119

Weakly Compact Sets in $L_1(\mu)$

In view of the discussion of properties of weakly compact sets in the last chapters, it seems appropriate to present examples of weakly compact sets in a non-reflexive space. Besides the characterisation of weak compactness of subsets of $L_1(\mu)$, we will also show that $L_1(\mu)$ is weakly sequentially complete.

In all of this chapter $(\Omega, \mathcal{A}, \mu)$ will be a measure space.

A set $H \subseteq L_1(\mu)$ is called **equi-integrable** if H is bounded and for any sequence (A_n) in \mathcal{A} with $A_n \supseteq A_{n+1}$ for all $n \in \mathbb{N}$ and $\bigcap_{n \in \mathbb{N}} A_n = \emptyset$, one has $\sup_{f \in H} \int_{A_n} |f| d\mu \to 0$ as $n \to \infty$.

The main objective of this chapter is to prove the Dunford–Pettis theorem, which asserts that weak relative compactness for a subset of $L_1(\mu)$ is equivalent to equiintegrability; see Theorem 15.4.

We warn the reader that the notion of equi-integrability (also sometimes called 'uniform integrability') in some references is defined without the requirement of boundedness, and quite generally, there are various definitions of equi-integrability around, not all equivalent.

For functions $f, g: \Omega \to \mathbb{R}$ we will use the notation $[f > g] := \{x \in \Omega; f(x) > g(x)\}$, and similarly for [f > 0], etc. In order to obtain another formulation of equiintegrability where in the condition the terms $\int_{A_n} |f| d\mu$ are replaced by $|\int_{A_n} f d\mu|$, we make the following observation. For $f \in L_1(\mu)$, $A \in \mathcal{A}$ there exists $B \in \mathcal{A}$, $B \subseteq A$ such that $\int_A |f| d\mu \leq 4 |\int_B f d\mu|$. To show this we first observe that $\int_A |f| d\mu \leq \int_A |\operatorname{Re} f| d\mu + \int_A |\operatorname{Im} f| d\mu$, and without loss of generality we can assume that $\int_A |\operatorname{Im} f| d\mu \leq \int_A |\operatorname{Re} f| d\mu$. Let $A_{\pm} := [\pm \operatorname{Re} f > 0]$; also without loss of generality we may assume that $-\int_{A_-} \operatorname{Re} f d\mu \leq \int_{A_+} \operatorname{Re} f d\mu$. Then with $B := A_+$ one obtains

$$\int_{A} |f| \, \mathrm{d}\mu \leq 2 \int_{A} |\operatorname{Re} f| \, \mathrm{d}\mu | \leq 4 \int_{B} \operatorname{Re} f \, \mathrm{d}\mu \leq 4 \Big| \int_{B} f \, \mathrm{d}\mu \Big|.$$

© Springer Nature Switzerland AG 2020

J. Voigt, A Course on Topological Vector Spaces, Compact Textbooks in Mathematics, https://doi.org/10.1007/978-3-030-32945-7_15 In what follows we will use the abbreviation $A_n \downarrow \emptyset$ for a decreasing sequence (A_n) of sets satisfying $\bigcap_n A_n = \emptyset$.

Lemma 15.1 A set $H \subseteq L_1(\mu)$ is equi-integrable if and only if it is bounded and for all sequences (A_n) in \mathcal{A} with $A_n \downarrow \emptyset$ one has $\sup_{f \in H} \left| \int_{A_n} f d\mu \right| \to 0$ as $n \to \infty$.

Proof

It is trivial that the equi-integrability of *H* implies the condition. The converse implication will be proved by contraposition. Thus, assume that *H* is not equi-integrable. It is not difficult to show that then there exist $\varepsilon > 0$, a sequence (B_n) in $\mathcal{A}, B_n \downarrow \emptyset$, and a sequence (f_n) in *H* such that $\int_{B_n} |f_n| d\mu \ge \frac{9}{8}\varepsilon$ and $\int_{B_{n+1}} |f_n| d\mu \le \frac{\varepsilon}{8}$ for all $n \in \mathbb{N}$. Note that this implies that $\int_{B_n \setminus B_{n+1}} |f_n| d\mu \ge \varepsilon$ for all $n \in \mathbb{N}$. Then, by the observation preceding the lemma, for each $n \in \mathbb{N}$ there exists a set $C_n \in \mathcal{A}, C_n \subseteq B_n \setminus B_{n+1}$ such that $\left| \int_{C_n} f_n d\mu \right| \ge \frac{1}{4} \int_{B_n \setminus B_{n+1}} |f_n| d\mu \ge \frac{\varepsilon}{4}$. Defining $A_n := \bigcup_{k=n}^{\infty} C_k (n \in \mathbb{N})$ we obtain $A_n \downarrow \emptyset$ and

