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Abstract Astronomical images are of crucial importance for astronomers since
they contain a lot of information about celestial bodies that can not be directly
accessible. Most of the information available for the analysis of these objects starts
with sky explorations via telescopes and satellites. Unfortunately, the quality of
astronomical images is usually very low with respect to other real images and this
is due to technical and physical features related to their acquisition process. This
increases the percentage of noise and makes more difficult to use directly standard
segmentation methods on the original image. In this work we will describe how to
process astronomical images in two steps: in the first step we improve the image
quality by a rescaling of light intensity whereas in the second step we apply level-
set methods to identify the objects. Several experiments will show the effectiveness
of this procedure and the results obtained via various discretization techniques for
level-set equations.

Keywords Image segmentation · Level-set methods · Semi-lagrangian schemes ·
Finite difference schemes · Astronomical images

1 Introduction

Astronomical images are acquired by appropriate sensors, called CCDs (Charge-
Coupled Devices), that are able to generate an electric charge at each pixel. This
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charge is directly proportional to the electromagnetic radiation that affects the pixel
and is themeasure corresponding to the “brightness” of real optical images. A typical
feature of astronomical images is that they suffer from various types of noise which
make difficult to analyze them. Their noise percentage is usually much higher than
that of standard optical images since the value at every pixel does not correspond to the
flowof photons emitted from the light source, i.e. the real signal, but ismodified by the
disturbances in the acquisition process. Let us recall themost important disturbances:

• the noise related to the signal, modeled by a Poisson distribution with standard
deviation

√
ne, which is directly proportional to the flux emitted by the source

• the light coming from other celestial bodies and from the sky, i.e. the spurious
light collected by the telescope (the so-called sky background)

• the thermal noise, caused by overheating of the CCD sensors, which leads to
an increase of the thermal agitation and the generation of additional conduction
electrons;

• the readout noise, caused by the electronic components of the CCD and due to the
discrete nature of the signal.

The amount of noise present in the image is expressed mathematically in terms
of SN R (Signal to Noise Ratio), defined as the ratio between the power of the
represented signal and that of the estimated noise, considering all the components
previously listed. Larger values for this ratio correspond to images of better quality.
The original image can not be used for an accurate scientific analysis of the data as we
will see in the following sections. For that reason, a series of preprocessing steps are
performed to reduce the noise and improve the image quality. It has been shown that,
by increasing the exposure time of the sensors to light, the ratio between signal and
noise can be greatly increased. This improvement is directly proportional to

√
texp

but an exposure time that is too long can lead to a saturation of the pixels so this
procedure has to be carefully implemented. Furthermore, noise reduction operations
are performed on each image. Typical operations include masking the defective
pixels, subtracting the estimated value for the sky background and calibrating the
image, but one can also apply a standard (linear or nonlinear) filter as we will do
in our experiments. After these operations the value of the flow, with its relative
uncertainty, and the astronomical coordinates associated to each pixel are redefined.
Among the many other precautions that can be used, we emphasize that the most
recent astronomical instruments use cooling devices for the CCD sensors which
allow to reduce the readout noise. Despite the operations of calibration and noise
reduction and the wide variety of techniques that has been adopted, noise remains
one of the main components of the astronomical images. Due to the above steps
in the acquisition, the range for the admissible values for the astronomical images
is really different from the range of other kinds of images, e.g. it is common to
have negative values at some pixels after the subtraction of the sky background. A
final difference with respect to classical images is the format currently used to store
astronomical images. The most common format is FITS (Flexible Image Transport
System, [19]), introduced by the International Astronomical Union FITS Working
Group (IAUFWG) in1981andup-dated in 2016 to its fourth version.The introduction
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of a new format is due to the need of save different information related to the images
generated through CCD sensors, such as the angular coordinates of the portion of
sky observed or the zero-point magnitude of the sensor used. This makes necessary
to establish a common format, through which all the astronomers can interpret the
data in the same way. The format has been developed so that all files, even the oldest
ones, can be read from every machine, structuring files as a sequence of logical data.

To set this paper into perspective, let us mention some related contributions in
the literature. The problem of deblurring astronomic images produced by telescopes
is a classical and difficult problem in the astronomical community [12, 25, 30]. A
novel technique to reduce the distortion caused by the ground-level turbolence of
the atmosphere has been recently proposed in [17]. A similar goal has motivated the
development of a high-resolution speckle imaging technique presented in [14]. As
far as segmentation models is concerned, we mention that a modified version of the
Chan-Vese model [7] has been proposed and analyzed in [13], some results obtained
by a high-order splitting scheme are also presented there. It is interesting to note that
this is a region based method with a level-set representation that can be applied to
multispectral images.

In this paper we propose a strategy to analyze and segment astronomical images
via the level-set method introduced in [21]. Although the segmentation problem has
been investigated by many authors (see e.g the monographies [8, 20, 28] and the
references therein) and several successful applications have been reported in many
areas, level-set techniques are still not very popular in the astronomers community.
Most probably this is due to the above mentioned features of astronomical images
that make a direct application of these methods fail or give inaccurate results. Here
we propose a coupling between an appropriate rescaling technique and a standard
level-set methods to improve the global accuracy of the segmentation and increase
the number of celestial bodies that can be extracted from a single image. We also
add a filtering step to reduce the noise before segmenting. Hopefully, this will help
astronomers in their sky investigations.

