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Preface

Pacific island states are generally small in size with a limited and narrow range of
natural resources. Due to their small sizes, generally low elevations and isolation,
they are highly vulnerable to natural environmental events. Many of them fall
directly in the paths of tropical cyclones. Floods, tropical cyclones, droughts and
storm surges have become a part and parcel of these people. However, over many
generations, these island people have adapted well to the natural events that are
quite regular and over which they have no control. The people of the Pacific have
become accustomed to these, and now, such events are inseparable from their lives.
As if such challenges in life were not sufficient, we now have a new entrant that is
causing havoc in many small islands and is destroying lives and livelihood. This is
an event for which humankind is almost totally responsible and over which they
have a large degree of control. Yet humankind still refuses to take responsibility for
this, and any action to limit its damage is lethargic at best. What we are talking
about is climate change.

Climate change and its related issues have become critical for the Pacific islands
and its people. While many of the larger countries are modelling what will happen
in their surroundings in 50-100 years’ time, the people of the Pacific have to deal
with it here and now. Communities are being relocated, land is being purchased in
other countries to settle entire populations, salt water intrusion and salinity are lead-
ing to loss of limited arable land on many islands, crops that have been part of their
diet can no longer be cultivated due to rising water tables, and extreme events such
as more powerful tropical cyclones are ravaging villages. Yet many of us continue
to deny that climate change is a reality and, unfortunately, the leadership of some of
the most powerful nations on the planet are providing fuel to such groups. The real-
world evidence seems to be having no impact on such thinking. We have pictures of
graveyards that are now offshore; who in their right minds would select such loca-
tions to have graveyards? We have pictures of houses that have waves crashing into
them at every high tide; we have pictures of houses that are almost permanently in
the sea now; we have pictures of taro farms regularly inundated by sea water; and
the list goes on.
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With the people of the Pacific becoming more vocal about this issue in recent
years, the issue of climate change impacts in the region has garnered greater atten-
tion. Research on likely impacts and best adaptation practices are on the rise. More
international support and funds are flowing into the region to support people to deal
with the issue of climate change. However, the publicly available information on
climate change, its impacts in the Pacific and means of adaptation are few and far
in-between and spread over a wide range of scientific publications, web pages and
grey literature. One of the objectives of this book is to provide a comprehensive
overview of climate change issues in the Pacific, what the people are dealing with
now, how susceptible are islands to climate change impacts and how many islanders
are adapting to the changes brought about by climate change.

The book starts with a comprehensive overview of climate change and the
Pacific, summarising what research has been undertaken and what are the projec-
tions for this part of the world over the next 50—-100 years. Chapter 2 describes the
islands in the Pacific, their settings, distribution and classification. Climate change
scenarios and projections for the Pacific are discussed in detail in Chap. 3. This
chapter looks at observed climate in the Pacific and compares it with future projec-
tions under various climate change scenarios. In Chap. 4, we propose an index that
is a relative measure of susceptibility of individual islands in the Pacific to physical
change under climate variables. This chapter describes both the physical attributes
of islands and environmental variables such as tropical cyclones and significant
wave height and how these could be combined to provide information on relative
risks of islands. This idea is further refined to a more local (finer) resolution in
Chap. 5 where methods are developed for downscaling from whole-island risk
assessment to landform susceptibility. A selection of islands from the Pacific is used
to demonstrate how this could be incorporated in more local landscape-level risk
assessment. Chapter 6 reviews tropical cyclones, its natural variability and potential
changes under future climate in the South Pacific. Chapter 7 reports on work under-
taken to investigate the distribution of infrastructure in 12 Pacific island countries,
with emphasis being on the proportion of built infrastructure in close proximity to
the coast and so exposed to coastal climate change impacts. The chapter highlights
the very high percentage of infrastructure located very close to the coast and how
impacts on such infrastructure could impact on the whole country. Chapter 8 fol-
lows the same trend as Chap. 7 but looks at the population distribution across 12
countries in the Pacific. It uses locational data to report on percentage populations
in very close proximity to the coastal fringe and how rising sea levels and storm
surges related to climate change may impact them. Chapter 9 reports on agriculture
under a changing climate in the Pacific. It discusses the significance of agriculture
in the Pacific and how climate change and climate extremes may impact on agricul-
ture and sustainability of some agricultural systems. Case studies are used to high-
light some of the impacts. Chapter 10 changes from agriculture to marine resources
in the Pacific, the importance of such resources to the people and the vulnerability
of marine resources to climate change. In Chap. 11, freshwater resources and avail-
ability are discussed, including both current issues surrounding freshwater resources
and impacts of climate change on water security. Climate change impacts on rainfall
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and evaporation are also presented. Chapter 12 looks at the impacts of climate
change on biodiversity in the Pacific region. It uses the case of terrestrial vertebrate
species to show the variety of vulnerable, endangered and critically endangered spe-
cies that call the Pacific as home and how many of these species occur on one or a
few islands only. Many of the species are endemic to the Pacific and so are at an
increased risk of extinction due to climate change impacts on the islands they call
home. The economic impacts of climate change in the Pacific are explored in Chap.
13. This chapter discusses the economic settings of Pacific islands and how climate
change may impact on them. Chapter 14 rounds off the book, looking at the issue of
adaptation to climate change. It uses a number of case studies to highlight how dif-
ferent people in different countries of the Pacific are adapting to climate change
under different settings. The case studies showcase useful adaptation options and
how adaptation could be improved to help people deal with the issues of climate
change. So overall, the book covers a wide range of topics very relevant to the cli-
mate change debate and to the people of the Pacific and elsewhere.

The travesty is that, quite often, in discourse about climate change and its
impacts, the Pacific is overlooked since it is home to only around 12 million people
(0.16% of the world’s population). What is discounted is that we are talking about
26 countries in this region (13.33% of the 195 countries in the world) having over
30,000 islands, 35 biodiversity hotspots, more than 3200 threatened species of flora
and fauna and the world’s widest linguistic diversity. The authors contributing to
this book hope that it will go some way in highlighting the problems climate change
is creating in this part of the world and bringing together a body of literature specifi-
cally dealing with the Pacific that will help practitioners make more informed deci-
sions that support them in dealing with climate change.

Finally, I am extremely grateful to all the authors who have volunteered their
precious time to share their knowledge with the broader community. I am positive
that the knowledge and experience they have willingly shared will have a positive
impact on the lives and livelihood of the people of the Pacific. Climate change is
now an everyday reality for the Pacific, and their contributions will be appreci-
ated by all.

My heartfelt thanks to the contributors and best wishes to the people of the
Pacific in dealing with something they have not contributed to creating but are at the
receiving end of probably the greatest impacts. I hope this book serves many
researchers and practitioners in this exciting field of climate change.

T2 o
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Armidale, NSW, Australia Lalit Kumar
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Chapter 1
Climate Change and the Pacific Islands

Lalit Kumar, Sadeeka Jayasinghe, Tharani Gopalakrishnan,
and Patrick D. Nunn

1.1 Introduction

Since the late twentieth century, climate change has undeniably been the world’s
most prominent environmental issue. When it first emerged, climate change was
discussed exclusively by scientists. However, in recent years, the general public has
become much more involved in the concept, with the subject also creating major
political repercussions in several countries. The likely consequences of global cli-
mate change have reached an alarming state in view of environmental, physical, and
socio-economic aspects and pose a critical threat on a global scale. Increased public
involvement in climate change discourse, ensuring subsequent awareness of the
potential threats and uncertainties associated with the issue, is crucial.

The term ‘climate change’ is used with different implications and perspectives.
In its broadest sense, climate change refers to any significant change in the statisti-
cal properties of the climate system that persists for an extended period, typically
30 years (IPCC 2014). In order to understand climate change, one has to have an
understanding of all of the system’s components (i.e. atmosphere, ocean, land sur-
face processes, cryosphere, and biosphere), climate variables (temperature and pre-
cipitation), and climate descriptors (such as the Earth’s surface temperature, ocean
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temperatures, and snow cover) (IPCC 2001; Weber 2010). This global phenomenon
has been created from a combination of natural (such as changes in the sun’s radia-
tion and volcanoes) and anthropogenic (such as burning fossil fuels and inappro-
priate land use changes) activities (Frohlich and Lean 1998).

Palaeoclimatologists have been investigating how the climate system, including
increasing atmospheric temperature trends, rising sea levels, and increasing atmo-
spheric greenhouse gases, has changed on a global scale over many decades
(Easterling et al. 2010). An overwhelming majority in the scientific community con-
clude that future human-induced climate change is inevitable and will have far-
reaching environmental impacts that will affect the ways people live in many parts
of the world. It is widely agreed that observed global warming is rooted in climate
change. Global warming disturbs natural cycles and causes several irreversible
changes over the long term. The main cause of the warming trend is the emission of
greenhouse gases (GHGs) from human activity which enhances the ‘greenhouse
effect’. The consequences of a continued enhancement of the natural greenhouse
effect is likely to result in warming greater than what has been experienced on aver-
age over the past century. Warmer conditions will result in more evaporation and
precipitation, but different regions will experience these changes at different scales;
some will be wetter and others drier (Van Aalst 2006). Moreover, a stronger green-
house effect increases sea levels, increases ocean heat content, and promotes the
loss of ice mass in Greenland, Antarctica, and the Arctic and mountain glaciers
worldwide; it generates more intense and longer droughts in many regions, rela-
tively lower mountain glaciers and snow cover in both hemispheres, higher atmo-
spheric water vapour, ocean acidification, and changes in the historical pattern of
extreme weather events (Meinshausen et al. 2009; Nerem et al. 2018).

Since the industrial revolution, the average temperature of the Earth has increased;
average global surface temperature rose by 0.9 °C between 1880 and 2015
(Rahmstorf et al. 2017). Much of this heat has been absorbed by the oceans, with the
top 700 meters of ocean warming over 0.2 °C since 1969 (Levitus et al. 2017). This
warming has been driven mainly by increases in all the major GHGs, particularly
carbon dioxide (CO,), methane (CH,), and nitrous oxide (N,O). Emissions of these
GHGs continue to increase. For example, concentrations of atmospheric CO, rose
from approximately 290 ppm to 430 ppm between 1880 and 2014 (IPCC 2014). The
IPCC (2014) report states that CO, concentrations are likely to rise to around
450 ppm by 2030, and if they continue to increase and reach around 750 ppm to
1300 ppm, the Earth may experience global mean temperature rises of 3.7 °C to
7.8 °C (compared to the 1986-2005 average) by 2100 (Rahmstorf et al. 2017). Net
greenhouse gas emissions from anthropogenic activities worldwide increased by
35% from 1990 to 2010. Burning of fossil fuels is still on the rise and is the primary
cause of observed growth in GHGs, which accounts for 80% of the overall emis-
sions. Greenhouse gas emissions from agriculture are in the range of 10—15% of the
total emissions, and 5—10% of emissions are created from changes in land use pat-
terns. Increased levels of GHGs cause radiative energy to rise and then increase the
temperature on Earth’s surface. Higher GHG concentrations increase the amount of
heat that the atmosphere absorbs and redirects back to the surface. It has been
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reported that the Earth currently retains approximately 816 terawatts of excess heat
per year, which further increases the surface temperature (Henderson et al. 2015).

Scientific evidence of global warming is unambiguous, and many research orga-
nizations have built a comprehensive basis of evidence to understand how our cli-
mate is already changing (IPCC 2014). Each of the last three decades has been
warmer than any previous decade. Changes have been observed since 1950 in many
extreme weather and climate events (Gutowski et al. 2008). Greenland and
Antarctica’s ice sheets have declined in volume and area. Data from NASA’s Gravity
Recovery and Climate Experiment (NASA 2019) show that, between 1993 and
2016, an average of 286 billion tonnes of ice per year was lost by Greenland, while
Antarctica has lost about 127 billion tonnes of ice per year over the same period.
Over the past decade, the Antarctic ice mass loss rate has tripled (NASA 2019).
Greenland lost 150 km? to 250 km?® of ice annually between 2002 and 2006, while
Antarctica lost about 152 km? of ice between 2002 and 2005. Glaciers have retreated
throughout the world, particularly in the Alps, the Himalayas, the Andes, the
Rockies, and Alaska. Declining Arctic sea ice has also been observed over the past
several decades (Church et al. 2013). Satellite images show that the extent of snow
cover in spring in the northern hemisphere has fallen in the last five decades and that
winter snow is now melting earlier than normal (Du Plessis 2018). Over the last
century, global sea level rose about 20.3 cm, yet the rate over the past two decades
is almost double that of the last century and is slightly accelerating each year
(Nerem et al. 2018).

The acidity of ocean waters, particularly surface ocean waters, has increased by
about 30% since the beginning of the industrial revolution. This is due to more CO,
being emitted into the atmosphere with concomitant increases in its absorption by
the oceans. The amount of CO, absorbed by the upper ocean layer has been increas-
ing by approximately 2 billion tonnes per year (Sabine et al. 2004; Schmutter et al.
2017). The scientific community generally agrees that global warming needs to be
limited to 2 °C above pre-industrial levels by the end of the twenty-first century in
order to avoid potentially dangerous impacts. This requires concentrations of atmo-
spheric CO,, estimated at around 430 ppm in 2016, to remain below 450 ppm.
Therefore, keeping the Earth within the 2 °C limit requires urgent action. Climate
change is a systemic transboundary problem with far-reaching health, security, and
prosperity implications for the world. However, despite ongoing efforts to mitigate
climate change, global emissions continue to rise. Appropriate approaches will
require systematic global efforts to implement systemic changes, and many ques-
tions remain as to what form such an effort should take (First 2018).

Many scientists are concerned that the impacts of global warming have devel-
oped much more rapidly than expected. Hence the scientific community, the gov-
ernment bodies, and the media have paid considerable attention to climate change
and related issues. Signatories to the UNFCCC, the Kyoto Protocol, and the Paris
Agreement are discussing how best to tackle this problem, in particular by develop-
ing mitigation and adaptation strategies to prevent excessively negative impacts for
future generations and to reduce the world’s vulnerability to these changes (Saxena
et al. 2018; Schelling 2002).
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The world is addressing climate change in two ways: mitigation and adaptation.
Mitigation involves a reduction in greenhouse gas emissions to alleviate the accel-
eration of climate change, whereas adaptation involves learning how to live with
existing climate change and protecting ourselves against unavoidable future climate
change effects (IPCC 2014). The growing body of scientific evidence has led to a
clear global consensus on the need for action. UNFCCC commits parties to address
climate change by ‘preventing dangerous anthropogenic interference with the cli-
mate system’ by stabilizing GHG levels. Yet the implementation of strategies to
mitigate or survive under turbulent climatic conditions requires a broad acceptance/
awareness of climate change. A broadened perspective on adaptation and mitigation
strategies could help all nations understand the adjustments or actions that can ulti-
mately increase resilience or reduce vulnerability to expected climate and weather
changes (IPCC 2014, 2018).

1.2 TImpacts of Climate Change

1.2.1 Global Warming of 1.5 °C

In 2018, the IPCC published a special report on the impacts of exceeding 1.5 °C
global warming. The report prescribed that limiting global warming to 1.5 °C would
need rapid, far-reaching, and unprecedented changes in all aspects of society (First
2018). By limiting global warming to 1.5 °C compared to 2 °C, for example, the
negative impacts of climate change would be significantly reduced. While previous
estimates focused on estimating the damage where average temperatures were to
rise by 2 °C or more (New et al. 2011), this report shows that there will still be many
adverse effects of climate change at 1.5 °C. For example, by 2100, global sea-level
rise would be 10 cm lower with global warming of 1.5 °C compared to 2 °C. With
global warming of 1.5 °C, coral reefs would decline by 70-90%, while almost all
would be lost with a 2 °C increase (Hoegh-Guldberg 2014). Global net human-
induced CO, emissions would have to fall by approximately 45% from 2010 levels
by 2030, reaching ‘net zero’ by 2050, in order to limit global warming to 1.5 °C
(First 2018).

1.2.2 Global Warming and Sea-Level Rise

Given the current concentrations and ongoing greenhouse gas emissions, the global
mean temperature is likely to continue to rise above pre-industrial levels by the end
of this century. This has resulted in extensive melting of ice sheets, both in the Arctic
and Antarctic, resulting in rising sea levels regionally and globally. The Arctic Ocean
is anticipated to become essentially devoid of summer ice before the middle of the
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twenty-first century as a result of the warming. Rates of sea-level rise have acceler-
ated since 1870 and now average around 3.5 mm per year (Chen et al. 2017). The
average sea-level rise is projected to be 24-30 cm by 2065 and 40—63 cm by 2100
under various scenarios compared to the reference period of 19862005 (Allen et al.
2014; Pachauri et al. 2014).

