Completeness

Check for updates

Completeness is a property of a topological vector space as a 'uniform space'. We do not explicitly use uniform spaces but mention that the linear structure allows to define neighbourhoods of 'uniform size' for all $x \in E$ by taking the translates x + U for $U \in \mathcal{U}_0(E)$. This allows to introduce the notion of Cauchy filters, and completeness requires Cauchy filters to be convergent.

After some discussion on completeness and quasi-completeness, we come to Grothendieck's description of the completion of a locally convex space, Corollary 9.16, as the main result of this chapter.

Let *E* be a topological vector space, $A \subseteq E$. A filter \mathcal{F} in *A* is called a **Cauchy** filter if for every $U \in \mathcal{U}_0(E)$ there exists $B \in \mathcal{F}$ such that $B - B \subseteq U$.

The set $A \subseteq E$ is called **complete** if every Cauchy filter in A is convergent to an element of A, and A is called **sequentially complete** if every Cauchy sequence in A is convergent to an element of A. A sequence (x_n) in E is called a **Cauchy sequence** if the elementary filter generated by the sequence is a Cauchy filter, i.e., if for each neighbourhood of zero U there exists $n_0 \in \mathbb{N}$ such that $x_n - x_m \in U$ for all $m, n \ge n_0$.

The space E is called **quasi-complete** if every closed bounded subset of E is complete.

Remarks 9.1 (a) If \mathcal{F} is a filter in A, \mathcal{F} convergent to $x \in A$, then \mathcal{F} is a Cauchy filter. (Let U be a neighbourhood of zero. Then there exists a neighbourhood of zero V such that $V - V \subseteq U$. Then $(x + V) \cap A \in \mathcal{F}$, by hypothesis, and one obtains $((x + V) \cap A) - ((x + V) \cap A) \subseteq V - V \subseteq U$.)

(b) Let \mathcal{F} be a Cauchy filter in A, and let $x \in A$ be a cluster point of \mathcal{F} . Then $\mathcal{F} \to x$. (Let U be a neighbourhood of zero, V a neighbourhood of zero with $V + V \subseteq U$, $B \in \mathcal{F}$ with $B - B \subseteq V$ (in particular, $B \subseteq b + V$ for all $b \in B$). Then $B \cap (x + V) \neq \emptyset$, and therefore $B \subseteq B \cap (x + V) + V \subseteq x + V + V \subseteq x + U$. This shows that $\mathcal{F} \to x$.)

(c) If *E* is Hausdorff and *A* is complete, then *A* is closed. (For $x \in \overline{A}$ there exists a filter \mathcal{F} in *A* with $\mathcal{F} \to x$. Then \mathcal{F} is a Cauchy filter, which is convergent in *A*. Then $x \in A$, as the limit is unique.)

© Springer Nature Switzerland AG 2020

J. Voigt, A Course on Topological Vector Spaces, Compact Textbooks in Mathematics, https://doi.org/10.1007/978-3-030-32945-7_9

(d) If A is complete and $B \subseteq A$ is relatively closed in A, then B is complete. (If \mathcal{F} is a Cauchy filter in B, then \mathcal{F} is a Cauchy filter base in A, which is convergent in A. Since B is closed in A and $B \in \mathcal{F}$, every limit of \mathcal{F} in A belongs to B.)

(e) If *E* is a topological vector space possessing a countable neighbourhood base of zero $(U_n)_{n \in \mathbb{N}}$, then *E* is complete if and only if *E* is sequentially complete. (For the necessity let (x_n) be a Cauchy sequence, i.e., the collection $\{\{x_k; k \ge n\}; n \in \mathbb{N}\}$ is a Cauchy filter base, and a limit of this filter base is also a limit of the sequence. For the sufficiency let \mathcal{F} be a Cauchy filter. Then there exists a decreasing sequence $(B_n)_n$ in \mathcal{F} , $B_n - B_n \subseteq U_n$ $(n \in \mathbb{N})$. For $n \in \mathbb{N}$ choose $x_n \in B_n$. Then (x_n) is a Cauchy sequence, which by hypothesis converges, $x_n \to x$. It is easy to see that then *x* is a cluster point of \mathcal{F} , and therefore $\mathcal{F} \to x$, because \mathcal{F} is a Cauchy filter.)

