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Completeness

Completeness is a property of a topological vector space as a ‘uniform space’. We do
not explicitly use uniform spaces but mention that the linear structure allows to define
neighbourhoods of ‘uniform size’ for all x € E by taking the translates x 4+ U for
U € Uy(E). This allows to introduce the notion of Cauchy filters, and completeness
requires Cauchy filters to be convergent.

After some discussion on completeness and quasi-completeness, we come to
Grothendieck’s description of the completion of a locally convex space, Corollary 9.16,
as the main result of this chapter.

Let E be a topological vector space, A C E. A filter F in A is called a Cauchy
filter if for every U € Uy(E) there exists B € F suchthat B— B C U.

The set A C E is called complete if every Cauchy filter in A is convergent to an
element of A, and A is called sequentially complete if every Cauchy sequence in A
is convergent to an element of A. A sequence (x,) in E is called a Cauchy sequence
if the elementary filter generated by the sequence is a Cauchy filter, i.e., if for each
neighbourhood of zero U there exists ng € N such that x, — x,, € U for all m, n > ny.

The space E is called quasi-complete if every closed bounded subset of E is
complete.

Remarks 9.1 (a) If F is a filter in A, F convergent to x € A, then F is a Cauchy filter.
(Let U be a neighbourhood of zero. Then there exists a neighbourhood of zero V such that
V —V C U.Then (x + V)N A € F, by hypothesis, and one obtains ((x +V)n A) — ((x +
V)NA)CV-VCU)

(b) Let F be a Cauchy filter in A, and let x € A be a cluster point of F. Then F — x.
(Let U be a neighbourhood of zero, V a neighbourhood of zero with V. +V C U, B € F
with B — B C V (in particular, B € b+ V for all b € B). Then B N (x + V) # &, and
therefore BC BN(x+V)+V Cx+V +V C x4+ U. This shows that F — x.)

(c) If E is Hausdorff and A is complete, then A is closed. (For x € A there exists a filter
F in A with 7 — x. Then F is a Cauchy filter, which is convergent in A. Then x € A, as the
limit is unique.)
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(d) If A is complete and B C A is relatively closed in A, then B is complete. (If F is a
Cauchy filter in B, then F is a Cauchy filter base in A, which is convergent in A. Since B is
closed in A and B € F, every limit of F in A belongs to B.)

(e) If E is a topological vector space possessing a countable neighbourhood base of zero
(Un)nen, then E is complete if and only if E is sequentially complete. (For the necessity let
(xn) be a Cauchy sequence, i.e., the collection {{xk s k>n};ne N} is a Cauchy filter base,
and a limit of this filter base is also a limit of the sequence. For the sufficiency let F be a
Cauchy filter. Then there exists a decreasing sequence (B,), in F, B, — B, € U, (n e N).
For n € N choose x,, € B,. Then (x,) is a Cauchy sequence, which by hypothesis converges,
x, — x. Itis easy to see that then x is a cluster point of F, and therefore 7 — x, because
F is a Cauchy filter.)

(f) Let E be a metrisable locally convex space, and let d be a translation invariant metric
on E inducing the topology. Then E is complete if and only if the metric space (E, d)
is complete (i.e., E is a Fréchet space). This follows immediately from (e) above and the
property that (B4 (0, 1/n)),en is a countable neighbourhood base of zero.

(g) Let E, F be topological vector spaces, u: E — F linear and continuous, and let F
be a Cauchy filter in E. Then fil(u(F)) is a Cauchy filter in F. (If V is a neighbourhood of
zero in F, then u~' (V) is a neighbourhood of zero in E. Therefore, there exists A € F such
that A — A C u~'(V), and this implies that u(A) — u(A) Cu@™'(V)) S V. A

Theorem 9.2

Let E be a Hausdorff topological vector space. Then there exist a complete Hausdorff
topological vector space E such that E is isomorphic to a dense subspace of E. The
space E is unique up to isomorphism and is called the completion of E.

We will not prove the existence, but rather refer to [Hor66, Chap. 2, § 9, Theorem 1]
or [Sch71, Chap. I, § 1.5] for a proof. For locally convex space s we will give a proof
later in this chapter. However, we will prove the uniqueness, and for this property we
need the following preparations. The first of these is a fundamental fact from topology.

