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Preface

In recent years, mathematical research in the field of inverse problems for imaging has
attracted great interest, receiving a significant boost and producing significant
advances for real-life applications. Indeed, despite the huge improvement in the
hardware imaging systems, analysis of the imaging models combined with study of
appropriate numerical methods and their efficient implementation is of fundamental
importance for innovative imaging applications arising fromvery different domains of
applied science, such as medical imaging, microscopy, astronomy, and seismology.

As is well known, several image restoration problems are ill-posed inverse
problems. As a consequence, discretization of the equations relating the unknown
solution to the data leads to problems affected by numerical instability. Therefore,
the formulation of such inverse problems requires accurate mathematical modeling,
including a statistical model of the noise affecting the data, and additional con-
straints on the solution. Furthermore, the introduction of regularization techniques
in the model enables one to guide the reconstruction method toward a solution with
meaningful features. As a result, the solution of inverse problems is in general
reduced to the constrained minimization of suitable functionals with special
structure. The computational methods to efficiently address these problems are
based on new optimization algorithms, on the use of (numerical) structured linear
algebra, and on fast multilevel techniques, such as wavelets and framelets.

In recent years, optimization-based tools for smooth and nonsmooth convex
minimization problems have been used to solve challenging imaging problems.
These tools are based on first-order methods, also with variable metrics, and related
acceleration techniques, dual or primal-dual approaches, and Bregman-type
schemes. The need to satisfy certain modeling aspects, such as the robustness to
noise and the recovery of sparse and discontinuous signals, requires the develop-
ment of numerical methods for nonconvex problems. Moreover, the huge amount
of data requires fast convergent methods with a low computational cost, for
instance, working in subspaces of small dimensions or introducing acceleration
techniques based on regularizing preconditioners.

v



Some applications requiring recovery of special features in the images have,
during the last decade, given rise to schemes that rely on the notion of sparsity, that
is, the idea that data can be approximated using a relatively small number of func-
tions from an appropriate representation basis. By taking advantage of multilevel
techniques based on wavelet or shearlet decomposition, robust algorithms can be
devised for reconstruction starting from incomplete and/or truncated data. Several
current and challenging applications are to be found in astronomy (e.g., blind
deconvolution of interferometric images of the Large Binocular Telescope
Interferometer), microscopy (e.g., reconstruction of multiple images in STED
microscopy or images acquired by means of differential interference contrast
microscopy), and biomedical imaging [e.g., reconstruction of a small region of
interest from truncated computed tomography (CT) projection data, reconstruction
of images from microwave systems, and reconstruction methods in PET and MRI
imaging in functional medicine].

This book includes both contributions on numerical methods based on the most
recent optimization tools and contributions on challenging inverse problems in
imaging. In particular, there is a review of variable metric first-order methods and
regularizing preconditioners for image deblurring combined with the multilevel
framelet decomposition. The structure of the preconditioner, like Toeplitz matrices,
is crucial, and the spectral distribution of Toeplitz-function sequences is also ana-
lyzed. The considered applications include multiple image deblurring, segmentation
of astronomical images, and CT for bone tissue.

Como, Italy
September 2019

Marco Donatelli
Stefano Serra-Capizzano
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Recent Advances in Variable Metric
First-Order Methods

Silvia Bonettini, Federica Porta, Marco Prato, Simone Rebegoldi,
Valeria Ruggiero and Luca Zanni

Abstract Minimization problems often occur in modeling phenomena dealing with
real-life applications that nowadays handle large-scale data and require real-time
solutions. For these reasons, among all possible iterative schemes, first-order algo-
rithms represent a powerful tool in solving such optimization problems since they
admit a relatively simple implementation and avoid onerous computations during
the iterations. On the other hand, a well known drawback of these methods is a
possible poor convergence rate, especially showed when an high accurate solution
is required. Consequently, the acceleration of first-order approaches is a very dis-
cussed field which has experienced several efforts from many researchers in the last
decades. The possibility of considering a variable underlyingmetric changing at each
iteration and aimed to catch local properties of the starting problem has been proved
to be effective in speeding up first-order methods. In this work we deeply analyze a
possible way to include a variable metric in first-order methods for the minimization
of a functional which can be expressed as the sum of a differentiable term and a non-
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2 S. Bonettini et al.

differentiable one. Particularly, the strategy discussed can be realized by means of a
suitable sequence of symmetric and positive definitematrices belonging to a compact
set, together with an Armijo-like linesearch procedure to select the steplength along
the descent direction ensuring a sufficient decrease of the objective function.

Keywords Constrained optimization · Gradient projection methods · Convex
optimization

1 Introduction

The class of problems investigated in this work can be written as

min
x∈Rn

f (x) ≡ f0(x) + f1(x) (1)

where f0 is continuously differentiable on an open subset Ω0 of Rn containing
dom( f1) = {x ∈ R

n : f1(x) < +∞} and f1 is a proper, convex, lower semicontin-
uous and bounded from below function. Moreover we suppose that the set dom( f1)
is closed.

Optimization model (1) is considerably relevant, since it is related to several
problems arising from real-life applications like image and signal processing, com-
pressed sensing, machine learning (see for example [8, 9, 41, 62, 71]). However,
such problems often concern with large or high-dimensional datasets and their solu-
tions need to be processed quickly. First-order methods are effective tools for facing
minimization problems of this kind, thanks to their simplicity of implementation,
limited storage requirements and low computational cost per iteration. In the family
of first-order algorithms, forward-backward (FB) schemes [26] are especially tai-
lored for the nature of the objective function in (1), since they consist of a forward
step, which exploits the differentiability of f0, and a backward step, which takes
advantage of the convexity of f1. More in detail, the general FB iteration can be
expressed as

z(k) = x (k) − αk∇ f0(x
(k))

y(k) = proxαk f1(z
(k))

d(k) = y(k) − x (k)

x (k+1) = x (k) + λkd
(k)

(2)

where λk and αk are suitable positive parameters and the proximal operator proxh(·)
associated to a general convex function h is defined by

proxh(x) = argmin
w∈Rn

1

2
‖w − x‖2 + h(w) . (3)
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We recall that, if the function f1 is the indicator function of a closed and convex set
C , i.e.,

f1(x) = ιC(x) =
{
0 x ∈ C

+∞ x /∈ C

then algorithm (2) reduces to the class of standard gradient projection methods [10,
Chap. 2] since, in this case, the proximal operator associated to f1 consists of a
projection onto the set C .

Despite of their merits, classical FB algorithms can exhibit an unsatisfactory be-
haviour in terms of convergence rate, especially when a particularly accurate solution
is required. For this reason, the recent literature suggested some techniques to ac-
celerate FB methods by exploiting two principal ingredients: an underlying variable
metric different from the usual Euclidean one and/or an extrapolation step which
employs the information from the two previous iterations.

In the framework of differentiable constrained optimization problems, diagonally
scaled gradient directions have been often successfully exploited in order to acceler-
ate the performance of classical gradient projection methods [31, 48, 49, 52, 64, 72,
77]. The possibility of scaling the gradient directions also in FB algorithms led to
the class of variable metric FB methods. The general scheme of a variable metric FB
approach has been studied by several authors [24, 27, 28, 38, 69] in the following
form

z(k) = x (k) − αk D
−1
k ∇ f0(x

(k))

y(k) = proxDk
αk f1

(z(k))

d(k) = y(k) − x (k)

x (k+1) = x (k) + λkd
(k)

(4)

where {Dk}k∈N ⊂ R
n×n is a sequence of symmetric and positive definite scaling

matrices whose aim is capturing some local features of the minimization problem
(1) without introducing significant additional computational costs. In this context,
the proximity operator is generalized as

proxDk
αk f1

(x) = argmin
w∈Rn

1

2αk
(w − x)T Dk(w − x) + f1(w) . (5)

It is worth to notice that, even if the variable metric FB method considered in the
abovementioned papers is formally described by iteration (4), different choices of the
parameters λk , αk and Dk lead to substantially different algorithms in terms of con-
vergence properties and practical implementation. Indeed, although the theoretical
convergence rate on the objective function values for variable metric FB algorithms
is at most sublinear (i.e. f (x (k)) − f ∗ = O(1/k), where f ∗ is the optimal value of
the objective function) [7, 14, 38, 69], it has been numerically showed [14, 60] that
a suitable combination of the steplength parameter αk and the scaling operator Dk

can allow method (4) to reach much better practical performances (comparable with
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those of schemes with proved superlinear convergence rate). In Sects. 3 and 4 we dis-
cuss a clever way to select parameters λk, αk, Dk in the framework of FB algorithms.
In particular, our approach

• allows a certain freedom of choice for αk and Dk which have simply to belong to
compact sets;

• guarantees the theoretical convergence properties thanks to the computation of the
parameter λk by means of an Armijo-like backtracking procedure.

This selecting recipe is one of the main features which characterize our approach
(and, in our opinion, also one of its main strength): for instance, in [24] the steplength
αk is constant during the iterations and the scaling matrix Dk has to be selected by
following a Majorization—Minimization approach; in [28, 38] the computation of
αk and/or λk and the spectrum of Dk is related to the Lipschitz constant of ∇ f0
(which, unfortunately, is not always known).

Another important issue faced in the literature on FB methods is the computation
of the proximal point [3, 24, 68, 75]: indeed the solution of theminimization problem
associated to the definition of the proximal operator (5) is not always known in a
closed form. In Sect. 4.3 we detail a strategy to compute an approximation of the
proximal point and its practical implementation which preserves all the theoretical
convergence properties.

As we have alreadymentioned, another technique to accelerate FB algorithms can
be realized by adding an extrapolation step (also called inertial force) to the standard
FB scheme (2). Originally suggested by Nesterov [55] for gradient methods applied
to differentiable optimization problems, this idea has been borrowed by Beck and
Teboulle in [7], where they propose a FB method with extrapolation in the following
form

w(k) = x (k) + βk(x
(k) − x (k−1))

z(k) = w(k) − αk∇ f0(w
(k)) (6)

x (k+1) = proxαk f1(z
(k))

also known in the literature as Fast Iterative Shrinkage-Thresolding Algorithm
(FISTA). The positive steplength parameters αk and βk are conveniently chosen
in order to ensure the convergence of the algorithm. It is worth to observe that,
since βk in (6) is positive, w(k) is not a convex combination of x (k) and x (k−1), but
an extrapolation of these iterates. The convergence properties of FISTA have been
extensively analyzed in the last ten years. More in detail, under the assumption that
both f0 and f1 are convex, the following results hold for FISTA:

In [7] the authors show a subquadratic convergence rate on the objective function
values, namely f (x (k)) − f ∗ = O(1/k2), where f ∗ is the optimal value of the
objective function;

In [70] the quadratic convergence rate is also guaranteed when an inexact computa-
tion of the proximal point is considered;

In [23] Chambolle and Dossal prove the convergence of the sequence {x (k)}k∈N;
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In [4]an improved o(1/k2) convergence rate result is shown together with a simpler
proof for the convergence of the iterates.

A slightly different version of FB method with extrapolation has been suggested
in [57] where the authors generalize the so called heavy-ball method proposed by
Polyak [58] and prove the convergence of their generalized method for nonconvex
objective functions. The corresponding update scheme is

w(k) = βk(x
(k) − x (k−1))

z(k) = x (k) − αk∇ f0(x
(k)) + w(k) (7)

x (k+1) = proxαk f1(z
(k)) .

We remark that the generalized heavy-ball method (7) uses gradients based on the
current iterate, while the inertial FB algorithm based on the Nesterov’s approach
(6) evaluates the gradient at the extrapolated points. As for the original versions,
Nesterov’s accelerated gradient method is faster than the heavy-ball one on weakly
convex functions [37]. In Sect. 5 we discuss the possibility of considering a variable
metric FB method with extrapolation: starting from scheme (6) we investigate how
to combine the inertial idea with a variable metric. If the functional to minimize is
convex, the convergence of the resulting method is ensured also in case of inexact
computation of the proximal point.

The FB scheme can be extended when f0 is convex but nondifferentiable. In this
case, the gradient of f0 in (2) can be replaced by a subgradient or by an approximation
of it. The corresponding method is known in the literature as proximal subgradient
method [30, 50, 73]. Even if the proximal subgradientmethod can be formally framed
in the iteration (2), there are substantial differences with respect to the differentiable
case, especially in the selection strategies for the stepsize parameters. On the other
side, variable metric techniques can be introduced also in this context, leading to a
variable metric proximal subgradient method which is discussed in Sect. 6.

To summarize, the aim of this paper is to investigate how to accelerate FBmethods
(with and without extrapolation) by accounting a variable metric instead of the usual
fixed Euclidean one. A possibility to achieve this goal consists of considering a
suitable sequence of symmetric and positive definite matrices which modify both the
forward step (by scaling the descent directions) and the backward step (by computing
the proximal point in the norm induced by the scaling matrix itself).

2 Split Gradient Methods: The Starting Point

The starting point of the ideas that will be presented in the following sections lies
in two inspiring papers by Lantéri et al. [48, 49]. In these works, by considering the
first-order optimality Karush–Kuhn–Tucker (KKT) conditions, the authors devised
a scaled gradient method for the solution of a simplified version of problem (1),
namely
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min
x∈Rn

f0(x) + ιx≥0(x) (8)

where f0 is a continuously differentiable, coercive, convex function and ιx≥0 is the
indicator function of the non-negative orthant. Since the objective function in (8) is
convex, all its minima are global and, in particular, a point x∗ is a solution if and
only if the KKT conditions are verified at x∗:

x∗ · ∇ f0(x
∗) = 0 (9)

x∗ ≥ 0, ∇ f0(x
∗) ≥ 0 , (10)

where · denotes the component-wise product.
The key point to obtain the desired algorithm is to consider a proper decomposition

of the gradient of f0 in a non-negative part and a positive one:

− ∇ f0(x) = U (x) − V (x) where U (x) ≥ 0, V (x) > 0 . (11)

We remark that, even if such a decomposition is not unique, it always exists. Thanks
to (11), the first KKT condition (9) can be rewritten as a fixed point equation

x∗ = A(x∗)

where

A(x) = x · U (x)

V (x)

and the fraction symbol indicates component-wise division. The operator A

• is well defined since V (x) > 0, for any feasible x,
• is continuous since f0 is continuously differentiable,
• is not a contraction in general.

Given x (0) > 0 and by applying the method of successive approximations, the fol-
lowing algorithm can be considered

x (k+1) = x (k) · U (x (k))

V (x (k))
. (12)

It is possible to include scheme (12) in the class of scaled gradient method: indeed by
summing and subtracting x (k) to the second member of (12) we obtain the following
equalities:
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x (k+1) = x (k) + x (k) ·
(
U (x (k))

V (x (k))
− 1

)
,

x (k+1) = x (k) + x (k) ·
(
U (x (k)) − V (x (k))

V (x (k))

)
,

x (k+1) = x (k) − x (k) ·
(∇ f0(x (k))

V (x (k))

)
,

x (k+1) = x (k) − D−1
k ∇ f0(x

(k)),

where

D−1
k = diag

(
x (k)

V (x (k))

)
. (13)

We remark that all the iterates x (k) generated by this approach automatically satisfy
the non-negative constraints. However, since A is not a contraction, the convergence
can not be ensured for the algorithm written in this form. For this reason, in [48,
49] the authors add a steplength multiplying the scaled gradient direction in order to
obtain the wished convergence. Particularly, the revised algorithm can be presented
as

x (k+1) = x (k) − αk
x (k)

V (x (k))

(
V (x (k)) −U (x (k))

)
, (14)

where αk can be computed by means of a suitable backtracking procedure in the

interval
(
0, α(0)

k

]
with α

(0)
k conveniently selected to ensure x (k+1) ≥ 0.

Due to the gradient decomposition idea (11) at the basis of the algorithm just
described, the resulting scheme is known in the literature as split gradient method
(SGM). The SGM has been developed by Lantéri et al. as a generalization of two
iterative approaches employed to solve minimization problems in the field of image
processing. The next subsection is devoted to explain all the details.

2.1 Classical Reconstruction Algorithms in Imaging

Variational approaches to image restoration [76] suggest to recover the unknown
object through iterative schemes suited for the constrained minimization problem
(8) where, in this case, f0 measures the discrepancy of a given image x ∈ R

n from
the observed data y ∈ R

n . The definition of the function f0 depends on the noise
type introduced by the acquisition system. Particularly, in the case of additive white
Gaussian noise the cost function is characterized by a least squares distance of the
form

f0(x) = f LS0 (x) = 1

2
‖Hx + bg − y‖2 (15)
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where H ∈ R
n×n is a typically ill-conditioned matrix describing a blurring effect

and bg is a known non-negative background radiation. The matrix H can be consid-
ered with non-negative entries, generally dense and such that

∑n
i=1 Hi j > 0 ∀ j and∑n

j=1 Hi j > 0 ∀i . For (15), it holds that

− ∇ f LS0 (x) = ULS(x) − V LS(x) = HT y − (HT Hx + bg) . (16)

On the other hand, when the noise affecting the data is of Poisson type, the so-called
Kullback–Leibler (KL) divergence is used:

f K L
0 (x) =

n∑
i=1

{
yi ln

yi
(Hx + bg)i

+ (Hx + bg)i − yi

}
(17)

where we assume that 0 ln 0 = 0 and (Hx + bg)i > 0, for any i such that yi �= 0. In
this second case the gradient of f K L

0 enjoys the following decomposition

− ∇ f K L
0 (x) = UKL(x) − V KL(x) = HT y

Hx + bg
− HT 1 (18)

where 1 ∈ R
n is a vector whose components are all equal to one.

The iterative space reconstruction algorithm (ISRA) has been introduced in [31]
to face problem (8) in the case of Gaussian noise. The sequence {x (k)}k∈N generated
by ISRA is defined by

x (k+1) = x (k) HT y

HT Hx (k) + bg
. (19)

It is simple to verify that this last iteration is equivalent to

x (k+1) = x (k) − D−1
k (HT Hx (k) + bg − HT y), D−1

k = diag

(
x (k)

HT Hx (k) + bg

)

which is a particular case of algorithm (14) where αk is always equal to 1. The
asymptotic convergence of (19) has been proved in [35] when bg = 0, but the proof
of convergence can be easily extended to the case bg �= 0.

As for the Poisson noise, a classical approach tominimize (17) under non-negative
constraints is the expectation maximization (EM) algorithm proposed in [72] and
known as Richardson-Lucy (RL) algorithm in image deconvolution [52, 64]. The
EM scheme generates a sequence of iterates in the following way

x (k+1) = x (k)

HT 1
HT y

Hx (k) + bg
(20)

which can be equivalently rewritten as
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x (k+1) = x (k) − D−1
k

(
HT 1 − HT y

Hx (k) + bg

)
, D−1

k = diag

(
x (k)

HT 1

)
.

It is possible to conclude that also the EM algorithm belongs to the class of split
gradient methods (14) with αk = 1. In the case of bg = 0 several convergence proofs
of the algorithm (20) are available [46, 47, 53]. Very recently [67], the convergence
of the EM approach has been provided also for bg �= 0.

To conclude this section we remark that the papers by Lanteri et al. suggest a
practical way to define scaled gradient methods which exploits the nature of the
problem to minimize. Although the proposed approach is very promising, it appears
limited since it only considers non-negative constraints and differentiable and convex
objective functions. In the next sections we employ the gradient decomposition idea
in first-order algorithms able to solve more general optimization problems.

3 A Scaled Gradient Projection Method

In order to solve minimization problem of kind (8) but equipped with more general
constraints, i.e.,

min
x∈Rn

f0(x) + ιΩ, Ω ⊂ R
n closed, convex, (21)

a scaled gradient projection (SGP) method has been proposed in [12]. This SGP
algorithm can be considered a generalization of the split gradient method (14) and,
at the same time, a particular approach belonging to the class of variable metric FB
methods (4). The basic SGP scheme is given by

z(k) = x (k) − αk D
−1
k ∇ f0(x

(k))

y(k) = P
Dk
Ω (z(k))

d(k) = y(k) − x (k)

x (k+1) = x (k) + λkd
(k)

(22)

where

αk is the steplength parameter chosen in a fixed range [αmin, αmax] with 0 <

αmin < αmax;
Dk is a symmetric and positive definite scaling matrix with all the eigenvalues

contained in [ 1
μ
, μ] with μ ≥ 1; hereafter the set of matrices satisfying these

properties will be indicated by Dμ. If Dk ∈ Dμ, then D−1
k also belongs to

Dμ;
λk is computed by means of a backtracking procedure over the interval (0, 1]

to ensure a sufficient decrease of the objective function. A classical example
of linesearch is the well-known Armijo rule [10, Sect. 2.3]: for given scalars
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0 < β, σ < 1, the parameter λk is set equal to βmk , where mk is the first
non-negative integer m for which

f0(x
(k)) − f0(x

(k) + βmd(k)) ≥ −σβm∇ f0(x
(k))T d(k). (23)

A non-monotone version of (23) has been suggested in [43]: instead of
f0(x (k)) in the first member of the previous inequality, it is possible to con-
sider the maximum value of the objective function in the last M iterations,
namely fmax = max0≤ j≤min(k,M−1) f (x (k− j));

P
Dk
Ω (·) represents the projection operator onto Ω with respect to the norm induced

by Dk :

P
Dk
Ω (z(k)) = argmin

x∈Ω

∇ f0(x
(k))T (x − x (k)) + 1

2αk
(x − x (k))T Dk(x − x (k)) .

We underline that the vector d(k) results a descent direction for the function
f0 at x (k), that is, ∇ f0(x (k))

T
d(k) < 0, unless x (k) is a stationary point for

(21).
Typically, the SGP method is applied when the projection onto Ω is com-
putable by either a closed formula or a cheap procedure, for instance if Ω

is given by either the nonnegative orthant or the Cartesian product of closed
and bounded intervals, possibly togetherwith a linear equality constraint. The
choice of the scaling matrix Dk must keep the projection computationally
nonexpensive: this issue will be discussed in Sect. 3.2.

3.1 Convergence

We recall the main convergence results for the SGP algorithm just now detailed: the
first one, reported in Theorem 1, holds without the assumption of convexity for the
functional to minimize f0, while the second one (Theorem 2) is stronger but it can
be proved only for convex objective functions.

Theorem 1 ([12, Theorem 2.1]) Assume that f0 in (21) is a differentiable function
and the level set X0 = {x ∈ Ω : f0(x) ≤ f0(x (0))} is bounded. Every accumulation
point of the sequence {x (k)}k∈N generated by the SGP algorithm is a stationary point
of (21).

In [14] the convergence properties for SGP have been refined. The authors es-
tablish the criteria needed to guarantee the convergence of the sequence {x (k)}k∈N
to a solution of (21) (see Theorem 2). Before introducing this result we recall the
following definition.

Definition 1 Let A, B ∈ R
n×n be symmetric and positive definite matrices. The

notation A  B indicates that A − B is a symmetric and positive semidefinite matrix
or, equivalently, xT Ax ≥ xT Bx for x ∈ R

n .
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Theorem 2 ([14, Theorem 3.1])Assume that the objective function of (21) is convex
and the solution set is not empty. Let {x (k)}k∈N be the sequence generated by SGP
where Dk ∈ Dμ, μ ≥ 1, and satisfying the following condition

(1 + ζk)Dk  Dk+1 ζk ≥ 0
+∞∑
k=0

ζk < ∞ . (24)

Then the sequence {x (k)}k∈N converges to a solution of (21).

Condition (24) states that the sequence {Dk}k∈N asymptotically approaches a constant
matrix [27, Lemma 2.3]. This requirement is not restrictive: it is easy to implement
practical rules to fix matrices as in (24) as we will explain at the end of Sect. 3.2 (see
Remark 1). The key point in selecting Dk is to consider matrices belonging to the
compact set Dμ.

We emphasize that both the convergence theorems for SGP hold for any choice
of the steplength αk in the interval [αmin, αmax] and the scaling matrix Dk in the set
Dμ since the sufficient decrease of the objective function is ensured by the Armijo-
like backtracking procedure applied to select λk . For this reason, αk and Dk can
be considered as free parameters which can significantly optimize the convergence
behaviour of the algorithmprovided that they are chosen in a suitableway. Section3.2
is devoted to clarify this aspect.

Together with the result shown in Theorem 2, in [14] the convergence rate with
respect to the objective function values has been also provided.We resume the details
in Theorem 3.

Theorem 3 ([14, Theorem 3.2])Assume that the objective function of (21) is convex
and the solution set is not empty. In addition, suppose that ∇ f0 satisfies one of the
following conditions:

(a) ∇ f0 is globally Lipschitz on Ω;
(b) ∇ f0 is locally Lipschitz and f0 is level bounded on Ω .

Let f ∗
0 be the optimal function value for problem (21). Then, we have

f0(x
(k)) − f ∗

0 = O(1/k).

We stress that, although the theoretical convergence rate estimate for SGP is only
O(1/k), under suitable choices for αk and Dk , the practical SGP behavior is very
similar to a super-linear rate of convergence, especially in the first iterations, as
shown by several numerical experiments in [14, 60].

3.2 Stepsize and Scaling Matrix Selection

The goodness of a first-order algorithm is strongly related to a proper selection of the
steplength αk . Therefore, its choice is a very crucial point and in the literature many
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efforts are known in this sense. Starting from the paper by Barzilai and Borwein
(BB) [5], many BB-like steplength selection rules have been suggested to accelerate
the performance of standard gradient methods [32–34, 36, 39, 40, 78]. Thanks to
the nonrestrictive assumptions on αk , any of these strategies can be adopted for
the steplength in SGP. However, in [12], an updating scheme developed in [39] for
nonscaled gradient methods and based on a proper alternation of the original BB
rules has been generalized by modifying the standard BB rules in order to take into
account the presence of the scaling matrix. These rules arise from the approximation
of the Hessian ∇2 f0(x (k)) with the matrix B(αk) = α−1

k Dk and by imposing the
following quasi-Newton properties on B(αk):

αBB1
k = argmin

αk∈R
‖B(αk)s

(k−1) − z(k−1)‖

αBB2
k = argmin

αk∈R
‖s(k−1) − B(αk)

−1z(k−1)‖

where s(k−1) = x (k) − x (k−1) and z(k−1) = ∇ f0(x (k)) − ∇ f0(x (k−1)). The resulting
values become

αBB1
k = s(k−1)T DkDks(k−1)

s(k−1)T Dkz(k−1)
; αBB2

k = s(k−1)T D−1
k z(k−1)

z(k−1)T D−1
k D−1

k z(k−1)
;

which reduce to the standard BB rules when Dk is equal to the identity matrix for all
k. Finally, the steplength selection strategy implemented within SGP consists in an
adaptive alternation between the values

αk = max{αmin,min{αmax, α
BB1
k }}

and
α̂k = max{αmin,min{αmax, α

BB2
k }}

with 0 < αmin < αmax.
As far as the scaling matrix is concerned, its selection usually must aim at two

main goals: improving the convergence rate and avoiding to introduce significant
computational costs. For these reasons, diagonal scaling matrices which add to the
algorithm some local information of the optimization problem are typically consid-
ered. An example of this choice consists of taking into account a scaling matrix
Dk = diag(d(k)

1 , d(k)
2 , ..., d(k)

n ) which approximates the Hessian matrix ∇2 f0(x) by
requiring

d(k)
i =

(
∂2 f0(x (k))

∂2xi

)
i = 1, ..., n

Since the computation of the Hessian could be very expensive, other possibilities
should be analyzed. Particularly, the approach (13) based on the decomposition of
∇ f0 in a positive part and a non-negative one could be very fruitful since it is related
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to the nature of the problem to minimize and it can be always applied since such
a decomposition always exists. Indeed, in [12], the authors suggest to select the
elements d(k)

i of the diagonal scaling matrix Dk as

d(k)
i = max

(
1

μ
,min

(
μ,

Vi (x (k))

x (k)
i

))
, μ ≥ 1

in order to also guarantee that the eigenvalues of Dk lie in the compact set [ 1
μ
, μ].

However, the way to select other convenient scaling matrices is still an open
problem.

Remark 1 We conclude the discussion about the selection of the scaling matrix by
showing practical criteria in order to realize a sequence of scaling matrices fulfilling
the requirement (24) needed to guarantee the convergence of the iterates generated
by SGP to a solution of problem (21). More in detail, if the sequence {Dk}k∈N is
chosen according to

{Dk}k∈N ⊂ Dμk where μ2
k = 1 + ζk, ζk ≥ 0,

+∞∑
k=0

ζk < ∞ , (25)

then condition (24) is satisfied. Indeed, since for any D ∈ Dμ, with μ > 1, the
following inequalities hold

1

μ
‖x‖2 ≤ xT Dx ≤ μ‖x‖2, ∀x ∈ R

n

then, in view of (25),

xT Dk+1x ≤ μk+1μk

μk
‖x‖2 ≤ μk+1μk x

T Dkx ∀x ∈ R
n

which implies Dk+1 � μkμk+1Dk . Moreover μkμk+1 can be written as μkμk+1 =
1 + ξk where ξk = √

(1 + ζk)(1 + ζk+1) − 1. Since limx→0(
√
1 + x − 1)/x = 1/2

it follows that
∑+∞

k=0 ξk and
∑+∞

k=0 ζk have the same behaviour. We can conclude
that (25) implies (24). In practice, condition (25) ensures that the sequence {Dk}k∈N
approaches the identity matrix at a certain rate, while (24) implies the convergence
to some symmetric positive definite matrix, as already mentioned.

4 A Variable Metric Inexact Linesearch
Forward-Backward Method

In this section we come back to the original general problem (1). In [15], a vari-
able metric inexact linesearch forward-backward algorithm (VMILA) of the form
(4) has been proposed by following the key principle on which the SGP approach
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is based, namely, the possibility of freely select the parameters αk and Dk thanks to
a backtracking strategy along the descent directions which guarantees the conver-
gence. To reach this goal, in [15] the authors generalize both the concept of descent
direction by considering the proximal operator associated to the convex part of the
objective function and the Armijo-like rule to determine the steplength along this
direction ensuring the sufficient decrease of the objective function. To better detail
this generalization process, we introduce the following preliminary notions.

4.1 Preliminary Notions

Definition 2 A vector d ∈ R
n is a descent direction for f in (1) at x ∈ dom( f1) if

f ′(x; d) < 0, where f ′(x; d) is the one-sided directional derivative of f at x with
respect to d defined as

f ′(x; d) = lim
λ↓0

f (x + λd) − f (x)

λ

if the limit on the right-hand side exists in R ∪ {−∞,+∞}.
Definition 3 Let α ∈ R be a positive parameter and D ∈ R

n×n be a symmetric and
positive definite matrix. Given x ∈ R

n , we introduce the function hD
α : Rn → R de-

fined as

hD
α (w; x) = ∇ f0(x)

T (w − x) + 1

2α
(w − x)T D(w − x) + f1(w) − f1(x) . (26)

The function hD
α (·; x) is strongly convex and admits an unique minimum point for

any x ∈ dom( f1). Moreover, the negative sign of hD
α detects a descent direction, as

stated in the following theorem.

Theorem 4 ([15, Proposition 2.2]) Let hD
α be defined as in (26). If x, z ∈ dom( f1)

and hD
α (z; x) < 0 , then f ′(x, z − x) < 0.

4.2 A Generalized Armijo Linesearch Along a Family of
Descent Directions

By coming back to the scheme (4) and considering the notions just introduced, it is
easy to prove that

y(k) = proxDk
αk f1

(x (k) − αk D
−1
k ∇ f0(x

(k))) = argmin
w∈Rn

hDk
αk

(w; x (k)) . (27)
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In addition, since hDk
αk

(x (k), x (k)) = 0 and y(k) is the minimum point of hDk
αk

(·; x (k)),
it holds that h(y(k); x (k)) < 0, unless y(k) is a stationary point for (1). In view of
Theorem 4, the vector d(k) = y(k) − x (k) is a descent direction for f at x (k). It is
worth to remark that, actually, any vector d(k) which can be computed as ỹ(k) − x (k)

with ỹ(k) ∈ dom( f1) and hDk
αk

(ỹ(k); x (k)) < 0 is a descent direction.
Basedon these considerations, a generalization of themonotoneArmijo linesearch

procedure (23) can be devised [15, 59, 74]. Suppose that a descent direction d(k) =
ỹ(k) − x (k), with ỹ(k), x (k) ∈ dom( f1), can be computed for the objective function at
x (k). Given σ, β ∈ (0, 1), the parameter λk is set equal to βmk , where mk is the first
non-negative integer m for which

f (x (k)) − f (x (k) + βmd(k)) ≥ −σβmhDk
αk

(ỹ(k); x (k)). (28)

This backtracking strategy terminates in a finite number of steps if the two sequences
{x (k)}k∈N and {ỹ(k)}k∈N are such that

hDk
αk

(ỹ(k); x (k)) < 0, ∀k . (29)

Of course, if ỹ(k) = y(k) at each iteration, i.e., the minimization problem defining
the proximal operator can be solved exactly, then the generalized Armijo linesearch
is well defined. However, we stress that this is not needed: it is sufficient to find a
convenient ỹ(k) which verifies (29). This point allows to investigate how to inexactly
compute y(k) in (4).

4.3 Inexact Computation of the Proximal Point

Let us start by recalling the following general result.

Theorem 5 ([15, Theorem 3.1]) Let 0 < αmin < αmax and μ > 1 and assume that
{αk}k∈N ⊂ [αmin, αmax ] and {Dk}k∈N ⊂ Dμ. Let {ỹ(k)}k∈N be a sequence of points in
dom( f1). Let {x (k)}k∈N be the sequence generated by

x (k+1) = x (k) + λkd
(k), d(k) = ỹ(k) − x (k),

where λk is computed by means of (28), ỹ(k) satisfies (29) and there exists K ′′ ⊆ N

such that

lim
k∈K ′′,k→+∞

hDk
αk

(ỹ(k); x (k)) − hDk
αk

(y(k); x (k)) = 0, with y(k) = argmin
w∈Rn

hDk
αk

(w; x (k)). (30)

Suppose that there exists a limit point x of {x (k)}k∈N, and let K ′ ⊃ K ′′ be a subset
of indices such that limk∈K ′,k→+∞ x (k) = x ∈ dom( f1). Then x is a stationary point
for problem (1).
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This theorem states that an approximation ỹ(k) of y(k) has to verify both conditions
(29) and (30) to ensure the stationarity of the limit points of {x (k)}k∈N. In other words,
ỹ(k) has to guarantee that d(k) is a descent direction and, at the same time, to provide
better and better approximations of y(k) as k → +∞. Unfortunately, requirement
(30) can not be checked directly: for this reason, an implementable condition which
implies (30) has been devised in [15, Sect. 3.2]. In particular, if the hypotheses of
Theorem 5 hold but (30) is substituted by the following one

1

αk
Dk(z

(k) − ỹ(k)) ∈ ∂εk f1(ỹ
(k)) (31)

where z(k) = x (k) − αk D
−1
k ∇ f0(x (k)) and {εk}k∈N ⊂ R≥0 such that limk→+∞ εk = 0,

then the stationarity of the limit points of {x (k)}k∈N is still ensured. We observe that,
thanks to the ε-subdifferential notion [66, Sect. 23], inclusion (31) can be viewed as a
relaxation of the one which holds when the exact minimum point y(k) of hDk

αk
(·; x (k))

can be computed, namely 1
αk
Dk(z(k) − y(k)) ∈ ∂ f1(y(k)).

Remark 2 We discuss how to compute a point satisfying inclusion (31), for any
given εk ∈ R≥0, when the convex function f1 in (1) has the form

f1(x) = g(Ax) + q(x) (32)

where A ∈ R
m×n and g : Rm → R̄, q : Rn → R̄ are convex, continuous functions

whose proximal operators have closed-form expressions. The minimum problem
(27) defining the proximity operator can be equivalently written in dual form as

min
y∈Rn

hDk
αk

(y; x (k)) = max
v∈Rm

Ψ Dk
αk

(v; x (k))

= max
v∈Rm

mq(z(k) − αk D
−1
k AT v) − 1

2αk
‖z(k) − αk D

−1
k AT v‖2Dk

− g∗(v) + Ck

wheremq(x) = inf y∈Rn q(y) + 1
2αk

‖y − x‖2Dk
is the Moreau envelope of parameters

αk , Dk associated to q, g∗ is the Fenchel convex conjugate of g and Ck is a constant
term independent from v. We remark that if v(k) = argmax

v∈Rm
Ψ Dk

αk
(v; x (k)) then y(k) =

proxDk
αkq(z

(k) − αk D
−1
k AT v(k)). For this reason, instead of computing the approxima-

tion ỹ(k) of y(k) by means of a minimization iterative algorithm applied to (27), ỹ(k)

can be estimated by applying a maximization method to the dual problem. Particu-
larly, if {v(k,l)}l∈N is the dual sequence converging to v(k), the corresponding primal
sequence {ỹ(k,l)}l∈N can be obtained as ỹ(k,l) = proxDk

αkq(z
(k) − αk D

−1
k AT v(k,l)). The

validity of (31) can be achieved by exploiting the following theorem which suggests
a useful criterion to stop the dual iterative procedure.

