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Initial Topology, Topological Vector
Spaces, Weak Topology

The main objective of this chapter is to present the definition of topological vector spaces
and to derive some fundamental properties. We will also introduce dual pairs of vector
spaces and the weak topology. We start the chapter by briefly recalling concepts of
topology and continuity, thereby also fixing notation.

Let X be a set, τ ⊆ P(X) (the power set of X). Then τ is called a topology, and
(X, τ) is called a topological space, if

for any S ⊆ τ one has
⋃S ∈ τ ,

for any finite F ⊆ τ one has
⋂F ∈ τ .

(This definition is with the understanding that
⋃

∅ = ∅,
⋂

∅ = X, with the
consequence that always ∅,X ∈ τ .) Concerning notation, we could also write

⋃
S =

⋃

U∈S
U,

⋂
F =

⋂

A∈F
A.

If S = (Uι)ι∈I or F = (An)n∈N are families of sets, with N finite, then one can also
write

⋃{
Uι ; ι ∈ I

} =
⋃

ι∈I

Uι,
⋂{

An ; n ∈ N
} =

⋂

n∈N

An.

The sets U ∈ τ are called open, whereas a set A ⊆ X is called closed if X \ A is
open. For a set B ⊆ X we define

◦
B (= int B) := ⋃{U ; U ∈ τ, U ⊆ B}, the interior of B (an open set),

B (= cl B) := ⋂ {A ; A ⊇ B, A closed}, the closure of B (a closed set).
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For x ∈ X, a set U ⊆ X is called a neighbourhood of x if x ∈ ◦
U , and the collection

Ux := {U ⊆ X ; U neighbourhood of x}

is called the neighbourhood filter of x. (Note that U ∩ V ∈ Ux if U, V ∈ Ux .)
A neighbourhood base B of x is a collection B ⊆ Ux with the property that the
neighbourhood filter coincides with the collection of supersets of sets in B. (Note that
neighbourhoods need not be open sets.)

A topological space (X, τ) is called Hausdorff if for any x, y ∈ X, x �= y, there
exist neighbourhoods U of x, V of y such that U ∩ V = ∅.

If (X, d) is a semi-metric space, i.e., X is a set and the semi-metric d : X × X →
[0,∞) is symmetric and satisfies d(x, x) = 0 (x ∈ X) as well as the triangle inequality

d(x, y) � d(x, z) + d(z, y) (x, y, z ∈ X),

then d induces a topology τd on X: A set U ⊆ X is defined to be open if for all x ∈ U

there exists r > 0 such that B(x, r) ⊆ U , where

B(x, r) = BX(x, r) = Bd(x, r) := {
y ∈ X ; d(y, x) < r

}

is the open ball with centre x and radius r . The corresponding closed ball will be
denoted by

B[x, r] = BX[x, r] = Bd [x, r] := {
y ∈ X ; d(y, x) � r

}
.

(We mention that our definition of ‘semi-metric’ often runs under the name ‘pseudo-
metric’; we found our notation more convenient, as it is parallel to ‘semi-norm’,
mentioned later.) The topology τd is Hausdorff if and only if d is a metric, i.e.,
additionally to the previous properties one has that d(x, y) = 0 implies x = y.

A topological space (X, τ) is called (semi-)metrisable if there exists a (semi-)metric
on X such that τ = τd .

If τ ⊇ σ are topologies on a set X, then τ is said to be finer (or stronger) than σ , and
σ is said to be coarser (or weaker) than τ . The trivial topology {∅, X} is the coarsest
topology on X, and the discrete topology P(X), i.e., the collection of all subsets of X,
is the finest topology on X.

Let (X, τ), (Y, σ) be topological spaces, f : X → Y , x ∈ X. Then f is continuous
at x if f −1(V ) is a neighbourhood of x, for all neighbourhoods V of f (x). The mapping
f is called continuous, if f is continuous at every x ∈ X, and this is equivalent to the
property that f −1(V ) ∈ τ for all V ∈ σ . The mapping f is a homeomorphism, if f is
continuous and bijective, and the inverse f −1 : Y → X is also continuous.
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Remark 1.1 Let X be a set, � ⊆ P(P(X)) a set of topologies. Then it is easy to see that
⋂

� is a topology on X. In order to spell this out more explicitly, we note that

⋂
� =

⋂

τ∈�

τ = {
A ⊆ X ; A ∈ τ for all τ ∈ �

}
.

