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Reflexivity

We start by discussing semi-reflexivity and Montel spaces and present a number of
examples of function spaces. At the end we present duality properties for reflexive
spaces and Montel spaces.

We recall from Chapter 3 that a locally convex space E is called semi-reflexive if
it is Hausdorff and the canonical embedding κ : E ↪→ E′′ is surjective. E is called
reflexive if additionally κ is continuous, where the image space is equipped with the
strong topology.

From Theorems 6.7 and 6.8 we know that (E, τ) is reflexive if and only if E is
semi-reflexive and quasi-barrelled, or equivalently (because always τ ⊆ β(E,E′), by
Proposition 6.4) if and only if E is semi-reflexive, and τ = β(E,E′), or equivalently
(by Theorem 6.14), if and only if E is semi-reflexive and barrelled.

This is the reason why in the following we will mainly discuss semi-reflexivity.

Theorem 8.1
Let E be a Hausdorff locally convex space. Then E is semi-reflexive if and only if every
bounded set in E is weakly relatively compact.

Proof
For the necessity we note that semi-reflexivity implies that β(E′, E) = μ(E′, E). Therefore,
if A ⊆ E is bounded, then A◦ is a μ(E′, E)-neighbourhood of zero, and there exists a
σ(E,E′)-compact barrel C ⊆ E such that A◦ ⊇ C◦. Then A ⊆ A◦◦ ⊆ C◦◦ = C.

For the sufficieny we note that the condition implies that β(E′, E) = μ(E′, E), which
in turn implies that (E′, β(E′, E))′ = (E′, μ(E′, E))′ = E. ��

Remark 8.2 Note that the condition in Theorem 8.1 is a generalisation of the known
criterion for the reflexivity of Banach spaces. 	
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A semi-Montel space is a Hausdorff locally convex space in which every bounded
set is relatively compact. (This terminology reminds of Montel’s theorem from complex
analysis; see Example 8.4(d).) A Montel space is a quasi-barrelled semi-Montel space.

Corollary 8.3 If E is a semi-Montel space, then E is semi-reflexive. If E is a Montel space,
then E is reflexive.

Proof
This is obvious from Theorem 8.1. ��

For use in the following example (b) we mention the notation C0(�), for the space
of continuous functions ‘vanishing at ∞’, on a Hausdorff locally compact space �:

C0(�) := {
f ∈ C(�) ; ∀ ε > 0 ∃ K ⊆ � compact : |f (x)| < ε (x ∈ � \ K)

}
.

For a function f ∈ C(�), the support is defined by spt f := {
x ∈ � ; f (x) �= 0

}
.

Examples 8.4
(a) The space s of rapidly decreasing sequences is a Fréchet–Montel space, i.e., a Fréchet
space which also is semi-Montel (hence Montel, because Fréchet spaces are barrelled).
Indeed, if (xk)k∈N is a bounded sequence in s, then one can choose a subsequence converging
in each coordinate, and it is easy to show that this subsequence is convergent in s. Hence s is
reflexive.

(b) Let � ⊆ R
n be open and bounded. Then

C∞
0 (�) := {

f ∈ C∞(�) ; ∂αf ∈ C0(�) (α ∈N
n
0)

}
,

with norms

pm(f ) := max
{‖∂αf ‖∞ ; |α| � m

}
(m ∈N0, f ∈ C∞

0 (�)),

is a Fréchet–Montel space, therefore reflexive.
Indeed, C∞

0 (�) is a Fréchet space. Also, every bounded set is relatively compact because
of the Arzelà–Ascoli theorem, and therefore the space is semi-Montel.

A partial description of the dual is given as follows. If η ∈ C∞
0 (�)′, then there exist

m ∈N0 and c � 0 such that |η(f )| � cpm(f ) (f ∈ C∞
0 (�)). The mapping

� : (C∞
0 (�), pm) → C0(�){α; |α|�m}, f �→ (

∂αf
)
|α|�m

,

is linear and isometric, and therefore the Hahn–Banach theorem implies that there exists
η̂ ∈ (

C0(�){α; |α|�m})′ such that η̂ ◦ � = η. The Riesz–Markov theorem (see [Rud87,
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Theorem 2.14]) implies that there exists a family
(
μα

)
|α|�m

of finite Borel measures on
� such that

η̂(g) =
∑

|α|�m

∫
gα dμα

(
g = (

gα

)
|α|�m

∈ C0(�){α; |α|�m}).