The paper is organized as follows: In Sect. 2, we propose new different rescaling
transformations, adopted as the first two steps of our algorithm to improve the results
of the segmentation of astronomical images. We briefly recall in Sect. 3 the first
and second order equations related to level-set methods and the corresponding finite
difference and semi-Lagrangian schemes thatwe used for our numerical experiments,
at the beginning of this section we give some hints on the filtering step. Finally, in
Sect. 4, we present our complete Rescaling Segmentation Algorithm (RSA) and we
discuss in detail our numerical tests on simulated and real astronomical images. We
conclude with Sect. 5 where we summarize our final remarks and future perspectives.

2 Efficient Rescaling of Astronomical Images

Let us start describing the first step of the procedure we adopted to segment astro-
nomical images. It is useful to read astronomical images saved in the FITS format
in MATLAB, thanks to the command fitsread and transform them in the matrix for-
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mat that is common in image processing. The matrix I0 returned as output from the
function fitsread can take negative values due to the preprocessing techniques of cal-
ibration and reduction of noise applied to the images provided by the CCD sensors
(e.g. procedures as the calibration or the subtraction operation of the estimated sky
background).

We need to rescale the image values, defined on a rectangular domain �, with
� ⊂ R

2, in order to obtain real values in [0, 1]. Starting from the matrix I0, this is
done defining

˜I0 = I0(x, y) − m0

M0 − m0
, (1)

where
m0 := min

(x,y)∈�

I0(x, y) , M0 := max
(x,y)∈�

I0(x, y) .

The image ˜I0 obtained is still not ready for the segmentation since, in most cases,
is very dark and only few celestial bodies will be visible to the naked eye. For that
reason, we choose to transform the image, rescaling the values of the pixels bymeans
of an appropriate function that we will construct in the sequel.

2.1 Elevation to Power or Logarithmic Rescaling

We look for a rescaling function r : [0, 1] → R for the gray levels. Since these values
for the image ˜I0 obtained by (1) are in the range [0, 1], the function r must satisfy
the following conditions:

A1. r([0, 1]) ⊆ [0, 1]
A2. r(0) = 0, r(1) = 1
A3. r strictly increasing.

In other words, the rescaling transformation must keep the minimum and maximum
brightness points of the image unaltered and rescale the intermediate values, without
changing their ordering. Since the image is very dark,we alsowant the transformation
to amplify the brightness values. In mathematical terms, we require r to satisfy the
additional condition

A4. r(x) > x , ∀x ∈ [0, 1].
Clearly, several functions can satisfy the above four properties. A simple choice is
given by

r1(x) := xα , (2)

with α ∈ (0, 1) a fixed parameter.
Another function can be obtained by a logarithmic transformation of the form
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Fig. 1 Performance of the functions r1 and r2, by varying the parameter α ∈ (0, 1]

r2(x) :=
[

ln(x + 1)

ln 2

]α

, (3)

with α ∈ (0, 1). Both functions converge pointwise to the identity for α going to 1,
whereas for α going to 0 they converge pointwise to the function

r̃1(x) :=
{

0 if x = 0 ,

1 if x ∈ (0, 1] .
(4)

The latter transforms every brightness value, with the exception of the null one,
assigning it the value 1. After the rescaling, the brightness increases as α decreases.
The behavior of the two functions for different values of α is visible in Fig. 1.

In the numerical tests presented in Sect. 4, we will only show the results obtained
with the function r1, since for the same α, r2 gives almost identical results.

2.2 Rescaling with a Threshold

From our experiments on astronomical images (see Sect. 4) we have observed that
the proposed transformations r1 and r2 can be improved. As we said, astronomical
images are affected by a strong noise component and the rescaling has a significant
effect also on high brightness values due to the noise component. When these values
are rescaled, they result too high so the global effect is an amplification of the tone
differences with respect to the pixels closer to the real tone of the background. This
amplification can make the segmentation method fail, identifying artificial objects
that are not present in the real image. To avoid this undesired effect the rescaling
should distinguish the pixels of celestial bodies from those of the background: the
values of the formermust be amplified, while the othersmust be attenuated. A natural
idea is to introduce a threshold to determine the gray tones of the objects and, to be
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optimal, this threshold should be automatically identified by an algorithm. A good
choice for standard images is provided by the Otsu algorithm [22], so we decided to
use the value τ ∈ [0, 1) provided by this algorithm as a threshold. The new rescaling
transformation must still respect the properties A1–A3 of Sect. 2.1, in addition it has
to satisfy the condition

⎧

⎪

⎨

⎪

⎩

r(x) < x , if 0 < x < τ ,

r(τ ) = τ ,

r(x) > x , if τ < x < 1 ,

(A4τ )

and to be continuous at x = τ .
A rescaling function of this type can be obtained by considering the applications

xβ and x1/β , with β ∈ N \ {0}, respectively in the two subsets [0, τ ] and (τ, 1].
These functions have to be appropriately translated and expanded to respect all the
conditions. In this way, we obtain the function

r3(x) :=

⎧

⎪

⎨

⎪

⎩

xβ

τβ−1
, if 0 ≤ x < τ ,

(x − τ)1/β

(1 − τ)1/β−1
+ τ , if τ ≤ x ≤ 1 .

(5)

The behavior of r3 varying β ∈ N \ {0} is reported in Fig. 2. This function satisfies
the properties listed before, converges pointwise to the identity function forβ tending
to 1 and to the following function

r̃3(x) :=

⎧

⎪

⎨

⎪

⎩

0 , if 0 ≤ x < τ ,

τ , if x = τ ,

1 , if τ < x ≤ 1 ,

(6)

for β tending to +∞.