Theorem 6 ([21, Proposition 4.2]) Let εk ∈ R≥0. If

hDk
αk

(ỹ(k); x (k)) − Ψ Dk
αk

(v; x (k)) ≤ εk (33)
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with ỹ(k) = proxDk
αkq(z

(k) − αk D
−1
k AT v), for some v ∈ R

m, then (31) is satisfied.

Thanks to Theorem 6, the iterative process employed to provide {v(k,l)}l∈N can be
stopped when

hDk
αk

(ỹ(k,l); x (k)) − Ψ Dk
αk

(v(k,l); x (k)) ≤ εk (34)

where the convergence of the sequence {εk}k∈N to 0 is guaranteed by imposing, for
instance, εk = C

k p with C > 0 and p > 0. Thus, the approximate computation of the
proximal point through inequality (33) becomes automatically more accurate as the
iterations proceed.

Finally, since the generalized Armijo backtracking strategy is well defined when
ỹ(k) also satisfies (29), condition (34) must be combined with hDk

αk
(ỹ(k,l); x (k)) < 0.

4.4 Convergence

Theorem 5 states that all the limit points of the VMILA sequence are stationary
for problem (1), provided that both the steplength αk and the eigenvalues of Dk are
chosen in prefixed positive intervals [αmin, αmax ] and [ 1

μ
, μ], respectively.

The next theorem investigates the conditions required to prove the convergence
of the whole sequence of the iterates {x (k)}k∈N to a minimum point of (1).

Theorem 7 ([15, Theorem 3.3]) Let 0 < αmin < αmax and μ ≥ 1. Assume that
{αk}k∈N ⊂ [αmin, αmax ], the sequence {Dk}k∈N ⊂ Dμ verifies (24), f0 in (1) is convex
and the solution set is not empty. Let {x (k)}k∈N be the sequence generated by

x (k+1) = x (k) + λkd
(k), d(k) = ỹ(k) − x (k), (35)

where λk is computed by means of (28) and ỹ(k) satisfies (29) and (31) with a
summable sequence {εk}k∈N. Then the sequence {x (k)}k∈N converges to a solution of
(1).

With the next theorem we recall the convergence rate of VMILA.

Theorem 8 ([15, Theorem 3.5]) Assume that the hypotheses of Theorem 7 hold and,
in addition, that

• the sequence {εk}k∈N satisfies εk ≤ −τ hDk
αk

(ỹ(k); x (k)), τ > 0;
• the gradient of f0 is Lipschitz continuous on dom( f1).

Let f ∗ be the optimal function value for problem (1). Then

f (x (k+1)) − f ∗ = O

(
1

k

)
.

In [19] the authors proposed a slightly different version of the VMILA method:
the new version (called VMILAn) has exactly the same features described in the
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previous sections forVMILA, but the (k + 1) − th iterate is updated as usual, namely
x (k+1) = x (k) + λkd(k), if f (x (k) + λkd(k)) < f (ỹ(k)), otherwise x (k+1) = ỹ(k). For
this modified VMILA version, in [19, Theorem 1], the authors prove the convergence
of the iterates sequence by replacing the assumption of convexity for f0 with the
one that the objective function in (1) has to satisfy the Kurdyka-Łojasiewicz (K-L)
property [19, Definition 3]. The details are provided in the following theorem.

Theorem 9 ([19, Theorem 1]) Let 0 < αmin < αmax and μ ≥ 1. Assume that
{αk}k∈N ⊂ [αmin, αmax], {Dk}k∈N ⊂ Dμ, f in (1) is a K-L function, ∇ f0 is Lipschitz
continuous and the solution set is not empty. Let {x (k)}k∈N be the sequence generated
by

x (k+1) =
{
x (k) + λkd(k) if f (x (k) + λkd(k)) < f (ỹ(k))

ỹ(k) otherwise
(36)

where d(k) = ỹ(k) − x (k), λk is computed by means of (28) and ỹ(k) satisfies the
following condition

∃v(k) ∈ ∂ f (ỹ(k)) : ‖v(k)‖ ≤ b‖x (k+1) − x (k)‖ + ϑk+1,

+∞∑
k=1

ϑk < ∞ , (37)

for some b > 0,ϑk ∈ R≥0. If {x (k)}k∈N admits a limit point x, then thewhole sequence
converges to x, which is stationary for problem (1).

The request that the functional to minimize fulfills the K-L property is not so
restrictive; indeed examples of K-L functions are the indicator functions of semi-
algebraic sets, real polynomials, p-norms and, in general, semi-algebraic functions
or real analytic functions [11]. Moreover, when ỹ(k) = y(k), condition (37) is auto-
matically guaranteed with ϑk ≡ 0.

Remark 3 We observe that the conditions imposed on the sequences {αk}k∈N and
{Dk}k∈N to guarantee the VMILA convergence are the same requested for the con-
vergence of the SGP method. For this reason, all the considerations made for the
selection of these parameters for SGP in Sect. 3.2 still hold for VMILA. In particu-
lar, we stress that αk and Dk can be considered as “free” parameters which can be
tuned for improving the algorithmic performances.

4.5 Generalizations

In the recent works [16, 20, 63], the proposed VMILA algorithm has been further
generalized in order to either exploit the block-decomposable structure of certain op-
timization problems, and/or employ more general distances in the proximal operator
(5). We now provide a brief overview of these admissible generalizations.



Recent Advances in Variable Metric First-Order Methods 19

A Block Coordinate Extension

In many applications arising from image and signal processing, such as blind de-
convolution [2, 61] and non-negative matrix factorization [51], one needs to solve
problems of the form (1) in which the term f1 is additively separable, namely

f1(x) =
p∑

i=1

hi (xi )

where the functions hi are proper, convex, lower semicontinuous, and the blocks of
variables xi are such that x = (x1, . . . , xp) ∈ R

n . In this setting, it is preferable to
adopt an alternatingminimization (orGauss–Seidel) strategy [44], inwhich the objec-
tive function is cyclically minimized with respect to a single block of variables while
the other ones are fixed, generating a sequence {x (k)}k∈N with x (k) = (x (k)

1 , . . . , x (k)
p )

and

x (k+1)
i ∈ argmin

u∈Rni

f0(x
(k+1)
1 , . . . , x (k+1)

i−1 , u, x (k)
i+1, . . . , x

(k)
p ) + hi (u), i = 1, . . . , p.

(38)
Rather than solving subproblem (38) exactly, which could be impractical and lead to
nonconvergent sequences without some strict convexity assumptions [44], one can
instead address its proximal-linearized version [11], i.e.

x (k+1)
i = prox

α
(k)
i hi

(
x (k)
i − α

(k)
i ∇i f0(x̃

(k)
i )

)
, i = 1, . . . , p (39)

where α
(k)
i > 0 is a suitable steplength and ∇i f0(x̃

(k)
i ) denotes the partial gradient of

f0 with respect to xi at the point x̃
(k)
i = (x (k+1)

1 , . . . , x (k+1)
i−1 , x (k)

i , x (k)
i+1, . . . , x

(k)
p ).

In order to improve the practical performance of (39), a variable metric is usually
introduced into the computation of the proximal operator, by either employing a
majorization–minimization technique [25] or bounding the spectrum of the scaling
matrix with the Lipschitz constant of the problem [38]. However, these strategies are
not flexible and can be quite limiting in some cases of interest, e.g. when the Lipschitz
constant is not known or assumes big values. By contrast, the authors in [20] propose
to combine the block–coordinate strategy (39) with the VMILA algorithm which, as
we have seen, allows the user to freely select the steplengths and the scaling matrices
in bounded sets. At each outer iteration k ∈ N, the proposed method first generates p
sequences of inner iterates {x (k,�)

i }
�=1,...,L(k)

i
, i = 1, . . . , p, by applying the VMILA

algorithm L(k)
i times, i.e.
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x (k,0)
i = x (k)

i

z(k,�)
i = x (k,�)

i − α
(k,�)
i (D(k,�)

i )−1∇i f0(x̃
(k,�)
i )

ỹ(k,�)
i ≈

ε
(k,�)
i

prox
α

(k,�)
i hi

(z(k,�)
i )

x (k,�+1)
i = x (k,�)

i + λ
(k,�)
i (ỹ(k,�)

i − x (k,�)
i ), � = 0, 1, . . . , L(k)

i − 1

(40)

where the number of steps L(k)
i is bounded from above by an a priori fixed constant Li ,

the point ỹ(k,�)
i satisfies conditions (29)–(31) with α(k) = α

(k,�)
i , Dk = D(k,�)

i , z(k) =
z(k,�)
i and εk = ε

(k,�)
i , and λ

(k,�)
i is computed by imposing the Armijo-like condition

(28). Then, the next outer iterate is computed as x (k+1) = (x
(k,L(k)

1 )

1 , . . . , x
(k,L(k)

p )
p ).

Specularly to the convergence analysis carried out in the previous sections, the
stationarity of the limit points of the iterates sequences is proved for the scheme (40)
without any additional assumption on the objective function, by only requiring that
the errors ε

(k,�)
i in the computation of the inexact proximal points ỹ(k,�)

i converge to
zero [20, Theorem 1]. Furthermore, convergence of the whole sequence to the limit
point holds for a modified version of the method if the K-L property is satisfied and
the proximal points are computed exactly, as we detail in the following theorem.

Theorem 10 ([20, Theorem2])Let 0 < αmin < αmax ,μ ≥ 1 and L1, . . . , L p ∈ Z
+.

For all k ∈ N, let {x (k,�)
i }

�=1,...,L(k)
i
, i = 1, . . . , p, be the sequences generated in (40)

with α
(k,�)
i ∈ [αmin, αmax ], D(k,�)

i ∈ Dμ, ỹ
(k,�)
i = prox

α
(k,�)
i hi

(z(k,�)
i ) and 1 ≤ L(k)

i ≤
Li . For all i = 1, . . . , p, choose �̄

(k)
i ∈ {0, . . . , L(k)

i − 1} and let {x (k)}k∈N be the
sequence defined as follows

x (k+1) =
⎧⎨
⎩ (x

(k,L(k)
1 )

1 , . . . , x
(k,L(k)

p )
p ) if f (x

(k,L(k)
1 )

1 , . . . , x
(k,L(k)

p )
p ) ≤ f (ỹ

(k,�̄(k)
1 )

1 , . . . , ỹ
(k,�̄(k)

p )
p )

(ỹ
(k,�̄(k)

1 )

1 , . . . , ỹ
(k,�̄(k)

p )
p ) otherwise

.

(41)
Suppose that f in (1) is a KL-function and that ∇ f0 is locally Lipschitz continuous
on Ω0. If {x (k)}k∈N admits a limit point x, then the whole sequence converges to x,
which is stationary for problem (1).

Remark 4 The modified step (41) is analogous to the modification (36) needed in
VMILAn, and imposes a further descent condition which may be stronger, in princi-
ple, than the one imposed at each inner iteration in (40).We also remark that Theorem
10 requires only local (instead of global) Lipschitz continuity, which is an improve-
ment with respect to Theorem 9 and allows to apply the proposed block-coordinate
algorithm (as well as VMILAn) to specific problems where global Lipschitz conti-
nuity is denied, such as image restoration in presence of Poisson noise.

Remark 5 Choosing a suitable number of inner steps L(k)
i is crucial in order to make

algorithm (40) effective. One can either set a constant number of inner iterations over
the outer iterations, i.e. L(k)

i ≡ Li , as successfully done in some blind deconvolution
problems in astronomy [61], or adopt an automatic stopping criterion based on the
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optimality of the inner iterate for the subproblem (38). We refer the reader to [20,
Sect. 4] for more details on this issue.

Employing Bregman Distances

Forward-backward methods can be further generalized if one replaces the (possibly
scaled) Euclidean distance in the proximal operator (5)with themore general concept
of Bregman distance (see e.g. [6] and references therein). In particular, one can
easily provide a Bregman version of the VMILA algorithm. Indeed, given α > 0,
ϕ : Rn → R̄ a strictly convex and differentiable function on int(dom(ϕ)) and its
associated Bregman distance Dϕ defined as

Dϕ(x, y) = ϕ(x) − ϕ(y) − ∇ϕ(y)T (x − y) (42)

for all x ∈ dom(ϕ), y ∈ int(domϕ), then one can introduce the function

hϕ
α(w; x) = ∇ f0(x)

T (w − x) + 1

α
Dϕ(w, x) + f1(w) − f1(x) (43)

and define a Bregman linesearch based forward-backward algorithm given by

z(k) = x (k) − αk∇ f0(x
(k))

ỹ(k) ≈εk prox
ϕ

αk f1
(z(k)) = argmin

w∈Rn
hϕ

αk
(w; x (k))

x (k+1) = x (k) + λk(ỹ
(k) − x (k)).

(44)

Algorithm (44) is a variant of VMILA in which the function hDk
αk

has been replaced
with hϕ

αk
. Some of the theoretical results proved for the VMILA algorithm still hold

for (44), including the well-definedness of the generalized Armijo linesearch (28)
[15, Proposition 3.1], the stationarity of the limit points (see [15, Theorem 3.1], [63,
Theorem 2]) and the practical procedure to compute an inexact proximal-gradient
point satisfying (31) [63, Sect. 3]. Open problems remain the convergence of the
iterates generated by (44) either when convexity or the K-L property hold.

The Bregman scheme (44) could be advantageous in order to better capture some
second order information of the function f0 in (1); for instance, when f0 is the
Kullback–Leibler functional defined in (17), a natural choice for the Bregman dis-
tance Dϕ is the Kullback–Leibler itself, i.e.

Dϕ(x, y) =
n∑

i=1

(xi + bg) log

(
xi + bg

yi + bg

)
+ yi − xi .

Numerical experiments in [16, 63] confirm the effectiveness of this approach in the
context of Poisson image reconstruction.
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5 A Variable Metric Forward-Backward Method with
Extrapolation

Another popular approach to solve problem (1) is the forward-backwardmethodwith
extrapolation. In [17], the inertial method (6) has been generalized by introducing
a variable metric induced by a sequence of symmetric and positive definite scaling
matrices with bounded eigenvalues. Before introducing the resulting scheme we
detail the additional assumptions which have to be satisfied by the function f0 in
(1). We suppose that f0 is convex and has an L-Lipschitz continuous gradient on
a nonempty, closed, convex set Y , where dom( f1) ⊆ Y ⊆ dom( f0). The variable
metric FB method with extrapolation devised in [17] can be written as

w(k) = P
Dk
Y (x (k) + βk(x

(k) − x (k−1)))

z(k) = w(k) − αk D
−1
k ∇ f0(w

k) (45)

x (k+1) = proxDk
αk f1

(z(k))

where

P
Dk
Y (·) denotes the projection operator onto the set Y with respect to the norm

induced by Dk ;
αk is adaptively computed via a backtracking procedure which guarantees,

starting from αk−1, that

f0(x
(k+1) ≤ f0(w

(k)) + ∇ f0(w
(k))T (x (k+1) − w(k)) + 1

2αk
‖x (k+1) − w(k)‖2Dk

;
(46)

βk has the form

βk = tk−1 − 1

tk
, β0 = 0 (47)

with {tk}k∈N satisfying the condition

t2k−1 + tk − t2k ≥ 0, tk ≥ 1, t−1 = 1, t0 = 1; (48)

{Dk}k∈N has to be suitably chosen in the compact set Dμ, μ ≥ 1.

Remark 6 Algorithm (45) differs from (6) not only for the presence of a variable
metric, but also for the Dk-induced projection of w(k) onto the set Y . Indeed, a
drawback in the use of method (6) is that it may be unfeasible when dom( f0) in
(1) does not coincide with the whole space Rn , since the point w(k) computed in (6)
does not necessarily belong to dom( f0). The projection operator P

Dk
Y (·) assures that

w(k) belongs to a subset of dom( f0) where ∇ f0 exists and is a Lipschitz-continuous
function.

Remark 7 The linesearch (46) iswell defined, namely it terminates in a finite number
of steps [17, Sect. 3].
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Remark 8 An example of sequence {tk}k∈N and corresponding {βk}k∈N satisfying
(47), (48) is the following one

tk =
{
1 k = −1, 0
a

k+a k ≥ 1
βk =

{
0 k = 0
k−1
k+a k ≥ 1

(49)

with a ≥ 2.

5.1 Inexact Computation of the Proximal Point

In [21], the authors introduce the possibility of inexactly computing the proximal
point x (k+1) in (45). The approach followed to define a suitable approximation x̃ (k+1)

of x (k+1) is analogous to the one described in Sect. 4.3 for selecting ỹ(k) in the
VMILA method. In particular, condition (31) is replaced by the following more
general inexactness criterion

0 ∈ ∂εk h
Dk
αk

(x̃ (k+1);w(k)) ∀k > 0, (50)

where, in this case, the function hDk
αk

(x,w) is defined as

hDk
αk

(x,w) = 1

2αk
‖x − w + αk D

−1
k ∇ f0(w)‖2Dk

+ f1(x) .

As explained in [21, Remark 2.7], condition (50) is equivalent to say that there exist
ε̄k, ε̂k ≥ 0 with ε̄k + ε̂k ≤ εk , and e(k) ∈ R

n with ‖e(k)‖2Dk
≤ 2αk ε̂k , such that

1

αk
Dk(z

(k) − e(k) − ỹ(k)) ∈ ∂ε̄k f1(ỹ
(k)) . (51)

The previous differential inclusion generalizes the one in (31), since it introduces an
error on the computation of the gradient, controlled by the parameter ε̂k , in addition
to the error on the proximal operator, measured by ε̄k . In order to ensure the desired
convergence properties, the authors in [21] require that the sequences {k2ε̄k}k∈N and
{k√ε̂k}k∈N are both summable; sufficient choices for εk to guarantee these require-
ments are either εk = O(1/k p) with p > 4 or εk = ε̄k = O(1/k p) with p > 3 when
no computational errors on the gradient are introduced.

By following the same arguments of Remark 2, in the special case of f1 as in (32),
x̃ (k+1) can be computed by means of an iterative scheme applied to the dual problem
of minx∈Rn hDk

αk
(x,w(k)).
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5.2 Convergence

Themain convergence properties of the inexact variant of algorithm (45) are reported
in this section. Of course, the same results hold true when the proximal point is
computed exactly. In particular, Theorem 11 states the convergence of the whole
sequence of the iterates {x (k)}k∈N to a minimizer of f in (1) while Theorem 12
and Theorem 13 state the corresponding convergence rate in the objective function
values.

Theorem 11 ([21, Theorem 3.3]) Assume that {tk} and {βk} are chosen as in (49)
with a > 2 and let {Dk}k∈N ⊂ Dμ be a sequence of operators satisfying (24). More-
over, suppose that x (k+1) = x̃ (k+1), where x̃ (k+1) fulfills (51) with {k2ε̄k}k∈N and
{k√ε̂k}k∈N summable. Then, the sequence {x (k)}k∈N converges to a minimizer of
f in (1).

Theorem 12 ([21, Theorem 3.1]) Let {Dk}k∈N ⊂ Dμ be a sequence of operators
satisfying (24) and assume that {tk}k∈N, {βk}k∈N are chosen as in (49) with a ≥ 2.
Moreover, suppose that x (k+1) = x̃ (k+1), where x̃ (k+1) fulfills (51) with {k2ε̄k}k∈N and
{k√ε̂k}k∈N summable. Let f ∗ be the optimal function value for problem (1). Then,
there exists a constant C such that

f (x (k)) − f ∗ ≤ C

(k + a)2
,

for all k ≥ 1.

Theorem 13 ([21, Theorem 3.2]) Let {Dk}k∈N ⊂ Dμ be a sequence of operators
satisfying (24) and assume that {tk}k∈N, {βk}k∈N are chosen as in (49) with a >

2. Moreover, suppose that x (k+1) = x̃ (k+1), where x̃ (k+1) (51) with {k2ε̄k}k∈N and
{k√ε̂k}k∈N summable. Let f ∗ be the optimal function value for problem (1). Then

f (x (k)) − f ∗ = o

(
1

k2

)
,

for all k ≥ 1.

Remark 9 As for SGP and VMILA, the sequence {Dk}k∈N has to be fixed in the
compact setDμ, μ ≥ 1 and requirement (24) has to be verified. For this reason, the
criteria to select the scaling matrix Dk remain the ones detailed in Sect. 3.2.

6 Scaling Techniques for Proximal ε-Subgradient Methods

The scaling techniques described in the previous sections can be adapted also in the
case when both f0 and f1 in (1) are convex, lower semicontinuous but nondifferen-
tiable. In these framework, assuming that an (approximate) subgradient of f0 can be
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easily computed, we focus on the following iteration

x (k+1) = proxDk
αk f1

(x (k) − αk D
−1
k u(k)), (52)

where u(k) ∈ ∂εk f0(x
(k)). Clearly, rule (52) is formally similar to the FB iteration (2)

where λk is set to one and ∇ f0(x) is replaced by any element of ∂εk f0(x
(k)).

The case Dk = I is well studied in the literature, especially when f1 reduces to the
indicator function of a closed convex set; without being exhaustive, we mention for
example [1, 29, 30, 45, 50, 54–56, 65, 73]. In general, the convergence is analyzed
under suitable assumptions on the parameters εk and αk . Typically, the error sequence
εk is required to converge to zero, which means that the approximate subgradient
u(k) of f0 must be computed with an increasing accuracy as the iterations proceeds.
On the other side, the meaning of the stepsize αk in (52) is very different than the
role played by the steplength parameters in the VMILA iteration. Indeed, even when
εk = 0, moving along a negative subgradient does not necessarily produce a decrease
on the objective function; hence, a line search procedure is not well defined in this
context.

The convergence analysis of subgradient methods in the literature is often per-
formedunder theErmoliev ordiminishing, divergent series steplength rule, consisting
in any choice ofαk obeying limk→∞ αk = 0,

∑∞
k=0 αk = ∞ or under the diminishing,

divergent series, square summable steplength rule,which requires
∑∞

k=0 αk = ∞ and∑∞
k=0 α2

k < ∞. In particular, the Ermoliev rule guarantees that the sequence f (x (k))

converges to f ∗ and that the distance of the iterates from the solution set goes to
zero, while the additional requirement that the sequence is square summable allows
to prove the convergence of the iterates to a minimum point. In both cases, the prac-
tical realization of the subgradient algorithms requires the user to provide an entire
sequence of stepsize parameters obeying the above mentioned requirements. An al-
ternative, adaptive approach to the stepsize selection has been proposed in [10, 22,
42, 54] and consists in defining

αk = f (x (k)) − fk
‖u(k)‖2 or αk = f (x (k)) − fk

max{1, ‖u(k)‖2} , (53)

where fk is an adaptively computed estimate of the optimal value f ∗. In this case,
convergence of the objective function values and of the distance from the solution
set to zero can be proved.

A more general analysis of ε-subgradient methods of the form (52), including a
variable metric associated to the matrix Dk in combination with square summable
or adaptive stepsize rules, is performed in [18]. The key assumption on the scaling
matrices sequence to guarantee the convergence properties is the practical version
(25) of the property employed to prove the convergence of the VMILA iterates in
the convex case. We report below the statement of the main convergence result with
diminishing, divergent series, summable square rule, whose proof can be found in
[18]. Similar results are obtained also in [1, Lemma 1] for ε-subgradient projection
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methods, i.e. Dk = I , f1 = ιΩ , and in [30, Theorem 2.6] for the case εk = 0 and
Dk = I .

Theorem 14 Let {x (k)} be the sequence generated by iteration (52), where u(k) ∈
∂εk f0(x

(k)), for a given sequence {εk} of non-negative scalars. Assume that there
exist two positive constants ρu, ρw and a sequence {w(k)}, w(k) ∈ ∂ f1(x (k)) such that
‖u(k)‖ ≤ ρu and ‖w(k)‖ ≤ ρw (subgradient boundedness). Assume that {Dk} is cho-
sen so that the condition (25) holds and that αk and εk satisfy

lim
k→∞ εk = 0,

∞∑
k=0

εkαk < ∞, (54)

∞∑
k=0

αk = ∞,

∞∑
k=0

α2
k < ∞. (55)

Then, setting f ∗ = inf x∈Rn f (x) (possibly f ∗ = −∞), we have

• lim infk→∞ f (x (k)) = f ∗;
• if {x (k)} is bounded, there exists a limit point of it belonging to the set of solutions

X∗ of (1);
• if X∗ is not empty, the sequence {x (k)} converges to a solution of (1) and
limk→∞ f (x (k)) = f ∗;

• if X∗ is empty, the sequence {x (k)} is unbounded.
When X∗ �= ∅, we are able to provide a convergence rate estimate for method (52)
with the steplength rule (54), (55). From Lemma 2.3 in [18] (see also Theorem 2
in [1]), we have that, when the steplength is chosen as αk = O( 1k ), there exists a
subsequence {x (k�)} of {x (k)} such that f (x (k�)) − f (x∗) ≤ 1

log(k�)
. However, in spite

of this poor theoretical estimate, with a suitable choice of the scaling matrices {Dk},
the method (52) shows a practical performance, definitely better than the one of the
nonscaled version, as highlighted in the numerical experiments in [18].

Borrowing the ideas in [22, 42], the iteration (52) can be equipped also with an
adaptive procedure to compute αk as

αk = f (x (k)) − f levk

max(1, ‖u(k) + w(k)‖D−1
k

)
, (56)

where w(k) ∈ ∂ f1(x (k)) and f levk is an estimate of the optimal value f ∗. The updating
procedure for f levk is quite complicated: roughly speaking, f levk is reduced when
f (x (k)) is sufficiently close to it and it is increased if after several iterates the function
value is still too far from it (see [18, 54] for more details).

Under the assumption (25) on the scaling matrices sequence, this adaptive choice
ofαk guarantees the convergence of { f (x (k)} to the optimal value and that the distance
of the iterates from the solution set goes to zero [18, Theorem 4.1].
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6.1 A Scaled Primal–Dual Hybrid Gradient Method

Scaling techniques can be introduced also in primal-dual methods applied to the
following instance of the problem (1):

min
x∈Rn

ψ(x) + g(Ax) + f1(x), (57)

where A ∈ R
m×n , ψ(x), g(x) and f1(x) are convex, proper, lower semicontinuous

functions such that diam(dom(g∗)) is finite and g∗(y) is the Fenchel dual of g. In
particular, we consider the following Scaled Primal–Dual Hybrid Gradient (SPDHG)
method:

y(k+1) = proxτk g∗(y(k) + τk Ax
(k)), (58)

u(k) = p(k) + AT y(k+1), (59)

x (k+1) = proxDk
αk f1

(u(k) − αk D
−1
k u(k)), (60)

where p(k) ∈ ∂νkψ(x (k)), for some νk ≥ 0, and {τk}, {αk} are the dual and pri-
mal steplength sequences respectively. Method (58)–(60) actually is a special case
of the scaled FB ε-subgradient method (52), where f0 = ψ + g ◦ A. The key
point of this interpretation is that AT y(k+1) is an ε-subgradient of g ◦ A at x (k)

as stated in [13, Lemma 1]. More precisely, AT y(k+1) ∈ ∂γk (g ◦ A)(x (k)), where

γk = g(Ax (k)) + g∗(y(k+1)) − y(k+1)T Ax (k). Moreover, it can be shown that, under
some reasonable assumption (e.g. when g is Lipschitz continuous on its domain),
the error parameter γk is controlled by the inverse of the dual stepsize parameter τk .

Thus, recalling the additivity of the ε-subgradient, we can conclude that

u(k) = p(k) + AT y(k+1) ∈ ∂εk f (x
(k)), εk = νk + γk . (61)

In view of this remark, two different versions of the SPDHG method can be imple-
mented: given a sequence of scaling matrices {Dk} satisfying (25), in one case the
sequences {τk}, {αk}, {νk} are user provided and chosen so that (54), (55) are satisfied,
while in the other case, only {τk} and {νk} must be provided and {αk} is adaptively
computed as in (56) (see [18, Corollaries 5.1, 5.2]).

As concerns as the choice of the scaling matrices Dk , the Split-Gradient idea
described in Sect. 2 can be still exploited as an inspiration for designing a well per-
forming variable metric for the iteration (52) and, as a special case of it, for the
primal-dual method (58)–(60). In particular, in [18] a recursive procedure to com-
pute a decomposition of the subgradient u(k) = V (x (k)) −U (x (k)) with V (x (k)) > 0
and U (x (k)) ≥ 0 is included in the SPDHG method (58)–(60), when applied to the
deblurring of an image corrupted by Poisson noise via the TV regularization. Then,
the matrix D−1

k in (60) is defined as a diagonal matrix whose entries are the projec-
tion of x (k)

i /Vi (x (k)) onto the set [1/√1 + ζk,
√
1 + ζk] (see Algorithm 2 in [18] for

details). Numerical experiments show that this scaling strategy can be very effective
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to improve the convergence behaviour with respect to the nonscaled version of the
same method, inducing a faster decrease of the objective function value through the
iterates.

7 Conclusions and Perspectives

In this paper we have presented a variable metric approach for first-order methods
aimed at minimizing the sum of a differentiable term and a convex one. First anal-
ysed in the seminal works [48, 49], the so-called split-gradient strategy relies upon
the decomposition of the gradient of a differentiable function into the difference of
a positive part and a non-negative one, and generates a sequence of diagonal posi-
tive definite scaling matrices which capture some second order information of the
function at the current iterate. Such a technique can be easily adapted to several
minimization techniques, such as linesearch based forward–backward methods [12,
15, 19, 21], inertial schemes [17, 20] and ε−subgradient methods [18], provided
that it is combined either with a suitable adaptive procedure or a sufficiently fast
decreasing steplength.

Future work could address the following issues:

• the adaptation of the proposed methods to problems where both the data-fidelity
function and the regularization term are nonconvex, such as sparsity-based appli-
cations where the �0−norm is employed;

• the convergence of the iterates, assuming that the K-L property holds, when the
proximal operator is approximately computed through condition (31);

• the modification of the inner routine for the inexact computation of the proxi-
mal operator employed in Sects. 4 and 5; in particular, one could investigate an
algorithm where only the descent condition (29) is imposed, thus removing the
stopping criterion (34) to ensure (31).
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Structure Preserving Preconditioning for
Frame-Based Image Deblurring

Davide Bianchi, Alessandro Buccini and Marco Donatelli

Abstract Regularizing preconditioners for accelerating the convergence of iterative
regularization methods and improving their accuracy have been extensively investi-
gated both in Hilbert and Banach spaces. For deconvolution problems, the classical
approach defines preconditioners based on the circular convolution. On the other
hand, for �2 regularization methods, it has been recently shown that a preconditioner
preserving the structure of the convolution operator can be more effective. Such a
preconditioner can improve both restoration quality and robustness of the method
with respect to the choice of the regularization parameter when compared with the
non-structured ones. In this paper we explore the use of structure preserving pre-
conditioning for �1-norm regularization in the wavelet domain in image deblurring.
A recently proposed preconditioned variant of the linearized Bregman iteration is
modified to preserve the structure of the coefficient matrix according to the imposed
boundary conditions. The structured preconditioner is chosen as an approximation of
a regularized inverse of the convolutionmatrix. Selected numerical experiments show
that our preconditioning strategy improves the previous results obtained with circu-
lant preconditioning providing restorations with lower ringing effects and sharper
details.
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1 Introduction

Image deblurring is the process of reconstructing an approximation of an image from
blurred and noisy measurements. By assuming that the point spread function (PSF)
is known, the observed image G is obtained from the convolution of the PSF with
the true image F . The formation process of G, as well as the transmission process,
produces some errors that we assume to be additive and with a Gaussian distribution.
Therefore, denoting by g and f the stack ordered vectors corresponding to G and F ,
the discrete convolution problem is modeled by the linear system

g = Af + η, (1)

where A is the convolution matrix and η the noise vector. For the sake of simplicity
we consider n × n images, thus g, f,η are vectors of N = n2 components and the
matrix A is N × N when proper Boundary Conditions (BCs) are imposed. BCs try
to capture and include in the deblurring model the unknown behavior of the image
outside the field of view in which the detection is made: see Sect. 3 and [29].

Thus, image deblurring consists in computing an approximation of the true image
f by means of an appropriate solution of (1). Since the singular values of A grad-
ually approach zero without a significant gap, independently of the BCs, A is very
ill-conditioned and may be singular. Linear systems of equations with a matrix of
this kind are commonly referred as linear discrete ill-posed problems and require
regularization; see [26] for more details on discrete ill-posed problems. Therefore,
a good approximation of f cannot be obtained from the algebraic solution (e.g., the
least-square solution) of (1), but regularization methods are required.

The structure of thematrix A depends on the properties of the basic blurringmodel,
i.e., the PSF and the BCs. In this work we assume that the blurring model is space-
invariant, i.e., that it does not depend on the location, while the BCs can be defined
by vary extrapolation strategies and are not necessarily defined as affine relations
between the unknowns inside the field of view. For example, when periodic BCs
are imposed, the matrix A is block circulant with circulant blocks (BCCB) and it is
diagonalizable by discrete Fourier transform. For other BCs thematrix vector product
with A can always be computed by means of the Fast Fourier Transform (FFT) on an
appropriately padded image of larger size. On the other hand, the (pseudo) inverse of
A cannot always be computed by fast trigonometric transforms, in particular when
the PSF is not symmetric in both the horizontal and the vertical direction. Therefore,
iterative methods are often preferable since the matrix A is never stored and only the
PSF and the imposed BCs are necessary for the matrix-vector product.

As far as iterative regularization methods are concerned, these methods typically
suffer of one of the following two shortcomings: either they are extremely slow like,
e.g., the so-called Landweber iteration, or they are reasonably fast, but may deterio-
rate if not terminated appropriately. We refer to [22] for a comprehensive discussion
of these and further properties of iterative regularization methods for linear ill-posed
problems. Preconditioners can be used to accelerate the convergence, cf. [3, 23, 28,
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30, 32], but an imprudent choice may spoil the quality of the computed restorations.
Iterative regularization methods exhibit the so-called semiconvergence property: in
the first iterations they reduce the algebraic error in the well-conditioned subspace of
the low frequencies; but, when the algebraic error is reduced in the high frequencies
space, the restoration error increases and the noise is amplified. Therefore, a fair
estimation of the stopping iteration is crucial. Since the iterations are stopped before
convergence, differently from the well-posed case, the choice of the preconditioner
for iterative regularization methods do not only affect the speed of convergence, but
also the reconstructed solution. In particular, a good preconditioner should not only
accelerate the iteration, but has to lower the optimal reconstruction error achieved
before the semiconvergence effect deteriorates the quality of the reconstructed solu-
tion.

To the best of our knowledge, the only preconditioners that preserve exactly the
same structure of A have been proposed in [27] for zero Dirichlet BCs and symmetric
PFS and in [15] for everyBCand generic PSF.Note that the proposal in [15] is slightly
different from those in [27] but they are asymptotically (in the size of the problem)
equivalents.

In this paper, motivated by the fact that most real images usually have sparse
approximations under some wavelet basis, we consider a regularization strategy
based on tight frame decomposition that has been recently largely investigated [6–
10]. In order to obtain a sparse approximation, we minimize the weighted �1-norm
of the tight frame coefficients. Our aim is to explore the structure preserving pre-
conditioning strategy proposed for a Landweber-like iteration in [15], in connection
with the iterativemethods for �1 regularization like the linearized Bregman algorithm
(LBA) [7, 9] and the iterative shrinkage thresholding algorithm (ISTA) [12].

Let WT be a tight-frame synthesis operator such that WTW = I , the frame coef-
ficients of the original image f are x such that

f = WT x. (2)

After reformulating the deblurring problem (1) in terms of frame coefficients

min
x

{μ‖x‖1 + ‖x‖2 : AWT x = g},

where ‖ · ‖ denotes the Euclidean 2-norm, a regularized solution can be obtained by
the linearized Bregman splitting algorithm [35]. This method is known to converge
very slowly for image deblurring problems, hence a preconditioning strategy is usu-
ally employed; such a preconditioned method is referred to as Modified Linearized
Bregman Algorithm (MLBA) [9]. Combining the recent preconditioned regulariza-
tion iteration for least-square ill-posed problems in [16] with the linearized Bregman
algorithm, a new preconditioned iteration, similar to MLBA, was proposed in [8].
It is usually more robust and provides better restorations than MLBA. Since the
introduction of a preconditioner requires the estimation of a second parameter, a
nonstationary preconditioner inspired by [19] was also investigated.
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The preconditioners for wavelet or tight frame algorithms previously investigated
in the literature are based onBCCB approximations of A. In this paper, we investigate
the use of the structured preconditioner proposed in [15] in the nonstationary iteration
proposed in [8]. The preconditioner is defined as a regularized inverse having the
same structure, and hence the same BCs, of the blurring matrix. The nonstationary
parameter is computed at each step by a BCCB approximation of the preconditioner
such that the involved nonlinear problem becomes separable and it can be easily
solved in O(n2) complexity by Newton’s method. Unfortunately, the structure of
the preconditioner does not allow a straightforward extension of the convergence
result in [8]. Nevertheless, numerical results show that the ringing effects in the
restored images are largely reduced using our structure preserving preconditioner in
connection with the linearized Bregman algorithm. For stopping the iterations and
for estimating the preconditioner’s parameter at each iteration, we assume that an
estimation of δ = ‖η‖2 is available.