Accelerated sea-level rise will result in higher inundation levels, rising water
tables, higher and more extreme flood frequency and levels, greater erosion,
increased salt water intrusion, and ecological changes in coastal flora and fauna.
These will lead to significant socio-economic impacts, such as loss of coastal
resources, infrastructure, and agricultural land and associated declines in economic,
ecological, and cultural values (Church et al. 2013). An important issue concerning
rising sea levels is that it could submerge parts of low-lying coastal lands which are
the habitat of an estimated 470-760 million people (Dasgupta et al. 2007). A num-
ber of islands are already submerged, including 11 in Solomon Islands and several
in Pohnpei (Federated States of Micronesia (Albert et al. 2016; Nunn et al. 2017). It
is predicted that between 665,000 and 1.7 million people in the Pacific will be
forced to migrate owing to rising sea levels by 2050, including from atoll islands in
the Marshall Islands, Tuvalu, and Kiribati (Church et al. 2013). Very large propor-
tions of the population of Bangladesh (46%) and the Netherlands (70%) are likely
to be forced to relocate. By 2100, coastal properties worth $238 billion to $507 bil-
lion in the United States alone are likely to be below sea level, with particular risk
of inundation and flooding in major cities including Miami, Florida, and Norfolk,
Virginia (United Nations 2017).

1.2.3 Changing Weather Patterns and Extreme Events

Climate change will also lead to more frequent and/or severe extreme weather
events (Trenberth et al. 2007) and possibly even large-scale, abrupt climate change
(Alley et al. 2003). Extreme weather events occur when an individual climate vari-
able (such as temperature or rainfall) exceeds a specific threshold and forces signifi-
cant divergence from mean climate conditions. The world has already witnessed
direct and indirect impacts of climate forcing on extreme events such as storms,
hurricanes, tornadoes, severe thunderstorms, floods, and hail, and this trend is
expected to continue (Walsh et al. 2016).

Climate change is an urgent threat to the entire human population, contributing
to a range of increases in natural disasters. Global rainfall patterns are shifting with
rising temperatures. Since the late 1990s, Somalia, Kenya, and other East African
countries have experienced lower than average rainfall, contributing to a 30% drop
in crop yields and famines in 2010, 2011, and 2016 (Henderson et al. 2015).
Hurricanes and other destructive weather events have also increased in prevalence.
For instance, the worst typhoons (tropical cyclones) recorded in the Philippines
occurred in 2013, resulting in more than 6000 deaths and a displacement of almost
four million people (Acosta et al. 2016). Since the early 1980s, the intensity,
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frequency, and duration of North Atlantic hurricanes and the frequency of the most
severe hurricanes have increased (Kossin et al. 2013). Hurricane-related storm
intensity and rainfall rates are projected to rise as the climate keeps warming. Storm
surges, flooding, and coastal erosion threaten coastal settlements and associated
infrastructure, transportation, water, and sanitation (IPCC 2007).

1.2.4 Pressure on Water and Food

Food production is closely related to water availability. In 2014, 16% of the Earth’s
croplands were irrigated as opposed to rain-fed farming, yet the irrigated land
accounted for 36% of global harvest (Pimentel 2012). It is estimated that by 2020,
approximately 75-250 million people could be affected by increased water stress in
Africa, while rain-fed agriculture-related yields could decrease by up to 50% in
some regions (Moriondo et al. 2006). In Pakistan and India, the warming Earth
combined with water shortages has been blamed for threatening the viability of the
region’s agriculture (Henderson et al. 2015). Without significant GHG emission
reductions, the proportion of the world’s land surface in extreme drought could rise
by 2090 to 30%, compared to the current 1-3%.

Warmer temperatures, increased CO, levels, and extreme weather events also
affect global food production. Agriculture and fisheries depend on specific climatic
configurations. Increased CO, or warmer weather has the potential to accelerate
crop growth or increase yields in some crops; however, crop yield starts to decrease
above an optimal temperature that varies from crop to crop (Pimentel 2012). On the
other hand, some plant species can respond favourably to increased atmospheric
CO, and grow more vigorously and more efficiently using less water (Bowes 1993).
Higher temperatures and changing climate trends can affect the composition of
natural plant cover and change the areas where crops grow best (Rahmstorf et al.
2017). Warmer weather facilitates for the spread of pests, weeds, and parasites,
while extreme weather has the potential to harm farmlands, crops, and livestock.
Climate change could have a direct and indirect impact on livestock production
(Thornton 2010). The warmer climate, particularly heatwaves, has a negative impact
on livestock. Drought will impact pasture and feed supplies, posing a risk to live-
stock retention, while increased prevalence of pests and diseases will affect live-
stock negatively. Temperature changes could affect fisheries by changing the natural
habitat and migration ranges of many aquatic creatures (Brierley and Kingsford 2009).

1.2.5 Human Health Risks

Higher temperatures increase the possibility of injury and death related to heat. In
the 2003 European heatwave, as many as 70,000 people died, and in 2010, more
than 50,000 died in a heatwave in Russia (Parry 2011). Thousands more have been
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affected by severe heatwaves in India in 2015, in Europe in 2006, and in other
regions around the world (Parry 2011). Water and vector-borne diseases are also
projected to increase in a warmer world as insects and other carriers move into
higher latitudes and altitudes (Benitez 2009; Conn 2014). Mosquito-breeding
regions will also change, leading to potentially greater threats from mosquito-borne
diseases (Khormi and Kumar 2014, 2016). A warmer climate also tends to increase
lung-related health risk, while fossil fuel burning can lead to premature deaths. The
World Health Organization found that, in 2012, seven million people died from air
pollution worldwide (Lee and Dong 2012).

1.2.6 Impact on Wildlife and Ecosystems

Climate change also harms many natural habitats and increases many species’ risk
of extinction (IPCC 2014; Van Aalst 2006). The current extinction rate is 100 times
the normal rate, and some scientists predict that the Earth is heading for the sixth
mass extinction event in its history (Barnosky et al. 2011). By 2100, 30-50% of the
world’s terrestrial and marine species may be extinct. Climate change also has sig-
nificant ocean-related effects (IPCC 2014). Oceans absorb about 25% of CO, emit-
ted from the atmosphere, leading to the acidification of seawater. Over the past
100 years, warming has raised near-surface ocean temperatures by about 0.74 °C
and has made the sea considerably more acidic, likely affecting marine animal
reproduction and survival. As a result of various factors, coral coverage is only half
of what it was in the 1960s in some places, and scientists predict that the world’s
coral reefs could become completely extinct by 2050 (Henderson et al. 2015).
Projected future increases in sea surface temperatures of around 1-3 °C are very
likely to result in more frequent coral bleaching events and widespread coral mor-
tality if corals are unable to acclimatize or adapt (First 2018).

Ecosystems will continue to change with climate, with some species moving
further poleward or becoming more successful at adapting to changes, while some
species may be unable to adapt and could become extinct (Parmesan 2006). Changes
in temperature and rainfall and extreme events may affect the timing of reproduc-
tion in animals and plants, animal migration, length of cropping season, distribution
of species and population sizes, and availability of food species. Increased acidifica-
tion and catastrophic flooding could reduce marine biodiversity and mangrove
wealth (Hoegh-Guldberg 2014; Pearson et al. 2019; Schmutter et al. 2017).

1.3 The Pacific Ocean: Location, Size, and Distribution

The Pacific Ocean is the world’s largest ocean, with an areal extent of 165 million
km? and average depth of 4000 m, covering more than 30% of the Earth and border-
ing 50 countries or territories’ coastlines (NOAA 2018). The equator divides the
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Pacific Ocean into the North Pacific Ocean and the South Pacific Ocean. The South
Pacific Ocean is generally taken to be located between 0° and 60°S latitude and
130°E and 120°W longitude. The Pacific Ocean plays host to a wide range of habi-
tats, such as coral reefs, mangroves, seagrass, and seamounts, and accounts for
much of the world’s marine biodiversity (Cheung et al. 2010) while also playing a
key role in regulating global climate and biogeochemical cycles (Cheung and
Sumaila 2013).

The islands in this region cover nearly 528,090 km? of land (0.39%) spread
throughout the ocean, with a combined exclusive economic zone (EEZ) of approxi-
mately 30 million km? (Carlos et al. 2008) and a total coastline of 135,663 km.
Islands are distributed unevenly across the Pacific basin, most being located in the
western, especially in the south and western tropical regions, and the fewest in the
northeastern quadrant (Fig. 1.1) (Nunn et al. 2016b). The islands belong to a mix-
ture of independent states, semi-independent states, parts of non-Pacific Island
countries, and dependent states. The massive realm of islands of the tropical Pacific
Ocean includes approximately 30,000 islands of various sizes and topography. In
general, the size of the islands in the Pacific decreases from west to east. New
Guinea, the largest island, accounts for 83% of the total land area, while Nauru,
Tuvalu, and Tokelau have an area less than 30 km?. Most Pacific Island nations are
comparatively small with total areas less than 1000 km?.

The ocean and its resources play a significant role in the livelihoods of the people
of the Pacific Islands. Oceania’s terrestrial diversity and endemism per unit area are
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among the highest on the planet (Keppel et al. 2012; Kier et al. 2009). The region
encompasses three global biodiversity hotspots with more than 30,000 plants and
3000 vertebrate species.

Pacific Island countries have been traditionally grouped along the lines of ethno-
geographic and cultural lines as Melanesia, Micronesia, and Polynesia. This group-
ing excludes the adjoining continent of Australia, the Asian-linked Indonesian,
Philippine, and Japanese archipelagos as well as those comprising the Ryukyu,
Bonin, Volcano, and Kuril arcs which project seaward from Japan.

Melanesia is a subregion of Oceania located in the southwestern region of the
Pacific basin, north of Australia, and bordering Indonesia to its east. The region
includes the four independent countries of Fiji, Vanuatu, Solomon Islands, and
Papua New Guinea and New Caledonia which is a French overseas territory. The
dominant feature of Melanesia is relatively large high islands; it includes 98% of the
total land area of the Pacific Islands and approximately 82% of the total population.
Papua New Guinea is the largest among Melanesian countries as well as the largest
country in the Pacific realm with total land area of 67,754 km? followed by Solomon
Islands (29,675 km?), New Caledonia (21,613 km?), Fiji (20,857 km?), and Vanuatu
(13,526 km?).

Micronesia consists of some 2500 islands spanning more than seven million
square kilometres of the Pacific Ocean north of the equator. Micronesia comprises
only 0.3% of the total land area of the Pacific Islands and about 5% of the Pacific
population. It includes Kiribati, Guam, Nauru, Marshall Islands, Northern Mariana
Islands, Palau, and the Federated States of Micronesia (FSM). Kiribati is the largest
country in Micronesia with an area of 995 km?, followed by the Federated States of
Micronesia (799 km?), Guam (588 km?), Northern Mariana Islands (537 km?), Palau
(495 km?), Marshall Islands (286 km?), and Nauru, the smallest single island coun-
try of Micronesia with 23 km?.

Polynesia is the largest region of the Pacific, made up of around 1000 islands
scattered over 8000 km? in the Pacific Ocean. It is defined as the islands enclosed
within a huge triangle connecting Hawaii to the north, New Zealand to the south-
west, and Easter Island to the east. It encompasses more than a dozen of the main
island groups of central and southern Pacific groups with large distances between
them. Polynesia includes Tuvalu, Tokelau, Wallis and Futuna, Samoa (formerly
Western Samoa), American Samoa, Tonga, Niue, the Cook Islands, French
Polynesia, Easter Islands, and Pitcairn Islands. Polynesia comprises only about 1%
of the total Pacific land area but more than 13% of the total population, excluding
Hawaii. French Polynesia is the largest country with 3939 km? followed by Samoa
(3046 km?), Tonga (847 km?), Cook Islands (297 km?), Niue (298 km?), American
Samoa (222 km?), Easter Island (164 km?), Tuvalu (44 km?), Pitcairn Island
(54 km?), and Tokelau with 16 km? area.

In terms of geological origin, the islands can be divided into reef islands, volca-
nic islands, limestone islands, and islands of mixed geological type. The reef islands
are generally composed of unconsolidated sediments and commonly form linear
groups where a reef has grown above a line of submerged volcanic islands. Examples
include most islands in Kiribati, Marshall Islands and Tuvalu, and reef-island groups
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in the Federated States of Micronesia, French Polynesia, and the western islands of
the Hawaii group. They are commonly characterized by their tendency to develop
on wide reef surfaces in lower latitudes of the Pacific Ocean (Nunn et al. 2016a).

Volcanic islands are formed when volcanoes erupt (Nunn 1994) and produce
islands often with high altitudes in the centre and extremely rugged inner cores. The
high island terrain of volcanic islands is characterized by often abrupt changes in
elevation (mountains, sheer cliffs, steep ridges, and valleys), with these characteris-
tics varying in altitude and size depending on the island’s age (Keener 2013). High
islands receive more rainfall than the surrounding ocean from orographic precipita-
tion. This occurs because of the height of the interior of the island, with the warm
ocean air being forced up to the higher altitudes, cooling down and falling as rain.
The high island landscape is favourable to the formation and persistence of freshwa-
ter streams and soil development capable of supporting large and diverse popula-
tions of plants and animals (Keener 2013).

The mixed geology-type islands are formed in various ways, principally as a
combination of volcanic and coral reef formation. This commonly occurs when the
volcanic island forms a high island and a coral reef forms a doughnut-shaped island
around it above the water, serving as a barrier from erosion (these are the makatea
island types described by Nunn (1994)). Table 1.1 gives some pertinent details, such
as population, land area, political status, colonial connections, and dominant lithol-
ogy of the main Pacific Island countries.

Sea-level rise will directly impact people living in coastal areas of Pacific Island
countries. Population distribution is increasingly skewed and concentrated along or
near coasts. This is a worldwide phenomenon that is much more pronounced in the
Pacific. Kumar et al. (see Chap. 12) analysed the distribution of populations for 12
countries (Cook Islands, Kiribati, Marshall Islands, Nauru, Niue, Palau, Samoa,
Solomon Islands, Tonga, Tuvalu, and Vanuatu) in the Pacific and found that around
55% of the population in these countries live within 500 m of the coast, with 20%
residing within 100 m. For some of Pacific Island countries, almost the entire popu-
lation resides in very close proximity to the shoreline. For example, in Kiribati,
Marshall Islands, and Tuvalu, the percentage of people living within 500 m of the
coast are 98%, 98%, and 99%, respectively.