(f) Let *E* be a metrisable locally convex space, and let *d* be a translation invariant metric on *E* inducing the topology. Then *E* is complete if and only if the metric space (E, d)is complete (i.e., *E* is a Fréchet space). This follows immediately from (e) above and the property that $(B_d(0, 1/n))_{n \in \mathbb{N}}$ is a countable neighbourhood base of zero.

(g) Let *E*, *F* be topological vector spaces, $u: E \to F$ linear and continuous, and let \mathcal{F} be a Cauchy filter in *E*. Then fil($u(\mathcal{F})$) is a Cauchy filter in *F*. (If *V* is a neighbourhood of zero in *F*, then $u^{-1}(V)$ is a neighbourhood of zero in *E*. Therefore, there exists $A \in \mathcal{F}$ such that $A - A \subseteq u^{-1}(V)$, and this implies that $u(A) - u(A) \subseteq u(u^{-1}(V)) \subseteq V$.) \triangle

Theorem 9.2

Let E be a Hausdorff topological vector space. Then there exist a complete Hausdorff topological vector space \tilde{E} such that E is isomorphic to a dense subspace of \tilde{E} . The space \tilde{E} is unique up to isomorphism and is called the **completion** of E.

We will not prove the existence, but rather refer to [Hor66, Chap. 2, § 9, Theorem 1] or [Sch71, Chap. I, § 1.5] for a proof. For locally convex space s we will give a proof later in this chapter. However, we will prove the uniqueness, and for this property we need the following preparations. The first of these is a fundamental fact from topology.

Proposition 9.3 Let X and Y be topological spaces, Y Hausdorff and regular. Let $X_0 \subseteq X$ be a dense subset, $u_0: X_0 \to Y$ continuous, and suppose that for each $x \in X \setminus X_0$ the limit $u(x) := \lim_{y \to x, y \in X_0} u_0(y)$ exists. On X_0 define $u := u_0$. Then u is the unique continuous extension of u_0 to X.

Recall that **regular** means that every point $y \in Y$ has a neighbourhood base consisting of closed sets. The existence of $\lim_{y\to x, y\in X_0} u_0(y)$ means that the image filter base $u_0(\mathcal{U}_x \cap X_0)$ is convergent, where \mathcal{U}_x is the neighbourhood filter of x, and $\mathcal{U}_x \cap X_0 = \{U \cap X_0; U \in \mathcal{U}_x\}$. The limit is unique because Y is Hausdorff.

Proof of Proposition 9.3

Concerning the uniqueness, assume that u and \tilde{u} are continuous extensions of u_0 . Then the set $\{x \in X; u(x) = \tilde{u}(x)\}$ is closed (because the diagonal of $Y \times Y$ is closed) and contains X_0 , hence is equal to X.

To show the continuity of u, let $x \in X$, and let V be a closed neighbourhood of u(x). By hypothesis, there exists an open neighbourhood U of x such that $u_0(U \cap X_0) \subseteq V$. Then U is a neighbourhood of each of its points z; hence, $u(z) = \lim_{y\to z, y\in U\cap X_0} u_0(y) \in \overline{u_0(U\cap X_0)} \subseteq \overline{V} = V$. This shows that $u(U) \subseteq V$ and proves the continuity of u at x.

Proposition 9.4 Let E and F be topological vector spaces, $E_0 \subseteq E$ a dense subspace, F Hausdorff and complete, and let $u_0: E_0 \rightarrow F$ be a continuous linear mapping. Then there exists a unique continuous extension $u: E \rightarrow F$ of u_0 , and u is linear.

Proof

Note that *F* is regular, because the closed neighbourhoods of zero in *F* form a neighbourhood base of zero. Let U_0 be the neighbourhood filter of zero in *E*, and let $x \in E \setminus E_0$. Then

$$\mathcal{F}_x := (x + \mathcal{U}_0) \cap E_0 = \{ (x + U) \cap E_0; U \in \mathcal{U}_0 \}$$

is a filter in E_0 converging to x, hence a Cauchy filter. This implies that $u_0(\mathcal{F}_x)$ is a Cauchy filter base in F, hence convergent. Now Proposition 9.3 yields the existence and uniqueness of the continuous extension u of u_0 .