Proposition 9.3 Let X and Y be topological spaces, Y Hausdorff and regular. Let Xg € X
be a dense subset, ug: Xo — Y continuous, and suppose that for each x € X \ Xo the limit
u(x) = limy_,x yex, uo(y) exists. On Xg define u := ug. Then u is the unique continuous
extension of ug to X.

Recall that regular means that every point y € Y has a neighbourhood base
consisting of closed sets. The existence of limy_,, yex, #o(y) means that the image
filter base uo(U, N Xp) is convergent, where U, is the neighbourhood filter of x, and
U, N Xy ={U N Xo; U e U,}. The limit is unique because Y is Hausdorff.



73
Chapter 9 - Completeness

Proof of Proposition 9.3

Concerning the uniqueness, assume that # and & are continuous extensions of ug. Then the
set {x € X; ulx) = ﬁ(x)} is closed (because the diagonal of ¥ x Y is closed) and contains
Xo, hence is equal to X.

To show the continuity of u, let x € X, and let V be a closed neighbourhood
of u(x). By hypothesis, there exists an open neighbourhood U of x such that
uo(U N X9) < V. Then U is a neighbourhood of each of its points z; hence,
u(z) = limy—; yeunx, uo(y) € up(UN Xo) € V = V. This shows that u(U) € V
and proves the continuity of u at x. O

Proposition 9.4 Let E and F be topological vector spaces, Eo € E a dense subspace, F
Hausdorff and complete, and let ug: Eo — F be a continuous linear mapping. Then there
exists a unique continuous extension u: E — F of ug, and u is linear.

Proof
Note that F is regular, because the closed neighbourhoods of zero in F form a neighbourhood
base of zero. Let Uy be the neighbourhood filter of zero in E, and let x € E \ Ep. Then

= (x +Up) N Eo = {(x + U) N Eo; U € Uy}

is a filter in E( converging to x, hence a Cauchy filter. This implies that u((Fy) is a Cauchy
filter base in F', hence convergent. Now Proposition 9.3 yields the existence and uniqueness
of the continuous extension u of ug.

In order to show the linearity of u we let A € K and note that the set

{x,y) €E x E; u(x +y) = du(x) +u(y)}

is a closed subset of E x E and contains the dense subset Eg x Eog, hence is equal to
E x E. O

Proof of the uniqueness in Theorem 9.2

Assume that E and E are completions, with embeddings Jjo: E — E Jo: E — E.
Interpreting, for the moment, E as a subspace of E, we conclude from Proposition 9.4 that jo
extends uniquely to j: E— E. Similarly, jo extends to j: E—E.Asj J o J is continuous,
and is the identity on E, it follows that j o J is the identity on E; hence J: E — Eisan
isomorphism. O

The next part of the chapter serves to collect miscellaneous properties concerning
completeness.

Proposition 9.5

(a) Let (E\) s be a family of topological vector spaces, and assume that E, is (quasi-)
complete for all 1 € I. Then E := [],¢; E, is (quasi-)complete.

(b) Ler I be a set. Then K! is complete.

(c) Let E be a vector space. Then (E*, o (E*, E)) is complete.
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Proof
(a) for ‘complete’: Let F be a Cauchy filter in E. Then pr,(F) is a Cauchy filter base in
E,, convergent to x, (te ). Then F — (x,),c; € E, by Proposition 4.6. The proof for
‘quasi-complete’ is analogous; observe that, for a bounded set B C E the images pr,(B) are
bounded (¢t € I).

(b) is a direct consequence of (a).

(c) Recall that E* is a closed subset of KZ (Lemma 4.8) and that o (E*, E) is the
restriction of the product topology to E*. O

Besides being of interest in its own right, the following result serves to prepare the
presentation of examples of quasi-complete spaces which are not complete.

Lemma9.6 Let E be a barrelled locally convex space. Then (E',o(E', E)) is quasi-
complete.