The paper is organized as follows. Section2 describes the structure and some
properties of the blurring matrix. The structured preconditioner is introduced in
Sect. 3 with its nonstationary version and the automatic estimation of the related
parameter. The structured preconditioner is combinedwith the nonstationary iteration
for �1-norm framelet regularization in Sect. 4. Section5 collects some numerical
results and comparisons. Finally, Sect. 6 is devoted to concluding remarks.

2 Blurring Matrix and BCs

Let H ∈ R
m×m be the PSF. We assume that the position of the PSF center is known

and it is denoted by the index (0, 0). Thus, H can be depicted as

H = [[h j1, j2 ]m2,1

j1=−m1,1
]m2,2

j2=−m1,2
,

wherem1,i + m2,i + 1 = m, for i = 1, 2, and the indices are shifted according to the
center of the PSF.

The pixels h j1, j2 of the PSF can be interpreted as the Fourier coefficients of a
function. We will refer to this function as the symbol associated with H . In details,
if n is odd and the PSF is obtained observing a white pixel on black background in
the middle of the n × n image, then m = n and the associated symbol is defined as

φ(x1, x2) =
(n−1)/2∑

j1, j2=−(n−1)/2

h j1, j2e
i( j1x1+ j2x2), i2 = −1 (3)

where the coefficients h j1, j2 far from the central coefficient h0,0 are zero, since we
assume that the PSF has compact support. The symbol (3) provides the spectral
behavior of the matrix A independently of the BCs and, in particular, the eigenvalues
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Table 1 Pad of the original image F obtained by imposing the classical BCs considered in [29],
with Fc = fliplr(F), Fr = flipud(F), and Frc = flipud(fliplr(F)), where fliplr(·) and flipud(·) are
the MATLAB functions that perform the left-right and up-down flip, respectively

Zero Periodic Reflective

0 0 0
0 F 0
0 0 0

F F F

F F F

F F F

Frc Fr Frc
Fc F Fc
Frc Fr Frc

of A are asymptotically distributed as a uniform sampling of φ up to few outliers;
see [11, 21] for more details.

We now discuss some classical BCs and the structure of the resulting matrix A
which, in turn, can be exploited to achieve fast computations. Common approaches
force a functional dependency between the elements of F external to the FOV and
those internal to this area. This has the effect of extending F outside of the FOV
without adding any unknowns to the associated image deblurring problem. The use
of different BCs can be motivated by additional information on the true image.

Table1 summarizes the definition of zero, periodic, and reflective BCs; for a
detailed description refer to [29]. For antireflective BCs see the review paper [21]
and the original proposal in [33]. More sophisticated BCs like the synthetic BCs
proposed in [25] or the higher order BCs in [14, 17] could be applied as well.

The matrix-vector product with the matrix A can always be performed by FFT
resorting to a proper padding of the vector depending on the imposed BCs. Using
for instance the MATLAB padarray function, the same padding of Table 1 can be
applied to the n × n 2D array corresponding to the vector of size N = n2. Then the
2n × 2n padded image is convolved (by FFT) with H . Finally, the central n × n
image (centered at the index (0, 0)) is the result of the matrix-vector product with
the BCs applied for the padding. This is the implementation used in the MATLAB
toolbox RestoreTools [31].

The matrix-vector product with the matrix AH can be computed with a similar
algorithm when zero Dirichlet or periodic BCs are imposed. Indeed, using the fact
that the adjoint operator of the convolution is the correlation, which differs from the
convolution only for a change of sign, a common approach is to rotate the PSF of
180 degrees and then to apply the previous padding strategy. This is for instance
the implementation used in RestoreTools. Unfortunately, as proven in [18], this
algorithm implements thematrix-vector product with amatrix A′ (deblurring), which
is the discretization of the correlation with the imposed BCs and, for generic BCs,
A′ is not necessarily equal to AH .

Concerning the structure of the matrix A, when zero Dirichlet or periodic BCs are
imposed, the matrix A has a block Toeplitz with Toeplitz blocks (BTTB) or BCCB
structure, respectively. Moreover, using to standard notation, see e.g. [11], the matrix
A can be denoted by Tn(φ) and Cn(φ), respectively, where φ is defined in (3). The
matrix Cn(φ) can be diagonalized by the discrete Fourier transform
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Fn = 1√
n

[
e− 2πi j1 j2

n

]n−1

j1, j2=0
.

Namely, Cn(φ) = FH
n Dn(φ)Fn where Dn(φ) is a diagonal matrix whose entries are

the eigenvalues of Cn(φ) and are as a uniform sampling of φ, i.e.,

Dn(φ) = diag j2=0,...,n−1

(
φ

(
2π j2
n

))
.

Imposing different BCs, the resulting shift-invariant structure of the matrix A can
be denoted by

A = Mn(φ) = Cn(φ) + R + E,

where R is a matrix of small rank and E is a matrix of small norm. Therefore,
the symbol φ describes the spectral behavior of the matrix A independently of the
imposed BCs.

3 Structure Preserving Preconditioning

In order to introduce the structure preserving preconditioner, we consider the fol-
lowing nonstationary iteration

fk+1 = fk + Zk(g − Afk) = fk + Zkrk, (4)

where rk = g − Afk denotes the residual at step k and the matrix Zk depends on A.
For instance, Zk = τ AH leads to the Landweber method for 0 < τ < 2/‖AH A‖.

The matrix Zk can be used to speed up the convergence of the Landweber method,
which is well-known to have a very slow convergence, without spoiling the quality of
the computed solution. The iterated Tikhonov method [26] is the iteration (4) where

Zk = AH (AAH + αk I )
−1 (5)

and it can also be interpreted as a preconditioned Landweber iteration [32]. The
iteration proposed in [19] is a special instance of (4) with Zk chosen as a BCCB
matrix obtained replacing A with Cn(φ) in Eq. (5).

In [15], the algorithm proposed in [19] has been modified for preserving the
structure of the matrix A = Mn(φ), depending on the BCs. More in details, in [19],
the authors consider a preconditioner of the form

Zk = Cn(φ)H
(
Cn(φ)Cn(φ)H + αk I

)−1
,

Thus Zk is a BCCB matrix for every k. In [15] the authors, select as preconditioner
a matrix Zk of the form
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Zk = Mn(ψ),

where the function ψ is a regularized approximation of 1/φ related to the Tikhonov
regularization and Zk has the same structure of A. This is motivated by the fact that
the class of matrices Mn(·) shows a quasi-algebra structure, like BTTB matrices,
such that it holds

Mn(g)Mn( f ) ≈ Mn(g f );

see [1]. For a fixed size n, the symbol ψ reduces to the trigonometric polynomial

ψ(x1, x2) =
(n−1)/2∑

j1, j2=−(n−1)/2

bkj1, j2e
i( j1x1+ j2x2), i2 = −1 (6)

where the coefficients bki, j can be computed imposing N interpolation conditions
on the chosen regularized approximation of 1/φ. Let ( j o1 , j o2 ) be the index in the
2D array H of h0,0, i.e., of the central coefficient of the PSF, using the Tikhonov
approximation of 1/φ, i.e., by approximating 1/φ by

1/φ ≈ φ̄

|φ|2 + αk
= ψ,

the 2D array

Bk = [
bkj1, j2

](n−1)/2

j1, j2=−(n−1)/2

can be computed by:

1. C = [
c j1, j2

] = FFT2(circshift(H, (− j o1 + 1,− j o2 + 1)));

2. vk
j1, j2

= c j1 , j2

|c j1 , j2 |2+αk
, for j1, j2 = 0, . . . , n − 1, Vk =

[
vk
j1, j2

]
;

3. Bk = IFFT2(circshift(Vk, ( j o1 − 1, j o2 − 1)));

where theMATLAB function circshift performs a circular shift of a number of entries
according to the second parameter.

The matrix Zk is then obtained as Zk = Mn(ψ), i.e., as the convolution matrix
with convolutional kernel Bk and same BCs of A. We observe that, since both Zk

and A are convolution matrix with the same BCs they have the same structure.
A different approximation of 1/φ can be simply obtained replacing the Tikhonov

filter at step 2. with a different filter.

Remark 1 The selection of the Tikhonov filter at step 2. implies that

Zk = Mn(ψ) ≈ AH (AAH + αk I )
−1.

In particular, imposing periodic BCs, it holds
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Zk = Cn(ψ) = Cn(φ)H
(
Cn(φ)Cn(φ)H + αk I

)−1 = Cn

(
φ̄

|φ|2 + αk

)
, (7)

where Zk is the BCCB preconditioner used in [16, 19] and Bk is the 2D array
containing the eigenvalues of Zk .

In practice, the matrix Zk is never allocated but only Bk is required. The matrix
vector product with Zk is then computed by the same algorithm used for computing
the matrix-vector product with the matrix A simply replacing the PSF H with the
vector Bk .

The choice of αk is crucial for obtaining a good approximation within few itera-
tions. A stationary choiceαk = α requires a fair estimation of the parameterα. A too
small α highly speeds up the convergence, but the method could become unstable,
affecting the computed solution by noise amplification and hardly ever providing
then a good estimation at the stopping iteration. On the other hand, a too large α
does not necessarily accelerate the convergence.

Remark 2 For ill-posed problems, a regularizing preconditioner could slow down
the convergence speed of the original iteration especially if it is defined for improving
the quality of the computed solution. This happen for instance by preconditioning
GMRES [20] and it could happen also with our preconditioner for some choices of
αk .

In order to avoid the estimation of α, a nonstationary strategy can be employed. A
simple idea is to use a decreasing geometric sequence αk = α0θ

k , where for image
deblurring α0 and θ can be fixed as α0 = 1 and θ = 0.8, see [19].

Here we adopt the strategy proposed in [15] and based on the algorithm in [19].
The parameter αk is dynamically estimated at every iteration using Zk = Cn(ψ) as
defined in (7) with a few steps of Newton’s method. At step k the parameter αk is
determined by solving the nonlinear separable equation

qk‖rk‖ = ‖rk − Cn(φ)Cn(ψ)rk‖ = ‖r̂k − Dn r̂k‖, (8)

where r̂k = FH
n rk , Dn = diagj1,j2=0,...,n−1(|c j1, j2 |2/(|c j1, j2 |2 + αk)) and

qk = max {q, 2ρ + (1 + ρδ/‖rk‖} .

The parameter q = 0.7 is included as a safeguard to prevent that qk decreases too
rapidly and hence the preconditioner deteriorates the quality of the computed solu-
tion.

Remark 3 The parameter ρ measures how much we trust in the approximation of
our preconditioner and in the numerical results it is simply fixed as ρ = 10−4.

Note that the choices of q and ρ agree with the choices in [8].
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Assuming that

‖(Cn(φ) − A)z‖ ≤ ρ‖Az‖, ∀z ∈ R
N , (9)

where 0 < ρ < 1/2, in [19] it is proved that, choosing αk by the equation (8) and
Zk = Cn(ψ) as in (7), the iteration (4) converges monotonically and it defines a
regularization method. Imposing to Zk the same structure as A, then condition (9)
has no longer meaning and the convergence of the iteration (4) cannot be easily
derived.

4 Preconditioned Iteration for �1-Norm Framelet
Regularization

It is well known thatmany images have a sparse representation in thewavelet domain.
A sparse representation in the computed solution can be enforced imposing the �1-
norm of the wavelet coefficients in the regularization term.

The synthesis approach [9, 24] consists of solving the problem (1) for the framelet
coefficient instead that for the image itself. Let WH ∈ R

n2×s with s ≥ n2 be a tight-
frame or wavelet synthesis operator. Recall that WHW = I , then we can rewrite (1)
as

g = AWHW f + η.

Denoting by x the vector W f according to (2) yields

g = AWHx + η.

Thus, the coefficient matrix of the problem becomes

AWH ∈ R
n2×s,

Note that using tight-framesWHW = I butWWH 
= I [13]. The use of tight-frames
instead ofwavelets ismotivated by the fact that the redundancy of tight-frame systems
leads to robust signal representations inwhich partial loss of the data can be tolerated,
without adverse effects, see e.g. [10];

Let the nonlinear soft-thresholding operator Sμ be defined component-wise as

[Sμ(x)]i = Sμ(xi ) = sgn(xi )max {|xi | − μ, 0} . (10)

The algorithm proposed in [8] can be expressed as

{
tk+1 = tk + WCn(φ)H

(
Cn(φ)Cn(φ)H + αk I

)−1
(g − AWHxk),

xk+1 = Sμ(tk+1).
(11)
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We recall that, in [8], the condition (9) as well as the condition

‖Cn(φ)WH (u − Sμ(u))‖ ≤ ρδ, ∀u ∈ R
s, (12)

where δ = ‖η‖ is the noise level and ρ comes from Remark 3 are assumed to be
true. Assumption (12) is equivalent to consider the soft-threshold parameter μ as a
continuous function with respect to the noise level δ, i.e., μ = μ(δ), and such that
μ(δ) → 0 as δ → 0. This is a common request in many soft-thresholding based
methods [12].

In [8] is proven that if αk is chosen by (8), then the iteration (11) terminates after
k = kδ ≥ 0 iterations with

‖rkδ
‖ ≤ τδ < ‖rk‖, k = 0, 1, · · · , kδ − 1, (13)

where τ = (1 + 2ρ)/(1 − 2ρ). This stopping criterion is known as discrepancy prin-
ciple [22], Moreover, assuming that t0 is not a solution of the linear system

g = AWHx, (14)

and that δm is a sequence of positive real numbers such that δm → 0 as m → ∞, in
[8] is proven that the sequence {xk(δm )}m∈N, generated by the discrepancy principle
(13) and algorithm (11), converges asm → ∞ to the solution of (14) which is closest
to t0 in Euclidean norm. We highlighted the dependency of xk(δm ) to the noise level
δm .

Our algorithm combines the structure preserving preconditioner described in the
previous section with the algorithm (11). In detail, the factor

Cn(φ)H
(
Cn(φ)Cn(φ)H + αk I

)−1

is replaced with Zk = Mn(ψ) as done in [15] for the �2-norm iteration in (4). The
resulting algorithm is

{
tk+1 = tk + WMn(ψ)(g − AWHxk),
xk+1 = Sμ(tk+1),

(15)

where ψ is defined as in (6) and whose Fourier coefficients are computed by the
procedure at points 1–3 in Sect. 3. The parameter αk is estimated solving the usual
Eq. (8) for circulant matrices for a certain ρ, which is fixed as ρ = 10−4 in the
numerical results. Observe that, as we pointed out in Sect. 3, the preconditioner
Zk has the same structure as the matrix A.

Unfortunately, like for the �2-norm regularization,when Zk has a generic structure,
the theoretical results in [8] cannot be easily extended. Nevertheless, the numerical
results in the next section show that the quality of the computed solutions with our
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algorithm (15) is better compared to the algorithm (11). In particular, our algorithm
presents reduced ringing effects at the boundary.

Since our algorithm (15) shows the semiconvergence property typical of iterative
regularization methods, it is stopped according to the discrepancy principle (13),
where we fix τ = 1.01 in the numerical results. Note that τ = 1.01 is a common
choice for iterative regularization since the theoretical analysis requires τ > 1 [22].

5 Numerical Results

In this section, we will show the numerical results for image deblurring comparing
our proposal with other classical algorithms for sparse wavelet restoration like ISTA
[12] and FISTA [2]. Moreover, we compare with the approach presented in [19] and
with one of the extensions proposed in [4].

The regularization parameter μ in (10) is chosen by hand in order to provide the
best restoration. An analysis of the role of the parameter μ in the Bregman algorithm
can be found in [5].

The tight-frame used in our tests is the piecewise linear B-spline framelets given
in [9]. Namely, given the masks

w0 = 1

4
[1, 2, 1], w1 =

√
2

4
[1, 0, −1], w2 = 1

4
[−1, 2, −1],

we define the 1D filters of size n × n by imposing reflective BCs

W0 = 1

4

⎡

⎢⎢⎢⎢⎢⎣

3 1 0 . . . 0
1 2 1

. . .
. . .

. . .

1 2 1
0 . . . 0 1 3

⎤

⎥⎥⎥⎥⎥⎦
, W1 = 1

4

⎡

⎢⎢⎢⎢⎢⎣

1 −1 0 . . . 0
−1 2 −1

. . .
. . .

. . .

−1 2 −1
0 . . . 0 −1 1

⎤

⎥⎥⎥⎥⎥⎦
,

and

W2 = 1

4

⎡

⎢⎢⎢⎢⎢⎣

−1 1 0 . . . 0
−1 0 1

. . .
. . .

. . .

−1 0 1
0 . . . 0 −1 1

⎤

⎥⎥⎥⎥⎥⎦
.

The nine 2D filters are obtained by

Wi, j = Wi ⊗ Wj , i, j = 0, 1, 2,
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where ⊗ denotes the tensor product operator. Finally, the corresponding tight-frame
analysis operator is

W =

⎡

⎢⎢⎢⎣

W0,0

W0,1
...

W2,2

⎤

⎥⎥⎥⎦ .

Throughout the experiments, we set the level of the framelet decomposition to 3.
In all examples we impose reflective boundary conditions and we deblur the

image using our proposed approach (NMLBA-Str), the original non-structured ver-
sion (NMLBA) [8], AIT [19], AIT-GP [4], ISTA [12], and FISTA [2]. In order to
compare these methods we consider three quantities, the relative restoration error
(RRE) defined by

RRE(f) = ‖f − ftrue‖
‖ftrue‖ ,

where ftrue denotes the exact solution of the problem, the peak signal to noise ratio
(PSNR) defined by

PSNR(x) = 20 log10

(
255n2

‖f − ftrue‖
)

,

and the structure similarity index (SSIM)defined in [34]. Thedefinitionof theSSIM is
more involved, here we just recall that SSIMmeasures how well the overall structure
of the image is recovered and that the higher the index the better the reconstruction.
In particular, the highest value achievable is 1.

We set all the free parameters in the considered method so that the obtained
reconstruction minimizes the RRE, or, equivalently, maximizes the PSNR. The ISTA
and FISTA algorithm converges to the solution of the �2-�1 problem, thus we stop
them when two consecutive iterations are close enough, i.e., when

‖xk+1 − xk‖
‖xk‖ < 10−4.

Cameraman We consider the following image deblurring problem. We blur the
cameraman image with a non-symmetric PSF and add 1% of white Gaussian noise;
see Fig. 1.

We report the result obtained with the different methods in Table2. From these
results we can observe that our proposal is able to outperform all the other considered
methods in accuracy and SSIM. This is confirmed by the visual inspection of the
reconstructions in Figs. 2 and 3.We can observe that the proposed approach is able to
reduce the artifact on the boundaries of the image. In particular, we can observe that
the reconstruction obtained with both NMLBA and FISTA are affected by ringing
around the edges. This ringing effect disappears when the structured preconditioner
is applied.Moreover, the reconstruction obtainedwith FISTA presents many artifacts
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Fig. 1 Cameraman test problem: a True image (238 × 238 pixels), b PSF (17 × 17 pixels),
c blurred image corrupted by 1% white Gaussian noise

Fig. 2 Cameraman test problem reconstructions obtained with different methods: a NMLBA-Str,
b NMLBA, c FISTA

Fig. 3 Cameraman test problem blown-ups of the reconstructions obtained with different methods:
a NMLBA-Str, b NMLBA, c FISTA

which result in the loss of details (see Fig. 3c), while the proposed approach is able
to provide a much more accurate reconstruction of the details of the image as shown
in Fig. 3a.
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Table 2 Cameraman test problem: RRE, PSNR, and SSIM obtained with the different methods
considered. All the parameters are tuned to obtain the highest value of PSNR. We highlight the best
result in boldface

Method RRE PSNR SSIM

NMLBA-Str 0.068047 29.032 0.86794

NMLBA 0.069711 28.822 0.86105

AIT 0.094712 26.160 0.73918

AIT-GP 0.089522 26.650 0.78689

ISTA 0.074759 28.215 0.83083

FISTA 0.073215 28.396 0.78956

Fig. 4 Clock test problem: a True image (235 × 235 pixels), b PSF (11 × 11 pixels), c blurred
image corrupted by 2% white Gaussian noise

Clock In this second example we consider the clock image, we blur it with a non-
symmetric PSF and we add 2% of white Gaussian noise; see Fig. 4.

From the results reported in Table3 we can observe that the proposed approach
outperforms the other considered method both in term of error and in term of SSIM.
This is confirmed from the visual inspection of the reconstructions proposed in Fig. 5.
We can observe that the structured preconditioner is able to dampen the ringing effect
present in the reconstruction, especially around the boundary of the image and to
reduce the presence of artifacts. This is evident in the blown-ups reported in Fig. 3.
Moreover, we can observe that the proposed approach is able to denoise the image
more effectively without oversmoothing the reconstruction, i.e., without destroying
the details of the image; see Fig. 6.

6 Conclusions

We have combined the structured preconditioning proposed in [15] with the frame
based iteration proposed in [8] for image deblurring problems. The resulting algo-
rithm provides restorations with reduced ringing effects with respect to the algorithm
in [8] and to classical wavelets based algorithms [2, 12, 24].
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Table 3 Clock test problem: RRE, PSNR, and SSIM obtained with the different methods consid-
ered. All the parameters are tuned to obtain the highest value of PSNR. We highlight the best result
in boldface

Method RRE PSNR SSIM

NMLBA-Str 0.054531 27.623 0.85855

NMLBA 0.068787 25.605 0.81271

AIT 0.071323 25.291 0.68975

AIT-GP 0.066857 25.853 0.78177

ISTA 0.054695 27.597 0.77300

FISTA 0.063126 26.351 0.76676

Fig. 5 Clock test problem reconstructions obtained with different methods: a NMLBA-Str,
b NMLBA, c ISTA

Fig. 6 Clock test problem blown-ups of the reconstructions obtained with different methods:
a NMLBA-Str, b NMLBA, c ISTA

The goodness of our algorithm confirms that improvements in �2-norm regular-
ization methods can be successfully applied to the inner steps of many nonlinear
models.



48 D. Bianchi et al.

Acknowledgements The authors are members of the INdAM Research group GNCS, which has
partially supported this work.

References

1. Aricò, A., Donatelli, M., Serra-Capizzano, S.: Spectral analysis of the anti-reflective algebra.
Linear Algebra Appl. 428, 657–675 (2008)

2. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

3. Brianzi, P., Di Benedetto, F., Estatico, C.: Improvement of space-invariant image deblurring
by preconditioned Landweber iterations. SIAM J. Sci. Comput. 30, 1430–1458 (2008)

4. Buccini, A.: Regularizing preconditioners by non-stationary iterated Tikhonov with general
penalty term. Appl. Num. Math. 116, 64–81 (2017)

5. Buccini, A., Park, Y., Reichel, L.: Numerical aspects of the nonstationary modified linearized
Bregman algorithm. Appl. Math. Comput. 337(15), 386–398 (2018)

6. Buccini, A., Reichel, L.: An �2-�q regularization method for large discrete ill-posed problems.
J. Sci. Comput., in Press

7. Cai, J.-F., Chan, R., Shen, L., Shen, Z.: Wavelet algorithms for high-resolution image recon-
struction. SIAM J. Sci. Comput. 24, 1408–1432 (2003)

8. Cai, Y., Donatelli, M., Bianchi, D., Huang, T.Z.: Regularization preconditioners for frame-
based image deblurringwith reduced boundary artifacts. SIAM J. Sci. Comput. 38, B164–B189
(2016)

9. Cai, J.F., Osher, S., Shen, Z.: Linearized Bregman iterations for frame-based image deblurring.
SIAM J. Imaging Sci. 2–1, 226–252 (2009)

10. Chan, R.H., Riemenschneider, S.D., Shen, L., Shen, Z.: Tight frame: an efficient way for
high-resolution image reconstruction. Appl. Comput. Harmon. Anal. 17, 91–115 (2004)

11. Chan,R.H.,Ng,M.K.: Conjugate gradientmethod for toeplitz systems. SIAMRev. 38, 427–482
(1996)

12. Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding algorithm for linear inverse
problems with a sparsity constraint. Commun. Pure Appl. Math. 57–11, 1413–1457 (2004)

13. Daubechies, I., Han, B., Ron, A., Shen, Z.: Framelets: MRA-based constructions of wavelet
frames. Appl. Comput. Harmon. Anal. 14, 1–46 (2003)

14. Dell’Acqua, P.: A note on Taylor boundary conditions for accurate image restoration. Adv.
Comput. Math. 43, 1283–1304 (2017)

15. Dell’Acqua, P., Donatelli, M., Estatico, C., Mazza, M.: Structure preserving preconditioners
for image deblurring. J. Sci. Comput. 72(1), 147–171 (2017)

16. Dell’Acqua, P., Donatelli, M., Estatico, C.: Preconditioners for image restoration by reblurring
techniques. J. Comput. Appl. Math. 272, 313–333 (2014)

17. Donatelli, M.: Fast transforms for high order boundary conditions in deconvolution problems.
BIT 50–3, 559–576 (2010)

18. Donatelli, M., Estatico, C., Martinelli, A., Serra-Capizzano, S.: Improved image deblurring
with anti-reflective boundary conditions and re-blurring. Inverse Probl. 22, 2035–2053 (2006)

19. Donatelli, M., Hanke, M.: Fast nonstationary preconditioned iterative methods for ill-posed
problems, with application to image deblurring. Inverse Probl. 29, 095008 (2013)

20. Donatelli,M.,Martin,D.,Reichel, L.:Arnoldimethods for image deblurringwith anti-reflective
boundary conditions. Appl. Math. Comput. 253, 135–150 (2015)

21. Donatelli,M., Serra-Capizzano, S.:Antireflective boundary conditions for deblurringproblems.
J. Electr. Comput. Eng. 2010, Article ID 241467, 18 (survey) (2010)

22. Engl, H.W., Hanke, M., Neubauer, A.: Regularization Methods for Inverse Problems. Kluwer,
Dordrecht (1996)



Structure Preserving Preconditioning for Frame-Based Image Deblurring 49

23. Egger, H., Neubauer, A.: Preconditioning Landweber iteration in Hilbert scales. Numer. Math.
101, 643–662 (2005)

24. Figueiredo,M., Nowak, R.: AnEMalgorithm forwavelet-based image restoration. IEEETrans.
Image Process. 12–8, 906–916 (2003)

25. Fan, Y.W., Nagy, J.G.: Synthetic boundary conditions for image deblurring. Linear Algebra
Appl. 434, 2244–2268 (2011)

26. Hanke,M., Hansen, P.C.: Regularizationmethods for large-scale problems. Surv. Math. Indust.
3, 253–315 (1993)

27. Hanke, M., Nagy, J.: Restoration of atmospherically blurred images by symmetric indefinite
conjugate gradient techniques. Inverse Probl. 12, 157–173 (1996)

28. Hanke, M., Nagy, J., Plemmons, R.: Preconditioned iterative regularization for ill-posed prob-
lems. In: Numerical Linear Algebra. Proceedings of the Conference in Numerical Linear Alge-
bra andScientificComputation,Kent,Ohio,March13–141992, deGruyter, pp. 141–163 (1993)

29. Hansen, P.C., Nagy, J., O’Leary, D.P.: Deblurring Images Matrices, Spectra and Filtering.
SIAM Publications, Philadelphia (2005)

30. Kilmer, M.E.: Cauchy-like preconditioners for two-dimensional ill-posed problems. SIAM J.
Matrix Anal. Appl. 20, 777–799 (1999)

31. Nagy, J.G., Palmer, K., Perrone, L.: Iterative methods for image deblurring: a MATLAB object
oriented approach. Numer. Algorithms 36 73–93 (2004). See also: http://www.mathcs.emory.
edu/~nagy/RestoreTools

32. Piana,M., Bertero,M.: Projected Landwebermethod and preconditioning. Inverse Probl. 13–2,
441–464 (1997)

33. Serra-Capizzano, S.: A note on anti-reflective boundary conditions and fast deblurring models.
SIAM J. Sci. Comput. 25(4) 1307–1325 (2003)

34. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error
visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

35. Yin,W., Osher, S., Goldfarb, D., Darbon, J.: Bregman iterative algorithms for �1-minimization
with applications to compressed sensing. SIAM J. Imaging Sci. 1, 143–168 (2008)

http://www.mathcs.emory.edu/~nagy/RestoreTools
http://www.mathcs.emory.edu/~nagy/RestoreTools


Non-stationary Structure-Preserving
Preconditioning for Image Restoration

Pietro Dell’Acqua, Marco Donatelli and Lothar Reichel

Abstract Non-stationary regularizing preconditioners have recently been proposed
for the acceleration of classical iterative methods for the solution of linear discrete
ill-posed problems. This paper explores how these preconditioners can be combined
with the flexible GMRES iterative method. A new structure-respecting strategy to
construct a sequence of regularizing preconditioners is proposed. We show that flex-
ible GMRES applied with these preconditioners is able to restore images that have
been contaminated by strongly non-symmetric blur, while several other iterative
methods fail to do this.

Keywords Image deblurring · Non-stationary preconditioning · Flexible GMRES

1 Introduction

We are concerned with the restoration of blurred and noise-corrupted images in
two space-dimensions. The blurring is modeled by a convolution and the image
degradation model is of the form

g(x) = [K f ](x) + ν(x) =
∫
R2

h(x − y) f ( y)d y + ν(x), x ∈ � ⊂ R
2, (1)
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where f represents the (desired but unavailable) exact image, h the space invari-
ant point-spread function (PSF) with compact support, ν random noise, and g the
(available) blurred and noise-corrupted image. Hence, f and g are real-valued non-
negative functions that determine the light intensity of the desired and available
images, respectively.

Discretization of the integral equation (1) at equidistant nodes gives the linear
system of algebraic equations

gi =
∑
j∈Z2

hi− j f j + νi , i ∈ Z
2. (2)

The entries of the discrete images g = [gi ] and f = [ f j ] represent the light intensity
at each picture element (pixel) and ν = [νi ]models the noise-contamination at these
pixels. The pixels with index i ∈ [1, n]2 make up the finite field of view (FOV), which
for notational simplicity is assumed to be square. We would like to determine an ac-
curate approximation of the exact image f in the FOV given h = [hi ], distributional
information about ν, and the blurred image g in the FOV.

The linear systemof algebraic equations defined by (2)with i restricted to [1, n]2 is
underdetermined when there are non-vanishing coefficients hi with i �= 0, because
then there are n2 equations, while the number of unknowns is larger. A common
approach to determine a meaningful solution of this kind of underdetermined system
is to impose boundary conditions on the image to obtain a linear system of algebraic
equations with a square matrix,

A f = g, A ∈ R
n2×n2 , f , g ∈ R

n2 . (3)

Theboundary conditions specify that the f j -values in (2) at pixels outside theFOVare
linear combinations of f j -values at certain pixels inside the FOV. Popular boundary
conditions include zero Dirichlet boundary conditions (ZDBCs), periodic bound-
ary conditions (PBCs), reflective boundary conditions (RBCs) discussed in [28], and
anti-reflective boundary conditions (ARBCs) proposed in [33]. Detailed descriptions
and analyses of these boundary conditions can be found in [15, 24, 25]. This paper
focuses on ARBCs, which yield an accurate model and often allow simple imple-
mentation. We restrict our attention to ARBCs only for the sake of simplicity, but
we remark that more accurate boundary conditions and other strategies for dealing
with boundary artifacts recently have been proposed in the literature, see [6, 10, 18,
29], and can be applied to construct preconditioners as well. Theoretical results on
optimal preconditioning for ARBCs are discussed in [9].

Due to the space-invariance of the PSF, the matrix A has a block Toeplitz-type
structure. The detailed structure depends on the boundary conditions. For instance,
ZDBCs give a block-Toeplitz–Toeplitz-block (BTTB) structure, while PBCs make
A a block-circulant-circulant-block (BCCB) matrix. This is discussed in more detail
below.
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Quadrantally symmetric PSFs, i.e., PSFs that are symmetric with respect to both
the horizontal and vertical axes, arise, e.g., when modeling symmetric Gaussian blur.
The associatedmatrix A in (3) allows diagonalization by a fast transformwhenRBCs
or ARBCs are imposed. These transforms can be applied to develop fast methods for
the approximate solution of (3); see [1, 5, 28].

For symmetric PSFs, the matrix A is symmetric and many iterative regularization
methods can be applied to the approximate solution of (3), such as non-stationary
iterative methods and variants of the minimal residual method; see [12, 16]. On the
other hand, for strongly non-symmetric PSFs specially designed iterative regulariza-
tion methods have to be applied; see [14, 20] for illustrations.

The matrix A in (3) generally is severely ill-conditioned and may be numerically
rank-deficient. We refer to linear system of equations (3) with such a matrix as
linear discrete ill-posed problems. Due to the error in the right-hand side vector g in
(3), which is caused by the noise ν in (2), and because of the ill-conditioning of the
matrix, one generally is not interested in the exact solution of (3) (if it exists). Instead
one typically would like to compute a suitable approximate solution that furnishes an
accurate approximation of the desired image f . Such an approximate solution can be
computed by regularizing the system of equations (3), e.g., by replacing this system
by a nearby one, whose solution is less sensitive to the error in g. Regularization
methods require the choice of a regularization parameter that determines the amount
of regularization.

The present paper is concerned with the development of fast and stable iterative
regularization methods for the approximate solution of (3) when the matrix A is
defined by a non-symmetric PSF h with ARBCs. In particular, we focus on GMRES-
type iterative methods. The (standard) GMRES method is commonly used for the
iterative solution of large linear systems of equations with a square non-symmetric
matrix that is obtained by the discretization of a well-conditioned problem, such as
an elliptic partial differential equation with Dirichlet boundary conditions. In this
context, preconditioners are employed to accelerate the convergence of the iterative
method. An advantage of GMRES, when compared to other iterative methods such
as CGLS, is that GMRES does not require the evaluation of matrix-vector products
with AT , the transpose of A. This is commented on further in Sect. 3.

Preconditioners applied to the iterative solution of linear discrete ill-posed prob-
lems (3) should avoid propagating the error ν in g into the the computed approximate
solution.We will show that such preconditioners can be determined by incorporating
a threshold parameter in their definition. Note that the preconditioning strategy for
GMRES proposed in [14] can determine accurate restorations, but may require many
iterations when the noise level is low. In fact, typically linear discrete ill-posed prob-
lems of the form (3) are more difficult to solve when the noise level is low than when
it is high, because the restoration of the former kind of images generally requires
more iterations.

We would like to investigate the use of non-stationary preconditioning with
GMRES-type methods with the aim to obtain accurate restorations within only a few
iterations also when the noise level is low and the PSF is strongly non-symmetric.
Instead of solving right-preconditioned systems of the form
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AP z = g, z = P−1 f (4)

by GMRES, we propose to use the flexible GMRES (F-GMRES) method first de-
scribed by Saad [30] to solve, at step k,

APk z = g, z = P−1
k f , (5)

where the preconditioner Pk is modified in each iteration. The application of F-
GMRES to the solution of linear discrete ill-posed problems has previously been
discussed by Gazzola and Nagy [19] and Morikuni et al. [27]. The preconditioners
developed in the present paper are new. Exploiting the tools developed within the
framework of preconditioned Landweber iterative methods [7, 8], we define precon-
ditioners for F-GMRES. By using a suitable sequence of preconditioners Pk in (5),
we obtain a preconditioned F-GMRES method that is well suited for image restora-
tion. The preconditioner Pk depends on a thresholding parameter αk , whose choice
will be discussed in Sect. 3.

Several other preconditioning techniques for linear systems of algebraic equa-
tions that arise in image restoration and have a square BTTB-type matrix have been
described in the literature; see, e.g., [7, 14, 17, 20, 22, 23] and references therein.
In all available preconditioning techniques, the preconditioner P is chosen before
the iterations are begun and kept fixed during the computations. This corresponds
to applying an iterative method to the preconditioned system (4). A nice recent sur-
vey is presented by Gazzola et al. [21]. However, it may be difficult to choose a
suitable preconditioner before the start of the iterations. Our approach circumvents
this complication by allowing the preconditioner to be updated during the solution
process.

This paper is organized as follows. Section2 contains a brief overview of anti-
reflective boundary conditions. A discussion on iterative methods, the construction
of our preconditioner, and an introduction of the preconditioned F-GMRES method
can be found in Sect. 3. Numerical results are presented in Sects. 4, and 5 contains
concluding remarks.

2 Anti-reflective Boundary Conditions

We review some properties of blurring matrices with ARBCs. A survey of blurring
matrices with ARBCs is given in [15], where many details are provided. Consider a
blurring matrix A determined by a discretized PSF,
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H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h−m,−m · · · h−m,0 · · · h−m,m

...
. . .

...
...

h−1,−1 h−1,0 h−1,1

h0,−m · · · h0,−1 h0,0 h0,1 · · · h0,m
h1,−1 h1,0 h1,1

...
...

. . .
...

hm,−m · · · hm,0 · · · hm,m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
(2m+1)×(2m+1), (6)

with h0,0 the central coefficient and, generally, 2m + 1 � n. The image values
f1− j,t for 1 ≤ j ≤ m and 1 ≤ t ≤ n are represented by 2 f1,t − f j+1,t . Similarly, for
1 ≤ j ≤ m and 1 ≤ s, t ≤ n, we obtain the image values

fs,1− j = 2 fs,1 − fs, j+1, fn+ j,t = 2 fn,t − fn− j,t , fs,n+ j = 2 fs,n − fs,n− j .