1.4 Emissions by Pacific Island Countries

Greenhouse gas emissions are spread very unevenly across the world, with the top
ten countries generating more than 73.01% of total GHG emissions, and three coun-
tries, China (26.83%), the United States (14.36%), and European Union (9.66%),
are by far the largest contributors (IPCC 2014). The world’s poorest countries have
made the least per capita contribution to carbon emissions in the world. These coun-
tries burn trivial amounts of fossil fuel compared to countries like China, the United
States, Russia, and Australia, and yet they have to bear the greatest impact of cli-
mate change (Padilla and Serrano 2006).
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Table 1.1 Some key characteristics of the main Pacific Island countries

Country or Population Land area | Political Colonial Dominant

territory (2014) (km?) status connections® lithology

Melanesia

Fiji 903,207 20,857 Independent | UK Volcanic

New Caledonia 267,840 21,613 Territory France Limestone

Papua New 6,552,730 67,754 Independent | Australia Volcanic

Guinea

Solomon Islands 547,540 29,675 Independent | UK Volcanic

Vanuatu 245,860 13,526 Independent | UK/France Volcanic

Micronesia

Fed. States of 111,560 799 Free USA Reef

Micronesia Association

Guam 161,001 588 Territory USA Composite

Kiribati 104,488 995 Independent | UK Reef

Marshall Islands 54,820 286 Free USA Reef
Association

Nauru 10,800 23 Independent | UK Limestone

Northern 51,483 537 Territory USA Volcanic

Mariana Islands

Palau 20,500 495 Free USA Limestone
Association

Polynesia

American Samoa 54,517 222 Territory USA Volcanic

Cook Islands 19,800 297 Free New Zealand Reef
Association

French Polynesia | 280,026 3939 Territory France Reef

Niue 1480 298 Free New Zealand Limestone
Association

Samoa 182,900 3046 Independent | New Zealand Volcanic

Tokelau 1337 16 Territory New Zealand Reef

Tonga 103,350 847 Independent | UK Limestone

Tuvalu 9561 44 Independent | UK Reef

‘Wallis and 15,561 190 Territory France Reef/volcanic

Futuna

“The current colonial government or prior to attaining independence status
Based on information from Campbell and Barnett (2010), Kumar and Taylor (2015), and Nunn

et al. (2016a)

The Pacific Island region accounts for only 0.03% of the world’s total green-
house gas emissions but is one of the regions that is facing the greatest impacts of
climate change from rising sea levels, warming oceans, drought, coral ecosystem
destruction, ocean acidification, and extreme weather (Rogers and Evans 2011). For
example, CO, emissions from Kiribati and Tuvalu are among the lowest of all
nations, both in total and per capita terms, yet these are the two countries currently
suffering the most from rising sea levels. From Table 1.2, large differences between
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Table 1.2 Total CO, emissions per country per year and emissions per capita per year measured
in 2017 for representative countries in the Pacific, together with selected larger emitters for
comparison

Total CO, emissions CO, emissions per capita
Country (Mt COy/year) (t CO,/person/year)
Cook Islands 0.07 3.70
Federated States of Micronesia 0.20 1.70
Fiji 1.37 1.55
Kiribati 0.07 0.45
Marshall Islands 0.10 2.30
Nauru 0.10 4.90
New Caledonia 5.76 20.70
Palau 0.86 12.34
Papua New Guinea 5.88 0.70
Samoa 0.17 0.95
Solomon Islands 0.17 0.30
Tonga 0.12 1.30
Tuvalu 0.01 1.10
Vanuatu 0.15 0.50
USA 5188.69 15.85
China 10358.10 7.35
Australia 407.62 16.75
New Zealand 36.39 7.75
India 2460.88 1.80

Notes: (1) Values are fossil fuel-related emissions. They do not consider land use changes or for-
estry. (2) Presented numbers are averages taken from various sources, including https://en.wikipe-
dia.org/wiki/List_of_countries_by_carbon_dioxide_emissions and http://www.globalcarbonatlas.
org/en/CO2-emissions

emissions by the Pacific Island countries and some of the industrialized nations are
evident. For comparison, it is more logical to look at CO, emissions on a per capita
basis. For most of the Pacific Island countries, the per capita emissions are below
2.0 t CO, per year, yet for countries such as Australia and the United States, these
figures are 16.75 and 15.85 t CO, per year, respectively. Australia is one of the
world’s highest polluters on a per capita basis.

1.5 Projected Climate Change and Impacts

The IPCC report on the impact of global warming states that, if warming continues
to increase at the current rate, it is likely to reach 1.5 °C between 2030 and 2052
(high confidence) and small islands are projected to experience higher risks as a
consequence (IPCC 2018). In the Pacific, under the RCP4.5 scenario, sea level is
likely to increase 0.5 to 0.6 m by 2100 compared to 1986 to 2005 (Church et al. 2013).


https://en.wikipedia.org/wiki/List_of_countries_by_carbon_dioxide_emissions
https://en.wikipedia.org/wiki/List_of_countries_by_carbon_dioxide_emissions
http://www.globalcarbonatlas.org/en/CO2-emissions
http://www.globalcarbonatlas.org/en/CO2-emissions

1 Climate Change and the Pacific Islands 13

The frequency of occurrence of tropical cyclones is likely to remain unchanged or
decrease according to the IPCC ARS. On the other hand, the intensity of tropical
cyclones is likely to increase with increasing temperatures and precipitation
(Christensen et al. 2013; CSIRO 2015). An increase of even 32 cm sea-level rise is
projected to have serious consequences for the continued sustainability of ecological
and social systems on low coral atolls (Pearce 2000). Wave actions, storm surges,
sea-level rise, and river flooding can damage the freshwater supply and in turn have
adverse effects on various sectors such as agriculture, tourism, public health, and
hydro-electricity production (Campbell and Barnett 2010).

Projected data for Suva, Fiji, show trends of temperature (Fig. 1.2) and rainfall
(Fig. 1.3) over the next 80 years to 2100, with the GCMs used in the ensemble mod-
elling shown in Table 1.3.

Figure 1.2 compares temperatures for two RCP scenarios and different time peri-
ods. Based on historical data, we can see that the temperature in the Pacific Island
region increased slowly from 1951 to 1975, followed by a steady increase until
2010. Observed temperature (1979-2010) was also consistent with this trend. The
mean historical temperature data derived from GCMs shows a warming of 0.58 °C
within the period 1950 to 2010. In the period from 1979 to 2010, the observed aver-
age surface temperature increased by 0.14 °C. Observed data confirms that the aver-
age temperature of Suva, Fiji, rose by 0.05 °C per decade since 1979. The projected
mean surface temperature change for 2050 relative to 2010 under RCP4.5 is 0.7 °C,
while it is 0.84 °C under RCP8.5. The temperature change for 2100 relative to 2010
is projected to be 1.19 °C and 2.9 °C for RCP4.5 and RCP8.5, respectively.
Temperature increase for the projected period becomes quite prominent under both
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Fig. 1.2 Observed (1979-2010) and projected (until 2100) temperature for Suva, Fiji, under an
ensemble of 30 GCMs (Table 1.3). Data for the projections of temperature and rainfall was
obtained from the Climate Data Factory website (The Climate Data Factory 2019 ) <https://thecli-
matedatafactory.com/> for the period of 1951 to 2100. Different numbers of Global Climate
Models (GCMs) obtained from the official IPCC data portal (ESGF 2009) (ESGF <https://esgf.
lInl.gov/>) were used to project climate data
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Fig. 1.3 Observed (1979-2010) and projected (until 2100) rainfall for Suva, Fiji, under an ensemble
of 31 GCMs (Table 1.3)

RCP4.5 and RCP8.5 towards the end of the century. The difference in terms of
temperature values between the RCPs will begin to expand after 2025 (Fig. 1.2).

Suva is already experiencing an increased temperature regime that is evident
from the observed temperature which is 0.12 °C (median value) higher than the
historical period (1951-2010) (Fig. 1.4). By the end of the twenty-first century,
under the business-as-usual scenario (no mitigation, RCPS.5), the temperature will
increase by 2.59 °C. Even if the mitigation strategies are implemented successfully
(RCP4.5), a 1.33 °C increase in temperature will take place compared to the median
value of the observed period. Not only does the temperature increase, but also the
inter-annual variance increases in the latter half of the century under both the RCPs
(see the confidence intervals on the right of Fig. 1.2). This implies that many hot
spells will dominate in the future and, in extreme cases, the annual mean tempera-
ture can go even higher than 28 °C, while it was below 24.5 °C during the observed
period. However, if mitigation policies are properly implemented as assumed by the
RCP4.5 scenario, the temperature is likely to stabilize after 2071, with a median
value of 25.6 °C.

Suva receives an annual rainfall of around 2800 mm (median = 2846 mm for
1979-2010 period), and the projections show that rainfall will generally remain
similar by 2100 under both selected RCPs (Fig. 1.3). The difference between the
radiative forcing of RCP8.5 and RCP4.5 (IPCC 2014) will cause only about 10 mm
difference in median values of rainfall during 2021-2050 and 2071-2100 for Suva.
In the projected period, the average rainfall under RCP8.5 will be slightly higher
than that for RCP4.5; rainfall anomalies (inter-annual variability) will also be
considerably higher. This may result in more pronounced wetter and drier seasons
in the future, which will have implications for flooding and drought.

Over recent decades, the El Nifio-Southern Oscillation (ENSO) characteristics
have changed quite sharply, even in the absence of obvious external forcing
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Table 1.3 Models used for projection of rainfall and temperature data

Temperature Temperature
S. No. | Rainfall RCP8.5 RCP8.5 Rainfall RCP4.5 RCP4.5
1 ACCESSI1.0 ACCESS1.0 ACCESSI1.0 ACCESSI1.0
2 ACCESS1.3 ACCESS1.3 ACCESS1.3 ACCESS1.3
3 bee.csml.l.m bee.csml.l.m bee.csml.l.m bee.csml.l.m
4 BNU.ESM BNU.ESM BNU.ESM BNU.ESM
5 CanESM2 CanESM?2 CESM1.BGC CCSM4
6 CCSM4 CCSM4 CESM1.CAMS CESM1.BGC
7 CESM1.BGC CESM1.BGC CMCC.CM CESM1.CAMS
8 CESM1.CAM5 CESM1.CAM5 CNRM.CM5 CMCC.CM
9 CMCC.CESM CMCC.CESM EC.EARTH CNRM.CM5
10 CMCC.CM CMCC.CM GFDL.CM3 EC.EARTH
11 CMCC.CMS CMCC.CMS GFDL.ESM2G GFDL.CM3
12 CNRM.CM5 CNRM.CM5 GFDL.ESM2M GFDL.ESM2G
13 EC.EARTH EC.EARTH HadGEM2.CC GFDL.ESM2M
14 FGOALS.g2 GFDL.CM3 HadGEM2.ES HadGEM2.CC
15 GFDL.CM3 GFDL.ESM2G inmem4 inmcm4
16 GFDL.ESM2G GFDL.ESM2M IPSL.CM5A.MR IPSL.CM5A.MR
17 GFDL.ESM2M HadGEM2.CC IPSL.CM5B.LR IPSL.CM5B.LR
18 HadGEM2.CC HadGEM2.ES MIROC.ESM MIROC.ESM
19 HadGEM2.ES inmcm4 MIROC.ESM. MIROC.ESM.

CHEM CHEM

20 inmem4 IPSL.CM5A.MR MIROC5 MIROC5
21 IPSL.CM5SA.MR IPSL.CM5B.LR MPLESM.LR MPLESM.LR
22 IPSL.CM5B.LR MIROC.ESM MPLESM.LR.1 MPLESM.LR.1
23 MIROC.ESM MIROC.ESM. MPLESM.MR MPLESM.MR

CHEM
24 MIROC.ESM. MIROCS5 MRI.CGCM3 MRI.CGCM3

CHEM

25 MIROCS MPLESM.LR
26 MPLESM.LR MPLESM.LR.1
27 MPLESM.LR.1 MPLESM.MR
28 MPLESM.MR MRI.CGCM3
29 MRI.CGCM3 MRI.ESMI1
30 MRILESM1 NorESM1.M
31 NorESM1.M

The GCM data were downscaled and bias-corrected using cumulative distribution function trans-
form (CDF-t) method embedded in the CDFt() function of R (Michelangeli et al. 2009). Two pack-
ages of R, namely, tidyverse (Wickham 2018) and grid (R Core Team 2019), were used for
processing and visualization of the data

(Cobb et al. 2003). Therefore, it is also appropriate to expect similar abrupt changes
in climate variability of the tropical Pacific region in the future, with or without a trig-
ger from ongoing greenhouse forcing (Kleypas et al. 2015). However, under the
RCP8.5 scenario, the equatorial Pacific is likely to experience an increase in mean
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Fig. 1.4 Observed time series of annual total number of warm days (red) and cool nights (blue)
for Suva, Fiji, indicating a general warming trend. Grey bands around the linear regression line
show one standard error of the estimate (Data: Fiji Meteorological Service)

annual precipitation by 2100 (IPCC 2018). The South Pacific is projected to experi-
ence changes in precipitation, relative to 1961-1990, ranging from —3.9% to 3.4%
by 2020, —8.23% to 6.7% by 2050, and —14% to 14.6% by 2080 (Barnett 2011).

The changing climate will have impacts across the landscape that will be vari-
able. For example, the rising sea levels and changes in currents will result in signifi-
cant wave height changes that will affect different regions differently (Fig. 1.5).
Mean significant wave height (H,) data obtained from the South Pacific Applied
Geoscience Commission (SOPAC) was modelled using two concentration path-
ways, RCP 4.5 and RCP 8.5, under the Coupled Model Intercomparison Project
Phase 5 (CMIP5) model (http://wacop.gsd.spc.int/) (WACOP 2016). The GCMs
used were CNRM-CMS5, HadGEM2-ES, INMCM4, and ACCESS1.0. An average
value was obtained for 2081-2100 by using the above models, and the difference
between the projected and the historical scenario (1986-2005) was derived for pro-
jected changes in H,. From Fig. 1.5, it can be observed that there is likely to be
considerable variability in changes in H, across the Pacific, with H differences of up
to 0.4 m seen by 2081-2100. The highest increase in H will be experienced in the
north-west Pacific around Palau and Northern Mariana Islands as well as in the
south around Tonga and Niue. Several regions in the Central Pacific are projected to
experience no changes in H,. This projected data for H, shows that the impacts of
climate change will be highly variable across the Pacific region, with some areas
being impacted considerably more than others.

Anthropogenic CO, has caused a decrease of 0.06 pH units in the tropical Pacific
since the beginning of the industrial era (Howes et al. 2018). Currently, the pH of
the tropical Pacific Ocean is decreasing at a rate of 0.02 units per decade, and it is
projected to decrease by 0.15 units relative to 1986—-2005 by 2050 (Hoegh-Guldberg
et al. 2014). In addition, the CMIP5 ensemble model projects a further decrease of
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Fig. 1.5 Projected differences in H, values under RCP4.5 (a) and RCP8.5 (b) for 2081-2100
compared to historical scenario of 19862005 under CMIP5 and an ensemble of GCMs
(CNRM-CMS5, HadGEM2-ES, INMCM4, and ACCESS1.0). Maximum H, values were calculated
from modelled monthly data supplied by SOPAC (http://wacop.gsd.spc.int/)

0.23-0.28 pH units relative to 1986 to 2005 by 2100 (Howes et al. 2018). This
declining seawater pH level corresponds to a decrease in concentration of dissolved
carbonate ions (CO52") which may lead to a ‘saturation state’, lowering the potential
of CaCO; precipitation. According to IPCC ARS, under the RCP8.5 scenario, the
aragonite saturation states in the subtropical gyre region will continuously decrease
to around 800 ppm by 2100, which will intensify the calcification process with
detrimental effects for many shallow-water organisms (Hoegh-Guldberg 2014).
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This phenomenon is anticipated to affect the biological and physical complexity of
corals; coral cover is projected to decline from the current maximum of 40% to 15
to 30% by 2035 and 10% to 20% by 2050, primarily due to the acidification of the
ocean and increasing sea surface temperature (Bruno and Selig 2007; Hoegh-
Guldberg 2014). This will also negatively affect the ability of corals to compete
with microalgae for space; hence, microalgae are likely to smother a significant
proportion of corals by 2035. This pressure on coral reefs will also affect the repro-
duction of coral reef fish species, numbers of which are projected to decrease 20%
by 2050 (Bell et al. 2013).

Climate change will have detrimental impacts on human health directly and indi-
rectly in almost all the regions of the world. Pacific Island countries are particularly
vulnerable to health impacts from changing climate due to their unique geologic,
social, and economic characteristics (Hanna and Mclver 2014; Woodward et al.
2000). Comparatively small size and isolation, their tropical locations, often stag-
nant economies, and limited health infrastructure are some of the reasons. The
direct impacts include damages to health infrastructure, deaths, and traumatic inju-
ries occurring during extreme hydro-meteorological events and physiological
effects from heatwaves. For example, in 2015, Cyclone Pam caused severe damages
to the health-care system of Vanuatu, destroying 21 of 24 health facilities (hospitals,
health centres, and dispensaries) across 22 affected islands in the most affected
province (Esler 2015). Indirect impacts occur from the disruption of existing eco-
systems, including increased geographic ranges of vectors and increased pathogen
loads in food and water (Mclver et al. 2012). For example, with the prevailing severe
water shortage issue, the changing climate is likely to worsen the diarrheal disease
in many Pacific Island countries (Singh et al. 2001). A strong positive correlation
was identified between the extreme weather events and outbreaks of dengue fever
and diarrhoeal disease in Fiji (Mclver et al. 2012). Another foodborne disease of
concern is ciguatera, a toxidrome believed to be caused by a toxic dinoflagellate-
contaminated reef fish (WHO 2015). Increased incidents of ciguatera in the Pacific
Island countries have been reported over the past two decades (Skinner et al. 2011).
The ciguatera incidence was linked with marine surface temperatures and ENSO
cycles (Llewellyn 2010; Skinner et al. 2011). In addition, the sensitive zones of vec-
tors transmitting pathogens may expand with increases in temperature and altera-
tions in precipitation and humidity (Hanna and Mclver 2014).

The biodiversity of Pacific Island regions is also facing pressure from global
climate change. Three of 35 global biodiversity hotspots are located in the Pacific
Island region, enriched with large numbers of endemic species. The limited amount
of suitable habitat and limited capacity for rapid adaptation of small islands make
the consequences of accelerating climate change likely to be severe for the region’s
biodiversity (Taylor and Kumar 2016). Sea-level rise poses a major threat to the
restricted species ranges on smaller and atoll islands. In addition, high-elevation
ecosystems such as cloud montane forests are projected to disappear by the end of
this century (Taylor and Kumar 2016). In an assessment of 23 countries in the
Pacific, Kumar and Tehrany (2017) showed that 674 of the islands hosted at least 1
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terrestrial vertebrate species that was either vulnerable, endangered, or critically
endangered. A total of 84 terrestrial vertebrate species are endemic to this region,
and many of them occupy one island only, increasing their chances of extinction.