In order to show the linearity of *u* we let $\lambda \in \mathbb{K}$ and note that the set

$$\{(x, y) \in E \times E; u(\lambda x + y) = \lambda u(x) + u(y)\}$$

is a closed subset of $E \times E$ and contains the dense subset $E_0 \times E_0$, hence is equal to $E \times E$.

Proof of the uniqueness in Theorem 9.2

Assume that \tilde{E} and \hat{E} are completions, with embeddings $\tilde{j}_0: E \hookrightarrow \tilde{E}$, $\hat{j}_0: E \hookrightarrow \hat{E}$. Interpreting, for the moment, E as a subspace of \tilde{E} , we conclude from Proposition 9.4 that \hat{j}_0 extends uniquely to $\hat{j}: \tilde{E} \to \hat{E}$. Similarly, \tilde{j}_0 extends to $\tilde{j}: \hat{E} \to \tilde{E}$. As $\tilde{j} \circ \hat{j}$ is continuous, and is the identity on E, it follows that $\tilde{j} \circ \hat{j}$ is the identity on \tilde{E} ; hence $\hat{j}: \tilde{E} \to \hat{E}$ is an isomorphism.

The next part of the chapter serves to collect miscellaneous properties concerning completeness.

Proposition 9.5

- (a) Let $(E_{\iota})_{\iota \in I}$ be a family of topological vector spaces, and assume that E_{ι} is (quasi-) complete for all $\iota \in I$. Then $E := \prod_{\iota \in I} E_{\iota}$ is (quasi-)complete.
- (b) Let I be a set. Then \mathbb{K}^I is complete.
- (c) Let E be a vector space. Then $(E^*, \sigma(E^*, E))$ is complete.

Proof

(a) for 'complete': Let \mathcal{F} be a Cauchy filter in E. Then $pr_{\iota}(\mathcal{F})$ is a Cauchy filter base in E_{ι} , convergent to x_{ι} ($\iota \in I$). Then $\mathcal{F} \to (x_{\iota})_{\iota \in I} \in E$, by Proposition 4.6. The proof for 'quasi-complete' is analogous; observe that, for a bounded set $B \subseteq E$ the images $pr_{\iota}(B)$ are bounded ($\iota \in I$).

(b) is a direct consequence of (a).

(c) Recall that E^* is a closed subset of \mathbb{K}^E (Lemma 4.8) and that $\sigma(E^*, E)$ is the restriction of the product topology to E^* .

Besides being of interest in its own right, the following result serves to prepare the presentation of examples of quasi-complete spaces which are not complete.

Lemma 9.6 Let *E* be a barrelled locally convex space. Then $(E', \sigma(E', E))$ is quasicomplete.

Proof

Let $B \subseteq E'$ be $\sigma(E', E)$ -bounded and closed. Then *B* is equicontinuous (Theorem 6.14), i.e., there exists $U \in \mathcal{U}_0(E)$ such that $B \subseteq U^\circ$. By the Alaoglu–Bourbaki theorem, U° is $\sigma(E', E)$ -compact, and therefore complete. (If \mathcal{F} is a Cauchy filter in U° , $\hat{\mathcal{F}}$ a finer ultrafilter, then $\hat{\mathcal{F}}$ is convergent, $\hat{\mathcal{F}} \to x$; therefore *x* is a cluster point of $\mathcal{F}, \mathcal{F} \to x$.) This implies that *B* is complete.

Examples 9.7

(a) Let *E* be a Hausdorff locally convex space, and assume that there exists a linear subspace which is not closed. Then the dual pair $\langle E, E' \rangle$ is separating in *E*, and passing to the dual pair $\langle E, E^* \rangle$, we note that Corollary 2.10 implies that E' is $\sigma(E^*, E)$ -dense in E^* . It is not difficult to show that under the above hypotheses $E' \neq E^*$, and therefore $(E', \sigma(E', E))$ is not complete.

(b) Let *E* be an infinite-dimensional Banach space. Then $(E', \sigma(E', E))$ is quasicomplete, by Lemma 9.6, but part (a) shows that $(E', \sigma(E', E))$ is not complete. Indeed, it follows from Baire's theorem that countably infinite-dimensional subspaces of *E* are not closed. \triangle

The following result presents an interesting and surprising interplay concerning completeness in different topologies. It will be important and applied repeatedly in Chapter 14.