3 Segmentation via Level-Set Methods

Aswe said in the introduction, we follow the level-set (LS) approach to segmentation
problems obtained by the rescaling procedure described in the previous section. For
readers convenience let us briefly describe the main features of this approach. The
level-set method has been introduced by Osher and Sethian [21, 27] and since then it
has been widely used in many applications, e.g. fronts propagation, computer vision,
computational fluids dynamics (see [20, 28] for several interesting examples). Its
popularity is due to the simplicity in the implementation and its capability to follow
topological changes (splitting, merging) in time. Typical examples are when a planar
curve (or a multidimensional surface) splits into many parts or when several evolving
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Fig. 2 Behavior of the
function r3 by varying the
parameter β ∈ N \ {0}

curves (or surfaces) merge into a single one. This is the main reason for its popularity
also in the image processing community. For the segmentation problem the idea is
to define a normal vector field bringing an initial curve (e.g. a circle) onto the object
boundaries in an image.

Let us consider an image ˜I0 : � → [0, 1], with � ⊂ R
2 an open rectangular do-

main. Let us fix an initial curve γ0 ⊂ �. We want to track its evolution according
to the normal velocity and we define it so that it goes to zero (and therefore the
front stops) at the edges of the object to be identified. The methods based on this ap-
proach can be divided into two subclasses. In the methods belonging to the first class,
the speed depends on the gradient of the image ˜I0 at each point (x, y) ∈ �, since
the gradient provides a measure of the gray-level variation in the image and there-
fore it identifies the presence of edges. The second class of methods, introduced by
Chan and Vese [7], is inspired by a variational segmentation technique proposed by
Mumford and Shah [18] and is based on the minimization of a functional which al-
lows to partition the image in regions where there is a small variation of gray levels.
Lookingmore in details the first class, we have to solve an evolutiveHamilton–Jacobi
equation

{

ut (x, y, t) + c(x, y, t)|∇u(x, y, t)| = 0 , ∀(x, y, t) ∈ � × (0, T ] ,

u(x, y, 0) = u0(x, y) , ∀(x, y) ∈ �,
(7)

with u(·, ·, t) and u0 the representation function of the front at time t and at the initial
time, respectively, and c is the velocity function. Depending on the definition for c
(that in general may depend on x , t and the curvature), Eq. (7) will be a first or second
order equation. Several explicit definitions of c will be reported in Sect. 3.2. In order
to segment a given image ˜I0, we choose the initial front γ0 ⊂ � and its representation
function u0 : � → R. In particular, if we want to approximate the edges of the object
with a curve that expands from within, we choose u0 in such a way that, denoted by
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ω0 the region of the plane enclosed by the front γ0, with γ0 = ∂ω0 and ω0 open, we
put

⎧

⎪

⎨

⎪

⎩

u0(x, y) < 0 , ∀(x, y) ∈ ω0 ,

u0(x, y) = 0 , ∀(x, y) ∈ γ0 ,

u0(x, y) > 0 , ∀(x, y) ∈ � \ ω0 .

(8)

Conversely, if we want the front to contract, we can reverse the sign of the initial
representative or of the normal direction. Next, we fix the velocity of the front and we
solve the equation of the level-set method obtained by it: denoted by u its solution,
we obtain the front at time t > 0 as the 0-level-set of u(·, ·, t), that is

γt = {

(x, y) ∈ � | u(x, y, t) = 0
}

. (9)

Equation (7) is complemented with boundary conditions. We chose to use homoge-
neous Neumann conditions

∂u

∂η
(x, y, t) = 0 , ∀(x, y, t) ∈ ∂� × (0, T ] . (10)

The choice of the final time T to which numerically solve the Eq. (7) will have to
be carried out through a stopping criterion, which detects when the front is near
equilibrium, through the verification of a condition. In this paper, we will adopt the
following criterion: First, at each iteration we identify the grid nodes near the front
with respect to a fixed tolerance denoted by εF . More precisely, since the front at
time tn is the 0-level curve of the representation function, we define the approximate
front by means of Vn := {vni, j }, where vni, j is the value computed on the grid node
(xi , y j ) at time n. Our numerical front is given by

Fn ≡ {(xi , y j ) : |vni, j | ≤ εF }. (11)

Let us denote by F the set of indexes of the nodes that respect this condition and
with Vn,F the vector formed by the elements of Vn corresponding to them. Hence,
we fix an additional tolerance ε: the stopping condition of the numerical scheme will
be

∥

∥Vn+1,F − Vn,F
∥

∥

1 ≤ ε , (12)

with the norm ‖ · ‖1 defined by

∥

∥Vn+1,F − Vn,F
∥

∥

1 := �x2
∑

(i, j)∈F

∣

∣

∣vn+1
i, j − vni, j

∣

∣

∣ . (13)

In otherwords, we proceed to solve the scheme up to the (n + 1)-th iterationwhen the
representation has reached equilibrium with a tolerance ε at all the nodes belonging
to Fn .
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3.1 The Filtering Pre-processing Step

Let us analyze the first class of active contours methods. Since the edges of objects
are, in most cases, identified by large variations of gray tones in their neighborhood,
we can define the velocity of the front as a function of the gradient of the function ˜I0
that models the image. However, ˜I0 is a noisy image so in order to define its gradient
it is useful to add a filtering step on it. We did it in two different ways: by applying a
Gaussian filter, i.e. solving the heat equation with homogeneous Neumann conditions

⎧

⎪

⎪

⎨

⎪

⎪

⎩

It (x, y, t) = �I (x, y, t) , ∀(x, y, t) ∈ � × (0, TC ] ,
∂ I

∂η
(x, y, t) = 0 , ∀(x, y, t) ∈ ∂� × (0, TC ] ,

I (x, y, 0) = ˜I0(x, y) , ∀(x, y) ∈ � ,

(14)

which has a diffusive effect on the initial datum ˜I0, for a small fixed time Tc > 0 (in
the numerical tests, it is of the order of 10−3 or 10−4). Numerically, we solve (14)
by the standard centered finite difference scheme