(In this case, because of the subscript ‘τ ∈ �’,
⋂

τ does not mean
⋂

U∈τ U .) 


Let X be a set, S ⊆ P(X). Then

topS :=
⋂

{τ ; τ topology on X, τ ⊇ S}

is the coarsest topology containing S, called the topology generated by S , and S is
called a subbase of topS.

If τ is a topology, B ⊆ τ , and for all U ∈ τ one has that

U =
⋃

{V ∈B ; V ⊆ U } ,

then B is called a base for τ . If S is a subbase of τ , then it is not difficult to show that

B :=
{⋂

F ; F ⊆ S, F finite
}

(1.1)

is a base of τ .
Let X be a set. Let I be an index set (i.e., a set whose elements we use as indices), and

for ι ∈ I let (Xι, τι) be a topological space and fι : X → Xι a mapping. The topology

top
{
f −1

ι (Uι) ; Uι ∈ τι, ι ∈ I
}

(1.2)

is the coarsest topology on X for which all mappings fι are continuous; it is called the
initial topology with respect to the family (fι ; ι ∈ I). A base of the initial topology is
given by

{⋂

ι∈F

f −1
ι (Uι) ; F ⊆ I finite, Uι ∈ τι (ι ∈ F)

}

; (1.3)

this is a consequence of (1.1) and (1.2).
The product topology on

∏
ι∈I Xι is the initial topology with respect to the family

(prι ; ι ∈ I) of the canonical projections. A base of the product topology is given by

{∏

ι∈F

Uι ×
∏

ι∈I\F
Xι ; F ⊆ I finite, Uι ∈ τι (ι ∈ F)

}

.

The following theorem is an important key result on initial topologies, which will be
used repeatedly in this treatise.
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Theorem 1.2
Let (Y, σ ), (X, τ), (Xι, τι) (ι ∈ I ) be topological spaces, g : Y → X, fι : X → Xι

(ι ∈ I ), τ the initial topology with respect to (fι ; ι ∈ I ). Let y ∈ Y . Then:
(a) g is continuous at y if and only if fι ◦ g is continuous at y (ι ∈ I ).
(b) g is continuous if and only if fι ◦ g is continuous (ι ∈ I ).
(c) The initial topology on Y with respect to g is the same as the initial topology with

respect to (fι ◦ g ; ι ∈ I ).

Proof
(a) The necessity is clear. In order to show the sufficiency, let U be a neighbourhood of
g(y). There exist a finite set F ⊆ I and Uι ∈ τι (ι ∈ F ) such that

⋂
ι∈F f −1

ι (Uι) ⊆ U is
a neighbourhood of g(y). (Recall that these sets constitute a base of the initial topology.)
Therefore, the set

g−1
( ⋂

ι∈F

f −1
ι

(
Uι)

)
=

⋂

ι∈F

g−1(f −1
ι (Uι)

) =
⋂

ι∈F

(fι ◦ g)−1(Uι)

is a neighbourhood of y, and is a subset of g−1(U).
(b) is a consequence of (a).
(c) is an immediate consequence of (b). ��

Next we define topological vector spaces and derive some basic properties.
Let E be a vector space over the field K (where K ∈ {R,C}), and let τ be a topology

on E. Then τ is called a linear topology, and (E, τ) is called a topological vector
space, if the mappings

a : E × E → E, (x, y) → x + y,
m : K × E → E, (λ, x) → λx

are continuous.
In a topological vector space (E, τ) we will denote the neighbourhood filter of zero

by U0 (or U0(E), or U0(τ)).

Examples 1.3
(a) A vector space E with the trivial topology τ = {∅, E} is a topological vector space.

(b) A vector space E �= {0} with the discrete topology is not a topological vector space.
Indeed, it is easy to see that the scalar multiplication m is not continuous.