When both indices of f p,q are outside the range {1, 2, . . . , n}, which happens for
pixels close to the four corners of the given image, we carry out anti-reflection first
in one space-direction (in the direction of the horizontal or vertical axis) and then
in the other direction; see [13]. We describe these anti-reflections for pixels near the
corner with pixel index (1, 1) of an image; pixels near the other corners are treated
analogously. Thus, for 1 ≤ j, l ≤ m, we let

f1− j,1−l = 4 f1,1 − 2 f1,l+1 − 2 f j+1,1 + f j+1,l+1.

Here we have carried out anti-reflection along the horizontal axis followed by anti-
reflection along the vertical axis.

The strategy to anti-reflect first in one space-direction and then in an orthogonal
space-direction yields a blurring matrix A ∈ R

n2×n2 with a two-level structure; see
[13]. Specifically, A is the sum of fivematrices: A block Toeplitzmatrixwith Toeplitz
blocks, a block Toeplitz matrix with Hankel blocks, a block Hankel matrix with
Toeplitz blocks, a block Hankel matrix with Hankel blocks, and a matrix of rank at
most 4n. Despite this somewhat complicated structure, matrix-vector products with
the matrix A can be evaluated in O(n2 log(n)) arithmetic floating-point operations
(flops) by applying the FFT as follows: Let the n2-vectors x = X (:) and y = Y (:) be
defined by stacking the columns of the n × n-matrices X and Y , respectively. These
matrices represent images; their entries are pixel values. For every kind of boundary
conditions, the matrix-vector product y = Ax can be implemented by the following
procedure:

1. pad X with the chosen boundary conditions to obtain an extended 2D array X̃ ∈
R

(n+m)×(n+m);
2. compute Ỹ as the circular convolution of X̃ and H ;
3. determine Y by extracting the central inner n × n part of Ỹ .
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The anti-reflective boundary conditions require the use of an anti-symmetric pad
analogous to the symmetric pad that is available for the MATLAB function padar-
ray.1 Further details are provided in [15].

3 The Preconditioned Iterative Method

This section defines the preconditioners to be used and discusses the iterative solution
of the preconditioned linear systems of algebraic equations (5) by the F-GMRES
method.

3.1 Iterative Regularization Methods for Anti-reflective
Boundary Conditions

Introduce the correlation operator

[K ∗ f ](x) =
∫
R2

h( y − x) f ( y)d y, (7)

which is the adjoint of the convolution operator in (1). Here we have used the fact
that h is real-valued. Let the matrix A′ be obtained by discretizing (7) with the same
boundary conditions as for (3). It is proposed in [11] that, instead of solving (3), one
should compute the solution of the linear system of equations

A′A f = A′g (8)

when RBCs or ARBCs are imposed and the PSF is quite general, such as a PSF
that models motion blur. The linear system (8) is solved by a conjugate gradient
(CG) method that is formally similar to the CGLS method [2]. The latter method
computes an approximate solution of (3) by determining an approximate solution
of the associated normal equations AT A f = ATg. It is suggested in [11] that the
matrix AT in the CGLS method be replaced by A′. Attractions of the so obtained
iterative method for the approximate solution of (3) include that the matrix A′A
is not explicitly formed (only matrix vector products with the matrices A and A′
are evaluated) and that the method uses short recurrence relations. Therefore, the
method requires fairly little computer storage. The reason for using A′ instead of AT

in (8) is that the evaluation of matrix-vector products with the latter matrix is more
cumbersome and may suffer from numerical instability; see, e.g., [14] for a recent
discussion.

1A MATLAB code for the anti-symmetric pad can be downloaded at http://scienze-como.
uninsubria.it/mdonatelli/Software/software.html.

http://scienze-como.uninsubria.it/mdonatelli/Software/software.html
http://scienze-como.uninsubria.it/mdonatelli/Software/software.html
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However, the iterative solution of (8) by the CG method is not without difficul-
ties. The main problem is that the matrix A′A is not symmetric positive definite and,
therefore, the application of the CG method to the solution of (8) has no theoret-
ical justification. Moreover, the computed restorations may be of poor quality, in
particular when the PSF is strongly non-symmetric; see the analysis in [14]. These
difficulties with the CGmethod prompted the investigation in [14] of the application
of GMRES-type methods to the solution of (8).

GMRES is an iterativemethodproposed in [32] for the solutionof linear systemsof
algebraic equations with a fairly general square non-symmetric non-singular matrix;
see also [31]. Among several solution methods investigated in [14], the application
of GMRES to the system

AA′z = g (9)

performed the best. When z is an approximate solution of (9), f = A′z is an
approximate solution of (3). We may consider A′ a right preconditioner. Right-
preconditioning is convenient to use when the number of iterations is determined
with the aid of the discrepancy principle; see below. We next describe several pre-
conditioners.

To justify the definition of our preconditioner, we first discuss left-preconditioned
Landweber iteration. Following [7], where the so called “Z variant” is described, we
consider the left-preconditioned system

Z A f = Zg (10)

obtained from (3). Application of Landweber iteration to the solution of (10) yields
the iterates

f k+1 = f k + Z(g − A f k). (11)

We may determine the preconditioner Z ∈ R
n2×n2 by filtering as follows: In the case

of PBCs, A is a BCCBmatrix, which can be diagonalized by the 2D discrete Fourier
transform. The eigenvalues λi, j of A, for i, j = 0, . . . , n − 1, can be computed by
the 2D FFT applied to its first column arranged as a 2D array. The matrix Z is chosen
to be a BCCBmatrix, whose eigenvalues λ̆i, j are obtained by applying some filter to
the λi, j . For instance, we may use a slightly modified version of the Tikhonov filter

λ̆i, j = λi, j∣∣λi, j

∣∣2 + α
, i, j = 0, 1, . . . , n − 1,

where α > 0 is a regularization parameter and the bar denotes complex conjugation.
The BCCB matrix Z can be defined analogously for other boundary conditions; see
[7] for details.

When applying a stationary preconditioned iterative regularization method, we
have to face the non-trivial task of determining a suitable value of the parameter α.
A too small value of α often gives fast convergence, but may cause instability due to
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severe ill-conditioning of the preconditioner. The instability may result in large prop-
agated errors, which may reduce the quality of the computed solution and possibly
make the computed solution useless. On the other hand, a too large value of α may
result in slow convergence of the computed iterates. Hence, a proper choice of α is
important. Since iterative regularization methods are filtering methods, and the filter
changes with the iteration number, it can be difficult to determine a priori a value of
α that is suitable for all iterations. Here we also note that the number of iterations
required is typically not known before the iterative solution process is started.

To avoid the task of determining a suitable value of α before the start of the
iterations, Donatelli and Hanke [12] proposed the following non-stationary version
of the iterations (11),

f k+1 = f k + Zk
circrk, Zk

circ = CT (CCT + αk I )
−1, rk = g − A f k . (12)

Here C is the BCCB matrix associated with the PSF that defines the matrix A in (3)
and αk is determined by solving a non-linear equation by Newton’s method; see [12]
for details.

Recently, Dell’Acqua et al. [8] extended the non-stationary method (12) to be
able to take the boundary conditions of the problem into account and proposed the
following iteration scheme,

f k+1 = f k + Zk
struct rk, Zk

struct = B(CT (CCT + αk I )
−1), rk = g − A f k,

(13)
where the operator B denotes the application of boundary conditions to the circulant
matrix CT (CCT + αk I )−1. Thus, the operator B affects the structure of the matrix
Zk
struct.
The matrix Zk

struct may be considered a preconditioner. In particular, we may solve
the right-preconditioned linear system (5) with the preconditioner

Pk = B(CT (CCT + αk I )
−1) (14)

by F-GMRES. The parameter αk allows the preconditioner Pk to be varied during
the iterations.

Note that the preconditioner (14) is not explicitly formed, only matrix-vector
products with Pk are computed. Indeed, the matrixC is not explicitly formed; instead
matrix-vector products are evaluated by circular convolutions with the coefficient
mask H , i.e., with the PSF. The same can be done for Zk

circ and Zk
struct. We remark that

the structure of Zk
struct may be quite involved depending on the boundary conditions,

but, using the procedure described at the end of Sect. 2, only a 2D coefficient mask
H̆ is required to be used instead of H . The procedure for computing H̆ is described
in the next subsection.
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3.2 Construction of the Preconditioners

The generating function associated with the PSF defined by H in (6) is given by

f (x1, x2) =
m∑

j1=−m

m∑
j2=−m

h j1, j2e
ı̂( j1x1+ j2x2), ı̂ = √−1. (15)

Thus, the entries h j1, j2 of the matrix H are Fourier coefficients of the function f .
Let y(n)

k = 2πk/n, for k = 0, . . . , n − 1, be a uniform sampling on the interval
[0, 2π]. The 2D Fourier matrix of order n2 × n2 is given by

F(n,n) = Fn ⊗ Fn, where Fn = 1√
n

[
e−ı̂ j y(n)

k

]n−1

k, j=0

and⊗ denotes theKronecker product. Given the function f in (15), the BCCBmatrix
C generated by f is defined as

C = C(n,n)( f ) = F(n,n)D(n,n)(λ)FH
(n,n),

where D(n,n)(λ) = diagi, j=0,...,n−1[λi, j ] is the diagonal matrix of its eigenvalues and
FH

(n,n) is the conjugate transpose of F(n,n). The eigenvalues λi, j , 0 ≤ i, j < n, of C
are determined by a uniform sampling of the generating function f in (15) at the
grid points Γn = {(y(n)

i , y(n)
j ) : i, j = 0, 1, . . . , n − 1}, namely

λi, j = f

(
2πi

n
,
2π j

n

)
, i, j = 0, 1, . . . , n − 1. (16)

Therefore, the PSF can be interpreted as a mask of Fourier coefficients, and the
BCCB matrix C generated by f in (15) coincides with the matrix A in (3) when
PBCs are imposed.

The preconditioner is constructed by using the Tikhonov filter, but other filters
can be applied as well. The Tikhonov solution of the linear system C f = g is

f α = (CTC + αI )−1CTg = CT (CCT + αI )−1g.

The BCCB matrix CT (CCT + αI )−1 has the eigenvalues

λ̆i, j = λ̄i, j

|λi, j |2 + α
= f ( 2πin ,

2π j
n )

| f ( 2πin ,
2π j
n )|2 + α

, i, j = 0, 1, . . . , n − 1. (17)

Similarly to (16), assuming for simplicity that n is odd, the eigenvalues λ̆i, j may be
considered a sampling of the function
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g(x1, x2) =
n−1
2∑

j1, j2=− n−1
2

β j1, j2e
ı̂( j1x1+ j2x2)

at the grid points Γn for the specific choice of the coefficients β j1, j2 as now discussed.
The trigonometric polynomial g is determined by the n2 interpolation conditions

λ̆i, j := g
(
2πi
n ,

2π j
n

)
and its coefficients β j1, j2 can be computed by means of a two-

dimensional IFFT. Note that g is a regularized approximation of the inverse of f on
Γn . Let H̆ denote the mask for the Fourier coefficients β j1, j2 . It can be determined
by carrying out the following steps:

1. Compute λi, j in (16) by the FFT applied to H .
2. Compute λ̆i, j in (17).
3. Compute H̆ by the IFFT applied to λ̆i, j .

In actual computations, we modify the BCCB matrix CT (CCT + αI )−1 to cor-
respond to ARBCs. This yields a structured preconditioner P = B(CT (CCT +
αI )−1), where B is an operator that imposes the ARBCs. As already mentioned
at the end of Sect. 2, the matrix P is not explicitly formed, but only H̆ is stored
and a matrix-vector product with P is evaluated in O(n2 log(n)) flops by using the
anti-symmetric pad and convolution with H̆ .

3.3 The Flexible GMRES Method

The F-GMRES method [30] is a minimal residual iterative method that is designed
for application of a sequence of preconditioners. We will use F-GMRES with pre-
conditioners of the form (14) that are determined by a sequence of αk-values.

Given a set of � linearly independent vectors u1, u2, . . . , u� ∈ R
n2 , the F-GMRES

method determines a decomposition of the form

AU� = V�+1H�+1,�, (18)

where U� = [u1, u2, . . . , u�] ∈ R
n2×�, V�+1 = [v1, v2, . . . , v�+1] ∈ R

n2×(�+1) has
orthonormal columns with v1 = g/‖g‖, and H�+1,� = [hi, j ] ∈ R

(�+1)×� is of upper
Hessenberg type. Let e1 = [1, 0, . . . , 0]T ∈ R

�+1 denote the first axis vector. Then

min
w∈range(U�)

‖Aw − g‖ = min
y∈R�

‖AU� y − g‖ = min
y∈R�

‖H�+1,� y − e1‖g‖ ‖, (19)

where ‖ · ‖ denotes the Euclidean vector norm.
Assume that the matrix H�+1,� exists and that all its subdiagonal entries are pos-

itive. This is the generic situation. The positivity of the subdiagonal entries of the
upper Hessenberg matrix H�+1,� secures that its columns are linearly independent.
We remark that the parameter � in (18) generally is fairly small in our applications.
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The minimization problem on the right-hand side of (19) has a unique solution
y� ∈ R

�, which determines the approximate solution f � = U� y� of (3). Since � is
small, the solution y� easily can be computed by QR factorization of the matrix
H�+1,�. In our application of the decomposition (18), the vectors uk are determined
with the preconditioners Pk ; see (14) and Algorithm 1 below. A discussion on the
choice of the parameters αk in the preconditioner Pk and on the choice of � in (18)
is provided in Sect. 3.4.

Algorithm 1 The F-GMRES method
1. v1 = g/‖g‖
2. for k = 1, 2, . . . , � do
3. uk = Pkvk; v = Auk

4. for i = 1, 2, . . . , k do
5. hi,k = vT vi ; v = v − hi,kvi
6. end
7. hk+1,k = ‖v‖; vk+1 = v/hk+1,k

8. end
9. define U�=[u1, u2, . . ., u�]∈Rn2×� and H�+1,�=[hi, j ]∈R(�+1)×� upper Hessenberg
10. compute y� := argmin y∈R� ‖H�+1,� y − e1‖g‖ ‖ and f � = U� y�

We say that F-GMRES breaks down at step k if hk+1,k = 0 and h j+1, j > 0 for
1 ≤ j < k. As already mentioned, this is a rare event. Discussions on breakdown of
F-GMRES can be found in [27, 30].

Algorithm 1 requires that both the matrix V�+1 and the vectors uk = Pkvk , 1 ≤
k ≤ �, be stored. This implies that F-GMRES demands more storage space than
(standard) GMRES after the same number of steps, since GMRES only requires
storage of the matrix V�+1. However, the fact that F-GMRES allows non-stationary
preconditioning, while GMRES does not, may be worth the extra storage cost. Note
that if we let Pk = P be independent of k, then Algorithm 1 can be replaced by the
preconditioned (standard) GMRES method; see [31] for a discussion of the latter.

A difference between the F-GMRES and GMRES algorithms is that the action of
APk on a vector v generally is not in the range of V�+1 in F-GMRES. Instead, we
have the following result, which is a consequence of (19).

Proposition 1 The approximate solution f � obtained at step � of F-GMRES mini-
mizes the residual norm ‖g − A f �‖ over range(U�).

Another difference is that, while for standard GMRES with initial iterate in
span{g} breakdown is equivalent to convergence, this is not the case for F-GMRES.
Moreover, it is difficult to show convergence results for F-GMRES since, differently
from standard GMRES, there is no isomorphism between the solution subspace of
F-GMRES and the space of polynomials. For more information, we refer to [27, 30,
31].
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3.4 The Stopping Criterion and the Choice of Regularization
Parameters

This subsection discusses how to determine the number of iterations, �, with Algo-
rithm 1 and how to choose the parameters αk of the preconditioners Pk ; see (14). We
will assume that a fairly accurate bound ε for the norm of the error ν in the vector g
is available. Thus,

‖ν‖ ≤ ε.

Let f 1, f 2, f 3, . . . be a sequence of approximate solutions of (3) determined byAl-
gorithm 1 and define the associated residual vectors r� = g − A f �, � = 1, 2, 3, . . . .
The discrepancy principle prescribes that the iterations with Algorithm 1 be termi-
nated as soon as a residual vector r� that satisfies

‖r�‖ ≤ ηε (20)

has been determined, where η ≥ 1 is a user-specified constant independent of ε. We
set η = 1 in the computed examples reported in Sect. 4. This stopping criterion is
reasonable, because the desired exact solution f satisfies ‖A f − g‖ = ‖ν‖. Note
that since

‖r�‖ = ‖H�+1,� y� − e1‖g‖ ‖,

we can check whether (20) holds without explicitly forming the residual vector r�.
We use a progressive implementation of F-GMRES in the computed examples.

This implementation updates the matrix H�+1,� for � = 1, 2, 3, . . . together with its
QR factorization. The solution y� of the small least-squares problem in the right-
hand side of (19) is computed for every �. This makes it easy to determine when (20)
holds for the first time and, therefore, when the iterations should be terminated.

We turn to the determination of the parameters αk of the preconditioners Pk ,
k = 1, 2, 3, . . . . A well-established choice of the regularization parameter in the
context of iterated Tikhonov methods is the geometric sequence

αk = α0q
k−1, k = 1, 2, 3, . . . , (21)

where α0 > 0 and 0 < q < 1; see, e.g., [3, 12]. This choice also is used for Bregman
iteration [4, 26]. The value of the initial regularization parameter α0 is not critical
as long as it is not too small.

A different technique to determine the regularization parameter αk is described
in [12]: At step k the parameter αk is determined by solving the non-linear equation

‖rk − CZk
circrk‖ = qk‖rk‖ (22)

with a few steps of Newton’s method, where
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qk = max {q, 2ρcirc + (1 + ρcirc)δ/‖rk‖} (23)

and Zk
circ is defined as in (12). The parameter q is included in (23) as a safeguard

to prevent that the qk decrease too rapidly with increasing k. We remark that the
theoretical results in [12] do not use the parameters q in (23). The parameter 0 <

ρcirc < 1/2 should be as small as possible and satisfy

‖(C − A)z‖ ≤ ρcirc ‖Az‖ , ∀ z ∈ R
n . (24)

If A is accurately approximated by its BCCB counterpart C , then this inequality can
be approximately satisfied for a small value of ρcirc. This parameter has to be set in
the algorithm described in [12]; for image deblurring problems, it is usually chosen
as 10−2 or 10−3. A too small value of ρcirc can easily be recognized by an oscillatory
behavior of the αk with increasing values of k; see [12].

In [8], the same approach is applied to the structured case. The goal is to estimate
αk by solving

‖rk − AZk
struct rk‖ = qk‖rk‖ (25)

for αk defining Zk
struct as described by (13). This is not computationally practicable

when thePSFhas a non-symmetric structure. Instead, the regularizationparameterαk

is estimated by using Eq. (22), whichmay be considered a computable approximation
of (25). Note that even though we again use Eq. (22) to estimate the parameters αk ,
we obtain a different parameter sequence α1,α2,α3, . . . , because the sequence of
residual vectors differs. Furthermore, in this case condition (24) is not meaningful.
Therefore, a new parameter ρstruct is introduced and the iterations are terminated by
the discrepancy principle (20) with

η = 1 + 2ρstruct
1 − 2ρstruct

. (26)

In the following, we refer to the sequence α1,α2,α3, . . . computed in the way
described as the DH sequence, since it is a development of an idea introduced in
[12]. We set q = 0.8 and ρstruct = 10−2 in all the computed examples.

We now describe a new technique for determining the parameters αk . Assume
that

‖rk‖ = ckα
p
k ,

where ck > 0 and αk are positive scalars, and p ≥ 1 is a fixed exponent. Requiring
that ‖rk‖ = ε yields

αk = p

√
ε

ck
.

Assuming that

ck ≈ ck−1 = ‖rk−1‖
α

p
k−1

,
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we obtain the sequence

α1 = α0,

αk = p

√
ε

‖rk−1‖ αk−1, k = 2, 3, . . . , (27)

where α0 > 0. In other words, the update from αk−1 to αk is based on the ratio of
the error bound ε and the norm of the residual relative to the previous iteration. The
heuristic motivation behind this strategy is that αk is computed in order to make the
norm of the residual ‖rk‖ move towards ε as k increases. When using (27), the key
parameter for the generation of the sequence {αk} is p. In the computed examples,
we set α0 = 1 and we illustrate that p = 2 is a good choice for all the considered
examples.

4 Numerical Results

This section reports some numerical results that show the performance of themethods
described. We consider two deblurring problems with non-symmetric PSFs and low
noise levels, and apply ARBCs. It is the purpose of the examples to illustrate the
efficacy of non-stationary structure-preserving preconditioners for F-GMRES and
Landweber iteration. The use of different techniques for computing the sequence of
regularization parameters is illustrated.

4.1 Test Problems

Figure1 displays images for our first test problem (Test 1). The left panel shows
the uncontaminated (exact) camera man image. We take a larger image and crop it
(see the white box in Fig. 1a). The image inside the box is made up of 227 × 227
pixels and is assumed not to be available. The PSF, which is three quarters of a
Gaussian blur, is shown in the middle panel of Fig. 1. It is made up of 29 × 29 pixels.
The (available) blur- and noise-contaminated image is displayed by the right panel
of Fig. 1. It is computed by applying the PSF to the larger image of the left panel,
adding 0.5% white Gaussian noise, and then using a 227 × 227 pixel subimage.

Let the vector f ∈ R
2272 represent the desired uncontaminated image, where we

order the pixels of the image column-wise. Similarly, we let the vector f restored ∈
R

2272 represent the restored image determined by one of the methods in our compar-
ison. We refer to ‖ f restored − f ‖

‖ f ‖
as the relative restoration error (RRE).
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Fig. 1 [Test 1] a True image, b PSF, c blurred and noisy image
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Fig. 2 [Test 2] a True image, b PSF, c blurred and noisy image

Figure2 shows images for our second test problem (Test 2), and is analogous to
Fig. 1. The uncontaminated unavailable (exact) boat image is made up of 227 × 227
pixels and shown inside the white box of Fig. 2a. The middle panel depicts the non-
symmetric PSF. It models motion blur and is made up of 29 × 29 pixels. The right
panel displays the available blur- and noise-contaminated image. The noise is 0.6%
white Gaussian.

4.2 Restorations, Plots, and Tables

We compare the unpreconditioned CGLS and GMRES methods to non-stationary
preconditioned F-GMRES. Throughout this section CGLS refers to the conjugate
gradient method applied to the solution of the linear system of equations (8); see
the discussion in Sect. 3.1. Also preconditioned Landweber as described in [8] is
considered. The preconditioners are determined by the regularization parameters αk

defined by (21), (22), or (27). We refer to these sequences of regularization param-
eters as the “geometric sequence”, the “DH sequence”, and the “new sequence”,
respectively. We always set α0 = 1 and let q = 0.8 for the geometric sequence,
q = 0.8 and ρstruct = 10−2 for the DH sequence, and p = 2 for the new sequence.
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Fig. 3 Plots of the αk as a function of k related to F-GMRES for the geometric sequence, the DH
sequence, and the new sequence for Test 1 (on the left) and Test 2 (on the right)

Fig. 4 [Test 1] Restorations determined with the discrepancy principle by a CGLS (RRE 0.0923,
IT 27); b F-GMRES New (RRE 0.0907, IT 8); c Zk

struct-Landweber New (RRE 0.0942, IT 12)

These three approaches to choosing the αk are used for both the Zk
struct-Landweber

and F-GMRES iterations. Figure3 shows the αk for F-GMRES. It can be seen that
these three approaches give quite different parameter sequences α1,α2,α3, . . . ; the
geometric sequence converges to zero at a rate that depends on the choice of q;
the DH sequence achieves values larger than unity in the first steps, and then the
sequence decreases rapidly. Finally, the sequence (27) decreases quickly to a small
value (close to 0) and then increases.

Figures4 and 5 show (for Test 1 and Test 2, respectively) restorations determined
by different methods when the iterations are terminated by the discrepancy principle
using (20), and when applicable (26), and the αk are determined as described in [12].
The restored images look essentially the same; also their RRE values are close. The
non-stationary preconditioners of this paper give rapid convergence and restorations
of high quality. Tables1 and 2 report (for Test 1 and Test 2, respectively) the RRE
and the number of iterations (IT) required to achieve the best restoration (i.e., the
restoration with the smallest RRE) and the restoration determined with the discrep-
ancy principle. The symbol—in the tables indicates that the discrepancy principle
cannot be satisfied, while the symbol n/a means that no meaningful best restoration
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Fig. 5 [Test 2] Restorations determined with the discrepancy principle by a CGLS (RRE 0.0948,
IT 17); b F-GMRES DH (RRE 0.0925, IT 7); c Zk

struct-Landweber DH (RRE 0.0917, IT 12)

Table 1 [Test 1] Relative restoration error (RRE) and iteration number (IT) for the best restoration
and when using the discrepancy principle for different methods

Method RRE best res. IT RRE
discrepancy

IT

CGLS 0.0895 36 0.0923 27

GMRES 0.1470 5 – –

F-GMRES Geo 0.0897 13 0.0908 12

F-GMRES DH n/a n/a 0.0905 8

F-GMRES New 0.0898 9 0.0907 8

Zk
struct-Landweber Geo 0.0889 23 0.0941 20

Zk
struct-Landweber DH n/a n/a 0.0954 13

Zk
struct-Landweber New 0.0888 18 0.0942 12

is available. This situation may arise when the method [12] is applied, because the
iterations with this method terminate with the discrepancy principle.

Figures6 and 7 show (for Test 1 and Test 2, respectively) the RRE as a function
of the iteration number. Solid curves are used for CGLS, GMRES, and F-GMRES,
while dashed curves are used for Zk

struct-Landweber. For the F-GMRES and Zk
struct-

Landweber plots, we use colors to show how the parameter values for the non-
stationary preconditioners are determined. The iteration associated with the best
restoration ismarkedby the symbol◦, while the iteration identified by the discrepancy
principle is marked by the symbol ×. Note that for the proposed F-GMRES, the
discrepancy principle works very well. The maximum number of iterations is set to
100.

Standard GMRES can be seen to perform poorly for both image restoration prob-
lems. The best restoration determined by GMRES has a larger error than the best
restoration achieved with any of the other methods in our comparison. Moreover, the
discrepancy principle fails to terminate the iterations within 100 steps. Discussions
on why GMRES may perform poorly for some restoration problems can be found in
[14, 20].
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Table 2 [Test 2] Relative restoration error (RRE) and iteration number (IT) for the best restoration
and for the iterate determined by the discrepancy principle for different methods

Method RRE best res. IT RRE
discrepancy

IT

CGLS 0.0939 15 0.0948 17

GMRES 0.1072 84 – –

F-GMRES Geo 0.0931 8 0.0935 9

F-GMRES DH n/a n/a 0.0925 7

F-GMRES New 0.0932 7 0.0932 7

Zk
struct-Landweber Geo 0.0912 17 – –

Zk
struct-Landweber DH n/a n/a 0.0917 12

Zk
struct-Landweber New 0.0912 12 0.0917 13

5 10 15 20 25 30
iterations

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

R
R

E

CGLS
GMRES
F-GMRES Geo
F-GMRES DH
F-GMRES New

Zk
 struct

-Landweber Geo

Zk
 struct

-Landweber DH

Zk
 struct

-Landweber New

Fig. 6 [Test 1] Plots of the RRE for different methods. The iterate that gives the best restoration is
marked by ◦, and the iterate determined by the discrepancy principle is marked by ×

The restorations computed by CGLS are quite accurate, in particular for Test 1.
However, CGLS requires a large number of iterations in comparison to the other
methods considered, where we recall that each iteration with CGLS demands two
matrix-vector product evaluations, one with A and one with A′.

Comparing thepreconditionedF-GMRESmethod to the Zk
struct-Landwebermethod

described in [8], we note that the latter usually achieves an insignificantly smaller
RRE, but preconditioned F-GMRES requires fewer iterations and terminates reli-
ably with the aid of the discrepancy principle. Note that in Test 2, the discrepancy
principle fails to terminate the iterations with Zk

struct-Landweber Geo.
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Fig. 7 [Test 2] Plots of RRE for different methods. The iterate that gives the best restoration is
marked by ◦, and the iterate determined by the discrepancy principle is marked by ×

In summary, the non-stationary preconditioning approach can be used effectively
with F-GMRES.Comparing the differentways to determine the parametersαk for the
preconditioners, Figs. 6 and 7 show the sequence (27) to give the fastest convergence
in both Test 1 and Test 2 for both the F-GMRES and Zk

struct-Landweber methods.

4.3 Robustness Analysis of P-GMRES

Tobetter justify the non-stationary preconditioning approach of this paper,we present
some numerical results for P-GMRES, i.e., GMRESwith the same preconditioner for
all iterations; all αk have the same value α in each step. We illustrate that differently
from F-GMRES with the different preconditioning strategies previously described,
P-GMRES is very sensitive to the choice of α.

Figure8 displays how α affects the number of iterations required to satisfy the
discrepancy principle and to determine the best restoration. We can see that more
iterations are required for larger values of α. Moreover, Fig. 8 shows that termination
of the iterations with the discrepancy principle does not work well when α is too
small. In fact, the number of iterations grows in Test 1 when α is reduced, while in
Test 2 the discrepancy principle fails to stop the iterative method for α smaller than
10−2.

Thequality of the computed restorations is depicted inFig. 9.Theblue curves show
the RRE for the best restorations determined by P-GMRES for different values of α.
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Fig. 8 Plot of the number of iterations with P-GMRES that gives the best restorations as a function
ofα (blue curve), and plot of the number of iterationswith P-GMRESdetermined by the discrepancy
principle as a function of α (red curve) for Test 1 (on the left) and for Test 2 (on the right)
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Fig. 9 Plot of the RRE for the best restoration computed by P-GMRES as a function of α (blue
curve) and plot of the RRE for the P-GMRES iterate determined by the discrepancy principle as a
function of α (red curve) for Test 1 (on the left) and for Test 2 (on the right)

The red curves show the RRE when terminating the iterations with the discrepancy
principle. When α is reduced, the quality of restorations quickly deteriorates. We
can notice again that the discrepancy principle does not work well; in Test 2 it is not
able to stop the method for α smaller than 10−2.

4.4 Robustness Analysis of the DH Sequence

The DH sequence depends on the choice of parameters q and ρstruct. The former
parameter is included as a safeguard to prevent the qk in (22) from decreasing too
rapidly. We set q = 0.8, the same as for the geometric sequence. This subsection
shows the robustness of F-GMRES with respect to the choice of ρstruct.

Figure10 displays how ρstruct affects the number of iterations required to satisfy
the discrepancy principle. As expected, we can see that fewer iterations are required
for larger values of ρstruct.
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Fig. 10 Plots of the number of iterations by F-GMRESDHdetermined by the discrepancy principle
as a function of ρstruct for Test 1 (on the left) and for Test 2 (on the right)
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Fig. 11 Plots of the RRE for iterates computed by F-GMRES DH using the discrepancy principle
as a function of ρstruct for Test 1 (on the left) and for Test 2 (on the right)

The quality of the computed restorations is depicted in Fig. 11. The curves show
the RRE when terminating the iterations with the discrepancy principle. We can
notice a stable behavior when ρstruct decreases. For Test 1, ρ ∈ [10−5, 10−2] gives
exactly the same results in terms of RRE and number of iterations. Similarly, for
Test 2 the results are not sensitive to a decease in ρ. Therefore, a careful tuning of
the parameters ρ and ρstruct is not required when using F-GMRES.

4.5 Robustness Analysis of the New Sequence

The sequence (27) depends on the choice of the parameter p. This subsection seeks
to shed light on how this choice affects the performance of F-GMRES.

Figure12 displays the parameters αk for different values of p. Note that for all
values of p, the sequenceα1,α2,α3, . . . has the desired behavior: It decreases in the
first few iterations, when little regularization is required, and increases in subsequent
iterations when more regularization is needed. It can be seen that for larger values of



72 P. Dell’Acqua et al.

5 10 15 20 25 30
iterations

0

0.2

0.4

0.6

0.8

1
p=1
p=2
p=3
p=4
p=5

5 10 15 20 25 30
iterations

0

0.2

0.4

0.6

0.8

1
p=1
p=2
p=3
p=4
p=5

Fig. 12 Plots of αk for F-GMRES New as a function of the number of iterations k for different
values of p for Test 1 (on the left) and for Test 2 (on the right)
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Fig. 13 Plot of the number of iterations required to compute the best restoration by F-GMRES
New (blue curve) and plot of the number of iterations required by F-GMRES New when using the
discrepancy principle (red curve) as a function of p for Test 1 (on the left) and for Test 2 (on the
right)

p, the sequence {αk} first decreases slower and then increases slower than for smaller
values of p. Figure13 displays how p affects the number of iterations required to
satisfy the discrepancy principle and to determine the best restoration. We can see
that more iterations are required for larger values of p. Moreover, Fig. 13 shows that
termination of the iterations with the discrepancy principle works well in the sense
that the computed restorations are close to the best restorations.

The quality of the computed restorations is depicted in Fig. 14. The blue curves
show the RRE for the best restorations determined by F-GMRES for different values
of p. These curves are quite insensitive to the choice of p. The red curves show the
RRE when terminating the iterations with the discrepancy principle.

In conclusion, the numerical experiments of this section suggest that the value
p = 2 is appropriate, because this value yields accurate restorations in a small number
of iterations.
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Fig. 14 Plot of the RRE for the best restoration determined by F-GMRESNew (blue curve) and the
restoration computed by F-GMRES New using the discrepancy principle (red curve) as a function
of p for Test 1 (on the left) and for Test 2 (on the right)

5 Conclusion

We have considered image deblurring when the point spread function is non-
symmetric and anti-reflective boundary conditions are imposed. The use of standard
Krylov subspace methods may require a substantial number of iterations. This can
make the restoration of large images expensive. This paper describes a family of
non-stationary structure-preserving preconditioners that are designed to reduce the
number of iterations. The parameters αk that define the preconditioners are deter-
mined automatically during the iterations. We have focused on the application of
these preconditioners in conjunction with the F-GMRES iterative method. Numer-
ical results indicate that this solution approach is competitive with respect to the
computational effort required and the quality of the computed restorations.
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Numerical Investigation of the Spectral
Distribution of Toeplitz-Function
Sequences

Sean Hon and Andy Wathen

Abstract Solving Toeplitz-related systems has been of interest for their ubiquitous
applications, particularly in image science and the numerical treatment of differential
equations. Extensive study has been carried out for Toeplitz matrices Tn ∈ C

n×n as
well as Toeplitz-function matrices h(Tn) ∈ C

n×n , where h(z) is a certain function.
Owing to its importance in developing effective preconditioning approaches, their
spectral distribution associated with Lebesgue integrable generating functions f
has been well investigated. While the spectral result concerning {h(Tn)}n is largely
known, such a study is not complete when considering {Ynh(Tn)}n with Yn ∈ R

n×n

being the anti-identity matrix. In this book chapter, we attempt to provide numerical
evidence for showing that the eigenvalues of {Ynh(Tn)}n canbedescribedby a spectral
symbol which is precisely identified.

Keywords Toeplitz matrices · Asymptotic spectral distribution · Circulant
preconditioners · Hankel matrices

1 Introduction

Solving Toeplitz-related systems has been an important research problem for their
crucial applications in computational science and engineering, especially image pro-
cessing and numerical methods for differential equations. Different fast solvers have
been developed for these systems due to theirwide-ranging applicability and the com-
putational consideration of applications. A typical example application on imaging
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that involves solving Toeplitz systems is image restoration and we refer to [12] for
detail and more related applications.

Other than the usual Toeplitz systems, preconditioning for Toeplitz-function ma-
trices h(Tn) has been explored recently, where h(z) is an analytic function. For the
special case where h(Tn) ∈ R

n×n is (real) nonsymmetric, we showed in [11] that one
can premultiply it by the anti-identity matrix Yn defined as

Yn =
⎡
⎣

1

. .
.

1

⎤
⎦ ∈ R

n×n

to obtain the symmetrized matrix Ynh(Tn) without normalizing the original matrix.
Provided that a suitable circulant preconditioner |h(Cn)| is used, we also proved
that the eigenvalues of |h(Cn)|−1Ynh(Tn) are clustered around ±1 under certain
assumptions. On a related note, optimal circulant preconditioners were firstly shown
to be effective in [8] for several trigonometric functions of Toeplitz matrices. It was
further proved in [9, 11] that several common circulant preconditioners can render
clustered spectra around ±1 for h(Tn).

This book chapter is devoted to investigating the asymptotic spectral distribution
of {Ynh(Tn[ f ])}n for the following reasons.