I n+1
i, j = I ni, j + ˜�t

[

I ni+1, j + I ni, j+1 − 4I ni, j + I ni−1, j + I ni, j−1

�x2

]

, (15)

forward in time, with time step ˜�t > 0 and space steps�x = �y. In (15) I ni, j denotes
as usual the approximation of the gray level of the image at the pixel of coordinate
(i, j) and at time tn , whereas I 0i, j := ˜I0(xi , y j ) for every (i, j) ∈ I , set of indexes.
The required CFL condition for this numerical scheme is ˜�t ≤ �x2/4.

The consequence of applying theGaussianfilter is an edgeblurringdue to isotropic
diffusion. Choosing large values of |∇ I | as an indicator of the edge points of the
image, we would like to stop the diffusion at the edges, we pass from an isotropic to
an anisotropic diffusion, i.e.

It = div(∇ I ) is replaced by It = div( f (|∇ I |)∇ I ). (16)

This is the idea behind the Perona–Malik model [24] described by (16) and com-
plemented by suitable boundary conditions (e.g. homogeneous Neumann boundary
conditions), the initial condition is the original image. The anisotropic diffusion is
driven by f and two typical choices for the diffusion coefficient are:

f1(|∇ I |) = 1

1 +
(

|∇ I |
μ

)2 (17)

f2(|∇ I |) = exp
(

−
(

|∇ I |
μ

)2)

(18)
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whereμ is the gradientmagnitude threshold parameter. In our numerical simulations,
we will use the function f2. Let us denote by ˜I f ilt the solution of the problem (14)
or (16), filtered version of the image ˜I0.

3.2 Edge-Detector Functions

Wewant the velocity c of the front to vanish near the edges sowe introduce a function
g of |∇˜I f ilt |, called edge-detector, that has to satisfy the following conditions:

g : [0,+∞) → [0,+∞) is decreasing and lim
z→+∞ g(z) = 0 . (19)

In this way g(|∇˜I f ilt (x, y)|) will tend to 0 approaching the points (x, y) near the
edges to be identified, since at the edgeswe typically have very high values of |∇˜I f ilt |.
Higher values of g will correspond to points where |∇˜I f ilt | ≈ 0, i.e. to the regions
where the gray tones of the image are approximately constant. Two possible choices
for the edge-detector function are the following:

g1(z) := 1

1 + z p
, ∀z ∈ [0,+∞) , p ≥ 1, (20)

proposed in [6] with p = 2, and in [16] with p = 1, and

g2(z) := 1 − z − m

M − m
, ∀z ∈ [0,+∞) , (21)

where
m := min

(x,y)∈�
|∇˜I f ilt (x, y)| , M := max

(x,y)∈�
|∇˜I f ilt (x, y)|

defined in [16]. Practically, the values of g1(|∇˜I f ilt (x, y)|) vary between (1 + M)−1

and (1 + m)−1, whereas the values of g2(|∇˜I f ilt (x, y)|) are between 0 (for |∇˜I f ilt | =
M) and 1 (for |∇˜I f ilt | = m).

Let us discuss some typical choices for the velocity c. A simple choice is to make
c dependent just on the point

c(x, y, t) := g(x, y) , ∀(x, y) ∈ � . (22)

In this way, using the notation g(x, y) := g(|∇˜I f ilt (x, y)|), the problem to solve
becomes

⎧

⎪

⎨

⎪

⎩

ut (x, y, t) + g(x, y)|∇u(x, y, t)| = 0 , ∀(x, y) ∈ �, ∀t ∈ (0, T ] ,
∂u
∂η

(x, y, t) = 0 , ∀(x, y) ∈ ∂� , ∀t ∈ (0, T ] ,

u(x, y, 0) = u0(x, y) , ∀(x, y) ∈ � ,

(23)
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with u0 the representation function of the initial front. This is the isotropic case and
the corresponding equation is a first-order Hamilton–Jacobi equation of eikonal type.

Another popular choice is to use a velocity that, at each point (x, y), depends on
the geometric properties of the front, e.g. its curvature k(x, y). This choice is more
complicated since the velocity will also depend on u, hence on t . Following [1, 15],
we consider a curvature dependent velocity

c(x, y, t) := g(x, y) (1 − νk(x, y)) , ∀(x, y) ∈ �, (24)

where ν > 0 is a fixed parameter. The factor g(x, y) causes that the front stops near
the edges. The parameter ν (typically less than 1) weighs the speed dependency on
the curvature. Since the curvature is given by

k(x, y) = div

( ∇u(x, u, t)

|∇u(x, y, t)|
)

, ∀(x, y) ∈ �, (25)

the level-set corresponding equation is the second order Hamilton–Jacobi equation

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

ut (x, y, t) + g(x, y)|∇u(x, y, t)| = νg(x, y)div
(

∇u(x,u,t)
|∇u(x,y,t)|

)

|∇u(x, y, t)| ,
∀(x, y) ∈ �, ∀t ∈ (0, T ] ,

∂u
∂η

(x, y, t) = 0 , ∀(x, y) ∈ ∂� , ∀t ∈ (0, T ] ,

u(x, y, 0) = u0(x, y) , ∀(x, y) ∈ �,

(26)
with the same boundary conditions and initial datum as in (23). The term in the
second member has a diffusive effect on the solution: consequently, this type of
scheme can be useful for segmenting images characterized by noise. Note that, in
practice, the function g is not necessarily equal to 0 at all points on the edges of the
objects, even if it takes very small values. The stopping rule (12) allows to control
the numerical scheme so that the evolution stops at time T whenever the velocity is
below a given threshold.