Theorem 9.8

Let *E* be a vector space, let $\sigma \subseteq \tau$ be two linear topologies on *E*, and assume that τ has a neighbourhood base of zero *U* consisting of σ -closed sets.

- (a) Let \mathcal{F} be a τ -Cauchy filter, $x \in E$, $\mathcal{F} \xrightarrow{\sigma} x$. Then $\mathcal{F} \xrightarrow{\tau} x$.
- (b) Let $A \subseteq E$ be σ -complete. Then A is also τ -complete.

Proof

(a) Let $U \in \mathcal{U}$. There exists $B \in \mathcal{F}$ such that $B - B \subseteq U$. For $y, z \in B$ one therefore has $y - z \in U$, and as U is σ -closed one obtains $y - x \in U$. This implies that $B \subseteq x + U$, and therefore $\mathcal{F} \xrightarrow{\tau} x$.

(b) This is clear from (a), because every τ -Cauchy filter is a σ -Cauchy filter.

The analogous result also holds for the 'sequential setup', with 'closed' replaced by 'sequentially closed', 'Cauchy filter' by 'Cauchy sequence', and 'complete' by 'sequentially complete'.

Example 9.9

Let $1 \leq p \leq \infty$. On ℓ_p let τ be the norm topology, and let σ be the restriction of the product topology on $\mathbb{K}^{\mathbb{N}}$.

The closed unit ball B_{ℓ_p} is easily seen to be sequentially σ -closed and sequentially σ -complete. Therefore the sequential version of Theorem 9.8 is applicable, and part (b) yields that B_{ℓ_p} (and therefore ℓ_p) is complete.

This (seemingly complicated) proof of the completeness of ℓ_p is nothing but an abstract version of the usual proof of the completeness of ℓ_p .

The next aim is to prove the following result.

Theorem 9.10

Let *E* be a quasi-complete locally convex space. Then every $\sigma(E', E)$ -bounded subset of *E'* is $\beta(E', E)$ -bounded, i.e., $\mathcal{B}_{\beta} = \mathcal{B}_{\sigma}$, in the terminology of the end of Chapter 6.

Before we start with the preparations for the proof we mention a consequence of this result.

Corollary 9.11 Let E be a quasi-complete quasi-barrelled locally convex space. Then E is barrelled.

Proof

We will use the terminology of the end of Chapter 6. The fact that *E* is quasi-barrelled is equivalent to $\mathcal{E} = \mathcal{B}_{\beta}$ (Theorem 6.8), whereas the quasi-completeness implies that $\mathcal{B}_{\beta} = \mathcal{B}_{\sigma}$ (Theorem 9.10). Putting this together we conclude that $\mathcal{E} = \mathcal{B}_{\sigma}$ which is equivalent to *E* being barrelled (Theorem 6.14).

Let (E, τ) be a locally convex space, and let $B \subseteq E$ be absolutely convex, bounded and closed. Define

$$E_B:=\bigcap_{n\in\mathbb{N}}nB=\lim B,$$

with semi-norm p_B . Then $(E_B, p_B) \hookrightarrow (E, \tau)$ is continuous (because B is bounded).

If p_B is a norm and (E_B, p_B) is a Banach space, then B is called a **Banach disc**. Note that p_B is a norm if E is Hausdorff.

Lemma 9.12 Let *E* be a locally convex space, and let $B \subseteq E$ be absolutely convex, bounded, closed and sequentially complete.

- (a) Then (E_B, p_B) is complete. In particular, if p_B is a norm, then B is a Banach disc.
- (b) Let $D \subseteq E$ be a barrel. Then D absorbs B.

Proof

(a) follows from the 'sequential version' of Theorem 9.8, applied to E_B , with $\sigma_{E_B} := \tau \cap E_B$, $\tau_{E_B} := \tau_{p_B}$. The conclusion is that the ball $B = \{x \in E_B; p_B(x) \leq 1\}$ is p_B -complete.