In the context of iterative solvers for Toeplitz systems, the given matrix Tn[ f ] is
often associated with a generating function f , and it is well-known that the singu-
lar value and eigenvalue distributions of {Tn[ f ]}n can be precisely described by f .
Recently, it was shown in [5] that the spectral distribution of {YnTn[ f ]}n for nonsym-
metric Tn[ f ] generated by complex function f ∈ L1([−π, π ]) can also be described
by certain spectral symbol. Inspired by this recent theoretical advance, it is believed
that an analogous result also holds for {Ynh(Tn[ f ])}n . If such a symbol did exist, one
could be able to account for the preconditioning approaches on Ynh(Tn[ f ]) given in
[11] under a unified framework.

Furthermore, in a more theoretical point of view, such a spectral result could
advance our understanding of Toeplitz matrix sequences which is of interest in the
theory of generalized locally Toeplitz sequences (GLTS) [6].

This chapter is organized as follows. We provide some useful preliminaries
on Toeplitz matrices in Sect. 2, followed by a brief discussion of Ynh(Tn[ f ]) in
Sect. 3. Finally, numerical examples are provided in Sect. 4 to support our claim
that {Ynh(Tn[ f ])}n possesses a spectral symbol which is heuristically identified as
±|h ◦ f |.

2 Preliminaries on Toeplitz Matrices

We first present some preliminary results on {Tn[ f ]}n in this section, which will be
useful for studying {Ynh(Tn[ f ])}n .
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Assuming the given Toeplitz matrix Tn[ f ] is associated with the function f via
its Fourier series defined on [−π, π ], we have

Tn[ f ] =

⎡
⎢⎢⎢⎢⎢⎣

a0 a−1 · · · a−n+2 a−n+1

a1 a0 a−1 a−n+2
... a1 a0

. . .
...

an−2
. . .

. . . a−1

an−1 an−2 · · · a1 a0

⎤
⎥⎥⎥⎥⎥⎦

∈ C
n×n,

where

ak = 1

2π

∫ π

−π

f (x)e−ikx dx, k = 0,±1,±2, . . . ,

are the Fourier coefficients of f . The function f is called the generating func-
tion/spectral symbol of Tn[ f ]. If f is real-valued, then Tn[ f ] is Hermitian for all n.
If f is real-valued, nonnegative, and not identically zero almost everywhere, then
Tn[ f ] is Hermitian positive definite for all n. If f is real-valued and even, Tn[ f ] is
(real) symmetric for all n. We refer to [12] for more properties of Toeplitz matrices.

We introduce the following notation and definition under the framework of the
GLTS theory [6], before discussing the asymptotic singular value and spectral dis-
tributions of {Tn[ f ]}n associated with f .

Let Cc(C) (or Cc(R)) be the space of complex-valued continuous functions de-
fined on C (or R) with bounded support and let φ be a functional, i.e. any function
defined on some vector spacewhich takes values inC.Moreover, if g : D ⊂ R

k → K

(R or C) is a measurable function defined on a set D with 0 < μk(D) < ∞ where
μk is the Lebesgue measurable, the functional φg is denoted such that

φg : Cc(K) → C and φg(F) = 1

μk(D)

∫
D
F

(
g(xn)

)
dxn .

Definition 1 ([6, Definition 3.1]) Let {An}n be a matrix sequence.

1. We say that {An}n has an asymptotic singular value distribution described by a
functional φ : Cc(R) → C, and we write {An}n ∼σ φ, if

lim
n→∞

1

n

n∑
j=1

F
(
σ j (An)

) = φ(F), ∀F ∈ Cc(R).

If φ = φ| f | for some measurable f : D ⊂ R
k → C defined on a set D with 0 <

μk(D) < ∞, we say that {An}n has an asymptotic singular value distribution
described by f and we write {An}n ∼σ f.

2. We say that {An}n has an asymptotic eigenvalue (or spectral) distribution de-
scribed by a function φ : Cc(R) → C, and we write {An}n ∼λ φ, if
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lim
n→∞

1

n

n∑
j=1

F
(
λ j (An)

) = φ(F), ∀F ∈ Cc(C).

If φ = φ f for some measurable f : D ⊂ R
k → C defined on a set D with

0 < μk(D) < ∞, we say that {An}n has an asymptotic eigenvalue (or spectral)
distribution described by f and we write {An}n ∼λ f.

First Established in [7], the Szegő theorem that describes the singular value
and spectral distributions of Toeplitz matrix sequences has undergone a number
of extensions. The theorem was consequently extended by Avram and Parter [1,
13]. Tyrtyshnikov [17] later generalized such a distribution result to the multilevel
(p-level) Toeplitz matrices generated by complex-valued f ∈ L1([−π, π ]p). As for
the multilevel block Toeplitz matrices generated by a matrix-valued Lebesgue inte-
grable function, Tilli, Serra-Capizzano, and Donatelli also studied their asymptotic
spectral behaviour as well as the related preconditioning strategies for example in
[4, 14–16].

The generalized Szegő theorem is given as follows:

Theorem 1 (Generalized Szegő theorem [7]) Suppose f ∈ L1([−π, π ]). Let Tn[ f ]
be the Toeplitz matrix generated by f . Then

{Tn[ f ]}n ∼σ f.

If moreover f is real-valued, then

{Tn[ f ]}n ∼λ f.

For Hermitian Toeplitz matrices, more can be said about their spectrum via the
following theorem by [3]. This localization result was later refined with strict in-
equalities in [2], also in preconditioning setting.

Theorem 2 ([2, 3]) Suppose f ∈ L1([−π, π ]) is real-valued. Let m f and M f be
the essential infimum and the essential supremum of f on [−π, π ], respectively, and
let Tn[ f ] ∈ C

n×n be the Toeplitz matrix generated by f . If m f < M f , then for all
n > 0

m f < λk(Tn[ f ]) < M f ,

where λk is the kth eigenvalue of Tn[ f ] arranged in nondecreasing order. Moreover,
if m f ≥ 0, then Tn[ f ] is Hermitian positive definite for all n.

For a real Toeplitz matrix Tn[ f ], one can symmetrize it using a simple reordering
trick. Namely, one can first premultiply the matrix by the flip matrix Yn to obtain the
symmetric matrix
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YnTn[ f ] =

⎡
⎢⎢⎢⎢⎢⎣

an−1 an−2 · · · a1 a0

an−2 . .
.

. .
. a−1

... a1 a0 . .
. ...

a1 a0 a−1 a−n+2

a0 a−1 · · · a−n+2 a−n+1

⎤
⎥⎥⎥⎥⎥⎦

.

The asymptotic spectral distribution of {YnTn[ f ]}n was first observed in [10] and
then showed precisely in [5]. In effect, the eigenvalues of {YnTn[ f ]}n are distributed
as ±| f | for complex-valued f ∈ L1([−π, π ]). Having known such a spectral distri-
bution, the authors in [5] provided that a descriptive result on the eigenvalue of the
preconditioned matrix |Cn|−1YnTn[ f ], where |Cn| is a circulant matrix derived from
Tn[ f ] in a standard way.

Before presenting the precise distribution of {YnTn[ f ]}n , we introduce the follow-
ing notation. Given D ⊂ R

k with 0 < μk(D) < ∞, we define D̃ as D
⋃

Dr , where
r ∈ R

k and Dr = r + D, with the constraint that D and Dr have non-intersecting
interior part, i.e. D◦ ⋂

D◦
r = ∅. Therefore, we have μk(D̃) = 2μk(D). Given any g

defined over D, we define ψg over D̃ in the following fashion

ψg(x) =
{

g(x), x ∈ D,

−g(x − r), x ∈ Dr , x /∈ D.

Theorem 3 ([5, Theorem 3.2]) Suppose f ∈ L1([−π, π ]) with real Fourier coeffi-
cients. Let Tn[ f ] ∈ R

n×n be the Toeplitz matrix generated by f and let Yn ∈ R
n×n

be the anti-identity matrix. Then

{YnTn[ f ]}n ∼λ ψ| f |

over the domain D̃ with D = [0, 2π ] and r = −2π .

Hence, as a direct consequence of Theorem 3, YnTn[ f ] is in general symmetric
indefinite since roughly half of its eigenvalues are negative/positive except possibly
for a number of outliers.

Motivated by such a recent distribution result on {YnTn[ f ]}n , we in this work
attempt to provide numerical evidence that a similar distribution also holds for
{Ynh(Tn[ f ])}n . It is emphasized that h(Tn[ f ]) is in general not Toeplitz, so The-
orem 3 does not straightforwardly apply.

3 Preliminaries on Functions of Toeplitz Matrices

In this section, the preliminaries on analytic functions of Toeplitz matrices are pro-
vided. Throughout, we assume that the given function h(z) is analytic with radius of
convergence r . Thus, it suffices to consider the following representation of matrix
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functions via the Taylor series expansion of h(z). Without loss of generality, we
choose α = 0 in the series representation in order to simplify notation.

Provided that ρ(Tn) < r , where ρ(Tn) denotes the spectral radius of Tn , we have

h(z)=∑∞
k=0 akz

k with radius of convergence r=
(
limk→∞

∣∣∣∣ ak+1

ak

∣∣∣∣
)−1

. Accordingly,

we have

h(Tn) =
∞∑
k=0

akT
k
n .

We give the following definitions of Toeplitz trigonometric function matrices as
examples. Note that since the radius of convergence of these trigonometric functions
equals to infinity, their corresponding Toeplitz matrix functions are readily defined
with no additional conditions required.

Definition 2 For any Toeplitz matrix Tn ∈ C
n×n ,

eTn = In + Tn + 1

2!T
2
n + 1

3!T
3
n + · · · ,

sin Tn = Tn − 1

3!T
3
n + 1

5!T
5
n − 1

7!T
7
n + · · · ,

cos Tn = In − 1

2!T
2
n + 1

4!T
4
n − 1

6!T
6
n + · · · ,

sinh Tn = Tn + 1

3!T
3
n + 1

5!T
5
n + 1

7!T
7
n + · · · ,

and

cosh Tn = In + 1

2!T
2
n + 1

4!T
4
n + 1

6!T
6
n + · · · .

In the special case where Tn is a real Toeplitz matrix, it was shown in the following
lemma that Ynh(Tn) is symmetric provided that ρ(Tn) < r .

Lemma 1 ([11, Lemma 6]) Suppose h(z) is an analytic function on |z| < r with
radius of convergence r . Let Yn ∈ R

n×n be the anti-identity matrix. If An ∈ R
n×n

with ρ(An) < r is (real) persymmetric, i.e. Yn An = AT
n Yn, then h(An) is also (real)

persymmetric.

To end this section, we introduce the following absolute value circulant precon-
ditioner |h(Cn)|, which will be used as a preconditioner for Ynh(Tn) in the next
section.
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(a) (b)

Fig. 1 a Eigenvalues and b singular values of Y256h1(T256[ f ]) when f (θ) =
7 + 6 cos θ and h1(z) = z3 + z2 − z + 1. c Eigenvalues of the preconditioned matrix
|h1(c(T256[ f ]))|−1Y256h1(T256[ f ])

Definition 3 ([11]) Suppose h(z) is an analytic function. Let Cn ∈ C
n×n be a circu-

lant matrix. The absolute value circulant matrix |h(Cn)| ∈ C
n×n of h(Cn) is defined

by
|h(Cn)| = (h(Cn)

∗h(Cn))
1/2 = (h(Cn)h(Cn)

∗)1/2 = F∗
n |h(
n)|Fn,

where Fn ∈ C
n×n is the Fourier matrix and |h(
n)| ∈ R

n×n is the diagonal matrix
in the eigendecomposition of h(Cn) with all entries replaced by their magnitude.

Remark 1 Due to the well-known diagonalizability of circulant matrices, i.e. Cn =
F∗
n 
n Fn , we readily see that both h(Cn) and |h(Cn)| are circulant matrices provided

they are well-defined.
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(a) (b)

Fig. 2 a Eigenvalues and b singular values of Y256h2(T256[ f ]) when f (θ) = 7 + 6 cos θ and
h2(z) = ez . c Eigenvalues of the preconditioned matrix |h2(c(T256[ f ]))|−1Y256h2(T256[ f ]) (the
greatest one is not shown for better visualization)

4 Numerical Experiments

We provide in this section numerical evidence to support our speculation on the spec-
tral distribution of {Ynh(Tn)}n . Note that even though the singular value distribution
of {Ynh(Tn)}n can be obtained as a consequence of the GLTS theory, we still give
the related numerical results for completeness.

The analytic functions studied in the tests are as follows:

h1(z) := z3 + z2 − z + 1 and h2(z) := ez,

and we consider the following four examples concerning different generating func-
tions f .
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(a) (b)

Fig. 3 a Eigenvalues and b singular values of Y256h1(T256[ f ]) when f (θ) = θ2 and h1(z) =
z3 + z2 − z + 1. c Eigenvalues of the preconditioned matrix |h1(c(T256[ f ]))|−1Y256h1(T256[ f ])
(the greatest one is not shown)

Example 1 We start with the following simple example: the real-valued, even
trigonometric polynomial f : [−π, π ] �→ R defined by

f (θ) = 7 + 6 cos θ,

which is periodically extended to the real line. The corresponding Toeplitz matrix
Tn[ f ] ∈ C

n×n is the following symmetric positive definite (SPD) tridiagonal matrix:

Tn[ f ] =

⎡
⎢⎢⎢⎣

7 3

3 . . .
. . .

. . .
. . . 3
3 7

⎤
⎥⎥⎥⎦ .

Example 2 In this example, we consider the real-valued, even trigonometric poly-
nomial f : [−π, π ] �→ R defined by
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(a) (b)

Fig. 4 a Eigenvalues and b singular values of Y256h2(T256[ f ]) when f (θ) = θ2 and h2(z) = ez .
c Eigenvalues of the preconditioned matrix |h2(c(T256[ f ]))|−1Y256h2(T256[ f ]) (the greatest one is
not shown)

f (θ) = θ2,

which is periodically extended to the real line. The corresponding Tn[ f ] ∈ C
n×n is

dense and SPD.

Example 3 We now consider the complex-valued, trigonometric polynomial f :
[−π, π ] �→ C defined by

f (θ) = 2 + eiθ .

The n × n Toeplitz matrix generated by f is the following simple nonsymmetric
bidiagonal matrix

Tn[ f ] =

⎡
⎢⎢⎢⎣

2

1 . . .
. . .

. . .

1 2

⎤
⎥⎥⎥⎦ .
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(a) (b)

Fig. 5 a Eigenvalues and b singular values of Y256h1(T256[ f ]) when f (θ) = 2 + eiθ and h1(z) =
z3 + z2 − z + 1. c Eigenvalues of the preconditioned matrix |h1(c(T256[ f ]))|−1Y256h1(T256[ f ])

Example 4 In the last example,we consider the complex-valued, trigonometric poly-
nomial f : [−π, π ] �→ C defined by

f (θ) = θ2 + iθ3.

The Toeplitz matrix generated by f is dense and nonsymmetric.

We first focus on the symmetric matrices in Examples 1 and 2. In Figs. 1, 2, 3 and
4, their distribution results are presented. It is worth noticing that h(Tn) is SPD in
these examples, since Tn is SPD by Theorem 2. Hence, we know that the eigenvalues
of the symmetric matrix Ynh(Tn) are the same as those of h(Tn) up to a (±) sign
using a standard linear algebraic argument. However, as we can see from the figures,
the spectral distribution of {Ynh(Tn)}n appears to have a more structural pattern.
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(a) (b)

Fig. 6 a Eigenvalues and b singular values of Y256h2(T256[ f ]) when f (θ) = 2 + eiθ and h2(z) =
ez . c Eigenvalues of the preconditioned matrix |h2(c(T256[ f ]))|−1Y256h2(T256[ f ])

We observe from Figs. 1, 2, 3 and 4a that the eigenvalues of Y256h(T256[ f ]) seem
to follow the symbol ψ|h◦ f |, even though its singular value distribution shown in
Figs. 1, 2, 3 and 4b has the expected spectral symbol |h ◦ f | which is in accordance
with the existing GLTS theory.

We also provide in Figs. 1, 2, 3 and 4c the eigenvalues of the preconditioned
matrix |h(c(T256[ f ]))|−1Y256h(T256[ f ]), where c(T256[ f ]) is the optimal circulant
preconditioner derived from T256[ f ]. We refer to [11] for more detail on the related
preconditioning results.

While we know the preconditioned matrix has clustered spectra around ±1 by
[11], more about its inertia can be observed from Figs. 1, 2, 3 and 4c—namely there
are roughly half eigenvalues are positive/negative. According to Sylvester’s law of
inertia, both Y256h(T256[ f ]) and |h(c(T256[ f ]))|−1Y256h(T256[ f ]) share the number
of positive, negative, and zero eigenvalues. Thus, these figures provide another ev-
idence to show that the preconditioned matrix sequence could be described by the
symbol ψ1, which suggests the symbol ψ|h◦ f | for {Ynh(Tn)}n .
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(a) (b)

Fig. 7 a Eigenvalues and b singular values of Y256h1(T256[ f ])when f (θ) = θ2 + iθ3 and h1(z) =
z3 + z2 − z + 1. c Eigenvalues of the preconditioned matrix |h1(c(T256[ f ]))|−1Y256h1(T256[ f ])
(the greatest one is not shown)

At last, we consider the nonsymmetric matrices in Examples 3 and 4. Despite
that h(Tn) in these cases is nonsymmetric, the flipped matrix Ynh(Tn) by Lemma 1 is
symmetric. One can again easily deduce that the eigenvalues of Ynh(Tn) are the same
as themoduli of the singular values of h(Tn)up to a (±) sign.Yet, fromFigs. 5, 6, 7 and
8a, we observe a structured spectral distribution for {Ynh(Tn)}n . The corresponding
singular values are shown in Figs. 5, 6, 7 and 8b for reference. In Figs. 5, 6, 7 and 8b,
we show the eigenvalues of Y256h(T256[ f ]) with |h(c(T256[ f ]))| as preconditioner.
As before, all numerical tests give a good agreement with our speculation.
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a

Fig. 8 a Eigenvalues and b singular values of Y256h2(T256[ f ])when f (θ) = θ2 + iθ3 and h2(z) =
ez . c Eigenvalues of the preconditioned matrix |h2(c(T256[ f ]))|−1Y256h2(T256[ f ])

5 Conclusions

We have presented a number of numerical examples to illustrate the asymptotic spec-
tral distribution of {Ynh(Tn)}n . For complex-valued f and certain analytic functions
h, the eigenvalues of the symmetrized matrix Ynh(Tn[ f ]) appear to be effectively
described by ±|h ◦ f |. These examples suggest that both Theorems 1 and 3 could
apply to Toeplitz-function matrix sequences. In a practical point of view, one could
also potentially account for the preconditioning strategies used in [11] under a single,
coherent framework using such spectral distributions.
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Chronic Leukemia on the Compact Bone
Tissue from CT-Images Analysis
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Abstract Computational analysis of X-ray Computed Tomography (CT) images
allows the assessment of alteration of bone structure in adult patients with Advanced
Chronic Lymphocytic Leukemia (ACLL), and may even offer a powerful tool to as-
sess the development of the disease (prognostic potential). The crucial requirement
for this kind of analysis is the application of a pattern recognition method able to
accurately segment the intra-bone space in clinical CT images of the human skeleton.
Our purpose is to show how this task can be accomplished by a procedure based on
the use of the Hough transform technique for special families of algebraic curves.
The dataset used for this study is composed of sixteen subjects including eight con-
trol subjects, one ACLL survivor, and seven ACLL victims. We apply the Hough
transform approach to the set of CT images of appendicular bones for detecting the
compact and trabecular bone contours by using ellipses, and we use the computed
semi-axes values to infer information on bone alterations in the population affected
by ACLL. The effectiveness of this method is proved against ground truth compari-
son. We show that features depending on the semi-axes values detect a statistically
significant difference between the class of control subjects plus the ACLL survivor
and the class of ACLL victims.

A. M. Massone (B) · M. C. Beltrametti
Dipartimento di Matematica, Università di Genova, via Dodecaneso 35, 16146 Genova, Italy
e-mail: massone@dima.unige.it

M. C. Beltrametti
e-mail: beltrametti@dima.unige.it

C. Campi
Dipartimento di Matematica, Tullio Levi-Civita, Università di Padova, Via Trieste 63, 35121
Padova, Italy
e-mail: cristina.campi@unipd.it

F. Fiz
Nuclear Medicine Unit, Department of Radiology, University of Tuebingen,
Hoppe-Seyler-Straße 3, 72076 Tübingen, Germany
e-mail: francesco.fiz.nm@gmail.com

© Springer Nature Switzerland AG 2019
M. Donatelli and S. Serra-Capizzano (eds.), Computational Methods for
Inverse Problems in Imaging, Springer INdAM Series 36,
https://doi.org/10.1007/978-3-030-32882-5_5

93

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32882-5_5&domain=pdf
mailto:massone@dima.unige.it
mailto:beltrametti@dima.unige.it
mailto:cristina.campi@unipd.it
mailto:francesco.fiz.nm@gmail.com
https://doi.org/10.1007/978-3-030-32882-5_5


94 A. M. Massone et al.

Keywords X-ray tomography · Image processing · Pattern recognition · Hough
transform · Algebraic plane curves

1 Introduction

A computational analysis of a dataset of X-ray Computed Tomography (CT) images
recently assessed the presence of alteration of bone structure in adult patients affected
by Advanced Chronic Lymphocytic Leukemia (ACLL) [15]. These data (22 ACLL
patients and 22 control subjects) have been analyzed by using a dedicated software,
based on the use of active contour models [12, 28], to first identify the skeletal border
from CT images, and then to segment regions corresponding to trabecular and com-
pact bone (i.e., the two types of osseous tissue that form skeletal bones). The results
showed that the whole body skeletal volume is similar in leukemic patients and in
control subjects, while ACLL is associated with a significant trabecular bone vol-
ume enlargement, which prevails within the appendicular bones, this suggesting that
leukemia causes a measurable bone erosion in the appendicular intraosseous space.
Further, the degree of skeletal structure alteration displayed a relevant prognostic
significance. For these reasons, the assessment of skeletal alterations of compact
bone caused by ACLLmight be used as a prognostic marker for the prediction of the
clinical course of the disease.

The main limitation of the study presented in [15] is two-fold. On the one hand,
the segmentation method based on active contours is utilized there just for the iden-
tification of the bone outer profile, while, for the recognition of the inner profile, a
significantly less reliable heuristic approach based on thresholding is applied. On the
other hand, only the bare volume values of the trabecular and compact bone have
been considered, without taking into account geometrical aspects of the erosion.

Bone segmentation is an important task in biomedical imaging, and active contours
have been widely used as reliable image segmentation methods. The fundamental
idea in active contourmodels is to startwith initial closed shapes, i.e., contours, and it-
eratively change them by applying shrink/expansion operations subject to constraints
from a given image. The contour evolution is controlled by the minimization of an
energy function. Truc et al. [30] applied several models toward bone segmentation
of CT images. Among them, Gradient Vector Flow active contours [32], geometric
active contours [20, 33], geodesic active contours [11], Gradient Vector Flow Fast
Geometric active contours [22], and Chan–Vese multi-phase active contours without
edges [31] have been tested to segment knee bones from CT images. Constructing
a graph from an image, the segmentation problem can be alternatively solved by
using techniques for graph cuts in graph theory, where a graph cut is the process of
partitioning a graph into disjoint sets. Graph cut framework for object segmentation
was proposed in [7] and then developed into a large number of extensions based
on either iterative parameter re-estimation and learning, multi-scale or hierarchi-
cal approaches, and other techniques with a wide range of applications, including
medical applications. An exhaustive survey of these developments is given in [6],
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together with different examples including segmentation of liver and lung lobes in
CT volumes. Graph cuts are also used for the segmentation of vertebral bones from
volumetric CT images [1]. Since bone structures are characterized by high intensity
levels in CT images, their segmentation can also be obtained by using thresholding-
basedmethods, where either a global or local thresholding approach can be followed.
An example of this type of techniques is a fully automatic 3D adaptive threshold-
ing method [34] that was proposed and tested on CT images of the calcaneus and
vertebrae.

In the present paper we apply a pattern recognition method, based on a recent
extensionof theHoughTransform (HT) concept, able to detect both the trabecular and
compact bone contours in CT images. When first introduced, the Hough transform
technique was used to detect straight lines in images [17]. It is based on the point-line
duality as follows: points in a straight line, defined by a linear equation in the image
plane 〈x, y〉 of the form y = ax + b, correspond to lines in the parameter space
〈A, B〉 that intersect in a single point. This point uniquely identifies the coefficients
in the equation of the original straight line (analogous procedures to detect circles and
ellipses in images have been then introduced in [14]). Further generalizations include
Bayesian and fuzzy approaches to theHough transform [5, 23], in addition to thewell
known generalized Hough transform [2], which allows the recognition of arbitrary
shapes (even composite shapes like cars) by means of pre-set look-up tables (instead
of analytic equations) where scale changes, rotations, figure-ground reversals, and
reference point translation describing the shape of interest can be accounted for.

Recently, algebraic geometry arguments have been proposed in [4] in order to uti-
lize the HT framework for special families of irreducible algebraic plane curves that
share the degree, with applications to medical and astronomical images [21]. A fur-
ther generalization proposes an iterative approach to the Hough transform technique
for piecewise recognition of rather complex anatomical profiles [24].

This paper has two main objectives. The first objective is to evaluate the HT
performances in quantifying the trabecular bone volume with respect to the pre-
viously employed technique [15]. To do this both techniques are compared with a
ground truth given by manual segmentation from expert users. Our second objective
is then to infer geometrical information regarding skeletal structure alterations from
the recognized curve parameters and show that the set of parameters characterizing
the detected curves can effectively provide prognostic information for ACLL. To
achieve these goals, and following anatomical considerations, we consider families
of ellipses to recognize appendicular bone contours. In particular, in order to study
the bone erosion signature, we use as features of interest the ellipses semi-axes.

This paper is organized as follows. In Sect. 2, theoretical and computational de-
tails concerning the Hough transform technique, together with a description of the
two families of curves here utilized, are presented. In Sect. 3, we provide some infor-
mation concerning the patient recruitment and image acquisition details. Section4
is devoted to achieve the first objective of the paper. Here we show how to address
some preprocessing steps through an illustrative example, we apply the recognition
technique to the detection of appendicular bone contours, and we offer a quantitative
comparison of both, the proposed technique and the one previously employed, with a
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ground truth. In Sect. 5, we investigate the prognostic significance of the geometrical
information inferred by using the HT technique from CT-images for the assessment
of bone erosion due to ACLL, second objective of the paper. A brief discussion,
together with our conclusions are then offered in Sect. 6. Finally, it is worth noticing
that all the tests and analyses presented in this paper were performed within the
Matlab computing environment.

2 Background Material

In this section we recall some basic concepts concerning the Hough transform in
the case of algebraic plane curves, and we describe two families of curves used
in the recognitions presented in Sect. 4. We remark that the general framework here
recalled can be exploited for the recognition tasks by using Hough regular families of
algebraic curves defined below, including but not limited to straight lines, circles and
ellipses. We refer to the first four sections of [25] for a complete, unified exposition
on the Hough transform technique with respect to families of curves.

2.1 Hough Transform

We follow the notation introduced in [4, 21]. Let us consider a family of non-constant
irreducible real polynomials

F(X,Y ; λ) =
d∑

i, j=0

gi j (λ)XiY j , 0 ≤ i + j ≤ d, (1)

in the variables X , Y , where the coefficients gi j (λ) are evaluations in the indepen-
dent parameters λ = (λ1, . . . , λt ), varying in an Euclidean open setU ⊆ R

t , of real
polynomials gi j (�) in the variables � = (�1, . . . , �t ). We assume that the degree
of the polynomials F(X,Y ; λ) does not depend on λ. Let F be the corresponding
family of zero loci Cλ of F(X,Y ; λ), and assume that each Cλ is an irreducible real
curve in the affine plane A2

(X,Y )(R), i.e., Cλ is an irreducible curve over the complex
field with infinitely many real points in A

2
(X,Y )(R). So we want a family F = {Cλ}

of irreducible real curves (up to a finite number of isolated points) which share the
degree.

If P = (xP , yP) is a point of A2
(X,Y )(R), then the Hough transform of P (with

respect to the familyF ) is the algebraic locus�P(F ) of the affine spaceAt
(�1,...,�t )

(R)

defined by the equation �P(�) := F(xP , yP ;�) = 0, where
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F(xP , yP ;�) =
d∑

i, j=0

gi j (�)xiP y
j
P , 0 ≤ i + j ≤ d (2)

is a real polynomial in the indeterminates � = (�1, . . . , �t ). For a general point P
in the image space, �P(F ) is in fact a hypersurface, that is, a (t − 1)-dimensional
locus in the parameter space [26].

The following general facts hold true, as proved in [4, 25].

(a) The Hough transforms �P(F ), when P varies on Cλ, all pass through the point
λ.

(b) Assume that the Hough transforms �P(F ), when P varies on Cλ, have a point
in common other than λ, say λ′. Thus the two curves Cλ, Cλ′ coincide.

(c) (Regularity property) The following conditions are equivalent:

(i) for all curves Cλ, Cλ′ in F , the equality Cλ = Cλ′ implies λ = λ′;
(ii) for each curve Cλ in F , one has

⋂

P∈Cλ

�P(F ) = λ.

A family F which meets one of the above equivalent conditions is said to be
Hough regular.

Condition (c-ii) is easy to be translated into a discrete framework for curves
recognition in images: provided that an edge detection process selects in the image a
set of points of interest potentially lying on the curve to be recognized, the intersection
of their HTs leads to the identification of the parameter set characterizing the curve.
Thus, we look for familiesF of curves which satisfy the above equivalent conditions.
Condition (c-i) provides an effectiveway to check condition (c-ii). In fact, the equality
Cλ = Cλ′ is equivalent to F(X,Y ; λ) = kF(X,Y ; λ′) for some non-zero constant k.
This leads to solve a polynomial system, in the variables λ = (λ1, . . . , λt ), λ′ =
(λ′

1, . . . , λ
′
t ), made up of the equations gi j (λ) = kgi j (λ′) for each pair of indices i ,

j [4]. Therefore, saying that the family F is Hough regular simply means that such
a polynomial system implies λ = λ′.

Based upon the above theoretical result, a recognition algorithm can be imple-
mented as follows. In short, first we apply to the image an edge detection technique
to select ν points of interest, P1, . . . , Pν (see Sect. 4.1 for a detailed description con-
cerning how we deal with this step in the paper). Then, we discretize the parameter
space by means of an appropriate number of cells and, for each point of interest Pj ,
j = 1, . . . , ν, we compute the Hough transform �Pj (F ) with respect to a fixed fam-
ily F of curves. Next, we apply an accumulator function to count how many times
each cell in the parameter space is crossed (voted) by the computed HTs. Finally,
we look for the cell corresponding to the maximum of the accumulator function:
the parameter set associated to that cell provides the curve of the family which best
approximates the profile of interest in the image.
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The recognition algorithm

• Choose a set of points of interest, say Pj , j = 1, . . . , ν, in the image space by
applying an edge detection algorithm

• Consider a discretization in a regionT of the parameter space given by the choice:

– sampling points λn = (λ1,n1 , λ2,n2 , . . . , λt,nt )

– cellsCn := {
� ∈ T | λk ∈ [

λk,nk − dk
2 , λk,nk + dk

2

)
, k = 1, . . . , t, nk = 1, . . . ,

Nk
}
, where n denotes the multi-index (n1, n2, . . . , nt ), dk the sampling distance

and Nk the number of samples with respect to the component k

• Define an accumulator matrix H = (Hn)

Hn = Hn1,n2,··· ,nt := #{Pj | �Pj (F ) ∩ Cn 	= ∅, 1 ≤ j ≤ ν}

• Optimize H
n∗ := argmaxnHn

• Identify the set of optimal parameters λ∗ := λn∗ = (λ1,n∗
1
, λ2,n∗

2
, . . . , λt,n∗

t
)

• Characterize the equation of the seeked curve Cλ∗

•> Remark I

The computation of the accumulator function and its maximization is the most time-
consuming step of the algorithm. Further, it strongly depends on the number of
parameters, since the dimension of the domain of this function exactly corresponds
to the number of parameters into play. Even though the theory, and the algorithmic
aspects, presented in this section hold true in the above general framework, in prac-
tice, the computational burden associated to the accumulator function computation
and optimization leads to the need of restricting to families of curves depending
on a small number of parameters. On the other hand, evidence shows how to be
able to control roto-translations and even scaling the variables is a matter of impor-
tance; see, for instance, the discussion in Sect. 2.2.2 below. In short, one should be
able to study a family of curves of Eq. (1) up to coordinates transformations of type
(X,Y ) �→ (sX X + μ1sY Y + c1, sY Y + μ2sX X + c2), where sX , sY are the scaling
factors and μ1, μ2, c1, c2 take care of the roto-translation of the X , Y axes, respec-
tively. This increasing by up to six the number t of the parameters λ = (λ1, . . . , λt ),
and then making heavier all computations. Work to establish such a relevant extent
is in progress. We also refer to [29] for related results.
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•> Remark II

The robustness of the recognition algorithm in presence of noise has been widely
tested in [4], where the Hough transform algorithm showed to be extremely effective
in recognizing curves when embedded in a very noisy framework (up to 99% of noise
points), and against random perturbations of the location of the points on the curve.

Further, a bound for the number of points of interest to be considered in the curve,
i.e. a bound for the number of Hough transforms to be considered for a successful
optimization of the accumulator function in the recognition algorithm, is provided
in [3]. Such a bound is consequence of geometrical arguments.

2.2 Families of Curves of Interest

We describe two families of curves. The first one is an illustrative example which
also shows the extent of the HT framework in detecting curves in images, while the
second one plays a crucial role in the paper.

2.2.1 Curve of Lamet

Consider the family F = {Ca,b} of curves of degree m of equation Xm

am + Ym

b = 1 for
positive real numbers a and b, or, in polynomial form (1),

Ca,b : bXm + amYm = amb. (3)

Clearly, the curve Ca,b is non-singular. The curve of Lamet is bounded for even
values of m. Note that, for instance, the case m = 3 leads to the unbounded Fermat
cubic curve. Indeed (see Example 8 in [25]) the curve of Lamet is contained in the
rectangular region

{
(x, y) ∈ A

2
(X,Y )(R)

∣∣ − a ≤ x ≤ a, −b
1
m ≤ y ≤ b

1
m

}
.

For each point P = (xP , yP) in the image plane, the HT is the (m + 1)-degree
curve in the parameter plane A2

(A,B)(R) of equation

�P(A, B) : BxmP + Am ymP = AmB. (4)

Let us assume now Ca,b = Ca′,b′ . The regularity conditions gi j (λ) = kgi j (λ′),
(i, j) ∈ {(m, 0), (0,m), (0, 0)}, mentioned before, read in this case b = kb′, am =
ka′m, −amb = −ka′mb′ for some k ∈ R \ {0}, respectively. Then ka′mb′ = amb =
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Fig. 1 Recognition of the curve of Lamet, Eq. (3) with a = 0.9, b = 0.1, m = 4. Top left panel:
dataset of points randomly sampled on the curve. Top right panel: Hough transforms of the dataset
points. Bottom left panel: accumulator matrix. Bottom right panel: recognized curve with dataset
points superimposed

k2a′mb′, so that k2 = k, whence k = 1. Therefore b = b′ and am = a′m ; since a > 0
it follows a = a′. Thus, the family F is Hough regular.

Finally, in [3] the optimal bound for the number of Hough transforms to be con-
sidered for a successful optimization of the accumulator function is proved to be
νopt = m2 + 1.

The effectiveness of the recognition algorithm in the case of the curve of Lamet
with m fixed to 4 is presented in Fig. 1. For this illustrative example we construct a
synthetic database of 50 points (νopt = 17) satisfying the curve of Eq. (3) with a =
0.9 and b = 0.1 (see Fig. 1, top left panel). Then theHough transforms corresponding
to all points of the database in the image space are expressed by Eq. (4) and drawn
in the top right panel of the figure. In the case we are considering, these transforms
are 5-degree curves in the parameter plane A

2
(A,B)(R) that all meet in one point.

The accumulator matrix is presented in the bottom left panel. The maximum of this
function is clearly visible and it is used in order to determine the parameter values
that uniquely identify the curve of Lamet in the image space (Fig. 1, bottom right
panel).

2.2.2 Ellipse

To play with ellipses up to roto-translations, it is convenient to consider a family of
ellipses expressed in the more general form, as follows. First, look at the general
conic of equation λ0X2 + λ1XY + λ2Y 2 + λ3X + λ4Y + λ5 = 0. To be an ellipse,
we need λ0λ2 	= 0, and λ2

1 − 4λ0λ2 < 0. Thus, we can for instance assume λ0 = 1
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and look at the 5-parametrized family F = {Eλ} of ellipses expressed in the form

Eλ : X2 + λ1XY + λ2Y
2 + λ3X + λ4Y + λ5 = 0, (5)

where λ2
1 < 4λ2 and det M 	= 0, M being the coefficient matrix of Eq. (5). The re-

gion U ⊂ R
5 where the parameters λ = (λ1, . . . , λ5) vary is then defined by such

conditions.
By using the standard invariance and reduction theorems [13], the equation of the

ellipse Eλ reduces to the canonical form, with respect to a new system of coordinates
〈O ′, X ′,Y ′〉,

Ea,b : X ′2

a2
+ Y ′2

b2
= 1, (6)

where the semi-axes a, b ∈ R+ are given by

a =
(

−det M

t21 t2

)1/2

, b =
(

−det M

t1t22

)1/2

, (7)

with t1, t2 the eigenvalues of the submatrix M33 =
(

1 λ1/2
λ1/2 λ2

)
. The fact that the

conic is an ellipse assures that

− det M/(t21 t2) > 0, − det M/(t1t
2
2 ) > 0.