Climate change is one of the major threats to the culture and traditions of indig-
enous communities of Pacific Island countries (Keener 2013). A community’s
response to every dimension of climate change including understanding the causes
and responses is mediated by culture (Adger 2006). Nowhere has culture already
been threatened by climate change than in the small island states of the Pacific
Island region, a trend likely to continue for some time (Ede 2003; Funk 2009;
Hunter 2002; Patel 2006). Indigenous people of such islands whose culture is intri-
cately connected to their ancestral lands will experience significant cultural disrup-
tion (Farbotko and McGregor 2010). For example, in Samoan culture, the place
where families and forebears lived plays an important role in their culture and per-
sonal identity; yet increasing numbers of islanders are moving inland or to other
countries in search of a more secure future, while some are determined to hold their
ground (Piggott-McKellar et al. 2019). In this context, relocations and resettlements
have been significantly affecting the state of Samoan culture in terms of loss of heri-
tage and sense of being cut off from the ancestral communities left behind. For
instance, the personal connection to the sea has subsequently been lost by those who
moved inland or offshore where fishing is no longer their primary source of food
(Wing 2017). Such impacts on culture and traditions will be more likely in the
future with the accelerating pace of climate change.

1.6 Economic Impacts in the Pacific

Island economies face significant costs due to climate change. According to a recent
study by the Asian Development Bank (2013), it is estimated that under the
‘business-as-usual scenario’, climate change could cost 2.2 to 3.5% of the annual
GDP of Pacific Island countries by 2050 and 12.7% by 2100. The agriculture sector
was identified as one of the most vulnerable sectors, contributing 5.4% of annual
GDP loss by 2100 under the high emission scenario. Agriculture is likely to be
affected in various ways, including loss of arable land and contamination of fresh-
water. For example, in Fiji in 2003, Cyclone Ami caused damage to crops to the
value of US$ 35 million (McKenzie et al. 2005), while severe flooding occurred in
the Wainbuka and Rewa Rivers in 2004, destroying 50-70% of crops (Connell and
Lowitt 2019). The World Bank estimates that climate change may cost Tarawa atoll
in Kiribati USD 8-16 million, equivalent to 17-34% of current GDP, by 2050
(World Bank 2017).

Regardless of their size and population, the major socio-economic reality regard-
ing small island countries of the Pacific is that their cost of adapting to climate
change is significantly higher in terms of GDP than for larger countries, a phenom-
enon referred to as ‘indivisibility’ in economics. For example, for the construction
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of a similar coastal protection structure, the unit cost per capita in small island
countries is substantially higher than for bigger countries with larger populations. In
addition, compared to larger or continental territories, the relative impact of a
coastal hazard or extreme event has a disproportionate impact on small island coun-
tries” GDP compared to continental or larger territories where it only affects a small
portion of its total land mass (Pachauri et al. 2014). According to the World Bank
Climate Vulnerability Assessment Report of Fiji (World Bank 2017), the country’s
economic growth has been relatively slow in the last couple of decades because of
the impacts of climate change. Fiji is particularly vulnerable to floods and tropical
cyclones which have already made a significant impact on the economy. Tropical
Cyclone Winston in 2016, with the strongest winds ever recorded in the southern
hemisphere, caused damages costing F$2 billion (USD 0.95 billion), equivalent to
20% of Fiji’s GDP. During this event, the average losses of assets due to the tropical
cyclones and floods alone are estimated at more than F$500 million (USD 230
million).

Tourism is one of the fastest growing sectors in the world. The tourism sector is
a common industry in almost all Pacific Island countries and a major source of
employment and foreign exchange, contributing an average 20% of GDP and 15%
of total jobs (ESCAP 2010). It is also considered as crucial to poverty alleviation
and a pathway for achieving economic security coupled with broader development
goals around employment and infrastructure (Everett et al. 2018). Climate change
has a profound and negative impact on tourism by reducing the value of attractive-
ness of the tourism destinations (Becken and Hay 2012). Sea-level rise and storm
surges pose threats to coastal assets and infrastructure. Kumar and Taylor (2015)
have shown that 57% of all infrastructure in 12 Pacific Island countries are within
500 m of the coast, with 20% being within 100 m. This exposes a very large propor-
tion of national infrastructure in these island countries to coastal climate change
impacts.

Oceans are intrinsically linked with the atmosphere as they absorb more than
90% of the surplus heat produced by global warming and about two-thirds of CO,
emitted through anthropogenic activities (Rhein et al. 2013). This affects both the
ocean dynamics and ecosystems and consequently has a major impact on the
resources they provide to the community (Portner et al. 2014). In the Pacific Island
countries, fishing and aquaculture contribute substantially to economic develop-
ment, government revenues, food security, and livelihoods. Climate change impacts
on oceans are expected to have major effects on the distribution of fish habitats, the
food webs, the fish stocks they support, and, as a consequence, the productivity of
fisheries. For example, the combined impacts of increasing temperature, sea-level
rise, and alteration of mixing the ocean layer thickness will affect the nutrient sup-
ply, lagoon flushing, and ocean acidity and will ultimately affect plankton produc-
tivity and survival of corals (FAO 2008; Lal 2004). Stormy weather and more
intense cyclones can also make fishing trips unsafe and less productive. This will
most likely affect the fish supply, deprive fishermen of income, and potentially
threaten the economic security of some island communities (FAO 2008).
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1.7 Migration and Displacement Due to Climate Change

Change in the climate system will significantly affect small islands, with severe
impacts projected for local economies and livelihoods of people, resulting in human
mobility and cross-border displacement and migration (Perch-Nielsen et al. 2008).
In certain contexts, particularly in low-lying coastal areas, climate change can be a
driving factor in human mobility. Significant migrations from rural atolls to coastal
towns and cities or to larger islands have taken place over the past decades in the
Pacific Island region (Campbell and Warrick 2014). This has a negative impact on
resources in urban coastal areas, and climate change is expected to exacerbate these
pressures. In this context, one adaptive strategy for climate change is international
migration, especially for the island population who lose livelihood opportunities or
whose land disappears or who have limited land. As opportunities and resources
diminish, freedom and attraction of movement to other countries or larger islands
increase. This, in turn, encourages international migration for those with sufficient
resources to move abroad. Therefore, essentially, climate change and rural hard-
ships may encourage people to seek economic opportunities in other countries.
Many Pacific Island countries currently have large proportions of their population
living abroad; Table 1.4 shows the percentage of population abroad and the main
destinations for some Pacific Island countries. Fifty-six percent of the Pacific
Islanders who live abroad are settled in New Zealand and Australia, with almost
20,000 more Pacific migrants in the former. North America is the second most pop-
ular destination region, with 25% of Pacific immigrants, with the United States
having a much larger share than Canada. The special visa schemes for Pacific
Islanders in the United States, New Zealand, and Australia provide opportunities for

Table 1.4 Pacific Island countries and territories by share of the total population and major
destinations domiciled abroad (2015)

% total population
No. | Pacific Island abroad Main destinations in order of importance
1 Guam 44.8 Philippines, Northern Mariana Islands, Palau
2 American Samoa 41.8 Samoa, Australia
3 Northern Mariana 39.3 Guam, Palau
Islands
4 Tokelau 39.0 New Zealand, Australia
5 Niue 34.6 New Zealand, Australia
6 Nauru 31.1 Kiribati, Australia
7 Palau 26.6 Guam, Northern Mariana Islands, Federated
States of Micronesia
8 New Caledonia 24.4 French Polynesia, Australia, Wallis and Futuna
Islands
9 | Wallis and Futuna | 21.7 New Caledonia
Islands
10 | Cook Islands 19.9 New Zealand, Australia

Adapted from DESA (2015)
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temporary and sometimes permanent migration for people living in climatically
vulnerable areas (DESA 2015).

Pacific Islanders have been described as one of the world’s most mobile groups
(Ash and Campbell 2016). Global estimates of migrants relocating as a result of
rising sea levels vary. In particular, ‘disappearing’ or ‘sinking’ islands force
islanders to relocate either within their country or beyond its borders. In fear of
future climate change and natural disasters, countries such as Tuvalu, Kiribati,
Fiji, Solomon Islands, Vanuatu, and Papua New Guinea have considered new
plans for relocations. The move is less challenging when relocation takes place
within existing customary land boundaries. However, if relocations occur outside
of land boundaries, then the relevant government bodies need to be consulted in
order to avoid any conflicts (Ash and Campbell 2016). Kiribati’s government has
purchased land in Vanua Levu, Fiji, with speculation that ultimately this land will
be used to relocate Kiribati to Fiji. However, the Government of Kiribati’s state-
ments have tended to focus on the potential of the land for agriculture (Hermann
and Kempf 2017). Forced displacement from climate change is highly disruptive
to livelihoods, culture, and society unless proper and well-planned interventions
support people to adapt to the challenges (Gharbaoui and Blocher 2016; Piggott-
McKellar et al. 2019).

Some Pacific Island countries have agreements with Australia, New Zealand, and
the United States which already host large groups of immigrants from these coun-
tries. Yet, many of those countries with the greatest migration pressures, including
Tuvalu, Kiribati, and Nauru, have the fewest available international destinations
(Doherty and Roy 2017). Relocation due to climate change has many economic,
social, cultural, and psychological costs, although economic and social reasons may
be the primary reasons for migration.

1.8 Adaptation, Adaptive Capacity, and Lack of Information
and Information Communication Infrastructure

Improving the adaptive capacity of communities in the Pacific Islands is one way to
reduce vulnerability. Adaptive capacity is conventionally assumed to be based on
the extent to which people can access, understand, and use new knowledge to inform
their decision-making processes. This is true in some sense — the pace and nature of
current/future climate change is unprecedented — yet much of this knowledge was
generated outside the Pacific Island region and is therefore perceived by many peo-
ple within the region as ‘alien’, even reflecting a foreign preoccupation that applies
to others not to ‘us’ (Nunn 2009). This is one of the reasons for the widespread and
conspicuous failure of most external interventions for climate change adaptation in
the Pacific Islands over the past 30—40 years (Piggott-McKellar et al. 2019). It is not
that the adaptive capacity of people in the Pacific Island region is low; it is rather
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that the adaptation pathways they are being offered are unfamiliar and underpinned
by unfamiliar reasoning.

Yet to have survived on often quite remote islands in the Pacific for three millen-
nia or more, it is clear that Pacific Island people must have evolved effective ways
of coping with climate extremes, be these short-onset events or longer-term periods
of changed climate (McNeill 1994; Nunn 2007). Evidence for the former abounds.
In several Pacific Island societies, it has been demonstrated that there were methods
for ensuring food security in the aftermath of tropical cyclones as well as ways of
identifying their precursors (Johnston 2015; Lee and Dong 2012). It is also clear
that Pacific Island people survived longer-term climate changes such as the AD
1300 event by changing livelihood strategies (Nunn 2007). In today’s globalized
world, it is easy for people, especially those outside the Pacific region, to make
assumptions about vulnerability and need in an era of rapidly changing climate and
to overlook traditional coping strategies. Recently there have been many calls for
the renewal and revitalization of such strategies, at least in combination with global
knowledge, to help Pacific people cope with the future (Mercer et al. 2007; Nunn
and Kumar 2018).

Another reason for adaptation failure that comes as a surprise to many outsiders
is that the adaptive solutions being offered to Pacific Island people are invariably
secular in nature. These are in conflict with the deeply held religious beliefs through
which many decisions, especially around environmental governance, are filtered in
Pacific Island communities (Nunn et al. 2016b). Unless adaptation pathways are
developed that acknowledge people’s spiritual beliefs, it seems unlikely that exter-
nal interventions for climate change adaptation can become either effective or sus-
tainable in most instances.

In terms of raising awareness about climate change, education is key; yet, public
media reports, which often focus on extreme scenarios, are often more persuasive in
a Pacific Island context. Many Pacific Island school students are gaining education
regarding climate change through school curricula and are experiencing anxiety and
frustration at their elders’ lack of awareness and foresight (Scott-Parker and Kumar
2018). It seems clear that the localization of climate change awareness and knowl-
edge is key to effective anticipatory adaptation in many Pacific Island contexts.

Telecommunications can help ease the isolation experienced by many of the
more remote islands and provide significant access to health care, education, and
government services. Unfortunately, due to the remoteness and isolation of the
islands in the Pacific, these regions face problems such as lack of access to trans-
port, communications, basic services, and economic opportunities (Dornan and
Newton Cain 2014). Pacific Island countries have some of the lowest ICT penetra-
tion rates in the world in terms of Internet and mobile phone connectivity. Bandwidth
is therefore limited and prices for broadband are high (Cave 2012). Significant prog-
ress has been made in recent years in improving telecommunications services in the
Pacific Islands. Mobile technology has flourished in this environment. By 2013, one
in three residents in Fiji, Tonga, and Tuvalu had access to the Internet (Firth 2018).
Mobile phone technology advances were clearly a factor in providing remote areas
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with Internet access. Fiji has shown significant growth in Internet access and mobile
telephone services. The geographic location, service culture, pro-business policies,
English-speaking population, and well-connected e-society have supported this
trend. Fiji has a relatively reliable and efficient telecommunications system with
access to the Southern Cross submarine cable linking New Zealand, Australia, and
North America relative to many other South Pacific islands.

Without timely and relevant information, developing Pacific Island states will
find it difficult to monitor their progress towards sustainable development. A mature
ICT infrastructure is critical for enhancing scientific research, upgrading the tech-
nological capabilities of industrial sectors, and encouraging innovation. Research
and development expenditure as a proportion of GDP and researchers (in full-time
equivalent) per million inhabitants are the two indicators chosen by the United
Nations to measure progress (UNESCO 2015). Fiji is the only developing country
in the South Pacific with recent data on research and development gross domestic
expenditure (GERD). In 2012, the National Statistics Bureau cites a GERD/GDP
ratio of 0.15%. Research and development in the private sector are insignificant,
while government investment between 2007 and 2012 tended to favour agriculture.

1.9 Conclusions

Climate change has been identified as one of this century’s critical challenges for
the Pacific region as a whole. The unique vulnerability of the Pacific Island coun-
tries to climate change is determined by their geography and environment, frailty of
their economic structures, and demographics as well as the interactions between
these factors. The vulnerability to climate change in the Pacific Islands is multidi-
mensional and inextricably linked to broader challenges of development. Key
impacts include damage to coastal systems, settlements, and infrastructure, under-
mining recent economic developments, ameliorating existing challenges to water
and food security, increasing human health threats, and degrading regional biodiver-
sity (Barnett 2001; Keener 2013). Climate change threatens prosperity and the via-
bility of Pacific Island countries. If the world does not respond effectively to rising
greenhouse gas emissions, significant additional stress will be placed on coastal
communities, natural ecosystems, water and food security, and the health of island-
ers in the Pacific. In the face of often menacing climatic conditions, the people of
the Pacific have a long history of resilience, and the nations and communities of the
Pacific are now actively responding to the new challenges of climate change. With
Pacific Island leaders already implementing adaptation measures and looking at
relocation options for their climate refugees, islanders will have a better chance of
survival if the global warming is limited to a 1.5 °C temperature rise (McNamara
and Gibson 2009). The Paris Agreement of the United Nations has committed the
world to ‘net zero’ global greenhouse gas emissions, and it is imperative that this is
followed through for the long-term survival of many Pacific Island nations.
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Chapter 2
Islands in the Pacific: Settings, Distribution
and Classification

Patrick D. Nunn, Lalit Kumar, Roger McLean, and Ian Eliot

2.1 Introduction

In most geographies of the world, accounts of continents are extensive, and accounts
of islands—especially those in the middle of oceans—are generally quite short. The
reasons for this are obvious. Models of the world, its formation and changing con-
figuration, are underpinned by global science that had its origins on continents,
mostly in Europe. People from European centres of learning spread out across the
world, observing and analysing what they saw in order to contribute data to nascent
models of the world. Yet these people were not objective detached observers but
rather burdened by their own prejudices and beliefs, their own intellectual baggage.
Inevitably this informed their observations; for example, the tendency to regard
continental landmasses as ‘normal’ and in hemispheric balance led to an impression
of vast ocean basins as anomalies, probably therefore places where continents had
once ‘disappeared’ (Nunn 2009b).
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Many of the earliest continental observers of oceanic islands hardly knew
what to make of them. Combined with the difficulties of reaching such islands,
their generally huge distances from continental centres of learning, and their
‘small’ areas, set the scene for a history of marginalization of islands in the
natural sciences that is still not redressed, despite an upsurge of interest in islands
over the last few decades (Nunn 1994; Menard 1986; Mueller-Dombois and
Fosberg 1998).