$$\left| \int_{A_n} f_n \, \mathrm{d}\mu \right| \ge \left| \int_{A_n \setminus A_{n+1}} f_n \, \mathrm{d}\mu \right| - \int_{A_{n+1}} |f_n| \, \mathrm{d}\mu$$
$$\ge \left| \int_{C_n} f_n \, \mathrm{d}\mu \right| - \int_{B_{n+1}} |f_n| \, \mathrm{d}\mu \ge \frac{\varepsilon}{4} - \frac{\varepsilon}{8} = \frac{\varepsilon}{8}$$

hence, $\sup_{f \in H} \left| \int_{A_n} f \, d\mu \right| \ge \frac{\varepsilon}{8}$ for all $n \in \mathbb{N}$.

In the proof that equi-integrability implies weak relative compactness we will use the following weak compactness criterion for sets in Banach spaces.

Lemma 15.2 (Grothendieck) Let *E* be a Banach space, and let $A \subseteq E$. Assume that for all $\varepsilon > 0$ there exists a weakly compact set $A_{\varepsilon} \subseteq E$ such that $A \subseteq A_{\varepsilon} + \varepsilon B_E$. Then *A* is weakly relatively compact.

Proof

Obviously A is bounded, and therefore $\overline{A}^{\sigma(E'',E')}$ is $\sigma(E'',E')$ -compact. It is sufficient to show that $\overline{A}^{\sigma(E'',E')} \subseteq E$. For $\varepsilon > 0$ one has

$$\overline{A}^{\sigma(E'',E')} \subseteq \overline{A_{\varepsilon} + \varepsilon B_{E}}^{\sigma(E'',E')} \subseteq A_{\varepsilon} + \varepsilon B_{E''},$$

where for the last inclusion we have used that $A_{\varepsilon} + \varepsilon B_{E''}$ is $\sigma(E'', E')$ -compact. This implies that

$$\overline{A}^{\sigma(E'',E')} \subseteq \bigcap_{\varepsilon > 0} (A_{\varepsilon} + \varepsilon B_{E''}).$$

Given $x \in \overline{A}^{\sigma(E'',E')}$, one obtains sequences (x_n) in E, (y_n) in E'', $x_n \in A_{1/n}$, $||y_n|| \leq 1/n$, $x_n + y_n = x$ $(n \in \mathbb{N})$. From $y_n \to 0$ one concludes that $x_n \to x$ $(n \to \infty)$, hence $x \in E$. \Box

In order to apply this criterion we have to deduce the required ε -approximation from the equi-integrability. This will be provided by the following lemma.

Lemma 15.3 Let $H \subseteq L_1(\mu)$ be equi-integrable. Then:

- (a) For any $\varepsilon > 0$ there exists $\delta > 0$ such that $B \in \mathcal{A}$, $\mu(B) < \delta$ implies that $\int_{B} |f| d\mu \leq \varepsilon$ for all $f \in H$.
- (b) For any $\varepsilon > 0$ there exists $B \in \mathcal{A}$ with $\mu(B) < \infty$ such that $\int_{\Omega \setminus B} |f| d\mu \leq \varepsilon$ for all $f \in H$.
- (c) For any $\varepsilon > 0$ there exist $B \in \mathcal{A}$ with $\mu(B) < \infty$ and $n \in \mathbb{N}$ such that $\sup_{f \in H} \int (|f| n\mathbf{1}_B)^+ d\mu \leq \varepsilon$.

Proof

(a) Assume that the assertion does not hold. Then there exists $\varepsilon > 0$ such that for all $n \in \mathbb{N}$ one can find a set $B_n \in \mathcal{A}$ with $\mu(B_n) \leq 2^{-n}$ and $f_n \in H$ such that $\int_{B_n} d\mu \geq \varepsilon$. Then $B_0 := \bigcap_{n \in \mathbb{N}} \bigcup_{k=n}^{\infty} B_k$ is a μ -null set, and setting $A_n := (\bigcup_{k=n}^{\infty} B_k) \setminus B_0$ one obtains a sequence (A_n) in \mathcal{A} such that $A_n \downarrow \emptyset$ and $\int_{A_n} |f_n| d\mu \geq \int_{B_n} |f_n| d\mu \geq \varepsilon$ for all $n \in \mathbb{N}$, which contradicts the equi-integrability of H.

