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The Tikhonov and Alaoglu–Bourbaki
Theorems

The central result of this chapter is the Alaoglu–Bourbaki theorem: Polars of neigh-
bourhoods of zero in a locally convex space E are σ(E′, E)-compact subsets of E′. As
a consequence in a dual pair 〈E,F 〉 one concludes that, for a locally convex topology τ

on E with (E, τ)′ = F , one always has σ(E, F ) ⊆ τ ⊆ μ(E,F), where μ(E,F)

is the Mackey topology on E, corresponding to the collection of absolutely convex
σ(F,E)-compact subsets of F . As a prerequisite we show Tikhonov’s theorem, and
as a prerequisite to the proof of Tikhonov’s theorem we introduce filters describing
convergence and continuity of mappings in topological spaces.

Theorem 4.1 (Tikhonov)
Let (Xι)ι∈I be a family of compact topological spaces. Then the product

∏
ι∈I Xι is

compact.

We will prove this theorem here, even if it is rather part of general topology.
However, the proof gives us the opportunity to introduce the notion of filters, which
we will need anyway in the further treatment.

We recall that a topological space (X, τ) is called compact if every open covering
of X (i.e., every collection S ⊆ τ satisfying

⋃S = X) contains a finite subcovering
(i.e., a finite collection F ⊆ S such that

⋃F = X). Equivalently, X is compact if every
collection C of closed subsets of X with the finite intersection property (i.e.,

⋂F �= ∅

for all finite F ⊆ C) satisfies
⋂C �= ∅. Note that we use the notion of compactness in

the sense that a compact space need not be Hausdorff.
A subset C of a topological space (X, τ) is called compact if (C, τ ∩C) is compact.

(The topology τ∩C := {U∩C ; U ∈ τ} denotes the initial topology on C with respect to
the injection C ↪→ X, also called the induced topology.) If X is a Hausdorff topological
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space, and C is a compact subset, then it is easy to see that the complement of C is open,
i.e., that C is closed.

Let X be a set. A filter F in X is a non-empty collection F ⊆ P(X) satisfying the
following properties:

∅ /∈ F ;
if A ∈F , A ⊆ B ⊆ X, then B ∈F ;
if A, B ∈F , then A ∩ B ∈F .

A filter base F0 in X is a non-empty collection F0 ⊆ P(X) with:

∅ /∈ F0;
if A, B ∈F0, then there exists C ∈F0 such that C ⊆ A ∩ B .

If F0 is a filter base, then

fil(F0) := {
A ⊆ X ; there exists B ∈F0 such that B ⊆ A

}

is a filter, called the filter generated by F0. A filter F is called an ultrafilter if there is
no filter properly containing F .

Let now X be a topological space, F a filter in X, x ∈ X. Then F converges to x

(or x is a limit of F ), F → x, if Ux ⊆ F . If F0 is a filter base, then one also writes
F0 → x if the generated filter fil(F0) converges to x, i.e., if for all U ∈ Ux there exists
A ∈F0 with A ⊆ U . The point x is called a cluster point (also ‘accumulation point’) of
a filter F , if for all U ∈ Ux , A ∈F one has U ∩A �= ∅, or equivalently, if x ∈ ⋂

A∈F A.

Examples 4.2
Let X be a set.

(a) If x ∈ X, then F0 := {{x}} is a filter base. The generated filter is called the filter
fixed at x.

(b) If (xn) is a sequence in X, then F0 := {{xj ; j � n} ; n ∈ N

}
is a filter base. The

generated filter is called an elementary filter.
If additionally X is a topological space and x ∈ X, then F0 → x if and only if xn → x

as n → ∞.
(c) Let X be a topological space, x ∈ X. Then Ux is a filter (the neighbourhood filter

of x). �

Remarks 4.3 Let X be a set.
(a) If F is a filter in X, A ⊆ X such that A ∩ B �= ∅ for all B ∈ F , then obviously

{A ∩ B ; B ∈F} is a filter base, and the generated filter is finer than F (i.e., it contains F).
(b) Let F be a filter. Then F is an ultrafilter if and only if for all A ⊆ X one has A ∈F or

X \A ∈F . (Necessity: If A∩ B �= ∅ for all B ∈F , then (a) implies that there is a finer filter
containing A, and this filter is equal to F because F is an ultrafilter; thus A ∈ F . Otherwise
there exists B ∈ F such that A ∩ B = ∅, and then X \ A ∈ F . Sufficiency: The condition
implies that there is no finer filter.)
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(c) For every filter F in X there exists a finer ultrafilter. This is an immediate consequence
of Zorn’s lemma. (In the proof that a maximal element is an ultrafilter one uses (a) and (b).)