For f ∈ C∞
0 (�) this means that

η(f ) =
∑

|α|�m

∫
∂αf dμα =

( ∑

|α|�m

(−1)|α|∂αμα

)
f,

where the derivatives of the measures should be interpreted in the sense of distributions.
(Strictly speaking, the last formula would only be valid for f ∈ C∞

c (�), but the distributions
can be extended by continuity to f ∈ C∞

0 (�).)
(c) Let � ⊆ R

n be open. Then E(�) := C∞(�), with semi-norms

pK,m(f ) := max
{‖∂αf ‖K ; |α| � m

}
(K ⊆ � compact, m ∈N0, f ∈ E(�))

(where ‖ · ‖K denotes the sup-norm on K) is a Fréchet–Montel space, in particular reflexive.
Let

(
�k

)
k∈N be a standard exhaustion of �, i.e., �k is open, relatively compact in

�k+1 (k ∈ N ), and
⋃

k∈N �k = �. Define Kk := �k (k ∈ N ). Then any compact
subset of � is contained in some Kk ; hence the topology of E(�) is generated by the set{
pKk,m ; k ∈ N, m ∈ N0

}
; therefore E(�) is metrisable, and also it is complete. (Note

that, even though we use the standard exhaustion for the proof of the above properties, the
topology does not depend on the choice of the exhaustion.)

Next we sketch why E(�) is semi-Montel. As an intermediate step let k ∈ N0, and let
(fj ) be a sequence in E(�), supj

{‖∂lfj‖Kk+1 ; 1 � l � n
}

< ∞. Then the sequence (fj ) is
bounded on Kk+1 and equicontinuous on Kk , and by the Arzelà–Ascoli theorem there exists
a ‖·‖Kk -Cauchy subsequence. Now let (fj ) be a bounded sequence in E(�). This means that
supj pK,m(fj ) < ∞ for all compact K ⊆ �, m ∈ N0. Applying the previous remark and
a suitable diagonal procedure one obtains a subsequence which is a pK,m-Cauchy sequence
for all compact K ⊆ �, m ∈N0, i.e., a Cauchy sequence, and therefore convergent in E(�).

(d) Let � ⊆ C be open, H(�) := {
f : � → C ; f holomorphic

}
, with semi-norms

pK(f ) := ‖f ‖K (f ∈H(�), K ⊆ � compact).

Then H(�) is a Fréchet–Montel space, therefore reflexive.
The Montel property of H(�) is just Montel’s theorem, and for completeness we recall

its proof. Let H ⊆ H(�) be a bounded set. Let (�n) be a standard exhaustion of �, and for
n ∈N let Kn := �n. For all n ∈N one has

Cn := sup
{‖f ‖Kn ; f ∈ H

}
< ∞,
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and there exists rn > 0 such that Kn + BC [0, rn] ⊆ Kn+1. Then Cauchy’s integral formula
for the derivative,

f ′(z) = 1

2π i

∫

∂B(z,r)

f (ζ )

(ζ − z)2
dζ,

implies that |f ′(z)| � Cn+1(rn/2)−2 for all z ∈ Kn + BC (0, rn/2), f ∈ H , and this estimate
shows that HKn := {

f Kn
; f ∈ H

}
is equicontinuous. From the Arzelà–Ascoli theorem we

conclude that HKn is a relatively compact subset of C(Kn).
Now, starting with a sequence (fk) in H we can choose a subsequence (fkj )j∈N such

that
(
fkj Kn

)
j∈N converges in C(Kn) for all n ∈N, i.e., (fkj )j∈N is convergent in C(�). This

shows that H is relatively sequentially compact in the metric space H(�), hence relatively
compact.

(e) Let � ⊆ R
n be open,

H(�) := {
f ∈ C2(�) ; f harmonic

}
,

with semi-norms

pK(f ) := ‖f ‖K (K ⊆ � compact, f ∈ H(�)).