Marginalization of this kind inevitably leads to generalization, the overlooking
of diversity, an enforced homogenization that is far from an objective appraisal of
the actual situation. Today, far from regarding oceanic islands as anomalous and of
only peripheral importance to the understanding of our planet, we now acknowl-
edge them as special places, the study of which is able to inform global issues. For
example, oceanic-island genesis can inform us about that of the ocean basins, which
occupy >70% of the Earth’s surface, far better than can studies of most parts of the
continents (Neall and Trewick 2008); oceanic islands have long been recognized as
‘dipsticks’ that record their own changes in level and those of the surrounding ocean
far more easily than many continental shores (Bloom 1970). The often-singular
nature of island biotas can inform us about the nature of organic evolution, dispersal
and even issues like adaptation and speciation (Whittaker and Fernandez-Palacios
2007). Within the last decade or so, the global community has recognized the
special vulnerabilities of islands to climate change (Mimura et al. 2007; Nurse
et al. 2014).

The problems of marginalization of oceanic islands, especially in an age of glo-
balization, become especially acute when applied to the contemporary situation of
island peoples challenged by issues like economic development in the face of ineq-
uitable access to world markets on the one hand and climate change—one of a range
of environmental stressors to which islanders are disproportionately exposed (Nunn
and Kumar 2017; Shope et al. 2016; Connell 2013)—on the other. Together with
many other external interventions intended to remove such inequities, most attempts
at climate change adaptation in oceanic-island contexts over the past 30 years have
failed to be either effective or sustainable (Nunn 2009a; McNamara 2013; Betzold
2015). Among the most common reason for this failure is that islands are commonly
treated by the international community as ‘continents in miniature’, which they are
not, so that the continental solutions imposed on them are inappropriate, both envi-
ronmentally and culturally (Gillis 2014).

In the various fields that the authors have worked over the past few decades,
especially in the Pacific Ocean, the need for a simple method of explaining oceanic-
island diversity has become increasingly pressing. In response, this paper presents
an earth-science-based classification of Pacific oceanic islands (not continental out-
liers) that captures their diversity and is intended to become the basis for more
focused study (Nunn et al. 2016).
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2.2 Island Settings: The Pacific Basin and Its Oceanic
Islands

Comprising almost one-third of the Earth’s surface, the Pacific Basin is bounded
along its western side by East Asia and Australasia and on its eastern side by the
western parts of the Americas; Antarctica forms a southern boundary. The oceanic-
island groups within this region are listed in Table 2.1 and their locations shown in

Table 2.1 Key data from the island database in the Appendix

Average island

Number of | Total area of | Average island | maximum elevation
Country/group of islands | islands islands (km?) | area (km?) (m)
Cook Islands 15 297 20 73
East Pacific outliers® 24 8236 343 509
Federated States of 127 799 6 45
Micronesia
Fiji 211 20,857 99 134
French Polynesia 126 3940 31 154
Guam 1 588 588 400
Hawaii 16 19,121 1195 869
Kiribati 33 995 30¢ 6
Marshall Islands 34 286 8¢ 3
Nauru 1 23 23 71
New Caledonia 29 21,613 745 121
Niue 1 298 298 60
Northern Mariana Islands | 16 537 34 444
Palau 33 495 15 58
Papua New Guinea (+ 439 67,757 154 134
Irian Jaya)®
Pitcairn Islands 4 54 13 97
Samoa 7 3046 435 504
Solomon Islands 413 29,672 72 88
Tokelau 3 16 5¢ 5
Tonga 124 847 7 56
Tuvalu 10 44 4¢ 4
US-administered islands | 8 37 5 5
(central Pacific)
Vanuatu 81 13,526 167 330
Wallis and Futuna 14 190 14 94
Total 1779 193,713 169 190

#This group is comprised mostly of the Galapagos Islands, politically part of Ecuador

"The island of New Guinea which is included in the database is divided politically between Papua
New Guinea and Indonesia. Although the latter country is not otherwise included in the database,
that part of New Guinea island (named Irian Jaya) it controls is included

“Average island areas for these atoll countries are overestimates as they are based on polygons that
subsume multiple islands (see text)
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Fig. 2.1 The Pacific Basin showing the locations of island countries and island groups in Table 2.1
for which data about islands were obtained. The geotectonic context is also outlined; plate bound-
aries are shown in red and hotspots by orange circles. Convergent plate boundaries are those with
filled triangles pointing in the direction of downthrusting. Other plate boundaries are mostly trans-
form except for the East Pacific Rise where divergence is occurring. Locations of hotspots (active
since 43 Ma) are from King and Adam (2014). Figure based on Nunn et al. (2016)

Fig. 2.1. Island groups (like Indonesia, Japan, Philippines) that are close to the con-
tinental rim of the Pacific Basin are not included, while those comprising Papua
New Guinea, largely oceanic (not continental) in origin, are included. The continen-
tal outliers of the New Caledonia group are included because they are surrounded
by oceanic crust.

The question of how to define an island remains important but is not considered
here; for the purpose of this classification, all discrete ocean-bounded landmasses
within the region of interest (the Pacific Basin) that are >1 ha (0.01 km?) in area
when measured above high water level are deemed islands. Reefs that lack islands
are not included. Transient islands that may alternately appear and disappear are
excluded, as are those that existed in the remembered past but do so no longer. After
all these filters are applied, 1779 islands are found in the study region: a total land
area of almost 200,000 km? after excluding the massive island of New Guinea, an
average island area of 171 km? and an average maximum island elevation of 190 m
above sea level (Table 2.1).
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2.3 Classifying Pacific Islands: Data Sources

Previous classifications of oceanic islands developed categories based on size,
shape or location that largely failed to provide a platform suited to a range of more
detailed classification. Given that this classification seeks to capture physical and
natural attributes of islands, it is based at its highest level on elevation and lithology
(rock type). Together these two variables allow information about erodibility and
resistance, drainage, landscape and landscape-changing processes. While climate is
implicit in elevation for such a large population of islands, other possible classifica-
tory parameters like exposure to natural hazards and climate change are deemed
more appropriate to a focused use of this baseline classification.

The database of islands (n = 1779) is available in the Appendix. Reef islands
strung out (short distances apart) along a single linear reef, as is common on barrier
and atoll reefs, are treated as a single island because they often exhibit changeable
forms and are periodically joined or bisected. Data about the locations and shapes
of islands were obtained from the WVS (World Vector Shorelines) database which
shows all the world’s shorelines at a scale of 1:250,000, a resolution adjudged ade-
quate for classifying Pacific islands. As a preliminary, information was sought for
every island about its location, area, name, (maximum) elevation and lithology;
these are discussed in the following subsections.

2.3.1 Island Locations and Shapes

Latitude and longitude for an island were obtained from Google Earth by placing its
cursor at the island’s central point, a method that could readily be applied consis-
tently and which avoids having any islands overlap in location. Coordinates obtained
by this method were cross-checked with published sources where these could be
found. The disadvantage of this approach is that nothing can be said from a single
point about island shape although coordinates were then converted to a GIS shape-
file using the WGS84 (World Geodetic System 1984) before being overlain on a
WYVS polygon file to allow names to be assigned to each island (see Fig. 2.3c).
Minor inaccuracies in island locations and shapes were rectified by comparing those
derived to those in a world base map provided through ESRI, a process that allowed
individual polygons to be moved slightly as needed. In those cases where WVS
polygons were not a good match with actual island shape or were in fact missing,
new polygons were digitized from the 1:20,000 base map.

2.3.2 Island Areas

Across published and Internet sources, areas given for the same island often vary
greatly, so for this purpose, island areas were calculated directly from the polygon
shapefile layer in the GIS described above. While the latter areas did not always
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coincide with published areas for the same island, largely because polygons were
generated from coarse-scale satellite imagery, they were generally within the range
of these, so their level of inaccuracy was considered admissible. Use of the same
polygon shapefile ensured that errors in the calculation of island areas were
consistent.

2.3.3 Island Names

While incomplete, the most comprehensive list of island names in the Pacific is that
by Motteler (2006) which was supplemented for the purpose of assigning the cor-
rect name to particular islands by other sources, notably Langdon (1978). This is a
less straightforward issue than it may sound, especially with smaller, more remote
islands, where various sources may give more than one name or even no name at all.
That said, only a handful of islands in the dataset (see Appendix) appear to have no
detectable name. Information about other island names came from a great diversity
of sources, published or not; in several troublesome cases, neither the Internet nor
Google Earth proved especially helpful.

2.3.4 Island Elevations

Capturing both island-building (tectonic) and denudation processes, island eleva-
tion also reflects lithology and is therefore a first-order classifier. After various tri-
als, it was found that a simple distinction between high (>30 m above mean sea
level) and low (<30 m above mean sea level) maximum elevation best separates
higher (more resistant lithologies, less denuded, more uplifted or younger) from
lower (less resistant lithologies, more denuded, less uplifted or older) islands: a
conclusion similar to that reached in other studies (Menard 1983; Ramalho
et al. 2013).

While needing to know only whether maximum island elevation is >30 m above
mean sea level or not, the use of Google Earth did not prove adequate for many
islands, so expert knowledge and published sources (notably Dahl 1980; Karolle
1993; Lobban and Schefter 1997; Mueller-Dombois and Fosberg 1998; Rapaport
2013) were also used.

2.3.5 |Island Lithologies

Lithology is the other first-order classifier. It can be used to infer something about
an island’s habitability through soil type and surface water availability and is an
expression of particular island-forming processes (Walsh 1982; Herzberg 2011).
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The lithology classification is kept intentionally simple, not least because of the risk
of losing sight of the broad classificatory aims and becoming mired in controversy
over minutiae. This classification therefore uses five types of lithology: volcanic
(synonymous with igneous for this purpose); limestone (synonymous with calcare-
ous and non-volcanic sedimentary); composite (<80% volcanic and <80% lime-
stone); reef (including all islands made from unconsolidated sediments); and
continental (of non-oceanic origin).

All data about lithology came from archival sources; some sources were espe-
cially helpful at a Pacific-wide scale (Menard 1986; Nunn 1994; Nunn 1998b; Neall
and Trewick 2008; Gillespie and Clague 2009; Vacher and Quinn 1997; Nunn 1999;
Wiens 1962) and others of more use at a subregional level (including Bonvallot
et al. 1993; Keating and Bolton 1992; Greene and Wong 1988; Scholl and Vallier
1985; Brocher 1985; Derrick 1957; Jost 1998; Wood 1967; Coleman 1970; Dow
1977; Anthony 2004; Tracey et al. 1964; Macdonald et al. 1983; Mcbirney et al.
1969; Bonatti et al. 1977; Dana 1875; Davis 1920; Duncan and McDougall 1976).
For islands about which information was not found in such sources, island-specific
studies were sought, typically through Google Scholar. Where these were inappli-
cable, recourse was sometimes made to Google Earth photographs that were exam-
ined for diagnostic signs of volcanic or limestone landforms, for instance.

2.4 Island Types: Outcomes of Classification

Using elevation and lithology data obtained as described above, each of the 1779
islands in the database was assigned to one of eight island ‘types’.

Volcanic high islands are those composed of at least 80% igneous rock that reach
a maximum elevation of at least 30 m above mean sea level. These island types are
commonest in the Pacific in places that are within 500 km of sites of active (often
undersea) volcanism, typically either along volcanic island arcs that run parallel to
lines to plate convergence or at the younger ends of intraplate island hotspot chains
(Nunn 1994).

Volcanic low islands are composed of at least 80% igneous rock but do not rise
30 m or more above mean sea level. These island types often are found farther away
from lines of active/recent plate convergence and the younger ends of active hotspot
chains, a spatial difference that reflects the fact of island subsidence (on cooler
lithosphere) and/or an increased degree of post-volcanism denudation (Scott and
Rotondo 1983).

Limestone high islands are composed of at least 80% calcareous rock types and
reach at least 30 m above mean sea level. In the Pacific, such islands are commonest
in forearc areas close to convergent plate boundaries where one (oceanic) plate is
thrust above another but are also found where plates are colliding or being com-
pressed without subduction. Many such places have been experiencing tectonic
uplift for hundreds of millennia, resulting in uplifted (reef) islands sometimes hun-
dreds of metres high (Ferry et al. 2004; Neef and McCulloch 2001).
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Limestone low islands are composed of at least 80% calcareous rock types and
have a maximum elevation of less than 30 m above sea level. While common in
places where higher limestone islands are found, perhaps in locations where uplift
rates have been lower or have occurred over shorter time periods, limestone low
islands are also found in tectonically quiet parts of the Pacific. In such places, the
Last Interglacial sea-level maximum (about 125,000 years ago) may have facilitated
reef growth as much as 6 m above present mean sea level; the Holocene maximum
sea level (about 5000 years ago) may have allowed reefs to grow as much as 2.1 m
above present mean sea level. In both situations, subsequent net sea-level fall
demonstrably led to the emergence of fossil reef, forming limestone low islands
(Kayanne et al. 2002; Pirazzoli and Montaggioni 1986; Furness 2004).

Reef islands are those composed of at least 80% unconsolidated sediments,
derived from adjacent (offshore/terrestrial) areas that have accumulated on shallow
sea floor, often in the tropical Pacific on (biogenic) reef flats. Sometimes difficult to
distinguish clearly from limestone low islands (see example from Majuro, Marshall
Islands—Yasukochi et al. 2014), such islands are defined as those that form when
sediment is supplied at rates greater than those at which it is removed, leading to net
accumulation, whether at the mouth of a river or—as is common in the database
(see Appendix)—on barrier and atoll reefs rising from the submerged flanks of a
formerly (more) emergent volcanic island.

Composite high islands are defined as those composed of both less than 80%
volcanic rock types and less than 80% limestone rock types that reach a maximum
elevation of at least 30 m above sea level. While these islands are common around
convergent plate boundaries where large islands have formed as a result of both
uplift and volcanism, there is a special type of composite (usually high) island found
elsewhere. These are the makatea islands (named by Nunn 1994) formed when the
subsidence of a reef-fringed volcanic island is interrupted by uplift, commonly
associated with lithospheric flexure, that gives rise to a volcanic island fringed by
uplifted reef; examples come from French Polynesia and Solomon Islands (Stoddart
and Spencer 1987; Taylor 1973).

Composite low islands are composed of both less than 80% volcanic rock types
and less than 80% limestone rock types that reach a maximum elevation of less than
30 m above sea level. Often found in places where composite high islands occur,
such islands may simply have been subject to less uplift and/or more denudation. In
many cases, large composite high islands are surrounded by a number of smaller
limestone low islands, representing fringing/coastal fragments of an original con-
tiguous landmass.

Continental islands are those formed of at least 80% continental rocks, not any
that originated within the ocean basins. Since these island types are few, mostly rise
above 30 m and are found exclusively in the New Caledonia group, they are not
subdivided by elevation. The presence of this continental sliver in the southwest
Pacific is well understood (Cluzell et al. 2012).
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2.5 Characteristics of Islands in the Pacific

Following an account of where the 1779 islands in the dataset are located within the
Pacific and why, this section plots key data (area, maximum elevation) for each
island by location and explains how each pair of variables is linked.

2.5.1 Distribution of Islands

Islands are not uniformly distributed across the Pacific Basin (Fig. 2.2). The south-
west quadrant has most islands (as defined for the database), while the others have
less; much of the northeast Pacific Ocean lacks any islands. Aside from continental
islands, all other islands in the database originated as ocean-floor volcanoes, mean-
ing that their original locations are determined by places where this volcanism
takes/took place. In the Pacific Ocean Basin, there are three geotectonic contexts in
which ocean-floor volcanism that can form (above-sea) islands occurs (Nunn 1994;
Neall and Trewick 2008; Nunn 1999).

The first is along mid-ocean ridges (divergent plate boundaries), which are com-
paratively few in the Pacific and involve voluminous ridge crest/flank volcanism of
the kind that may include Easter Island (off the East Pacific Rise) as well as islands
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Fig. 2.2 Locations of islands in the Pacific Basin showing their relationship with places (plate
boundary and hotspot) where island formation is commonest. Figure based on Nunn et al. (2016)
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in back-arc basins of the western Pacific like Niuafo’ou (Tonga) and Mota Lava
(Vanuatu) (Sorbadere et al. 2013; Tian et al. 2011).