In order to get a numerical solution of (23) and (26) in our tests we will use a
finite difference scheme (FD) and a semi-Lagrangian scheme (SL), so we will be
able to compare their results. Let us recall that the FD schemes for the two equations
are, respectively,

vn+1
i, j = vni, j − �tgi, j∇+ , (27)

and
⎧

⎪

⎨

⎪

⎩

vn+1
i, j = vni, j − �tgi, j∇+ + ν

4 gi, j (v
n
i+1, j + vni, j+1 + vni−1, j + vni, j−1)

if |Dc
i, j [Vn]| ≤ C�xs ,

vn+1
i, j = vni, j − �tgi, j∇+ + ν�tgi, jn

(i, j) , if |Dc
i, j [Vn]| > C�xs ,

(28)
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for each (i, j) ∈ I and n ∈ {0, 1, . . . , NT − 1}, where V0 := U(0), gi, j := g(xi, j ),
with xi, j := (xi , y j ),

∇+ := [

max{D−x
i, j [Vn], 0}2 + min{D+x

i, j [Vn], 0}2
+ max{D−y

i, j [Vn], 0}2 + min{D+y
i, j [Vn], 0}2]1/2 (29)

and

n
i, j := 1

(Dc,x
i, j [Vn]2 + Dc,y

i, j [Vn]2)1/2
(

D2,x
i, j [Vn]Dc,y

i, j [Vn]2

− 2Dc,x
i, j [Vn]Dc,y

i, j [Vn]Dxy
i, j [Vn] + D2,y

i, j [Vn]Dc,x
i, j [Vn]2

)

.

(30)

We refer the reader interested in the construction and the analysis of these schemes
to [20, 28].

Let us also recall that the SL schemes are, respectively,

vn+1
i, j = min

a∈B(0,1)

{

I [Vn](xi, j − �tgi, ja)
}

(31)

and

⎧

⎪

⎪

⎪

⎪

⎪
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⎪

⎪

⎪

⎪

⎪

⎩

vn+1
i, j = min

a∈B(0,1)

{

I [Vn](xi, j − �tgi, ja)
} + ν

4 gi, j (v
n
i+1, j + vni, j+1 + vni−1, j + vni, j−1) ,

if |Dc
i, j [Vn]| ≤ C�xs ,

vn+1
i, j = min

a∈B(0,1)

{

I [Vn](xi, j − �tgi, ja)
} + ν

2 gi, j
[

I [Vn](xi, j + σ n
i, j

√
�t)

+I [Vn](xi, j − σ n
i, j

√
�t)

]

, if |Dc
i, j [Vn]| > C�xs ,

(32)

for each (i, j) ∈ I and n ∈ {0, 1, . . . , NT − 1}, with V0 := U(0) and

σ n
i, j :=

√
2

|Dc
i, j [Vn]|

(

Dc,y
i, j [Vn]

−Dc,x
i, j [Vn]

)

. (33)

The role of the threshold �xs for the first derivatives in (32) is explained in detail
in [3] (see also [8] for the general theory of semi-Lagrangian schemes and [5] for
other applications to image processing problems). For our purposes it is sufficient
to note that this threshold is used to solve also the degenerate case without adding a
regularization.

4 Numerical Tests

Let us start describing the complete segmentation algorithm that includes the rescal-
ing preprocessing via the functions r1, r2 and r3 illustrated in Sects. 2.1 and 2.2.



On the Segmentation of Astronomical Images via Level-Set Methods 153

RESCALING SEGMENTATION ALGORITHM (RSA)
STEP 1: Apply to the original image I0 the rescaling defined in (1) to get ˜I0 which
takes values in [0, 1].
STEP 2: Choose one of the proposed rescaling functions ri , i ∈ {1, 2, 3}, and set

˜I := ri (˜I0) , (34)

for each element of the matrix. In case we choose the function r3, we first apply the
thresholding method of Otsu to the image ˜I0 in order to select the optimal threshold
τ , and then we apply (34).
STEP 3: Filter the image ˜I by few iterations of the linear filter given by the scheme
(15), or applying the PM method (16) with f2. This step produces ˜I f ilt .
STEP 4: Apply one of the segmentation active contours methods to the image ˜I f ilt
thus obtained in STEP 3.

We are now ready to present some numerical tests, using the RSA algorithm. Let us
consider an M × N image and let us fix the discretization parameters as:

• �x = �y = 0.1 the space step of the uniform grid
• �t = �x/4 = 0.025, for the FD scheme approximating the first order problem
• �t = �x2 = 0.01, for the FD scheme approximating the second order problem
• �t = �x = 0.1, for the SL schemes.

That structured grid has nodes located at the center of the pixels, with coordinates
(

( j − 1)�x, (i − 1)�x
)

, for j = 1, . . . , M and i = 1, . . . , N , and the rectangular
domain is defined as

� :=
[

−�x

2
, a − �x

2

]

×
[

−�x

2
, b − �x

2

]

, (35)

with a := M�x and b := N�x . For each test, we will consider three cases:

• a segmentation of the original image, without rescaling (i.e. dropping STEP 2 of
the algorithm, setting ˜I = ˜I0)

• a segmentation using a rescaling of the image by r1
• a segmentation using a rescaling of the image by r3 and the optimal threshold
computed by the Otsu’s algorithm.