We recall that harmonic means that �f = ∑n
j=1 ∂2

j f = 0. We will explain that then H(�)

is a Fréchet–Montel space.
(i) Let P := ∑

|α|�m aα∂α be a partial differential operator with constant coefficients.
Then it is easy to see that the space

EP (�) := {
f ∈ E(�) ; Pf = 0

}

is a closed subspace of E(�), therefore a Fréchet–Montel space; see Theorem 8.8(b) below.
In the following we will sketch why H(�) = E�(�).

(ii) We recall that harmonic functions f have the mean value property, i.e., if x ∈ �,
r > 0 are such that B[x, r] ⊆ �, then

f (x) = 1

σn−1

∫

Sn−1

f (x + rξ) dS(ξ).

We refer to [Eva98, Section 2.2.2, Theorem 2] (or any other textbook on partial differential
equations) for this property.

(iii) Let
(
�k

)
k∈N be a standard exhaustion of �, Kk := �k , dk := dist(Kk,� \ �k+1),

and let ρk ∈ C∞
c (Rn), ρk � 0, spt ρk ⊆ B(0, dk ),

∫
ρk(x) dx = 1, ρk(x) = ρk(y) if |x| = |y|

(k ∈N ). Then, for f ∈ H(�), the convolution ρk ∗ f ,

ρk ∗ f (x) :=
∫

�k+1

ρk(x − y)f (y) dy,
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is defined for x ∈ �k , and in fact is equal to f (x), because of the mean value property of
f . Differentiating under the integral sign, one concludes that f is infinitely differentiable on
�k , and that

∂αf (x) =
∫

�k+1

∂αρk(x − y)f (y) dy (x ∈ �k, α ∈N
n
0).

(iv) From (iii) it follows that, for k ∈N, α ∈N
n
0 there exists a constant ck,α such that

‖∂αf ‖Kk � ck,α‖f ‖Kk+1 (f ∈ H(�)).

This shows that the topology on H(�) defined above is the topology induced by E(�).
Therefore the assertion follows from (i).

(f) The Schwartz space S(Rn), also called the space of rapidly decreasing functions,
is defined by

S(Rn) := {
f ∈ C∞(Rn); x �→ (1 + |x|2)m∂αf (x) bounded (m ∈N0, α ∈N

n
0)

}
,

with norms

pm,k(f ) := max
{
(1+|x|2)m|∂αf (x)| ; x ∈R

n, |α| � k
}

(m, k ∈N0, f ∈ S(Rn)).

It is standard to show that S(Rn) is a Fréchet space. Next we show that S(Rn) is a Montel
space.

Let m ∈ N0, (fk) a sequence with M := supk pm+1,m+1(fk) < ∞. We show that then
there exists a pm,m-Cauchy subsequence. Let ε > 0; choose R > 0 such that M

1+R2 < ε.
Then

sup
k

{
(1 + |x|2)m|∂αfk(x)| ; |x| � R, |α| � m

}
� ε.

For |α| � m the set
{
∂αfk ; k ∈ N

}
is ‖ · ‖∞-bounded and equicontinuous on B[0, R], and

therefore, by the Arzelà–Ascoli theorem, there exists a subsequence (fkj )j such that (∂αfkj )j

is ‖ · ‖∞-convergent on B[0, R], for all |α| � m. Repeating this argument for smaller and
smaller ε and choosing suitable subsequences, we obtain a pm,m-Cauchy subsequence.

If (fk) is a bounded sequence in S(Rn), then the previous procedure can be carried out
for arbitrary m ∈N, yielding a Cauchy sequence in S(Rn).

We mention the remarkable fact that S(R) is isomorphic to the space s;
see [MeVo97, Example 29.5(2)]. An analogous result for S(Rn) is presented in
[ReSi80, Theorem V.13]. 	

After these examples we come back to some further theory.
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Theorem 8.5
Let E be a reflexive Hausdorff locally convex space. Then the space (E′, β(E′, E)) is
reflexive.

