dimension (Fig. 2(b)). The output of a PM
(original feature maps and feature maps from 5 level bins) are simultaneously
passed through the skip connections to the matching layer in the decoder.

Fig. 2. (a) Pyramid module with the reference size of half of the input image size (b)
Pyramid module with the reference size of the input image size.

The generalized Dice loss function was utilized for training the network. The
predicted labels were regions for each target class (Fig. 1(b)). To acquire the
final surfaces of the BM/OBRPE layers, a postprocessing strategy was applied.
In each vertical column in the B-scan (called A-scan), the first row of activated
pixels was extracted from the predicted BM region as the BM surface boundary.
Similarly, in each vertical column in the B-scan (called A-scan), the last row
of activated pixels was extracted from predicted OBRPE region as the OBRPE
surface boundary.

3 Experimental Setup

Dataset. To train and evaluate the networks we use a private OCT dataset
containing 425 OCT scans from 38 patients. We split the data into 34000 B-
scans for training and validation (31 patients) and 7000 B-scans for testing (7
patients). Scans from the same subjects were always placed in the same set. Scans
were acquired with Spectralis (Heidelberg Engineering, Heidelberg, Germany),
which acquires anisotropic images with 1024 × 97 × 496 voxels, each with the
size of 5.7 × 60.5 × 3.87 µm3, and covering the field of view of 6 × 6 × 2 mm3.
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Reference Standard. Each B-scan of every volume has been manually annotated
in the following way. The Iowa Reference Algorithm [15] was first applied to
generate a layer segmentation. The output was then manually corrected by an
expert optometrist. Then, BM, OBRPE and the drusen regions are extracted
from these annotations and used for training the network (Fig. 1).

Training Setup. Our method and the baselines [3,8] were trained with a batch
size of 16 iterated for 50 times, using Adam optimization with an initial learning
rate of η = 10−5. Input B-scans are normalized to zero mean and unit variance
and resized to 256 × 256 pixels. Based on Eq. 1, ωc is set at 70, 20 and 10
respectively for drusen, RPE region and BM region in both baseline models and
the introduced architecture.

Fig. 3. (Left) Output of the basic U-Net [3] and (Right) output of the proposed model.
First row: The basic U-Net has erroneously segmented the drusen as the bright areas
above RPE, although there should be no drusen on top of the RPE. Second row (blue is
false-negative drusen): in the basic U-Net’s output, drusen region exceeds the network’s
receptive field. Third row (drusen in blue and RPE in red): The part of the image which
is completely outside of the outer retina is segmented as RPE by the basic U-Net. (Color
figure online)

4 Results

In order to evaluate our model, we compare it to several baselines. The first
baseline is the standard U-Net architecture with two classes, BM and OBRPE,
which has also been applied in the task of drusen segmentation by [3]. We denote
this baseline as UNet-2C in Table 1. The second baseline is the U-Net with
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drusen introduced as an extra class. In this baseline, instead of extracting the
area between BM and OBRPE as drusen, drusen is specifically segmented as an
extra class. We denote this baseline as UNet-3C. Finally, our proposed model
has in addition a spatial pyramid pooling layer at each level of the basic U-Net,
and is denoted as UNet-PPM (Table 1).

Table 1. Quantitative evaluation. Patient-level mean Dice coefficient for drusen region
segmentation and mean absolute error (MAE) in pixels for BM and OBRPE surface
segmentation

Method Dice (Drusen) MAE (RPE) MAE (BM)

UNet-2C [3] 70.25 1.42 1.35

UNet-3C 72.20 1.27 1.21

UNet-PPM 74.73 0.79 0.71

An example of segmentation output is shown in Fig. 3. It shows how the
pyramid pooling method solves some fundamental issues in drusen segmentation
by adding global contextual information to the feature maps which are being
transferred through the network. We quantitatively evaluated the segmentation
performance of the drusen, OBRPE and BM segmentation. Table 1 shows the
results of this evaluation, per patient dice coefficient for drusen segmentation
and mean absolute error for OBRPE and BM. In addition, Fig. 4 shows a box-
plot of per patient dice coefficient for drusen and mean absolute error for BM
and RPE segmentation. One can observe that by using the pyramid module, our
proposed method was able to outperform the other baseline networks.

Fig. 4. Segmentation performance of different models on drusen (left), and OBRPE
and BM (right). (1) UNet-2C [3]: U-Net with two classes, BM and OBRPE. (2) UNet-
3C: original U-Net with three classes, BM, OBRPE and drusen. (3) UNet-PPL: the
proposed model with three classes and pyramid pooling layers.
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5 Discussion

Utilizing global spatial context is crucial for avoiding anatomically impossible
segmentation such as finding drusen above RPE instead of below it. It is still a
challenge to learn the plausible spatial relationships between object classes from
a training dataset using statistical machine learning approaches. We proposed
incorporating the pyramid pooling module into U-Net. The results showed that
the proposed extension utilized the larger context for segmentation and clearly
outperformed the baseline U-Net model. The proposed method is an important
step towards the accurate quantification of drusen, crucial for the successful
clinical management of patients with early AMD. Finally, given the widespread
use of U-Net for medical image segmentation in general, the proposed extension
would have an impact beyond its application in drusen segmentation.
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Abstract. Direct visualization of photoreceptor cells, specialized neu-
rons in the eye that sense light, can be achieved using adaptive optics
(AO) retinal imaging. Evaluating photoreceptor cell morphology in reti-
nal diseases is important for monitoring the onset and progression of
blindness, but segmentation of these cells is a critical first step. Most
segmentation approaches focus on cell region extraction, without directly
considering cell boundary localization. This makes it difficult to track
cells that have ambiguous boundaries, which result from low image con-
trast, anisotropic cell regions, or densely-packed cells whose boundaries
appear to touch each other. These are all characteristics of the AO images
that we consider here. To address these challenges, we develop an AOSeg-
Net method that uses a multi-channel U-Net to predict the spatial prob-
abilities of the cell boundary and obtain cell centroid and region distri-
bution information as a means for facilitating cell segmentation. Five-
color theorem guarantees the separation of any touching cells. Finally, a
region-based level set algorithm that combines all of these visual cues is
used to achieve subpixel cell segmentation. Five-fold cross-validation on
428 high resolution retinal images from 23 human subjects showed that
AOSegNet substantially outperformed the only other existing approach
with Dice coefficients [%] of 84.7 and 78.4, respectively, and average sym-
metric contour distances [µm] of 0.59 and 0.80, respectively.

Keywords: U-Net · Level set segmentation · Adaptive optics ·
Five-color theorem · Cone photoreceptor neuron

1 Introduction

Adaptive optics (AO) retinal imaging can be used to directly visualize the mor-
phology of photoreceptor cells in the living human eye [10]. Monitoring cell mor-
phology can enhance the understanding of disease propagation at the cellular
level. Subpixel cell segmentation is a prerequisite to monitor subtle cell changes
as a one pixel error can cause up to 5% error in cell size measurements [5].
Accurate cell segmentation in AO images is hindered by low image contrast that
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often exists at cell boundaries (Fig. 1A). Anisotropic shading on opposite sides
of cells requires special handling, and low pixel sampling necessitates subpixel
segmentation in order to better monitor subtle changes in cell morphology. To
date, there has only been one published method for automated cell segmentation
in these AO images [10] (circularly-constrained active contour model, CCACM
[5]). CCACM dynamically constructs circularly-shaped priors for each cell, which
subsequently constrains active contours used in order to identify cell contours.
Although CCACM achieved high accuracy when cells were loosely packed, it is
prone to over-segmentation in the case of densely-packed regions where neighbor-
ing cells are very close together (cell crowding). This restricts the applicability
of CCACM.

Recently, segmentation methods based on deep learning have shown substan-
tial improvement over traditional image processing approaches [2,4,8,9,12,14].
The key challenge with AO images is separating crowded cells whose boundaries
appear to touch each other. One approach would be to adaptively adjust weights
at cell boundaries to train neural networks [8]. However, this approach is prone
to over-segmentation of densely-packed cell regions. Contour-aware approaches
[2,14] are effective ways to address cell crowding, but are prone to under-
segmentation. To simplify the task of cell decrowding, joint cell segmentation
and detection, combined with the use of star-convex polygons to represent cell
shapes, was utilized [9]. Another possible solution is to post-process prediction
results from the deep learning method by using conditional random fields [3].
However, this approach does not naturally achieve subpixel cell segmentation.
Level set method [13] is an efficient means to address this issue by propagating
active contours in a subpixel-level step. Five-color theorem has been combined
with level sets to segment crowded cells [6]. However, identifying cell regions in
terms of image intensity is unreliable, making the subsequent level set propaga-
tion in each colored region inefficient.

This paper introduces a combined approach incorporating deep learning and
level sets for improving segmentation of photoreceptor cells in AO retinal images,
particularly in dense regions where neighboring cell boundaries appear to touch
each other. Our approach is called AOSegNet. It utilizes a multi-channel U-Net
to simultaneously extract cell centroid, region, and contour visual cues, instead
of only predicting cell regions as in the case of the traditional U-Net. Next,
centroid and region cues from deep learning are combined to separate any clusters
of touching cell regions into distinct, untouching regions, based on the five-color
theorem. Finally, visual cues and colored regions are used to achieve subpixel cell
segmentation. Five-fold cross-validation was performed to compare AOSegNet
with existing methods. These results open up the possibility of monitoring subtle
cellular changes that occur during neurodegenerative retinal diseases.

2 Methodology

AOSegNet consists of three components: a multi-channel U-Net (Fig. 1B) to
extract cell cues (centroids, Fig. 1C; regions, Fig. 1D; and contours, Fig. 1E), a
five-color theorem approach to separate touching cells (Fig. 1F), and a region-
based level set method (Fig. 1G) to determine the final subpixel segmentation.
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Fig. 1. Overview of AOSegNet for an example AO image of photoreceptors (A) using
a multi-channel U-Net (B), which generates a set of visual cues consisting of centroids
(C), regions (D), and contours (E). Cell centroid and region cues are used by the
five-color theorem to separate touching cells. Red, blue and green regions represent
distinct cells (F). A region-based level set segmentation is used to achieve subpixel cell
segmentation (G). Scale bar, 20µm (Color figure online)

2.1 Learning Cell Visual Cues

A multi-channel U-Net is leveraged to predict three cell visual cues: centroids,
regions, and contours (Fig. 1B). Similar to the conventional U-Net [8], the multi-
channel U-Net also consists of contracting and expanding paths (left and right
sides, respectively). The contracting path is similar to a VGG network [11] that
repeatedly applies 3× 3 convolutions, followed by a rectified linear unit (ReLU)
and 2× 2 max pooling operations. The expanding path contains an upsampling
series of the image feature map, which is a 2 × 2 convolution that concatenates
image features from the contracting path, the upsampled feature map from the
expanding path, and a ReLU.

Unlike the conventional U-Net [8] which only includes the region mask, the
multi-channel U-Net contains centroid, region, and contour masks during train-
ing. A 3-channel label map is thus formulated, which improves prediction accu-
racy as they jointly constrain each other. It leads to a combinatorial loss function.

L = Lcentroid + Lregion + Lcontour (1)

Visual cues of cell centroids and regions are represented as binary masks,
I(x),x ∈ Ω, where Ω is the image domain. The corresponding predictions are
Î(x). The loss function for each binary mask is formulated as the combination of
binary cross entropy and Dice coefficient loss. In this way, Lcentroid and Lregion

can both be defined as

S(x) = −1
2

2∑

i=1

I(xi) log Î(xi) − 2
∑2

i=1 I(xi)Î(x)
∑2

i=1 I2(xi) +
∑2

i=1 Î2(xi)
(2)

To improve the accuracy of cell contour localization, the contour mask Ic(x) is
represented as a spatial density, which assigns probability values to image points
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near cell contours, assuming a Gaussian distribution, which results in

Lcontour = S(x) exp
((

Ic(x) − Îc(x)
)2

/σ2

)
(3)

where σ = 0.5 due to Ic(x) ∈ [0, 1]. This term (Eq. 3) measures the intensity
value changes between the labeled contour mask Ic(x) and predicted contour
mask Îc(x).

Altogether, the proposed multi-channel U-Net simultaneously predicts the
probability masks of cell centroid, region, and contour cues (Figs. 1C-E) for a
given AO retinal image (Fig. 1A).

2.2 Cell Decrowding

This step aims to extract cell regions that are clustered together in close prox-
imity and separate them into groups of distinct regions. Although neighboring
regions often touch, their simultaneously-learned centroids do not, which is key
for efficient decrowding. Following Otsu’s threshold method [7] to extract cell
centroids and regions from their visual cue masks produced by the multi-channel
U-Net, each centroid is used to identify its corresponding cell region through the
watershed algorithm.

However, the extracted cell regions often contain segmentation errors due
in large part to low pixel sampling and lack of subpixel accuracy. In order to
achieve subpixel segmentation, cell regions within connected clusters of cells must
first be disconnected from each another. We observe that cells within clusters
can be separated based on the five-color theorem [1], which states that any 2D
planar graph can be labeled with as few as five colors such that no neighbors
have the same color. We can construct a planar graph with cell centroids as
nodes, V = {v1, v2, · · · , vn}, with color C(v) for each node. Cell centroids whose
corresponding regions are connected to vi are contained in adj(vi). The greedy
coloring algorithm is used to assign a color to each cell region:

Algorithm 1. Greedy coloring
1: for i = 1 to n do:
2: c(vi) := 0
3: end (for)
4: for i = 1 to n do:
5: Let c(vi) be the smallest Z

+ s.t. c(vi) /∈ {c(vj) : vj ∈ adj(vi)}
6: end (for)

We can thus separate connected cells into different groups with distinct,
separated cells inside, as illustrated in Fig. 1F.
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2.3 Guided Level Set Subpixel Segmentation

This step achieves subpixel segmentation by combining region and contour cues
from the multi-channel U-Net with identity priors from the five-color theorem.
Identity priors globally constrain level set propagation, and region and contour
cues locally adjust level sets. A multiphase level set segmentation framework is
defined as

E =
∫

Ω

m∑

i=1

(Eregion + Econtour + Eidentity) dx (4)

where m ≤ 5 is constrained by the five-color theorem. Let Ir(x) be the region
cue mask from the multi-channel U-Net, and φ : Ω → R be a signed distance
function that represents the level set function.

Eregion = (Ir − μ1)2H(φ) + (Ir − μ2)2(1 − H(φ)) (5)

Here, H(x) is the Heaviside function, with H(x) = 1 if x ≥ 0; otherwise H(x) =
0. μ1 and μ2 are mean values of the mask regions inside and outside of the level
set φ, respectively.

Econtour = c1F (Ic)|∇H(φ)| (6)

with F (Ic) = 1 − Ic(x) because the contour cue mask is normalized to Ic(x) ∈
[0, 1] with large values at the cell boundary, where level set propagation should
terminate.

Establishing signed distance functions ψ on different-colored cell regions
(Fig. 1F) leads to the identity priors, which are defined as

Eidentity = c2 (H(φ) − H(ψ))2 (7)

Here, c1 = 2 and c2 = 1.5 represent scalar weights for balancing the level set
framework for all of the images in this paper. Note that the identity priors only
allow level sets to propagate near the image boundary that was predicted by the
multi-channel U-Net, which reduces merging of cell regions contained within a
certain multicolored region, while still achieving subpixel level cell segmentation.

The level set evolution equation is derived from Eq. 4 using Eqs. 5–7.

∂φi

∂t
= δ(φi)

⎛

⎝−(Ir − μi)2 +
∏

j �=i

(1 − H(φj))

⎞

⎠

+ c1div
(

F (Ic)
∇φi

|∇φi|
)

+ 2c2(H(φi) − H(ψi))
)

, 1 ≤ i ≤ m

(8)

Figure 1G shows the final cell segmentations computed using Eq. 8. Note that
all touching clustered cells are successfully separated into individual cells with
subpixel level accuracy.
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2.4 Data Collection and Validation Methods

AO images of cone photoreceptors from 23 human subjects (age: 27.1 ± 8.8 years)
were used to generate a total of 428 images (333 × 333 pixels), randomly selected
from these subjects across different retinal regions. Note that AO images can vary
substantially at different retinal regions of the same subject due to the variation
of cone photoreceptor density, eye motion, and imaging conditions. Therefore, it
is reasonable to have AO images from the same subject in both training and test
datasets. Cones were manually labeled with subpixel accuracy by expert graders
familiar with AO images for validation purposes. Five-fold cross-validation was
performed to evaluate the accuracy and robustness of AOSegNet.

We compared segmentation results with CCACM [5], which is, to our knowl-
edge, the only existing automated cell segmentation method for AO images of
cone photoreceptors. Quantitative comparison was performed using six metrics:
area overlap (AP), Dice coefficient (DC), area difference (AD), average sym-
metric contour distance (ASD), symmetric room mean square contour distance
(RSD), and maximum symmetric absolute contour distance (MSD). Finally, cone
diameters measured from our segmentation results were compared to previously
published diameter measurements, including histological studies.

3 Experimental Results

3.1 Five-Fold Cross-Validation of Segmentation Accuracy and
Robustness

Across each of the five folds, an average of 1343 corresponding cell regions were
extracted by AOSegNet and CCACM. They were compared to each other and
also to manually-labeled groundtruth. In all cases, AOSegNet performed sub-
stantially better than CCACM (Table 1). In each fold, the training time for the
multi-channel U-Net was ∼6 h (2000 iterations; Microsoft Windows 7, Intel(R)
core(TM) i7-6850K CPU, and dual NVIDIA GeForce GTX 1080 Ti GPUs). Fol-
lowing training, evaluation on each test dataset required less than 5 s per image.

Table 1. Segmentation accuracy comparison between AOSegNet and CCACM [5] over
five-fold cross-validation

Method AP (%) DC (%) AD (%) ASD (µm) RSD (µm) MSD (µm)

AOSegNet 74.2 ± 0.8 84.7 ± 0.6 19.9 ± 0.9 0.59 ± 0.02 0.70 ± 0.02 1.39 ± 0.04

CCACM 66.0± 0.6 78.4± 0.4 26.9± 0.9 0.80± 0.02 0.98± 0.02 1.99± 0.05

Examples of segmentation results showed high cell segmentation accuracy on
AO retinal images using AOSegNet (Fig. 2). Compared to CCACM, AOSegNet
improved detection accuracy, and reduced both over- and under- segmentation
(white arrows in Fig. 2). Our method combines spatial density contour cues as
well as the five-color-theorem separation strategy, in order to accurately identify
the contours of all photoreceptor cells.
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Fig. 2. Segmentation results on AO images varying in image quality and content. Com-
pared to CCACM, AOSegNet improves detection accuracy (white arrows, top row),
reduces over-segmentation (white arrows, center row), enhances under-segmentation
(white arrows, bottom row), and performs well in the vicinity of image artifacts (lower
portion, bottom row). Scale bar, 20µm. (Color figure online)

Fig. 3. Comparison of cone photoreceptor cell diameters generated with AOSegNet to
those calculated with other methods. Each dot represents the average cone diameter
measured within a single AO image (e.g. Fig. 1A). Since cone diameter varies depending
on the location in the eye (retinal eccentricity), measured values were averaged every
0.3 mm in order to compare them to averaged values from previously-reported values.
The average cone diameters measured were similar to previously-published values.
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3.2 Cell Diameter Measurements

AOSegNet performed well across a test dataset consisting of 78 different AO
images from healthy eyes. To demonstrate that the measurements were anatom-
ically relevant, we computed cone photoreceptor cell diameters using the corre-
sponding contours and compared them to those calculated with existing state-
of-the-art methods (Fig. 3). Overall, AOSegNet measurements of cone diameters
were similar to published values, including those measured from histological
images. We also verified that the use of subpixel measurements improved accu-
racy: relative cell diameter differences of 7.9 ± 0.3% and 8.8 ± 0.3% were achieved
for subpixel and pixel approaches, respectively, over the five folds, mean±SD.

4 Conclusion and Future Work

In this paper, we developed an AOSegNet for AO retinal images. A multi-channel
U-Net was designed to simultaneously learn different types of visual cues (cell
centroids, regions, and contours). These visual cues are used separately and in
conjunction with each other in subsequent steps to intuitively improve segmen-
tation performance. For example, cues integrated with the five-color theorem
provide a simple solution to separate connected cell clusters, which substantially
reduces segmentation errors when cells are crowded. By combining all learned
and derived priors, we show that subpixel cell segmentation can be achieved.
This subpixel representation is enabled in large part by the fact that cell con-
tours were trained through a spatial density representation.

Five-fold cross-validation demonstrated that AOSegNet substantially outper-
forms the only existing AO photoreceptor cell segmentation method [5] across
six different quantitative metrics (Table 1). These approaches will facilitate con-
struction of normal databases of cell morphology in the living human eye, and
will be useful for evaluating cell morphology in diseased eyes.