(d) If X is a topological space, F is an ultrafilter in X, and x ∈ X is a cluster point of F ,
then F → x. (If U ∈ Ux , then U ∩ A �= ∅ for all A ∈ F , therefore U ∈ F , because F is an
ultrafilter.) �

Remark 4.4 In our treatment we will use filters to discuss convergence and continuity in
topological spaces. Filters generalise sequences – see Example 4.2(b) – which are sufficient
for this purpose in metric spaces. (Another generalisation of sequences are ‘nets’, a notion
that we will not need.) The proof of Theorem 4.1 becomes particularly nice with filters, but
also for the discussion of completeness (Chapter 9) filters will be convenient. �

Proposition 4.5 Let X be a topological space. Then the following properties are equiva-
lent:

(i) X is compact;
(ii) every filter in X possesses a cluster point;

(iii) every ultrafilter in X is convergent.

Proof
(i) ⇒ (ii). Let F be a filter in X. Then the collection {A ; A ∈ F} has the finite intersection
property, and therefore

⋂
A∈F A �= ∅, i.e., F has a cluster point.

(ii) ⇒ (i). Let C ⊆ P(X) be a collection of closed sets with the finite intersection
property. Then F0 := {⋂A; A ⊆ C finite

}
is a filter base. The generated filter F has a

cluster point, i.e., ∅ �= ⋂
A∈F A = ⋂ C.

‘(ii) ⇒ (iii)’ is obvious, in view of Remark 4.3(d).
(iii) ⇒ (ii). If F is a filter in X, then there exists a finer ultrafilter; see Remark 4.3(c).

Every limit of this filter is a cluster point of F . �

Let X, Y be sets, f : X → Y , F a filter in X. Then f (F) := {f (A) ; A ∈ F} is a
filter base in Y , and the generated filter fil(f (F)) is called the image filter.

If F is an ultrafilter, then f (F) is an ultrafilter base. Indeed, for B ⊆ Y one has
f −1(B) ∈ F or f −1(Y \ B) ∈ F . In the first case one concludes that f (f −1(B)) ⊆
B ∈ fil(f (F)), in the second case that Y \ B ∈ fil(f (F)).

Proposition 4.6
(a) Let X,Y be topological spaces, x ∈ X, F a filter in X, F → x, f : X → Y continuous

at x. Then f (F) → f (x).
(b) Let X, Xι (ι ∈ I ) be topological spaces, fι : X → Xι (ι ∈ I ), and let the topology on X

be the initial topology with respect to (fι)ι∈I . Let x ∈ X, F a filter in X. Then F → x

if and only if fι(F) → fι(x) for all ι ∈ I .
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Proof
(a) Let V be a neighbourhood of f (x). Then f −1(V ) is a neighbourhood of x, and therefore
f −1(V ) ∈F . From f (f −1(V )) ⊆ V one then obtains V ∈ fil(f (F)).

(b) The necessity is clear from (a). For the sufficiency let U ∈ Ux . Then there exist a
finite set F ⊆ I and neighbourhoods Uι of fι(x) (ι ∈ I ) such that

⋂
ι∈F f −1

ι (Uι) ⊆ U .
There exists A ∈F such that fι(A) ⊆ Uι (ι ∈ F ). Therefore

A ⊆ f −1
ι (fι(A)) ⊆ f −1

ι (Uι) (ι ∈ F),

A ⊆
⋂

ι∈F

f −1
ι (Uι) ⊆ U.

�

Proof of Theorem 4.1
Without restriction all Xι �= ∅. Let F be an ultrafilter in

∏
ι∈I Xι. Then prι(F) is an

ultrafilter base in Xι, therefore convergent by Proposition 4.5, prι(F) → xι ∈ Xι (ι ∈ I ).
Then Proposition 4.6(b) implies that F → (xι)ι∈I . �

As in the case of Banach spaces Tikhonov’s theorem implies the Banach–Alaoglu
theorem, i.e., the closed dual ball is weak∗-compact, we now derive the corresponding
result for locally convex spaces.

Theorem 4.7 (Alaoglu–Bourbaki)
Let E be a locally convex space, U ⊆ E a neighbourhood of zero. Then U◦ ⊆ E′ is
σ(E′, E)-compact.

Lemma 4.8 Let E be a vector space. Then E∗ is closed in K
E with respect to the product

topology.