Moreover, note that Eq. (6) is defined up to a rotation by an angle of π/2, which is
enough for our purposes.

A straightforward check shows that both the families {Eλ} and {Ea,b} are Hough
regular.

For each point P = (xP , yP) in the image plane, the HT of P , with respect to the
family F , is the hyperplane in the parameter space A5

(�1,...,�5)
(R) of equation

�P(�) : x2P + �1xP yP + �2y
2
P + �3xP + �4yP + �5 = 0.

Finally, following [3], one has νopt = d2 + 1, where d is the degree of the curves
of the family, so that νopt = 5 for the ellipses.

3 Patient Recruitment and Image Acquisition

The study presented in this paper is concerned with an analysis of CT-images for
the recognition of bone contours of a subset including sixteen subjects among the
ones analyzed in [15] (precisely, we have processed eight control subjects belong-
ing to a published normalcy dataset [28], one ACLL survivor, and seven patients,
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which died because of ACLL). The study presents a retrospective analysis of imaging
data, gathered for a valid clinical reason. This analysis was authorized by the Local
Ethics Committee (Comitato Etico Regionale Liguria), and influenced in no way
the clinical decision making. All patients signed an informed consent prior of study
inclusion. Inclusion criteria, as well as imaging technique, have been previously de-
scribed [15]. Briefly, the study included ACLL patients with no previous specific
treatment and recent disease progression. Further exclusion criteria included clinical
history of other solid or hematologic malignancy, previous prolonged corticosteroid
therapy, previous or ongoing therapy with drugs affecting skeletal metabolism (such
as bisphosphonates or denosumab), uncontrolled diabetes, active infection and re-
cent use of erythropoietin, G-CSF or other BM-stimulating drugs. PET/CT imag-
ing started one hour after bolus injection of 18F-fluorodeoxyglucose (FDG, 4.8–5.2
MBqper kilogramofbodyweight). The examwasperformed in the three-dimensional
mode, from vertex to toes in an arms-down position, using an integrated PET/CT
scanner (Hirez; Siemens Medical Solutions, Knoxville, Tennessee). PET raw data
were reconstructed by means of Ordered Subset Expectation Maximization [18] (3
iterations, 16 subsets), and attenuation correction was performed by using CT data.
The transaxial field of view and pixel size of the reconstructed PET images were
58.5cm and 4.57mm, respectively, with a 128× 128 matrix. A 16-detector row he-
lical CT scan was performed with non-diagnostic current and voltage settings, with
a gantry rotation speed of 0.5 second and a table speed of 24mm per gantry rotation.
No contrast medium was injected. The entire CT data set was fused with the three-
dimensional PET images by using an integrated software interface (Syngo; Siemens,
Erlangen, Germany).

4 Image Analysis

The basic step of the analysis presented in this paper is the identification of bone
contours in CT data, here performed by using an extended version of the Hough
transform recognition algorithm [4, 14, 17]. The Hough transform is widely used in
image processing to detect curves (whose equations depend on a set of parameters)
in images. The basic idea of this recognition procedure is that points lying on a curve
in the image space can be transformed into hypersurfaces (their Hough transforms)
in the parameter space, and the set of parameters corresponding to the intersection
of all Hough transforms identifies the curve to be recognized in the image space.
As shown in Fig. 1, from a computational point of view a histogram (the Hough
accumulator) can be defined on the discretized parameter space: for each cell in the
parameter space, the value of the accumulator corresponds to the number of Hough
transforms passing through that cell. The position of the maximum in the Hough
counter identifies the set of parameters characterizing the curve to be detected in the
image space.

In order to show how this technique works in the context of this paper,
inSect. 4.1wepresent an illustrative example concerning the identificationof sternum
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profiles in the thoracic skeleton. Even though the thoracic skeleton is not included in
the following analysis (bone erosion signature has to be found in the appendicular
skeleton mainly), this example gives us a chance, first, to show the capability of the
HT-based algorithm in detecting a non trivial anatomical profile and, second, to dis-
cuss crucial methodological issues like the selection in the image of the points to be
HT-transformed. Then, in Sect. 4.2, we show in detail the way we processed the data,
and we describe the analyses and comparisons performed in order to evaluate the
reliability of our results with respect to a ground truth given by manual segmentation
from expert users.

4.1 An Illustrative Example

The sternum is one of the skeleton sites where the bonemarrow is abundantly present.
Bone marrow is the main hematopoietic tissue in adult humans and its examination
can be used for the diagnosis of several diseases, like leukemia. For these reasons,
it is important to distinguish between the compact and trabecular bone of this par-
ticular district. From a visual inspection of several CT images, it emerges that the
sternum profile can be effectively described by using the curve of Lamet, introduced
in Sect. 2.2.1 (see [8, 9]). Then, the identification task is performed by means of the
HT via curves of Lamet withm fixed to an even value in order to deal with a bounded
curve (see Eq. (3)). In particular, we chose the value m = 4 proved to be effective
in a previous work [8]. Left panel of Fig. 2 shows an axial view of a CT image of
a thorax. The white box in the image outlines the sternum region. The result of the

Fig. 2 Recognition of the inner and outer profiles of a sternum. Left panel: Original X-rayCT image
with focus on the portion of interest. Right panel: Curves of Lamet (red lines), Eq. (3), providing the
best approximation of the outer (a = 2.025, b = 0.141) and inner (a = 1.670, b = 0.011) sternum
profiles superimposed to the original image
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Fig. 3 Extraction of the sternum edge points. Left panel: Application of Canny edge detection
to the portion of interest outlined in the left panel of Fig. 2, and resulting identification of eight
8-connected components. Right panel: Rejection of some connected components and extraction of
the set of points of interest to be Hough-transformed

identification of the inner and outer bone contours, i.e., the two curves of Lamet
(solid lines) associated with the recognized parameters, is given in the right panel.

As a preprocessing step, Canny edge detection [10] (with parameters set to their
Matlab default values) followed by a search for connected components [16] in the
edge image (Fig. 3, left panel) is used to select the image points of interest, i.e., the
ones to be Hough-transformed (due to the anatomical conformation of the sternum,
we have discarded all components having points at the borders of the image). The
resulting set of points of interest is then shown in the right panel of Fig. 3.A coordinate
system (as the one outlined in the right panel of Fig. 2) is then automatically defined
in order to have the origin coincident with the center of mass of these identified
sternum edge points (the center of mass approximately corresponds to the middle
of the trabecular region). No roto-translation with respect to this coordinate system
was necessary here. It is worth noticing that the procedure described in this section
for the points of interest extraction will be also used in the following subsection for
the recognition of bone contours in the appendicular skeleton.

As a final remark we would like to point out the robustness of the method in
recognizing the outer profile of the sternum even though a wide portion of edge
points was not extracted by the edge detection algorithm.

4.2 Analysis of the Appendicular Skeleton

For each one of the sixteen subjects at disposal, the dataset consists of images from
whole-body CT scanning (512 × 512 pixels per slice, 1.36 mm size each pixel,
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Table 1 Minimum and maximum number of slices, corresponding to each appendicular bone in a
dataset of images from whole-body CT scanning of sixteen subjects differing for age and sex

Minimum Maximum

Left humerus 27 59

Right humerus 25 58

Left femur 38 90

Right femur 36 92

Fig. 4 Appendicular
skeleton: 3D (left) and an
axial view (right) of the leg
bones. In the axial view the
compact bone of the femurs
(white areas) is clearly
visible

and 5 mm thick images), the number of slices depending on the subjects’ height
and acquisition modality (for a minimum and maximum number of slices equal to
302 and 476, respectively). Among them we have considered a stack of CT-images
corresponding to appendicular bones (i.e., femurs and humeri). For each subject,
and for each appendicular bone, we have selected the first and last slice to process,
together with a Region Of Interest (ROI) whose dimension was 60 × 60 pixels. The
same ROI was then automatically replicated to each slice in between. Table1 shows
the minimum and maximum number of considered slices, for each appendicular
bone, across the population of sixteen subjects.

We applied the Hough transform approach to the whole set of CT images of
humeri and femurs for detecting the inner and outer bone contours by using ellipses
as prototype curves (see Figs. 4 and 5). To this aim, for each ROI containing either a
femur or a humerus, we first selected the points of interest by following the same edge
detection-based procedure described in the previous subsection. In Table2 we report
the mean numbers of points of interest, with standard deviations, extracted from the
Canny edge detection algorithm for both, the inner and outer bone profile, and for
each appendicular bone. Recalling that, in the case of the ellipses, the optimal number
of points of interest to guarantee a successful recognition is νopt = 5,we can conclude
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Fig. 5 Recognition of the inner and outer profiles of a humerus. Left panel: Original X-ray
CT image with focus on the portion of interest. Right panel: Ellipses, of Eq. (5), providing the best
approximation of the outer and inner profiles superimposed to the original image.Outer ellipse:λ1 =
−0.102, λ2 = 0.941, λ3 = 0.014, λ4 = 0.146, λ5 = −2.629, values leading to a = 1.7 and b = 1.6
by using relations (7). Inner ellipse: λ1 = 0, λ2 = 1, λ3 = 0.098, λ4 = 0.144, λ5 = −0.802, values
leading to a = b = 0.9 by using relations (7)

Table 2 Mean numbers of points of interest, and corresponding standard deviation values, extracted
by the edge detection step from the inner and outer bone contours, for each appendicular bone

Inner contour Outer contour

Left humerus 22 ± 6 47 ± 10

Right humerus 23 ± 8 48 ± 10

Left femur 34 ± 11 65 ± 14

Right femur 34 ± 11 65 ± 14

that the cardinality of the datasets at disposal is high enough to guarantee reliable
results for all the considered anatomical districts. We introduced a coordinate system
centered in the center of mass of the extracted points of interest (i.e., in the trabecular
tissue), and finally we used the 5-parametrized family of ellipses Eλ of Eq. (5),
which automatically takes into account possible roto-translations. The optimal set
of parameters λ = (λ1, . . . , λ5), i.e., the output of the recognition algorithm, was
then used to compute the semi-axes values (a and b) by means of relations (7), from
which it was also easy to compute the trabecular and compact bone areas (as πab),
and the intraosseous volume (by summing up the area values across different slices).

As for the computational time necessary to accomplish the whole process, we
used the Matlab cputime code to evaluate the CPU time, in seconds, used to run the
recognition algorithm on a 2.9 GHz Intel Core i7 processor. Our results show that
for a full analysis of a subject about 200 seconds are enough, 120 of which aimed at
analysing the outer profiles of both, the right and left femurs.
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Fig. 6 Computation of the trabecular bone area (Ain) and the whole bone area (Aout) in a slice of
a femur. Left panel: Ground truth, i.e., manually drawn profiles within the OsiriX software package
(AGT

in = 1.99 cm2, AGT
out = 5.38 cm2). Middle panel: Active contours/thresholding segmentation

(AACT
in = 2.31 cm2, AACT

out = 5.48 cm2). Right panel: Hough transform by using ellipses (AHT
in =

1.88 cm2, AHT
out = 5.43 cm2)

4.2.1 Comparison with Ground Truth

As we pointed out in the Introduction, the main limitation of the study presented
in [15] lies in the fact that the segmentation method based on active contours was
utilized just for the identification of the bone outer profile, while, for the recognition
of the inner profile, a less reliable approach based on thresholding was applied. The
HT-based approach overcomes this limitation since it is designed to automatically
detect both the trabecular and compact bone contours. Taking advantage from this
fact, the first aim of this paper is to investigate whether the use of a more accurate
detection of the inner profile leads to more reliable results. We have then compared
both, the results provided by the HT-based method, and the method based on active
contours/thresholding,with a ground truth given bymanual segmentation fromexpert
users. Specifically, for each subject, and for each slice of each appendicular bone,
the internal and external profiles of the bone were drawn by hand using the OsiriX
package [27]; the area within each profile was then automatically computed by the
software (see left panel of Fig. 6), and the values compared with the ones obtained
by using both the active contours/thresholding model (see middle panel of Fig. 6)
and the Hough transform (see right panel of Fig. 6).

For each subject s, s = 1, . . . , 16, we introduce the following notation:

• i ∈ {1, 2, 3, 4}, an index identifying the left and right humeri and the left and right
femurs, in the order;

• n(s, i), the number of images at disposal corresponding to the i th appendicular
bone, as labelled in the previous item;

• j = 1, . . . , n(s, i), an index identifying the j th image of the i th appendicular bone;
• AGT

in (s, i, j), AACT
in (s, i, j), and AHT

in (s, i, j), the trabecular bone areas (i.e, inner
areas) computed in the j th image of the i th appendicular bone, by using OsiriX
(ground truth), the active contours/thresholding method, and the Hough transform
technique, respectively;
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• AGT
out(s, i, j), A

ACT
out (s, i, j), and AHT

out(s, i, j), the whole (trabecular plus compact
bone) areas (i.e., outer areas) computed in the j th image of the i th appendicular
bone, by using OsiriX (ground truth), the active contours/thresholding method,
and the Hough transform technique, respectively.

For each image, we computed the percentage error originated by the last twomethods
in the evaluation of the trabecular bone area with respect to the ground truth value:

errACTin (s, i, j) = AACT
in (s, i, j) − AGT

in (s, i, j)

AGT
in (s, i, j)

(8)

errHTin (s, i, j) = AHT
in (s, i, j) − AGT

in (s, i, j)

AGT
in (s, i, j)

, (9)

and, analogously, for the whole bone areas:

errACTout (s, i, j) = AACT
out (s, i, j) − AGT

out(s, i, j)

AGT
out(s, i, j)

(10)

errHTout (s, i, j) = AHT
out(s, i, j) − AGT

out(s, i, j)

AGT
out(s, i, j)

. (11)

Note that in relations (8)–(11), we intentionally avoided the use of the absolute
values to account for possible underestimations or overestimations of the quantity
into play. Further, the computed values can be analyzed in many different ways by
averaging over different indices. Here we offer an overall comparison by defining,
for each method used and with obvious meaning of the notations, the overall mean
percentage errors as:

ErrACTin = 1

K

∑

s

∑

i

1

n(s, i)

n(s,i)∑

j=1

errACTin (s, i, j) (12)

ErrACTout = 1

K

∑

s

∑

i

1

n(s, i)

n(s,i)∑

j=1

errACTout (s, i, j) (13)

ErrHTin = 1

K

∑

s

∑

i

1

n(s, i)

n(s,i)∑

j=1

errHTin (s, i, j) (14)

ErrHTout = 1

K

∑

s

∑

i

1

n(s, i)

n(s,i)∑

j=1

errHTout (s, i, j), (15)
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Table 3 Overall mean percentage errors, and corresponding standard deviations, computed by
using Eqs. (12–15)

Active contours/thresholding Hough transform

ErrACTin = (0.1 ± 0.2) ErrHTin = (−0.06 ± 0.09)

ErrACTout = (−0.1 ± 0.1) ErrHTout = (−0.01 ± 0.08)

where K = 16 × 4 is a constant allowing one to average over the total number of
subjects and appendicular bones. The four computed values, together with the corre-
sponding standard deviations, are summarized in Table3, where we can appreciate
how the active contours/thresholding method overestimates the trabecular bone vol-
ume with respect to the ground truth, coherently with a non-optimal performance of
the thresholding step in the bone segmentation process. The other three values seem
to slightly underestimate the corresponding quantities. All values look very accurate
within their standard deviations, even though the HT approach shows, as expected, a
more precise behaviour with error values smaller of an order of magnitude than the
active contours/thresholding approach. An analogous analysis performed by divid-
ing the population in two classes (control subjects plus the ACLL survivor, ACLL
victims) provided very similar results.

5 Prognostic Significance

The results presented in [15], and briefly summarized in Sect. 1, show that the effects
of ACLL on skeletal structure cause a significant expansion of the intraosseous
volume (in particular in the appendicular skeleton) and no significant alterations
in the skeletal bone volume, i.e., ACLL erodes the compact bone from within the
trabecular tissue.

In our framework, this evidence translates in the fact that no significant alterations
are expected on the semi-axes values associated to the outer ellipses, over the whole
population. More importantly, in the high-risk population, alterations in the compact
bone due to erosion must be mirrored in increases of the semi-axes values associated
to the inner ellipses with respect to the corresponding values in control subjects. The
second aim of this study was then to investigate whether geometrical information re-
lated to the inferred semi-axes values can provide prognostic information for ACLL.
Specifically, by introducing the following notation:

• ain(s, i, j) and bin(s, i, j), the semi-axes of the inner ellipse recognized in the j th
image of the i th appendicular bone for the sth subject,

• aout(s, i, j) and bout(s, i, j), the semi-axes of the outer ellipse recognized in the
j th image of the i th appendicular bone for the sth subject,

we expect both the ratios ain
aout

and bin
bout

to be smaller in control subjects than in leukemic
patients, as the indices s, i and j vary.
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To investigate the geometrical structure of the femurs and humeri (and the corre-
sponding alterations in the inner semi-axes values in case of disease), we defined the
following features:

ra(s, i) = 1

n(s, i)

n(s,i)∑

j=1

ain(s, i, j)

aout(s, i, j)
, (16)

rb(s, i) = 1

n(s, i)

n(s,i)∑

j=1

bin(s, i, j)

bout(s, i, j)
, (17)

rab(s, i) = 1

n(s, i)

n(s,i)∑

j=1

ain(s, i, j)bin(s, i, j)

aout(s, i, j)bout(s, i, j)
, (18)

where, for the sth subject and for the i th appendicular bone, ra(s, i) represents
the mean value of the ratio between the inner and outer value of the semi-axis a.
Analogously, rb(s, i) represents the mean value of the ratio between the inner and
outer value of the semi-axis b, and eventually rab(s, i) represents the mean value of
the ratio between the areas of the inner and outer ellipses.

Relations (16)–(18) provide information for each subject, and for each appendic-
ular bone. We have processed these information in two different ways.

First, averaging each one of the previous mean ratios over the four anatomical
districts (i.e., with respect to the index i) allowed us to identify each subject s by
a point (R(s)

a , R(s)
b , R(s)

ab ) ∈ (0, 1) × (0, 1) × (0, 1), that is, belonging to the space
A

3
(Ra ,Rb,Rab)

(R) (see Fig. 7). In this feature space the high-risk subjects are expected
to be the points closest to (1, 1, 1). In Fig. 7 we show the distribution of the sixteen
subjects with respect to these three features: the survived patient (red circle) falls in
themiddle of the cloud of the control subjects (green crosses), while the dead patients
(black triangles) show a more scattered behavior towards higher values of the three
features, as expected. Impact of R(s)

a , R(s)
b and R(s)

ab values on survival was tested with
the Kaplan–Meier [19] analysis. For each parameter Ra , Rb, Rab, the population
was stratified in two subgroups, using their median values as a discriminant. For
instance, in the case of the Ra parameter, the majority of events occurred in the
subgroup with Ra above the median; accordingly, two-years survival was 87.5% and
25% for the subgroups below and above the median, respectively. Figure8 depicts
the survival curve associated with the parameter Ra . Indeed, this analysis produced
identical results for the parameters Rb and Rab as well. These data suggest a possible
prognostic role of the Hough transform based analysis, which appears to be able to
identify a high-risk sub-population, recognized on the base of osseous alterations.

After dividing the population in two classes (control subjects plus the ACLL
survivor, ACLL victims), a second way to process information given from relations
(16)–(18) is to average the ra(s, i), rb(s, i) and rab(s, i) values over these two sub-
populations (i.e., with respect to two disjoint subsets of indices s). In Fig. 9, for each
appendicular bone and for each sub-population, we show the resulting mean values,
ra(i), rb(i) and rab(i), and the corresponding standard deviations. In non-survivors,



The Hough Transform and the Impact of Chronic Leukemia … 111

Fig. 7 Distribution of dead patients (black triangles), survived patient (red circle) and controls
(green crosses) in terms of the values R(s)

a , R(s)
b and R(s)

ab in A3
(Ra ,Rb,Rab)

(R), s = 1, . . . , 16

the four panels clearly show a significant increase of each considered feature together
with higher values for the standard deviations.Moreover, we have computed unpaired
t-tests to assess whether the data in the two different classes are significantly different
from each other. We have found p-values smaller than 0.01 for all the features in
both the humeri, while five features out of six in the femurs result in a significance
level of 0.05, the sixth one showing a p-value of ∼0.09.

•> Remarks

1. Although we are looking for variations in the values of the parameters character-
izing the inner ellipses, considering the ratios (16)–(18) allows us to normalize
and make them comparable within a population of subjects differing for age, sex
and duration of the disease.

2. Relations (16) and (17) deal with ratios of linear quantities, while relation (18)
is a second-order feature strictly related to the trabecular bone volume evaluation
performed in [15].
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Fig. 8 Kaplan–Meier curves for the two groups of subjects defined on the basis of the median value
of their Ra parameter values

6 Discussion and Conclusions

This paper deals with the application of an HT-based approach to the recognition
of the compact bone contours in biomedical images, as a tool to assess the impact
of Advanced Chronic Lymphocytic Leukemia on the skeleton tissue. We have ana-
lyzed CT images of sixteen subjects, seven of which victims of ACLL, and for each
appendicular bone we have recognized the inner and outer profiles using ellipses.

As proved in a previous work, ACLL erodes the compact bone from within the
trabecular tissue [15]. As a consequence, no significant alterations are expected on
the semi-axes values associated to the outer ellipses over the whole population. On
the contrary, in the high-risk population alterations of the semi-axes values associated
to the inner ellipses with respect to the corresponding values in control subjects are
expected. Coherently, the ratios between the inner and outer values for each pair of
semi-axes are expected to increase. We have then utilized the parameters character-
izing the ellipses, in particular their ratios, to look for findings of bone alteration in
the population affected by ACLL compared with the control subjects. To this aim, we
have computed first-order and second-order features that all show significant varia-
tions in the values of the parameters characterizing the inner ellipses in presence of
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Fig. 9 Measure of the mean values ra(i), rb(i), rab(i) and corresponding standard deviations for
two populations: control subjects plus the ACLL survivor (white boxes) and ACLL victims (grey
boxes). Left humerus (i = 1). Right humerus (i = 2). Left femurs (i = 3). Right femurs (i = 4).
The significance levels p (t-test) are also indicated (∗∗ := p ≤ 0.01, and ∗ := 0.01 < p ≤ 0.05)

disease and then showing for the first time geometrical aspects of the erosion. The
different behavior of the two populations, with particular regard to the humeri, is
confirmed with a high level of significance by standard statistical tests and Kaplan–
Meier analysis. From a quantitative point of view, after stratification according to
median values of such features, patients cluster in two groups showing a two-years
survival of 87.5% and of 25% according to whether their data are below and above
the median, respectively. Further, a t-test analysis, to assess whether the class of con-
trol subjects plus the ACLL survivor and the class of ACLL victims are statistically
different from each other, showed a significance level p ≤ 0.01 for the features cor-
responding to the humeri and 0.01 < p ≤ 0.05 in the femurs case. The method, used
in [15] and based on the computational tool validated in [28], was able to provide a
previously undisclosed imaging-based prognostic index. The classification outlined
in the present paper mirrors and extends previous results, allowing to obtain a more
reliable and flexible index to automatically analyze the skeletal composition. This
method is able to overcome the main limitation of the approach used in [15], that
is, the use of a rather arbitrary thresholding step for the recognition of the (highly
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informative) bone inner profile. We performed a comparison of both methods with a
ground truth given bymanual segmentation from expert users, andwe have computed
the percentage error committed by the two methods in the evaluation of the trabecu-
lar bone area with respect to the ground truth value. The result is that the HT-based
method significantly outperforms the thresholding procedure, as shown in Table3.
In conclusion, the present study introduces an improved computational method to
quantify skeletal alterations in hematologic malignancies. This new technique ap-
pears to be reproducible, operator-independent, and could eliminate a number of
technical limitations of the formerly proposed active contours/thresholding method,
such as the presence of focal interruptions or other disease-related structural al-
terations, thus allowing for a better characterization and prognostic assessment of
hematologic patients. Furthermore, it allows the introduction of the image analysis
concept in a patient population where a visual approach of neither morphological
nor functional images was able to attain a diagnosis or to formulate a prognosis.
Accordingly, further studies should be aimed to test this computational method in
several scenarios of hematological or non-hematological-related skeletal alterations,
in which the previous approach [28] presented specific limitations, related to the
compact bone sampling method or to the inner profile recognition. The limitation of
the present study is the relatively small number of subjects at disposal. The present
project represents in fact a proof of concept, describing the potential of the appli-
cation of the Hough transform in a model of leukemia-environment interaction. A
rigorous application of the developed method to a large dataset of ACLL patients
could assess the diagnostic potential of the features defined in this work and based
on the application of the Hough transform to the recognition of bone contours in CT
images. To this purpose, it is important to outline how the parameters occurring in
the equations defining the curves of the families we deal with, could become concise
features for the analysis of the results of the HT-based recognition procedure.

A preliminary version of the Matlab-based software implementing the proce-
dure presented in this paper is fully described in [9] and freely available at the
following URL: http://mida.dima.unige.it/g_software_htbone.html.
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Multiple Image Deblurring with High
Dynamic-Range Poisson Data

Marco Prato, Andrea La Camera, Carmelo Arcidiacono, Patrizia Boccacci
and Mario Bertero

Abstract An interesting problem arising in astronomical imaging is the reconstruc-
tion of an image with high dynamic range, for example a set of bright point sources
superimposed to smooth structures. A few methods have been proposed for dealing
with this problem and their performance is not always satisfactory. In this paper we
propose a solution based on the representation, already proposed elsewhere, of the
image as the sum of a pointwise component and a smooth one, with different reg-
ularization for the two components. Our approach is in the framework of Poisson
data and to this purpose we need efficient deconvolution methods. Therefore, first
we briefly describe the application of the Scaled Gradient Projection (SGP) method
to the case of different regularization schemes and subsequently we propose how to
apply these methods to the case of multiple image deconvolution of high-dynamic
range images, with specific reference to the Fizeau interferometer LBTI of the Large
Binocular Telescope (LBT). The efficacy of the proposed methods is illustrated both
on simulated images and on real images, observed with LBTI, of the Jovian moon Io.
The software is available at http://www.oasis.unimore.it/site/home/software.html.
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Keywords Deconvolution · Numerical optimization · Image reconstruction

1 Introduction

Image deconvolution is a classical inverse and ill-posed problem which was inves-
tigated since the dawn of regularization theory. Nowadays there exists a plethora
of methods and also some good codes for its solution. Examples for astronomical
applications are provided by IDAC [34], MISTRAL [38] and AIDA [33]. In these
codes a weighted least-squares approximation to the Poisson data fidelity function
is used. This approximation is justified by the fact that data are perturbed by both
Poisson and Gaussian noise, and, when the number of counts is large, a Poisson
distribution can be approximated by a Gaussian one (for a discussion see [49]).

Therefore the question is: why to propose other methods? The answer is that, as
far as we know, all regularized deconvolution methods do not produce satisfactory
reconstructions in the case of images with high dynamic range, i.e. images where
extremely bright and localized sources are superimposed to fainter and smoothly
varying structures. In general the reconstructions are affected by significant ringing
artifacts around the bright sources.

In this paper we propose methods for dealing with this difficulty in the frame-
work of multiple deconvolution of images satisfying Poisson statistics. This problem
arises, for instance, in the case of images obtained by Fizeau interferometry [8], a
particular feature of the Large Binocular Telescope (LBT) [31]. Of the two Fizeau
interferometers planned for this unique telescope, one, the so-called LBTI [32], has
already produced the first interferometric images [21, 37], while the other, LINC-
NIRVANA [29], is currently being commissioned and routinely performs Adaptive
Optics observations at LBT Observatory [30]. Our group participated in the decon-
volution of the first images of LBTI, showing, for the first time, the possibility of
resolving volcanic structures on the surface of the Jovian moon Io from ground based
observations [21].

Since we need efficient regularized methods, we first describe the application of
the Scaled Gradient Projection (SGP) method to the regularized deconvolution of
Poisson data. SGP is a general optimization method for the minimization of dif-
ferentiable objective functions as proposed in [16]; therefore it can be used when
the data fidelity function of Poisson data is regularized with the addition of a dif-
ferentiable function. As concerns the choice of the scaling, we derive it from the
Split-Gradient Method (SGM) proposed in [36]. This algorithm, with different kinds
of regularization is already implemented in the software package AIRY1 [19, 23].

For the deconvolution of high dynamic range images we consider an approach
proposed in [25, 28] which consists in assuming that the image to be reconstructed
is the sum of two components: a point-wise one corresponding to the point bright
sources (stars) and a smooth one representing the underlying structures. Moreover,

1AIRY can be downloaded from http://www.airyproject.eu.

http://www.airyproject.eu
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a different regularization is used for the two components: a sparsity enforcing reg-
ularization in terms of �1 norm in pixel space for the point-wise component and a
smoothing regularization for the other one.We call this approach aMulti-Component
Method (MCM).

Since the �1 regularization of the point-wise component is unable to produce
reconstructions which localize correctly the point sources, in a subsequent paper
[35] we improve the MCMmethod in the particular case of a single star, with known
position, surrounded by an unknown accretion disc. Thanks to the knowledge of the
position of the star, in that paper we assume that the point-wise component consists of
an array which is zero everywhere except in one given pixel (the star), a very strong
constraint on this component; moreover simple �2 regularization is used for the
smooth component and an alternating method is proposed for image reconstruction.
This approach provides both a satisfactory estimate of the magnitude of the star and
a satisfactory reconstruction of the accretion disc.

Having established the relevance of the knowledge of the location of the bright
sources, in this paperwe extend the approach by defining a suitable objective function
where the unknowns are the intensities of the sources and the smooth component;
next we consider the addition of a penalization term depending only on the smooth
component; finally, by a suitable extension of SGP to this model, we propose a
convergent iterative method for the minimization of this function with respect to
the full set of variables,. Therefore only convex and differentiable regularizations of
the smooth component are considered. Moreover, besides non-negativity, additional
constraints such as the flux value of the complete science object (point-wise plus
smooth) can be introduced. The focus is on the case of interferometric imaging, i.e.
multiple image deconvolution.

Since, especially in the case of interferometric images, the localization of the
bright sources can not be easily derived from the observed images, we also introduce
an approach able to overcome this difficulty. We call it a Multi-StepMethod (MSM).
The first step consists in an SGP based deconvolution of the observed images and
the result is used for estimating the localization of the bright sources. This allows to
produce amaskwhich is used as an input of anMCMdeconvolution; finally the result
of this step is used as a background for a simple non-regularized SGP. The addition
of the result of this step to that of the previous one produces the final reconstruction.

In conclusion, the main contributions of our paper are the following:

• The extension of SGP to the regularized deconvolution of multiple images of
the same target, with specific applications to Fizeau interferometric images; in
addition, differentiable edge-preserving regularization functions, introduced in
the existing literature, are considered and discussed.

• Introduction of the multi-component model derived from our approach to the
deconvolution of multiple images of targets containing bright spots superimposed
to smooth and unknown structures.

• Extension of SGP to the minimization of the objective function derived from the
previous model.
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• Proposal of MSM for the practical application of the multi-component model
to the case of interferometric images. The first step provides an estimate of the
localization of the bright sources thanks to a standard SGP deconvolution.

The paper is organized as follows. In Sect. 2 we describe the regularization meth-
ods for multiple image deconvolution and we briefly discuss the choice of the param-
eters appearing in these methods. In Sect. 3 we give the SGP algorithm for multiple
image deconvolution both in the standard case and in the case of boundary effect
correction; the latter is based on an approach proposed in [6] for single image and
in [1] for multiple image deconvolution. Section4 is devoted to the problem of the
reconstruction of high-dynamic images. In Sect. 4.1 we introduce our model based
on the knowledge of the location of the bright sources andwe propose the appropriate
objective function and the corresponding SGP method for its minimization while in
Sect. 4.2 we describe the approach based on MSM for the case of interferometric
imaging. In Sect. 5 we demonstrate the accuracy provided by these methods by de-
convolving both simulated and real images of Io observed in M-band with LBTI [21,
37]. Indeed these images are characterized by bright spots, due to volcanic activity,
superimposed to the smooth surface of the moon. We also discuss the possibility
of performing photometric analysis on the deconvolved images provided by MSM.
Finally in Sect. 6 we summarize the results achieved with our approaches.

All methods are implemented in IDL and the codes are available to the users both
in AIRY and in the stand-alone package contained in OASIS.2

2 The Regularization Methods

In the case of Poisson data, the data-fidelity function is given by the sum of the
Csiszár I-divergences [24, 48], also called generalizedKullback–Leibler divergences
or cross-entropies, between the p detected and the corresponding computed images

J0( f ; g) =
p∑

j=1

∑

m∈S

{
g j (m)ln

g j (m)

(A j f )(m) + b j (m)
+ (A j f )(m) + b j (m) − g j (m)

}
, (1)

where m is a multi-index varying on the pixels of the image and object domain
S; the detected images g j , ( j = 1, ..., p) correspond to the same science object
f ; the backgrounds b j are the known expected values of the sky emission and A j

the known imaging matrices given by A j f = K j ∗ f ; here K j is the point spread
function (PSF) of the j th image and ∗ denotes convolution product. In general the
PSFs are normalized to unit flux. If p > 1, then the problem we have in mind is
that of p different Fizeau interferometric images obtained with different orientations
of the baseline [8]. Except for constants, which do not influence the minimizers,
J0( f ; g) is the negative logarithm of the likelihood.

2http://www.oasis.unimore.it/site/home/software.html.

http://dx.doi.org/10.1007/978-3-030-32882-5_4
http://dx.doi.org/10.1007/978-3-030-32882-5_4
http://www.oasis.unimore.it/site/home/software.html
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A regularization of the data fidelity function can be derived from a Bayesian ap-
proach; in such a way the negative logarithm of the posterior probability distribution
is a function with the following structure [7, 27, 36]

Jβ( f ; g) = J0( f ; g) + β J1( f ) , (2)

where the regularization function J1( f ) derives from the negative logarithm of a
Gibbs prior assumed for the unknown solution and the positive parameter β plays the
role of a regularization parameter. Then theMaximumA Posteriori (MAP) estimates
of the science object f are the solutions of the minimization problem

f β = arg min f∈Ω Jβ( f ; g) , (3)

where Ω is either the non-negative orthant or the set of the non-negative arrays such
that

∑

n∈S
f (n) = c , c = 1

p

p∑

j=1

∑

m∈S
[g j (m) − b j (m)] , (4)

c being the mean flux of the background subtracted images.
We remark that the function J0 is non-negative and convex; therefore, if we con-

sider regularizers with the same properties, these properties hold also for Jβ . More-
over, some regularizers are strictly convex or the intersection of their null space with
the null space of J0 contains only the null element. Then Jβ is strictly convex and
the MAP solution is unique [14].

The SGM algorithm [36] is based on a decomposition of the gradient of J1 with
the following structure

− ∇ J1( f ) = U1( f ) − V 1( f ), U1( f ), V 1( f ) ≥ 0 , (5)

where U1, V 1 are suitable non-negative arrays. Then, in its most simple form, it is
given by

f (k+1) = f (k)

p1 + βV 1( f
(k))

◦
⎛

⎝
p∑

j=1

AT
j

g j

A j f
(k) + b j

+ β U1( f
(k))

⎞

⎠ , (6)

where AT
j is the transposed matrix, x ◦ y denotes the pixel by pixel product of two

arrays and the quotient symbol denotes their pixel by pixel quotient. The algorithm
reduces to the Richardson-Lucy (RL) algorithm by setting β = 0. Although in prin-
ciple any vector ∇ J1( f ) can be decomposed as in (5) (and the decomposition is not
unique), there exist several widely used regularization terms for which this splitting
follows straightly from the gradient expression [36].

In this paper we consider and implement in our software seven different regu-
larization function: three classical Tikhonov regularizations, the cross entropy reg-
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ularization and three edge-preserving regularizations: the Hypersurface (HS) regu-
larization, the Markov Random Field (MRF) regularization and the regularization
function implemented in the MISTRAL code [38] which will be denoted as MIST.
The last three functions contain an additional parameter δ, which will be discussed
at the end of this section. The expression of the seven regularization functions and
the corresponding functions U1, V1 are given in Appendix A.

An important issue in the use of regularization methods is the choice of the
regularization parameter β which controls the balance between the two terms of
Jβ( f ; g). The choice of this parameter is an old problem widely discussed in the
mathematical literature in the case of the regularization of the least-square problem.
An account can be found, for instance, in [5, 26].

The case of Poisson noise was not so widely investigated. Criteria for the selection
of β are proposed in [2, 9] and numerical simulations demonstrate that they work
well when the number of counts is large. In the case of mixed Poisson and Gaussian
noise (a noise model introduced for taking into account the read-out-noise in the case
of images acquired by a CCD camera [46]), Gaussian noise can be approximated by
a suitable Poisson noise in the way suggested in [47], and therefore the cited criteria
can be applied also in this case.