References

1. Appel, K., Haken, W.: Every planar map is four colorable. Illinois J. Math. 21(3),
429–490 (1977)

2. Chen, H., Qi, X., Yu, L., et al.: DCAN: deep contour-aware networks for object
instance segmentation from histology images. MedIA 36, 135–146 (2017)

3. Chen, L., Papandreou, G., Kokkinos, I., et al.: DeepLab: semantic image segmen-
tation with deep convolutional nets, atrous convolution, and fully connected CRFs.
IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2018)

4. Gu, Z., Cheng, J., Fu, H., et al.: CE-Net: context encoder network for 2D medical
image segmentation. IEEE Trans. Med. Imaging (2019, in press)

5. Liu, J., Jung, H., Dubra, A., Tam, J.: Cone photoreceptor cell segmentation
and diameter measurement on adaptive optics images using circularly constrained
active contour model. Invest. Ophthalmol. Vis. Sci. 59(11), 4639–4652 (2018)



94 J. Liu et al.

6. Nath, S.K., Palaniappan, K., Bunyak, F.: Cell segmentation using coupled level sets
and graph-vertex coloring. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI
2006. LNCS, vol. 4190, pp. 101–108. Springer, Heidelberg (2006). https://doi.org/
10.1007/11866565 13

7. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans
Cybern. 9(1), 62–66 (1979)

8. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomed-
ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24574-4 28

9. Schmidt, U., Weigert, M., Broaddus, C., Myers, G.: Cell detection with star-convex
polygons. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C.,
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Abstract. Since the optic disc (OD) is a main anatomical structure
in retina, the localization of OD is an essential task in screening and
diagnosing ophthalmic diseases. Many studies have been done for the
automatic localization of OD but not reach a perfect performance yet.
The bottleneck is lack of data and corresponding models that can handle
with such big data. In this paper, we proposed an automatic OD localiza-
tion method based on the hourglass network referenced from the human
pose estimation task. Considering the lack of retina image databases, we
also created a large retinal dataset of 85,605 images with manual OD
bounding boxes. By learning from the large dataset, our deep network
demonstrates excellent performance on OD localization. We also vali-
dated the proposed model on two public benchmarks, i.e. Messidor and
ARIA datasets. Experiments show that it can achieve 100% accuracies
on both datasets which clearly outperforms all the state-of-the-arts.

Keywords: Optic disc localization · Reinal image processing ·
Hourglass Network

1 Introduction

The optic disc (OD) or optic nerve head (ONH) is the point of exit for ganglion
cell axons leaving the eye. Since it is the most salient feature of the eye fundus,
it is actually used as a fiducial point in retinal image analysis. Therefore, OD
localization is not only a prerequisite for disc relevant disease screening, such as
glaucoma but also a necessary step for many other retinal image analysis tasks.

Conventional approaches either directly make use of the prior knowledge of
OD shape or make estimation indirectly by the spatial context of vascular arch.
Circle OD model has been used by Reza [15], Lu [9] and Abdullah et al. [1],
while Yu et al. [19] and Kamble et al. [8] localize OD by the vessel convergence
or profile. With the success of convolution neural network (CNN), classifier based
detectors [2,16] are proposed to address the OD localization problem. However,
unlike general object detection for multiple targets, there is only one optic disc in
the eye fundus. Exhaustive search in such detector is unnecessary. Localization
oriented encoder-decoder architecture is a more economic and suitable solution
c© Springer Nature Switzerland AG 2019
H. Fu et al. (Eds.): OMIA 2019, LNCS 11855, pp. 95–103, 2019.
https://doi.org/10.1007/978-3-030-32956-3_12
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for finding the OD. As a special kind of fully convolutional networks, U-Net [6]
and its variant [3] have been investigated and show good performance.

Fig. 1. Exemplar images and annotations. A large dataset for OD localization is built
by marking the bounding box of Kaggle/EyePACS dataset.

However, the aforementioned studies are limited in three aspects: (1) simple
handcrafted geometric models cannot deal with irregular variations of OD shape
or the retinal vascular network; (2) although in theory learning based model can
cover all the situations, existing models are trained on limited data, which makes
them cannot deal with the low-quality images and rare cases shown in Fig. 1; (3)
these models are relatively simple for the task of locating OD in various kinds
of image captured in less-controlled scenarios.

To address these issues, a new OD localization model is presented in this
paper. We annotate a large dataset with bounding box of the OD region and
utilize it for training the deep neural networks. The proposed OD localization
network is a symmetric encoder-decoder architecture which can learn features
across all scales. It is also a recursive model with the residual learning modules.
The OD location is estimated from the output probability heat map. Extensive
experiments show the effectiveness and robustness of the proposed method.

The main contributions include: (1) A large retinal dataset of 85,605 images
covering various challenging cases is constructed; (2) To facilitate the large
dataset, an encoder-decoder network with deeper architecture and recursive
mechanism is adopted to OD localization; (3) Extensive experiments show the
superior performance over state of the arts.
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2 Material

Although the importance of OD localization is well-recognized, relevant dataset
is rare. Studies are carried out by using datasets designed for other retinal image
analysis tasks, such as Messidor1, ARIA2 and STARE3. These datasets are lim-
ited in two aspects. Firstly, the image number is relative small. The largest image
number of aforementioned dataset is 1,200, which is insufficient for training a
reliable deep model. Secondly, the representativeness of data is limited. Since
existing datasets used for OD localization are all disease oriented, the image
quality has to be good for showing the details of lesion. However, as can be seen
from Fig. 1, the real challenge of OD localization lies in low contrast, dimmed
OD, confusing components, incomplete vascular arch etc. The number of such
low quality image is very small in existing dataset, which limits both training
result and the convincingness of evaluation. In other words, the good perfor-
mance on such datasets does not necessarily mean good ability of coping with
the aforementioned challenges.

Fortunately, the recent Kaggle/EyePACS dataset4 provides a large number
of raw fundus images. Al-Bander et al. [2] annotated the coordinates of OD
center and fovea for 10,000 images. We argue that simple point annotation is
inconsistent, since the shapes of OD are irregular and various. To build a reliable
training set and benchmark, we annotated rectangle bounding box for all the
images with complete visible OD in Kaggle/EyePACS dataset, which results in
a large dataset consists of 85,605 eye fundus images. The bounding box provides
not only an accurate and consistent annotation of OD center but also a more
precise ground truth for evaluation. Exemplar image and annotation are shown
in Fig. 1.

3 Method

The pipeline of proposed localization approach is illustrated in Fig. 2. At first,
input fundus image is normalized to 256× 256 by detecting the circle of field of
view (FOV). Then the normalized image is fed to an encoder-decoder network
with residual convolutional module, i.e., the hourglass net [13]. Output of the
network is a probability map of OD location from which we can get the final
coordinates of estimated OD center.

3.1 Preprocessing

Captured by different cameras, eye fundus images are different in size and aspect
ratio. To facilitate the localization model, the input image needs to be normal-
ized. Due to limited FOV, the camera can only focus on a small area on eye
1 http://messidor.crihan.fr/index-en.php.
2 http://www.eyecharity.com/aria-online.
3 http://www.parl.clemson.edu/stare/nerve/.
4 https://www.kaggle.com/c/diabetic-retinopathy-detection.

http://messidor.crihan.fr/index-en.php
http://www.eyecharity.com/aria-online
http://www.parl.clemson.edu/stare/nerve/
https://www.kaggle.com/c/diabetic-retinopathy-detection
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Fig. 2. Pipeline of proposed OD localization approach.

fundus, which results in a round shape visible area. We normalize the fundus
image by fitting the circle and cropping the image according to the following
criteria:

– All images are resized to an uniform height with preserved aspect ratio.
– The image is cropped to a square by trimming the margin columns according

to the horizontal axis of the FOV circle.

In this work, we normalize the retinal image to 256×256. Examples of normalized
images are shown in Fig. 1.

3.2 Optic Disc Localization by Hourglass Net

The hourglass net is originally proposed for human pose estimation [13], which
is a similar task to OD localization. The backbone model of hourglass is resid-
ual module presented by He et al. [7]. The skip structure in the residual module
makes the network deeper than existing models applied in OD localization. Con-
sequently, a bigger and more flexible parameter space can be achieved, in which
it is possible to fit an effective model to the large dataset introduced in Sect. 2.

The network input is a 256 × 256 retinal image, while the output is a prob-
ability heat map of OD location. Random mean and variance are used for
data augmentation in normalization step. We use root mean square propaga-
tion (RMSprop) with a learning rate of 2.5e−4 for optimization. At the training
stage, the mark of OD center coordinate is transformed into a groundtruth heat
map according to two dimensional Gaussian distributions. Then Mean-Squared
Error (MSE) loss function is adopted to minimize the difference between output
heat map and the ground truth.

MSE =
1
n

n∑

i=1

(x̂i − xi)
2 (1)

As for the final predicted location of OD center, we count the mean coordinate
of all the pixels with the value greater than 70% of the maximum value in the
output heat map.
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Fig. 3. Exemplar results of OD localization on EyePACS (first and second tow), MES-
SIDOR (third row) and ARIA (bottom row).

4 Experiments

4.1 Settings

The proposed model is trained on the completely annotated Kaggle/EyePACS
dataset described in Sect. 2. We strictly follow the train/test set division of the
diabetic retinopathy detection competition, which results in a training set of
33,799 images and a test set of 51,806 images. The proposed method is also
evaluated on Messidor and ARIA dataset for comparison with the state of the
art. Messidor consists of 1,200 images with various resolution of 1440 × 960,
2240×1488 and 2304×1536, while ARIA includes 120 images of an uniform size
768×576. OD in both datasets are labeled by region mask. The implementation
is based on PyTorch [14] and a machine with two NVIDIA GeForce GTX TITAN
X graphic cards. The batch size is set to 8.

The accuracy of OD localization is measured by two kinds of methods. The
first is morphologic region: the predicted OD location is considered successful
if it falls in the OD region. Depends on the annotation, the OD region can be
rectangle bounding box, oval area or the manual fine contour/mask. Besides that
radius-dependent accuracy is also adopted, in which 1

8 , 1
4 , 1

2 and one radius are
investigated. On EyePACS the radius is determined by half of the long edge of
rectangle, while on Messidor we adopt the settings of prior arts, in which the
radius is set to 68, 103 and 109 pixels for 1440×960, 2240×1488 and 2304×1536
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Fig. 4. Failure cases on EyePACS.

image respectively. On ARIA the radius is calculated by half of the OD mask
width. For calculating the error distance, the OD center is also needed in all
dataset which is calculated by the geometric center of OD mask respectively. As
a measure of computational efficiency, we also calculated the average processing
time per image.

4.2 Results

Exemplar results of OD localization on three datasets are shown in Fig. 3, and
the quantitative comparisons are presented in Table 1 and 2 respectively. As can
be seen, the presented new test set (EyePACS) is much bigger than existing
datasets, and includes many challenging images. Even though, the proposed
method can still achieve high accuracies. The effectiveness of large-scale learning
is well demonstrated. It is impressive that the localization results are much more
precise than Al-Bander et al. [2], which is also trained and tested on EyePACS.
When the acceptable error distance to OD center is limited to 1

4 radius, the
accuracy of [2] degrades to 51.9%, while that of our method can be still above
99%. In our work, the average Euclidean Distance (ED) to the true OD center
can be as small as 1.76 pixel on the 256× 256 image.5 This phenomenon implies
that the proposed model is more stable.

To compare with the existing approaches, we also perform experiments on
Messidor and ARIA. As can be seen, our model achieves perfect results and
consistently outperforms the state of the art in all metrics. Due to the differ-
ence of camera, adapting model to another dataset usually leads to performance
decline. However, our model trained on EyePACS shows great generalization
performance on both Messidor and ARIA. Based on morphologic region metric,
the accuracy maintains 100% on both datasets in all kinds of OD regions. When
based on radius-dependent measurement even the acceptable error distance to
OD center is limited to 1

4 radius, the accuracy of our method is still above 99%.
Besides the accuracy we also evaluate the computational efficiency, the aver-
age processing time per image is 5 milliseconds which shows that the proposed
5 Distances to OD center on Messidor and ARIA are calculated in original resolution.
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Table 1. Performance comparison based on morphologic regions (%).

Dataset Method Box Oval Contour ED Time (ms)

Messidor(1,200) Sadhukhan et al. [16] – – 98.75 14 0.15

Messidor(1,200) Lu [10] – – 99.75 – 5000

Messidor(600) Gu et al. [6] – – 99.83 – –

Messidor(1,200) Yu et al. [19] – – 99.67 – –

Messidor(1,200) Abdullah et al. [1] – – 99.25 – –

Messidor(1,200) R. Kamble et al. [8] – – 99.75 - 520

Messidor(1,200) Proposed 100 100 100 8.03 5

ARIA(120) Lu [10] – – 97.5 6 5000

ARIA(120) Proposed 100 100 100 4.14 5

EyePACS(51,806) Proposed 99.8 99.88 – 1.76 5

Table 2. Performance comparison of OD radius-dependent accuracies (%).

Dataset Method 1
8
R 1

4
R 1

2
R R Time (ms)

Messidor(1,200) Al-Bander et al. [2] – 83.6 95 97 7

Messidor(1,200) Giachetti et al. [5] – – – 99.66 5000∗
Messidor(1,200) Yu et al. [18] – – – 99 4700

Messidor(1,200) Yu et al. [17] – – 99.08 98.24 –

Messidor(1,200) Marin et al. [11] 87.33 97.75 99.50 99.75 –

Messidor(1,136) Meyer et al. [12] 65.58 93.57 97.10 98.94 –

Messidor(1,200) Gegundez-Arias et al. [4] 80.42 93.92 96.08 96.92 940

Messidor(1,200) Proposed 81.58 99.58 100 100 5

ARIA(120) Proposed 60.00 97.50 100 100 5

EyePACS(3,000) Al-Bander et al. [2] – 51.9 87.4 96.7 7

EyePACS(51,806) Proposed 84.47 99.42 99.82 99.89 5

*Time of Giachetti et al. includes both OD and fovea detection.

method can satisfy the requirement of real-time processing. It should be pointed
out that the speeds of compared approaches shown in Table 1 and 2 are directly
cited from corresponding articles, in which the hardwares are different.

In order to clarify the importance of our large dataset, we also conducted an
comparative experiment of different fractions of dataset used for training. The
results in Table 3 shows that the larger dataset will leads to better performance,
which proves the significance of our large dataset.

Some failure cases on EyePACS dataset are shown in Fig. 4. As can be seen,
they are either low-quality images or the rare cases. Even for human, identifying
the OD location is difficult. We argue that such images can be easily classified
for special treatment since their holistic appearances are very different from the
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Table 3. Performance comparison of different training sets.

Fraction EyePACS(51806) Messidor(1200) ARIA(120)

1% (865) 97.4 98.92 97.50

5% (5000) 99.0 99.17 99.17

20% (16896) 99.5 99.83 99.17

40% (33789) 99.8 100 100

*The performance on EyePACS is based on box region and on
others is based on contour region.

normal ones. In other words, in a practical system, such low-quality or special
images are usually excluded by the quality assessment.

5 Conclusion

In this paper, we propose an approach for robust optic disc localization in color
fundus images. To achieve a large and representative dataset, 85,605 fundus
images are annotated with OD bounding box. To facilitate this large dataset,
an encoder-decoder network with deep residual structure and recursive learning
mechanism is adopted for robust OD localization. Experimental results show
that the learned model is efficient and can clearly outperform state of the arts.
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Research Groups through the National Natural Science Foundation of China under
Grant 61421003.
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Abstract. The optic disc segmentation is an important step for retinal
image based disease diagnosis such as glaucoma. The inner limiting mem-
brane (ILM) is the first boundary in the OCT, which can help to extract
the retinal pigment epithelium (RPE) through gradient edge information
to locate the boundary of the optic disc. Thus, the ILM layer segmenta-
tion is of great importance for optic disc localization. In this paper, we
build a new optic disc centered dataset from 20 volunteers and manu-
ally annotated the ILM boundary in each OCT scan as ground-truth. We
also propose a channel attention based context encoder network modified
from the CE-Net [1] to segment the optic disc. It mainly contains three
phases: the encoder module, the channel attention based context encoder
module, and the decoder module. Finally, we demonstrate that our pro-
posed method achieves state-of-the-art disc segmentation performance
on our dataset mentioned above.

Keywords: Disc segmentation · ILM layer detection · Channel
attention based context encoder

1 Introduction

Glaucoma is the second leading cause of blindness globally, which may result in
vision loss and irreversible blindness. The number of people suffering from glau-
coma is estimated to increase to 80 million in 2020 [2]. As the disease progresses
asymptomatic in the early stages, the majority of the patients are unaware until
an irreversible visual loss occurs. Thus, early diagnosis and treatment for glau-
coma is utmost essential for preventing the deterioration of vision. While there
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Fig. 1. Optic nerve head structure in a cropped OCT slice. The red curve denotes the
ILM boundary. The blue points refer to the boundary points of the optic disc. ILM:
Inner limiting membrane. (Color figure online)

are various approaches to diagnose glaucoma such as vessel distribution, FFT/B-
spline coefficients, most of the known literature has endeavoured to assess the
cup-to-disc ratio (CDR).

There have been a number of attempts at automatically detecting the optic
disc in ocular images. Many proposed optic disc detection approaches concen-
trate on segmenting the optic region in color fundus images. For example, Liu
et al. [3] proposed Variational level set approach for segmentation of optic disc
without reinitialization. Xu et al. [4] employed the deformable model technique
through minimization of an energy function to detect the disc. Cheng et al. [5]
used the state-of-the-art self-assessed disc segmentation method combined three
methods to segment the disc. However, these proposed approaches face chal-
lenges when the optic disc does not have a distinct color in the fundus image.

Optical coherence tomography (OCT), an important retinal imaging method
with non-invasive, high-resolution characteristics, provides the fine structure
within the human retina [6]. A single image of OCT slice is shown in Fig. 1.
Some optic disc segmentation methods are applied to 3-D OCT volumes. For
example, Lee et al. [7] applied a K-NN classifier to segment the optic disc cup
and neuroretinal. Fu et al. [8] provided a Low-rank reconstruction to automati-
cally detect optic disc in OCT slices.

With the development of convolutional neural network (CNN) in image and
video processing [9], automatic feature learning algorithms using deep learn-
ing have emerged as feasible approaches and are applied to handle the image
analysis. Recently, some deep learning based segmentation algorithms have been
proposed to segment medical images [10], [1]. Based on the U-Net, a recent
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Fig. 2. Illustration of the proposed CACE-Net. Firstly, the images are fed into a feature
encoder module, where the residual network (ResNet) block was employed as the back-
bone for each block, and then followed by a max-pooling layer to increase the receptive
field for better extraction of global features. Then the features from the encoder mod-
ule are fed into the proposed channel attention based context encoder module. Finally,
the decoder module was used to enlarge the feature size and output a mask, the same
size as the original input.

popular medical image segmentation architecture, CE-Net employs multi-scale
atrous convolution and pooling operations to improve the segmentation perfor-
mance. And it achieves some state-of-the-art performance in some medical image
segmentation tasks, such as optic disc segmentation and OCT layers segmenta-
tion. The original context extractor module in CE-Net was consist of a dense
atrous convolution (DAC) module and a residual multi-kernel pooling (RMP)
module. However, the original DAC and RMP accounted for abundant channels
to enrich the semantic features representations. Each channel of the features at
the classification layer can be regarded as a specific-class response since we add
the supervision signal on this layer. These abundant channels could be further
embedded to produce the global distribution of channel-wise feature responses.
In this paper, in order to extract more high-level semantic features, we introduce
the channel attention mechanism to enhance the context extractor module of the
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CE-Net, and propose a channel attention based context encoder network (called
CACE-Net) for inner limiting membrane detection.

The major contributions of this work are summarized as follows:

(1) We annotate 20 3D-OCT scans (both of them are right eye scans) centered
at optic disc.

(2) we leverage the ability of CACE-Net to accurately segment the inner limiting
membrane (ILM) in our dataset, which is defined as the boundary between
the retina and the vitreous body. This is necessary for our further work
to detect the optic disc boundary points. The segmentations on database
of OCT images are demonstrated to be superior to those from some known
state-of-the-art methods. And we will release our code and dataset on Github
later.

2 Proposed Method

The CE-Net [1] achieves the state-of-the-art performances in some 2D medical
image segmentation tasks, such as optic disc segmentation, retinal vessel detec-
tion, lung segmentation and cell contour extraction. The proposed CACE-Net
is modified from the CE-Net, which mainly contains three phases: the encoder
module, the channel attention based context encoder module, and the decoder
module, as shown in Fig. 2. The feature encoder module includes four encoder
blocks, and the residual network (ResNet) block was employed as the backbone
for each block, and then followed by a max-pooling layer to increase the receptive
field for better extraction of global features. Then the features from the encoder
module are fed into the proposed channel attention based context encoder mod-
ule. Finally, the decoder module was used to enlarge the feature size and output
a mask, the same size as the original input.

2.1 Channel Attention Based Context Extractor Module

The original context extractor module in CE-Net [1] employed four cascade
branches with multi-scale atrous convolution to capture multi-scale semantic
features, followed by various size pooling operations to further encode the multi-
scale context features. This module accounts for abundant channels to enrich the
semantic features representations, which could be further embedded to generate
the global distribution of channel-wise feature responses. Therefore, motivated
by the SE-Net [11], we propose a channel attention based context extractor
module, introducing the relationship between channels.

In this section, we mainly introduce how to exploit the interdependencies
of channel maps, as illustrated in Fig. 2. The proposed channel attention based
context extractor module employs channel attention mechanism to allow the
network to perform feature recalibration of aggregated context features, with the
basis of original DAC block. Specially, the CACE module utilizes four cascade
branches with multi-scale atrous convolution and channel attention module, to
gain high-level features.
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Fig. 3. Illustration of the channel attention module.

As illustrated in Fig. 3, the extracted feature map F ∈ R
C×H×W in channel

attention module is first calculated directly by the global average pooling to
generate channel-wise statistics z ∈ R

C :

zc =
1

H × W
ΣH

i=1Σ
W
j=1fc(i, j) (1)

where H×W represents the spatial dimensions of features and C is the number of
channels. Then, the two linear transformations W1,W2 and a sigmoid activation
function σ are employed to obtain the squeeze and excitation statistics s ∈ R

C :

sc = σ(W2δ(W1zc)) (2)

where δ refers to the ReLU function, W1 ∈ R
C
r ×C and W2 ∈ R

C×C
r . Finally,

a matrix multiplication between the statistics s ∈ R
C and the feature F ∈

R
C×H×W is added to obtain the final output in each branch of the proposed

channel attention DAC module, followed by the RMP block for further context
information with multi-scale pooling operations.