The second context is along convergent plate boundaries where one lithospheric
plate is being thrust (subducted) beneath another. There are more convergent plate
boundaries in the Pacific than any other ocean basin, and most are concentrated in its
southwest part where the island groups of Papua New Guinea, Solomon Islands,
Vanuatu, Fiji, Tonga and New Zealand track the boundary between the Pacific Plate and
the Indo-Australian Plate. In such situations, the downthrust plate commonly melts at
depths of around 100 km below the ocean floor releasing magma that moves upwards,
sometimes erupting on the ocean floor and starting to build islands. Lines of active vol-
canoes (island arcs) formed in this way include those in Tonga and Vanuatu (Fig. 2.3a).

Fig. 2.3 Tllustrations of archetypal Pacific islands. (a) Mount Garet, the principal volcano com-
prising (volcanic high) Gaua Island (Vanuatu), erupting in September 2010. Photo: T. Boyer,
Creative Commons licenced. (b) The coast of (volcanic high) Bora Bora island (French Polynesia)
showing the peak of Mount Otemanu. Such photos illustrate the ‘peakiness’ of many (younger)
volcanic islands that needs to be considered when analysing their maximum elevations. Photo:
Sergio Calleja, Creative Commons licenced. (¢) The reef island of Kehpara on the barrier reef sur-
rounding the (volcanic high) island of Pohnpei (Federated States of Micronesia) is built from sand
and gravel deposited on the reef during large wave events and partly stabilized by the development
of indurated rocks (like beachrock) along its shores. Photo: Petra Nunn, used with permission. (d)
Terraces of emerged coral reef above Togo on the east coast of (limestone high) Niue Island show
signs of weathering, but their original surfaces are still clearly visible. The main terrace is likely to
be of Last Interglacial age (about 125,000 years old), the higher one (top right) perhaps dating from
the previous interglaciation (about 200,000 years ago). Photo: Susan and Ken FitzGerald, used
with permission. The third situation is in intraplate (mid-plate) areas, far from plate boundaries,
where a plate may move across a fixed mantle plume (hotspot) that ‘leaks” magma to form—over
long time periods—a line of volcanoes. Well-studied hotspot island groups include the Hawaiian-
Emperor island-seamount chain that has existed for at least 80 million years (O’Connor et al. 2013)
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Most uplift in ocean basins occurs close to convergent plate boundaries, which
further explains the concentration of islands there, especially composite and lime-
stone islands, although flexures in the intraplate lithosphere, perhaps in association
with nearby subduction (as with Niue Island—Nunn and Britton 2004) or localized
swells (like the South Pacific Superswell—McNutt and Fischer 1987), also cause
uplift of limestone islands.

Not every Pacific island fits these categories. Islands like Manihiki (Cook Islands)
and Ontong Java (Solomon Islands) and Pohnpei (Federated States of Micronesia
[FSM]) may all have an origin associated with the presence of locally thickened
crust that forms oceanic plateaux (Taylor 2006). The Galapagos Islands appear to
have formed at a plate triple junction (Smith et al. 2013).

The absence of islands in vast tracts of the Pacific is explainable largely by an
absence of island-forming and island-preserving processes. Outside the southwest
quadrant of the Pacific, there are few convergent plate boundaries, so most islands
originated at intraplate swells or hotspots, which generally produce smaller islands
within comparatively small areas. There are simply no island-forming processes in
operation elsewhere in such places. Added to this is the conspicuous absence of
islands in higher latitudes, both in the north and south Pacific, something attribut-
able in large measure to an absence of island-forming processes but also to the
cooler water which means that reef-supported islands sink (and disappear from
view) once they pass into these areas.

2.5.2 Areas of Islands

Most (77%) islands in the database are <10 km? in area (Fig. 2.4), something for
which there are two explanations. First, given that since the Last Glacial Maximum
(LGM) about 20,000 years ago, sea level in the Pacific has risen about 120 m, many
islands have become partly drowned, fragmented into ever smaller pieces as sea
level rose. It should be noted that while this explanation seems instinctively correct,
we cannot be certain of it given that we do not know how many islands existed in
the Pacific during the LGM and how many of these were submerged completely by
rising Postglacial sea level. Second, once sea level in the Pacific began to stabilize
about 6000 years ago (Grossman et al. 1998), broad reef platforms began to develop
around many tropical islands creating a substrate on which (comparatively small)
reef islands might form; the subsequent ~2-m fall of sea level in the Pacific caused
many of these substrates to emerge, making them suitable foci for reef-island growth
(McLean and Kench 2015). In addition, it seems clear that reef islands depend more
on sediment supply and accommodation space (on a reef platform) than simply on
sea level, meaning that some reef islands developed in the Pacific more than
6000 years ago and persist still (Kench et al. 2014).

Larger islands are fewer in the database; only 6% of islands are larger than
100 km? in area (see Fig. 2.4). This is because of the intrinsic greater difficulty of
forming and sustaining a large island rather than a small one—by any of the mecha-
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Fig. 2.4 Areas of islands in the Pacific Basin showing how their locations relate to those where
island formation is commonest. Figure based on Nunn et al. (2016)

nisms outlined above. Unless the supply of island-forming materials, be they hard
or soft, and/or the process of uplift is anomalously great and enduring compared to
other situations, such large islands will not generally form. And even if they do, sea-
level rise, flank collapse or even denudation is liable to reduce them in size.

Conversely, many of the larger islands are amalgams of smaller islands, perhaps
on emergent reef flats or perhaps because of uplift associated with plate conver-
gence. A good example is the island of Viti Levu, the largest in the Fiji group
(10,388 km?), which is essentially a result of two volcanic island arcs raised and
bent as a result of forming part of a microplate that has been twisted and crushed by
the oblique convergence of the Pacific and Indo-Australian Plates (Stratford and
Rodda 2000).

It is easier to explain the distribution of larger islands in the Pacific than smaller
ones. Larger islands are almost all concentrated in places where island-forming
processes are unusually effective and have been so for some time, as is the case
along the convergent boundaries in the southwest Pacific. Their comparative absence
elsewhere in the region means that smaller islands dominate in such places, although
the distribution of smaller islands resists straightforward analysis.
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2.5.3 Maximum Elevations of Islands

The distinction used to separate high from low islands (discussed in Sect. 2.4)
informs the classification of island types, yet does not allow for the independent
analysis of maximum elevation as a characteristic of islands in the Pacific. To this
end, Fig. 2.5 shows five categories for maximum elevation obtained from analysis
of the database (Appendix).

In general terms, the greater the maximum elevation of an island, the more likely
it is to have experienced island-forming processes at a greater pace than lower
islands. Further, the chances are that, if those processes have ceased (or become
comparatively subdued), they did so only recently; older islands invariably subside
and become reduced in elevation as a result of denudation (Menard 1986;
Menard 1983).

That said, some islands where island-forming processes have ceased can periodi-
cally experience rejuvenation, perhaps from passing close to a site of volcanic activ-
ity (as with Savai’i in Samoa—Keating 1992) or from moving across a lithospheric
swell that causes them to be uplifted (as in southeast Fiji—Nunn 1995).
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Fig. 2.5 Maximum elevations of islands in the Pacific Basin showing how their locations relate to
those where island formation is commonest. Figure based on Nunn et al. (2016)
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Elevation is also a function of lithology as well as structure, climate and vegeta-
tion. Some rock types are more resistant to denudation and surface lowering than
others. Reef limestones, for example, weather only very slowly, not least because
most drainage is underground. In contrast, many volcanic rocks weather
comparatively fast, especially on islands where orographic rainfall dominates.
Climatic controls are also important; islands like Easter Island in uncommonly dry
parts of the Pacific often exhibit comparatively low rates of surface lowering than
those in wetter parts (Li 1988). While vegetation often increases resistance to
ground-surface erosion, its removal during droughts or following storms may cause
more rapid than expected erosion (Terry 1999).

It can be seen in Fig. 2.5 that islands with higher maximum elevations are often
found in places where island-forming processes are most active or have been so dur-
ing an island’s recent history. Much also depends on the topography of the island;
volcanic islands are more likely to be ‘peaky’ so that their maximum elevations are
much greater than their mean elevations (Fig. 2.3b); limestone islands are likely to
be far less so, especially in the case of emerged reef islands, so that their maximum
and mean elevations are likely to be closer.

2.6 Distribution of Island Types

The distribution of island types (identified in Sect. 2.4) is shown in Fig. 2.6. The
most common island types are reef islands (36%) and volcanic high islands (31%)
which have quite different distributions.

Most reef islands in the database are those that form (part-cemented) accumula-
tions of sand and gravel on shallow reefs in the low-latitude Pacific, typically in
intraplate locations where the process of slow uninterrupted subsidence is particu-
larly conducive to the formation of broad barrier and atoll reefs (McLean and
Hosking 1991; Dickinson 2004; Yamaguchi et al. 2009). Most such islands tend to
be low and elongate and are common in parts of the FSM, French Polynesia,
Kiribati, Marshall Islands, Tokelau and Tuvalu as well as the western outliers of the
Hawaii group (Fig. 2.3c).

The prevalence of volcanic high islands reflects the fact that every oceanic island
in the Pacific began life as an ocean-floor volcano. That most volcanic high islands
are today concentrated in parts of the Pacific close either to convergent plate bound-
aries, typically along volcanic island arcs, or to intraplate hotspots shows that most
must be comparatively young, expressions of the fast island-building processes that
characterize such geotectonic locations. Concentrations of volcanic high islands
near convergent boundaries include many in the southwest Pacific such as those in
the Central Chain of Vanuatu and in the Tonga Volcanic Arc (Greene and Wong
1988; Scholl and Vallier 1985). Numerous volcanic high islands are found in
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Fig. 2.6 Types of islands in the Pacific Basin showing how their locations relate to those where
island formation is commonest. Figure based on Nunn et al. (2016)

association with the Hawaii hotspot, currently below Hawai’i Island and Lo’ihi
Seamount, and the Samoa hotspot, currently near Rose Atoll (Keating 1992; Ballmer
etal. 2011).

Volcanic low islands (8%) evolve from/into volcanic high islands, so it is no
surprise they have similar distributions. Their comparative overall paucity is more
surprising, being perhaps a result of the tendency of island-forming processes in
such situations to readily form high islands that endure a long time. It is also impor-
tant to consider that the ‘peakiness’ of volcanic islands (see Fig. 2.3b) means that
higher types will persist longer than they might with limestone or composite
islands.

Composite high islands (6%) and composite low islands (1%) have similar dis-
tributions. Most composite islands are associated with convergent plate boundaries,
reflecting the prevalence there of both volcanism and tectonic uplift that both con-
tribute to the formation of composite islands. The composite makatea islands in
intraplate locations are volcanic islands with a fringe of raised reef, uplifted as a
result of local lithospheric flexure (Spencer et al. 1987).
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Unlike the situation with volcanic islands described above, limestone low islands
(10%) are more numerous than limestone high islands (7%). The main reason for
this is that limestone islands in the tropical Pacific are mostly emerged coral reefs,
the flat surfaces of which are commonly visible even after several hundred thousand
years of emergence (Fig. 2.3d). Thus, unlike volcanic islands which exhibit com-
paratively large relative relief (large range between maximum and mean elevations),
limestone islands have smaller relative relief.

The distribution of limestone low and limestone high islands is also instructive.
The fact that most limestone high islands are found in convergent plate boundary
contexts suggests that uplift linked to plate convergence, collision and compression
is largely responsible for their formation; examples come from island forearcs such
as the Western Belt in Vanuatu and remnant arcs like the Lau-Colville Ridge in
eastern Fiji (Nunn 1998a; Calmant et al. 1999). While many limestone low islands
occur in similar locations and formed the same way, many more limestone low
islands are found in intraplate locations, commonly distant from limestone high
islands. This points to the dominant role of Late Quaternary sea-level change (rather
than tectonics) in the emergence of such islands. The few limestone high islands like
Nauru and Niue found in intraplate locations have formed as a result of localized
lithospheric flexure attributable to volcano loading and nearby plate convergence,
respectively (Hill and Jacobson 1989; Nunn and Britton 2004).

2.7 Conclusions

The island classification presented in this chapter is geoscience-based and descrip-
tive and adequately captures the diversity of island types in the Pacific Basin.
Based on an analysis of 1779 islands, it is clear that this classification can be used
as an explanatory tool for understanding why islands are located where they are;
why islands are the size they are; why islands have the maximum elevations they
have; and why particular types of island are found in particular places and some-
times not in others. In this sense, this classification represents the first that is able
to answer fundamental questions about individual islands, but its value also lies
in explaining the spatial diversity of island groups at subregional as well as
regional scales.

This classification could be used as the basis for more detailed (second-order)
classifications addressing particular issues. These include (non-partisan) areal
assessments of environmental risk exposure as well as climate change vulnerability.
It also has a potential role in the understanding of airborne or seaborne pollution and
in national or regional planning for issues like infrastructure development or settle-
ment relocation.
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Chapter 3

Climate Change Scenarios and Projections
for the Pacific

Savin S. Chand

3.1 Introduction

Small island countries in the Pacific often experience changes and variability in
their climate, for example, those associated with shifts in rainfall patterns, increas-
ing frequency of extreme weather events such as increasingly intense tropical
cyclones and rising sea levels (Nurse et al. 2014). However, distinguishing between
natural variability and climate change due to human activity that alters composition
of global atmosphere through greenhouse gas emissions can be extremely difficult
in this region. This is in part due to lack of consistent long-term observed data
records for climate change detection and attribution studies and in part due to limi-
tations in climate models, such as insufficient model resolutions, to spatially resolve
small islands (e.g. Australian Bureau of Meteorology and CSIRO 2011).

There is no doubt that the threats of climate change and sea-level rise are very
real in the Pacific, even to an extent that the very existence of some atoll nations is
threatened by rising sea levels attributed to global warming (Nurse et al. 2014;
Church et al. 2013). Better understanding of the climate of the Pacific Island coun-
tries and how they reflect natural variability and change directly or indirectly due to
human activity can have significant environmental and socio-economic implica-
tions. People living in the Pacific Island countries have a strong relationship with the
land and ocean, so changes in climate can represent threat not only to the physical
environment but also to their culture and customs.

In order to implement effective adaptation strategies to mitigate impacts of cli-
mate variability and change, the Australian Government implemented the
International Climate Change Adaptation Initiative to meet high-priority adapta-
tion needs of vulnerable Pacific Island countries. Through this initiative, the two
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successive major research programmes called the Pacific Climate Change Science
Program (PCCSP, from 2009 to 2011) and the Pacific-Australia Climate Change
Science Adaptation Planning (PACCSAP, from 2011 to 2014) programme were car-
ried out to improve our understanding of the past, present and future climate of the
Pacific Island countries. This chapter reviews some of the major findings of the
research conducted as part of those two programmes, as well as other new research
over recent years, to provide an up-to-date information on climate variability and
change and associated scientific challenges for the Pacific Island countries. Particular
emphasis is on the role of major climatic features and drivers (hereafter, collectively
referred to as “features”) of climate variability and change in the Pacific and how
projected changes in these features are likely to affect ocean and atmospheric vari-
ables that are of significant concern for the people of the Pacific Island countries,
such as extreme rainfall events and sea-level rise.

This chapter is structured into four parts. The first part looks at some of the major
climatic features of climate variability in the Pacific, namely, the South Pacific
Convergence Zone, El Nifo-Southern Oscillation and Interdecadal Pacific
Oscillation. The second part examines the observed climate variability and trends in
the Pacific, with emphasis on rainfall and sea level. The third part focuses on results
from climate model projections for the Pacific, including methods of climate projec-
tions and model evaluations. The last section gives the summary, including a discus-
sion of uncertainties associated with climate projections over the Pacific.

3.2 Major Features of Climate Variability in the Pacific

There are several important features of the climate system that influence mean cli-
mate and variability in the Pacific. This section gives an overview of the main cli-
matic features that are integral to the Pacific climate. Changes in these features as a
result of human-induced global warming are discussed in latter sections.

3.2.1 South Pacific Convergence Zone

A prominent climatic feature in the Pacific is the South Pacific Convergence Zone
(SPCZ) where convective activities such as thunderstorms and tropical cyclones are
frequently spawned (e.g. Trenberth 1976; Vincent 1994). The SPCZ is characterized
by a band of high cloudiness, strong convective precipitation and low-level conver-
gence extending northwest-southeast diagonally from near the Solomon Islands (0°,
150°E) towards French Polynesia (30°S, 120°W) (Fig. 3.1a).