However, simulations represent ideal cases. In the real world, when astronomical
images are pre-processed for flat field correction, bad pixels removal, background
subtraction etc., no rule is available because the pre-processingmodifies the statistical
properties of the noise. Therefore one can only attempt reconstructions with different
values of β using some rules for estimating at least its order of magnitude. It is only
possible to say that for the observation of a given science object the value of β

depends on the noise level, hence on the integration time: if the integration time
increases, then the appropriate value of β decreases.

In the case of images affected by Poisson noise the value of J0 is approximately
independent of g (for sufficiently large number of counts) if f is close to the correct
solution; more precisely its value is of the order of N 2/2 (see, for instance, [8]). This
rule is not satisfied if the images have been pre-processed, but it may give the order of
magnitude of the first term in the regularized functional, except when the images are
rescaled by the astronomers. Since J0 depends almost linearly on g, then the same
rescaling can be done on its value. The estimated value of J0 provides a hint on the
order of magnitude of β if one can estimate the order of magnitude of J1 by taking
into account parameters deduced from the detected images such as the mean of the
pixel values or the mean of the gradient values. Since β provides a balance between
the two terms of Jβ , then one can do a search around the value of β provided by the
quotient J0/J1 and look for a solution which could be the best for his purposes.

In addition to β the three edge-preserving regularization functions considered in
this paper, namely HS, MRF and MIST defined in the Appendix, contain the addi-
tional parameter δ. For simplicity we discuss mainly the case of HS regularization,
defined in (36), where δ clearly plays the role of a threshold for the values of the
modulus of the gradient of the science object (defined as |D| in (28)). Therefore, the
role of this parameter is very important.
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Indeed, when δ is small with respect to |D|, the above-mentioned regularizer be-
haves essentially as Total Variation (TV) regularization. This point has been demon-
strated numerically in [15]. It is obvious that in such a case, sinceHS is differentiable,
one can use very efficient optimization methods and obtain the same results provided
by TV with a much lower computational cost. On the other hand, when δ is greater
than |D|, the regularizer behaves essentially as a Tikhonov regularization, based on
the �2 norm of the gradient (see (31)). This result follows by a first-order Taylor
expansion with respect to |D|/δ. Therefore HS behaves as a sort of interpolation be-
tween TV and T-2 regularization and may be free of the undesirable cartoon effects
due to TV regularization.

The point is to find a good value of δ, i.e. a good thresholding separating regions
with small values of the gradient and regions with high values of the gradient. In
practice, since the values of the gradient of the unknown science object are also
unknown, for estimating a suitable value of δ one can first compute the mean value
δmean of the modulus of the gradient on the observed image; next perform a search
of δ around this mean value in order to find the best value for the user. In such a
case, HS regularization behaves essentially as a T-2 regularization in regions where
the gradient is smaller than δmean but behaves as an edge-preserving regularization in
regions where the gradient is very large (for instance, in the neighborhood of jumps
in the values of the scientific target, as those due to the limb of a planet). In these
cases HS provide an improvement with respect to TV since it does not introduce
cartoon effects in the smooth regions.

For the deconvolution of images with a moderate dynamic range it may be conve-
nient to take a value of δ slightly higher than δmean, because of the smoothing effect
due to the PSF. On the other hand in the deconvolution of images with very high
dynamic range, based on the multi components approach described in the follow-
ing, it is convenient to take a value of δ smaller than δmean for the reconstruction of
the smooth component, because δmean is affected by the contribution of the bright
and localized sources. We take into account this effect in the case of our numerical
simulations as well as in the reconstruction of real images.

3 The Scaled Gradient Projection Method

The convergence of SGM is not guaranteed unless some further sufficient decrease
strategies are introduced [36]. Moreover, it is known that the convergence speed is
slow.

Starting from the remark that SGM can be written as a scaled gradient method
with fixed unitary step-length, i.e.,

f (k+1) = f (k) − f (k)

p1 + βV 1( f
(k))

◦ ∇ Jβ( f (k); g) , (7)
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the SGP method [16] is a natural way to accelerate SGM by introducing variable
step-lengths and projections.

In its general form, SGP can be applied to the minimization of any smooth objec-
tive function subject to a feasible setΩ on which the projection is fast to compute, as
in the case of box (possibly with the addition of an equality) constraint. Feasibility
of the iterations and stationarity of the limit points of the sequence are achieved
by a projection on the constraints PΩ and a line-search parameter λk automatically
detected by means of a monotone Armijo backtracking rule [10], thus resulting in
the iteration

f (k+1) = f (k) + λk
(
PΩ( f (k) − αk Dk ◦ ∇ Jβ( f (k); g)) − f (k)) , (8)

where

Dk = min

[
L2, max

{
L1,

f (k)

p1 + βV 1( f
(k))

}]
(9)

and
PΩ( y(k)) ≡ arg min y∈Ω ( y − y(k))T D−1

k ( y − y(k)). (10)

The choice of the step-length parameter αk is the one described e.g. in [41] and is
based on the BB rules [3], even if any positive step-length can be exploited in the
SGP scheme and generalizations with different strategies might be considered (see
e.g. [39, 40]).

The SGP method has been used in both standard [11, 12, 41, 50] and blind
[22, 42, 43] deconvolution of astronomical images as an effective accelerated RL
algorithm. Under mild conditions on the thresholds L1, L2 of the scaling matrix
Dk , the sequence generated by SGP converges linearly with respect to the objective
function values [13], even if several numerical experiments show that the decrease
of the objective function is comparable with state-of-the-art approaches for which
quadratic convergence rate has been proved [13, 39].

The SGP method can be easily generalized to account for the boundary effect
correction proposed in [1, 6] in the following way:

• extend the object f to a broader array S̄ containing the region R whose pixels
contribute to the observed image defined on S ⊂ R; if we denote by M R (resp.
M S) the arrays defined over S̄ which are 1 over R (resp. S) and 0 outside, then set

α j (n) =
∑

m∈S̄
K j (m − n)M S(m) , n ∈ S̄ ,

R = {n ∈ S̄ | α j (n) ≥ σ ∀ j = 1, .., p} ,

where σ > 0 is a small quantity;
• extend the images g (resp. the backgrounds b) to S̄ by zero padding (resp. defining
b in S̄ \ S as constantly equal to the median value of the background radiation in
S);
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• define the scaling matrix Dk as

Dk = M R ◦ min

[
L2, max

{
L1,

f (k)

α + βV 1( f
(k))

}]
, (11)

where α(n) =
p∑

j=1

α j (n) , n ∈ S̄;

• if the flux conservation is considered, substitute the constraint (4) with

1

p

∑

n∈R

α(n) f (n) = c . (12)

We have implemented SGP in IDL using all the regularization functions described
in Appendix A, with or without boundary effect correction; the core is the imple-
mentation of the SGP algorithm described above.

The software allows the user to provide its own initialization f (0), otherwise a
default constant N × N image with pixel values equal to c/N 2 is used. In the case
of boundary effect correction, the default starting point is an image defined over S̄
as

f (0)(m) =
{

(cp)/
(∑

n∈R α(n)
)
, if m ∈ R

0, if m ∈ S̄ \ R
. (13)

SGP iteration must be equipped with one or more stopping rules. In general, in the
case of regularization, the iterationmust be pushed to convergence.To this purposewe
use the following stopping criterion, based on the decrease of the objective function

|Jβ( f (k+1); g) − Jβ( f (k); g)| ≤ ν Jβ( f (k+1); g) (14)

where ν is a tolerance parameter.

4 High-Dynamic Range Image Deconvolution

In this section we describe our approaches to the problem of deconvolving images
with a very high dynamic range.

4.1 The Multi-component Method (MCM)

Deconvolving an image might be a particularly challenging problem when the ob-
ject consists of very bright sources superimposed to diffuse structures, a common
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situation in astronomical imaging. Typical artifacts appearing in these cases con-
sist in ringing artifacts around the bright sources, thus leading to an unsatisfactory
reconstruction of the underlying diffuse structures and, possibly, also to inaccurate
evaluation of the intensities of the bright sources.

A possible way to address this problem is to include this information in the model
by assuming that the unknown target f is the sum of a point-wise component f P
and an extended and smooth one f E , exploiting different regularization strategies
for each component.

Since f P is sparse one could use a sparsity enforcing regularization such as that
provided by the �1 norm [25, 28]; however we prefer a much stronger regularization
provided by information on the localization of the bright sources when this informa-
tion can be derived from the observed images. As concerns f E one can choose one
of the regularizers described in Appendix A: for instance a Tikhonov regularizer if
it is known that it is very smooth or an edge-preserving one if it contains edges such
as the limb of a planet.

In [35] we consider this model by assuming that the positions of the bright sources
are exactly known. We propose an iterative algorithm which, at each iteration, per-
forms an RL iteration on the point-wise component (initialized with a mask which
is 1 in the pixels of the sources and 0 elsewhere) and an SGM iteration, with T-0
regularization (see Appendix A for a definition), on the extended component. The
specific application is the reconstruction of the jet emitted by a young starwith known
position. In this paper we assume that the sources are localized inside small regions
so that one can construct a mask which is 1 on these regions and 0 elsewhere. No
additional regularization is introduced for f P .

For the application of SGP to this situation, namely known localizations of the
bright sources, we define R

N×N
≥0 as the set of N × N matrices with non-negative

entries and P as the prefixed sub-region of the N × N region S where the bright
sources are located; then the resulting minimization problem becomes

min
( f E , f P )∈Ω

Jβ( f E , f P ; g) ≡ J0( f E + f P ; g) + β J1( f E ) , (15)

where

Ω = {( f E , f P ) ∈ R
N×N
≥0 × R

N×N
≥0 | f P (n) = 0 ∀n ∈ S\P and f = f E + f P satisfies (4)}.

(16)
As concerns implementation, the SGP algorithm is applied to a N × N matrix f E
and a NP vector f ′

P , where NP is the number of pixels in P , containing the values of
f P belonging to P . The user is asked to provide a N × N mask M P equal to 1 where
the point sources are located and 0 elsewhere, from which a NP vector of indexes i P
is automatically computed in order to track the position of the bright sources within
the N × N array.

The core of the IDL code is a unique SGP deconvolution step in which, given
initializations f (0)

E , f ′(0)
P , the two arrays are updated at each iteration according to

Algorithm 1, where gradients and scaling matrices are computed according to the
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objective function in (15). This unique step is required if we wish to apply the flux
constraint (4); however, deconvolution without this constraint is also possible.

Algorithm 1Multi-component SGP

Choose the starting point ( f (0)
E , f (0)

P ) ∈ Ω , define the mask M P and set the parameters μ, θ ∈
(0, 1), 0 < LE

1 ≤ LE
2 , 0 < LP

1 ≤ LP
2 , 0 < αmin < αmax, kmax ∈ N.

Extract the NP vector f ′(0)
P from f (0)

P according to the entries i P of mask M P equal to 1.
Set k = 0 and Check = true.
While (Check = true) and (k ≤ kmax) do the following steps:

Step 1. Choose the parameter αk ∈ [αmin, αmax] and define the N × N and NP arrays

DE
k = min

⎡

⎣LE
2 , max

⎧
⎨

⎩LE
1 ,

f (k)
E

p1 + βV1( f
(k)
E )

⎫
⎬

⎭

⎤

⎦ , DP
k = min

⎡

⎣LP
2 , max

⎧
⎨

⎩LP
1 ,

f ′(k)
P
p1

⎫
⎬

⎭

⎤

⎦ .

(17)
Step 2. Compute the N × N and NP arrays

y(k)E = f (k)
E − αk D

E
k ◦ ∇E Jβ ( f (k)

E , f ′(k)
P ; g) , y′(k)P = f ′(k)

P − αk D
P
k ◦ ∇′

P Jβ ( f (k)
E , f ′(k)

P ; g).

(18)
Step 3. Compute the projection

π (k) = PΩ([V( y(k)
E ); y′(k)

P ]), (19)

whereΩ is the set of N 2 + NP vectors of non-negative components possibly satisfying
(4) and PΩ is defined in (10), re-size the first N 2 components ofπ (k) in a N × N matrix
π

(k)
E and define the NP vector π

′(k)
P equal to the last NP components of π (k).

Step 4. Compute the descent directions

d(k)
E = π

(k)
E − f (k)

E , d ′(k)
P = π

′(k)
P − f ′(k)

P . (20)

Step 5. Backtracking loop: compute the smallest positive integer m such that the inequality

Jβ ( f (k)E +λk d
(k)
E , f ′(k)P +λk d

′(k)
P ; g) ≤ Jβ ( f (k)E , f ′(k)P ; g) + μλk∇ Jβ ( f (k)E , f ′(k)P ; g) · [V(d(k)

E ); d′(k)
P ]
(21)

is satisfied with λk = θm .
Step 6. Set

f (k+1)
E = f (k)

E + λkd
(k)
E , f ′(k+1)

P = f ′(k)
P + λkd

′(k)
P (22)

and k = k + 1.
Step 7. If the stopping criterion is satisfied, then set Check = false.

End
Define f (k)

P as a N × N matrix of zeros with entries of indexes i P equal to f ′(k)
P .

In order to select the line-search parameter λk through the Armijo rule (see Step 5
of Algorithm 1), the current image f (k) is computed by merging f ′(k)

P into a N × N
matrix f (k)

P and computing the sum f (k) = f (k)
P + f (k)

E . The bounds L1, L2 for the
scaling matrices are chosen separately for both components, while the step-length
αk is computed through the “extended” gradient

∇ Jβ( f (k)
E , f ′(k)

P ; g) = [V(∇E Jβ( f (k)
E , f ′(k)

P ; g)); ∇′
P Jβ( f (k)

E , f ′(k)
P ; g)], (23)
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being ∇E Jβ (resp. ∇′
P Jβ) the gradient of Jβ with respect to the first N × N (resp.

last NP ) variables, V(h) the column vectorization of the array h and [h; h′] the
column vector obtained concatenating h and h′. The parameters μ, θ, αmin, αmax are
the standard SGP ones (see e.g. [41]). As concerns the initializations, the fluxes of
the point-wise objects in f ′(0)

P are chosen as those of the corresponding pixels of
the background-subtracted observed image g1. The remaining flux of the measured
images (i.e., the value obtained by subtracting the flux of f ′(0)

P from the total flux c
defined in (4)) is then spread on a constant N × N matrix f (0)

E , which represents the
starting point for the extended object. However, the user can be freely insert his own
initialization arrays.

If the boundary effect correction is included, the following modifications to the
algorithm have to be considered:

• region S must be replaced by the N ′ × N ′ region S̄ (N ′ > N );
• the set Ω is defined as

Ω =
{
( f E , f P ) ∈ R

N ′×N ′
≥0 × R

N ′×N ′
≥0 | f P (n) = 0 ∀n ∈ S̄\P and f = f E + f P satisfies (12)

}
;
(24)

• the constant value of the pixels in f (0)
E is computed according to the constraint

(12);
• steps 1 and 3 of Algorithm 1 must be reformulated as follows:

Step 1. Choose the parameter αk ∈ [αmin, αmax] and define the N ′ × N ′ and NP

arrays

DE
k = M R ◦ min

[
LE
2 , max

{
LE
1 ,

f (k)
E

α + βV 1( f
(k)
E )

}]
, (25)

DP
k = min

[
LP
2 , max

{
LP
1 ,

f ′(k)
P

α

}]
. (26)

Step 3. Compute the projection

π (k) = PΩ([V( y(k)
E ); y′(k)

P ]), (27)

where Ω is the set of NR + NP vectors (being NR the number of pixels in
R) of non-negative components possibly satisfying (12) and PΩ is defined
in (10), define π

(k)
E as a N ′ × N ′ matrix of zeros with pixel values in R

equal to the first NR components of π (k) and define the NP vector π
′(k)
P

equal to the last NP components of π (k).



Multiple Image Deblurring with High Dynamic-Range Poisson Data 129

4.2 The Multi-step Method (MSM)

MCM, as described above, assumes that the positions of the bright point-wise sources
are (at least approximately) known. This can be true in particular cases but not always,
of course. In particular, in our recent attempts of improving the reconstruction of
LBTI images [21, 37] we found that it should be important to know the positions of
the bright spots corresponding to hot sources on the surface of Io, but these can not
be derived from the interferometric images.

Therefore we developed an approach, which we call a Multi-StepMethod (MSM)
and we propose for the first time in this paper. It can be briefly described at follows
and can be applied to both single- and multi-image deconvolution.

• Step 1—Deconvolve the observed image (or images) with some algorithm, for
instance SGP without regularization or with an edge-preserving regularization
and a small value of β, for obtaining a sharpening of the image (and a removal of
the interferometric fringes in the interferometric case).

• Step 2—Determine the centroids of the bright regions which appear as a result
of Step 1 and produce a mask which is one over the centroids, or small regions
around the centroids, and zero elsewhere.

• Step 3—Apply MCM to the observed image (images) using the previous mask
and a regularizer which looks appropriate to the underlying structure. The output
of this step is a reconstruction of this structure.

• Step 4—If we denote as f E the result of the previous step, then we write the
unknown object as f = h + f E and we can recover h by applying SGP, without
regularization, to the observed images; thank to the fact that this algorithms con-
centrates the solution in a few regions, the result is a reconstruction of the bright
sources, with possible artifacts consisting of a few bright pixels external to the
domains of the sources. Also in this case the algorithm can be pushed to conver-
gence. In alternative, one can use one of the available regularization algorithms,
with a small value of the regularization parameter.

The final result is the sum of the results of Step 3 and Step 4. In the next section we
will prove the efficacy of this approach to the reconstruction of Io images in M-band.

5 Numerical Results

Because of our recent activity on LBTI images, in this section we focus on images
of the Jovian moon Io in M-band. We mainly consider the application of MSM. In
order to verify the accuracy of the reconstructions of the real images we generate
simulated LBTI images at M-band [21, 37] of an Io-like object with SNR values
comparable to those of the real ones. We select M-band images because in this case
the hot spots, due to volcanic activity, are seen as very bright sources over the surface
of the moon so that they produce very strong ringing artifacts in the case of standard
deconvolution methods.
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Fig. 1 Simulated and reconstructed Io-like object in the case of complete coverage.First row—Left:
Model of the surface of the planet (quadratic scale). Right: The model after the addition of eleven
hot spots (log scale with saturation of the hot spots).We visualize a zoom of the cluster of three spots
in the lower left corner of the image. Second row—Left: The observed PSF (horizontal baseline),
provided with the real images considered in the next section (log scale). Right: The corresponding
noisy image. Third row—Left: The first step of the reconstruction obtained with non-regularized
SGP.Right: Themask derived from the previous reconstruction.Forth row—Left: The reconstructed
surface. Right: The complete reconstruction (MRF regularization in the third step—see the text)
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Fig. 1 (continued)

5.1 Simulated Image

In this section we simulate an Io-like object with features similar to those of the
M-band LBTI images of Io analysed in the next section. The size of all images is
256 × 256. As concerns the surface of the moon, we generate a disc with the same
diameter of Io in theLBTI images and a smoothly variable brightness, including a sort
of limb darkening, and we superimpose bright sources to it. To simulate a structure
similar to that of Loki, the dominant structure in the observed LBTI images, we insert
a set of three sources which can not be resolved by a 8m telescope. Moreover we use
the PSFs provided with the LBTI images. The simulated surface and the simulated
object, obtained by adding to the surface eleven hot, are shown in the first row of
Fig. 1 while in the second row we show the PSF and the corresponding image in the
case of horizontal baseline of the interferometer.

We first consider a set of four images with orientations of the baseline of 4, 49,
94 and 139◦, thus assuring a good coverage of the u, v plane. In the first step we use
a number of iterations of SGP without regularization in order to sharpen the images
of the nine hot spots. We compute the centroids of their reconstructions and we find
that they coincide with the positions in the original model, except in one case where
we find a shift of one pixel. These centroids are used for producing the mask (second
step) to be used in the third step. In the third row of Fig. 1 (left panel) we show the
result of the first step; it is evident that now the bright spots can be identified but they
are encircled by strong ringing effects. In the right panel of the same row the mask
obtained by this preliminary reconstruction is also shown.

Finally, in the third step, because of a sharp edge due to the limb of the planet,
we decide to test only the three regularizers HS, MRF and MIST. For the three
regularizers, we consider a grid of the two parameters δ, β consisting of 11 × 9
points, with δ varying from 10−1 to 101 (11 values) and β varying from 10−3 to
101 (9 values). For each regularizer we consider SGP both with and without flux
constraint. For each one of these six cases we find only one minimum of the r.m.s.
error, computed as the �2 norm of the difference between the reconstructed and the
original surface of the Io-like object.
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The best values of the parameters resulted δ = 1 and β = 10−1. In the third step
we use a tolerance of 10−7 but we find that for resolving the Loki-like structure we
need a tolerance of 10−8 in the stopping criterion for the fourth step, corresponding
to about 2500 iterations, a very large number for SGP. The reconstruction with
minimal number of point-wise artifacts is obtained by MRF regularization with no
flux constraint at the third step and flux constraint at the fourth one. The mean error
on the reconstruction of the intensities of the hot points is about 2%. In the last
row of Fig. 1 we show the reconstruction of the surface (left panel) and the complete
reconstruction of the simulated Io-like object, including the eleven bright spots (right
panel).

In a second experiment we consider a situation with a non-complete coverage of
the u, v plane, similar to that of the LBTI observations considered in the next section.
Therefore the orientations of the baseline correspond to –30, –22, –16, –8, 4, 16, 29◦
[37]. We use the values of the parameters obtained from the first experiment. Also
in this case it is possible to resolve the Loki-like structure with the same tolerances
used in the previous experiment but now the required number of SGP iterations at
the fourth step is much larger, about 4260.

5.2 Real Image

We consider now the seven interferometric images of Io observed with LBTI during
UT 2013 December 24. Observations and data reduction are described in [37]. After
pre-processing the images contain negative values as a consequence of background
subtraction. These negative values may cause troubles in algorithms which require
non-negativity of the observed images. Therefore, instead of zeroing these values,
which are small, we add a sufficiently large background such that the average value
of the resulting one is not significantly affected by the negative values. We select,
arbitrarily, a value of 100 which, of course, is also inserted in the reconstruction
algorithm. Three of the observed images (after de-rotation for taking into account
the rotation of the baseline with respect to the moon) are shown in the upper panels
of Fig. 2. A PSF is also provided, derived from the image of the star HD-78141 and
already shown in Fig. 1. During the observation time of about 1 hour the Io relative
orbital rotation is of 7.7◦. Therefore in the reconstruction of these images we have
two additional difficulties: an approximate PSF and a variation of the target during
the observation time. We ignore these difficulties in the subsequent analysis.

For the reconstruction of these images we use MRF regularization in the third
step. As concerns the values of the parameters β, δ, inspired by the reconstruction of
the simulated images with similar SNR values, we considered three values of δ from
0.1 to 1 (δmean = 1.6) and six values of β from 0.1 to 0.01., with tolerance 10−7 for
stopping the iteration. By looking at the reconstruction of the surface of the moon,
we decided to consider two cases, both with δ = 1: β = 5 × 10−2 and β = 10−2. The
corresponding results obtained in the last step by using SGP without regularization
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Fig. 2 Reconstruction of the LBTI images of Io at M-band. First row—Three interferometric
images, showing the variation of the parallactic angle of about 60◦. Second row—Left: The recon-
structed surface of Io (linear scale) as obtained at the 3rd step with MRF regularization, δ = 1 and
β = 5 × 10−2. Middle: The reconstruction of the hot spots, in reverse gray sqrt scale (the limb is
identified with a dashed circle). Right: The complete reconstruction: surface plus hot spots (log
scale). Third row—Same as in the second row but with β = 10−2

are shown respectively in the second and third row of Fig. 2. The number of iterations
for the last step is 331 in the first case and 113 in the second one.

A general comment is that the reconstruction of the limb is very irregular. This
fact is due to two effects: the existence of hot spots close to the limb and a variation
of the position of Io inside the image, since the images are centered on Loki, the
brightest structure visible in them. A second comment is that the use of a too small
regularization parameter does not remove completely ringing artifacts around Loki
even if it is able to reduce the point-wise artifacts.

As concerns the eruptions visible in these reconstructions, we do not find evidence
for those of Gibil and Rarog (see [21]), even if they were introduced into our mask,
consisting of domains of 3 × 3 pixels for each assumed hot spot (and a broader
domain for Loki); we do not exclude their existence but they are certainly very
faint so that it is difficult to detect their existence over an estimated and certainly
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approximated background. Anyway their existence was deduced from reconstructed
images full of artifacts.

On the other hand we find two hot spots close to Loki, respectively above right
and below left, not considered in the previous reconstructions. If we look at the local
reconstructions of Loki, used in [21] and represented in log scale, we find two faint
shadows in the same locations; therefore the two hot spots are presumably deriving
from these two shadows, as an effect of the last step since non-regularized SGP tends
to concentrate the flux in small regions; we also point out that they are stronger in
the reconstruction of the second row of Fig. 2 and fainter in that to the third row.
Therefore they can be artifacts due to the approximate PSF and the deconvolution
method. We must also remark that Loki is so bright that its reconstruction can easily
generate artifacts in the deconvolved images. We also observe that Loki is resolved
in the reconstruction of the second row but not in that to the third one.

Finally, as concerns photometry, we remark that the eruptions are very well lo-
calized in the reconstruction shown in the third row. Since an estimate of the flux
of Loki is given in [21], by means of these reconstructions it is easy to compute the
ratio between the intensity of one eruption and that of Loki, thus obtaining its flux.

6 Concluding Remarks

In this paper we first discuss the application of SGP to the regularized inversion of
Poisson data. Thanks to its efficiency and flexibility, it can be easily used in complex
methodswe propose for the deconvolution of imageswith a very high dynamic range.
All the methods are implemented in IDL and are at disposal of the reader.

We test the methods for high-dynamic range deconvolution on simulated and real
images of the Jovianmoon Io. As concerns the real images, we consider LBTI images
of a Loki eruption. We show that they provide reconstructions which are free of the
usual ringing artifacts even if another kind of artifacts, consisting in a small number
of not very bright pixels, is introduced. Anyway these artifacts are not disturbing
too much so that it seems that they do not prevent a photometric analysis of the
reconstructed3 images. This point should be very important; however it requires a
further and more detailed analysis.
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Appendix

Regularization functions

In this paper we assume that f is a N × N array extended (when needed) with peri-
odic boundary conditions, i.e., if we set n = (n1, n2), then f (N + 1, n2) = f (1, n2),
f (n1, N + 1) = f (n1, 1) and f (N + 1, N + 1) = f (1, 1).
For introducing the regularization functions considered in our methods and soft-

ware we need some notation.We set n1± = (n1 ± 1, n2) and n2± = (n1, n2 ± 1) and
we introduce the square and the modulus of the discrete gradient

D2(n) = [
f (n1+) − f (n)

]2+[ f (n2+) − f (n)
]2

, (28)

|D(n)| =
√[

f (n1+) − f (n)
]2+[ f (n2+) − f (n)

]2
.

Then, the seven regularization functions and the corresponding arrays U1, V1 are
the following:

• Zeroth order Tikhonov (T-0) regularization

J1( f ) = 1

2

∑

n

| f (n)|2 , (29)

for which (5) holds by setting

U1(n) = 0 , V 1(n) = f (n). (30)

• First order Tikhonov (T-1) regularization

J1( f ) = 1

2

∑

n

D2(n) , (31)

for which (5) holds by setting

U1(n) = f (n1+) + f (n2+) + f (n1−) + f (n2−) ,

V 1(n) = 4 f (n) .

• Second order Tikhonov (T-2) regularization

J1( f ) = 1

2

∑

n

(Δ f )(n)2 , (32)

where Δ denotes the discrete Laplacian. As remarked in [36], it can be written in
the form
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J1( f ) = 1

2

∑

n

[
f (n) − (B f )(n)

]2
, (33)

where B is the convolution matrix obtained from the 3 × 3 mask with columns
(0, 1/4, 0), (1/4, 0, 1/4) and (0, 1/4, 0). Then (5) holds by setting

U1(n) = [(B + BT ) f ](n) ,

V 1(n) = [(I + BT B) f ](n) .

• Cross-Entropy (CE) regularization [17, 18]

J1( f ) = K L( f , f̄ ) =
∑

n

{
f (n) ln

(
f (n)

f̄ (n)

)
+ f̄ (n) − f (n)

}
, (34)

where f̄ is a reference image. When f̄ is a constant array, then the cross-entropy
becomes the negative Shannon entropy considered, for instance, in [44]. If both f
and f̄ satisfy the constraint (4), then a possible choice for the functions U1, V1 is

U1(n) = − ln
f (n)

c
, V 1(n) = − ln

f̄ (n)

c
, (35)

where c is the flux constant defined in (4). We remark that, since the background is
taken into account by the algorithms, f can be zero in some pixels; for this reason
in the computation of the gradient we add a small quantity to the values of f . We
also remark that when f̄ is a constant, e.g. c/N 2, then V 1(n) = 2ln N .

• Hypersurface (HS) regularization [20]

J1( f ) =
∑

n

√
δ2 + D2(n) , δ > 0 , (36)

for which (5) holds by setting

U1(n) = f (n1+)+ f (n2+)√
δ2+D2(n)

+ f (n1−)√
δ2+D2(n1−)

+ f (n2−)√
δ2+D2(n2−)

,

V 1(n) = 2 f (n)√
δ2+D2(n)

+ f (n)√
δ2+D2(n1−)

+ f (n)√
δ2+D2(n2−)

.

The application of SGP to the case of HS regularization is already considered in
[15] and [4] for a comparison of its accuracy with that of Total Variation (TV)
regularization.

• Markov random field (MRF) regularization [27]
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J1( f ) = 1

2

∑

n

∑

n′∈N(n)

√

δ2 +
(

f (n) − f (n′)
ε(n′)

)2

, (37)

where δ > 0,N(n) is a symmetric neighborhood made up of the eight first neigh-
bors of n and ε(n′) is equal to 1 for the horizontal and vertical neighbors and equal
to

√
2 for the diagonal ones; thanks to the symmetry of N(n), Eq. (5) holds by

setting

U1(n) = ∑
n′∈N(n)

f (n′)

ε(n′)
√

δ2+
(

f (n′)− f (n′)
ε(n′)

)2 ,

V 1(n) = ∑
n′∈N(n)

f (n)

ε(n′)
√

δ2+
(

f (n)− f (n′)
ε(n′)

)2 .

• MISTRAL regularization (MIST) [38]

J1( f ) =
∑

n

{
|D(n)| − δ ln

(
1 + |D(n)|

δ

)}
, δ > 0 , (38)

for which (5) holds by setting

U1(n) = f (n1+)+ f (n2+)

δ+|D(n)| + f (n1−)

δ+|D(n1−)| + f (n2−)

δ+|D(n2−)| ,

V 1(n) = 2 f (n)

δ+|D(n)| + f (n)

δ+|D(n1−)| + f (n)

δ+|D(n2−)| .
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On the Segmentation of Astronomical
Images via Level-Set Methods

Silvia Tozza and Maurizio Falcone

Abstract Astronomical images are of crucial importance for astronomers since
they contain a lot of information about celestial bodies that can not be directly
accessible. Most of the information available for the analysis of these objects starts
with sky explorations via telescopes and satellites. Unfortunately, the quality of
astronomical images is usually very low with respect to other real images and this
is due to technical and physical features related to their acquisition process. This
increases the percentage of noise and makes more difficult to use directly standard
segmentation methods on the original image. In this work we will describe how to
process astronomical images in two steps: in the first step we improve the image
quality by a rescaling of light intensity whereas in the second step we apply level-
set methods to identify the objects. Several experiments will show the effectiveness
of this procedure and the results obtained via various discretization techniques for
level-set equations.

Keywords Image segmentation · Level-set methods · Semi-lagrangian schemes ·
Finite difference schemes · Astronomical images

1 Introduction

Astronomical images are acquired by appropriate sensors, called CCDs (Charge-
Coupled Devices), that are able to generate an electric charge at each pixel. This
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charge is directly proportional to the electromagnetic radiation that affects the pixel
and is themeasure corresponding to the “brightness” of real optical images. A typical
feature of astronomical images is that they suffer from various types of noise which
make difficult to analyze them. Their noise percentage is usually much higher than
that of standard optical images since the value at every pixel does not correspond to the
flowof photons emitted from the light source, i.e. the real signal, but ismodified by the
disturbances in the acquisition process. Let us recall themost important disturbances:

• the noise related to the signal, modeled by a Poisson distribution with standard
deviation

√
ne, which is directly proportional to the flux emitted by the source

• the light coming from other celestial bodies and from the sky, i.e. the spurious
light collected by the telescope (the so-called sky background)

• the thermal noise, caused by overheating of the CCD sensors, which leads to
an increase of the thermal agitation and the generation of additional conduction
electrons;

• the readout noise, caused by the electronic components of the CCD and due to the
discrete nature of the signal.

The amount of noise present in the image is expressed mathematically in terms
of SN R (Signal to Noise Ratio), defined as the ratio between the power of the
represented signal and that of the estimated noise, considering all the components
previously listed. Larger values for this ratio correspond to images of better quality.
The original image can not be used for an accurate scientific analysis of the data as we
will see in the following sections. For that reason, a series of preprocessing steps are
performed to reduce the noise and improve the image quality. It has been shown that,
by increasing the exposure time of the sensors to light, the ratio between signal and
noise can be greatly increased. This improvement is directly proportional to

√
texp

but an exposure time that is too long can lead to a saturation of the pixels so this
procedure has to be carefully implemented. Furthermore, noise reduction operations
are performed on each image. Typical operations include masking the defective
pixels, subtracting the estimated value for the sky background and calibrating the
image, but one can also apply a standard (linear or nonlinear) filter as we will do
in our experiments. After these operations the value of the flow, with its relative
uncertainty, and the astronomical coordinates associated to each pixel are redefined.
Among the many other precautions that can be used, we emphasize that the most
recent astronomical instruments use cooling devices for the CCD sensors which
allow to reduce the readout noise. Despite the operations of calibration and noise
reduction and the wide variety of techniques that has been adopted, noise remains
one of the main components of the astronomical images. Due to the above steps
in the acquisition, the range for the admissible values for the astronomical images
is really different from the range of other kinds of images, e.g. it is common to
have negative values at some pixels after the subtraction of the sky background. A
final difference with respect to classical images is the format currently used to store
astronomical images. The most common format is FITS (Flexible Image Transport
System, [19]), introduced by the International Astronomical Union FITS Working
Group (IAUFWG) in1981andup-dated in 2016 to its fourth version.The introduction
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of a new format is due to the need of save different information related to the images
generated through CCD sensors, such as the angular coordinates of the portion of
sky observed or the zero-point magnitude of the sensor used. This makes necessary
to establish a common format, through which all the astronomers can interpret the
data in the same way. The format has been developed so that all files, even the oldest
ones, can be read from every machine, structuring files as a sequence of logical data.

To set this paper into perspective, let us mention some related contributions in
the literature. The problem of deblurring astronomic images produced by telescopes
is a classical and difficult problem in the astronomical community [12, 25, 30]. A
novel technique to reduce the distortion caused by the ground-level turbolence of
the atmosphere has been recently proposed in [17]. A similar goal has motivated the
development of a high-resolution speckle imaging technique presented in [14]. As
far as segmentation models is concerned, we mention that a modified version of the
Chan-Vese model [7] has been proposed and analyzed in [13], some results obtained
by a high-order splitting scheme are also presented there. It is interesting to note that
this is a region based method with a level-set representation that can be applied to
multispectral images.

In this paper we propose a strategy to analyze and segment astronomical images
via the level-set method introduced in [21]. Although the segmentation problem has
been investigated by many authors (see e.g the monographies [8, 20, 28] and the
references therein) and several successful applications have been reported in many
areas, level-set techniques are still not very popular in the astronomers community.
Most probably this is due to the above mentioned features of astronomical images
that make a direct application of these methods fail or give inaccurate results. Here
we propose a coupling between an appropriate rescaling technique and a standard
level-set methods to improve the global accuracy of the segmentation and increase
the number of celestial bodies that can be extracted from a single image. We also
add a filtering step to reduce the noise before segmenting. Hopefully, this will help
astronomers in their sky investigations.

The paper is organized as follows: In Sect. 2, we propose new different rescaling
transformations, adopted as the first two steps of our algorithm to improve the results
of the segmentation of astronomical images. We briefly recall in Sect. 3 the first
and second order equations related to level-set methods and the corresponding finite
difference and semi-Lagrangian schemes thatwe used for our numerical experiments,
at the beginning of this section we give some hints on the filtering step. Finally, in
Sect. 4, we present our complete Rescaling Segmentation Algorithm (RSA) and we
discuss in detail our numerical tests on simulated and real astronomical images. We
conclude with Sect. 5 where we summarize our final remarks and future perspectives.

