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Completeness

Completeness is a property of a topological vector space as a ‘uniform space’. We do
not explicitly use uniform spaces but mention that the linear structure allows to define
neighbourhoods of ‘uniform size’ for all x ∈ E by taking the translates x + U for
U ∈ U0(E). This allows to introduce the notion of Cauchy filters, and completeness
requires Cauchy filters to be convergent.

After some discussion on completeness and quasi-completeness, we come to
Grothendieck’s description of the completion of a locally convex space, Corollary 9.16,
as the main result of this chapter.

Let E be a topological vector space, A ⊆ E. A filter F in A is called a Cauchy
filter if for every U ∈ U0(E) there exists B ∈F such that B − B ⊆ U .

The set A ⊆ E is called complete if every Cauchy filter in A is convergent to an
element of A, and A is called sequentially complete if every Cauchy sequence in A

is convergent to an element of A. A sequence (xn) in E is called a Cauchy sequence
if the elementary filter generated by the sequence is a Cauchy filter, i.e., if for each
neighbourhood of zero U there exists n0 ∈N such that xn − xm ∈ U for all m,n � n0.

The space E is called quasi-complete if every closed bounded subset of E is
complete.

Remarks 9.1 (a) If F is a filter in A, F convergent to x ∈ A, then F is a Cauchy filter.
(Let U be a neighbourhood of zero. Then there exists a neighbourhood of zero V such that
V − V ⊆ U . Then (x + V ) ∩ A ∈F , by hypothesis, and one obtains

(
(x + V ) ∩ A

) − (
(x +

V ) ∩ A
) ⊆ V − V ⊆ U .)

(b) Let F be a Cauchy filter in A, and let x ∈ A be a cluster point of F . Then F → x.
(Let U be a neighbourhood of zero, V a neighbourhood of zero with V + V ⊆ U , B ∈ F
with B − B ⊆ V (in particular, B ⊆ b + V for all b ∈ B). Then B ∩ (x + V ) �= ∅, and
therefore B ⊆ B ∩ (x + V ) + V ⊆ x + V + V ⊆ x + U . This shows that F → x.)

(c) If E is Hausdorff and A is complete, then A is closed. (For x ∈ A there exists a filter
F in A with F → x. Then F is a Cauchy filter, which is convergent in A. Then x ∈ A, as the
limit is unique.)
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(d) If A is complete and B ⊆ A is relatively closed in A, then B is complete. (If F is a
Cauchy filter in B, then F is a Cauchy filter base in A, which is convergent in A. Since B is
closed in A and B ∈F , every limit of F in A belongs to B.)

(e) If E is a topological vector space possessing a countable neighbourhood base of zero
(Un)n∈N, then E is complete if and only if E is sequentially complete. (For the necessity let
(xn) be a Cauchy sequence, i.e., the collection

{{xk ; k � n} ; n ∈N
}

is a Cauchy filter base,
and a limit of this filter base is also a limit of the sequence. For the sufficiency let F be a
Cauchy filter. Then there exists a decreasing sequence (Bn)n in F , Bn − Bn ⊆ Un (n ∈ N).
For n ∈N choose xn ∈ Bn. Then (xn) is a Cauchy sequence, which by hypothesis converges,
xn → x. It is easy to see that then x is a cluster point of F , and therefore F → x, because
F is a Cauchy filter.)

(f) Let E be a metrisable locally convex space, and let d be a translation invariant metric
on E inducing the topology. Then E is complete if and only if the metric space (E, d)

is complete (i.e., E is a Fréchet space). This follows immediately from (e) above and the
property that (Bd(0, 1/n))n∈N is a countable neighbourhood base of zero.