As we said in Sect. 2.1, we will omit the results obtained by rescaling via r2 since
the results are almost identical to that of r1, with the same parameter α fixed.

For all the three cases listed above, before the segmentation step we filter the
image by the linear or nonlinear filter described in Sect. 3.1. We will compare the
performance of the four numerical schemes presented in Sect. 3.2. For comparison,
we will also show the segmented image obtained by the software SExtractor [2],
one of the most popular software in the astronomical community. In these images,
each source is represented by the grey-level obtained as average of the pixels values
that compose it. Since the images are too big, we will work on smaller images of
size 300 × 300 pixels. Hence, we will have a = b = 30 and N = M = 300. For the
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Fig. 3 Representation function u0 and related front γ0 at time t = 0

active contour method, we use a rectangular initial front γ0, i.e. the external boundary
of the image, described as the 0-level set of

u0(x, y) := 1 −
∣

∣

∣

∣

x + y − 30

29.6

∣

∣

∣

∣

−
∣

∣

∣

∣

x − y

29.6

∣

∣

∣

∣

, ∀(x, y) ∈ �, (36)

visible in Fig. 3, and we filter the image by applying 5 iterations of the scheme
(15) or by 15 iterations of the PM method (16), with time step ˜�t = 10−4 unless
otherwise stated.Weneed to fix two tolerances: εF = �x = 0.1, for the identification
of the nodes that approximate the front, and ε = 10−3 for the stopping criterion. The
maximum time when the scheme will not converge is set to Tmax = 50.

For the edge-detector function g1, the parameter p ∈ N \ {0}will be fixed accord-
ing to the contrast in the image between objects and background. If objects are well
defined, we set a value of p small, if the edges of the object have pixels with gray
tones close to those of the background, the value of p has to be increased. The func-
tion g2 defined in (21) in practice does not produce optimal results since it assumes
null value only at points where the gradient of the image is maximum and this does
not necessarily occur at all points belonging to the edges of the object. Therefore,
as proposed in [4], we modify the function g2, subtracting a constant c2 ∈ [0, 1] and
then rescaling the values in [0, 1]. The function we use is the following

g̃2(z) := 1

1 − c2
max{g2(z) − c2, 0} . (37)

Thanks to that definition, g̃2(|∇˜I f ilt |) attains its maximum value equal to 1 for
|∇˜I f ilt | = m, and null value when |∇˜I f ilt | is greater than a fixed threshold, pre-
cisely |∇˜I f ilt | ≥ (1 − c2)(M − m) + m. In each test, we provide the values of the
parameters involved, e.g. p for the function g1, c2 for the function g̃2, and ν for the
dependence from the curvature in the second order schemes (28) and (32).
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We acknowledge the contribution of L. Pecci to the implementation of themethods
and to some of the tests presented here. Other numerical experiments are contained
in [23].

Test 1: f160.fits

The first image, Fig. 4 on the left, is a cropping of a simulated, high resolution
astronomical image provided by INAF (Istituto Nazionale di Astrofisica) and gener-
ated by reproducing data observed by the Hubble Space Telescope (HST). It depicts
many stars, galaxies and other celestial bodies, as can be seen from the segmentation
obtained with the software SExtractor in Fig. 4 on the right, although it is almost
completely black in its original form. Our purpose is to apply a segmentation algo-
rithm that traces as many sources as possible, possibly improving the results obtained
by SExtractor thanks to the introduction of the proposed rescaling functions.

Test1: Without Rescaling

Let us start showing the results obtained by the four schemes considered, without us-
ing any rescale function. The original image f160.fits and the segmentation provided
by the software SExtractor are shown in Fig. 4. Before applying the active contour
schemes, we filter the original image f160.fits by using 5 iterations of the scheme
(15) with a time step ˜�t = 10−4. All the active contour methods only identify the
brightest celestial body or a few other objects. The results are shown in Figs. 5, 6,
7 and 8, the values of the parameters used are mentioned in the captions. We only
show the results obtained by the schemes (27) and (31) with edge-stopping function
g̃2 (Figs. 5, 6) and the second order schemes (28) and (32) with function g1 (Figs. 7,
8). Even if we increase the values of the parameters p and c2, we do not get better
results. Due to the similarity, we decide to omit the results obtained by using the first
order schemes (27) and (31) with edge-detector function g1.

Note that by applying the PM method (16) to the original image, we do not get
an improvement as shown in Fig. 9. It is important to note that the results without
a rescaling preprocessing are really bad for all the schemes, even if we apply a
nonlinear filtering algorithm.

Fig. 4 Test 1. From left to
right: Image f160.fits,
segmentation of the image
provided by the software
SExtractor
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Fig. 5 Test 1 without
rescaling: Position of the
front at time T = 15.85 and
segmented image, for the FD
scheme (27) by using the
edge-detector function g̃2,
with c2 = 0.8

Fig. 6 Test 1 without
rescaling: Position of the
front at time T = 15 and
segmented image, for the SL
scheme (31) by using the
edge-detector function g̃2,
with c2 = 0.8

Fig. 7 Test 1 without
rescaling: Position of the
front at time T = 16.61 and
segmented image, for the FD
scheme (28), by using the
edge-detector function g1,
p = 5000 and ν = 10−4

Fig. 8 Test 1 without
rescaling: Position of the
front at time T = 15.4 and
segmented image, for the SL
scheme (32), by using the
edge-detector function g1,
p = 5000 and ν = 10−4
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Fig. 9 Test 1 without
rescaling: Position of the
front at time T = 15 and
segmented image, for the SL
scheme (31) by using the
edge-detector function g̃2,
with c2 = 0.8. Image filtered
by 15 iterations of the PM
method with f2, for μ = 30,
and ˜�t = 10−4