2.2 Feature Decoder

Instead of directly upsampling the features to the original image dimensions, we
follow the CE-Net [1] to introduce a feature decoder module that restores the
dimensions of the high level semantic features layer by layer. In each layer, we
use ResNet block as the backbone of the decoder block which is followed by a 1
× 1 convolution, a 3 × 3 transposed convolution, a 1 × 1 convolution. Similar
to U-Net [12], we add a skip connection between each layer of the encoder and
decoder. Finally, the feature decoder module could generate the prediction of
the same size as the original input.

2.3 Boundary Extractor

The main goal of this method is to detect internal limiting membrane. There-
fore, we need to turn the segmentation prediction to a boundary line, which
corresponds to the internal limiting membrane. We remove the small connected
components to denoise the segmentation prediction, adopting the morphology
method. After this post processing operation, we achieve the final boundary
corresponding to the internal limiting membrane between the retina and the
vitreous body.
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2.4 Loss Function

In this method, we choose binary cross-entropy loss as our loss function LB , since
the method just needs to predict the binary outputs. The binary cross-entropy
loss is as follows:

LB = −Ex∼pdata
[y · log(D(x )) + (1 − y) · log(1 − D(x ))], (3)

where y represents the ground truth, and D(x ) is the prediction.

3 Experiment Results

3.1 Dataset and Metric

20 3D-OCT scans (both of them are right eye scans) centered at optic disc
were collected from 20 volunteers. Each OCT scan consisted of 885 × 512 image
resolution. While there exist methods for extracting multiple retinal layers from
OCT slices, only ILM layer boundaries is needed in our paper. The ILM is
defined as the boundary between the retina and the vitreous body, which is
the first boundary of retinal OCT. The ground-truth optic disc boundary of a
3D-OCT volume is obtained by first manually labeling the optic disc points in
each optic disc centered slice (with a trained labeler and two experts for quality
control). These labeled points were then to generate the ground-truth optic disc
boundary. In our paper, we also randomly take 10 people’s images for training,
and others for testing. In this paper, we follow the same partition of the data
set to train and test our models.

Following the previous approaches [1], we compute the mean absolute error
(mae) between prediction and ground truth as the metric to evaluate the accu-
racy of segmentation algorithms.

error =
1
n

n∑

i=1

|yi − Yi| (4)

where yi represents the ith pixel predicted value of one surface, and Yi represents
that of ground truth.

3.2 Implementation Details

The proposed CACE-Net was implemented on PyTorch library with the NVIDIA
GPU. We choose stochastic gradient descent (SGD) optimization, other than
adaptive moment estimation (Adam) optimization. We use SGD optimization
since recent studies [13] show that SGD often achieves a better performance,
though the Adam optimization convergences faster. The initial learning rate is
set to 0.001 and a weight decay of 0.0001. We use poly learning rate policy where
the learning rate is multiplied by

(
1 − iter

max iter

)power
with power 0.9. All training

images are rescaled to 448 × 448.
In order to demonstrate conclusively the superiority of the proposed method

over the other methods, we compare our method with two algorithms for the
ILM segmentation:
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Fig. 4. Sample results of the ILM segmentation. From left to right: original images,
CE-Net, CACE-Net and Ground-Truth

(1) U-net, a popular neural network architecture for biomedical image segmen-
tation tasks.

(2) CE-Net [1], which achieves the state-of-the-art performances in some 2D
medical image segmentation tasks, such as optic disc segmentation, retinal
vessel detection, lung segmentation and cell contour extraction.

3.3 Results and Discussion

As can be seen in Table 1, we show the performances of three optic disc seg-
mentation algorithms. Compared with other state-of-the-art optic disc segmen-
tation methods, our CACE-Net outperforms the other algorithms based on deep
learning image processing method. From the comparison shown in Table 1, the
CACE-Net achieves 2.199 in the mean absolute error, better than the U-Net.
From the comparison between CE-Net [1] and our CACE-Net, we also observe
that there is a drop of the mean absolute error by 10.8% from 2.467 to 2.199.

Table 1. Performance comparison of the ILM detection (mean± standard deviation)

Method U-Net CE-Net CACE-Net

error 6.404± 16.407 2.467± 1.989 2.199± 1.471
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We also show three sample results in Fig. 4 to visually compare our method
with the most competitive methods, CE-Net. The comparison images show that
our method obtain more accurate segmentation results.

4 Conclusion

In this paper, we have built a manually labeled OCT dataset and proposed an
effective architecture for segmenting the ILM layer in our OCT dataset. The
proposed CACE-Net achieves the mean absolute error of 2.199 in our dataset,
better than other methods.
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Abstract. Monitoring the condition of retinal vascular network based
on a fundus image plays a vital role in the diagnosis of certain oph-
thalmologic and cardiovascular diseases, for which a prerequisite is to
segment out the retinal vessels. The relatively low contrast of retinal
vessels and the presence of various types of lesions such as hemorrhages
and exudate nevertheless make this task challenging. In this paper, we
proposed and validated a novel retinal vessel segmentation method uti-
lizing Separable Spatial and Channel Flow and Densely Adjacent Ves-
sel Prediction to capture maximum spatial correlations between vessels.
Image pre-processing was conducted to enhance the retinal vessel con-
trast. Geometric transformations and overlapped patches were used at
both training and prediction stages to effectively utilize the informa-
tion learned at the training stage and refine the segmentation. Publicly
available datasets including DRIVE and CHASE DB1 were used to eval-
uate the proposed approach both quantitatively and qualitatively. The
proposed method was found to exhibit superior performance, with the
average areas under the ROC curve being 0.9826 and 0.9865 and the
average accuracies being 0.9579 and 0.9664 for the aforementioned two
datasets, which outperforms existing state-of-the-art results.

Keywords: Retinal vessel segmentation · Fully convolutional
network · Dense Adjacently Vessel Prediction · Separable Spatial and
Channel Flow · Fundus image

1 Introduction

Retinal vascular network is the only vasculature which can be visualized and
photographed in vivo. Retinal vascular imaging is able to provide clinically prog-
nostic information for patients with specific cardiovascular and ophthalomologic
diseases [1]. Segmenting out the retinal vessels is a prerequisite for monitoring
the condition of retinal vascular network. Currently, retinal vessel segmenta-
tion highly relies on the manual work of experienced ophthalmologists, which is
tedious, time-consuming, and of low reproducibility. As such, a fully-automated
and accurate retinal vessel segmentation method is urgently needed to reduce the
c© Springer Nature Switzerland AG 2019
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workload on ophthalmologists and provide objective and precise measurements
of retinal vascular abnormalities.

Several factors make this task challenging. The lengths and calibers of the
vessels vary substantially from subject to subject. The presence of various types
of lesions including hemorrhages, exudate, microaneurysm and fibrotic band can
be confused with the vessels, so do the retinal boundaries, optic disk, as well as
fovea. Furthermore, the relatively low contrast of the vessels and the low quality
of some fundus images further increase the segmentation difficulties.

Numerous methods have been proposed for retinal vessel segmentation, both
unsupervised and supervised. Unsupervised methods typically rely on mathe-
matical morphology and matched filtering [2]. In supervised methods, ground
truth data is used to train a classifier based on pre-identified features to clas-
sify each pixel into either vessel or background [3]. In the past few years, deep
learning methods have seen an impressive number of applications in medical
image segmentation, being able to learn sophisticated hierarchy of features in an
end-to-end fashion. For example, Ronneberger et al. proposed U-Net to perform
cell segmentation, which has become a baseline network for biomedical image
segmentation, including retinal vessel segmentation [4]. Liskowski et al. used
a deep neural network containing Structured Prediction trained on augmented
retinal vessel datasets for retinal vessel segmentation [5]. Oliveria et al. com-
bined the multi-scale analysis provided by Stationary Wavelet Transform with
a fully convolutional network (FCN) to deal with variations of the vessel struc-
ture [6]. These approaches applying deep learning methods have significantly
outperformed previous ones, achieving higher segmentation accuracies and com-
putational efficiencies.

Despite their significant progress, existing deep learning approaches are fac-
ing the dilemma of effectively extracting vessels with small calibers versus main-
taining high accuracy. Aforementioned approaches suffer from low capabilities
of detecting thin vessels. Zhang et al. introduced an edge-aware mechanism by
adding additional labels, which yielded a considerable improvement on predict-
ing thin vessels but a decreased overall accuracy [7]. This is due to the fact that
FCNs do not make use of spatial information in the pixel-wise prediction stage,
but deploy a fully connected layer to each pixel separately. In such context, we
propose a novel method for fundus image based retinal vessel segmentation uti-
lizing a FCN together with Separable Spatial and Channel Flow (SSCF) and
Dense Adjacently Vessel Prediction (DAVP) to capture maximum spatial cor-
relations between vessels. Geometric transformations and overlapped patches
are used at both training and prediction stages to effectively utilize the infor-
mation learned at the training stage and refine the segmentation. Our method
is quantitatively and qualitatively evaluated on the Digital Retinal Images for
Vessel Extraction (DRIVE) [8] and Child Heart and Health Study in England
(CHASE DB1) datasets [9].
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2 Method

2.1 Image Pre-processing

Although convolutional neural networks (CNNs) can effectively learn from raw
image data, clear information and low noise enable CNNs to learn better. For
a fundus image, its green channel is often used since it shows the best contrast
in physiological structures with blood. And the blue channel contains relatively
little physiological information. As such, simple but effective pre-processing is
applied via pi,j = 0.25ri,j + 0.75gi,j , where pi,j denotes the resulting pixel value
at position (i,j) and ri,j , gi,j respectively stand for the red channel value and
the green channel value. Data augmentation is conducted to enlarge the training
set by rotating each image patch by 90◦, 180◦ and 270◦.

2.2 Patch Extraction

Several studies have shown that CNNs can benefit from using overlapped patches
extracted from large images for tasks that ignore contextual information [4,
6,7,11]. Given that the mean and variance of small image patches within a
fundus image differ little, overlapped patches can also be applied to retinal vessel
segmentation. Furthermore, a large amount of image patches can boost a CNN’s
performance by enlarging the sample size. In this work, a total of 1000 image
patches of size 48 × 48 are randomly sampled from each training image. Center
sampling is used and zero padding is performed if the center is located on image
boundaries.

2.3 Fully Convolutional Network

FCNs can take input of arbitrary size and produce an output of the correspond-
ing size with efficient inference and training by local connectivity and weight
sharing [4]. FCNs typically have both down-sampling and up-sampling modules,
which are used to respectively extract multi-scale features and reconstruct spa-
tial information. In this work, we use U-Net as our baseline framework, which
employs multiple skip connections to refine the detailed information lost in up-
sampling modules [4]. As shown in Fig. 1, our overall architecture includes five
stages. Extraction stage extracts low-level information from input images. Pro-
jection stage gradually projects multi-scale features into low-resolution feature
maps that lie in high dimensional spaces. Mapping stage performs several non-
linear mappings to explore more semantic information, providing guidance for
pixels with low contrast and intensity. Refinement stage embeds spatial informa-
tion into feature maps that have rich high-level information. By concatenating
feature maps, this stage refines the semantic boundary. Reconstruction stage
utilizes refined features to perform predictions, producing segmentation results.
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Fig. 1. Overall architecture of the proposed network. SSCF-A, SSCF-B, SSCF-C are
detailed in Fig. 2. Please note, at Mapping stage, there can be any number of SSCF-B
blocks, and we use two in our proposed network.

2.4 Separable Spatial and Channel Flow

Convolutional layers are designed to learn filters in a 3-dimension space (two spa-
tial dimensions and one channel (grayscaled image intensity) dimension). Thus,
a single convolution kernel should perform spatial and channel transformations
jointly. However, filters in a single kernel usually conduct these two tasks implic-
itly, which may be vague and inefficient for high dimensional spaces. As such,
we decouple the mappings of spatial correlations and cross-channel correlations
sufficiently by factoring a kernel into a series of operations to perform those
two mappings separately [10]. Specifically, we propose a block called Separa-
ble Spatial and Channel Flow (SSCF) and apply it to Projection, Mapping and
Refinement stages, as shown in Fig. 2. Three depth-wise separable convolutional
layers and one residual connection are contained in a SSCF block. Each depth-
wise separable convolutional layer performs a depth-wise convolution followed
by a point-wise convolution. A depth-wise convolution works as:

pi,j,k =
∑

0≤l,m<s

xi+l−� s
2 �,j+m−� s

2 �,kWi+l−� s
2 �,j+m−� s

2 �,k (1)

where xi,j,k, pi,j,k respectively denote the input and result at position (i, j) and
channel k, Wi,j,k denotes the corresponding weight for xi,j,k and s denotes the
filter size. A point-wise convolution is written as:

yi,j,c =
C∑

k=1

pi,j,kWi,j,k,c (2)

where C denotes the number of input channels, pi,j,k stands for the input at
position (i, j) and channel k, yi,j,c denotes the output at position (i, j) and
channel c which can be any integer no larger than the total number of output
channels. Wi,j,k,c stands for the corresponding weight at position (i, j) for input
channel k and output channel c. By stacking depth-wise separable convolutional
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layers, SSCF not only enables spatial and channel information within the feature
maps to flow separately, but also reduces redundant parameters and computa-
tional complexity. Furthermore, a residual shortcut between feature maps with
smaller semantic and resolution gap can provide a better feature fusion.

2.5 Dense Adjacently Vessel Prediction

Despite the fact that the channel-wise spatial relations have an impact on predic-
tion, pixels are classified individually in FCN. A pixel representing background
is less likely to be surrounded by pixels of vessels since retinal vasculature is
structurally continuous [5]. Inspired by this prior knowledge, we propose a dense
prediction cell named Dense Adjacently Vessel Prediction (DAVP), as shown in
Fig. 2. In addition to a 1 × 1 convolutional layer, an extra 5 × 5 convolution
with non-linearity is introduced to filter redundant information. Then another
5× 5 convolution utilizes spatial relations between pixels to perform prediction,
refining the result from a 1×1 convolution branch via an element-wise addition.

Fig. 2. Details of SSCF and DAVP employed in the proposed method.

3 Experiments

3.1 Datasets

We evaluated our method on the DRIVE and CHASE DB1 public datasets.
DRIVE consists of 40 fundus images of size 584 × 565 taken from both healthy
adults and adults with mild diabetic retinopathy. There are 20 images for train-
ing and 20 images for testing [8]. CHASE DB1 consists of 28 fundus images of
size 999 × 960 taken from 14 10-year old children. For both datasets, gold stan-
dard segmentations are available. Since there is no official division into training
and testing sets for CHASE DB1 [9], we performed a 4-fold cross-validation in
this case. The field of view masks for both datasets are publicly available [6], on
which our quantitative evaluations are conducted.
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3.2 Training

During the training process, Adam Optimizer was used to minimize cross entropy
loss:

J(y, p) = −
C∑

k=1

yklog(pk) (3)

where C refers to the number of classes, p and y respectively denote the proba-
bilistic prediction and ground truth. The learning rate decayed by half for every
10 epochs, with an initial value of 0.001. The network was trained for 50 epochs,
taking less than 1 h.

3.3 Implementation Details

The proposed method was implemented utilizing Keras with Tensorflow backend.
All training and testing experiments were conducted on a workstation equipped
with NVIDIA GTX Titan Xp.

3.4 Quantitative Results

To compare with other state-of-the-art results, we used four metrics for evalua-
tion: accuracy (Acc), sensitivity (Sn), specificity (Sp) and area under the ROC
curve (AUC-ROC). AUC-ROC is the key metric in retinal vessel segmentation
considering the imbalance of classes. To obtain the binary vessel segmentation,
a threshold of 0.5 is applied to the probability map.

Table 1 demonstrates the performance gains obtained from SSCF and DAVP,
as evaluated on the DRIVE dataset. By decoupling the mappings of cross-channel
correlations and spatial correlations, SSCF boosts the performance of U-Net,
achieving an improvement on AUC-ROC by 0.09%. An incorporation of DAVP
further improves the predictions by taking neighboring pixels into considera-
tion during classification. These results imply SSCF and DAVP are helpful for
embedding more spatial information between vessels. Figure 3 visualizes how
SSCF and DAVP work.

Fig. 3. A test image patch from the DRIVE dataset. From left to right: one of the
original image patches, the segmentation results from the baseline model, the baseline
+ SSCF model, the baseline + SSCF + DAVP model (the proposed) and the ground
truth.
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Table 1. Performance comparisons of different models on DRIVE.

Method AUC-ROC

Baseline(U-Net) 0.9796

Baseline+preprocessing 0.9809

Baseline+preprocessing+SSCF 0.9818

Baseline+preprocessing+SSCF+DAVP 0.9826

We also compare our method with several other state-of-the-art methods in
Tables 2 and 3. Our method outperforms all the other methods in terms of both
accuracy and AUC-ROC. Also, reducing redundant parameters via the depth-
wise separable convolutions strikingly shortens the training and inference time,
making the proposed method being 90% faster than existing methods. Figure 4
shows representative segmentation results obtained from the proposed method
on CHASE DB1.

Table 2. Performance comparison with state-of-the-art methods on DRIVE, where tT
and tI respectively denote time consumptions in training and inference.

Method AUC-ROC Acc Sn Sp tT tI

2nd observer [8] N.A. 0.9473 0.7760 0.9725 N.A. N.A.

Gu et al. [12] 0.9779 0.9545 0.8309 N.A. N.A. N.A.

Liskowski et al. [5] 0.9790 0.9535 0.7811 0.9807 8 h 92 s

Wu et al. [11] 0.9807 0.9567 0.7844 0.9817 16 h 10 s

Oliveria et al. [6] 0.9821 0.9576 0.8039 0.9804 N.A. N.A.

Proposed method 0.9826 0.9579 0.7940 0.9820 1h 1.3 s

Table 3. Performance comparison with state-of-the-art methods on CHASE DB1.

Method AUC-ROC Acc Sn Sp

2nd observer [9] N.A. 0.9560 0.7686 0.9779

Wu et al. [11] 0.9825 0.9637 0.7538 0.9847

Oliveria et al. [6] 0.9855 0.9653 0.7779 0.9864

Proposed method 0.9865 0.9664 0.7878 0.9865
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Fig. 4. Representative segmentation results superimposed on the original fundus
images, obtained from the proposed method on CHASE DB1.

4 Conclusion

In this paper, we proposed a novel FCN by incorporating SSCF and DAVP into
U-Net for segmenting retinal vessels. The proposed SSCF and DAVP blocks can
capture maximum spatial correlations between vessels, being able to solve the
dilemma of maintaining high segmentation accuracy versus effectively extracting
thin vessels. We demonstrated that the proposed method has state-of-the-art
segmentation performance and high computational efficiency, which are essential
in practical clinical applications. Future work will involve applying the proposed
method to large-scale clinical studies.
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Abstract. Convolutional neural network (CNN) has expanded rapidly,
and has been widely used in medical image classification. The large num-
ber of parameters in a neural network makes CNN models computation-
ally expensive. This leads to slow inference speed, especially for 3D data
such as optical coherence tomography (OCT) for retinal images. A vol-
ume OCT scan of retina often contains hundreds of 2D images which
needs to be analyzed sequentially in a local computer with limited com-
putational resources. We introduce network pruning to OCT images clas-
sification and propose an algorithm to prune networks. We compress the
popular classification models, such as ResNet and VGG. For example,
within 1% accuracy loss, we compress ResNet-18 from 44.8 MB to 69 KB
and VGG-16 from 537.1 MB to 194 KB. These pruned models are much
smaller and easier to deploy on the OCT devices. As for the inference
speed, the pruned models are 10 to 20 times faster than original models
for ResNet and VGG in CPU.

Keywords: Network pruning · OCT · Classification

1 Introduction

Optical Coherence Tomography(OCT) is a medical imaging modality developed
in the 1990s [6]. It is a high-resolution, non-invasive imaging technique which
has been widely used in the diagnosis and research of ocular diseases. Each
3D OCT scan often contains hundreds of 2D images. They are captured in a
low-performance computer. In recent years, deep learning is widely used in med-
ical image analysis. Convolutional Neural Network(CNN) has proven to be very
effective in image processing. And it has also been adopted in OCT image clas-
sification [7,11,12]. The popular CNN models often require tens of hundreds of
c© Springer Nature Switzerland AG 2019
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megabytes for storage, and are regularly run on the GPU, thanks to its strong
parallel computing power. But the storage and computing resource are con-
strained in some low-performance computers and mobile devices. Therefore, it
becomes spontaneous to compress CNN models.

Over-parameterization is a widely recognized phenomenon of CNN [3,8].
In CNN model design, we first need to determine the model’s architecture
and the optimal amount of parameters. Both the architecture and parameter
count decide the learning capability of CNNs. Large models have the ability
to characterize complex problems, with the cost of greatly increased computa-
tion. However, insufficient parameters will restrict the learning ability. Over-
parameterization often occurs when the selected model’s parameterization is
greater than what the task really needs. So, one natural idea is to train a large
model and prune it by removing the redundant parameters.

The earliest work dates back to 1990 [2], which has been widely studied
in recent years [1]. Generally, the computation complexity of CNNs is mainly
related to the conv layers, and the number of parameters is dominated by the
fully connected (FC) layers. Most pruning methods obey a three-stage pipeline:
(a) training an original model. (b) prune the least important neural according
to certain rules. (c) fine-tune to regain the lost performance. In the past few
years, tremendous work has been made in the pruning rules. According to the
granularity of the pruning, pruning methods can be commonly categorized into
four groups [10]: fine-grained pruning (0-D), vector-level pruning (1-D), kernel-
level pruning (2-D), and filter-level pruning (3-D). The latter three are also called
structured pruning or coarse-grained pruning. It is pointed in [10]: different levels
of pruning granularity often affect the acceleration efficiency for hardware and
also affect the prediction accuracy. Coarse-grained methods are more friendly
to hardware, but harder to maintain the accuracy than the fine-grained meth-
ods. In practice, the remaining weights are very likely to push training loss into
a local minimum. Skilled network training is needed to avoid this situation.
Very recently, Frankle and Carbin [4] propose a hypothesis that dense networks
containing subnetworks can reach comparable accuracy in similar iterations. It
prunes the smallest-magnitude weights and initializes the rest. Liu et al. [9]
explore the value of network pruning. It comes to the conclusion that: the archi-
tecture of the pruned model is more valuable than the weights inherited from
the original model.