Proof

Let B C E’ be o (E’', E)-bounded and closed. Then B is equicontinuous (Theorem 6.14),
i.e., there exists U € Uy(E) such that B C U°. By the Alaoglu-Bourbaki theorem, U°® is
o (E’', E)-compact, and therefore complete. (If F is a Cauchy filterin U°, Fafiner ultrafilter,
then F is convergent, F — x; therefore x is a cluster point of 7, 7 — x.) This implies that
B is complete. O

Examples 9.7
(a) Let E be a Hausdorff locally convex space, and assume that there exists a linear subspace
which is not closed. Then the dual pair (E, E’) is separating in E, and passing to the dual
pair (E, E*), we note that Corollary 2.10 implies that E’ is o (E*, E)-dense in E*. It is not
difficult to show that under the above hypotheses E’ # E*, and therefore (E’, o (E’, E)) is
not complete.

(b) Let E be an infinite-dimensional Banach space. Then (E’,o(E’, E)) is quasi-
complete, by Lemma 9.6, but part (a) shows that (E’, o (E’, E)) is not complete. Indeed,
it follows from Baire’s theorem that countably infinite-dimensional subspaces of E
are not closed. A

The following result presents an interesting and surprising interplay concerning
completeness in different topologies. It will be important and applied repeatedly in
Chapter 14.

Theorem 9.8

Let E be a vector space, let 0 C T be two linear topologies on E, and assume that t
has a neighbourhood base of zero U consisting of o-closed sets.

(a) Let F be a t-Cauchy filter, x € E, F % x. Then F 5 x.

(b) Let A C E be o-complete. Then A is also t-complete.
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Proof
(a) Let U € U. There exists B € F such that B — B C U. For y, z € B one therefore has
y —ze€U,and as U is o-closed one obtains y — x € U. This implies that B C x + U, and
therefore F — x.

(b) This is clear from (a), because every t-Cauchy filter is a o-Cauchy filter. O

The analogous result also holds for the ‘sequential setup’, with ‘closed’ replaced
by ‘sequentially closed’, ‘Cauchy filter’ by ‘Cauchy sequence’, and ‘complete’ by
‘sequentially complete’.

Example 9.9
Let 1 < p < 00.0n ¢, let T be the norm topology, and let o be the restriction of the product
topology on KN,

The closed unit ball By, is easily seen to be sequentially o-closed and sequentially o-
complete. Therefore the sequential version of Theorem 9.8 is applicable, and part (b) yields
that B, (and therefore £) is complete.

This (seemingly complicated) proof of the completeness of £, is nothing but an abstract
version of the usual proof of the completeness of £,. A

The next aim is to prove the following result.

Theorem 9.10
Let E be a quasi-complete locally convex space. Then every o (E’', E)-bounded subset
of E' is B(E', E)-bounded, i.e., Bg = B, in the terminology of the end of Chapter 6.

Before we start with the preparations for the proof we mention a consequence of this
result.

Corollary 9.11 Let E be a quasi-complete quasi-barrelled locally convex space. Then E is
barrelled.

Proof

We will use the terminology of the end of Chapter 6. The fact that E is quasi-barrelled is
equivalent to £ = Bg (Theorem 6.8), whereas the quasi-completeness implies that Bg = B
(Theorem 9.10). Putting this together we conclude that £ = B, which is equivalent to E
being barrelled (Theorem 6.14). O

Let (E, t) be a locally convex space, and let B € E be absolutely convex, bounded
and closed. Define

Ep:= ﬂnB =lin B,
neN

with semi-norm pg. Then (Eg, pg) < (E, 7) is continuous (because B is bounded).
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If pp is a norm and (Ep, pp) is a Banach space, then B is called a Banach disc.
Note that pp is a norm if E is Hausdorff.

Lemma9.12 Let E be a locally convex space, and let B C E be absolutely convex,
bounded, closed and sequentially complete.

(@) Then (Ep, pp) is complete. In particular, if pp is a norm, then B is a Banach disc.

(b) Let D C E be a barrel. Then D absorbs B.

Proof
(a) follows from the ‘sequential version’ of Theorem 9.8, applied to Eg, withog, := tNEpg,
TEy = Tpy. The conclusion is that the ball B = {x € Ep; pp(x) < 1} is pp-complete.