(b) (E_B, p_B) is semi-normed and complete, therefore a Baire space (see Appendix B), hence barrelled (Theorem 6.9). The set $D \cap E_B$ is a barrel in (E_B, p_B) , therefore a neighbourhood of zero, and therefore absorbs B.

Proof of Theorem 9.10

Let $B \subseteq E'$ be $\sigma(E', E)$ -bounded. Then B° is a barrel. If $A \subseteq E$ is bounded, then $A^{\circ\circ} = \overline{\text{aco}} A$ is closed and bounded, and therefore complete, by hypothesis. Then Lemma 9.12(b) implies that B° absorbs $A^{\circ\circ}$, and therefore $B \subseteq B^{\circ\circ}$ is absorbed by $(A^{\circ\circ})^{\circ} = A^{\circ}$. This shows that B is $\beta(E', E)$ -bounded.

With the following theorem we start the proof of the existence of the completion of a locally convex space; in fact, this theorem is the main ingredient of the proof and also provides a description of the completion.

Theorem 9.13 (Grothendieck)

Let E be a Hausdorff locally convex space. Let \mathcal{M} be a directed covering of E, consisting of bounded, closed, absolutely convex sets. Let

 $F := \{ u \in E^*; \ u \mid_A \text{ continuous } (A \in \mathcal{M}) \}.$

Then \mathcal{M} can be used to define a polar topology on F in the dual pair $\langle E, F \rangle$, and $(F, \tau_{\mathcal{M}})$ is a completion of $(E', \tau_{\mathcal{M}})$.

For the proof we need several preparations.

Lemma 9.14 Let *E* be a Hausdorff locally convex space, and let $A \subseteq E$ be absolutely convex and closed. Let $u \in E^*$, $u|_A$ continuous at 0, and let $\varepsilon > 0$. Then there exists $x' \in E'$ such that $|u(x) - \langle x, x' \rangle| \leq \varepsilon$ ($x \in A$).

Proof

It is clearly sufficient to show this for $\varepsilon = 1$.

The continuity of $u|_A$ at 0 implies that there exists an absolutely convex closed neighbourhood of zero $U \subseteq E$ such that $|u(x)| \leq 1$ ($x \in A \cap U$). The polar U^{\bullet} (taken in the dual pair $\langle E, E^* \rangle$) is a subset of E', $\sigma(E^*, E)$ -compact (by the Alaoglu–Bourbaki theorem) and absolutely convex. Therefore Lemma 7.3(b) implies that $A^{\bullet} + U^{\bullet}$ is $\sigma(E^*, E)$ -closed. Evidently, $A^{\bullet} + U^{\bullet}$ is also absolutely convex, and therefore $A^{\bullet} + U^{\bullet} = (A^{\bullet} + U^{\bullet})^{\bullet \bullet}$, by the bipolar theorem. Now,

$$u \in (A \cap U)^{\bullet} = (A^{\bullet \bullet} \cap U^{\bullet \bullet})^{\bullet} = (A^{\bullet} \cup U^{\bullet})^{\bullet \bullet} \subseteq (A^{\bullet} + U^{\bullet})^{\bullet \bullet} = A^{\bullet} + U^{\bullet}.$$

(In the second equality we have used Remark 3.3(c).)

This shows that there exist $w \in A^{\bullet}$, $x' \in U^{\bullet} \subseteq E'$ such that u = w + x', and this implies $|u(x) - x'(x)| = |w(x)| \leq 1$ for all $x \in A$.

Lemma 9.15 Let X be a topological space, $S \subseteq \mathcal{P}(X)$. Then the space

 $C_{\mathbf{b}}(X, \mathcal{S}) := \{ f : X \to \mathbb{K} ; f |_A \text{ bounded and continuous } (A \in \mathcal{S}) \},\$

with the semi-norms p_A ,

$$p_A(f) := \sup_{x \in A} |f(x)| \quad (f \in C_b(X, \mathcal{S}), \ A \in \mathcal{S})$$

is complete.

Proof

Without loss of generality we may assume that $\bigcup S = X$.