(b) Assume that the assertion does not hold. Then there exists $\varepsilon > 0$ such that for all $B \in \mathcal{A}$ with $\mu(B) < \infty$ one can find $f \in H$ such that $\int_{\Omega \setminus B} |f| d\mu > \varepsilon$. This implies that there exist a disjoint sequence (B_n) in \mathcal{A} with $\mu(B_n) < \infty$ for all $n \in \mathbb{N}$ and a sequence (f_n) in H such that $\int_{B_n} |f_n| d\mu \ge \varepsilon$ for all $n \in \mathbb{N}$. Setting $A_n := \bigcup_{k \ge n} B_k$ we obtain a sequence (A_n) in \mathcal{A} , $A_n \downarrow \emptyset$, with $\int_{A_n} |f_n| d\mu \ge \varepsilon$ for all $n \in \mathbb{N}$, which contradicts the equi-integrability of H.

(c) Let $\varepsilon > 0$. Because of part (b) above, there exists $B \in \mathcal{A}$ with $\mu(B) < \infty$ such that

$$\int_{\Omega \setminus B} |f| \, \mathrm{d}\mu \leqslant \varepsilon/2 \quad (f \in H).$$
(15.1)

Define $c := \sup_{f \in H} ||f||$. By part (a), there exists $\delta > 0$ such that $\int_A |f| d\mu < \varepsilon/2$ for all $f \in H$ and all $A \in A$ with $\mu(A) < \delta$. For $n \in \mathbb{N}$, $f \in H$ we obtain

$$c \ge \int_{[|f|>n} |f| \,\mathrm{d}\mu \ge n\mu([|f|>n]).$$

For $n > c/\delta$ we conclude that $\mu(|f| > n]) \leq c/n < \delta$; hence

$$\|(|f|-n)^+\| = \int_{[|f|>n]} (|f|-n) \,\mathrm{d}\mu < \varepsilon/2 \quad (f \in H, \ n > c/\delta).$$
(15.2)

Combining (15.1) and (15.2) we obtain the assertion.

We mention in passing that in fact a set $H \subseteq L_1(\mu)$ is equi-integrable if and only if *H* is bounded and the properties asserted in (a) and (b) of Lemma 15.3 are satisfied. Another noteworthy consequence of part (b) is that an equi-integrable set *H* always 'lives on a σ -finite subset of Ω ': There exists a σ -finite subset $B \in \mathcal{A}$ such that $f|_{\Omega \setminus B} =$ 0 for all $f \in H$.

For one of the equivalences in the main result of this chapter we introduce the following notation. For a disjoint sequence (B_n) in \mathcal{A} we define the mapping

$$L_{(B_n)}: L_1(\mu) \to \ell_1, \ f \mapsto \left(\int_{B_n} f \,\mathrm{d}\mu\right)_{n \in \mathbb{N}}.$$

Obviously $L_{(B_n)}$ is a continuous linear operator, even a contraction.

Theorem 15.4 (Dunford-Pettis)

For $H \subseteq L_1(\mu)$ *the following properties are equivalent:*

- (i) *H* is equi-integrable;
- (ii) *H is weakly relatively compact;*
- (iii) for each disjoint sequence (B_n) in \mathcal{A} the operator $L_{(B_n)}$ maps H to a relatively compact subset of ℓ_1 .

Proof

(i) \Rightarrow (ii). Let $\varepsilon > 0$. We choose *B* and *n* as asserted in Lemma 15.3(c). In $L_2(B, \mu_B)$, where μ_B denotes the restriction of the measure μ to $\mathcal{A} \cap B$, the set $\{f \in L_2(\mu_B); |f| \leq n\}$ is bounded, convex and closed, hence weakly compact (because $L_2(\mu_B)$ is reflexive). The embedding $L_2(\mu_B) \hookrightarrow L_1(\mu_B)$ is continuous, hence, by Lemma 6.3, continuous with respect to the weak topologies, and as a consequence the set $\{f \in L_1(\mu); |f| \leq n\mathbf{1}_B\}$ is weakly compact in $L_1(\mu)$. The inequality in Lemma 15.3(c) shows that $H \subseteq \{f \in L_1(\mu); |f| \leq n\mathbf{1}_B\} + B_{L_1(\mu)}(0, \varepsilon)$. Now Lemma 15.2 implies that *H* is weakly relatively compact.

(ii) \Rightarrow (iii). As $L_{(B_n)}: L_1(\mu) \rightarrow \ell_1$ is a continuous operator, this operator is also continuous with respect to the weak topologies; hence $L_{(B_n)}(H)$ is a weakly relatively compact subset of ℓ_1 , and Corollary 5.10 implies that $L_{(B_n)}(H)$ is relatively compact.