Proof
For λ ∈K, x, y ∈ E the mapping

ϕλ,x,y : KE → K, f �→ f (λx + y) − λf (x) − f (y)

is continuous. (Note that, for x ∈ E, the mapping K
E � f �→ f (x) ∈ K is one of the

projections defining the product topology.) Therefore E∗ = ⋂

λ∈K,x,y∈E

ϕ−1
λ,x,y (0) is closed. �

Proof of Theorem 4.7
Without loss of generality we may assume that U is absolutely convex. We note that x′ ∈ U◦
if and only if x′ ∈ E∗ and |〈x, x′〉| � pU(x) (x ∈ E). The condition is clearly sufficient. On
the other hand, if x′ ∈ U◦, x ∈ E, λ > pU(x), then 1

λ
x ∈ U , |〈 1

λ
x, x′ 〉| � 1, |〈x, x′ 〉| � λ;
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therefore, |〈x, x′ 〉| � pU(x). This implies that

U◦ = {
x′ ∈ E∗ ; |〈x, x′ 〉| � pU(x) (x ∈ E)

}

= {
f ∈K

E ; |f (x)| � pU(x) (x ∈ E)
} ∩ E∗

=
(∏

x∈E

BK [0, pU (x)]
)

∩ E∗.

Theorem 1.2 implies that the weak topology on E′ and the product topology on
∏

x∈E BK [0, pU (x)] are the restrictions of the product topology on K
E = ∏

x∈E K to
these sets. Because of Lemma 4.8 it therefore follows that U◦ is a closed subset of the
compact set

∏
x∈E BK [0, pU (x)]. �

Let 〈E, F 〉 be a dual pair. Let

Mμ := {
B ⊆ F ; B absolutely convex and σ(F,E)-compact

}
.

Obviously one has Mμ ⊆ Bσ (F,E). Then the polar topology

μ(E,F) := τMμ

on E is called the Mackey topology. The Mackey topology μ(F,E) on F is defined
correspondingly.

In the following Chapter 5 we will show that (E,μ(E,F ))′ = b2(F ), and that
μ(E,F) is the strongest topology with dual b2(F ), in the following sense: If 〈E,F 〉 is
a separating dual pair, then a locally convex topology τ on E is compatible with 〈E,F 〉
if and only if σ(E,F ) ⊆ τ ⊆ μ(E,F).

In the last statement, the necessity of the condition is easily obtained from our
treatment presented so far. If τ is compatible, the property σ(E, F ) ⊆ τ follows
from the definition of the topology σ(E, F ) (and Theorem 1.2), whereas the property
τ ⊆ μ(E,F) is a consequence of Theorem 4.7, as follows. The space (E, τ) possesses
a neighbourhood base of zero U consisting of closed absolutely convex sets; hence

M := {
U◦ ; U ∈ U} ⊆ Mμ,

by Theorem 4.7, and therefore τ = τM ⊆ τMμ
= μ(E,F).

The definition of Mμ suggests the question whether in a locally convex space the
closed absolutely convex hull of a compact set is again compact. Example 4.10 given
below shows that this is not always the case. We will show in Chapter 11 that it is
true if E is quasi-complete (Corollary 11.5). In particular it is true if E is a Banach
space (‘Mazur’s theorem’). In Chapter 14 we will show that it is also true for the weak
topology in a Banach space (‘Krein’s theorem’). However, it is always true that the
closed absolutely convex hull of a compact convex set is compact; this is the content of
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the following lemma. As a consequence one obtains μ(E,F) = τM′
μ

also for

M′
μ := {

B ⊆ F ; B convex and σ(F, E)-compact
}
.

Lemma 4.9 Let E be a topological vector space, and let A ⊆ E be a compact convex subset.
Then aco A is compact.

Proof
(i) If B ⊆ E is a balanced subset, then aco B = co B. This holds because

co B =
{ n∑

j=1

λjxj ; λ1, . . . , λn ∈ [0, 1],
n∑

j=1

λj = 1, x1, . . . , xn ∈ B, n ∈N

}

is easily seen to be balanced.
(ii) If K = R, then bal A = [−1, 1] · A ⊆ co(A ∪ (−A)), and the latter set is compact

(as the image of the compact set {(λ1, λ2) ∈ [0, 1]2 ; λ1 + λ2 = 1} × A × (−A) under
the continuous mapping (λ1, λ2, x1, x2) �→ λ1x1 + λ2x2). Hence aco A = co(bal A) ⊆
co(A ∪ (−A)) is compact.