(c) The scalars R and C are topological vector spaces.
(d) Normed and semi-normed spaces are topological vector spaces. 
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For more explanation on Example 1.3(d) we recall that a semi-norm p on a vector
space E is a mapping p : E → [0,∞) satisfying

p(x + y) � p(x) + p(y) (x, y ∈ E), the triangle inequality,
p(λx) = |λ|p(x) (x ∈ E, λ ∈K), i.e., p is absolutely homogeneous.

The semi-norm p gives rise to a semi-metric d on E, defined by d(x, y) := p(x − y)

(x, y ∈ E). Then the inequalities p((x + y) − (x0 − y0)) � p(x − x0) + p(y − y0)

and p(λx − λ0x0) � |λ|p(x − x0) + |λ − λ0|p(x0) (x, x0, y, y0 ∈ E, λ, λ0 ∈ K) show
the continuity of addition and scalar multiplication. The semi-metric d is a metric if and
only if p is a norm, i.e., if additionally p(x) = 0 implies x = 0, for x ∈ E.

In the following theorem we collect some basic properties of topological vector
spaces.

Theorem 1.4
Let (E, τ) be a topological vector space. Then:
(a) For all x ∈ E the mapping ax : E → E, y → x + y is a homeomorphism. The

topology τ is determined by a neighbourhood base of zero.
(b) For all λ ∈K \ {0} the mapping mλ : E → E, x → λx is a homeomorphism.
(c) Each U ∈ U0(E) is absorbing, i.e., for all x ∈ E there exists α > 0 such that

x ∈ λU for all λ ∈K with |λ| � α.
(d) For all U ∈ U0(E) there exists V ∈ U0(E) such that V + V ⊆ U .

Proof
(a) It is sufficient to show that the mapping ax is continuous. It is a consequence of
Theorem 1.2 (and the definition of the product topology on E × E) that the mapping

jx : E → E × E, y → (x, y)

is continuous. Then ax = a ◦ jx is continuous, because the addition a is continuous. The last
statement is then obvious. (Note that the topology is determined if for each point in the space
one knows a neighbourhood base.)

(b) Similarly to (a), we note that the mapping

jλ : E → K × E, x → (λ, x)

is continuous. Then the continuity of mλ = m ◦ jλ follows from the continuity of the scalar
multiplication m.

(c) Similarly to part (a) one shows that the mapping K � λ → λx ∈ E is continuous.
Therefore there exists α > 0 such that λx ∈ U for all λ ∈K with |λ| � α.

(d) Let U ∈ U0(E). Then, by the continuity of the addition at the point (0, 0), there exist
V1, V2 ∈ U0(E) such that V1 + V2 ⊆ U . Then V := V1 ∩ V2 is as asserted. ��
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Next we introduce the concept of dual pairs of vector spaces, a central notion in our
treatment.

A dual pair 〈E, F 〉 consists of two vector spaces E, F over the same field K and a
bilinear mapping b = 〈 · , · 〉 : E × F → K. The mapping b gives rise to mappings

b1 : E → F ∗, defined by b1(x) := 〈x, · 〉 (x ∈ E ),
b2 : F → E∗, defined by b2(y) := 〈 · , y〉 (y ∈ F ),

where E∗, F ∗ denote the algebraic duals of E,F , respectively. The dual pair is
separating in E if

x ∈ E, 〈x, y〉 = 0 (y ∈ F ) implies that x = 0, i.e., b1 is injective,

separating in F if

y ∈ F , 〈x, y〉 = 0 (x ∈ E ) implies that y = 0, i.e., b2 is injective,

and separating, if it is separating in E and F .
The weak topology σ(E, F ) on E with respect to the dual pair 〈E, F 〉 is defined

as the initial topology with respect to the family (〈·, y〉 ; y ∈ F); the weak topology
σ(F,E) on F is defined analogously.

If B ⊆ F is finite, then

UB := {
x ∈ E ; |〈x, y〉| < 1 (y ∈ B)

}

is a σ(E,F )-neighbourhood of zero. A σ(E, F )-neighbourhood base of zero is given
by

{
UB ; B ⊆ F finite

};

see Remark 1.6.
The following theorem is basic for the theory and important for the construction

of topological vector spaces; it shows (amongst other facts) that σ(E,F ) is a linear
topology.