2 Efficient Rescaling of Astronomical Images

Let us start describing the first step of the procedure we adopted to segment astro-
nomical images. It is useful to read astronomical images saved in the FITS format
in MATLAB, thanks to the command fitsread and transform them in the matrix for-
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mat that is common in image processing. The matrix I0 returned as output from the
function fitsread can take negative values due to the preprocessing techniques of cal-
ibration and reduction of noise applied to the images provided by the CCD sensors
(e.g. procedures as the calibration or the subtraction operation of the estimated sky
background).

We need to rescale the image values, defined on a rectangular domain �, with
� ⊂ R

2, in order to obtain real values in [0, 1]. Starting from the matrix I0, this is
done defining

˜I0 = I0(x, y) − m0

M0 − m0
, (1)

where
m0 := min

(x,y)∈�

I0(x, y) , M0 := max
(x,y)∈�

I0(x, y) .

The image ˜I0 obtained is still not ready for the segmentation since, in most cases,
is very dark and only few celestial bodies will be visible to the naked eye. For that
reason, we choose to transform the image, rescaling the values of the pixels bymeans
of an appropriate function that we will construct in the sequel.

2.1 Elevation to Power or Logarithmic Rescaling

We look for a rescaling function r : [0, 1] → R for the gray levels. Since these values
for the image ˜I0 obtained by (1) are in the range [0, 1], the function r must satisfy
the following conditions:

A1. r([0, 1]) ⊆ [0, 1]
A2. r(0) = 0, r(1) = 1
A3. r strictly increasing.

In other words, the rescaling transformation must keep the minimum and maximum
brightness points of the image unaltered and rescale the intermediate values, without
changing their ordering. Since the image is very dark,we alsowant the transformation
to amplify the brightness values. In mathematical terms, we require r to satisfy the
additional condition

A4. r(x) > x , ∀x ∈ [0, 1].
Clearly, several functions can satisfy the above four properties. A simple choice is
given by

r1(x) := xα , (2)

with α ∈ (0, 1) a fixed parameter.
Another function can be obtained by a logarithmic transformation of the form
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Fig. 1 Performance of the functions r1 and r2, by varying the parameter α ∈ (0, 1]

r2(x) :=
[

ln(x + 1)

ln 2

]α

, (3)

with α ∈ (0, 1). Both functions converge pointwise to the identity for α going to 1,
whereas for α going to 0 they converge pointwise to the function

r̃1(x) :=
{

0 if x = 0 ,

1 if x ∈ (0, 1] .
(4)

The latter transforms every brightness value, with the exception of the null one,
assigning it the value 1. After the rescaling, the brightness increases as α decreases.
The behavior of the two functions for different values of α is visible in Fig. 1.

In the numerical tests presented in Sect. 4, we will only show the results obtained
with the function r1, since for the same α, r2 gives almost identical results.

2.2 Rescaling with a Threshold

From our experiments on astronomical images (see Sect. 4) we have observed that
the proposed transformations r1 and r2 can be improved. As we said, astronomical
images are affected by a strong noise component and the rescaling has a significant
effect also on high brightness values due to the noise component. When these values
are rescaled, they result too high so the global effect is an amplification of the tone
differences with respect to the pixels closer to the real tone of the background. This
amplification can make the segmentation method fail, identifying artificial objects
that are not present in the real image. To avoid this undesired effect the rescaling
should distinguish the pixels of celestial bodies from those of the background: the
values of the formermust be amplified, while the othersmust be attenuated. A natural
idea is to introduce a threshold to determine the gray tones of the objects and, to be
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optimal, this threshold should be automatically identified by an algorithm. A good
choice for standard images is provided by the Otsu algorithm [22], so we decided to
use the value τ ∈ [0, 1) provided by this algorithm as a threshold. The new rescaling
transformation must still respect the properties A1–A3 of Sect. 2.1, in addition it has
to satisfy the condition

⎧

⎪

⎨

⎪

⎩

r(x) < x , if 0 < x < τ ,

r(τ ) = τ ,

r(x) > x , if τ < x < 1 ,

(A4τ )

and to be continuous at x = τ .
A rescaling function of this type can be obtained by considering the applications

xβ and x1/β , with β ∈ N \ {0}, respectively in the two subsets [0, τ ] and (τ, 1].
These functions have to be appropriately translated and expanded to respect all the
conditions. In this way, we obtain the function

r3(x) :=

⎧

⎪

⎨

⎪

⎩

xβ

τβ−1
, if 0 ≤ x < τ ,

(x − τ)1/β

(1 − τ)1/β−1
+ τ , if τ ≤ x ≤ 1 .

(5)

The behavior of r3 varying β ∈ N \ {0} is reported in Fig. 2. This function satisfies
the properties listed before, converges pointwise to the identity function forβ tending
to 1 and to the following function

r̃3(x) :=

⎧

⎪

⎨

⎪

⎩

0 , if 0 ≤ x < τ ,

τ , if x = τ ,

1 , if τ < x ≤ 1 ,

(6)

for β tending to +∞.

3 Segmentation via Level-Set Methods

Aswe said in the introduction, we follow the level-set (LS) approach to segmentation
problems obtained by the rescaling procedure described in the previous section. For
readers convenience let us briefly describe the main features of this approach. The
level-set method has been introduced by Osher and Sethian [21, 27] and since then it
has been widely used in many applications, e.g. fronts propagation, computer vision,
computational fluids dynamics (see [20, 28] for several interesting examples). Its
popularity is due to the simplicity in the implementation and its capability to follow
topological changes (splitting, merging) in time. Typical examples are when a planar
curve (or a multidimensional surface) splits into many parts or when several evolving
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Fig. 2 Behavior of the
function r3 by varying the
parameter β ∈ N \ {0}

curves (or surfaces) merge into a single one. This is the main reason for its popularity
also in the image processing community. For the segmentation problem the idea is
to define a normal vector field bringing an initial curve (e.g. a circle) onto the object
boundaries in an image.

Let us consider an image ˜I0 : � → [0, 1], with � ⊂ R
2 an open rectangular do-

main. Let us fix an initial curve γ0 ⊂ �. We want to track its evolution according
to the normal velocity and we define it so that it goes to zero (and therefore the
front stops) at the edges of the object to be identified. The methods based on this ap-
proach can be divided into two subclasses. In the methods belonging to the first class,
the speed depends on the gradient of the image ˜I0 at each point (x, y) ∈ �, since
the gradient provides a measure of the gray-level variation in the image and there-
fore it identifies the presence of edges. The second class of methods, introduced by
Chan and Vese [7], is inspired by a variational segmentation technique proposed by
Mumford and Shah [18] and is based on the minimization of a functional which al-
lows to partition the image in regions where there is a small variation of gray levels.
Lookingmore in details the first class, we have to solve an evolutiveHamilton–Jacobi
equation

{

ut (x, y, t) + c(x, y, t)|∇u(x, y, t)| = 0 , ∀(x, y, t) ∈ � × (0, T ] ,

u(x, y, 0) = u0(x, y) , ∀(x, y) ∈ �,
(7)

with u(·, ·, t) and u0 the representation function of the front at time t and at the initial
time, respectively, and c is the velocity function. Depending on the definition for c
(that in general may depend on x , t and the curvature), Eq. (7) will be a first or second
order equation. Several explicit definitions of c will be reported in Sect. 3.2. In order
to segment a given image ˜I0, we choose the initial front γ0 ⊂ � and its representation
function u0 : � → R. In particular, if we want to approximate the edges of the object
with a curve that expands from within, we choose u0 in such a way that, denoted by
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ω0 the region of the plane enclosed by the front γ0, with γ0 = ∂ω0 and ω0 open, we
put

⎧

⎪

⎨

⎪

⎩

u0(x, y) < 0 , ∀(x, y) ∈ ω0 ,

u0(x, y) = 0 , ∀(x, y) ∈ γ0 ,

u0(x, y) > 0 , ∀(x, y) ∈ � \ ω0 .

(8)

Conversely, if we want the front to contract, we can reverse the sign of the initial
representative or of the normal direction. Next, we fix the velocity of the front and we
solve the equation of the level-set method obtained by it: denoted by u its solution,
we obtain the front at time t > 0 as the 0-level-set of u(·, ·, t), that is

γt = {

(x, y) ∈ � | u(x, y, t) = 0
}

. (9)

Equation (7) is complemented with boundary conditions. We chose to use homoge-
neous Neumann conditions

∂u

∂η
(x, y, t) = 0 , ∀(x, y, t) ∈ ∂� × (0, T ] . (10)

The choice of the final time T to which numerically solve the Eq. (7) will have to
be carried out through a stopping criterion, which detects when the front is near
equilibrium, through the verification of a condition. In this paper, we will adopt the
following criterion: First, at each iteration we identify the grid nodes near the front
with respect to a fixed tolerance denoted by εF . More precisely, since the front at
time tn is the 0-level curve of the representation function, we define the approximate
front by means of Vn := {vni, j }, where vni, j is the value computed on the grid node
(xi , y j ) at time n. Our numerical front is given by

Fn ≡ {(xi , y j ) : |vni, j | ≤ εF }. (11)

Let us denote by F the set of indexes of the nodes that respect this condition and
with Vn,F the vector formed by the elements of Vn corresponding to them. Hence,
we fix an additional tolerance ε: the stopping condition of the numerical scheme will
be

∥

∥Vn+1,F − Vn,F
∥

∥

1 ≤ ε , (12)

with the norm ‖ · ‖1 defined by

∥

∥Vn+1,F − Vn,F
∥

∥

1 := �x2
∑

(i, j)∈F

∣

∣

∣vn+1
i, j − vni, j

∣

∣

∣ . (13)

In otherwords, we proceed to solve the scheme up to the (n + 1)-th iterationwhen the
representation has reached equilibrium with a tolerance ε at all the nodes belonging
to Fn .
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3.1 The Filtering Pre-processing Step

Let us analyze the first class of active contours methods. Since the edges of objects
are, in most cases, identified by large variations of gray tones in their neighborhood,
we can define the velocity of the front as a function of the gradient of the function ˜I0
that models the image. However, ˜I0 is a noisy image so in order to define its gradient
it is useful to add a filtering step on it. We did it in two different ways: by applying a
Gaussian filter, i.e. solving the heat equation with homogeneous Neumann conditions

⎧

⎪

⎪

⎨

⎪

⎪

⎩

It (x, y, t) = �I (x, y, t) , ∀(x, y, t) ∈ � × (0, TC ] ,
∂ I

∂η
(x, y, t) = 0 , ∀(x, y, t) ∈ ∂� × (0, TC ] ,

I (x, y, 0) = ˜I0(x, y) , ∀(x, y) ∈ � ,

(14)

which has a diffusive effect on the initial datum ˜I0, for a small fixed time Tc > 0 (in
the numerical tests, it is of the order of 10−3 or 10−4). Numerically, we solve (14)
by the standard centered finite difference scheme

I n+1
i, j = I ni, j + ˜�t

[

I ni+1, j + I ni, j+1 − 4I ni, j + I ni−1, j + I ni, j−1

�x2

]

, (15)

forward in time, with time step ˜�t > 0 and space steps�x = �y. In (15) I ni, j denotes
as usual the approximation of the gray level of the image at the pixel of coordinate
(i, j) and at time tn , whereas I 0i, j := ˜I0(xi , y j ) for every (i, j) ∈ I , set of indexes.
The required CFL condition for this numerical scheme is ˜�t ≤ �x2/4.

The consequence of applying theGaussianfilter is an edgeblurringdue to isotropic
diffusion. Choosing large values of |∇ I | as an indicator of the edge points of the
image, we would like to stop the diffusion at the edges, we pass from an isotropic to
an anisotropic diffusion, i.e.

It = div(∇ I ) is replaced by It = div( f (|∇ I |)∇ I ). (16)

This is the idea behind the Perona–Malik model [24] described by (16) and com-
plemented by suitable boundary conditions (e.g. homogeneous Neumann boundary
conditions), the initial condition is the original image. The anisotropic diffusion is
driven by f and two typical choices for the diffusion coefficient are:

f1(|∇ I |) = 1

1 +
(

|∇ I |
μ

)2 (17)

f2(|∇ I |) = exp
(

−
(

|∇ I |
μ

)2)

(18)
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whereμ is the gradientmagnitude threshold parameter. In our numerical simulations,
we will use the function f2. Let us denote by ˜I f ilt the solution of the problem (14)
or (16), filtered version of the image ˜I0.

3.2 Edge-Detector Functions

Wewant the velocity c of the front to vanish near the edges sowe introduce a function
g of |∇˜I f ilt |, called edge-detector, that has to satisfy the following conditions:

g : [0,+∞) → [0,+∞) is decreasing and lim
z→+∞ g(z) = 0 . (19)

In this way g(|∇˜I f ilt (x, y)|) will tend to 0 approaching the points (x, y) near the
edges to be identified, since at the edgeswe typically have very high values of |∇˜I f ilt |.
Higher values of g will correspond to points where |∇˜I f ilt | ≈ 0, i.e. to the regions
where the gray tones of the image are approximately constant. Two possible choices
for the edge-detector function are the following:

g1(z) := 1

1 + z p
, ∀z ∈ [0,+∞) , p ≥ 1, (20)

proposed in [6] with p = 2, and in [16] with p = 1, and

g2(z) := 1 − z − m

M − m
, ∀z ∈ [0,+∞) , (21)

where
m := min

(x,y)∈�
|∇˜I f ilt (x, y)| , M := max

(x,y)∈�
|∇˜I f ilt (x, y)|

defined in [16]. Practically, the values of g1(|∇˜I f ilt (x, y)|) vary between (1 + M)−1

and (1 + m)−1, whereas the values of g2(|∇˜I f ilt (x, y)|) are between 0 (for |∇˜I f ilt | =
M) and 1 (for |∇˜I f ilt | = m).

Let us discuss some typical choices for the velocity c. A simple choice is to make
c dependent just on the point

c(x, y, t) := g(x, y) , ∀(x, y) ∈ � . (22)

In this way, using the notation g(x, y) := g(|∇˜I f ilt (x, y)|), the problem to solve
becomes

⎧

⎪

⎨

⎪

⎩

ut (x, y, t) + g(x, y)|∇u(x, y, t)| = 0 , ∀(x, y) ∈ �, ∀t ∈ (0, T ] ,
∂u
∂η

(x, y, t) = 0 , ∀(x, y) ∈ ∂� , ∀t ∈ (0, T ] ,

u(x, y, 0) = u0(x, y) , ∀(x, y) ∈ � ,

(23)
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with u0 the representation function of the initial front. This is the isotropic case and
the corresponding equation is a first-order Hamilton–Jacobi equation of eikonal type.

Another popular choice is to use a velocity that, at each point (x, y), depends on
the geometric properties of the front, e.g. its curvature k(x, y). This choice is more
complicated since the velocity will also depend on u, hence on t . Following [1, 15],
we consider a curvature dependent velocity

c(x, y, t) := g(x, y) (1 − νk(x, y)) , ∀(x, y) ∈ �, (24)

where ν > 0 is a fixed parameter. The factor g(x, y) causes that the front stops near
the edges. The parameter ν (typically less than 1) weighs the speed dependency on
the curvature. Since the curvature is given by

k(x, y) = div

( ∇u(x, u, t)

|∇u(x, y, t)|
)

, ∀(x, y) ∈ �, (25)

the level-set corresponding equation is the second order Hamilton–Jacobi equation

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

ut (x, y, t) + g(x, y)|∇u(x, y, t)| = νg(x, y)div
(

∇u(x,u,t)
|∇u(x,y,t)|

)

|∇u(x, y, t)| ,
∀(x, y) ∈ �, ∀t ∈ (0, T ] ,

∂u
∂η

(x, y, t) = 0 , ∀(x, y) ∈ ∂� , ∀t ∈ (0, T ] ,

u(x, y, 0) = u0(x, y) , ∀(x, y) ∈ �,

(26)
with the same boundary conditions and initial datum as in (23). The term in the
second member has a diffusive effect on the solution: consequently, this type of
scheme can be useful for segmenting images characterized by noise. Note that, in
practice, the function g is not necessarily equal to 0 at all points on the edges of the
objects, even if it takes very small values. The stopping rule (12) allows to control
the numerical scheme so that the evolution stops at time T whenever the velocity is
below a given threshold.

In order to get a numerical solution of (23) and (26) in our tests we will use a
finite difference scheme (FD) and a semi-Lagrangian scheme (SL), so we will be
able to compare their results. Let us recall that the FD schemes for the two equations
are, respectively,

vn+1
i, j = vni, j − �tgi, j∇+ , (27)

and
⎧

⎪

⎨

⎪

⎩

vn+1
i, j = vni, j − �tgi, j∇+ + ν

4 gi, j (v
n
i+1, j + vni, j+1 + vni−1, j + vni, j−1)

if |Dc
i, j [Vn]| ≤ C�xs ,

vn+1
i, j = vni, j − �tgi, j∇+ + ν�tgi, jn

(i, j) , if |Dc
i, j [Vn]| > C�xs ,

(28)
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for each (i, j) ∈ I and n ∈ {0, 1, . . . , NT − 1}, where V0 := U(0), gi, j := g(xi, j ),
with xi, j := (xi , y j ),

∇+ := [

max{D−x
i, j [Vn], 0}2 + min{D+x

i, j [Vn], 0}2
+ max{D−y

i, j [Vn], 0}2 + min{D+y
i, j [Vn], 0}2]1/2 (29)

and

n
i, j := 1

(Dc,x
i, j [Vn]2 + Dc,y

i, j [Vn]2)1/2
(

D2,x
i, j [Vn]Dc,y

i, j [Vn]2

− 2Dc,x
i, j [Vn]Dc,y

i, j [Vn]Dxy
i, j [Vn] + D2,y

i, j [Vn]Dc,x
i, j [Vn]2

)

.

(30)

We refer the reader interested in the construction and the analysis of these schemes
to [20, 28].

Let us also recall that the SL schemes are, respectively,

vn+1
i, j = min

a∈B(0,1)

{

I [Vn](xi, j − �tgi, ja)
}

(31)

and

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

vn+1
i, j = min

a∈B(0,1)

{

I [Vn](xi, j − �tgi, ja)
} + ν

4 gi, j (v
n
i+1, j + vni, j+1 + vni−1, j + vni, j−1) ,

if |Dc
i, j [Vn]| ≤ C�xs ,

vn+1
i, j = min

a∈B(0,1)

{

I [Vn](xi, j − �tgi, ja)
} + ν

2 gi, j
[

I [Vn](xi, j + σ n
i, j

√
�t)

+I [Vn](xi, j − σ n
i, j

√
�t)

]

, if |Dc
i, j [Vn]| > C�xs ,

(32)

for each (i, j) ∈ I and n ∈ {0, 1, . . . , NT − 1}, with V0 := U(0) and

σ n
i, j :=

√
2

|Dc
i, j [Vn]|

(

Dc,y
i, j [Vn]

−Dc,x
i, j [Vn]

)

. (33)

The role of the threshold �xs for the first derivatives in (32) is explained in detail
in [3] (see also [8] for the general theory of semi-Lagrangian schemes and [5] for
other applications to image processing problems). For our purposes it is sufficient
to note that this threshold is used to solve also the degenerate case without adding a
regularization.

4 Numerical Tests

Let us start describing the complete segmentation algorithm that includes the rescal-
ing preprocessing via the functions r1, r2 and r3 illustrated in Sects. 2.1 and 2.2.
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RESCALING SEGMENTATION ALGORITHM (RSA)
STEP 1: Apply to the original image I0 the rescaling defined in (1) to get ˜I0 which
takes values in [0, 1].
STEP 2: Choose one of the proposed rescaling functions ri , i ∈ {1, 2, 3}, and set

˜I := ri (˜I0) , (34)

for each element of the matrix. In case we choose the function r3, we first apply the
thresholding method of Otsu to the image ˜I0 in order to select the optimal threshold
τ , and then we apply (34).
STEP 3: Filter the image ˜I by few iterations of the linear filter given by the scheme
(15), or applying the PM method (16) with f2. This step produces ˜I f ilt .
STEP 4: Apply one of the segmentation active contours methods to the image ˜I f ilt
thus obtained in STEP 3.

We are now ready to present some numerical tests, using the RSA algorithm. Let us
consider an M × N image and let us fix the discretization parameters as:

• �x = �y = 0.1 the space step of the uniform grid
• �t = �x/4 = 0.025, for the FD scheme approximating the first order problem
• �t = �x2 = 0.01, for the FD scheme approximating the second order problem
• �t = �x = 0.1, for the SL schemes.

That structured grid has nodes located at the center of the pixels, with coordinates
(

( j − 1)�x, (i − 1)�x
)

, for j = 1, . . . , M and i = 1, . . . , N , and the rectangular
domain is defined as

� :=
[

−�x

2
, a − �x

2

]

×
[

−�x

2
, b − �x

2

]

, (35)

with a := M�x and b := N�x . For each test, we will consider three cases:

• a segmentation of the original image, without rescaling (i.e. dropping STEP 2 of
the algorithm, setting ˜I = ˜I0)

• a segmentation using a rescaling of the image by r1
• a segmentation using a rescaling of the image by r3 and the optimal threshold
computed by the Otsu’s algorithm.

As we said in Sect. 2.1, we will omit the results obtained by rescaling via r2 since
the results are almost identical to that of r1, with the same parameter α fixed.

For all the three cases listed above, before the segmentation step we filter the
image by the linear or nonlinear filter described in Sect. 3.1. We will compare the
performance of the four numerical schemes presented in Sect. 3.2. For comparison,
we will also show the segmented image obtained by the software SExtractor [2],
one of the most popular software in the astronomical community. In these images,
each source is represented by the grey-level obtained as average of the pixels values
that compose it. Since the images are too big, we will work on smaller images of
size 300 × 300 pixels. Hence, we will have a = b = 30 and N = M = 300. For the
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Fig. 3 Representation function u0 and related front γ0 at time t = 0

active contour method, we use a rectangular initial front γ0, i.e. the external boundary
of the image, described as the 0-level set of

u0(x, y) := 1 −
∣

∣

∣

∣

x + y − 30

29.6

∣

∣

∣

∣

−
∣

∣

∣

∣

x − y

29.6

∣

∣

∣

∣

, ∀(x, y) ∈ �, (36)

visible in Fig. 3, and we filter the image by applying 5 iterations of the scheme
(15) or by 15 iterations of the PM method (16), with time step ˜�t = 10−4 unless
otherwise stated.Weneed to fix two tolerances: εF = �x = 0.1, for the identification
of the nodes that approximate the front, and ε = 10−3 for the stopping criterion. The
maximum time when the scheme will not converge is set to Tmax = 50.

For the edge-detector function g1, the parameter p ∈ N \ {0}will be fixed accord-
ing to the contrast in the image between objects and background. If objects are well
defined, we set a value of p small, if the edges of the object have pixels with gray
tones close to those of the background, the value of p has to be increased. The func-
tion g2 defined in (21) in practice does not produce optimal results since it assumes
null value only at points where the gradient of the image is maximum and this does
not necessarily occur at all points belonging to the edges of the object. Therefore,
as proposed in [4], we modify the function g2, subtracting a constant c2 ∈ [0, 1] and
then rescaling the values in [0, 1]. The function we use is the following

g̃2(z) := 1

1 − c2
max{g2(z) − c2, 0} . (37)

Thanks to that definition, g̃2(|∇˜I f ilt |) attains its maximum value equal to 1 for
|∇˜I f ilt | = m, and null value when |∇˜I f ilt | is greater than a fixed threshold, pre-
cisely |∇˜I f ilt | ≥ (1 − c2)(M − m) + m. In each test, we provide the values of the
parameters involved, e.g. p for the function g1, c2 for the function g̃2, and ν for the
dependence from the curvature in the second order schemes (28) and (32).
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We acknowledge the contribution of L. Pecci to the implementation of themethods
and to some of the tests presented here. Other numerical experiments are contained
in [23].

Test 1: f160.fits

The first image, Fig. 4 on the left, is a cropping of a simulated, high resolution
astronomical image provided by INAF (Istituto Nazionale di Astrofisica) and gener-
ated by reproducing data observed by the Hubble Space Telescope (HST). It depicts
many stars, galaxies and other celestial bodies, as can be seen from the segmentation
obtained with the software SExtractor in Fig. 4 on the right, although it is almost
completely black in its original form. Our purpose is to apply a segmentation algo-
rithm that traces as many sources as possible, possibly improving the results obtained
by SExtractor thanks to the introduction of the proposed rescaling functions.

Test1: Without Rescaling

Let us start showing the results obtained by the four schemes considered, without us-
ing any rescale function. The original image f160.fits and the segmentation provided
by the software SExtractor are shown in Fig. 4. Before applying the active contour
schemes, we filter the original image f160.fits by using 5 iterations of the scheme
(15) with a time step ˜�t = 10−4. All the active contour methods only identify the
brightest celestial body or a few other objects. The results are shown in Figs. 5, 6,
7 and 8, the values of the parameters used are mentioned in the captions. We only
show the results obtained by the schemes (27) and (31) with edge-stopping function
g̃2 (Figs. 5, 6) and the second order schemes (28) and (32) with function g1 (Figs. 7,
8). Even if we increase the values of the parameters p and c2, we do not get better
results. Due to the similarity, we decide to omit the results obtained by using the first
order schemes (27) and (31) with edge-detector function g1.

Note that by applying the PM method (16) to the original image, we do not get
an improvement as shown in Fig. 9. It is important to note that the results without
a rescaling preprocessing are really bad for all the schemes, even if we apply a
nonlinear filtering algorithm.

Fig. 4 Test 1. From left to
right: Image f160.fits,
segmentation of the image
provided by the software
SExtractor
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Fig. 5 Test 1 without
rescaling: Position of the
front at time T = 15.85 and
segmented image, for the FD
scheme (27) by using the
edge-detector function g̃2,
with c2 = 0.8

Fig. 6 Test 1 without
rescaling: Position of the
front at time T = 15 and
segmented image, for the SL
scheme (31) by using the
edge-detector function g̃2,
with c2 = 0.8

Fig. 7 Test 1 without
rescaling: Position of the
front at time T = 16.61 and
segmented image, for the FD
scheme (28), by using the
edge-detector function g1,
p = 5000 and ν = 10−4

Fig. 8 Test 1 without
rescaling: Position of the
front at time T = 15.4 and
segmented image, for the SL
scheme (32), by using the
edge-detector function g1,
p = 5000 and ν = 10−4
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Fig. 9 Test 1 without
rescaling: Position of the
front at time T = 15 and
segmented image, for the SL
scheme (31) by using the
edge-detector function g̃2,
with c2 = 0.8. Image filtered
by 15 iterations of the PM
method with f2, for μ = 30,
and ˜�t = 10−4

Fig. 10 Test 1. From left to
right: Rescaling of the image
f160.fits by using the
function r1, with α = 0.25
and its filtered version
obtained by 5 iterations of
the scheme (15) with time
step ˜�t = 10−4

Test 1: Rescaling by r1

Let us test the algorithm rescaling the gray tones of the image before applying the
segmentation methods. We use r1 setting α = 0.25 since for values of α too close to
1, the objects are not quite evident, whereas for smaller values the background tones
are amplified excessively. The image obtained by the rescaling, shown in Fig. 10, is
segmented via the four schemes listed before. Also in this case, we omit to show the
results obtained by using the first order schemes with edge-detector function g1 since
this function fails even if we use a second order scheme, as we can see looking at
Figs. 14, 15. In fact, g1 does not identify the boundaries, even for large values of the
parameter p, so that only very few objects are detected. Instead, the edge-detector
function g̃2 (Figs. 11, 12) is able to identify a greater number of objects, even if the
approximation of their contours is still non very accurate (for example for the larger
galaxy, placed on the right of the image). Using the PM nonlinear filtering method
after the rescaling process, we can note (comparing Figs. 13 and 12) that a better
segmentation is obtained. In fact, more small objects are detected and visible in the
final front and the associated segmented image: see e.g. two small red points in the
central-bottom part of the final front in Fig. 13 not present in Fig. 12.

Test 1: Rescaling by r3

Finally, we present the results obtained by r3, this case seems to give the best results.
The parameter chosen is β = 8, for which the boundaries of the objects appear more
evident, with tones distant from those of the background (see Fig. 16). In this case,
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Fig. 11 Test 1, rescaling by
r1: Position of the front at
time T = 18.075 and
segmented image, for the FD
scheme (27) by using the
edge-detector function g̃2,
with constant c2 = 0.8

Fig. 12 Test 1, rescaling by
r1: Position of the front at
time T = 18.1 and
segmented image, for the SL
scheme (31) by using the
edge-detector function g̃2,
with c2 = 0.8 filtered by the
Gaussian filter

Fig. 13 Test 1, rescaling by
r1: Position of the front at
time T = 18.6 and
segmented image, for the SL
scheme (31) by using the
edge-detector function g̃2,
with c2 = 0.8. The rescaled
image has been filtered by 15
iterations of the PM method
with f2, for μ = 30, and
˜�t = 10−4

Fig. 14 Test 1, rescaling by
r1: Position of the front at
time T = 16.08 and
segmented image, for the FD
scheme (28) by using the
edge-detector function g1,
p = 5000 and ν = 10−6
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Fig. 15 Test 1, rescaling by
r1: Position of the front at
time T = 15.1 and
segmented image, for the SL
scheme (32) by using the
edge-detector function g1
and ν = 10−6

Fig. 16 Test 1. From left to
right: Rescaling of the image
f160.fits by using the
function r3, with β = 8, and
its filtered version obtained
by 5 iterations of the scheme
(15) with time step
˜�t = 10−4

all the schemes seem to provide satisfactory results, even those based on the use
of the edge-detector function g1. Due to their similarity, also in this can we show
only the two second order schemes with edge-detector function g1. The resulting
segmentations are illustrated in Figs. 17, 18, 19 and 20. These results show very well
the improvements obtained by the rescaling r3.

Test 2: real.fits

We now consider a clipping of a real low resolution image generated by the Hubble
Space Telescope and provided by INAF. This image has been acquired by observing
a portion of the sky at high depth, in order to identify a very large number of sources.

Fig. 17 Test 1, rescaling by
r3: Position of the front at
time T = 15.4 and
segmented image, for the FD
scheme (27) by using the
edge-detector function g̃2,
with c2 = 0.8
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Fig. 18 Test 1, rescaling by
r3: Position of the front at
time T = 14.9 and
segmented image, for the SL
scheme (31) by using the
edge-detector function g̃2,
with constant c2 = 0.8

Fig. 19 Test 1, rescaling by
r3: Position of the front at
time T = 15.55 and
segmented image, for the FD
scheme (28) by using the
edge-detector function g1,
p = 5000 and ν = 10−4

Fig. 20 Test 1, rescaling by
r3: Position of the front at
time T = 28.8 and
segmented image, for the SL
scheme (32) by using the
edge-detector function g1,
p = 5000 and ν = 10−4

However, this technique leads to an increase in the amount of noise present in the
image, as can be seen looking at the left image in Fig. 21.

Let us compare the performances of different schemes with or without a rescaling
process. The input images we consider for the segmentation algorithms are reported
in Fig. 21. On the left we can see the original image that we store in a file called
real.fits, in the middle we find the image obtained by using the rescaling function
r1, and the analogous obtained rescaling by r3 (on the right). Due to the high level
of noise, here we increase the time step ˜�t (from 10−4 to 10−3) in the filtering
process to obtain the corresponding filtered images. Then we use the rescaling on the
filtered images. As can be easily noted looking at Fig. 21, both the proposed rescaling
functions improve a lot the visibility of the celestial objects present in the image.
The resulting image obtained by r3 seem to be better.
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Fig. 21 Test 2. From left to right: Original image real.fits, rescaling of the image real.fits by using
the function r1 with α = 0.25, rescaling of the image real.fits by using the function r3, with β = 4

Fig. 22 Test 2.
Segmentation of the image
real.fits provided by the
software SExtractor

Let us start commenting the segmentation results obtained by the different
schemes without any rescaling process. In Fig. 22, we report the segmentation of
the image obtained by applying the software SExtractor. In Fig. 23 we can see the
performances of the SL scheme (31) for two different choices of the edge-detector
function (g1 and g̃2) and the SL scheme (32) with edge-detector function g1. We re-
port only the results for SL schemes since by FD schemes we obtained very similar
results. Note that all the different schemes recognize only the two objects visible in
the original image reported on the top-left of Fig. 21, so they are far away from the
real configuration of celestial bodies.

Thereforeweneed a rescaling process to improve the results. Looking at the results
obtained by r1, we note that the number of detected objects is highly improved. We
report in Fig. 24 the results obtained by the schemes FD and SL only with edge-
detector g̃2, using the edge-function g1 the front collapses until it disappears from
the figure. This is due to the fact that the edges of the objects are very blurred and,
even if we choose high values for the parameter p, the variations of gray tones do not
allow to detect the presence of an object. On the contrary, using g̃2 we can find an
adequate number of objects, but we cannot detect accurately the boundaries of many
galaxies (see Fig. 24). Anyway, this result is more accurate than the performance
provided by the software SExtractor (Cf. Fig. 22). Looking more in details Fig. 24,
some differences between the FD and SL schemes are visible, even if are small (e.g. at
the bottom-right part of the big central-upper galaxy we can note a connected part for
the FD scheme,which is splitted bySL scheme). For comparison reasons,we report in
Fig. 25 the result obtained by the same FD schemewith edge-detector function g̃2, but
the image rescaled by the function r1 is filtered by the PMmethod before applying the
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Fig. 23 Test 2 without
rescaling. From top to
bottom: Position of the front
and segmented image for the
SL scheme (31) by using the
edge-detector function g1,
with p = 104. Same scheme
by using edge-detector
function g̃2, with c2 = 0.6.
Position of the front and
segmented image for the SL
scheme (32) by using the
edge-detector function g1,
with p = 104 and ν = 10−4

FD segmentation scheme. The position of the final front and the segmented image
reported in Fig. 25 show that, applying a nonlinear filtering algorithm as the PM
method before the segmentation process, the results can be improved (a lot of small
stars are recognized), but a rescaling process is still necessary even if we apply that
filtering method.

Finally, let us analyze the results obtained by applying the rescaling function r3.
The parameters chosen in that case is β = 4 (see the right image in Fig. 21), since
greater values provide apparently worst quality. This is due to the poor performance
of the Otsu method in this case, note that this method identifies false sources among
the pixels of the background. For the type of results provided by the different active
contours, similar observations apply to the images obtained by the rescaling r1, as we
can observe from the segmentations shown in Fig. 26. With the g1 function, the front
collapses on itself, disappearing without identifying any object. The results obtained
by using g̃2 are better even if not satisfactory, due to the noise component, which is
excessively amplified, as visible in Fig. 26.
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Fig. 24 Test 2, rescaling by r1. Position of the front and segmented image for the FD scheme
(27) (first row) and the SL scheme (31) (second row) by using the edge-detector function g̃2, with
c2 = 0.78

Fig. 25 Test 2, rescaling by r1, filtered by 15 iterations of the PM method with f2, for μ = 30,
and ˜�t = 10−3. Position of the front and segmented image for the FD scheme (27) by using the
edge-detector function g̃2, with c2 = 0.78

5 Conclusions and Future Perspectives

We have proposed different rescaling functions in order to improve the detection of
objects in astronomical images, identifying a greater number of celestial bodies. In
particular, the use of the function r3 has improved a lot the visibility, getting better
results, in particular for high-resolution images as f160.fits. Unfortunately, when the
SNR is very low, the results are still not satisfactory, although we notice an improve-
ment with respect to the solutions provided by classical methods without rescaling.
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Fig. 26 Test 2, rescaling by
r3. Position of the front and
segmented image for the FD
scheme (27) (first row) and
the SL scheme (31) (second
row) by using the
edge-detector function g̃2,
with c2 = 0.6

This failure is due to the inaccurate threshold selected via the Otsu algorithm before
applying the rescaling by using the function r3. For low-resolution images, the func-
tion r1 seems to provide the best results, even compared with those produced by the
software SExtractor commonly used by astronomers. Future improvements of the
method can focus on different threshold algorithms to select the optimal one used by
the rescaling function r3, hopefully this will allow for a correct classification of the
pixels belonging to the background. We also considered a filtering pre-processing
step before segmenting, comparing the linear Gaussian filter and the nonlinear
PM method. What we noted is that the PM nonlinear method improves the results
detecting few more objects, but a rescaling preprocessing is necessary also in this
case, the segmentation fails without it. We have compared the performances of first
and second order FD and SL schemes, using different parameters and two different
edge-detector functions. From the numerical simulations on virtual and real images,
we can conclude that the edge-stopping function g1 is not a good choice. In fact,
the light sources often have not well defined outlines, so that this function can not
correctly identify them. The edge-detector function g̃2 provides the best results, and
is able to detect a greater number of celestial objects. However, these methods are
still not optimal in the case of very disturbed images. In the future, wewant to explore
different methods, as for example high-order “filtered” schemes recently proposed
[9–11] or the active contour without edges scheme proposed by Chan and Vese in
[7, 29], able (perhaps) to better identify objects with blurred and not well defined
edges. Moreover, we would like to analyze in more detail the performances of other
filtering methods, in order to find an appropriate choice to reduce the huge amount of
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noise that is a typical feature of astronomical images. Some attempts in this direction
are shown in [26], they confirm that this will be a difficult task.
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