(iii) If K = C, then

bal A = BC [0, 1] · A ⊆ √
2 co

(
A ∪ (iA) ∪ (−A) ∪ (−iA)

)
,

where again the latter set is compact. The remaining argument is as in (ii). �

Example 4.10 (cf. [Kha82, Chap. II, Example 10])
Consider the dual pair 〈cc, �1〉, where cc := lin{en ; n ∈N}, with the ‘unit vectors’ en in c0 (or
�1). The sequence

(
2nen

)
n

in �1 is σ(�1, cc)-convergent to 0; therefore B := {
2nen ; n ∈N

}∪
{0} is σ(�1, cc)-compact. For n ∈ N, the element yn := ∑n

j=1 ej = ∑n
j=1 2−j (2j ej )

belongs to co B. For a σ(�1, cc)-cluster point y = (yj ) of the sequence (yn), the coordinate
yj would have to be a cluster point of the sequence (yn

j )n, i.e., yj = 1 (j ∈ N ). However,
the element (1, 1, 1. . . . ) does not belong to �1. This shows that the sequence (yn)n does
not have a cluster point, and therefore the set co B is not relatively compact with respect to
σ(�1, cc). �

We include an additional information on metrisability in the context of the Alaoglu–
Bourbaki theorem.

Proposition 4.11 Let E be a separable locally convex space, U ⊆ E a neighbourhood of
zero. Then the topology σ(E′, E) is metrisable on U◦ ⊆ E′.

Proof
Let A ⊆ E be a countable dense set, and denote by ρ the initial topology on E′ with respect
to the family

(
E′ � x′ �→ 〈x, x′ 〉 ∈ K

)
x∈A

. Then ρ is coarser than σ(E′, E), and ρ is
metrisable, by Proposition 2.17 (where the denseness of A in E implies that ρ is Hausdorff).
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As (U◦, σ (E′, E) ∩ U◦) is compact by the Alaoglu–Bourbaki theorem, one concludes from
Lemma 4.12, proved below, that ρ ∩ U◦ = σ(E′, E) ∩ U◦. �

For completeness we recall (from general topology) the following important basic
observation concerning compactness.

Lemma 4.12 Let X,Y be topological spaces, X compact, Y Hausdorff, f : X → Y

continuous and bijective. Then f is a homeomorphism.

Proof
We only have to show that f is an open mapping. Let U ⊆ X be an open set. Then X \ U is
closed, hence compact. This implies that Y \ f (U) = f (X \ U) is compact, hence closed,
i.e., f (U) is open. �

Notes Tikhonov’s theorem is one of the basic theorems of topology, in some sense
the first result in the development of set theoretic topology which does not come
along with a straightforward ‘evident’ proof. Tikhonov (in early German transcription
“Tychonoff”) proved the theorem for compact intervals in [Tyc30] and mentioned later
that the proof carries over to the general case. The main result of this chapter, the
Alaoglu–Bourbaki theorem (Theorem 4.7), uses Tikhonov’s theorem. For the case of
normed spaces it usually is called the Banach–Alaoglu theorem, proved for the separable
case by Banach [Ban32, VIII, § 5, Théorème 3] and for the general case by Bourbaki
[Bou38, Corollaire de Théorème 1] (and shortly after by Alaoglu [Ala40, Theorem 1:3]).
The first appearance of the general case may be in a paper of Arens [Are47, proof of
Theorem 2]. (It is also contained in Bourbaki [Bou64b, Chap. IV, § 2.2, Proposition 2].)
The Mackey topology was first defined and used by Arens [Are47]; we use the notation
μ(E,F), for a dual pair 〈E,F 〉, thereby following Floret [Flo80]. (A more traditional
notation, used by many authors, would be τ(E, F ), and the author has been told the
reason for this notation: σ(E, F ) is the ‘beginning’ of the scale of compatible locally
convex topologies, and τ(E, F ) is the ‘end’; like one often uses [a, b] for intervals
in R, the idea is to use the neighbouring letters σ and τ in the Greek alphabet as the
ends of the ‘interval’. As we use ‘τ ’ quite generally for topologies, we prefer Floret’s
notation. Anyway, ‘σ ’ in weak topologies probably comes from the ‘s’ in the German
“schwach”. The earliest place where the author could localise the use of ‘σ(E, E′)’ for
the weak topology, is the note [Die40].)

Summarising the previous discussion, if the names given to theorems should indicate
their authors, then the Banach–Alaoglu theorem should be called ‘Banach–Bourbaki
theorem’, the Alaoglu–Bourbaki theorem should be called ‘Bourbaki–Arens theorem’,
and the Mackey topology should be called ‘Arens topology’ (although in the latter case
‘Arens–Mackey topology’ would be equally justified).

Concerning Lemma 4.9, we refer to [Edw65, Remark 8.13.4(3)].
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