The SPCZ forms in the region of convergence between southeast trade winds and
the easterly flow from the eastern South Pacific anticyclones. The western, tropical
portion of the SPCZ lies over the region of relatively warmer sea surface tempera-
ture (SST) called the West Pacific Warm Pool, while the eastern portion undergoes
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Fig. 3.1 (a) Average positions of the major climatic features in the Pacific. Blue shading repre-
sents convergence zones, yellow arrows show near-surface winds, and the red dashed oval indi-
cates the West Pacific Warm Pool, and “H” represents the typical positions of moving high-pressure
systems, and (b) November—April index of the South Pacific Convergence Zone (SPCZI, Salinger
etal. 2014), calculated as the normalized November—April difference in mean sea-level pressure at
Apia and Suva for the period 1932-1992

frequent mid-latitude interactions that contribute to its diagonal orientation (e.g.
Vincent 1994; Widlansky et al. 2011). The SPCZ strongly contributes to the sea-
sonal cycle of the rainfall in the South Pacific. It is more clearly defined during the
months of December—February accounting for higher than average annual rainfall
during these months and weaker and less well defined in June—August.

The interannual variability of the SPCZ is dominated by the impact of the El
Nifo-Southern Oscillation phenomenon (ENSO, defined in the following section)



174 S. S. Chand

with the SPCZ moving north and east during El Nifio events and south and west
during La Nifia events (e.g. Trenberth 1976; Vincent 1994; Folland et al. 2002;
Salinger et al. 2014). As a result, convective activities such as tropical cyclones and
heavy rainfall move accordingly (e.g. Vincent et al. 2011).

Salinger et al. (2014) derived an index called the South Pacific Convergence
Zone index (SPCZI) to monitor interannual to decadal variability in the Pacific cli-
mate. The SPCZI is computed using the normalized mean sea level pressure differ-
ence between the two stations based in Apia, Samoa, and Suva, Fiji, as they lie
symmetrically on either sides of the SPCZ making them (Apia-Suva pair of sta-
tions) ideal for capturing latitudinal shifts in the position of the SPCZ (Fig. 3.1b).

3.2.2 EI Niiio-Southern Oscillation

The El Nifio-Southern Oscillation (ENSO) phenomenon is a major mode of interan-
nual (year-to-year) climate variability in the Pacific (e.g. Troup 1965; Trenberth
1997). The ENSO cycle is irregular, and most of its variability has periods of 27
years. The term “El Nifio”, which is Spanish for “the boy” or “the Christ child”, was
traditionally used to refer to the annual occurrence of a warm ocean current that
flowed southward along the west coast of Peru and Ecuador around Christmas time.
By the mid-twentieth century, scientists realized that El Nifio is far more than a
coastal phenomenon and that it is associated with basin-scale warming of the tropi-
cal Pacific Ocean. Nowadays the term “El Nifio” is commonly used to refer to the
occurrence of anomalously high sea surface temperature (SST) in the central and
eastern equatorial Pacific Ocean every few years. The opposite “La Nifia” (“the girl”
in Spanish) consists of basin-wide cooling of the tropical Pacific. This anomalous
warming and cooling of the central and eastern equatorial Pacific SST drives the
atmospheric phenomenon called the Southern Oscillation.

The Southern Oscillation, initially discovered by Sir Gilbert Walker in the 1920s
and 1930s (Walker 1923, 1924), is characterized by a seesaw in tropical sea-level
pressure (SLP) between the Western and Eastern Hemispheres (e.g. Trenberth 1976;
Trenberth and Shea 1987). During EI Nifio, the SLP falls in the central and eastern
Pacific and rises in the western Pacific; the reverse occurs during La Nifia. The El
Nifio and the Southern Oscillation are two coupled aspects of the same phenome-
non. The zonal atmospheric circulation that arises as a result of this coupling is
called the “Walker circulation”.

Normally, the rising air associated with the Walker circulation is located in the
equatorial western Pacific near the warm Indonesian region and sinking air near the
cold equatorial eastern Pacific. These rising and sinking branches of the Walker cell
are connected by easterlies in the lower troposphere and westerlies in the upper
troposphere. During El Nifio events when the central and eastern Pacific SST
becomes anomalously warmer than the western Pacific SST, the rising branch of the
Walker cell shifts accordingly to the central or eastern Pacific, and the sinking
branch is located over the western Pacific. This rising branch of the cell is often
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associated with convective activity such as rainfall and tropical cyclones (e.g.
Trenberth and Caron 2000; Chand and Walsh 2009; Vincent et al. 2011).

Effects of ENSO are not only confined to the equatorial Pacific alone but are also
observed in many parts of the world through “teleconnections” (e.g. Garcia-Serrano
et al. 2017). Numerous studies have documented the influence of ENSO on various
weather and climate variables around the world, but our focus in this chapter is on
how ENSO affects climate variability in the Pacific Ocean basin. Note that the terms
“El Nifio” and “La Nifia” are sometimes used interchangeably with “warm phase”
and “cold phase”, respectively. The term “neutral phase” describes conditions when
the equatorial SSTs are near climatological averages.

Numerous indices have been developed and used to monitor the status of ENSO
(e.g. Trenberth and Stepaniak 2001). The two commonly used indices are called the
Southern Oscillation index (SOI) and the Nifio3.4 index. The SOI is calculated
using the barometric pressure difference between Tahiti and Darwin. A strong, per-
sistently negative SOI is typical of El Nifio conditions, while a strong and persis-
tently positive SOI is indicative of La Nifia. Similarly, the Nifio3.4 index measures
the SST anomaly in the central and eastern Pacific (5°N-5°S; 170°W-120°W). A
strong, persistently positive Nifio3.4 index indicates an El Nifio event. Note that SOI
and Nifo3.4 index change simultaneously, indicative of strong ocean-atmospheric
coupling during ENSO events.

Over the past years, another type of El Nifio [referred to as the “El Nifio Modoki”,
as in Ashok et al. 2007] is observed. Unlike traditional El Nifio events, El Nifio
Modoki events have above-normal SSTs that are confined more to the central Pacific
region flanked by below-normal SSTs on the eastern and western sides (Fig. 3.2).
Some scientists hypothesize that this might be related to anthropogenic global
warming (e.g. Yeh et al. 2009), and if so, then this type of El Nifio may become
more frequent in the future (see latter sections).

3.2.3 Pacific Decadal Oscillation and Interdecadal Pacific
Oscillation

Climate in and around the Pacific Ocean also shows substantial “ENSO-like” pat-
terns of variability on decadal and interdecadal time scales (e.g. Power et al. 1999a,
1999b; Callaghan and Power 2011). Much of this variability has been linked to the
Pacific Decadal Oscillation (PDO, Mantua et al. 1997) and Interdecadal Pacific
Oscillation (IPO, Power et al. 1999a). The PDO is a characteristic of the North
Pacific Ocean, whereas IPO is the Pacific-wide manifestation that includes the
Southern Hemisphere, and so the interdecadal variability in PDO and IPO indices
are very similar (Power et al. 1999b). When the IPO is in a positive phase, SST
anomalies over the North Pacific are negative, as are anomalies near New Zealand,
while SST anomalies over the tropical Pacific are positive. An index, termed the [PO
tripole index (TPI), developed by Henley et al. (2015), can be used as a measure of
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Fig. 3.2 First two modes of empirical orthogonal function (EOF) representing spatial distribution
of monthly sea surface temperature anomalies in the Pacific (multiplied by respective standard
deviations of respective principal components to give unit in °C): (a) the first EOF mode represents
traditional El Nifio phenomenon, and (b) the second EOF mode represents El Nifio Modoki
(Source: Ashok et al. 2007). Boxes show areas over which the (a) Nifio 3.4 and (b) El Nifio Modoki
indices are calculated as a measure of traditional El Nifio and Modoki-type El Nifio events,
respectively

interdecadal variability in the Pacific. This index is based on the difference between
the sea surface temperature anomalies averaged over the central equatorial Pacific
and in the Northwest and Southwest Pacific (Fig. 3.3).

The IPO has a strong influence on the Pacific climate by modulating teleconnec-
tions with ENSO (e.g. Salinger et al. 2001). For example, the rapid shift from
negative to positive IPO during mid-1970s was associated with a shift to an El Nifo-
dominated period, whereas the shift to a negative IPO after around the year 2000
was associated with La Nifla-dominated period. Some studies have indicated that
the synergetic match of positive IPO and El Nifio would strengthen the effects of
either mode’s impact on climate, whereas the opposite phases (i.e. negative IPO and
La Nifia) would weaken the impact (e.g. Gershunov and Barnett 1998; Grant and
Walsh 2001).
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The occurrence of slow, natural oceanic processes can make some of the decadal
variability linked to the IPO and PDO more predictable than ENSO (e.g. Power and
Colman 2006; Mochizuki et al. 2010). However, the extent to which this translates
into predictability of atmospheric variables, such as rainfall and tropical cyclones in
the Pacific, is subject to ongoing research.
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Fig. 3.3 The IPO tripole index (TPI) is based on the difference between the SSTA averaged over
the central equatorial Pacific and the average of the SSTA in the Northwest and Southwest Pacific.
It is a measure of interdecadal variability in the Pacific. The map (a) shows the correlations of the
low-pass index TPI (b) with filtered HadISST2.1. Data to construct these figures are obtained from
Henley et al. (2015), freely available on the website https://www.esrl.noaa.gov/psd/data/time-
series/IPOTPI/
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3.3 Observed Climate Variability and Change in the Pacific

Climate variability and change in the Pacific region can occur at different time
scales and involve different contributing factors. Prior to the Industrial Revolution
(around 1750), the climate of the Pacific underwent large variations mainly associ-
ated with changes in intensity and frequency of ENSO (e.g. Nunn 2007; Gergis and
Fowler 2009). However, it is now highly likely that the climate is also influenced
directly or indirectly by human activities (e.g. Cubasch et al. 2013). This section
reviews the impact of observed climate variability and change on ocean and atmo-
spheric variables, such as rainfall, tropical cyclones and sea-level rise, which are of
significant concern to the people of the Pacific Island countries.

3.3.1 General Perspective

There is no doubt that global climate is changing and evidence of such change is
broad and compelling (e.g. Cubasch et al. 2013). Key indicators of global climate
change include increasing concentrations of greenhouse gases in the atmosphere,
which drive significant changes in physical responses of ocean and atmospheric
variables such as rising global average near-surface air temperature and humidity,
increasing intensity of precipitation events, changing frequency and intensity of
severe weather events and accelerating global mean sea-level rise.

Further evidence of changes in the global climate comes from natural indicators
such as earlier flowering and ripening dates, coral bleaching and poleward migra-
tion of plants and animals (e.g. Rosenzweig et al. 2007; Chand et al. 2014).
Reconstructed paleoclimate temperature records over the past 2000 years from
sources such as tree rings, ice cores and corals, when placed in context with modern
instrumental records, also indicate a rapid rate of warming in the backdrop of natural
climate variability, particularly since the early twentieth century (e.g. Gergis and
Fowler 2009; Mann et al. 2009).

For the Pacific Island countries, there is a general agreement among the com-
munities that changes in weather and climate have occurred in their region more
significantly over the past decade than ever before. Such perceptions arise mainly
from local observations such as shifts in seasonal patterns of rainfall and tropical
cyclones, more frequent and extreme rainfall causing flooding and mudslides,
increasing frequency of droughts, fires and number of hot days, and more storm
surges, coastal erosion and salt water contaminations of freshwater springs. In order
to determine whether these perceived claims are scientifically valid and, if so, how
to quantify relative contributions from human-induced and natural variability, a
major concerted research effort was implemented through the PCCSP and PACCSAP
projects by the Australian Bureau of Meteorology and the Commonwealth Scientific
and Industrial Research Organisation (CSIRO) in partnership with several research
institutes in the Pacific Island countries over the period 2009-2014 (Australian
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Bureau of Meteorology and CSIRO 2011). This section summarizes some of the
main results of those findings.

Note that lack of sufficient high-quality data, as well as the presence of large
natural climate variability, makes it difficult to scientifically confirm the extent of
human impacts on some oceanic and atmospheric variables such as rainfall and
tropical cyclones. This highlights the need for more research on detection and attri-
bution of climate change in the Pacific as new and updated data become available in
the future.

3.3.2 Temperature

Station data from meteorological services show that mean surface air temperatures
have generally increased throughout the Pacific during the twentieth century, with
most stations recording trends around +0.08—0.20 °C per decade (Fig. 3.4a). Trends
in maximum and minimum temperatures are generally similar to those of mean
temperature, and the amount of warming in wet (November—April) and dry (May—
October) is similar for most stations. Overall, the magnitude of background warm-
ing in the Pacific since the mid-twentieth century is consistent with human-induced
global warming (Fig. 3.4b).

3.3.3 Rainfall

Rainfall variability in the Pacific Island countries is strongly linked to ENSO and
the IPO phenomena and directly attributable to resulting shifts in the SPCZ (e.g.
Folland et al. 2002; Salinger et al. 2001, 2014). On average, the mean position of the
SPCZ gets displaced northeastward during El Nifio events, thus causing enhanced
rainfall activity around most of the Pacific Island countries that lie northeast of the
SPCZ, extending to French Polynesia (e.g. Salinger et al. 2014). On the contrary,
the mean position of the SPCZ gets displaced southwestward during La Nifa, caus-
ing suppressed rainfall activity in the Pacific region. The IPO also modulates rainfall
in the South Pacific by shifting the SPCZ northeastward during the positive phase
(and southwestward during the negative phase), causing enhanced rainfall activity
northeast of the SPCZ during the positive phase (e.g. Salinger et al. 2001).

Unlike changes in temperature, long-term rainfall trends in the Pacific are not
very clear mainly due to strong background natural variability. Some previous stud-
ies (e.g. Griffiths et al. 2003) have shown a general increase in rainfall totals for
countries that lie northeast of the SPCZ (and decrease for countries in the south-
west) over the period 1960-2010 (Fig. 3.5a). This pattern of change is reflected in
both wet and dry seasons. However, the pattern of trends has changed markedly in
the southwest Pacific since 1990, consistent with a shift of the SPCZ back to its
climatological position since 1990 (Fig. 3.5b).
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Fig. 3.4 (a) Annual mean surface temperature anomalies for the globe and for the Pacific (PCCSP,
120°E-150°E; 25°S-25°N). (b) Sign and magnitude of trends in annual mean temperatures at
Pacific Island meteorological stations for 1960-2009. Australian stations are included for compari-
sons. (Source: Australian Bureau of Meteorology and CSIRO 2011)

3.3.4 Tropical Cyclones

Small island countries in the Pacific are among some of the worst affected by tropi-
cal cyclone events due to their high vulnerability and low adaptive capacity. For this
reason, a separate chapter (Chap. 6) is dedicated entirely to the impact of climate
variability and change to tropical cyclones in the Pacific.
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Fig. 3.5 Trends in annual total rainfall at Pacific meteorological stations (including over Australia)

for (a) 1960-2010 and (b) 1990-2010. (Source: Australian Bureau of Meteorology and CSIRO
2011)

3.3.5 Sea Level

Sea-level rise poses one of the major threats to small island countries in the Pacific
(e.g. Nicholls and Cazenave 2010; Church et al. 2006; Zhang and Church 2012;
Nunn 2013), particularly for the low-lying coastal areas where most of the commu-
nities and infrastructure are located. There are various factors that contribute to
changes in sea level such as tides and changes in weather and climate variables.
A small increase in overall, long-term sea-level rise due to climate change can com-
pound the effects of natural variability and cause extreme sea levels to occur more
frequently. However, it should be noted that sea-level changes are usually not spa-
tially uniform as many regions can experience a higher or lower rate of sea-level
change than the global average (e.g. Church et al. 2010; Becker et al. 2012).
ENSO, as a dominant source of interannual variability, has a major influence on
year-to-year variability of sea level across the Pacific (Zhang and Church 2012). For
example, strengthening trade winds during La Nifia events shove more water
towards the west resulting in higher than normal sea surface in the western tropical
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Pacific. On the contrary, weakening trade winds during El Nifio events are unable to
maintain the normal gradient of sea level, leading to a drop in sea level in the west
and rise in the east (Fig. 3.6a). The IPO phenomenon also has an ENSO-like (but
distinct) impact on sea-level variability in the Pacific at decadal time scale (Zhang
and Church 2012) with positive sea-level variations in the central and eastern tropi-
cal Pacific and negative sea-level variation in a narrow “horseshoe-like” pattern in
the western tropical Pacific (Fig. 3.6b).