Our work is partly inspired by [4] and [9]. This paper makes three contri-
butions: (1) introduce network pruning to medical image classification for the
first time, especially for OCT images; (2) different from [4], we prune networks
on filter-level, because it is friendly to the current computing libraries and hard-
ware; (3) we turn network pruning into the problem of finding optimal amount
of parameters, and adopt Binary Search to accelerate the pruning process.

We get a large compression rate in model size on ResNet and VGG. Within
1% accuracy loss, for the channels percentage, we prune ResNet to 1%–2% and
VGG to 1.7%–3.1%. As for the model size, we prune ResNet to 69 KB∼ 228 KB,
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VGG to 194 KB– 569 KB. And for inference time on CPU, we speed up ResNet
more than 10x and VGG more than 20x.

2 Methods

We first make some changes to the traditional three-stage pipeline. We do not
use any rules for sorting the importance of channels in conv layers, just prune
the channels and initialize the rest, it can also be understood as replacing the old
layer with a new layer, which has less channels and the weights are initialized.
We use p% to represent the percentage for which the pruned model accounts
for the original model. Then the task turns to be finding the percentage which
is sufficient to achieve acceptable accuracy. We adopt Binary Search to quickly
find the percentage. Our pruning strategy is shown in Algorithm1.

Algorithm 1. Binary Search for Pruning Models
Input: original model, low: 0%, high: 100%, T: target accuracy
Output: pruned model
1: while True do
2: if low<high then
3: p% ← middle = low+high

2

4: temp model ← get p% of original model
5: randomly initialize all weights of temp model
6: t ← accuracy = train temp model
7: if t ≥ T then
8: high← middle
9: else

10: low← middle
11: end if
12: else
13: pruned model ← temp model
14: break
15: end if
16: end while

A short explanation for Algorithm1 is given below:

1. First, we need to decide the original model and train it to get a satisfying
accuracy. And set our target accuracy.

2. In the line 4, we get p% of every conv layer. The FC layer which always lies
in the end needs to be prune at the same time.

3. In the line 5, we adopt the normal distribution which was used in [5] for the
conv layer and FC layer initialization. We set all Batch Normalization layer’s
weight to be 1 and bias to be 0.
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Fig. 1. Prune ResNet-18. (a) original model, (b) intermediate model during pruning,
(c) the finally pruned model with 1.9% channels of original model

ResNet series is the stacking of residual modules, they have similar architec-
ture, so we demonstrate our pruning strategy on the shallower model – ResNet-
18, which is illustrated in Fig. 1.

According to the experience of model designing, the numbers of channels in
conv layer will increase with the depth of network. When the first conv layer’s
channel is reduced to 1, it cannot be pruned anymore, but the next layers can
still be pruned. The Binary Search is deployed in two speed:

– Fast Speed: Use Binary Search on every conv layer synchronously so as to
find the small model quickly.

– Slow Speed: Skip a conv layer, and use Binary Search on the next conv
layers.

The Binary Search accelerates the pruning process greatly. The traditional
filter-level pruning algorithms prune a certain number of channels for each iter-
ation, and the number is a hyperparameter that is decided by users. We use
ResNet-18 as an example, the total number of channels is 4800. If we set the
hyperparameter to be 100, and we reduce model from 100% to 3.1%, we have to
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train it 46 times, however, we only need to train it 5 times with Binary Search.
As for the ResNet-101, the total number of channels is 52627, we train 514 times
for traditional algorithm and 5 times for Binary Search.

3 Experiments

3.1 Dataset

We use the public dataset [7] in our experiments. We train models on this dataset.
The OCT images are splitted into a training set of 83484 images, and a testing
set of 1000 images. They are split into 4 categories: CNV, DME, DRUSEN, and
NORMAL. The distribution is given in Table 1.

Table 1. Distribution for OCT images

Dataset CNV DME DRUSEN NORMAL Total

Train 37,205 11,348 8,616 26,315 83,484

Test 250 250 250 250 1,000

3.2 Evaluation Methods

We compute Accuracy (Acc) to evaluate the pruned models. We compute the
speedup ratio (SR) and model size compression ratio (CR) to represent the effect
of compression. The equation is shown below.

Acc =
TP + TN

TP + FP + TN + FN
(1)

SR =
OT

PT
(2)

CR =
OM

PM
(3)

In Eq. (1), TP, TN, FP and FN represent true positive, true negative, false
positive and false negative. In Eq. (2), OT and PT represent inference time
consuming of original model and pruned model. In Eq. (3), OM and PM rep-
resent the model size of original model and pruned model. We also compute
Floating Point Operations Per Second(FLOPS), which is used to represent the
computation complexity of CNN.



126 B. Yang et al.

3.3 Experiment Settings

We train ResNet-18/34/50/101 and VGG-11/13/16/19 separately. The models
are offered by PyTorch (v1.0.1). We train the models on a single NVIDIA GPU
(GeForce GTX 1080 Ti). During the training phase, we adopt Stochastic Gra-
dient Descent (SGD) as the optimizer, and we use cross-entropy to be the loss
function. The initial learning rate is 0.01 for ResNet and 0.005 for VGG, with
momentum is 0.9 and weight decay is 0.0005. We change the learning rate as the
poly learning rate policy does in [14]. And the maximum epoch is 30 because the
testing loss will converge before 30 epochs by experience. All images are resized
to 224 × 224. We compute the inference time on the CPU (Intel Xeon Silver
4114).

4 Results

4.1 Accuracy

The accuracies of original models are over 99%, so we set 99% to be borderline,
and explore the accuracy in different percentages of channels. It can be seen
from Fig. 2: with the decreasing of models, firstly the accuracy fluctuates in a
small range and then suffers a big loss in the same place. So, there is indeed
a borderline for keeping accuracy, this percentage of parameters is suitable for
classifying the OCT dataset.

Fig. 2. Pruning process. Channel percentage represent the remaining channels account
for the total channels in original model. (a) prune ResNet, Acc jumps off near 0.02.
(b) prune VGG, Acc jumps near 0.03.

4.2 Model Size

The model size is important for deploying models on resource-constrained
devices. The original models consume storage too much. Within 1% accuracy
loss, we prune ResNet models to 1%–2% channel percentage. The details are
shown in Table 2.

We can also generate two conclusions from Table 2:
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Table 2. Model size of original and pruned models

Model Original (MB) p% Pruned (KB) CR

ResNet-18 44.8 1.9% 69 649.3

ResNet-34 85.3 1.5% 127 671.7

ResNet-50 99.4 1.6% 129 782.7

ResNet-101 170.6 1.8% 228 748.2

VGG-11 515.2 2.3% 307 1718.5

VGG-13 515.9 3.1% 524 1008.2

VGG-16 537.1 1.7% 194 2835.0

VGG-19 558.4 3.1% 569 1004.9

– For the same architecture, the more conv layers in original model, the bigger
pruned model is. Because we just prune channels, not the entire layers.

– For different architectures, FC layer determines both original model size and
pruned model size. The more, the bigger.

4.3 Parameters, FLOPS, Inference Time

The number of parameters, FLOPS, and inference time are important aspects
to evaluate a model’s performance. We test the models with one single OCT
image on the CPU. The details are shown in Table 3. The pruned models are
much smaller and faster than originals.

Table 3. Parameters, FLOPS, and inference time of different models

Model Parameters (M) FLOPS (G) Inference time (S)

Original Pruned Original Pruned Original Pruned SR

ResNet-18 11.179 0.004 1.826 0.005 0.916 0.079 11.59x

ResNet-34 21.287 0.005 3.681 0.011 1.305 0.103 12.65x

ResNet-50 23.516 0.007 4.139 0.006 2.817 0.182 15.46x

ResNet-101 42.508 0.015 7.875 0.012 4.834 0.306 15.78x

VGG-11 128.783 0.071 8.567 0.006 2.813 0.103 27.19x

VGG-13 128.967 0.127 12.682 0.016 3.813 0.161 23.64x

VGG-16 134.277 0.042 17.308 0.006 5.251 0.162 32.46x

VGG-19 139.587 0.137 21.933 0.025 5.375 0.182 29.48x

4.4 Heatmaps

All of the above results indicate that: With 1% accuracy loss, we can get a very
small model with our network pruning algorithm. But there is still a question:
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Does the small model learn what the original model learns? We adopt Grad-
CAM [13] to explain the prediction results of models. The heatmaps are shown
in Fig. 3. The original and pruned models focus on the same area. The pruned
model has a similar ability for feature extraction.

Fig. 3. Heatmaps of original and pruned models

5 Conclusion

For OCT images classification, there are huge redundant parameters in current
popular models. Our network pruning algorithm can reduce them and get a
smaller model that is suitable for computer with limited computational resources.
And the model can be deployed on existing platforms directly. It will facilitate
the application of CNNs on low performance and mobile devices.
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Abstract. In the past, when facing with spectral-domain optical coherence
tomography (SD-OCT) images of various types of age-related macular degen-
eration, such as neurosensory retinal detachment (NRD), pigment epithelial
detachment (PED), hard exudate (HE), cystic edema (CE), and diffuse edema
(DE), it was difficult to obtain satisfied segmentation results using traditional
methods, because the DE and CE easily disturb the accuracy of NRD segmen-
tation. In this paper, an improved multi-scale parallel branch convolutional neural
network (MPB-CNN) network is proposed to perform the edema area (EA) seg-
mentation and the NRD segmentation, where the supervised loss function is
modified by adding area perimeter ratio constraint. The experiments on 98 cubes
from 54 patients indicates that our method can achieve a mean overlap ratio
72.48% (NRD) and 75.93% (EA), respectively.

Keywords: Neurosensory retinal detachment � Edema area � MBP-CNN �
SD-OCT � Semantic segmentation

1 Introduction

Central serous chorioretinopathy (CSCR) is a chronic disease, which is the leading cause
of visual damage in middle-aged male. Neurosensory retinal detachment (NRD) is a
prominent characteristic of CSC that occurs when subretinal fluid accumulates at the
posterior pole [1]. Spectral-domain optical coherence tomography (SD-OCT) imaging
technology can provide detailed characteristics of disease phenotypes, which has
become an important imaging modality for the diagnosis of CSCR [2].

In the past decade, the traditional methods [3–5] have been used to segment the
retinal edema lesions. Zheng et al. [3] proposed a fast segmentation algorithm with
minimal expert’s interaction to quantify intraretinal and subretinal fluid. Wang et al. [4]
suggested a motion-estimation-based segmentation algorithm of fluid-associated
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regions. Wu et al. [5] put forward optical coherence tomography (OCT) fundus images
to find abnormal locations and combined with fuzzy level sets for subretinal fluid
segmentation.

Long et al. [6] advanced the fully convolutional networks (FCN) for pixels-to-
pixels semantic segmentation for the first time. Ronneberger et al. [7] employed the U-
Net, which included the shrink path of capturing context and the symmetric expanded
path to accomplish precise location. Çiçek et al. [8] suggested the 3D U-Net, which
extended the previous U-Net architecture by replacing all 2D operations with their 3D
counterparts. Zhou et al. [9] presented a nested U-Net architecture (UNet++), essen-
tially a deeply supervised encoder-decoder network, where the encoder and decoder
subnetworks were connected through a series of nested and dense skip pathways.
Zhang et al. [10] proposed the multi-scale parallel branch convolutional neural network
(MPB-CNN), which was essentially three parallel branch networks are used for multi-
scale feature extraction.

This paper defined a novel lesion region, namely the edema area (EA), whose upper
and lower boundaries are the internal limiting membrane and the Bruch’s membrane
(BM) respectively. To define the left and right boundaries of EA, we need to find the
outermost point of edema between the retinal layers and make a line perpendicular to
the BM. If the vertical line is outside the range of this image, that is drawn along the
edge of the image. The motivation for defining EA is that the boundaries of diffuse
edema are unclear, and doctors use the area for diagnosis in the clinic. Because the size
of NRD in our dataset varies widely, multiscale features are capable of representing the
NRD more robustly. The MPB-CNN is used to perform the EA and NRD segmenta-
tion. For further improving the segmentation results, the loss function of MPB-CNN
was modified by adding an extra area perimeter ratio, which enables the network better
for the complex edema.

Fig. 1. SD-OCT volumetric images. (a) A SD-OCT cube, which contains 1024 � 512 � 128
voxels with the corresponding clip size of 2 mm � 6 mm � 6 mm in (b). In (a), the yellow and
red lines represent the boundaries of EA and NRD, respectively. The three numbers in
(a) represent the three categories in our practical experiments (Color figure online).
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2 Methodology

2.1 Dataset

The data was collected from the Jiangsu Provincial People’s Hospital using SD-OCT
equipment (Carl Zeiss Meditec, Inc., Dublin, CA), including multiple cubes of the
same patient at different times. As shown in Fig. 1(a), each cube includes
1024 � 512 � 128 voxels, which corresponds to the trim size 2 mm � 6 mm � 6
mm. In the cube, each orientation slice is a B-Scan with the size 1024 � 512. Experts
annotated the ground truth of EA and NRD manually. The complete data includes 98
cubes from 54 patients. Among these data, there were 6731 B-Scans with EA and 3620
B-Scans with NRD. The training set, validation set, and test set are composed of 70, 10,
and 18 cubes, respectively.

2.2 NRD and EA Pathologic Analysis

In retinal images, the purpose of semantic segmentation is to assign each pixel a
specific label l, where l 2 1; 2; . . .;Kf g, K is the number of classes. Figure 1 shows the
EA and NRD segmentation, which is treated as 3 classes classifying problem.

Fig. 2. Pathological analysis of edema. The area surrounded by the red curve is NRD, and the
area surrounded by the yellow curve is the EA (EA contains NRD by default). The blue arrow
indicates the influence factors for the NRD segmentation, and the purple arrow indicates the
influence factors for the EA segmentation (Color figure online).
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Figure 2 shows the pathological features of the EA and NRD, which may include
the following condition: (1) The upper boundary of NRD is not clear (VI). (2) Other
retinal diseases can affect the NRD segmentation (XI). (e.g., cystic edema (CE), diffuse
edema (DE), shadows caused by hard exudate (HE)). (3) The change of the NRD size is
big (III). (4) There is the low reflection near EA (IX). (5) A part of the EA layer
information is almost undamaged, and there are no serious lesions (X).

In this paper, the edema data contains a variety of data that is more complex than
single lesion edema data. Some edemas are associated with other edema and cannot be
completely distinguished by professional ophthalmologists. Several edema distur-
bances and some NRD boundaries are not clear. It is difficult for traditional machine
learning to manually design appropriate features for the NRD and EA segmentation.
However, deep learning has the ability to automatically extract classification features
that avoid the limitations of manual features.

2.3 Network Architecture

Figure 3 shows the entire network architecture of MPB-CNN. Since the continuous B-
scans of 3D SD-OCT cube have displacement during the image generation, our net-
work is used for 2D B-scan instead of 3D cube. The three branches in MPB-CNN are
parallel, and have the same structure, including encoder and decoder. We adopted three
atrous convolution kernels with different rates to encode the input images. In the
encoder section, we use a dense connection to capture the image information. In the
decoder section, to improve the segmentation results we add the layer information of
encoder into the deconvolutional layer. Figure 4 shows the network structure for each
branch. Finally, the mapping of the low-level features and the three branches is cas-
caded achieved by a 3 � 3 convolution together as the output of the primary network
to obtain the final segmentation result.

Fig. 3. The architecture of MPB-CNN. The three branches have the convolutional kernels with
different scales to capture multi-scale information, and share the same network structure.
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The MPB-CNN designed loss function that only focused on the gradient of the
original graph boundary. In the case of complex edema adhesion, the MPB-CNN
network is prone to misclassification. In order to solve this situation, this paper
improved the loss function to reduce the area of the mistakenly segmented region by
maximizing the area perimeter ratio.

We convert the prediction image and the ground truth into binary images. 0 rep-
resents the background, 1 represents EA as follows:

ai;j ¼ 1
0

�
if fi;j � 1
if fi;j ¼ 0

ð1Þ

a0i;j ¼
1
0

�
if f 0i;j � 1
if f 0i;j ¼ 0 ð2Þ

where fi;j, f 0i;j are the values of the prediction label image and the ground truth in the
i; jð Þ coordinate. ai;j, a0i;j represent the values of the binaried prediction label image and
the binaried ground truth in the i; jð Þ coordinate, respectively. To find the mistakenly
segmented region, the following equation is used:

Ai;j ¼ ai;j � a0i;j
�� �� ð3Þ

S ¼
Xx
i

Xy
j

Ai;j ð4Þ

where x, y represent the length and width of the image. S represents the area of the
mistakenly segmented region. The perimeter of the mistakenly segmented region P can
be approximately calculated using the following equation:

P ¼
Xx

i

Xy

j

jAi;j � Ai�1;jj ð5Þ

where Ai;j represents the value of the mistakenly segmented region with coordinate
i; jð Þ.

Fig. 4. The architecture of each branch. In the number below the convolution, the first two are
the sizes of convolution, and the last one is the depth of convolution.
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We rewrote the optimization target as follows:

minHL Hð Þ s: t: max
S
P

ð6Þ

Finally, the loss function for the final optimization can be rewritten as:

Loss ¼ L Hð Þþ e�u� S
Pð Þ ð7Þ

where L Hð Þ represents the final loss function in the MPB-CNN network, and the

parameter u controls the proportion of S
P

� �
. We use u ¼ 0:001 in Eq. (7) according to

the constant experimental discovery.

2.4 Evaluation Design

To quantitatively evaluate the accuracy of the segmentation results, three evaluation
criteria were used to evaluate the different segmentation methods: overlap ratio
(Overlap), overestimated ratio (Overest), underestimated ratio (Undest) and pixel
accuracy (Pixel Acc).

3 Results

The experiment was performed in a hardware condition with Intel Xeon CPU, one
11 GB NVIDIA GeForce GTX 1080 GPU and 64 GB RAM, and a software condition
with Python 3.5 and Tensorflow. For patient independence, some patients were ran-
domly selected for training and validation, and the remaining patients were used for
testing. In order to verify our method, four deep learning methods (FCN [6], 3D-UNet
[8] and UNet++ [9], MPB-CNN [10]) are compared.

Table 1 shows the NRD and EA segmentation accuracies of different methods,
where our method achieved the overlaps 75.93% and 72.48% for EA and NRD,
respectively. Our method is generally superior to other methods for the NRD segmen-
tation and has improvement compared with the MPB-CNN for the EA segmentation.

Table 1. The performance comparison between different networks on edema dataset.

Lesion Methods FCN [7] 3D-UNet [9] UNet++ [10] MPB-CNN [11] Our method

EA Overlap [%] 0.7579 0.7722 0.7715 0.7515 0.7593
Overest [%] 0.1525 0.1518 0.1671 0.1323 0.1481
Undest [%] 0.0897 0.0760 0.0614 0.1162 0.0927
Pixel Acc [%] 0.8931 0.9120 0.9271 0.8668 0.8936

NRD Overlap [%] 0.6338 0.6630 0.6850 0.7084 0.7248
Overest [%] 0.0466 0.0502 0.0365 0.0736 0.0502
Undest [%] 0.3196 0.2868 0.2785 0.2180 0.2251
Pixel Acc [%] 0.6673 0.7046 0.7116 0.7680 0.7685
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Figure 5 shows the segmentation comparison between our method and the other
networks in 2D and 3D. In the case of a large number of cystic edema, our method has
advantages, and our results are better than other results. In addition, the segmentation
results indicate that the improved loss function is effective to reduce the segmentation
error of cystic edema.

Figure 6 shows the several segmentation results of our method. We can find that
our network can segment NRD and EA well compared with the ground truth except the
last row. Our network model can adapt to the multi-scale NRD data and be able to
accurately segment NRD against a variety of edema disturbances, such as PED, HE,
CE and DE. The last row in Fig. 6 shows some failure results, where the large NRD
containing HE and the NRD with weak boundary are difficult to be segmented accu-
rately. These problems need to be solved in the future work.

Fig. 5. The 2D and 3D segmentation results of FCN [6], 3D-UNet [8], UNet++ [9], MPB-CNN
[10] and our method. In the 1st, 2nd, 4th, and 5th rows, the dark blue surface is the BM layer, the
red surface is the EA, and the green surface is the NRD. In the 3rd and 6th rows, the yellow and
red lines indicate the ground truth of EA and NRD, respectively, and the green and blue lines
indicates the automated segmentation of EA and NRD, respectively (Color figure online).
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4 Conclusion

It is difficult to obtain the satisfied NRD segmentation results using conventional
methods for SD-OCT images, because the NRD is often disturbed by diffuse edema
and cystic edema. Therefore, this paper intends to use deep learning to segment EA and
NRD, and our main contribution is the improvement of loss function by adding an area
perimeter ratio. Experimental results prove that our method is effective for the NRD
and EA segmentation.
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Abstract. The segmentation of lesions such as retina edema, sub-retinal fluid
and pigment epithelial detachment in optical coherence tomography (OCT) im-
ages is a crucial task for automated diagnosis of diabetic retinopathy. However,
the multi-class lesion joint segmentation is very challenging due to the blurred
boundary, complex structure, influence of noise, and the imbalanced class. In
this paper, we propose a novel convolutional neural network with an encoder-
decoder structure to perform joint segmentation of these three lesions. Unlike
the common skip-connection employed in U-shape network for obtaining rich
information from encoder feature map, we explore an encoder-decoder attention
module (EDAM) via low-complexity non-local operation to capture more useful
spatial dependency information between encoder feature and decoder feature. In
this way, the network will take full advantage of the correlation information of
the same stage feature and pay more attention to lesion areas. In order to capture
large receptive fields and accurately segment small lesion, the modified light-
weight residual network with dilated convolution is employed in encoding path.
Besides, a hybrid loss, consisting of cross-entropy loss and multi-class Dice
loss, is used to optimize our network. The proposed method was evaluated on a
public database: AI-challenger 2018 for automated segmentation of retinal
edema lesions, and achieved a compelling performance with less parameters
compared to state-of-the-art networks.