Fig. 10 Test 1. From left to
right: Rescaling of the image
f160.fits by using the
function r1, with α = 0.25
and its filtered version
obtained by 5 iterations of
the scheme (15) with time
step ˜�t = 10−4

Test 1: Rescaling by r1

Let us test the algorithm rescaling the gray tones of the image before applying the
segmentation methods. We use r1 setting α = 0.25 since for values of α too close to
1, the objects are not quite evident, whereas for smaller values the background tones
are amplified excessively. The image obtained by the rescaling, shown in Fig. 10, is
segmented via the four schemes listed before. Also in this case, we omit to show the
results obtained by using the first order schemes with edge-detector function g1 since
this function fails even if we use a second order scheme, as we can see looking at
Figs. 14, 15. In fact, g1 does not identify the boundaries, even for large values of the
parameter p, so that only very few objects are detected. Instead, the edge-detector
function g̃2 (Figs. 11, 12) is able to identify a greater number of objects, even if the
approximation of their contours is still non very accurate (for example for the larger
galaxy, placed on the right of the image). Using the PM nonlinear filtering method
after the rescaling process, we can note (comparing Figs. 13 and 12) that a better
segmentation is obtained. In fact, more small objects are detected and visible in the
final front and the associated segmented image: see e.g. two small red points in the
central-bottom part of the final front in Fig. 13 not present in Fig. 12.

Test 1: Rescaling by r3

Finally, we present the results obtained by r3, this case seems to give the best results.
The parameter chosen is β = 8, for which the boundaries of the objects appear more
evident, with tones distant from those of the background (see Fig. 16). In this case,
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Fig. 11 Test 1, rescaling by
r1: Position of the front at
time T = 18.075 and
segmented image, for the FD
scheme (27) by using the
edge-detector function g̃2,
with constant c2 = 0.8

Fig. 12 Test 1, rescaling by
r1: Position of the front at
time T = 18.1 and
segmented image, for the SL
scheme (31) by using the
edge-detector function g̃2,
with c2 = 0.8 filtered by the
Gaussian filter

Fig. 13 Test 1, rescaling by
r1: Position of the front at
time T = 18.6 and
segmented image, for the SL
scheme (31) by using the
edge-detector function g̃2,
with c2 = 0.8. The rescaled
image has been filtered by 15
iterations of the PM method
with f2, for μ = 30, and
˜�t = 10−4

Fig. 14 Test 1, rescaling by
r1: Position of the front at
time T = 16.08 and
segmented image, for the FD
scheme (28) by using the
edge-detector function g1,
p = 5000 and ν = 10−6
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Fig. 15 Test 1, rescaling by
r1: Position of the front at
time T = 15.1 and
segmented image, for the SL
scheme (32) by using the
edge-detector function g1
and ν = 10−6

Fig. 16 Test 1. From left to
right: Rescaling of the image
f160.fits by using the
function r3, with β = 8, and
its filtered version obtained
by 5 iterations of the scheme
(15) with time step
˜�t = 10−4

all the schemes seem to provide satisfactory results, even those based on the use
of the edge-detector function g1. Due to their similarity, also in this can we show
only the two second order schemes with edge-detector function g1. The resulting
segmentations are illustrated in Figs. 17, 18, 19 and 20. These results show very well
the improvements obtained by the rescaling r3.

Test 2: real.fits

We now consider a clipping of a real low resolution image generated by the Hubble
Space Telescope and provided by INAF. This image has been acquired by observing
a portion of the sky at high depth, in order to identify a very large number of sources.

Fig. 17 Test 1, rescaling by
r3: Position of the front at
time T = 15.4 and
segmented image, for the FD
scheme (27) by using the
edge-detector function g̃2,
with c2 = 0.8
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Fig. 18 Test 1, rescaling by
r3: Position of the front at
time T = 14.9 and
segmented image, for the SL
scheme (31) by using the
edge-detector function g̃2,
with constant c2 = 0.8

Fig. 19 Test 1, rescaling by
r3: Position of the front at
time T = 15.55 and
segmented image, for the FD
scheme (28) by using the
edge-detector function g1,
p = 5000 and ν = 10−4

Fig. 20 Test 1, rescaling by
r3: Position of the front at
time T = 28.8 and
segmented image, for the SL
scheme (32) by using the
edge-detector function g1,
p = 5000 and ν = 10−4

However, this technique leads to an increase in the amount of noise present in the
image, as can be seen looking at the left image in Fig. 21.

Let us compare the performances of different schemes with or without a rescaling
process. The input images we consider for the segmentation algorithms are reported
in Fig. 21. On the left we can see the original image that we store in a file called
real.fits, in the middle we find the image obtained by using the rescaling function
r1, and the analogous obtained rescaling by r3 (on the right). Due to the high level
of noise, here we increase the time step ˜�t (from 10−4 to 10−3) in the filtering
process to obtain the corresponding filtered images. Then we use the rescaling on the
filtered images. As can be easily noted looking at Fig. 21, both the proposed rescaling
functions improve a lot the visibility of the celestial objects present in the image.
The resulting image obtained by r3 seem to be better.
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Fig. 21 Test 2. From left to right: Original image real.fits, rescaling of the image real.fits by using
the function r1 with α = 0.25, rescaling of the image real.fits by using the function r3, with β = 4

Fig. 22 Test 2.
Segmentation of the image
real.fits provided by the
software SExtractor

Let us start commenting the segmentation results obtained by the different
schemes without any rescaling process. In Fig. 22, we report the segmentation of
the image obtained by applying the software SExtractor. In Fig. 23 we can see the
performances of the SL scheme (31) for two different choices of the edge-detector
function (g1 and g̃2) and the SL scheme (32) with edge-detector function g1. We re-
port only the results for SL schemes since by FD schemes we obtained very similar
results. Note that all the different schemes recognize only the two objects visible in
the original image reported on the top-left of Fig. 21, so they are far away from the
real configuration of celestial bodies.