(g) Let E,F be topological vector spaces, u : E → F linear and continuous, and let F
be a Cauchy filter in E. Then fil(u(F)) is a Cauchy filter in F . (If V is a neighbourhood of
zero in F , then u−1(V ) is a neighbourhood of zero in E. Therefore, there exists A ∈F such
that A − A ⊆ u−1(V ), and this implies that u(A) − u(A) ⊆ u(u−1(V )) ⊆ V .) �

Theorem 9.2
Let E be a Hausdorff topological vector space. Then there exist a complete Hausdorff
topological vector space Ẽ such that E is isomorphic to a dense subspace of Ẽ. The
space Ẽ is unique up to isomorphism and is called the completion of E.

We will not prove the existence, but rather refer to [Hor66, Chap. 2, § 9, Theorem 1]
or [Sch71, Chap. I, § 1.5] for a proof. For locally convex space s we will give a proof
later in this chapter. However, we will prove the uniqueness, and for this property we
need the following preparations. The first of these is a fundamental fact from topology.

Proposition 9.3 Let X and Y be topological spaces, Y Hausdorff and regular. Let X0 ⊆ X

be a dense subset, u0 : X0 → Y continuous, and suppose that for each x ∈ X \ X0 the limit
u(x) := limy→x, y∈X0 u0(y) exists. On X0 define u := u0. Then u is the unique continuous
extension of u0 to X.

Recall that regular means that every point y ∈ Y has a neighbourhood base
consisting of closed sets. The existence of limy→x, y∈X0 u0(y) means that the image
filter base u0(Ux ∩ X0) is convergent, where Ux is the neighbourhood filter of x, and
Ux ∩ X0 = {

U ∩ X0 ; U ∈ Ux

}
. The limit is unique because Y is Hausdorff.
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Proof of Proposition 9.3
Concerning the uniqueness, assume that u and ũ are continuous extensions of u0. Then the
set

{
x ∈ X ; u(x) = ũ(x)

}
is closed (because the diagonal of Y × Y is closed) and contains

X0, hence is equal to X.
To show the continuity of u, let x ∈ X, and let V be a closed neighbourhood

of u(x). By hypothesis, there exists an open neighbourhood U of x such that
u0(U ∩ X0) ⊆ V . Then U is a neighbourhood of each of its points z; hence,
u(z) = limy→z, y∈U∩X0 u0(y) ∈ u0(U ∩ X0) ⊆ V = V . This shows that u(U) ⊆ V

and proves the continuity of u at x. �	

Proposition 9.4 Let E and F be topological vector spaces, E0 ⊆ E a dense subspace, F

Hausdorff and complete, and let u0 : E0 → F be a continuous linear mapping. Then there
exists a unique continuous extension u : E → F of u0, and u is linear.

Proof
Note that F is regular, because the closed neighbourhoods of zero in F form a neighbourhood
base of zero. Let U0 be the neighbourhood filter of zero in E, and let x ∈ E \ E0. Then

Fx := (x + U0) ∩ E0 = {
(x + U) ∩ E0 ; U ∈ U0

}

is a filter in E0 converging to x, hence a Cauchy filter. This implies that u0(Fx) is a Cauchy
filter base in F , hence convergent. Now Proposition 9.3 yields the existence and uniqueness
of the continuous extension u of u0.

In order to show the linearity of u we let λ ∈K and note that the set

{
(x, y) ∈ E × E ; u(λx + y) = λu(x) + u(y)

}

is a closed subset of E × E and contains the dense subset E0 × E0, hence is equal to
E × E. �	

Proof of the uniqueness in Theorem 9.2
Assume that Ẽ and Ê are completions, with embeddings j̃0 : E ↪→ Ẽ, ĵ0 : E ↪→ Ê.
Interpreting, for the moment, E as a subspace of Ẽ, we conclude from Proposition 9.4 that ĵ0

extends uniquely to ĵ : Ẽ → Ê. Similarly, j̃0 extends to j̃ : Ê → Ẽ. As j̃ ◦ ĵ is continuous,
and is the identity on E, it follows that j̃ ◦ ĵ is the identity on Ẽ; hence ĵ : Ẽ → Ê is an
isomorphism. �	

The next part of the chapter serves to collect miscellaneous properties concerning
completeness.