1 Introduction

Diabetic Retinopathy (DR) is one of the main blinding diseases, affecting the normal
life of approximately 34% of diabetic patients. DR may cause many symptoms that
appear on the retina such as retina edema (RE), sub-retinal fluid (SRF), pigment
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epithelial detachment (PED). Optical coherence tomography (OCT) images are widely
used in ophthalmology clinic for the diagnosis of retinal diseases. Therefore, the
automatic segmentation of lesions in OCT images plays a key role in the diagnosis and
treatment of DR. However, the main challenge for this task lies in the following factors:
(1) Joint segmentation of multiple types of lesions is difficult due to the extreme
imbalance of the data distribution between different lesions. (2) The boundary of the
retina edema area (REA) is blurred and difficult to determine. (3) The influence of
speckle noise and vascular artifacts is severe.

In recent years, many segmentation studies on DR lesion have been proposed. Most
of these methods such as graph search based methods [1, 2], kernel regression based
methods [3] have two stages: retinal layer segmentation, lesion delineation. The
computational bottleneck caused by algorithm optimization makes it urgent to develop
an end-to-end solution. Recently, many deep learning methods based on convolutional
neural networks (CNN) [4] have been applied to medical image analysis. Guha et al.
[5] proposed a ReLayNet with position indices pooling for retinal layer and fluid
pocket segmentation. Freerk et al. [6] utilized typical U-shape neural network for
segmentation of macular edema. Most of these CNN-based approaches only focus on
single type lesion. To the best of our current knowledge, there are no methods based on
CNN for joint lesion segmentation in DR OCT images, which is always challenging to
jointly segment imbalanced medical data for CNN based on encoder-decoder archi-
tecture. In this paper, we design a novel and efficient network to address these
problems.

The skip-connection of U-Net [4] is an ingenious design, which can combine the
encoder feature to make up for the information loss caused by downsampling. How-
ever, simple skip-connection ignores contextual information and is an indiscriminate
combination of semantic information that will introduce noise of irrelevant clutters.
Previous work [7, 8] overlooked this important detail. Although [9, 10] proposed a
global convolutional network (GCN) between encoder and decoder, it can’t capture the
global information in the real sense and ignore the spatial correlation. General non-
local model (NLM) [11] was applied in video classification and semantic segmentation,
which utilized a self-attention mechanism to get the approximate autocorrelation
information. In this paper, a novel encoder-decoder attention module (EDAM) based
on non-local operation is employed to generate approximate cross-correlation infor-
mation between encoder feature and decoder feature. In this way, the network can
enhance the correlated responses of focused object and weaken the uncorrelated
responses in global view through a controllable information flow from encoder. Fur-
thermore, for non-local operation, we explore a low-complexity representation to
handle high computational complexity issue. Besides, in order to obtain the high-
resolution feature map and accurately segment small lesion, we improve a lightweight
residual network [12] with dilated convolution [13] as backbone network to extract
feature and employ a hybrid loss consisting of cross-entropy loss and multi-class Dice
loss to alleviate the imbalanced data problem.

Consequently, our main contributions include: (1) An efficient encoder-decoder
attention network is proposed for joint lesion segmentation in DR OCT images. (2) The
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proposed encoder-decoder attention module (EDAM) can capture richer global features
and model spatial correlation between encoder feature and decoder feature. (3) We
achieve impressive results with less parameters compared to state-of-the-art networks
on public database: AI-challenger 2018 for automated segmentation of retinal edema
lesions.

2 Method

2.1 Proposed Network Architecture

Figure 1 is an overview architecture of our proposed encoder-decoder attention net-
work for joint segmentation of three DR lesions (REA, SRF, PED). In order not to lose
the information of small lesions during the downsampling, we improve a residual
network with dilated convolution as the encoder to extract high resolution feature
map. The dilated convolution with rate of 2 is employed in block3 and rate of 4 is
employed in block4 like [14]. Therefore the output size of feature map from encoder is
1/8 of input image. For the convenience of skip-connection, the first downsampling is
performed by a 3 � 3 convolution layer with a stride of 2 after a 7 � 7 convolution
layer and a bottleneck layer [12]. The next two downsampling layers are in the first
bottleneck layer of block1 and block2 respectively. Note that the channel expansion
rate is set to 2. In decoder part, bilinear interpolation operation is applied in three
upsampling layers to quickly restore the original image size. The boundary refinement
(BR) blocks [9] are used to refine the edges of the feature map, which consist of two
convolution layers with residual design. It is worth noting that we employ an EDAM
between each corresponding stage of encoder and decoder to capture more correlated
information about prediction feature map from encoder path.

Fig. 1. An overview of our proposed network architecture. EDAM and NLM represent encoder-
decoder attention module, general non-local module, respectively. BR and conv represent
boundary refinement block and convolutional layer, respectively.
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2.2 Encoder-Decoder Attention Module

Attention mechanism is widely used in natural language processing (NLP) [15] and
computer vision (CV) [16] field, which can draw global information and obtain rich
feature. In this work, we propose an encoder-decoder attention module (EDAM) shown
in Fig. 2. To model the spatial correlation over the global view between encoder feature
and decoder feature via non-local operation. Here, the feature E 2 R

C�H�W from
encoder path generates two feature maps V and K via two convolution layers with
1 � 1 filters, respectively, where V;Kf g 2 R

C0�H�W . Meanwhile, the feature map
Q 2 R

C0�H�W is generated by D 2 R
C0�H�W from decoder path through the convo-

lution layer with 1 � 1 filter. C0 is the channel number of feature map D, which is less
than C. Then we reshape V, K and Q to RC0�N , where N ¼ H �W . After that, we use a
hyperparameter factor a ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C0 � H �W
p

to normalize the result of matrix multipli-
cation between the transpose of K and Q and generate the pixel-wise affinity attention
map A 2 R

N�N :

A ¼KTQ
a

ð1Þ

Then we perform matrix multiplication between V and attention map A to obtain a
final feature map H and reshape it to R

C0�H�W , here, H is feature map that has been
weighted by correlated contextual information between encoder feature map and
decoder feature map:

Hic ¼
XN

j¼0

AjiVjc i; j 2 1; 2; . . .N½ �; c 2 ½1; 2; . . .C0�f g ð2Þ

Where Hic is the weighted sum of all j according to its affinity with i. After this,
H is input to a convolution layer with 1 � 1 filter and added to decoder path local
feature D to enhance the correlative responses and global representation. In this way,
any position in the encoder feature map is aggregated with all other positions in the
decoder feature map from the same stage through self-adaption attention maps.

Fig. 2. The detail of encoder-decoder attention module
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2.3 Low-Complexity Representation

Representing the relationship between any two pixels requires a complex matrix
multiplication operation to obtain a huge attention map, its complexity is OðN2Þ in both
time and space, where N ¼ H �W indicates the spatial dimension of feature
map. Because of the high resolution of feature map in semantic segmentation task, we
cannot afford for directly implementing EDAM with our limited GPU memory. For-
tunately, we explore an efficient and alternative method to achieve the same target with
the associative law of matrix multiplication. Note that we obtain the final feature map
H through two matrix multiplication operations in Sect. 2.2.

H ¼V KTQ
� �

a
¼ VKT

� �
Q

a
ð3Þ

According to the associative law, we could perform Z ¼ VKT : R
C0�N �

R
N�C0 ! R

C0�C0
first and then calculate ZQ, where C0 is channel of decoder path

feature map and much smaller than N. These operations greatly reduce the time and
space complexity from OðN2Þ to OðC02Þ, and can be easily embedding into other
encoder-decoder network. We apply this compatibility representation to each stage
between encoder and decoder to replace the original skip-connection except for the
bottom of network which employs a NLM.

2.4 Loss Function

To alleviate the problem that Dice loss is sensitive to small structures or absent classes,
we employ a hybrid loss consisting of cross-entropy loss and multi-class Dice loss to
preform joint lesion segmentation. The total loss can be expressed as:

L ¼ LDice þ kLCE

¼1� 1
C

XC�1

c¼0

2
P

g � pþ e
P ðgþ pÞþ e

� k
1
N

X
g logðpÞ ð4Þ

Where k is a weighted coefficient between Dice loss LDice and cross-entropy loss
LCE and set to 1 in our work, p 2 ½0; 1� is the predicted probability, g 2 f0; 1g is the
true label, N is the spatial dimension of feature map, C is a sum of the total number of
lesion classes and one background class, and e is a small smoothing factor.

3 Experiments

Databases: We evaluated our proposed network in a public database: AI-challenger
2018 for automated segmentation of retinal edema lesions, which contains of 100 cubes
with the size of 1024 � 512 � 128 and is annotated manually by experts. All of these
cubes contain REA, but PED and SRF only involve some cubes and are surrounded by
REA. Since the annotation problem, 68 cubes was chosen for training and 30 cubes
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was chosen to averagely divided into Part A and Part B for testing. In the databases,
background accounts for 92.94% of all the voxels, REA, SRF and PED takes up
6.19%, 0.84% and 0.03%, respectively, which indicates the segmentation of SRF and
PED will suffer from the extremely imbalanced data distribution problem. Besides, the
3D OCT cube is a huge burden for limited GPU memory. To address these problems,
we extract 2D B-scan image as the input image of segmentation task.

Patch Extraction and Data Augmentation: The size of 2D B-scan slice is
1024 � 512. According to our statistics, the lesion area always lie in a square of size
l� l, where l ¼ 512. Therefore, for the slice containing the lesion, we randomly
cropped a l� l patch which include whole lesion, and for the slice with only back-
ground, a l� l patch was randomly cropped on single slice. After that a single slice
containing PED was reapplied to random cropping 9 times to balance data. Now we got
a more balanced training data than before with about 12300 patches. In the inference
phase, we applied a sliding window strategy with the window size l� l to take tiles,
and the stride is l=4. To alleviate the border effects in segmentation task, we put more
weight on the middle of prediction feature map during the splicing process.

Implementation: We employed Keras and tensorflow to implement our proposed
method. The optimizer was stochastic gradient descent (SGD) with the “poly” learning
rate policy. The basic learning rate and momentum were set to 0.01 and 0.9, respec-
tively. The batch size and epoch were set to 12 and 40, respectively. For data aug-
mentation, we only applied online random left-right flipping. All of these were
preformed on three NVIDIA Tesla K40 GPUs with 12 GB memory.

4 Evaluation and Results

We compared feature maps from common skip-connection and EDAM. Figure 3 dis-
plays the visualization of feature maps, in which shows that common skip-connection
introduces unnecessary noise and has no any discrimination for feature. However, our
EDAM can enhance the correlated responses of focused object via modeling long-range
spatial dependencies in global view and suppress irrelevant noise.

Fig. 3. The visualization of feature maps. Left top: original patch. Left bottom: ground truth.
Right top: feature map from common skip-connection. Right bottom: feature map from EDAM.
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We carried out comprehensive experiments on Part A and Part B OCT cubes with
the measure of average Dice scores in Table 1. In order to evaluate the effectiveness of
our proposed EDAM, an ablation experiment was conducted. Baseline represents our
network employing the common skip-connections, EDAM represents encoder-decoder
attention module inserted in each stages, we observe that it yields the more gain when
EDAM is inserted into network comparing with Baseline network. Moreover, there is
only a little increase of parameters because EDAM is inserted in relatively shallow

layers with a few channels. We also report the performance of our proposed network
compared with other state-of-the-art segmentation methods. To be fair, we employed
the same hybrid loss to these comparable methods. It can be seen that all the Dice

Table 1. The performance of different segmentation models and our proposed method on Part A
and Part B OCT cubes, measured with average global Dice scores (±standard deviation).

Method Part A Part B #Para

Dice (%) Dice (%)

REA SRF PED Ave REA SRF PED Ave

U-Net 73.23
(±14.6)

60.96
(±37.3)

41.35
(±38.7)

58.51 75.25
(±13.6)

60.13
(±38.1)

28.59
(±26.2)

54.65 31.04 M

Attention U-Net [18] 74.56
(±14.8)

62.07
(±36.7)

40.94
(±35.3)

59.19 76.53
(±16.5)

61.34
(±35.9)

29.67
(±23.4)

55.84 29.82 M

PSPNet [14] 75.99
(±14.3)

59.42
(±38.4)

42.76
(±36.7)

59.39 77.58
(±14.1)

59.42
(±37.3)

31.69
(±25.4)

56.23 46.77 M

Res-FCN [10] 74.15
(±16.0)

62.88
(±35.9)

43.50
(±37.22)

60.17 76.83
(±13.4)

61.24
(±36.3)

29.51
(±24.4)

55.86 37.05 M

V-Net [17] 76.23
(±15.2)

57.33
(±36.2)

39.48
(±36.24)

57.68 77.04
(±12.7)

58.45
(±38.0)

26.16
(±23.1)

53.88 45.60 M

Baseline 75.58
(±14.3)

64.67
(±35.7)

39.59
(±35.2)

59.95 76.25
(±14.6)

62.14
(±36.7)

31.82
(±24.2)

56.74 19.79 M

Baseline + EDAM 76.51
(±14.2)

67.75
(±35.2)

45.14
(±34.9)

63.13 78.04
(±13.1)

64.83
(±37.4)

32.01
(±23.6)

58.29 19.87 M

Fig. 4. Examples of segmentation results. (a) Original OCT B-scans, (b) Ground truth, (c) The
segmentation results of Baseline + EDAM, (d) The segmentation result of Baseline, (e) The
segmentation result of Res-FCN [12]. Note that red area, green area and blue area represent REA,
SFR and PED, respectively (Color figure online).

Encoder-Decoder Attention Network for Lesion Segmentation of DR 145



scores of REA, SRF, PED and the average Dice score of our method were superior to
all the other methods both on Part A and Part B. Especially, the number of parameters
in our network (20 M) is only 65% of U-Net (31 M), while it achieved a dramatic
improvement of 6% in average Dice scores. And the similar phenomena has been also
shown in other results. Our method also achieved a significant improvement (student’s
t-test, p-value = 0.04) on SRF segmentation with a 3%–5% Dice increase to the
second-best one. Due to the false positive prediction of cube without SRF and PED, the
variance is relatively large. All these performances indicated that our network is more
efficient than all compared methods, which benefits from EDAM capturing global
correlation information between encoder and decoder.

Two examples of segmentation results are shown in Fig. 4. In the first row, the size
of PED areas is too small to Res-FCN, while our method could segment it precisely. In
addition, for relatively large REA lesion, our method achieved a very similar result to
the ground truth, which benefited from EDAM can aggregate the correlative infor-
mation between encoder and decoder in global view. It can be also seen that the
proposed method can eliminate more false positives than Res-FCN method from
second row. Overall, the encoder-decoder attention network is capable of the accurate
and effective segmentation for DR joint lesion due to its strong global correlative
information aggregation ability.

5 Conclusion

We proposed a novel network with encoder-decoder attention module for the multi-
class joint lesion segmentation of diabetic retinopathy. The proposed method models
the long-range spatial dependencies and captures more correlative contextual infor-
mation between encoder feature and decoder feature. Experiment results showed that it
has a great potential for imbalanced data medical image segmentation with its efficient
and compelling performance.
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Abstract. Retinal vessel segmentation is an important step in clinical analysis
of fundus images. Low contrast and the imbalanced pixel ratios between thick
and thin vessels make accurate segmentation of the thin vasculature extremely
challenging. In this paper, we present a novel multiscale segmentation method
named Multiple discriminator generative adversarial network (MuGAN).
MuGAN contains multiple discriminators with different effective receptive
fields, which are sensitive to features at different scales. These discriminators
jointly teach the segmentation (generator) network to pay attention to multiscale
patterns. In addition, multiple discriminators allow our model to incorporate
multiple inputs, such as edge enhanced vessel images, during training. We
evaluated our method on the publicly available DRIVE and STARE datasets.
MuGAN achieved an overall area under the Receiver Operator Characteristic
Curve (AUC) of 0.979 for DRIVE and 0.981 for the STARE dataset. On seg-
menting thin retinal vessels, MuGAN showed quantitative and qualitative
improvements on baselines.

Keywords: Multiscale segmentation � Generative Adversarial Network �
Fundus imaging

1 Introduction

Retinal vessels have been shown to be important features for cardiovascular disease
detection [1]. Additionally, changes in retinal vessel diameters are associated with the
progression of retinal diseases [2] and higher risk of cardiovascular mortality [3].
Accordingly, accurate segmentation of retinal vessels plays an important role in
characterizing the patient’s eye and cardiovascular health.

Recent work on retinal vessel segmentation has focused on deep learning
approaches. However, accurate segmentation of thin retinal vessels remains challeng-
ing. Retinal vessel widths can range from 1 pixel to 10 pixels in diameter, making
multiscale segmentation necessary for good performance. As noted in [4], large retinal
vessels tend to be more accurately segmented than thin vessels because (1) the majority
of vessel pixels belong to thick vessels, and (2) thick vessels typically have higher
contrast than thin vessels.
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This paper aims to address this problem with the following framework. We propose
a novel multiscale, multi-input generative adversarial network (MuGAN) for retinal
vessel segmentation. GANs [5] have been used in broad applications including image
segmentation [6]. Son et al. [7] applied GANs on retinal vasculature segmentation.
While [7] manifests good performance, it is not explicitly designed to detect thin
vascular details. This work is inspired by the multiple discriminators approach [8],
which suggests that a group of limited capacity discriminators can better capture the
probability distribution of the training data compared to a single discriminator.

We build upon their work by using multiple discriminators with different archi-
tecture for improved multiscale segmentation. Firstly, we use convolutional layers of
varying dilation rates for different discriminators. This preserves the resolution of the
extracted features while varying the effective receptive field. Yu et al. [9] implemented
dilated convolutions to combine multiscale features. We therefore suggest that intro-
ducing convolutions with different dilation rates will enable the discriminator to capture
additional high level features. Additionally, multiple discriminators allow the GAN to
incorporate different inputs: (1) the multiscale features extracted using dilated convo-
lutional layers, and (2) the postprocessed outputs from the generator network and the
postprocessed ground truth. We also use edge-enhanced ground truth images as
additional input for training because the enhanced vessel boundaries mitigate the
imbalance between thick and thin vessel pixels (Fig. 1). Finally, we use skeletal metrics
based on [10] for performance evaluation because commonly used performance metrics
such as AUC (Area under the receiver operator characteristic curve) may not ade-
quately reflect the thin vessel segmentation accuracy.

To assess MuGAN segmentation accuracy, we evaluated MuGAN, MUGANnoedge

(MuGAN without edge enhanced inputs), GANsingle (single generator discriminator
pair) and other approaches [11, 12] on the publicly available datasets DRIVE [13] and
STARE [14].

Fig. 1. Example of (A) retinal fundus image, (B) ground truth vessel segmentation, (C) edge
enhanced ground truth image. The edge enhanced ground truth increases the visibility of the thin
vessel branches and mitigates the imbalance between thin and thick vessel pixels.
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2 Methods

2.1 Generative Adversarial Networks for Retinal Vessel Image
Segmentation

In Generative Adversarial Networks, the generator and discriminator are alternatively
trained to minimize and maximize the objective function. The standard objective
function for GAN is as follows:

min
hG

max
hD

L D;Gð Þ ¼ Ex� pdata xð Þ log D xð Þð ÞþEz� pdata zð Þ log 1� D G zð Þð Þð Þ ð1Þ

where hD and hG refer to the parameters for the discriminator D and generator G re-
spectively, x: source data, z: noise inputs, pdata: probability distribution of data. The
generator must be able to generate an output such that the discriminator is unable to
differentiate between that output and the ground truth. We modify the objective
function [7] to include the loss function for the a given discriminators Di, k is used to
weight the segmentation loss ℒseg:

min
hG

max
hDi

L Di;Gð Þþ kLseg Gð Þ ð2Þ

The segmentation loss function ℒseg uses the binary cross entropy loss, which
compares the generator output G(x) with the ground truth (segmented vasculature) y
and x is the source data (input fundus images):

Lseg ¼ Ex;y� pdata xð Þ �y logG xð Þ � 1� yð Þ log 1� G xð Þf gð Þf g ð3Þ

Figure 2 illustrates the proposed workflow. The discriminators D1 (D3) and D2 (D4)
have different effective receptive field sizes. We vary effective receptive field size by
changing the dilation rate of the convolutional layers [9]. The first set of discriminators
(D1 and D2) was trained to distinguish between the ground truth and the trained seg-
mentations. The second group of discriminators (D3 and D4) was trained to distinguish

Generator
D1

D2

D3

D4

Canny Edge Filter

Fundus Image Vessel Image

Filtered Vessel Image

Fig. 2. Workflow for training the multiple discriminator GAN (MuGAN). The discriminators
D1 and D3 have the same architecture. Similarly, D2 and D4 have the same architecture. D1 and
D2 (D3 and D4) have different effective receptive field sizes.

