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Weakly Compact Sets inL1(µ)

In view of the discussion of properties of weakly compact sets in the last chapters, it
seems appropriate to present examples of weakly compact sets in a non-reflexive space.
Besides the characterisation of weak compactness of subsets of L1(μ), we will also
show that L1(μ) is weakly sequentially complete.

In all of this chapter (�,A, μ) will be a measure space.
A set H ⊆ L1(μ) is called equi-integrable if H is bounded and for any

sequence (An) in A with An ⊇ An+1 for all n ∈ N and
⋂

n∈N An = ∅, one has
supf ∈H

∫
An

|f | dμ → 0 as n → ∞.
The main objective of this chapter is to prove the Dunford–Pettis theorem, which

asserts that weak relative compactness for a subset of L1(μ) is equivalent to equi-
integrability; see Theorem 15.4.

We warn the reader that the notion of equi-integrability (also sometimes called
‘uniform integrability’) in some references is defined without the requirement of
boundedness, and quite generally, there are various definitions of equi-integrability
around, not all equivalent.

For functions f, g : � → R we will use the notation [f > g] := {
x ∈ � ; f (x) >

g(x)
}
, and similarly for [f > 0], etc. In order to obtain another formulation of equi-

integrability where in the condition the terms
∫
An

|f | dμ are replaced by
∣
∣
∫

An
f dμ

∣
∣,

we make the following observation. For f ∈ L1(μ), A ∈ A there exists B ∈ A,
B ⊆ A such that

∫
A

|f | dμ � 4
∣
∣
∫
B

f dμ
∣
∣. To show this we first observe that∫

A
|f | dμ �

∫
A

| Re f | dμ+∫
A

| Im f | dμ, and without loss of generality we can assume
that

∫
A

| Im f | dμ �
∫

A
| Re f | dμ. Let A± := [± Re f > 0]; also without loss of

generality we may assume that − ∫
A− Re f dμ �

∫
A+ Re f dμ. Then with B := A+ one

obtains
∫

A

|f | dμ � 2
∫

A

| Re f | dμ � 4
∫

B

Re f dμ � 4
∣
∣
∣

∫

B

f dμ

∣
∣
∣.
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In what follows we will use the abbreviation An ↓ ∅ for a decreasing sequence (An)

of sets satisfying
⋂

n An = ∅.

Lemma 15.1 A set H ⊆ L1(μ) is equi-integrable if and only if it is bounded and for all
sequences (An) in A with An ↓ ∅ one has supf∈H

∣
∣
∫
An

f dμ
∣
∣ → 0 as n → ∞.

Proof
It is trivial that the equi-integrability of H implies the condition. The converse implication
will be proved by contraposition. Thus, assume that H is not equi-integrable. It is not
difficult to show that then there exist ε > 0, a sequence (Bn) in A, Bn ↓ ∅, and a
sequence (fn) in H such that

∫
Bn

|fn| dμ � 9
8ε and

∫
Bn+1

|fn| dμ � ε
8 for all n ∈ N.

Note that this implies that
∫
Bn\Bn+1

|fn| dμ � ε for all n ∈ N. Then, by the observation
preceding the lemma, for each n ∈ N there exists a set Cn ∈ A, Cn ⊆ Bn \ Bn+1 such that∣
∣
∫
Cn

fn dμ
∣
∣ � 1

4

∫
Bn\Bn+1

|fn| dμ � ε
4 . Defining An := ⋃∞

k=n Ck (n ∈N) we obtain An ↓ ∅

and

∣
∣
∣

∫

An

fn dμ

∣
∣
∣ �

∣
∣
∣

∫

An\An+1

fn dμ

∣
∣
∣ −

∫

An+1

|fn| dμ

�
∣
∣
∣

∫

Cn

fn dμ

∣
∣
∣ −

∫

Bn+1

|fn| dμ � ε

4
− ε

8
= ε

8
;

hence, supf ∈H

∣
∣
∫
An

f dμ
∣
∣ � ε

8 for all n ∈N. �	

In the proof that equi-integrability implies weak relative compactness we will use
the following weak compactness criterion for sets in Banach spaces.

Lemma 15.2 (Grothendieck) Let E be a Banach space, and let A ⊆ E. Assume that for all
ε > 0 there exists a weakly compact set Aε ⊆ E such that A ⊆ Aε + εBE . Then A is weakly
relatively compact.

Proof
Obviously A is bounded, and therefore A

σ(E′′ ,E′)
is σ(E′′, E′)-compact. It is sufficient to

show that A
σ(E′′,E′) ⊆ E. For ε > 0 one has

A
σ(E′′ ,E′) ⊆ Aε + εBE

σ(E′′,E′) ⊆ Aε + εBE′′ ,

where for the last inclusion we have used that Aε +εBE′′ is σ(E′′, E′)-compact. This implies
that

A
σ(E′′ ,E′) ⊆

⋂

ε>0

(Aε + εBE′′ ).