Thereforeweneed a rescaling process to improve the results. Looking at the results
obtained by r1, we note that the number of detected objects is highly improved. We
report in Fig. 24 the results obtained by the schemes FD and SL only with edge-
detector g̃2, using the edge-function g1 the front collapses until it disappears from
the figure. This is due to the fact that the edges of the objects are very blurred and,
even if we choose high values for the parameter p, the variations of gray tones do not
allow to detect the presence of an object. On the contrary, using g̃2 we can find an
adequate number of objects, but we cannot detect accurately the boundaries of many
galaxies (see Fig. 24). Anyway, this result is more accurate than the performance
provided by the software SExtractor (Cf. Fig. 22). Looking more in details Fig. 24,
some differences between the FD and SL schemes are visible, even if are small (e.g. at
the bottom-right part of the big central-upper galaxy we can note a connected part for
the FD scheme,which is splitted bySL scheme). For comparison reasons,we report in
Fig. 25 the result obtained by the same FD schemewith edge-detector function g̃2, but
the image rescaled by the function r1 is filtered by the PMmethod before applying the
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Fig. 23 Test 2 without
rescaling. From top to
bottom: Position of the front
and segmented image for the
SL scheme (31) by using the
edge-detector function g1,
with p = 104. Same scheme
by using edge-detector
function g̃2, with c2 = 0.6.
Position of the front and
segmented image for the SL
scheme (32) by using the
edge-detector function g1,
with p = 104 and ν = 10−4

FD segmentation scheme. The position of the final front and the segmented image
reported in Fig. 25 show that, applying a nonlinear filtering algorithm as the PM
method before the segmentation process, the results can be improved (a lot of small
stars are recognized), but a rescaling process is still necessary even if we apply that
filtering method.

Finally, let us analyze the results obtained by applying the rescaling function r3.
The parameters chosen in that case is β = 4 (see the right image in Fig. 21), since
greater values provide apparently worst quality. This is due to the poor performance
of the Otsu method in this case, note that this method identifies false sources among
the pixels of the background. For the type of results provided by the different active
contours, similar observations apply to the images obtained by the rescaling r1, as we
can observe from the segmentations shown in Fig. 26. With the g1 function, the front
collapses on itself, disappearing without identifying any object. The results obtained
by using g̃2 are better even if not satisfactory, due to the noise component, which is
excessively amplified, as visible in Fig. 26.
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Fig. 24 Test 2, rescaling by r1. Position of the front and segmented image for the FD scheme
(27) (first row) and the SL scheme (31) (second row) by using the edge-detector function g̃2, with
c2 = 0.78

Fig. 25 Test 2, rescaling by r1, filtered by 15 iterations of the PM method with f2, for μ = 30,
and ˜�t = 10−3. Position of the front and segmented image for the FD scheme (27) by using the
edge-detector function g̃2, with c2 = 0.78

5 Conclusions and Future Perspectives

We have proposed different rescaling functions in order to improve the detection of
objects in astronomical images, identifying a greater number of celestial bodies. In
particular, the use of the function r3 has improved a lot the visibility, getting better
results, in particular for high-resolution images as f160.fits. Unfortunately, when the
SNR is very low, the results are still not satisfactory, although we notice an improve-
ment with respect to the solutions provided by classical methods without rescaling.
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Fig. 26 Test 2, rescaling by
r3. Position of the front and
segmented image for the FD
scheme (27) (first row) and
the SL scheme (31) (second
row) by using the
edge-detector function g̃2,
with c2 = 0.6

This failure is due to the inaccurate threshold selected via the Otsu algorithm before
applying the rescaling by using the function r3. For low-resolution images, the func-
tion r1 seems to provide the best results, even compared with those produced by the
software SExtractor commonly used by astronomers. Future improvements of the
method can focus on different threshold algorithms to select the optimal one used by
the rescaling function r3, hopefully this will allow for a correct classification of the
pixels belonging to the background. We also considered a filtering pre-processing
step before segmenting, comparing the linear Gaussian filter and the nonlinear
PM method. What we noted is that the PM nonlinear method improves the results
detecting few more objects, but a rescaling preprocessing is necessary also in this
case, the segmentation fails without it. We have compared the performances of first
and second order FD and SL schemes, using different parameters and two different
edge-detector functions. From the numerical simulations on virtual and real images,
we can conclude that the edge-stopping function g1 is not a good choice. In fact,
the light sources often have not well defined outlines, so that this function can not
correctly identify them. The edge-detector function g̃2 provides the best results, and
is able to detect a greater number of celestial objects. However, these methods are
still not optimal in the case of very disturbed images. In the future, wewant to explore
different methods, as for example high-order “filtered” schemes recently proposed
[9–11] or the active contour without edges scheme proposed by Chan and Vese in
[7, 29], able (perhaps) to better identify objects with blurred and not well defined
edges. Moreover, we would like to analyze in more detail the performances of other
filtering methods, in order to find an appropriate choice to reduce the huge amount of
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noise that is a typical feature of astronomical images. Some attempts in this direction
are shown in [26], they confirm that this will be a difficult task.
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