150 G. Tjio et al.



between edge enhanced ground truth and edge enhanced segmented vessels. The ground
truth vessel images were processed with a Canny edge filter before training with the
default settings (lower bound for thresholding: 10% of maximum pixel value of input;
upper bound of maximum pixel value: 20%; r of Gaussian: 1.0), instead of tuning the
parameters to suit the training data. This was done because the default settings are likely
to have the best performance across a wide range of image types. The generated vessel
images were filtered before training the discriminator. Edge enhancement was not
applied during training, eliminating the need for a differentiable edge detection method.

2.2 Architecture

Figure 3 describes the MuGAN architecture. The basic unit of the generator and dis-
criminator architecture is the convolutional block, which comprises of a Conv2D 3 � 3,
n (n is the depth: 32, 64, 128), a batch normalization layer, an activation function and a
max pooling layer of kernel size 3 � 3, The Rectified Linear Unit (ReLu) activation
function was used for all convolution layers, with the exception of the last layer (Conv2D
1 � 1, 1) in the generator, which uses a sigmoid activation function. The generator is
based on the UNET architecture [15] for its capability to resolve high level and low level
features. The discriminators have relatively shallow architectures (3 convolutional lay-
ers) to minimize computational requirements. For the discriminator, skip connections are
used to pass the output from each convolutional block to be subsequently concatenated
and pooled using a global max pooling layer. The discriminator D2 has the same
architecture as D1, except that D2 has a dilation rate of 2 for the convolutional block. D1
and D3 both do not utilize dilated convolutional filters (dilation rate = 0). D3 has the
same architecture as D1 while D4 has the same architecture as D2.

Conv2D 3x3,32 MaxPool2D 2x2UpSample2D 2x2
Merge Conv2D 1x1,1Conv2D 3x3,64

Conv2D 3x3,128

Generator 
(Segmentation  Network)

Fundus 
Image

Concatenate 
multiscale features

Global 
Average 
Pooling

Discriminator

Score

Canny Edge filtered Vessel Image

Vessel Image

Segmented 
Vessels

Fundus Image

Fundus Image

Fig. 3. Architecture of the generator and discriminator networks.
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3 Experiments

3.1 Dataset

We use the publicly available DRIVE [13] and STARE [14] dataset. The DRIVE
dataset contains 40 images from diabetic patients (584 � 565 pixels, 45° field of view
FOV). The STARE dataset contains 20 images (605 � 700 pixels, 35° FOV).
The DRIVE dataset is evenly split for training and testing. We performed leave one out
cross validation (LOOCV) for the STARE dataset. Training is performed with 19
images and testing is conducted on the ‘left out’ image. 20 iterations of these train-test
cycles are performed to evaluate performance for all images. The fundus images and
ground truth segmented vessel images are padded to 640 � 640 pixels (DRIVE) or
720 � 720 pixels (STARE). Data augmentation was performed by flipping and
rotating the images, generating 266 images (DRIVE) and 252 images (STARE).

3.2 Training

We implement our approach in Python 2.7 using the Keras framework. We used the
Adam optimizer, initial learning rate 2 � 10−4 and trained for 20 epochs. It took
approximately 2–3 h to train the proposed MuGAN model on the DRIVE dataset and
each fold of the STARE dataset (Intel(R) Xeon(R) W-2145 CPU, NVIDIA Titan
Xp GPU, Keras version 2.2.4).

3.3 Evaluation Criteria

We employ the following evaluation criteria: area under the Receiver Operator Char-
acteristic (AUC) curve, accuracy, the skeletal similarity metrics (CAL and rAccuracy)
[10]. CAL comprises of 3 parameters, C: measure of fragmentation extent (ratio of the
number of connected components) between the ground truth and the output, A: mea-
sure of overlap between the ground truth and the output, L: similarity in total lengths of
ground truth and the output. These 3 parameters are multiplied to give a single score
between 0 and 1. rAccuracy is defined as

rAcc ¼ Skeletal Similarity� Pixelsvessels þPixels correctly classified as background
Pixelstotal

ð4Þ

where skeletal similarity is the weighted sum of curve similarity and thickness con-
sistency for segmented vessels relative to the ground truth. Yan et al. [10] suggest that
their proposed metric rAccuracy gives equal importance to both thick and thin vessels
and we have therefore adopted their metrics for evaluation.

4 Results

Comparisons with Existing Methods: We compare our approach with DeepVessel
[11], which is a deep learning approach combined with conditional random fields and
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M2U-Net [12], an efficient deep learning approach based on the UNET architecture
[15]. To further ascertain the effectiveness of including multiscale inputs and edge
information, we train the GAN networks (GANsingle and MuGANnoedge). Both net-
works do not use the edge enhanced vessel images for training (GANsingle comprises of
the generator and discriminator D1; MuGANnoedge comprises of the generator, dis-
criminators D1 and D2). Tables 1 and 2 gives the accuracy, CAL, rAccuracy and AUC
for the DRIVE and STARE datasets.

The results show that our method performs better than other methods, particularly
for CAL and rAccuracy. MuGANnoedge shows mixed performance relative to
GANsingle, performing better for the STARE dataset than the DRIVE dataset. GANsingle

shows comparable performance with M2U-Net [12] on DRIVE. M2U-Net [12] was not
trained on STARE and therefore not evaluated for STARE. DV [11] is also comparable
with GANsingle on STARE, but also performs less well than MuGAN. MuGAN has
higher accuracy compared to MuGANnoedge and GANsingle. These results suggest that
edge information, combined with multiscale discriminators, help improve segmentation
accuracy. Though the edge information used in this study emphasizes the boundaries at
the expense of eroding the center of the vessels, the results suggest that segmentation
accuracy is not worsened due to the loss of information.

Cross Training: We also perform cross training between the STARE and DRIVE
datasets. Table 3 shows the cross training performance. Overall, performance across
the different approaches is similar. MuGAN AUC fell from 0.981 to 0.966 and 0.978 to
0.953 for the STARE and DRIVE datasets. MuGANnoedge AUC fell from 0.978 to
0.968 and 0.975 to 0.956 for the STARE and DRIVE datasets. One possible expla-
nation for the results is that STARE contains more pathological images than DRIVE,
resulting in lower performance when the model trained on DRIVE is implemented on
the STARE dataset. This is also supported by the greater difference in CAL scores
(DRIVE: 0.829 to 0.641, STARE: 0.746 to 7.61) for MuGAN. Interestingly,
MuGANnoedge performs better than GANsingle for both datasets. We suggest that the

Table 1. Averaged performance metrics for DRIVE test images (n = 20)

DV [11] M2UNET [12] GANsingle MuGANnoedge MuGAN

Accuracy 0.949 0.951 0.953 0.953 0.955
CAL 0.687 0.812 0.811 0.786 0.829
rAccuracy 0.898 0.931 0.939 0.932 0.944
AUC – 0.971 0.976 0.975 0.978

Table 2. Performance metrics for STARE images (n = 20, Leave-one-out cross validation)

DV [11] GANsingle MuGANnoedge MuGAN

Accuracy 0.958 0.958 0.959 0.960
CAL 0.713 0.715 0.737 0.746
rAccuracy 0.942 0.950 0.956 0.960
AUC – 0.974 0.978 0.981
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multiple discriminators reduce the effects of overfitting. Figure 4 also shows the
qualitative improvements with our approach, with MuGAN detecting the thin vascu-
lature absent in the outputs from other methods.

5 Conclusion

Segmentation of thin retinal vessels is one of the main challenges in retinal image
analysis. We implemented a multiple discriminator GAN approach to improve multi-
scale segmentation of the retina vessels, with particular focus on the thin vessels. Our
proposed method has two main novel aspects: multi-input multiscale discriminators
which use (1) discriminators with varying effective receptive field sizes and (2) addi-
tional input (edge filtered vessel images) to improve segmentation performance. Future
work will explore custom loss functions for thin vessel segmentation and other
approaches to convey edge information during training.
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Abstract. A macular fovea is a physiological structure of the human
retina, which is an essential optical center. The distance between the
lesion area and the foveal center determines the severity degree of
visual impacts. Therefore, accurate fovea localization is the basis of
the computer-aided ophthalmic diagnosis and vision screening. A simple
but effective fovea localization algorithm based on the Faster R-CNN
and physiological structure prior is presented. First, a fovea localization
model and an optic disc localization model are trained separately. Then,
for each fundus photograph, both candidate areas of the fovea and the
location of the optic disc are predicted using two pre-trained models.
Next, prior knowledge of the physiological adjacent relationship between
a fovea and an optic disc is applied to eliminate unreasonable candidate
bounding boxes. Finally, the ultimate bounding box of the fovea is deter-
mined by the best candidate. Experiments were conducted on a private
dataset with 5,203 fundus photographs and the public Messidor dataset
including 1200 fundus photographs. The accuracy of the foveal location
in the offset scale of 1/2 optic disc diameter on the Messidor is 99.58%,
which is 0.71% higher than the state-of-the-art (98.87%).
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1 Introduction

In a human retina, the typical tissues are vessels, an optic disc, a macula, etc. An
optic disc is a vertical oval in the nasal side. A macula is an oval-shaped pig-
mented area near the retinal center. A fovea is located in the macular center and
it is a small pit that contains the largest concentration of cone cells, which is the
most sensitive part to light. Once any macular lesion occurs, the vision will be
significantly affected. Fast and accurate automatic fovea detection can greatly
improve the diagnostic efficiency of retinal diseases, and it also can provide a
basis for the large-scale screening of common retinal diseases.

A foveal center is located within an inferior macula without any vascular
distribution. As shown in Fig. 1(a), in a color fundus photograph, the fovea is the
lowest brightness area in the macular center, roughly located on a symmetrical
axis which divides the upper and lower branches of the entire vascular network.
From the optic-disc center to its temporal direction, a foveal center is located
around 2–2.5 optic disc diameter (dd) away, with a small horizontal angle [15].

Fig. 1. Prior physiological relationships. (a) Illustration of a macular, a fovea, and an
optic disc in a fundus photograph. (b) A left eye example for macular restriction box.
(c) Verification using Physiological Relationship Prior. (Color figure online)

By using different structure information, the fovea localization methods have
three categories. One way is to locate the fovea using the appearance character-
istics of a fovea itself [7,11,15]. Singh et al. [15] first proposed a pre-processing
method to improve the image contrast between the macula and its surrounding
areas in the red channel and then located the foveal center by searching the dark-
est area. Lu et al. [7] proposed a linear metric operator based on the brightness
and shape features of the macula, which can search from different directions and
reflect the gray gradient changes. The image enhancement by an adaptive mani-
fold filter and mathematical morphological operations were applied to locate the
fovea [11].

The second way is to use contexts such as the surrounding vessels or optic
disc [2,5,10,18]. Niemeijer et al. [10] proposed a cost function based on global
and local cues to find the correct foveal center. Zheng et al. [18] first segmented
a vessel network and obtained the macular Region of Interest (ROI). Then,
a circular region was fitted along vessel endings around the macula to locate



158 J. Wu et al.

the fovea. In [5], based on the optic-disc location, a one-dimensional scanned
intensity profile analysis was applied for the fovea localization. Dashtbozorg et
al. [2] presented an innovative super-elliptical filter to localize the optic disc and
the fovea simultaneously.

The last way is to combine the fovea, the vessel network and the optic disc
together [1,4,6,8,13,14,16,19]. In [16], an approximate macular position was
obtained by using the optic-disc position, where the foveal center was estimated
as the lowest response point from a directional matched filter. In [13], the main
vessels were extracted first, and the macular ROI was obtained from the vessel
tree. Then the foveal center was determined at a distance below the temporal
direction of the optic disc. Gegundez-Arias et al. [4] utilized the information
of an optic disc and a vascular tree to obtain an approximate location of the
macula. In [1] visual and anatomical feature-based criteria were combined with
respect to the optic disc and the vascular tree. Kao et al. [6] localized the optic-
disc center first by the template matching, and determined the disc-fovea axis by
searching the vessel-free region. Finally, the fovea center was detected by match-
ing the fovea template around the center of the axis. In [19], another method
was proposed to locate the macular ROI based on the optic-disc location first,
and then the foveal center was determined by macular features and mathemat-
ical morphology. In [14], the vessel segmentation was applied first to locate the
optic disc, and the fovea was localized by matching the expected directional
pattern. Molina-Casado et al. [8] proposed a methodology combining intra- and
inter-structure relational knowledge based on the candidate tuples validation to
detect the optic disc, macula and vascular network in a unified framework.

With serious lesions, the fovea-based methods often fail. Accurate vessel tree
segmentation also requires a heavy computation load. In a color fundus photo-
graph, the macular characteristics are not obvious and accurate macular bound-
ary is often difficult to distinguish. However, an optic disc is relatively brighter,
which benefits its localization. Besides, retinal lesions have relatively less influ-
ence on locating an optic disc rather than that of a macula. A hemorrhage,
macular edema, and other retinal lesions affect the macular appearance tremen-
dously or even cover it completely leading to fovea locating failures. In this case,
using the optic-disc position to locate the macula is the only option.

In this paper, we propose a simple but effective fovea localization algorithm
by the Faster R-CNN deep learning framework with the prior structure relation-
ship between a fovea and an optic disc. Our main contributions include: (1) The
prior physiological relationship between a fovea and an optic disc in the human
retina is sufficiently explored to eliminate unreasonable foveal candidates. (2)
This prior knowledge can also help to build a hypothetic candidate in case of
complete failure on the fovea localization, especially for retinal diseases with
severe lesions, which is also difficult for a professional ophthalmologist. (3) The
foveal annotation is supposed to be only a center point, not the regional bound-
ing boxes. As a result, this case is more difficult than the case with accurate size
information of the bounding boxes at the same time. The localization algorithm
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needs to determine the optimal size of the bounding boxes that will be fed into
the Faster R-CNN network for training.

2 The Proposed Method

Our main objective is to automatically locate the foveal center in color fundus
photographs. First, a bounding box of a fovea based on its center annotated by
the ophthalmologists is fed to train a Faster R-CNN model. Then, the preferred
candidate foveal areas of the top N rank predicted by the pre-trained Faster R-
CNN model are screened as the foveal candidate areas. Finally, the candidates
with the top N highest scores are further verified by using the prior physiological
relationship between a fovea and an optic disc in the human retina, resulting in
the final foveal center as the best output (Fig. 2).

Fig. 2. Flowchart of our proposed fovea localization algorithm.

2.1 Optic Disc Localization

An optic disc provides useful information to locate the fovea according to their
physiological relationships. A Faster R-CNN [12] deep learning network is applied
to locate the optic disc first. Based on our evaluations, the predicted location of
an optic disc in a high accuracy can be directly considered as its real center.

2.2 Fovea Localization

(1) Basic Network: The Faster R-CNN [12] is popular to locate the bounding
box of an image object. It is a combination of the Fast R-CNN and the region
proposal networks (RPN). We use it as our baseline network.
(2) Optimizing the Size of the Foveal Bounding Box for Training: To
locate a fovea, the rough macular region should be detected first. A progressive
macular area with vascular distribution exists around a macula, which also helps
for the fovea localization. As a result, it is necessary to determine a suitable
size of the bounding box for the target fovea to feed into the Faster R-CNN
for training. Different sizes of foveal bounding boxes, which contain different
context characteristics, affect the performance of the fovea localization. As a
result, generally, its size can be optimized on the evaluation set. We try different
box size for fovea localization model training from 120× 120, 140× 140, ..., to
240× 240 in pixels, and finally 200× 200 is verified as the best option.
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2.3 Verification Using Physiological Relationship Prior

In the case that a macula can be roughly located successfully, the position of the
optic disc can be applied to refine and optimize the foveal localization, where
candidate bounding boxes are with top N highest scores from the Faster R-CNN
prediction. The detailed steps are: (1) Judging left or right eye. In a typical
fundus photograph of the posterior pole, the position of the optic disc is located
in the nasal side. Taking the middle vertical line, if the predicted center of the
optic disc is on the left side of the midline, it is a left eye and the macula is
on the right side of the optic disc. Conversely, it is judged as the right eye, and
the macular is on the left side of the optic disc. (2) Determining macular
candidates. As shown in Fig. 1(b), an optic disc is on the left of the middle
vertical line, and it is judged as a left eye. The macula is located in the right-down
side of the optic disc. Based on our observations, candidate macular areas are
supposed to be located within the blue restriction box as in Fig. 1(b). Its left edge
is 1.5dd1 from the center of the optic disc. This restriction box is 2dd in width
and 3dd in height. These parameters have been verified in the training sets of our
private MF5K dataset (5,203 samples) and the public Messidor [3], DRIVE and
STARE datasets (1,640 samples in total). (3) Locating foveal center using
prior knowledge. First, filtering out unreasonable candidates from the top-N
predicted bounding boxes of the macula when they are not completely contained
within the restriction box of 3dd×2dd, as the red bounding boxes in Fig. 1(c).
The one from the remaining candidates (marked as green boxes) with the highest
score from the Faster R-CNN is determined as a final predicted foveal bounding
box. (4) Failure Case Correction. The prior relationship of 2.5dd from the
center of the optic disc also helps to build a hypothetic candidate in the extreme
case of complete failure on fovea localization with the severe lesions.

3 Evaluation

3.1 Experimental Setup

We validate our proposed method on two datasets. (1) Messidor [3]: a public
dataset with 1,200 color fundus photographs of the posterior pole are acquired
by 3 ophthalmologic departments. The foveal center annotations containing the
pixel size of the disc diameter (dd) in each fundus photograph, which are pro-
vided by Niemeijer et al. [10], are applied in our evaluation. (2) MF5K: A
private dataset with 5,203 fundus photographs is collected from a local partner
hospital. The ophthalmologists manually annotate foveal centers, and the major-
ity of photographs include diseases such as diabetic retinopathy (DR) in around
97%. Therefore, it is a very challenging dataset to locate the fovea due to the
interference of the DR disease. In addition, the training set, validation set, and
test set are partitioned randomly by 50%, 25%, and 25% respectively, resulting
in 2,601, 1,301 and 1,301 fundus photographs for each subset.

1 Empirically, dd is about 80 pixels in a 500×500 fundus photograph [17].
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The experiments are conducted using a Pytorch deep learning framework
under Ubuntu 14.04 with an NVIDIA 1080Ti GPU. The images in the MF5K
are resized to 500× 500 pixels. A carefully-verified 200× 200 macular region is
used for training the Faster R-CNN model. The shared convolution layer uses
the VGG16 to extract features, scales are set as [8, 16, 32], ratios as [0.5, 1, 2],
the momentum in the optimizer as 0.9, and the learning rate as 0.001. N = 10.

3.2 Evaluation Criteria

The evaluation is based on the Euclidean distance d between the predicted center
of a fovea C and the center of ground truth C ′, that is D = d(C,C ′). To obtain
a binary output (correct or not), we allow an offset of the predicted foveal center
from the center of the ground truth. This default offset is defined as the distance
that is 1/2dd (1 dd is 80 pixels [17]) and the origin is the foveal center of ground
truth. If the predicted foveal centers are within the maximum offset, they are
considered as correct, and vice versa. An accuracy under the offset contexts is
applied for our evaluations (the same as the success rate in other literature).

3.3 Results

(1) Evaluation of the Prior Relationship Module

Evaluation on the MF5K data set : As in Table 1, in the MF5K dataset, the accu-
racy of our fovea localization method is 90.70% when applying prior physiological
relationship or 89.93% if not (an accuracy improvement of 0.77%).

Table 1. Comparisons of the proposed fovea localization algorithm using prior phys-
iological relationships (using-prior) or not on the private MF5K dataset. Joint Loc.
means the jointly localize the fovea and the optic disc with one Faster R-CNN model.

Methods Using-prior Accuracy (%)(D≤1/3dd)

Joint Loc. using faster R-CNN [9] - 90.23

Faster R-CNN [12] No 89.93

Our method Yes 90.70

More precisely, for 1301 test images in the MF5K, the accuracy of the optic
disc localization is 99.62% (5 images fails). Fovea localization before prior rela-
tionship refinement fails in 131 images (an accuracy of 89.93%), among which
there are 20 images without any predicted candidate box at all due to severe
lesions. Then, after applying the suggested hypothetic centers, 7 (out of 20)
images success to infer correct foveal centers within 1/3dd offset. Another 3 fun-
dus photographs with unreasonable candidate bounding boxes are removed, and
the final outputs are corrected successfully by the relationship prior module.
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(a) Predicting the foveal location. (b) Using prior relationship (or not).

Fig. 3. Examples of (a) predicting the fovea bounding boxes. (b) comparison of using
prior physiological relationship module (the first row) or not (the second row). (Color
figure online)

In addition, for the offset distance D of the predicted results, the mean is
0.16 dd, the variance is 0.098 dd. The maximum is 4.29 dd, and the minimum is
0.

Some examples of the predicted results are shown in Fig. 3(a). The green box
is predicted ROI of the fovea and the green cross is the predicted fovea center.
The blue cross is the foveal center of the ground truth. Further, three examples
using prior relationships or not are compared in Fig. 3(b).
Evaluation on the Messidor data set : While, in the Messidor dataset, due to the
relatively better quality of fundus photographs (no serious lesions), each image
only has one predicted candidate within the restriction region. Actually, the
prior relationship module has not yet been used at all, resulting in no difference
between them in terms of accuracy (staying the same as 98.83%).

(2) Evaluation Different Methods on the Public Messidor Dataset
Further, we evaluate our proposed method and the existing methods on the
Messidor dataset, as in Table 2. The accuracy of the optic disc localization here
is 100%. The accuracy of our method is higher than that of the existing methods
with the offset distance as 1/4 dd, 1/3 dd, and 1/2 dd respectively, which proves
the effectiveness of our proposed method. In the case of the 1/2 dd offset, the
accuracy of our proposed method is 0.71% higher than the existing method
(98.87%) in [2]. In the case of the 1/4 dd offset, the accuracy of our proposed
method is 0.67% higher than the existing method (96.83%) in [10].
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Table 2. Comparisons of different fovea localization methods in the Messidor dataset.