For $A \in S$ the space $C_b(A)$ (bounded continuous functions with sup-norm) is complete. Let \mathcal{F} be a Cauchy filter in $C_b(X, S)$. Then for $A \in S$ the image filter \mathcal{F}_A in $C_b(A)$ under the mapping $f \mapsto f|_A$ is a Cauchy filter, therefore convergent. This implies that there exists $g \in C_b(X, S)$ such that $\mathcal{F} \to g$. (Observe that for $A, B \in S$ with $A \cap B \neq \emptyset$ the limits g_A, g_B of $\mathcal{F}_A, \mathcal{F}_B$ coincide on $A \cap B$. Also, recall Proposition 4.6(b).)

Proof of Theorem 9.13

We work in the dual pair $\langle E, F \rangle$.

First we show that $\mathcal{M} \subseteq \mathcal{B}_{\sigma}(E, F)$ (which makes it clear that \mathcal{M} defines a polar topology on *F*). Let $A \in \mathcal{M}$, $u \in F$. There exists $U \in \mathcal{U}_0(E)$ such that $|u(x)| \leq 1$ ($x \in A \cap U$). Also, $\lambda A \subseteq U$ for suitable $\lambda \in (0, 1]$ (because *A* is bounded). For $x \in A$ it follows that $\lambda x \in A \cap U$, $|u(x)| \leq \frac{1}{\lambda}$. Therefore *A* is $\sigma(E, F)$ -bounded.

From Lemma 9.14 one concludes that E' is dense in F. (Recall that \mathcal{M} is directed. This implies that $\mathcal{U} := \{\varepsilon B_{q_A}; A \in \mathcal{M}, \varepsilon > 0\}$ is a neighbourhood base of zero for $\tau_{\mathcal{M}}$.)

Finally, $(F, \tau_{\mathcal{M}})$ is complete: $C_{b}(E, \mathcal{M})$ is complete, by Lemma 9.15, and id: $C_{b}(E, \mathcal{M}) \hookrightarrow \mathbb{K}^{E}$ is continuous (with the product topology on \mathbb{K}^{E}). Moreover E^{*} is a closed subspace of \mathbb{K}^{E} (Lemma 4.8). This shows that $F = C_{b}(E, \mathcal{M}) \cap E^{*}$ is closed in $C_{b}(E, \mathcal{M})$, hence complete. **Corollary 9.16 (Grothendieck)** *Let E* be a Hausdorff locally convex space, and recall the notation $\mathcal{E} = \{B \subseteq E'; B \text{ equicontinuous}\}$. *Then*

$$\tilde{E} := \{ u \in E'^*; \ u|_B \ \sigma(E', E) \text{-continuous} \ (B \in \mathcal{E}) \},\$$

with the polar topology $\tau_{\mathcal{E}}$, is a completion of E. In particular, E is complete if and only if $E = \tilde{E}$.

Proof

This is obtained by applying Theorem 9.13 to $(E', \sigma(E', E))$ and $\mathcal{M} := \{U^{\circ}; U \in \mathcal{U}_0(E)\}$. Then $(E', \sigma(E', E))' = E$, and $\tau_{\mathcal{M}} = \tau_{\mathcal{E}}$ is the original topology on E.

Remark 9.17 If one is just interested in the existence of a completion of a Hausdorff locally convex space E, one can proceed by a reduced method as follows. We only sketch this procedure and refer to [MeVo97, Proposition 22.21] for more details.

With a neighbourhood base of zero \mathcal{U} in E one equips

$$E'^{\times} := \left\{ u \in E'^*; u \mid_U \circ \text{ bounded } (U \in \mathcal{U}) \right\}$$

with the semi-norms $q_U \circ$,

$$q_{U^{\circ}}(u) := \sup \left\{ |\langle u, y \rangle|; y \in U^{\circ} \right\} \qquad (u \in E'^{\times}, U \in \mathcal{U}).$$

Then $E \subseteq E'^{\times}$ isomorphically, in the natural way, and E'^{\times} is complete; hence a completion of *E* is obtained as $\tilde{E} := \overline{E}^{E'^{\times}}$.

Corollary 9.18 (Banach) Let E be a Banach space, and let $u \in E'^*$ be $\sigma(E', E)$ -continuous on $B_{E'}$ (the closed unit ball of E'). Then u belongs to E.