Given x ∈ A
σ(E′′ ,E′)

, one obtains sequences (xn) in E, (yn) in E′′, xn ∈ A1/n, ‖yn‖ � 1/n,
xn + yn = x (n ∈N ). From yn → 0 one concludes that xn → x (n → ∞), hence x ∈ E. �	
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In order to apply this criterion we have to deduce the required ε-approximation from
the equi-integrability. This will be provided by the following lemma.

Lemma 15.3 Let H ⊆ L1(μ) be equi-integrable. Then:
(a) For any ε > 0 there exists δ > 0 such that B ∈A, μ(B) < δ implies that

∫
B |f | dμ � ε

for all f ∈ H .
(b) For any ε > 0 there exists B ∈ A with μ(B) < ∞ such that

∫
�\B |f | dμ � ε for all

f ∈ H .
(c) For any ε > 0 there exist B ∈A with μ(B) < ∞ and n ∈N such that supf∈H

∫
(|f | −

n1B)+ dμ � ε.

Proof
(a) Assume that the assertion does not hold. Then there exists ε > 0 such that for all n ∈ N

one can find a set Bn ∈ A with μ(Bn) � 2−n and fn ∈ H such that
∫
Bn

dμ � ε. Then
B0 := ⋂

n∈N
⋃∞

k=n Bk is a μ-null set, and setting An := ( ⋃∞
k=n Bk

) \ B0 one obtains a
sequence (An) in A such that An ↓ ∅ and

∫
An

|fn| dμ �
∫
Bn

|fn| dμ � ε for all n ∈ N,
which contradicts the equi-integrability of H .

(b) Assume that the assertion does not hold. Then there exists ε > 0 such that for all
B ∈ A with μ(B) < ∞ one can find f ∈ H such that

∫
�\B |f | dμ > ε. This implies that

there exist a disjoint sequence (Bn) in A with μ(Bn) < ∞ for all n ∈ N and a sequence
(fn) in H such that

∫
Bn

|fn| dμ � ε for all n ∈ N. Setting An := ⋃
k�n Bk we obtain a

sequence (An) in A, An ↓ ∅, with
∫
An

|fn| dμ � ε for all n ∈ N, which contradicts the
equi-integrability of H .

(c) Let ε > 0. Because of part (b) above, there exists B ∈A with μ(B) < ∞ such that

∫

�\B
|f | dμ � ε/2 (f ∈ H). (15.1)

Define c := supf∈H ‖f ‖. By part (a), there exists δ > 0 such that
∫
A

|f | dμ < ε/2 for all
f ∈ H and all A ∈A with μ(A) < δ. For n ∈N, f ∈ H we obtain

c �
∫

[|f |>n

|f | dμ � nμ([|f | > n]).

For n > c/δ we conclude that μ(|f | > n]) � c/n < δ; hence

‖(|f | − n)+‖ =
∫

[|f |>n]
(|f | − n) dμ < ε/2 (f ∈ H, n > c/δ). (15.2)

Combining (15.1) and (15.2) we obtain the assertion. �	

We mention in passing that in fact a set H ⊆ L1(μ) is equi-integrable if and only
if H is bounded and the properties asserted in (a) and (b) of Lemma 15.3 are satisfied.
Another noteworthy consequence of part (b) is that an equi-integrable set H always
‘lives on a σ -finite subset of �’: There exists a σ -finite subset B ∈A such that f �\B =
0 for all f ∈ H .
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For one of the equivalences in the main result of this chapter we introduce the
following notation. For a disjoint sequence (Bn) in A we define the mapping

L(Bn) : L1(μ) → �1, f �→
( ∫

Bn

f dμ
)

n∈N
.

Obviously L(Bn) is a continuous linear operator, even a contraction.

Theorem 15.4 (Dunford–Pettis)
For H ⊆ L1(μ) the following properties are equivalent:

(i) H is equi-integrable;
(ii) H is weakly relatively compact;

(iii) for each disjoint sequence (Bn) in A the operator L(Bn) maps H to a relatively
compact subset of �1.