Methods Accuracy (%)(D: offset distance)

D≤ 1
4
dd D≤ 1

3
dd D≤ 1

2
dd D≤dd Uncertain

Niemeijer et al. (2009) [10] 96.83 - 97.92 -

Yu et al. (2011) [16] 95.00 - - -

Gegundez-Arias et al. (2013) [4] 96.08 96.58 96.92 97.83

Aquino et al. (2014) [1] 91.28 - 98.24 99.56

Kao et al. (2014) [6] - - 97.80

Dashtbozorg et al. (2016)[2] 93.75 - 98.87 99.58

Molina-Casado et al. (2017)[8] 96.08 - 98.58 99.50

Kamble et al. (2017)[5] - - - - 99.66

Pachade et al. (2019) [11] - 98.66 - -

Our method 97.50 98.83 99.58 100.0

4 Conclusion

In this paper, a simple and effective fovea localization method by the Faster R-
CNN with physiological prior in fundus photographs is proposed. The different
sizes of the input bounding box of a macular region for training a better Faster
R-CNN model are investigated to obtain the optimal input size of the macular
bounding box. At the same time, the predicted candidate bounding boxes of the
fovea are re-validated with the help of the optic disc location, between which their
prior physiological relationships are fully explored and utilized. Experiments on
the public Messidor and a private MF5K dataset that is a relatively difficult
task show that our proposed method is superior to the state-of-the-art methods,
and it improves the prediction accuracy of the fovea localization by 0.71% in the
case that the offset distance is less than 1/2 optic disc diameter.
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Abstract. Aggressive Posterior Retinopathy of Prematurity (AP-ROP) is a
retinal pathology characterized by severe vasodilation and distortion of the
posterior pole of the retina. It may lead to blindness if it is not diagnosed and
treated in time. Therefore, early diagnosis of AP-ROP plays a nontrivial role in
reducing the blindness rate in children. However, the traditional automated AP-
ROP diagnosis methods are based on machine learning with segmentation, where
the accuracy is highly dependent on the vessel segmentation. To solve this issue,
we propose an approach with two deep convolution networks to automatically
diagnose AP-ROP. Specifically, the first network identifies whether the image
has the presence of ROP, and the second network divides the ROP images into
Regular ROP and AP-ROP. Experimental results show that our proposed method
can achieve quite promising AP-ROP diagnosis performance and the transfer
learning technique can further boost the automated diagnosis performance.

Keywords: Retinopathy of Prematurity � Automated diagnosis � Deep neural
network

1 Introduction

Retinopathy of Prematurity (ROP) is a kind of retinal vascular proliferative blindness,
which occurs in premature or low birth weight infant, accounting for about 19% of the
causes of blindness in children worldwide. Aggressive Posterior Retinopathy of
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Prematurity (AP-ROP) is a special type of ROP characterized by plus disease, flat
neovascularization (FNV), hemorrhages, and ischemic capillary nonperfusion regions
[1, 2]. The condition of AP-ROP is progressing rapidly. If it is not treated in time, the
disease will progress to the fifth stage of ROP, and the retina will be completely
detached [3]. The progress of AP-ROP is unregular and different from that of Regu-
lar ROP [4]. It is easy to cause misdiagnosis and miss the best period of treatment. In
addition, the diagnosis of AP-ROP is based on the visual examination by an oph-
thalmologist, which is subjective. We need a computer-assisted approach to help with
early screening of AP-ROP.

Deep learning (DL) has shown an outstanding performance in the field of image
analysis [5–7]. It has been successfully used in automatic diagnosis of glaucoma [8, 9],
diabetic retinopathy [10], macular degeneration [11] and cataract [12]. It has also been
applied to identify ROP with fundus images [13–16]. In addition, it has been used to
identify AP-ROP, but the performance is still not satisfactory due to the fact that only a
small amount of fundus images is used for the training [3]. More studies are needed to
improve the diagnosis accuracy of AP-ROP. This can not only assist the ophthal-
mologists in early ROP screening of premature infants, but also facilitate the exami-
nation procedure and reduce the misdiagnosis rate, which is of great significance in
reducing the blindness rate of the disease.

We divide the AP-ROP automatic diagnosis process into two steps. First, we need
to determine whether a fundus image is a normal or ROP image, and then divide the
ROP image into an AP-ROP or Regular ROP image. Regular ROP is characterized by a
slight boundary ridge or demarcation line between the vascularized and no vascularized
retina. As shown in Fig. 1(b), a slight white demarcation line appears on the right side
of the Regular ROP image, while the characteristics of AP-ROP (Fig. 1(c)) image has
occasionally bleeding, vessels dilation and tortuosity around the posterior pole.

In practice, there are several challenges to be faced:

(1) The ROP dataset includes AP-ROP and Regular ROP, which means that the
dataset has several complex features.

(2) The fundus image has a random field of view, so the lesion will appear at different
locations in the fundus image.

(3) AP-ROP fundus images are mostly of poor quality.

Fig. 1. Fundus image of Normal (a), Regular ROP (b) and AR-ROP (c).
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To accomplish the above challenges, this study devises two advanced classification
networks, Network-1 and Network-2 that based on ResNet50 and VGG16. Because
used different network can optimized independently based on the task properties to
achieve the best diagnosis results.

ResNet50 is a 50-layer deep convolutional neural network [17]. Because it has a
deep network layer, it can extract deeper information from the image. That means it can
effectively respond to many complex functional problems in the ROP dataset, and is
also adaptable to images of poor quality and random field of view. This can solve the
complex problem of the data set in the challenge (1). At the same time, we compare the
results of various experiments to determine that the network is suitable for Network-1.

VGG16 is a simple and practical network that shows a remarkable performance in
image classification tasks [18]. It consists of several consecutive 3 � 3 convolution
cores, pooling layers, ReLU layers and fully connected layers. It is one of the most
popular convolutional neural network models. The dataset feature complexity in
Network-2 is much simpler than that of Network-1. Using the VGG16 network in
Network-2 can reduce the loss of information due to the deepening of the network layer
while ensuring high accuracy. The final experimental results also show the superiority
of VGG16 for Network-2.

The main contributions of this paper are:

(1) We propose a parallel convolutional neural network method to achieve automatic
diagnosis of AP-ROP through two tasks.

(2) The convolutional neural networks used by the two tasks are optimized inde-
pendently based on the task properties to achieve the best diagnosis results.

Our method is evaluated on the self-collected dataset. In the first network, 583 ROP
retinal images against a control group of 915 healthy retinal images are used to evaluate
the performance of the network. We achieve an accuracy of 96.53%, a sensitivity of
96.74 and a specificity of 96.39 in the first network. In the second network, we evaluate
290 Regular ROP and 293 AP-ROP retinal images, and the results (98.46% accuracy,
100.00% sensitivity and 96.90% specificity) are comparable with the first network. The
experimental result demonstrates that the proposed method has achieve remarkable AP-
ROP diagnosis performance.

2 Methodology

We train two networks to diagnose AP-ROP automatically. The input of the Network-1
is the ROP disease dataset and normal fundus image dataset, as shown in Fig. 1(a). The
Network-1 is used to determine whether the fundus image is a normal or ROP image,
while the Network-2 is used to divide the ROP disease data into the Regular ROP
fundus images and the AP-ROP fundus images, therefore, we can achieve the purpose
of automatic diagnosis of AP-ROP. The flowchart of our proposed method is shown in
Fig. 2. In the network training process, we utilize the transfer learning by using Ima-
geNet’s pre-training module to obtain prior knowledge from the ImageNet dataset,
which not only improves the network’s performance, but also speeds up the network
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learning and convergence. We input the training data set into the network, then extract
the features and get the prediction results through the SoftMax classifier.

2.1 Architecture of ResNet50

In this paper, Network-1 is based on ResNet50, which is a deep convolutional neural
network model and adds a residual module to the network. Residual module allows
ResNet50 to solve the gradient disappearance problem of the neural network by
learning the difference information between the input and output of the residual
module. Because of the existence of the residual module, we can build a deeper neural
network, which can extract deeper information of the image and improve the accuracy
of the network. When building a neural network, deeper layers mean that deeper feature
information can be extracted, but we can’t simply overlay the layers of the network.
Because the increasing number of network layers will lead to the degradation of the
convolutional neural network and even the present gradient vanishing problem. The
emergence of ResNet not only solves the problem of degradation of deep neural
networks, but also avoids the problem of gradient disappearance of neural networks. In
other words, we can use ResNet to build deeper convolutional neural networks.

2.2 Residual Module

In normal network training, if we set the input as x and the output of the network layer
is H(x), that is, directly learn as x ! H(x), it will cause gradient disappear as the
number of network layers increases. The ResNet network adds a residual module,
which converts the learning function from x ! H(x) to x ! (H(x) − x) + x !
F(x) + x by establishing an identity map. Through the residual module, the neural

Fig. 2. AP-ROP automatic diagnosis flowchart. The task of the two networks is different.
Network-1 diagnoses whether the fundus image is a ROP image. The task of Network-2 is to
diagnose whether the ROP fundus image is AP-ROP.
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network does not need to learn the output of the entire network layer, and only needs to
learn the residual value of the output between the network layers. This process has not
added additional computational resources but can greatly increase the training speed of
the network model and improve the final result. Moreover, when the number of net-
work layers is deepened, the residual module can solve the problem of network
degradation well. At the same time, the residual module by transforming the 3 � 3
convolution kernel into two 1 � 1 convolution kernels, which can effectively reduce
the network parameters, greatly decrease the network computing cost, and increase the
network learning efficiency.

2.3 Architecture of VGG16

In this study, Network-2 is based on VGG16, which is a bit lighter than Network-1. In
this network, the size of the convolution kernel is unified to 3 � 3. Compared with the
large convolution kernel, the small convolution kernel is more advantageous because
the multi-nonlinear layer can increase the network depth, which enables that more
complex modes can be learned with fewer parameters. But if a network is too deep, it
will cause information loss. VGG16 is a moderately deep network, so it can achieve an
excellent performance in classification problem.

3 Experiments

3.1 Dataset and Implementation

The RetCam3 data used in this paper is collected by the local hospital. Details of the
dataset are listed in Table 1. The data of the Regular ROP includes Stage 1, Stage 2 and
Stage 3, and is randomly distributed. In order to save computing resources, we adjust
the original fundus image size to 224 � 224 � 3.

The data of this study is divided into two parts, the training set and the test set. The
training set is only used to train the network, and the test set is completely independent
to the training set. The test set is used for the performance evaluation of the AP-ROP
automatic diagnosis system. The angle of the fundus image data in the test set is
random, which can simulate the fundus examination of the newborn in the hospital.
The most commonly used evaluation criteria are used to evaluate our model, which
consists Accuracy, Sensitivity, Specificity, Precision and F1-score.

Table 1. Dataset distribution in this study.

Network-1 Network-2
ROP Normal Total AP-ROP Regular ROP Total

Training set 2676 1300 3976 1419 1257 2676
Test set 583 915 1498 293 290 583
Total 3259 2215 4849 1712 1547 3259
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3.2 Results

In this study, we compare the VGG16 network with the ResNet50 network, and we
also conduct a comparison of transfer learning. The results of Network-1 and Network-
2 are shown in Table 2. We can see that ResNet50 has better performance using
Network-1, while in Network-2, VGG16 performs better. This is consistent with the
conjecture in the introduction. The task of Network-1 is more complicated, thus the
deeper network ResNet50 can get better results, while the Network-2 task is much
simpler, so the VGG16 is more suitable. The results of the Combined Network are also
shown in Table 2. It can be seen that the Network has excellent performance in the
diagnosis of AP-ROP.

At the same time, the results of network that using the transfer learning are better
than the network that without using it. This shows that transfer learning can effectively
optimize the performance of the network and achieve better results.

Table 2. The performance of the networks.

Task Method Accuracy Sensitivity Specificity Precision F1-score

Network-1 ResNet50+pre-train 96.53% 96.74% 96.39% 94.47% 95.59%
ResNet50 83.44% 79.59% 85.90% 78.25% 78.91%
VGG16+pre-train 95.46% 94.51% 96.07% 93.87% 94.19%
VGG16 85.38% 81.30% 87.98% 81.16% 81.23%

Network-2 ResNet50+pre-train 96.40% 96.59% 96.21% 96.26% 96.42%
ResNet50 95.71% 99.66% 91.72% 92.41% 95.89%
VGG16+pre-train 98.46% 100.00% 96.90% 97.02% 98.49%
VGG16 93.83% 95.90% 91.72% 92.13% 93.98%

Combined
network

ResNet50+VGG16
+pre-train

95.93% 95.58% 97.23% 94.29% 94.93%

Fig. 3. Confusion matrix for Network-1 and Network-2.
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In order to reduce the rate of misdiagnosis, we pay more attention to the false
negative rate. For false positives, we re-examine the patient as a diseased sample, but
for false negatives, we are likely to miss the sample, this will lead to misdiagnosis. The
confusion matrix for Network-1 and Network-2 is shown in Fig. 3. It can be seen that
our false negative rate is at a low level, and false negative rate is lower than the false
positive rate. This is in line with the hospital’s diagnostic needs for AP-ROP, but it will
require further testing after actual use in the hospital.

The task of Network-1 is complex. In order to observe the learning status of
Network-1, we visualize the feature map of Network-1. Figure 4 shows the feature map
of Normal, Regular ROP and AP-ROP. From the feature map of Network-1, we can see
that because the Normal image has no clear features, the network has a wide range of
attention to the image. In the ROP image, there is a boundary ridge or demarcation line
on the Regular ROP image, and the network will predict the image based on this
standard. The AP-ROP image is characterized by vessels dilation and tortuosity around
the posterior pole. Due to the large range of the posterior pole, it can also be seen that
the network has a wide range of attention. These are consistent with medically char-
acterized features of the image.

4 Conclusions

In this paper, we use two networks to automatically diagnose AP-ROP in two steps. As
can be seen from the test results of this study, our method achieves quite promising
performance. In China, many areas lack of experienced ophthalmologists, especially in
fundus of premature infants. The incidence of AP-ROP is low and atypical. Many
ophthalmologists may have no sufficient experience and are prone to misdiagnosis. If
AP-ROP is progressing rapidly, misdiagnosis will miss the best treatment time and lead
to serious retinal damage. This study can help doctors to diagnose ROP and classify
AP-ROP, which can reduce the misdiagnosis rate of clinicians. The depth convolution
network is much faster than humans, and the system can reduce the burden on doctors
to a certain extent.

Fig. 4. Feature maps of Network-1 and Network-2. The image characteristics learned by our
network are consistent with the information on medical knowledge.
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Abstract. Retinopathy of prematurity (ROP) is the primary cause of childhood
blindness. Prior works have demonstrated the remarkable performances of deep
learning (DL) in detecting plus disease and classification between ROP or
Normal with retinal images. However, few studies are focused on identifying the
“stage” of ROP disease, which is an important factor to evaluate the severity of
the disease. In general, only a small region (typical less than 5% of the image) of
a fundus image contributes its being classified as different stages of
ROP. Therefore, traditional convolutional neural network (CNN) classifier may
be ineffective when it is applied to a global feature extraction while the ROP
features are localized with a limited number of labeled images. To address this
issue, we combine the segmentation and staging, using both fully convolutional
network (FCN) and multi-instance learning (MIL) to achieve integrated task of
ROP staging and lesions localization. The proposed network is evaluated on
7330 retinal images (2000 Normal, 630 Stage1, 980 Stage2, 870 Stage3 and 250
Stage4) obtained by RetCam3. Experimental results show that the proposed
network achieves 0.93 area under the curve (AUC) on the test dataset (accuracy
92.25%, sensitivity 90.53% and specificity 92.35%), and ROP lesions such as
demarcation lines, ridges can be accurately located in the fundus images.
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1 Introduction

Retinopathy of prematurity (ROP) is a retinal disorder of low birth weight infants and it
is the leading cause of childhood blindness [1]. The diagnosis of ROP is based on the
retinal fundus images from premature infants. The International Classification of ROP
(ICROP), which is developed in 1984 by 23 ophthalmologists from 11 countries, pro-
vides a clinical guideline for ROP grading. According to ICROP [2], 5 stages are used to
characterize the severity of ROP depending on the appearance of the retinal vessels at
the avascular–vascular junction. Stage1 can be identified by the presence of “demar-
cation line” between the vascularized and no vascularized retina. The demarcation line is
relatively flat and has abnormal branching of vessels up to it. Stage2 is characterized by
presence of “ridge” in the region of the demarcation line, which is increased in height
and width. Stage3 is defined by a ridge with extraretinal fibrovascular proliferation at or
just posterior to the ridge. Stage4 has partial retinal detachment and can be further
divided into 4A and 4B. Stage5 occurs total retinal detachment. Plus disease, along with
the stage of ROP, is defined as venous dilation and arterial tortuosity of posterior pole
vessels, which is a type of severe ROP and required early treatment. Plus disease can be
found at any stage of ROP. The Stage1, Stage2, Stage3 and Stage4 ROP captured by the
RetCam3 are, respectively, shown in Fig. 1.

In the ROP screening nowadays, fundus images are captured using fundus pho-
tography devices, such as RetCam3, and are used by the ophthalmologists to make a
diagnosis. A simple screening test and early intervention by an ophthalmologist can
prevent the grow of the abnormal vessels, thus prevent the disease turning into
blindness [3, 4]. Researches have been done to detect plus disease and aggressive
posterior ROP. The multiscale analysis, the semiautomated image analysis software
package of retinal images, are used to assess the retinal vessels in ROP based on
features such as diameter, tortuosity, and curvature of the vessels. Convolutional neural
network (CNN)-based deep learning approach has also been implemented and

Fig. 1. Fundus images with different stages of ROP. Stage 1 (a) ROP presents a small
demarcation line (red arrow) at the avascular–vascular junction. In stage 2 (b), the width and
height of the demarcation line increase and presents a ridge. Stage 3 (c) shows extraretinal
fibrovascular proliferation at or just posterior to the ridge and Stage 4 (d) occurs partial retinal
detachment. (Color figure online)
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evaluated for the diagnosis of Normal, pre-Plus, and Plus disease in ROP [5, 6] or to
distinguish the images between disease or healthy based on retinal vasculature and
achieves quite good performance [7, 8].

However, few studies are focused on identifying the “stage” of ROP, which is
important to evaluate the severity of the disease and make appropriate intervention [9].
The reason is that fundus image with label of stage of ROP are scarce and imbalance. In
addition, the demarcation lines or ridges presented in the fundus image typically
compose only less than 5% of the whole images. Therefore, the traditional CNN
classifier may be ineffective when it is applied to a global feature extraction while stage
analysis of ROP need to focus on the localized regions of the fundus images [10]. To
address the above issues, we propose a joint segmentation and multi-instance learning
(MIL) network to improve the classification performance. MIL is firstly introduced
with weakly labelled to tackle the problem of drug activity prediction [11] and has been
successfully used in detecting Age-Related Macular Degeneration (AMD) with retain
images [12]. In MIL setting, the bag is labeled positive if at least one instance of the
bag is positive, and the bag is labeled negative if all the instances in it are negative [11].
It is a weakly supervised learning methodology, which means the labels are only
assigned to bags of instances. Comparing to the supervised learning, every training
instance is assigned with a discrete or real-valued label.

Our proposed framework consists of two main modules, a fully convolutional
network (FCN) module and a MIL module. The FCN module serves as end-to-end
segmentation and provides a pixelwise binary output, which we call the spatial score
map (SSM). The SSM has a size the same as the original image and used as the input of
the MIL module. Experimental results verify that the segmentation by the FCN greatly
improves the MIL classification performance and the proposed framework achieves the
best result in classifying different stages of ROP.

2 Methodology

2.1 Deep Multi-instance Learning Network

The architecture of the proposed model is shown in Fig. 2. The FCN is exploited to
extract local feature and perform local disease estimation for a resized fundus image
captured from Retcam3. In this study, we use AlexNet as our base network to construct
the FCN. An SSM is generated over different lesion regions where each score point of
the maps corresponds to disease estimation in the same local regions of original image.
Then the estimations of different lesion regions are trained by the MIL network and
aggregated to generate the final score.
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2.2 Feature Extraction and Aggregation

CNN has a great representation power of extracting the deep features behind the image.
Retaining most blocks of the CNN, this study uses FCN for extracting local features
from the fundus image and generating the SSM. In traditional CNN, an input image is
downsized and goes through the convolution layers, pooling layer and fully connected
(FC) layers, and output one predicted label for the input image. CNN is popular
because it can proceed end-to-end training without segmentation, which is a time-
consuming task. Instead, if we remove the FC layer of the CNN and perform
upsampling, we can gain a pixelwise output, which is the SSM. This is proved to be
effective for end-to-end pixel level segmentation [13]. The SSM, instead of the original
image, then can be used as the MIL input. To support the MIL assumption, the network
is modified a little bit by us. The SSM generated by the FCN is first cropped to
45 � 45 equal non-overlapping blocks. The SSM is the bag of instance and each block
is an instance in it, thus each bag includes 25 instances in this study.