Proposition 9.5
(a) Let (Eι)ι∈I be a family of topological vector spaces, and assume that Eι is (quasi-)

complete for all ι ∈ I . Then E := ∏
ι∈I Eι is (quasi-)complete.

(b) Let I be a set. Then K
I is complete.

(c) Let E be a vector space. Then (E∗, σ (E∗, E)) is complete.
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Proof
(a) for ‘complete’: Let F be a Cauchy filter in E. Then prι(F) is a Cauchy filter base in
Eι, convergent to xι (ι ∈ I ). Then F → (xι)ι∈I ∈ E, by Proposition 4.6. The proof for
‘quasi-complete’ is analogous; observe that, for a bounded set B ⊆ E the images prι(B) are
bounded (ι ∈ I ).

(b) is a direct consequence of (a).
(c) Recall that E∗ is a closed subset of K

E (Lemma 4.8) and that σ(E∗, E) is the
restriction of the product topology to E∗. �	

Besides being of interest in its own right, the following result serves to prepare the
presentation of examples of quasi-complete spaces which are not complete.

Lemma 9.6 Let E be a barrelled locally convex space. Then (E′, σ (E′, E)) is quasi-
complete.

Proof
Let B ⊆ E′ be σ(E′, E)-bounded and closed. Then B is equicontinuous (Theorem 6.14),
i.e., there exists U ∈ U0(E) such that B ⊆ U◦. By the Alaoglu–Bourbaki theorem, U◦ is
σ(E′, E)-compact, and therefore complete. (IfF is a Cauchy filter in U◦, F̂ a finer ultrafilter,
then F̂ is convergent, F̂ → x; therefore x is a cluster point of F , F → x.) This implies that
B is complete. �	

Examples 9.7
(a) Let E be a Hausdorff locally convex space, and assume that there exists a linear subspace
which is not closed. Then the dual pair 〈E,E′〉 is separating in E, and passing to the dual
pair 〈E,E∗〉, we note that Corollary 2.10 implies that E′ is σ(E∗, E)-dense in E∗. It is not
difficult to show that under the above hypotheses E′ �= E∗, and therefore (E′, σ (E′, E)) is
not complete.

(b) Let E be an infinite-dimensional Banach space. Then (E′, σ (E′, E)) is quasi-
complete, by Lemma 9.6, but part (a) shows that (E′, σ (E′, E)) is not complete. Indeed,
it follows from Baire’s theorem that countably infinite-dimensional subspaces of E

are not closed. �

The following result presents an interesting and surprising interplay concerning
completeness in different topologies. It will be important and applied repeatedly in
Chapter 14.

Theorem 9.8
Let E be a vector space, let σ ⊆ τ be two linear topologies on E, and assume that τ

has a neighbourhood base of zero U consisting of σ -closed sets.
(a) Let F be a τ -Cauchy filter, x ∈ E, F σ→ x. Then F τ→ x.
(b) Let A ⊆ E be σ -complete. Then A is also τ -complete.
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Proof
(a) Let U ∈ U . There exists B ∈ F such that B − B ⊆ U . For y, z ∈ B one therefore has
y − z ∈ U , and as U is σ -closed one obtains y − x ∈ U . This implies that B ⊆ x + U , and
therefore F τ→ x.

(b) This is clear from (a), because every τ -Cauchy filter is a σ -Cauchy filter. �	

The analogous result also holds for the ‘sequential setup’, with ‘closed’ replaced
by ‘sequentially closed’, ‘Cauchy filter’ by ‘Cauchy sequence’, and ‘complete’ by
‘sequentially complete’.

Example 9.9
Let 1 � p � ∞. On �p let τ be the norm topology, and let σ be the restriction of the product
topology on K

N .
The closed unit ball B�p is easily seen to be sequentially σ -closed and sequentially σ -

complete. Therefore the sequential version of Theorem 9.8 is applicable, and part (b) yields
that B�p (and therefore �p) is complete.