Proof
(i) ⇒ (ii). Let ε > 0. We choose B and n as asserted in Lemma 15.3(c). In L2(B,μB),
where μB denotes the restriction of the measure μ to A∩B, the set

{
f ∈ L2(μB); |f | � n

}

is bounded, convex and closed, hence weakly compact (because L2(μB) is reflexive).
The embedding L2(μB) ↪→ L1(μB) is continuous, hence, by Lemma 6.3, continuous
with respect to the weak topologies, and as a consequence the set

{
f ∈ L1(μ); |f | �

n1B

}
is weakly compact in L1(μ). The inequality in Lemma 15.3(c) shows that H ⊆

{
f ∈ L1(μ); |f | � n1B

} + BL1(μ)(0, ε). Now Lemma 15.2 implies that H is weakly
relatively compact.

(ii) ⇒ (iii). As L(Bn) : L1(μ) → �1 is a continuous operator, this operator is also
continuous with respect to the weak topologies; hence L(Bn)(H) is a weakly relatively
compact subset of �1, and Corollary 5.10 implies that L(Bn)(H) is relatively compact.

(iii) ⇒ (i). Let (An) be a sequence in A, An ↓ ∅. We define Bn := An \ An+1 (n ∈ N).
Then (Bn) is a disjoint sequence in A.

Clearly, L(Bn)(H) is bounded. Recall from Example 5.6(i) that the relative compactness
of L(Bn)(H) is equivalent to supf∈H

∑∞
k=n

∣
∣
∫
Bk

f dμ
∣
∣ → 0 as n → ∞. Observe that

∣
∣
∣

∫

An

f dμ

∣
∣
∣ �

∞∑

k=n

∣
∣
∣

∫

Bk

f dμ

∣
∣
∣ (f ∈ H, n ∈N).

Hence, Lemma 15.1 implies that H is equi-integrable. �	

As the second important result of the present chapter we show that L1(μ) is weakly
sequentially complete. For �1, this property had already been shown in Theorem 5.8;
see also Remark 5.9.
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Theorem 15.5
Let (fn) be a Cauchy sequence in L1(μ) with respect to the weak topology. Then (fn)

is weakly convergent.

Proof
Let (Bk) be a disjoint sequence in A. Then it is immediate that (L(Bk)fn)n is a weak Cauchy
sequence in �1; recall Lemma 6.3. Theorem 5.8 implies that (L(Bk)fn)n is convergent, and
therefore the range of the sequence is relatively compact in �1.

Now Theorem 15.4 shows that the set
{
fn ; n ∈ N

}
is weakly relatively compact.

This implies that the sequence (fn) possesses a weak cluster point. Being a weak Cauchy
sequence, it is convergent in the weak topology, by Remark 9.1(b). �	

We conclude this chapter by some additional comments.

Remarks 15.6 (a) It is not difficult to show that the equi-integrability of a set H ⊆ L1(μ)

is equivalent to the condition that for each ε > 0 there exists g ∈ L1(μ)+ such that
supf∈H

∫
[|f |>g] |f | dμ < ε.

Concerning the necessity of this condition, the function g can be found in the form g = c1B

for suitable c > 0 and B ∈A with μ(B) < ∞; see Lemma 15.3(c). The sufficiency is rather
immediate.

(b) Theorem 15.4 implies: If H ⊆ L1(μ) is weakly relatively compact, then the set

{
f ∈ L1(μ) ; there exists g ∈ H such that |f | � |g|}

is weakly relatively compact. In particular, for every g ∈ L1(μ)+ the order interval

[−g, g] := {
f ∈ L1(μ); − g � f � g

}

is weakly compact.
Similarly: If g ∈ L1(R)+, then the set {g( · − y); 0 � y � 1} is compact (because the

mapping y �→ g( · − y) is continuous); hence,

{
f ∈ L1(μ) ; |f | � g( · − y) for some y ∈ [0, 1]}

is weakly relatively compact. �

Notes Theorem 15.4 is due to Dunford and Pettis [DuPe40, Theorem 3.2.1].
Lemma 15.2 is attributed to Grothendieck in [Die84, XIII, Lemma 2]. With the aid
of this lemma the proof that equi-integrability implies weak relative compactness, in
Theorem 15.4, is rather natural. The author was at a loss for finding a short ‘measure
theory-free’ proof of the reverse implication, in the literature. The device to use
the operators L(Bn) in Theorem 15.4 is present in the original paper [DuPe40], for
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‘decompositions’ of the measure space. The weak sequential completeness of L1(μ),
Theorem 15.5, is due to Dunford and Pettis as well [DuPe40, p. 377].

Our definition of equi-integrability can be found implicitly in [DuSc58,
Theorem IV.8.9, Corollary IV.8.10 and their proofs]. The characterisation of equi-
integrability mentioned in Remark 15.6(a) is taken as the definition in [Bau90, § 21]
and appears in [Bog07, Theorem 4.7.20] as one of the equivalences of weak relative
compactness of a set.
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