(iii) \Rightarrow (i). Let (A_n) be a sequence in \mathcal{A} , $A_n \downarrow \emptyset$. We define $B_n := A_n \setminus A_{n+1}$ $(n \in \mathbb{N})$. Then (B_n) is a disjoint sequence in \mathcal{A} .

Clearly, $L_{(B_n)}(H)$ is bounded. Recall from Example 5.6(i) that the relative compactness of $L_{(B_n)}(H)$ is equivalent to $\sup_{f \in H} \sum_{k=n}^{\infty} \left| \int_{B_k} f \, d\mu \right| \to 0$ as $n \to \infty$. Observe that

$$\left|\int_{A_n} f \,\mathrm{d}\mu\right| \leqslant \sum_{k=n}^{\infty} \left|\int_{B_k} f \,\mathrm{d}\mu\right| \qquad (f \in H, \ n \in \mathbb{N}).$$

Hence, Lemma 15.1 implies that H is equi-integrable.

As the second important result of the present chapter we show that $L_1(\mu)$ is weakly sequentially complete. For ℓ_1 , this property had already been shown in Theorem 5.8; see also Remark 5.9.

Theorem 15.5

Let (f_n) be a Cauchy sequence in $L_1(\mu)$ with respect to the weak topology. Then (f_n) is weakly convergent.

Proof

Let (B_k) be a disjoint sequence in A. Then it is immediate that $(L_{(B_k)}f_n)_n$ is a weak Cauchy sequence in ℓ_1 ; recall Lemma 6.3. Theorem 5.8 implies that $(L_{(B_k)}f_n)_n$ is convergent, and therefore the range of the sequence is relatively compact in ℓ_1 .

Now Theorem 15.4 shows that the set $\{f_n; n \in \mathbb{N}\}\$ is weakly relatively compact. This implies that the sequence (f_n) possesses a weak cluster point. Being a weak Cauchy sequence, it is convergent in the weak topology, by Remark 9.1(b).

We conclude this chapter by some additional comments.

Remarks 15.6 (a) It is not difficult to show that the equi-integrability of a set $H \subseteq L_1(\mu)$ is equivalent to the condition that for each $\varepsilon > 0$ there exists $g \in L_1(\mu)_+$ such that $\sup_{f \in H} \int_{[|f| > \varepsilon]} |f| d\mu < \varepsilon$.

Concerning the necessity of this condition, the function g can be found in the form $g = c\mathbf{1}_B$ for suitable c > 0 and $B \in \mathcal{A}$ with $\mu(B) < \infty$; see Lemma 15.3(c). The sufficiency is rather immediate.

(b) Theorem 15.4 implies: If $H \subseteq L_1(\mu)$ is weakly relatively compact, then the set

$$\{f \in L_1(\mu); \text{ there exists } g \in H \text{ such that } |f| \leq |g|\}$$

is weakly relatively compact. In particular, for every $g \in L_1(\mu)_+$ the order interval

$$[-g,g] := \left\{ f \in L_1(\mu); -g \leqslant f \leqslant g \right\}$$

is weakly compact.

Similarly: If $g \in L_1(\mathbb{R})_+$, then the set $\{g(\cdot - y); 0 \leq y \leq 1\}$ is compact (because the mapping $y \mapsto g(\cdot - y)$ is continuous); hence,

$$\left\{ f \in L_1(\mu); |f| \leq g(\cdot - y) \text{ for some } y \in [0, 1] \right\}$$

is weakly relatively compact.

Notes Theorem 15.4 is due to Dunford and Pettis [DuPe40, Theorem 3.2.1]. Lemma 15.2 is attributed to Grothendieck in [Die84, XIII, Lemma 2]. With the aid of this lemma the proof that equi-integrability implies weak relative compactness, in Theorem 15.4, is rather natural. The author was at a loss for finding a short 'measure theory-free' proof of the reverse implication, in the literature. The device to use the operators $L_{(B_e)}$ in Theorem 15.4 is present in the original paper [DuPe40], for

Δ

'decompositions' of the measure space. The weak sequential completeness of $L_1(\mu)$, Theorem 15.5, is due to Dunford and Pettis as well [DuPe40, p. 377].

Our definition of equi-integrability can be found implicitly in [DuSc58, Theorem IV.8.9, Corollary IV.8.10 and their proofs]. The characterisation of equiintegrability mentioned in Remark 15.6(a) is taken as the definition in [Bau90, \S 21] and appears in [Bog07, Theorem 4.7.20] as one of the equivalences of weak relative compactness of a set.