This (seemingly complicated) proof of the completeness of �p is nothing but an abstract
version of the usual proof of the completeness of �p . �

The next aim is to prove the following result.

Theorem 9.10
Let E be a quasi-complete locally convex space. Then every σ(E′, E)-bounded subset
of E′ is β(E′, E)-bounded, i.e., Bβ = Bσ , in the terminology of the end of Chapter 6.

Before we start with the preparations for the proof we mention a consequence of this
result.

Corollary 9.11 Let E be a quasi-complete quasi-barrelled locally convex space. Then E is
barrelled.

Proof
We will use the terminology of the end of Chapter 6. The fact that E is quasi-barrelled is
equivalent to E = Bβ (Theorem 6.8), whereas the quasi-completeness implies that Bβ = Bσ

(Theorem 9.10). Putting this together we conclude that E = Bσ which is equivalent to E

being barrelled (Theorem 6.14). �	

Let (E, τ) be a locally convex space, and let B ⊆ E be absolutely convex, bounded
and closed. Define

EB :=
⋂

n∈N
nB = lin B,

with semi-norm pB . Then (EB, pB) ↪→ (E, τ) is continuous (because B is bounded).
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If pB is a norm and (EB, pB) is a Banach space, then B is called a Banach disc.
Note that pB is a norm if E is Hausdorff.

Lemma 9.12 Let E be a locally convex space, and let B ⊆ E be absolutely convex,
bounded, closed and sequentially complete.
(a) Then (EB, pB) is complete. In particular, if pB is a norm, then B is a Banach disc.
(b) Let D ⊆ E be a barrel. Then D absorbs B.

Proof
(a) follows from the ‘sequential version’ of Theorem 9.8, applied to EB , with σEB := τ ∩EB ,
τEB := τpB . The conclusion is that the ball B = {

x ∈ EB ; pB(x) � 1
}

is pB -complete.
(b) (EB, pB) is semi-normed and complete, therefore a Baire space (see Appendix B),

hence barrelled (Theorem 6.9). The set D ∩ EB is a barrel in (EB, pB), therefore a
neighbourhood of zero, and therefore absorbs B. �	

Proof of Theorem 9.10
Let B ⊆ E′ be σ(E′, E)-bounded. Then B◦ is a barrel. If A ⊆ E is bounded, then A◦◦ =
aco A is closed and bounded, and therefore complete, by hypothesis. Then Lemma 9.12(b)
implies that B◦ absorbs A◦◦, and therefore B ⊆ B◦◦ is absorbed by (A◦◦)◦ = A◦. This
shows that B is β(E′, E)-bounded. �	

With the following theorem we start the proof of the existence of the completion of
a locally convex space; in fact, this theorem is the main ingredient of the proof and also
provides a description of the completion.

Theorem 9.13 (Grothendieck)
Let E be a Hausdorff locally convex space. Let M be a directed covering of E,
consisting of bounded, closed, absolutely convex sets. Let

F := {
u ∈ E∗ ; u A continuous (A ∈M)

}
.

Then M can be used to define a polar topology on F in the dual pair 〈E,F 〉, and
(F, τM) is a completion of (E′, τM).

For the proof we need several preparations.

Lemma 9.14 Let E be a Hausdorff locally convex space, and let A ⊆ E be absolutely
convex and closed. Let u ∈ E∗, u A continuous at 0, and let ε > 0. Then there exists x′ ∈ E′
such that |u(x) − 〈x, x′〉| � ε (x ∈ A).