One challenge for the stage of ROP classification lies in the fact that demarcation
lines or ridges presented in the fundus image typically compose only a small part of the
whole fundus images (as shown in Fig. 3). Therefore, a different aggregation method
may give out a tremendous difference of the final result. In this study, supposing Bk is a
bag from the bags set {Bk, k = 1,…, N}, then the instance of the bag is {Bk1,…, Bkn},
where n is the number of instances of the bag Bk. The prediction probability of Bkj is

Fig. 2. Architecture of the proposed model. The framework consists of two main modules, a
fully convolutional network (FCN) module and a multi-instance learning (MIL) module. The
output of the spatial score map (SSM) generated by the FCN is used as the input of the MIL.
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denoted as pckj ¼ P ckj ¼ cjBkj
� �

; where c is the class label and c 2 1; . . .;Cf g. The
aggregated function ℱ for the bag Bk is:

pck ¼ P ck ¼ cjBkð Þ ¼ F pck1;. . .; p
c
kn

� �
: ð1Þ

This study will find out the aggregated function ℱ that achieves the best perfor-
mance. Different aggregated function AvgðpckjÞ; MaxðpckjÞ and Softmax will be per-
formed to compare the model performance. For Softmax, the prediction probability is
calculated by:

pck ¼ F pck1;. . .; p
c
kn

� �
¼

Pn
j¼1 p

c
kj � eap

c
kj

Pn
j¼1 e

apckj;
; ð2Þ

where a is a constance that control the extent to which the Softmax aggregated function
approximates a hard max aggregated function.

3 Experiment

3.1 Dataset

Our data includes 1150 ROP examinations from 2016 to 2018 from Eye Hospital.
A standard 10-views photograph for an infant’s eye is performed in an examination.
Thus, every examination consists of 5 to 30 fundus images reflecting to different fundus
situation of the whole retina. Images of inadequate quality for clinical diagnosis are
removed manually. After that, the data is labeled by three pediatric ophthalmologists in
this work, one is senior experts (chief physicians) that have about 20 years of clinical
experience in ROP screening and treatment, one is attending physicians that have about
10 years of clinical experience, and the last one is junior ophthalmologist that have about
3 years of clinical experience. We only select images which have consistent label by all
the ophthalmologists for the training, and discard ones that have inconsistent label. In
total, we get 7330 retinal images from 1073 ROP examinations. We manually separate

(a) Stage1 (b) Stage2   (c) Stage3    (d) Stage4

Fig. 3. The demarcation lines and ridges presented in the fundus image typically compose less
than 5% of the whole fundus images. The size of the original fundus image is 1600 � 1200,
which have a total of 1,920,000 pixels. 50 images of each stage of ROP are selected from the
training dataset randomly and the lesion regions are labeled by the ophthalmologists. The total
pixels of the lesion regions are calculated automatically by the labeling software.
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all fundus images into 5 groups, which are Normal, Satge1, Stage2, Stage3 and Stage4,
respectively. Finally, all images are divided into training set, validation set and testing
set, respectively. Table 1 shows the data distribution of each dataset in our study.

From Table 1 we can see that the dataset is imbalanced. The number of Stage4
images are much less than that of Satge1, Stage2 and Stage3. To settle this problem, we
introduce median frequency balancing to modify the final loss function, which is
formulated as:

totalloss ¼
Xn

1
ac � loss cð Þ; ð3Þ

Where

ac ¼ medianfreq
freq cð Þ ; ð4Þ

ac denotes coordinate of class c while training, freq cð Þ denotes the number of class
c divided by the total number and medianfreq is the median of these frequencies.

3.2 Classification Results

In this study, the most commonly used evaluation criteria are used to evaluate our
classification model, which consists of accuracy (ACC), sensitivity (SEN), specificity
(SPEC), area under the curve (AUC) and F1 score (F1, the harmonic mean of precision
and recall). For each model, we evaluate the test accuracy for every stage of ROP as
well as the total classification accuracy.

Table 1. The number of fundus images of different datasets.

Normal Stage1 Stage2 Stage3 Stage4

Training set 1600 420 654 580 160
Validation set 200 105 163 145 45
Testing set 200 105 163 145 45
Total 2000 630 980 870 250

Table 2. Accuracy (%) for the proposed model and pure MIL network.

Method MIL w/o FCN FCN + MIL
Max-agg Avg-agg Softmax

Stage1(%) 82.43 88.32 88.76 85.43
Stage2(%) 83.35 93.23 91.07 89.35
Stage3(%) 86.88 91.62 91.14 89.88
Stage4(%) 65.39 74.32 69.54 67.39
Normal (%) 90.71 96.04 93.05 93.71
Total (%) 86.89 92.25 90.73 90.21
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To save computational resources, the training images are resized from
1600 � 1200 � 3 to 224 � 224 � 3 and the datasets are augmented to four times
(rotating each image with a step of 90 degrees). Our method is implemented in the
platform of Keras using one NVIDIA TITAN XP GPU with 12 GB RAM. The
adaptive moment estimation (Adam) is utilized for optimization and weights update.
The learning rate is initially set to 0.0001, then reduced by 0.9 decay when the train
loss converges. The weight decay is set to 0.0001 and a mini batch size of 64 is used.
To improve model accuracy, all the model training used ImageNet’s pre-training
module to obtain prior knowledge from the ImageNet dataset, which can also speed up
the network learning and convergence. The classification accuracy (%) for every class
of the proposed model with different aggregation methods and pure MIL network
without FCN are shown in Table 2.

Table 2 shows that the segmentation by the FCN greatly improves the MIL clas-
sification performance and the max aggregation obtains a better performance than the
average aggregation and Softmax aggregation. We also appraise another five networks,
VGG16, AlexNet, Inceptionv4, ResNet50 and ResNet101 to compare the model per-
formance with ours using max aggregation. ResNet50 and ResNet101 have the same
network structure, only their depths are different. Experimental results in the test
dataset are shown in Table 3.

3.3 Visualization Results

The target of this study includes two independent tasks, stage of ROP classification and
lesion localization. From the FCN module, the image is input into the AlexNet without
the final full connection layer and then fed into the MIL network, and generates the
visualized responses from the logistic regression layer. Figure 4 illustrates a case
visualization results, among them, the lesion regions of the image predicted to be ROP
can be located.

From Fig. 4, we can see that the proposed model is able to learn the lesion region
without any explicit bounding box or segmentation ground truth annotation by the
ophthalmologist, which greatly relieves the clinical workload. This method can detect
the ROP lesions regions in the fundus image, which plays an important role of helping
the ophthalmologist for ROP diagnosis and grading.

Table 3. Summary of the model performance in ROP classification in stage.

Method ACC SEN SPEC AUC F1

VGG16 86.54 84.25 85.33 0.86 86.30
AlexNet 87.23 88.34 84.57 0.84 83.64
ResNet50 79.47 76.85 80.28 0.81 78.77
ResNet101 75.35 74.28 75.38 0.76 75.40
Inceptionv4 88.17 86.32 90.34 0.90 88.02
Ours 92.25 90.53 92.35 0.93 90.72
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3.4 Discussion

Form Table 3, we can see that the proposed method achieves the best accuracy. The
FCN + MIL network improves greatly over the baseline models (e.g., AlexNet, VGG,
ResNet50, ResNet101 and Inceptionv4), which implies that the SSM generated by the
FCN successfully extracts the high-level information of the fundus images. Using the
SSM rather than the original image for the MIL training can provide better classifi-
cation results. However, there are still some wrong predictions, specially appearing in
Stage4 ROP prediction. After the test, a total of 9 Stage4 images are misclassified as
Normal due to the vagueness in the characteristics of Stage4 images, which implies that
the FCN may not working well in extracting a global information.

This study also has several limitations. First, Plus disease is excluded from this
study in order to focus on identification of the different stages of ROP. Stage5 ROP is
also excluded since it is rare and clear retain image is not available for training as the
retina is totally detached. Second, the accuracy of any artificial intelligence system is
dependent on the quality of data it presents. In this study, images of inadequate quality
for clinical diagnosis are excluded manually. In the future, we will develop a software
to automatically determine if images are of sufficient quality.

4 Conclusion

We propose a joint segmentation and multi-instance learning network to effectively
classify the ROP images in stage as well as to localize the ROP lesions in fundus images.
Two independent tasks are achieved in one model. Results on the test dataset show that
our model outperforms conventional CNN-based classifier under the same number of
parameters in deep model. The method can detect the ROP lesions such as demarcation
lines and ridges, which plays an important role in ROP diagnosis and grading.
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Abstract. Various kinds of retinopathy are the leading causes of blind-
ness in human being, and with the rapid development of fundus images
(FI) analysis in recent years, deep learning has became the focus while
using Computer-Aided-Diagnosis (CAD) system to diagnose retinopathy.
However, the conventional deep learning method usually rely on suffi-
cient number of labeled FI, but the cost of acquiring enough labeled FI
is too expensive, in addition the difficulty in identifying the tiny lesions
and the randomness of lesions distribution also brings great challenge to
CAD via deep learning. Therefore, this paper proposes a semi-supervised
multi-channel generative adversarial network (GAN), which can reason-
ably utilize the unlabeled images and generate new samples to reduce
the dependence on the labeled images, meanwhile we introduce into a
general feature extraction strategy to avoid the problem of image valid
information disappearance caused by downsampling, and improve the
robustness of the generative and discriminant network. The experimental
results show that our proposed network boosts the classification accuracy
by 10.5% compared with the control network using conventional method
and reaches the highest of 88.9%.

Keywords: Retinopathy · Semi-supervised · Multi-channel ·
Generative adversarial network · General feature extraction

This work was supported partly by National Natural Science Foundation of
China (Nos. 61871274, 61801305 and 81571758), National Natural Science Founda-
tion of Guangdong Province (No. 2017A030313377), Guangdong Pearl River Tal-
ents Plan (2016ZT06S220), Shenzhen Peacock Plan (Nos. KQTD2016053112051497
and KQTD2015033016 104926), and Shenzhen Key Basic Research Project (Nos.
JCYJ2017 0413152804728, JCYJ20180507184647636, JCYJ20170818142347251 and
JCYJ20170818094109846).

c© Springer Nature Switzerland AG 2019
H. Fu et al. (Eds.): OMIA 2019, LNCS 11855, pp. 182–190, 2019.
https://doi.org/10.1007/978-3-030-32956-3_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32956-3_22&domain=pdf
https://doi.org/10.1007/978-3-030-32956-3_22


Retinopathy Diagnosis Using Semi-supervised Multi-channel GAN 183

1 Introduction

The eyes are the organs of human that distribute many abundant and dense
microvascular, various kinds of unhealthy states of the human body may cause
direct or indirect harm to the eyes. According to the WHO statistics on blindness
and visual impairment [1], at present about 1.3 billion people worldwide suffer
from different forms of vision impairment, of which about 217 million people
suffer from moderate to severe far-vision impairment due to pathological causes,
which mainly include pathological myopia (PM) caused by ametropia, glaucoma
induced by high intraocular pressure, cataract caused by protein degeneration
of lens, age-related macular degeneration (AMD) caused by vascular sclerosis,
and diabetic retinopathy (DR) induced by blood glucose fluctuation.

At the present stage, the diagnosis of retinopathy still rely on the profes-
sional ophthalmologists, which are not only costly and laborious, but also prone
to delay the treatment of patients, so it is in urgent need of an automatic aux-
iliary diagnosis method. At present, in order to improve the efficiency of reg-
ular examination, advanced fundus imaging technology (FIT) has been widely
used in most medical institutions, these high resolution fundus images (HRFI)
provide the possibility of CAD applied in retinopathy diagnosis. However, in
traditional machine learning, most of effective lesions features information needs
to be extracted manually by specialist, and the final performance often depends
on the reliability of such extracted features [12], it greatly depends on the clini-
cal prior knowledge. Fortunately at present deep learning method can skip this
manual feature extraction step, automatically extract effective features of image,
which presents more stable and excellent performance.

Although the existing FIT can obtain fundus images at a relatively low cost
and ensure the resolution and clarity, but due to personal privacy and labeling
reliability, labeled FI are still extremely scarce compared with natural data sets
and a surplus of unlabeled FI are also usually produced, so it is unsuitable to
use usual deep learning method [9]. According to above analysis, we think it is
necessary to introduce semi-supervised learning, and as we know, the GAN not
only can be used to generate image [4,13], but also show an excellent ability
in semi-supervised classification [10]. In addition, FI obtained by current FIT
always has a fairly high resolution, which is necessary to avoid losing the infor-
mation of tiny lesions for clinical diagnosis, but we have to face some challenges
when using such HRFI as network input: (1) The discriminator needs a cor-
responding depth to downsample the effective information. (2) The generator
should be able to generate such high resolution fundus images containing valid
semantic information. Therefore we put the pre-trained deep convolutional net-
work, which can extract the general features [11] of image, at the front end of
our network to process the HRFI, thus compressing the network input with low
distortion.

To sum up, we propose a feature extraction based multi-channel GAN with
semi-supervision, the main contributions can be summarized as follows:
– The feature extractor can compress the input images with low distortion,

alleviating the dispersion problem of tiny lesions information.
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– Semi-supervised learning is introduced in GAN, which can utilize the unla-
beled images to help our network learn extra effective information.

– Multi-channel generator is configured to cooperatively generate new samples,
which addresses the issue of the deficiency of training images.

2 General Feature Extraction Based Multi-channel GAN
with Semi-supervision

2.1 Theoretical Basis

Feature Extraction. In deep learning, we usually adopt transfer learning [11]
in the case of insufficient images to avoid overfit, pre-trained deep convolutional
networks are usually adopted to extract general features of images, and only sim-
ple softmax/support vector machine classifiers are trained to classify. Based on
this idea, it is easy to think that we can employ such a network to extract HRFI
general feature, thus compressing our network input, which not only greatly
reduces the parameters of the network, but also makes the generator easier to
converge effectively, the intuition is that generator generators generate feature
vectors instead of generating high-resolution images.

Semi-supervised Learning. Considering a simple supervised K classification
question, set the input image as xi, and the output of classifier is an unnormalized
logarithmic probability vector (o1, o2,..., oK), if softmax classifier is adopted,
the normalized probability vector can be obtained by Softmax function, then
the classifier’s parameter can be updated to minimize the cross entropy loss
between it and the corresponding label though back propagation.

Li = − log
(

eoyi∑
K eok

)
(1)

When we need to consider the images with much of unlabeled, combining the idea
of GAN, the strategy is to exploit the classifier inherit general discriminator’s
ability, namely the classifier is also able to identify whether the input image
is the fake image generated by the generator or the real image in our training
dataset, so that it becomes a K + 1 classification problem, thus the unlabeled
images have a temporary label, that is, the real image [14].

Generative Adversarial Network. GAN [6] was originally a machine learn-
ing model, which can learn the potential distribution of high dimensional data
and generate similar data. Nowadays, GAN is usually composed of a deconvo-
lution network called generator and a convolution network called discriminator,
the purpose of the generator is to generate fake data G(z) by using noise data z
to fit the real data x statistical distribution, while discriminator is to distinguish
the real and fake data. In game theory, this competition is called the minimax
game, in which the generator repeatedly tries to fool the discriminator, which
tries to see through the generator’s tricks to distinguish the real data from fake.
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min
G

max
D

Ex∼data[log D(x)] + Ez∼noise[log(1 − D(G(z)))] (2)

where D(x) = 1 − P model (y = K + 1|x), and P model (y = K + 1|x) represents
the probability that the discriminator determines that x is a fake data, so D(x)
is the probability that the discriminator says x is real.

2.2 Materials and Methods

Dataset. We collect images from multiple databases while ensuring quality,
which ensures the network have generalization effect on FI obtained by different
shooting equipments, technologies and environment in practical application. The
detailed description of experimental data is shown in Table 1, then we divided
labeled images into 70% training data, 10% validation data and 20% test data,
while all unlabeled images are used as training data.

Table 1. Datasets

Classification DataSource Amount

Normal ISBI 2019 Palm(184) + HRF(15)[2] +
iChallenge-AMD(195) + Diaretdbv0(20)[8]

414

PM ISBI 2019 Palm 213

Glaucoma MICCAI 2018 REFUGE(40) + HRF(15) + Share(97) 152

Cataract Share 75

AMD iChallenge-AMD 87

DR Diaretdbv0(110) + HEI-MED(169)[5] + HRF(15) 294

Unlabeled Diaretdbv1(89)[7] + ISBI 2019 Palm(400) + Share(276)
+ MICCAI 2018 REFUGE(1153)

1918

Image Preprocessing. The black boundary region is a common classification
disturbance and need to be removed first, then three image augmentation tech-
niques [3], namely Random-Brightness-Contrast, Random-Gamma and CLAHE,
are used in combination to improve image quality intuitively by eliminating blur-
ring and adjusting brightness imbalance. It is worth mentioning that although
images in each database have different resolutions, the feature vetor of the uni-
form size will be obtained by feature extractor which supports for variable input
size, therefore no extra interpolation operation is applied to the images.

Semi-supervised Multi-channel Generative Adversarial Network

Configuration. To put it simply, we only adjusts the following strategies on the
general GAN to construct our network, the framework is shown in Fig. 1.

– Feature extractor are employed to process the image to extract feature vetor,
resulting in uniform size network input.
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Fig. 1. Multi-channel semi-supervised generative adversarial network

– Training data includes labeled images, unlabeled images and generated
images. The former two are jointly labeled as the real image and the last
as the fake image alone.

– Multi-channel generator with different channel configurations work together
to generate new samples, and the discriminator should correctly classify
labeled images on the basis of distinguishing the real image from fake.

Loss Function. Based on the analysis on the theoretical basis, the loss function
of our network is divided into two parts: the cross entropy loss of the supervised
network and the unsupervised game loss of the GAN [15].

L = L Supervised + L GAN (3)

where:
L Supervised = − Ex∼pdata log pmodel(y|x, y < K + 1)

L GAN = L Classifier + L Generator

= − {Ex∼pdata
log[D(x)]

+ Ez∼noise log[(1 − D(G(z)))]}
− Ez∼noise log[D(G(z))]

The target of loss function is as follows: (1) Supervised network: Discriminator
should have the ability to classify labeled images as corresponding label category.
(2) GAN: Discriminator should identify labeled and unlabeled images both as the
real image and identify generated images as the fake image, meanwhile generator
should generate image which is closer to the real image to interfere with the
discriminator.
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3 Experiments and Results

Details. We employ Inception Resnet V2 [16] trained on ImageNet (ILSVRC-
2012-CLS) as feature extractor, the output for each image is a feature vector
of length 1536, which then is resized to 32 × 48 and normalized to [−1, 1], then
one-sided label smoothing (α = 0.9) is applied to the positive label [17]. For the
network, we configure eight-channel generator and seven-classification discrimi-
nator, both of which adopt Adam optimizer to train 30000 iterations with same
first-order momentum of 0.5 and the learning rate of 0.0001 and 0.00008 respec-
tively, besides the generator updates twice as frequently as the discriminator.

Experimental Settings. In order to better analyze our method, we use the
existing labeled images to fine tune Inception Resnet V2 to set a control net-
work, then our model is evaluated qualitatively and quantitatively by comparing
with the control network with different hyper-parameter, that is, whether to use
image augmentation (RAW/AUG) and whether to include unlabeled images for
training (Unlabeled/No unlabeled).

Qualitative Analysis. Figure 2 shows the qualitative result. It can be seen
that compared with the control network, the fitting accuracy result (Deep color
curve) of our network under the same training times has significant accuracy
improvement and shows an upward trend, meanwhile the fluctuation range of
original result (Light color curve) is decreasing, which shows that our network
indeed has more excellent and stable classification performance.

(a) Fine-tuning (b) Our model

Fig. 2. Accuracy on the validation set in the training process (Color figure online)

Data dimension reduction is a method commonly used for visual high-
dimensional data, which can intuitively reveal the potential connections of high-
dimensional data. In this study, t-SNE is adopted, Fig. 3 presents the visualiza-
tion of general feature vetors extracted from the training set and the test set by
feature extractor and the corresponding outputs of our network. It is observed
from Fig. 3(a,d) that general feature vetors has been able to reflect the potential
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connections among some same category of data, that is, although all the points
are in one block, there are some color blocks. Then from Fig. 3(b,e) and (c,f) we
can see the overfitting phenomenon, this is not for nothing, which is determined
by the nature of generative network, because the information that the generator
can access and learn is only from the training set, and in fact, the generator’s
role is precisely to enhance the discriminator’s learning of these information,
but there is no need to worry too much, as unlabeled data increases, more extra
information will benefit to generator, reducing the influence of overfitting.

(a) General feature (b) Network(No unlabeled) (c) Network(Unlabeled)

(d) General feature (e) Network(No unlabeled) (f) Network(Unlabeled)

Fig. 3. Training set (up) and test set (down) feature visualization (Color figure online)

Quantitative Analysis. Table 2 shows the classification accuracy of our model
and control network, it is obvious to see that image augmentation technique is
a general method to improve classification performance, what really matters is
that our networks can indeed utilize the unlabeled images to benefit discriminant

Table 2. Quantitative analysis on test set

Method Accuracy/%

Fine-tuning (RAW + No unlabeled) 78.4

Fine-tuning (AUG + No unlabeled) 80.2

Our method (RAW + No unlabeled) 86.7

Our method (AUG + No unlabeled) 87.5

Our method (RAW + Unlabeled) 87.8

Our method (AUG + Unlabeled) 88.9
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network, although the effect shown on the table may seem not so significant, but
there are often far more unlabeled images than the labeled in practice, thus we
can expect more improvement in the further work.

4 Conclusion

Faced with the common problem of the scarcity of labeled images in the med-
ical field, our proposed semi-supervised multi-channel GAN can generate new
samples and reasonably utilize unlabeled images to help complete retinopathy
diagnosis. The main contributions of this project are as follows: (1) A multi-
channel GAN is proposed, which can generate fake images containing represen-
tative information of existing images to enhance the discriminator’s learning.
(2) The data of multiple databases are used to simulate the actual scene. (3)
Feature extractor can extract effective features of HRFI, resulting in small size
network input, which significantly reduces the parameters of discriminator and
makes the generator easier to work. Compared with the conventional supervised
deep learning method, our network has more excellent and stable classification
performance, finally reaches the diagnostic accuracy of 88.9%. In practice, our
network’s advantages can be taken to have considerable development potential
in the deep learning problems when there are difficult to collect data and have
high labeling cost.
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