Theorem 1.5
Let E be a vector space,

(
(Eι, τι); ι ∈ I

)
a family of topological vector spaces,

fι : E → Eι linear maps (ι ∈ I ), τ the initial topology on E with respect to (fι ; ι ∈ I ).
Then (E, τ) is a topological vector space.

Proof
First we show the continuity of the scalar multiplication m : K ×E → E. By Theorem 1.2 it
is sufficient to show that fι ◦ m : K × E → Eι is continuous for all ι ∈ I . For λ ∈K, x ∈ E,
one has

fι ◦ m(λ, x) = fι(λx) = λfι(x) = mι(λ, fι(x)),
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with mι denoting the scalar multiplication in Eι; therefore fι ◦ m = mι ◦ (idK ×fι). Noting
that Theorem 1.2 implies that idK ×fι : K × E → K × Eι is continuous we obtain the
assertion.

The continuity of the addition a in E is proved analogously: For ι ∈ I , the continuity of
fι ◦ a = aι ◦ (fι × fι) follows from the continuity of fι × fι : E × E → Eι × Eι and the
addition aι in Eι. ��

Remark 1.6 If, in the situation of Theorem 1.5, Uι is a neighbourhood base of zero, for all
ι ∈ I , then a neighbourhood base of zero for the initial topology on E is given by

{⋂

ι∈F

f −1
ι (Uι); F ⊆ I finite, Uι ∈ Uι (ι ∈ F)

}

.

This follows from (1.3) 


Examples 1.7
(a) The weak topologies σ(E,F) and σ(F,E), for a dual pair 〈E,F 〉, are linear topologies.

(b) Let E be a vector space, P a set of semi-norms on E. Then the initial topology τP on
E with respect to the mappings id : E → (E, p) (p ∈ P ) is called the topology generated
by P . Theorem 1.5 implies that τP is a linear topology.

(c) Let I be an index set. Then K
I , with the product topology τ , the initial topology with

respect to the projections prκ : KI → K, (xι)ι∈I → xκ , is a topological vector space, by
Theorem 1.5. With

cc(I ) := {
(yι)ι∈I ∈K

I ; {ι ∈ I ; yι �= 0} finite
}

we form the dual pair 〈KI , cc(I )〉 by defining the duality bracket

〈x, y〉 :=
∑

ι∈I

xιyι (x = (xι)ι∈I ∈K
I , y = (yι)ι∈I ∈ cc(I )).

Then τ = σ(KI , cc(I )). Indeed, it is evident that τ ⊆ σ(KI , cc(I )), because prκ x =
〈x, δκ 〉, where δκ ∈ cc(I ) is defined by δκκ := 1, δκι := 0 if ι �= κ . On the other hand, for each
y ∈ cc(I ), the mapping x → 〈x, y〉 is a finite linear combination of canonical projections,
hence continuous with respect to τ .

The product topology is also generated by the family of semi-norms (pκ)κ∈I , where
pκ(x) := |xκ | (x = (xι)ι∈I ∈K

I ).
(d) Let X be a topological space, E := C(X) the space of continuous functions

f : X → K. For compact K ⊆ X we define the semi-norm pK , by

pK(f ) := sup
x∈K

|f (x)| (f ∈ C(X)),
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and set

P := {
pK ; K ⊆ X compact

}
.

Then τP is the topology of compact convergence; it is a linear topology.
(e) Let

(
(Eι, τι); ι ∈ I

)
be a family of topological vector spaces, and let E := ∏

ι∈I Eι.
Then E, with the product topology, is a topological vector space. 


For a topological vector space (E, τ), the dual, or dual space, (E, τ)′ is defined as
the vector space of all continuous linear functionals on E. We will not always explicitly
specify the topology of a topological vector space E, and accordingly, we will denote
the dual of E by E′ if it is clear from the context to which topology on E we refer.

By definition, every linear functional 〈·, y〉, for y ∈ F , is continuous for σ(E, F );
the following result shows that the converse is also true.

