Precompact – Compact – Complete

This chapter is a short survey on the technical properties mentioned in the title, for subsets of topological vector spaces and locally convex spaces.

Let E be a topological vector space, $A \subseteq E$. The set A is called **precompact** if for all $U \in \mathcal{U}_0$ there exists a finite set $F \subseteq E$ such that $A \subseteq F + U$.

Remarks 11.1 (a) If A is precompact, then \overline{A} is precompact.

(b) If A is compact, then A is precompact.

(c) Subsets, scalar multiples and finite unions of precompact sets are precompact.

(d) If A is precompact, then A is bounded.

(e) The notion 'precompact' can be defined in the more general framework of uniform spaces. \triangle

Theorem 11.2

Let E be a topological vector space, $A \subseteq E$ *. Then the following properties are equivalent:*

- (i) A *is precompact;*
- (ii) *every filter in* A *possesses a finer Cauchy filter;*
- (iii) *every ultrafilter in* A *is a Cauchy filter.*

Proof

The equivalence '(ii) \Leftrightarrow (iii)' is clear, because every filter possesses a finer ultrafilter.

(i) \Rightarrow (iii). Let *F* be an ultrafilter in *A*, and let *U* ∈ *U*₀. Then there exists a finite set $F \subseteq E$ such that $A \subseteq F + U$. Using Remark 4.3(b) one concludes that one of the sets $(x + U) \cap A$ ($x \in F$) belongs to *F*. This implies that *F* is a Cauchy filter.

© Springer Nature Switzerland AG 2020

J. Voigt, *A Course on Topological Vector Spaces*, Compact Textbooks in Mathematics, https://doi.org/10.1007/978-3-030-32945-7_11

(ii) \Rightarrow (i). Assume that A is not precompact. Then there exists $U \in \mathcal{U}_0$ such that $A \setminus (F +$ U $\neq \emptyset$ for all finite sets $F \subseteq E$. Then the collection

$$
\{A \setminus (F+U); F \subseteq E \text{ finite}\}
$$

is a filter base, with a finer Cauchy filter *F*. There exists a set $B \in \mathcal{F}$ with $B - B \subseteq U$. For $x \in B$ one deduces that $B \subseteq x + U$, $(x + U) \cap A \in \mathcal{F}$. But also $A \setminus (x + U) \in \mathcal{F}$ by construction. Therefore

$$
\varnothing = (A \cap (x+U)) \cap (A \setminus (x+U)) \in \mathcal{F},
$$

a contradiction.

Theorem 11.3

Let E *be topological vector space,* $A \subseteq E$ *. Then* A *is compact if and only if* A *is precompact and complete.*

Proof

For the necessity the precompactness is clear. In order to prove the completeness, let *F* be a Cauchy filter. Then Proposition 4.5 implies that $\mathcal F$ possesses a cluster point $x \in A$. Then $\mathcal{F} \to x$, because \mathcal{F} is a Cauchy filter.

For the sufficiency let $\mathcal F$ be an ultrafilter in A. Then $\mathcal F$ is a Cauchy filter, by [Theorem 11.2,](#page-0-0) and therefore converges. Now Proposition 4.5 implies that A is compact. \square

Theorem 11.4

Let E *be a topological vector space,* $A \subseteq E$ *precompact.*

- (a) *Then* bal A *is precompact.*
- (b) *If* E *is locally convex, then* aco A *is precompact.*

Proof

(a) Let $U \in \mathcal{U}_0$ be balanced. There exists a finite set $F \subseteq E$ such that $A \subseteq F + U$. Then

$$
\text{bal } A = \bigcup_{|\lambda| \leq 1} \lambda A \subseteq \bigcup_{|\lambda| \leq 1} (\lambda F + \lambda U) \subseteq \text{bal } F + U.
$$

The set bal F is compact; therefore, there exists a finite set $B \subseteq E$ such that bal $F \subseteq B + U$, and so

bal $A \subseteq$ bal $F + U \subseteq B + (U + U)$.

Chapter 11 • Precompact – Compact – Complete

(b) Let $U \in U_0$ be absolutely convex. Then there exists a finite set $F \subseteq E$ such that $A \subseteq F + U$. The set

$$
\text{aco } F = \Big\{ \sum_{y \in F} \lambda_y y \, ; \, (\lambda_y) \in \mathbb{K}^F, \, \sum_{y \in F} |\lambda_y| \leq 1 \Big\}
$$

is compact, because it is the continuous image of the compact set

$$
\left\{ (\lambda_y)_{y \in F} \in \mathbb{K}^F; \sum_{y \in F} |\lambda_y| \leqslant 1 \right\}.
$$

Therefore there exists a finite set $B \subseteq E$ such that aco $F \subseteq B + U$.

Let $x \in \text{aco } A$. Then $x = \sum_{j=1}^{m} \mu_j x_j$, with $x_1, \ldots, x_m \in A$, $\sum_{j=1}^{m} |\mu_j| \leq 1$. Then $x_j = y_j + z_j$ with suitable $y_j \in F$, $z_j \in U$ ($j = 1, ..., m$); therefore

$$
x = \sum_{j=1}^{m} \mu_j x_j = \sum_{j=1}^{m} \mu_j y_j + \sum_{j=1}^{m} \mu_j z_j \in B + U + U.
$$

Hence aco $A \subseteq B + (U + U)$.

Corollary 11.5 *Let* E *be a quasi-complete topological vector space,* $A \subseteq E$ *compact.*

(a) *Then* bal A *is compact.*

(b) *If* E *is locally convex, then also* aco A *is compact.*

Proof

This is immediate from [Remark 11.1\(](#page-0-1)a) and [Theorems 11.3](#page-1-0) and [11.4.](#page-1-1) \square

Notes Theorems [11.3](#page-1-0) and [11.4](#page-1-1) are analogous to what is standard in metric spaces. The remaining facts contain useful information and preparations for later results. For the closed convex hull of a compact set in a Banach space, [Corollary 11.5](#page-2-0) is due to Mazur [Maz30].

 \Box