Proof
Let τ be the topology of E. By hypothesis and Theorem 6.8, (E, τ) = (E′′, β(E′′, E′)).
Therefore E′′′ = (E′′, β(E′′, E′))′ = (E, τ)′ = E′, with β(E′′′, E′′) = β(E′, E). ��

Theorem 8.6
Let E be a Montel space. Then (E′, β(E′, E)) is a Montel space.

For the proof we need a preparation. Let E be a topological vector space. We define
the topology τc on E′ to be the topology of compact convergence, i.e., the polar
topology τMc corresponding to the collection Mc of compact subsets of E.

The fact proved next is, in principle, a property of a uniformly equicontinuous set of
functions on a uniform space; topological vector spaces are special uniform spaces. In
fact, part of the proof is just a generalised version of the proof of the following standard
property: If B is an equicontinuous set of functions on a compact metric space A, and
f ∈ B , ε > 0, then there exists a finite set F ⊆ A such that

{
g ∈ B ; sup

x∈F

|g(x) − f (x)| � ε/3
} ⊆ {

g ∈ B ; ‖g − f ‖∞ � ε
}
.

Proposition 8.7 Let E be a topological vector space, and let B ⊆ E′ be equicontinuous.
Then τc ∩ B = σ(E′, E) ∩ B.

Proof
The inclusion ‘⊇’ follows from τc ⊇ σ(E′, E). For ‘⊆’ it is sufficient to show: For y0 ∈ B

and compact A, there exists a finite set F ⊆ E such that

{
y ∈ B ; sup

x∈F

|〈x, y − y0〉| � 1/3
} ⊆ {

y ∈ B ; sup
x∈A

|〈x, y − y0〉| � 1
}
.

(This property expresses that each τc-neighbourhood in B of y0 contains a suitable σ(E′, E)-
neighbourhood in B of y0.) As B is equicontinuous, there exists a balanced U ∈ U0 such that

sup
x∈U, y∈B

|〈x, y〉| � 1/3.



Chapter 8 • Reflexivity

69 8

Due to the compactness of A, there exists a finite set F ⊆ A such that A ⊆ F + U . Now
let y ∈ B be such that supx̃∈F |〈x̃, y − y0〉| � 1/3. For x ∈ A there exists x̃ ∈ F such that
x − x̃ ∈ U , which implies that

|〈x, y − y0〉| � |〈x − x̃, y〉| + |〈x̃, y − y0〉| + |〈x̃ − x, y0〉| � 1;

hence supx∈A |〈x, y − y0〉| � 1. ��

Proof of Theorem 8.6
The space (E′, β(E′, E)) is reflexive, by Corollary 8.3, therefore barrelled. Let B ⊆ E′ be
β(E′, E)-bounded, convex and closed. Theorem 6.8 implies that B is equicontinuous, there-
fore σ(E′, E)-compact (by the Alaoglu–Bourbaki theorem). Now Proposition 8.7 implies
that B is τc-compact. Since E is a Montel space, τc ∩ E′ = β(E′, E), and therefore B is
β(E′, E)-compact. ��

Theorem 8.8
Let E be a locally convex space, F ⊆ E a closed subspace. Then:
(a) If E is semi-reflexive, then F is semi-reflexive.
(b) If E is a semi-Montel space, then F is a semi-Montel space.

Proof
(a) is a consequence of Theorem 8.1, because σ(F, F ′) = σ(E,E′) ∩ F (recall Corol-
lary 2.16).

(b) is obvious. ��

Remark 8.9 The analogue of Theorem 8.8 with ‘reflexive’ instead of ‘semi-reflexive’ or
‘Montel’ instead of ‘semi-Montel’ does not hold. There even exists a Montel space with
a non-reflexive closed subspace. We refer to [Sch71, Chap. IV, Exercises 19, 20] for an
example. 	

Notes The author was not able to trace the origins of (semi-)reflexivity and the
(semi-)Montel property in locally convex spaces. The examples are standard in analysis.
The isomorphy of S(R) and s, mentioned in Example 8.4(f) is due to Simon [Sim71,
Theorem 1]. Theorem 8.6 can be found in [Köt66, VI, § 27.2], [Sch71, Chap. IV, § 5.9].
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