Proof
It is clearly sufficient to show this for ε = 1.
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The continuity of u A at 0 implies that there exists an absolutely convex closed
neighbourhood of zero U ⊆ E such that |u(x)| � 1 (x ∈ A ∩ U ). The polar U• (taken in the
dual pair 〈E,E∗〉) is a subset of E′, σ(E∗, E)-compact (by the Alaoglu–Bourbaki theorem)
and absolutely convex. Therefore Lemma 7.3(b) implies that A• + U• is σ(E∗, E)-closed.
Evidently, A• + U• is also absolutely convex, and therefore A• + U• = (A• + U•)••, by
the bipolar theorem. Now,

u ∈ (A ∩ U)• = (A•• ∩ U••)• = (A• ∪ U•)•• ⊆ (A• + U•)•• = A• + U•.

(In the second equality we have used Remark 3.3(c).)
This shows that there exist w ∈ A•, x′ ∈ U• ⊆ E′ such that u = w +x′, and this implies

|u(x) − x′(x)| = |w(x)| � 1 for all x ∈ A. �	

Lemma 9.15 Let X be a topological space, S ⊆ P(X). Then the space

Cb(X,S) := {
f : X → K ; f A bounded and continuous (A ∈S)

}
,

with the semi-norms pA,

pA(f ) := sup
x∈A

|f (x)| (f ∈ Cb(X,S), A ∈ S)

is complete.

Proof
Without loss of generality we may assume that

⋃S = X.
For A ∈ S the space Cb(A) (bounded continuous functions with sup-norm) is complete.

Let F be a Cauchy filter in Cb(X,S). Then for A ∈ S the image filter FA in Cb(A) under
the mapping f �→ f A is a Cauchy filter, therefore convergent. This implies that there exists
g ∈ Cb(X,S) such that F → g. (Observe that for A,B ∈ S with A ∩ B �= ∅ the limits
gA, gB of FA,FB coincide on A ∩ B. Also, recall Proposition 4.6(b).) �	

Proof of Theorem 9.13
We work in the dual pair 〈E,F 〉.

First we show that M ⊆ Bσ (E, F) (which makes it clear that M defines a polar topology
on F ). Let A ∈M, u ∈ F . There exists U ∈ U0(E) such that |u(x)| � 1 (x ∈ A ∩ U ). Also,
λA ⊆ U for suitable λ ∈ (0, 1] (because A is bounded). For x ∈ A it follows that λx ∈ A∩U ,
|u(x)| � 1

λ
. Therefore A is σ(E,F)-bounded.

From Lemma 9.14 one concludes that E′ is dense in F . (Recall that M is directed. This
implies that U := {

εBqA ; A ∈M, ε > 0
}

is a neighbourhood base of zero for τM.)
Finally, (F, τM) is complete: Cb(E,M) is complete, by Lemma 9.15, and

id : Cb(E,M) ↪→ K
E is continuous (with the product topology on K

E). Moreover E∗
is a closed subspace of KE (Lemma 4.8). This shows that F = Cb(E,M) ∩ E∗ is closed in
Cb(E,M), hence complete. �	
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Corollary 9.16 (Grothendieck) Let E be a Hausdorff locally convex space, and recall the
notation E = {

B ⊆ E′ ; B equicontinuous
}
. Then

Ẽ := {
u ∈ E′∗ ; u B σ(E′, E)-continuous (B ∈ E)

}
,

with the polar topology τE , is a completion of E. In particular, E is complete if and only if
E = Ẽ.

Proof
This is obtained by applying Theorem 9.13 to (E′, σ (E′, E)) and M := {

U◦ ; U ∈ U0(E)
}
.

Then (E′, σ (E′, E))′ = E, and τM = τE is the original topology on E. �	

Remark 9.17 If one is just interested in the existence of a completion of a Hausdorff locally
convex space E, one can proceed by a reduced method as follows. We only sketch this
procedure and refer to [MeVo97, Proposition 22.21] for more details.

With a neighbourhood base of zero U in E one equips

E′× := {
u ∈ E′∗ ; u U◦ bounded (U ∈ U)

}

with the semi-norms qU◦ ,

qU◦ (u) := sup
{|〈u, y〉|; y ∈ U◦}

(u ∈ E′×, U ∈ U).