(b) (Ep, pp) is semi-normed and complete, therefore a Baire space (see Appendix B),
hence barrelled (Theorem 6.9). The set D N Ep is a barrel in (Ep, pp), therefore a
neighbourhood of zero, and therefore absorbs B. O

Proof of Theorem 9.10

Let B € E' be o(E’, E)-bounded. Then B° is a barrel. If A C E is bounded, then A°° =
aco A is closed and bounded, and therefore complete, by hypothesis. Then Lemma 9.12(b)
implies that B® absorbs A°°, and therefore B C B°° is absorbed by (A°°)° = A°. This
shows that B is B(E’, E)-bounded. O

With the following theorem we start the proof of the existence of the completion of
a locally convex space; in fact, this theorem is the main ingredient of the proof and also
provides a description of the completion.

Theorem 9.13 (Grothendieck)
Let E be a Hausdorff locally convex space. Let M be a directed covering of E,
consisting of bounded, closed, absolutely convex sets. Let

F:={ue€E*; u 4 continuous (A € M)}.

Then M can be used to define a polar topology on F in the dual pair (E, F), and
(F, Ttaq) is a completion of (E', Tprq).

For the proof we need several preparations.

Lemma9.14 Let E be a Hausdorff locally convex space, and let A C E be absolutely
convex and closed. Let u € E*, u , continuous at 0, and let ¢ > 0. Then there exists x' € E’
such that lu(x) — (x, x')| < e (x € A).

Proof
It is clearly sufficient to show this for ¢ = 1.
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The continuity of u 4, at O implies that there exists an absolutely convex closed
neighbourhood of zero U C E such that |u(x)| < 1 (x € ANU). The polar U® (taken in the
dual pair (E, E*)) is a subset of E’, o (E*, E)-compact (by the Alaoglu-Bourbaki theorem)
and absolutely convex. Therefore Lemma 7.3(b) implies that A® + U® is o (E*, E)-closed.
Evidently, A® + U® is also absolutely convex, and therefore A® + U® = (A® + U®)*®, by
the bipolar theorem. Now,

uE(AﬂU).=(A"ﬂU").=(A.UU.)"g(A'—I—U')":A.—{—U..

(In the second equality we have used Remark 3.3(c).)
This shows that there exist w € A®, x’ € U® C E’ such that u = w +x’, and this implies
lu(x) — x'(x)| = |lw(x)| < 1forall x € A. O

Lemma9.15 Let X be a topological space, S < P(X). Then the space
Cv(X,S) = {f: X — K; f 4 bounded and continuous (A ES)},
with the semi-norms pj,

pa(f) = Suglf(X)l (f€Cr(X,5), A€S)

is complete.

Proof
Without loss of generality we may assume that | JS = X.

For A € S the space Ch(A) (bounded continuous functions with sup-norm) is complete.
Let F be a Cauchy filter in Cp(X, S). Then for A € S the image filter 74 in C,(A) under
the mapping f +— f 4 is a Cauchy filter, therefore convergent. This implies that there exists
g € Cp(X, S) such that F — g. (Observe that for A, B € S with A N B # & the limits
g4, gp of Fa, Fp coincide on A N B. Also, recall Proposition 4.6(b).) O

Proof of Theorem 9.13
We work in the dual pair (E, F).

First we show that M C B, (E, F) (which makes it clear that M defines a polar topology
on F). Let A€ M, u € F. There exists U € Uy(E) such that [u(x)] < 1(x e ANU). Also,
LA C U for suitable A € (0, 1] (because A is bounded). For x € A it follows that Ax e ANU,
lu(x)| < /1\ Therefore A is o (E, F)-bounded.

From Lemma 9.14 one concludes that E’ is dense in F. (Recall that M is directed. This
implies that U := {quA ; AeM, g > 0} is a neighbourhood base of zero for T.)

Finally, (F,tarq) is complete: Cn(E, M) is complete, by Lemma 9.15, and
id: Ch(E, M) — KFE is continuous (with the product topology on K%). Moreover E*
is a closed subspace of KE (Lemma 4.8). This shows that F = Cy(E, M) N E* is closed in
Cy(E, M), hence complete. O
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Corollary 9.16 (Grothendieck) Let E be a Hausdorff locally convex space, and recall the
notation £ = {B CE';B equicontinuous}, Then

E:={ueE™; uyo(E' E)-continuous (B € £)},

with the polar topology tg, is a completion of E. In particular, E is complete if and only if
E=E.