Proof

By hypothesis, u is $\sigma(E', E)$ -continuous on all equicontinuous sets $B \subseteq E'$. Applying Corollary 9.16 and using that E is complete one obtains $u \in E$.

We conclude this chapter with a result on the completeness of dual spaces.

Theorem 9.19 Let *E* be a bornological locally convex space. Then $(E', \beta(E', E))$ is complete.

We need preparations for the proof.

Lemma 9.20 Let *E* be a topological vector space. Then a set $B \subseteq E$ is bounded if and only if, for every sequence $(x_n)_{n\in\mathbb{N}}$ in *B* and every null sequence $(\lambda_n)_{n\in\mathbb{N}}$ in \mathbb{K} , the sequence $(\lambda_n x_n)_{n\in\mathbb{N}}$ is a null sequence.

Proof

For the necessity, let (x_n) and (λ_n) be as assumed above, and let $U \in \mathcal{U}_0$. There exist $\varepsilon > 0$ such that $\lambda B \subseteq U$ for $|\lambda| \leq \varepsilon$, $n_0 \in \mathbb{N}$ such that $|\lambda_n| \leq \varepsilon$ $(n \ge n_0)$. Then $\lambda_n x_n \in U$ $(n \ge n_0)$.

For the sufficiency, assume that *B* is not bounded. Then there exists $U \in U_0$ such that $B \not\subseteq nU$ $(n \in \mathbb{N})$. With $x_n \in B \setminus nU$ one obtains $\frac{1}{n}x_n \notin U$ $(n \in \mathbb{N})$, $\frac{1}{n}x_n \neq 0$.

Lemma 9.21 Let E, F be locally convex spaces, $u: E \to F$ linear, $B \subseteq E$ bounded and absolutely convex, $u|_B$ continuous at 0. Then u(B) is bounded.

Proof

Let (x_n) be a sequence in B, (λ_n) a null sequence in \mathbb{K} . Then $\lambda_n x_n \in B$ for large n, $\lambda_n x_n \to 0$ by Lemma 9.20, and by hypothesis $\lambda_n u(x_n) = u(\lambda_n x_n) \to 0$ $(n \to \infty)$. Therefore Lemma 9.20 implies that u(B) is bounded.

Remark 9.22 In Lemma 9.21 (as well as in Lemma 9.14) a linear mapping *u* was used whose restriction to an absolutely convex set is continuous at 0. It can be shown that the continuity at 0 is equivalent to the continuity on the whole absolutely convex set; cf. [Hor66, Chap. 3, § 11, Lemma 1].

Proof of Theorem 9.19

We apply Theorem 9.13 with

 $\mathcal{M} := \{ A \subseteq E; A \text{ bounded, closed, absolutely convex} \};$

then $\tau_{\mathcal{M}} = \beta(E', E)$.

Let $u \in E^*$, $u|_A$ continuous for all $A \in \mathcal{M}$. By Lemma 9.21, u(A) is bounded for all $A \in \mathcal{M}$, and therefore Proposition 6.18 implies that u is continuous, i.e., $u \in E'$. Now Theorem 9.13 implies that $(E', \beta(E', E))$ is complete.

Remark 9.23 As metrisable locally convex spaces are bornological, Theorem 9.19 implies that the duals of the following spaces are complete: $C_0^{\infty}(\Omega)$, $\mathcal{E}(\Omega)$, for open $\Omega \subseteq \mathbb{R}^n$, $\mathcal{S}(\mathbb{R}^n)$, and C(X), for σ -compact Hausdorff locally compact spaces X.

Notes The material of this chapter, up to Lemma 9.12, is rather standard; Proposition 9.3 is from [Bou07c, Chap. I, §8.5, Théorème 1, p. I.57]. Theorem 9.8 is an interesting result which can be used to prove completeness of a set if completeness is known in a finer topology; its counterpart for uniform spaces can be found in [Bou07c, Chap. II, § 3.3, Proposition 7 and Corollaire]. Theorem 9.13 and Corollary 9.16 are due to Grothendieck [Gro50]. Following Horváth [Hor66, Chap. 3, § 11, Corollary 4], the author attributes Corollary 9.18 to Banach, although he did not find a direct reference to this result in Banach's publications. However, we will show in Remark 12.3 that it is an immediate consequence of another result of Banach's.