Then E ⊆ E′× isomorphically, in the natural way, and E′× is complete; hence a completion

of E is obtained as Ẽ := E
E′×

. �

Corollary 9.18 (Banach) Let E be a Banach space, and let u ∈ E′∗ be σ(E′, E)-continuous
on BE′ (the closed unit ball of E′). Then u belongs to E.

Proof
By hypothesis, u is σ(E′, E)-continuous on all equicontinuous sets B ⊆ E′. Applying
Corollary 9.16 and using that E is complete one obtains u ∈ E. �	

We conclude this chapter with a result on the completeness of dual spaces.

Theorem 9.19
Let E be a bornological locally convex space. Then (E′, β(E′, E)) is complete.

We need preparations for the proof.

Lemma 9.20 Let E be a topological vector space. Then a set B ⊆ E is bounded if and
only if, for every sequence (xn)n∈N in B and every null sequence (λn)n∈N in K, the sequence
(λnxn)n∈N is a null sequence.
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Proof
For the necessity, let (xn) and (λn) be as assumed above, and let U ∈ U0. There exist ε > 0
such that λB ⊆ U for |λ| � ε, n0 ∈N such that |λn| � ε (n � n0). Then λnxn ∈ U (n � n0).

For the sufficiency, assume that B is not bounded. Then there exists U ∈ U0 such that
B �⊆ nU (n ∈N ). With xn ∈ B \ nU one obtains 1

n
xn /∈ U (n ∈N ), 1

n
xn �→ 0. �	

Lemma 9.21 Let E,F be locally convex spaces, u : E → F linear, B ⊆ E bounded and
absolutely convex, u B continuous at 0. Then u(B) is bounded.

Proof
Let (xn) be a sequence in B, (λn) a null sequence in K. Then λnxn ∈ B for large n, λnxn →
0 by Lemma 9.20, and by hypothesis λnu(xn) = u(λnxn) → 0 (n → ∞). Therefore
Lemma 9.20 implies that u(B) is bounded. �	

Remark 9.22 In Lemma 9.21 (as well as in Lemma 9.14) a linear mapping u was used
whose restriction to an absolutely convex set is continuous at 0. It can be shown that the
continuity at 0 is equivalent to the continuity on the whole absolutely convex set; cf. [Hor66,
Chap. 3, § 11, Lemma 1]. �

Proof of Theorem 9.19
We apply Theorem 9.13 with

M := {
A ⊆ E ; A bounded, closed, absolutely convex

};

then τM = β(E′, E).
Let u ∈ E∗, u A continuous for all A ∈ M. By Lemma 9.21, u(A) is bounded for all

A ∈ M, and therefore Proposition 6.18 implies that u is continuous, i.e., u ∈ E′. Now
Theorem 9.13 implies that (E′, β(E′, E)) is complete. �	

Remark 9.23 As metrisable locally convex spaces are bornological, Theorem 9.19 implies
that the duals of the following spaces are complete: C∞

0 (�), E(�), for open � ⊆ R
n, S(Rn),

and C(X), for σ -compact Hausdorff locally compact spaces X. �

Notes The material of this chapter, up to Lemma 9.12, is rather standard; Proposi-
tion 9.3 is from [Bou07c, Chap. I, § 8.5, Théorème 1, p. I.57]. Theorem 9.8 is an
interesting result which can be used to prove completeness of a set if completeness is
known in a finer topology; its counterpart for uniform spaces can be found in [Bou07c,
Chap. II, § 3.3, Proposition 7 and Corollaire]. Theorem 9.13 and Corollary 9.16 are due
to Grothendieck [Gro50]. Following Horváth [Hor66, Chap. 3, § 11, Corollary 4], the
author attributes Corollary 9.18 to Banach, although he did not find a direct reference to
this result in Banach’s publications. However, we will show in Remark 12.3 that it is an
immediate consequence of another result of Banach’s.
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