Theorem 1.8
Let 〈E,F 〉 be a dual pair. Let η ∈ (E, σ (E,F))′. Then there exists y ∈ F such that
η(x) = 〈x, y〉 (x ∈ E). Expressed differently, one has (E, σ (E,F))′ = b2(F).

For the proof we need a preparatory lemma from linear algebra.

Lemma 1.9 Let E be a vector space, η, η1, . . . , ηn ∈ E∗,

n⋂

j=1

ker ηj ⊆ ker η.

Then there exist c1, . . . , cn ∈K such that η = ∑n
j=1 cj ηj .

Proof
(i) We start with a preliminary tool. Let F,G be vector spaces, f : E → F and g : E → G

linear, g surjective, and ker g ⊆ ker f . Then there exists f̂ : G → F linear, such that f =
f̂ ◦ g.

In fact, f̂ (g(x)) := f (x) (x ∈ E) is well-defined: If g(x) = g(x1), then x−x1 ∈ ker g ⊆
ker f , and therefore f (x) = f (x1). The linearity of f̂ is then easy.

(ii) Apply (i) with f = η, g = (η1, . . . , ηn) : E → g(E) ⊆ K
n, to obtain

f̂ : g(E) → K. There exists a linear extension f̂ : Kn → K, and this extension is of the
form

f̂ (y) =
n∑

j=1

cj yj (y ∈K
n),

with suitable (c1, . . . , cn) ∈K
n. Then η = f̂ ◦ (η1, . . . , ηn) = ∑n

j=1 cj ηj . ��
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Proof of Theorem 1.8
As η is continuous with respect to σ(E,F), there exists a finite set B ⊆ F such that

η(UB) = η
({

x ∈ E ; |〈x, y〉| < 1 (y ∈ B)
}) ⊆ BK (0, 1)

(the open unit ball in K), or expressed differently,

|η(x)| � max
y∈B

|〈x, y〉| (x ∈ E).

For x ∈ E with 〈x, y〉 = 0 (y ∈ B ) one concludes that η(x) = 0. From Lemma 1.9 we
conclude that there exist cy ∈K (y ∈ B ) such that

η =
∑

y∈B

cy 〈 · , y〉 = 〈 · ,
∑

y∈B

cyy〉. ��

Example 1.10
Coming back to E = K

I – see Example 1.7(c) – we note that Theorem 1.8 implies that
E′ = (

K
I , σ (KI , cc(I ))

)′ = cc(I ). 


From the definition it is clear that σ(E,E′) is the coarsest linear topology on E such
that E′ ⊇ b2(F ), and Theorem 1.8 expresses that for this topology one even has E′ =
b2(F ). Later we will also obtain a finest locally convex topology with this property; see
Chapter 5.

Notes The material of the present chapter is standard, and it is rather impossible to
give precise information where the contents originated. For the fundamental notions of
topology we refer to [Bou07c]; in particular, our Theorem 1.2 is as in [Bou07c, Chap. 1,
§ 3, Proposition 4].

Concerning topological vector spaces and in particular locally convex spaces we
include at this place a list of treatises on the subject, in principle in historical order:
[Ban32], [Edw65], [Köt66], [Hor66], [Sch71] (first edition 1966), [Trè67], [Gro73],
[RoRo73], [Rud91], [Wil78], [Bou07a] (new edition from 1981 of [Bou64a], [Bou64b]),
[Jar81] [MeVo97], [Osb14], [BoSm17]. The beginning is marked by Banach’s pio-
neering book. As mentioned in the preface, it was in the 1960s that the topic became
“fashionable” also for teaching, and the treatises are of varying character, volume and
focus. Wilansky’s contribution is notable for its richness of exercises and examples,
and we add Khaleelulla’s Lecture Notes [Kha82] to the list as an abundant and well
structured source of counterexamples.

The list indicated above contains only texts in which the main emphasis is on locally
convex topological vector spaces. Many books on Banach space theory, functional
analysis or operator theory contain also substantial parts on topological vector spaces.
As examples, we mention the encyclopedic volume [DuSc58] and the treatises [Yos80],
[Con90] and [Wer18].
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