Proof
This is obtained by applying Theorem 9.13 to (E', 6 (E’, E)) and M := {U®; U € Up(E)}.
Then (E’, 0 (E’, E)) = E, and Tpq = ¢ is the original topology on E. O

Remark 9.17 If one is just interested in the existence of a completion of a Hausdorff locally
convex space E, one can proceed by a reduced method as follows. We only sketch this
procedure and refer to [MeVo97, Proposition 22.21] for more details.

With a neighbourhood base of zero U in E one equips

E"™ = {u € E™; u ;o bounded (U € Z/l)}
with the semi-norms g0,
qyo (u) == sup {|(u, y)|; y € U°} weE™, Ueld).

Then E C E’* isomorphically, in the natural way, and E’* is complete; hence a completion
of E is obtained as E 1= E* . A

Corollary 9.18 (Banach) Let E be a Banach space, and let u € E™ be o (E', E)-continuous
on B (the closed unit ball of E"). Then u belongs to E.

Proof
By hypothesis, u is o (E’, E)-continuous on all equicontinuous sets B C E’. Applying
Corollary 9.16 and using that E is complete one obtains u € E. O

We conclude this chapter with a result on the completeness of dual spaces.

Theorem 9.19
Let E be a bornological locally convex space. Then (E', B(E’, E)) is complete.

We need preparations for the proof.

Lemma9.20 Let E be a topological vector space. Then a set B C E is bounded if and
only if, for every sequence (x,)nenN in B and every null sequence (Ay),eN in K, the sequence
(AnXn)nen is a null sequence.
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Proof

For the necessity, let (x,) and (},) be as assumed above, and let U € Uy. There exist ¢ > 0

such that A.B C U for |A| < &,n9 € N such that |A,| < & (n > ng). Then Ayx, € U (n = no).
For the sufficiency, assume that B is not bounded. Then there exists U € U such that

B & nU (n € N). With x, € B\ nU one obtains !x, ¢ U (neN), [ x, 4 0. O

Lemma9.21 Let E, F be locally convex spaces, u: E — F linear, B C E bounded and
absolutely convex, u g continuous at 0. Then u(B) is bounded.

Proof

Let (x,) be a sequence in B, (A,) a null sequence in K. Then A, x, € B for large n, A,x, —
0 by Lemma 9.20, and by hypothesis r,u(x,) = u(ipx,) — 0 (n — 00). Therefore
Lemma 9.20 implies that u(B) is bounded. O

Remark9.22 In Lemma 9.21 (as well as in Lemma 9.14) a linear mapping u was used
whose restriction to an absolutely convex set is continuous at 0. It can be shown that the
continuity at 0 is equivalent to the continuity on the whole absolutely convex set; cf. [Hor66,
Chap. 3, § 11, Lemma 1]. A

Proof of Theorem 9.19
We apply Theorem 9.13 with

M= {A C E; A bounded, closed, absolutely convex};

then Tpq = B(E’, E).

Let u € E*, u 4 continuous for all A € M. By Lemma 9.21, u(A) is bounded for all
A € M, and therefore Proposition 6.18 implies that u is continuous, i.e., u € E’. Now
Theorem 9.13 implies that (E’, B(E’, E)) is complete. O

Remark 9.23 As metrisable locally convex spaces are bornological, Theorem 9.19 implies
that the duals of the following spaces are complete: Ci°(£2), £(£2), for open & € R", S(R"),
and C(X), for o-compact Hausdorff locally compact spaces X. A

Notes The material of this chapter, up to Lemma 9.12, is rather standard; Proposi-
tion 9.3 is from [BouO7c, Chap. I, § 8.5, Théoreme 1, p. 1.57]. Theorem 9.8 is an
interesting result which can be used to prove completeness of a set if completeness is
known in a finer topologys; its counterpart for uniform spaces can be found in [Bou0O7c,
Chap. II, § 3.3, Proposition 7 and Corollaire]. Theorem 9.13 and Corollary 9.16 are due
to Grothendieck [Gro50]. Following Horvath [Hor66, Chap. 3, § 11, Corollary 4], the
author attributes Corollary 9.18 to Banach, although he did not find a direct reference to
this result in Banach’s publications. However, we will show in Remark 12.3 that it is an
immediate consequence of another result of Banach’s.
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