In addition to the influence of ENSO and the IPO, sea level is also rising globally
and in the Pacific. Satellite altimeter records and in situ measurements indicate that
global averaged sea-level rate was 1.7 = 0.2 mm per year between 1901 and 2010
and that it has significantly increased to 3.2 + 0.4 mm per year between the period
1993 and 2010 (Church et al. 2013). This rise has occurred everywhere in the Pacific
(Fig. 3.7c) and even at a faster rate in the western and central tropical Pacific, north-
east Pacific and south Pacific (Zhang and Church 2012; Becker et al. 2012).
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Fig. 3.6 (a) Interannual sea-level fingerprint associated with ENSO, (b) interdecadal sea-level
fingerprint associated with Decadal Pacific Oscillation, (¢) linear trend in sea-level over the period
1993-2011 after taking into account interannual and interdecadal variability through regression
analysis and (d) uncertainty in sea-level linear trend at 95% confidence interval. (Source: Zhang
and Church 2012)
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Fig. 3.7 (a) Global average carbon dioxide emission in gigatonnes for six future emission sce-
narios used as part of CMIP3 experiments (Source: IPCC 2007) and (b) trends in radiative forcing
relative to pre-industrial values used as part of CMIP5 experiments. (Source: van Vuuren et al.
2011)

3.4 Climate Projections

3.4.1 Overview

Earth’s climate is a complex system that undergoes significant variability and
change as a result of multiple linear and non-linear processes operating at various
spatial and temporal scales. This means that past climate trends cannot be simply
extrapolated to understand future climate variability and change. Several non-linear
processes must be taken into account, along with a range of plausible future green-
house gas and aerosol concentration scenarios and pathways. Climate models are
the primary tools available for investigating how climate system responds to these
scenarios and pathways and for making projections of future climate over the
coming century and beyond in order to help us better understand how the climate
system evolves.

The models used in climate research can be as simple as an energy balance model
or as complex as global climate models (GCMs) and regional climate models
(RCMs) requiring state-of-the-art high-performance computing (Flato et al. 2013).
GCMs can be either “standard” atmosphere-ocean general circulation models
(AOGCMs) or Earth system models (ESMs) that expand on AOGCMs to include
representation of various biogeochemical cycles such as those involved in the car-
bon cycle or ozone as well (Flato 2011). AOGCMs are extensively used to under-
stand the dynamics of the physical components of the climate system and for making
projections based on future greenhouse gas and aerosol forcing. RCMs, on the other
hand, are limited-area models with representations of climate processes comparable
to those in the atmospheric and land surface components of AOGCMs, often used to
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dynamically “downscale” global model simulations for some particular geographi-
cal region to provide more detailed information.

Many research institutions around the world develop and maintain their own
GCMs. While these models are similar in many ways, subtle differences exist with
respect to factors such as spatial resolution, parametrization and model components
(e.g. some models represent atmospheric chemistry, while others may not). This
means that climate model simulations arising from these GCMs may be different
from each other.

In order to facilitate a community-based infrastructure in support of intercom-
parison of results from GCMs and data access, the Coupled Model Intercomparison
Project (CMIP) framework was established in 1995 under the auspices of the
Working Group on Coupled Modelling. The CMIP intercomparison project pro-
vides up-to-date information on climate science and adaptation policies to the
Intergovernmental Panel on Climate Change (IPCC). Results from the two last
CMIP phases, CMIP3 (Meehl et al. 2007) and CMIP5 (Taylor et al. 2012), are
reported in the IPCC’s Fourth Assessment Report (completed in 2007) and Fifth
Assessment Report (completed in 2014), respectively, and form the basis of climate
projections presented in this chapter for the Pacific.

3.4.2 Emission Scenarios and Pathways

CMIP3 models use emission scenarios to estimate the plausible future concentra-
tion of greenhouse gases in the atmosphere based on assumptions about demo-
graphic changes, economic development and technological change, as well as
taking into consideration the natural source and sink of these gasses (details of
emission scenarios are available from the IPCC Special Report on Emissions
Scenarios; Nakicenovic et al. 2000). These emission scenarios are grouped into four
“storylines”: A1, A2, Bl and B2. The A1 storyline describes a future world of rapid
population growth, a global population that peaks in mid-century and declines
thereafter and a rapid introduction of new and more efficient technologies. The
technological change may be fossil intensive (A1FI), non-fossil intensive (A1T) or
abalance across all sources (A1B). The A2 storyline is based on “business-as-usual”
case where population increases continuously with fragmented economic and tech-
nological growth. The B1 storyline describes a world with population growth the
same as Al but with rapid change in economic structure and introduction of clean
and efficient technologies. Finally, the B2 storyline describes a world with increas-
ing global population at a rate lower than A2, intermediate levels of economic
development and less rapid and more diverse technological change than in the B1
and A1 storylines. These storylines lead to different levels of global average carbon
dioxide emissions in the atmosphere, as well as different levels of carbon dioxide
concentrations after taking into consideration natural sources and sinks, by the end
of the twenty-first century (Fig. 3.7a).
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On the other hand, CMIP5 models are based on a set of four plausible future
greenhouse gas concentrations (not emissions), called the Representative
Concentration Pathways (RCPs), that were developed for the climate modelling
community as a basis for long-term and near-term climate modelling experiments
(see van Vuuren et al. 2011 for details). These four RCPs, namely, RCP2.6, RCP4.5,
RCP6.0 and RCPS.5, are defined according to the radiative forcing (i.e. cumulative
measure of human emissions of greenhouse gasses from all sources expressed in
Watts per square metre) target levels for 2100 relative to their pre-industrial levels.
RCP2.6 is a low forcing level that assumes global average forcing levels peak
between 2010 and 2020, then declining substantially thereafter, reaching 2.6 W m™
by 2100 relative to pre-industrial levels. In the two stabilization trajectories RCP4.5
and RCP6.0, forcing levels peak around 2040 and 2080 before declining to
4.5 W m~2 and 6 W m~2, respectively, by 2100 relative to their pre-industrial levels.
The rising radiative forcing RCPS8.5, which depicts a relatively conservative busi-
ness as usual case, is a very high baseline scenario where radiative forcings continue
to rise throughout the twenty-first century to around 8.5 W m=2 by 2100 (Fig. 3.7b).

CMIP3 and CMIPS5 datasets each contain outputs from a large number of GCMs.
These data are freely available from the Program for Climate Model Diagnosis and
Intercomparison at Lawrence Livermore National Laboratory (www-pcmdi.llnl.
gov). Note a direct comparison of CMIP3 and CMIPS5 results is not possible as these
models use different ways of describing the amount of greenhouse gases in the
atmosphere in the future and that CMIP5 models are more advanced in terms of
increasing model complexity. Regardless, results from both the projects indirectly
simulate low, medium and high emission futures, and so some comparisons of pro-
jection results are possible.

Several different experiments were conducted as part of CMIP3 (Meehl et al.
2007) and CMIP5 (Taylor et al. 2012) phases. Overall, the long-term climate simu-
lations for both the phases were essentially similar in that both included the climate
of the twentieth-century simulations (also referred to as the “historical”” simulations)
and the climate of the twenty-first-century simulations (or the “future-climate” sim-
ulations) in their experiment design. Results from the twentieth-century simulations
were extensively used in model evaluation and validation, while the results from the
twenty-first-century simulations were used in determining climate projections.

3.4.3 Climate Model Evaluations

In order to use GCMs for scientifically robust and confident projections, it first has
to be demonstrated that these models are sufficiently realistic in simulating the pres-
ent climate. The skill of a model depends on its ability to represent the long-term
average and seasonally varying cycles of various atmospheric and ocean variables
such as temperature, rainfall and sea level, as well on its ability to represent impor-
tant large-scale features such as ENSO, SPCZ and IPO that modulate natural cli-
mate variability. In addition, climate models should be stable and free from
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substantial drift that might lead to spurious departures in simulations in the absence
of factors that would otherwise be responsible to induce the change.

The level of agreement between model simulations and observations (or gridded
reanalysis products as estimates of observations) is an indicator of model reliability.
Note that no one model is the best in representing all aspects of the climate system,
and so in climate studies, collective results from a group of models (also known as
model ensembles) are often used for validating climate model results and for mak-
ing projections of the future climate. Over the past years, several studies have com-
prehensively evaluated the performance of CMIP3 and CMIP5 model ensembles
over the tropical western Pacific (e.g. Grose et al. 2014; Wang et al. 2015; Moise
et al. 2015). They found that the ability of GCMs to realistically reproduce several
key climatic variables and features of the late twentieth century has improved sig-
nificantly over the tropical Pacific.

A recent study by Grose et al. (2014) assessed and compared the performance of
CMIP3 and CMIP5 models for the western tropical Pacific. Their study reported
that while models from both these phases are able to capture important large-scale
climatic features with a certain degree of fidelity, the CMIP5 models have shown
some improvements in performance over CMIP3 models. For example, they showed
that the observed mean SST and precipitation, respectively, compare well with
those in CMIP3 and CMIP5 model ensembles for the tropical western Pacific (see
Figs. 1 and 4 of Grose et al. 2014). However, despite the similarities in the zonal
orientation of the mean SST between observations and model ensembles, the cold
tongue (defined by the 28.5 °C isotherm) extends too far westward (often referred
to as the cold-tongue bias). This cold-tongue bias reduces the extent of the Indo-
Pacific Warm Pool, making it generally too cold, thus having implications on wind
distributions, atmospheric convergence and rainfall. Their study showed the impact
of this cold-tongue bias on tropical precipitations. Climate models typically simu-
late too little precipitation along the equator and too much precipitation to the north
and south of the cold tongue in the ITCZ and SPCZ regions. GCMs from both
CMIP3 and CMIP5 experiments can have an overly zonal SPCZ that can be too far
north in the austral winter (June—August) and too far east in the austral summer
(December—February). Consequently, this can create potential biases in rainfall pat-
terns for the small island countries that lie along or on either sides of the SPCZ in
the South Pacific (Widlansky et al. 2013).

As discussed earlier, ENSO is a major component of natural climate variability
in the Pacific, and to have confidence in climate projections for the Pacific Island
countries, it is essential that ENSO is well simulated in climate models. In order to
simulate ENSO, models should be able to not only simulate the mean climate condi-
tions but also ocean-atmosphere interactions (such as associated changes in sea sur-
face temperature and atmospheric pressure) at various time and spatial scales.
Several studies have shown that a number of climate models from the CMIP experi-
ments can simulate ENSO-like variability reasonably well, with models from
CMIPS having slightly better performance than those from CMIP3 (e.g. Guilyardi
et al. 2012; Grose et al. 2014; Bellenger et al. 2014). These improvements include
better simulation of the magnitude and frequency of ENSO events, as well as
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improvements in simulating ENSO seasonal phase locking and the location of the
strongest SST anomalies during the onset and peak phases of El Nifio and La Nifa.
However, significant development is still needed in climate models to accurately
simulate the basic characteristics of ENSO (such as amplitude, frequency, seasonal
phase lock, etc.), as well as the underlying physical processes (e.g. atmospheric
Bjerknes feedback) that control ENSO evolution. Moreover, several models still
also have challenges in simulating the evolving nature of ENSO (such as the
Modoki-type events) identified in the past investigations (e.g. Kim and Yu 2012).

In general, the global climate models from the CMIP experiments can represent
essential aspects of the most important large-scale climate features of the Pacific
region. These include representing the geographic and temporal patterns of sea sur-
face temperature, location and seasonality of the major convergence of the SPCZ
(which is the dominant climatic feature of the South Pacific) and the associated
rainfall. This provides confidence in the use of models for regional climate projec-
tions. However, a number of common model biases and errors are apparent which
lead to important limits in this confidence. Perhaps the most significant of these
arise from the cold-tongue bias that impacts realistic simulations of several key
ocean-atmospheric variables in the Pacific. It is critical that such biases and short-
comings are borne in mind when interpreting results from climate model projec-
tions for practical applications within the region.

3.4.4 Climate Model Projections for the Pacific

As highlighted earlier, climate models are the primary tools available for investigat-
ing how the climate system responds to different climate scenarios and pathways
and for making projections of future climate over the coming century and beyond in
order to help us better understand how climate system evolves. In this section, we
review projected changes in the two major climate features and variability, ENSO
and the SPCZ, as well as some key atmospheric and oceanic variables, using results
from the CMIP experiments.

El Nino-Southern Oscillation

As ENSO is the dominant mode of interannual natural climate variability in the
Pacific, any substantial change in the character of ENSO in response to anthropo-
genic global warming will have major implications on regional climate of the small
island countries in the Pacific. Recent studies provide some indications of projected
future changes in certain aspects of ENSO using current-generation climate models
(Kim and Yu 2012; Power et al. 2013; Cai et al. 2014). This includes an increased
frequency of extreme EI Nifio events (such as the events of 1982/1983 and
1997/1998) due to more occurrences of atmospheric convection in the eastern
Pacific (Cai et al. 2014), as well as a potential increase in the frequency of the
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“Modoki-type” central Pacific El Nifio events (Kim and Yu 2012). Moreover, some
studies also give an indication of the weakening of the Walker circulation and the
associated decrease in the pressure gradient across the Pacific (e.g. Vecchi
et al. 2006).

However, it should be emphasized that there is a large degree of inconsistency
among climate models on future projections of these changes (e.g. Collins et al.
2010). Therefore, care must be exercised when interpreting climate projection
results. Regardless, there is a strong consensus that ENSO variability will continue
to dominate regional-scale climate in the future (Power et al. 2013; Chand et al.
2017) and strongly influence weather-related variables in the changing climate
(Stevenson et al. 2012).

South Pacific Convergence Zone

The SPCZ is the largest rainband in the Southern Hemisphere and provides most of
the summer rainfall to the southwest Pacific Island countries. Therefore, any changes
in the characteristic of the SPCZ in response to greenhouse warming will have
major implications on communities of the small island countries in the Pacific.

A study by Widlansky et al. (2013) describes the likely projected changes in the
SPCZ using hierarchy of CMIP3 and CMIP5 climate models and idealized experi-
ments. They propose two competing mechanisms “wet gets wetter” and “warmest
get wetter” in response to greenhouse warming (Fig. 3.8). Mean specific humidity
is projected to increase over the entire tropical Pacific in response to greenhouse
warming, supporting an enhanced future hydrological cycle (Seager et al. 2010),
sometimes referred to as the “wet gets wetter” thermodynamic response to green-
house warming. Even though the simulated moisture increase in the SPCZ region
(Fig. 3.8a) is weaker than along the equator, it is substantially greater than that in the
southeast Pacific, a region that warms least and where drying is projected by nearly
all climate models (Brown et al. 2012). On the other hand, this effect is partially
offset, in regions such as the SPCZ that experience relatively minor warming, by the
anomalous divergence of mean moisture (Fig. 3.8b). The corresponding anomalous
circulation accounts for anomalous moisture convergence towards the warmest
waters, resulting in the increased rainfall within the ITCZ region (i.e. a “warmest
gets wetter” dynamic response to greenhouse warming).

As such, some islands in the SPCZ region could see a rainfall increase if tem-
peratures rise high enough, while those that lie along the southeastern margin of the
SPCZ (15°S-30°S; 135°W-105°W) would experience more robust drying (e.g.
Widlansky et al. 2013). A potentially weaker austral summer SPCZ would result in
a diminished rainy season for most southwest Pacific Island nations. According to
the hierarchy of bias-corrected atmospheric model experiments presented by
Widlansky et al. (2013), projected summer rainfall may decrease in Samoa and
other neighbouring islands on average by 10-20% during the twenty-first century.
Less future rainfall, combined with increasing surface temperatures and enhanced
potential evaporation, increases the potential for longer-term droughts in the region.
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a) Wet gets welter response to greenhouse waming

4075

b)

Fig. 3.8 Illustration of two opposing mechanisms responsible for SPCZ rainfall response to pro-
jected twenty-first-century greenhouse warming. (a) “Wet gets wetter” and (b) “warmest get wet-
ter” response to greenhouse warming. (Source: Widlansky et al. 2013)

However, as with projections for ENSO, it should be emphasized here that that
the bias-corrected models considered in Widlansky et al. (2013) may still be prone
to large uncertainties in the representation of convective processes and hence in the
representation of the dynamic response to greenhouse warming. Thus, care must be
exercised when interpreting results from climate model experiments.

Rainfall

Projections of rainfall for Pacific Island countries are not only dependent on the
ability of the climate models to realistically simulate major climatic features and
variability such as ENSO and the SPCZ but also on the spatial resolution of the
models. Generally, climate models from the CMIP3 and CMIP5 experiments are
too coarse to resolve island-scale rainfall, and so the actual amount of rainfall might
be grossly underestimated. Regardless, some insights into projected changes in
rainfall can be obtained from these models after accounting for model biases in
climate features and variability and utilizing techniques such as statistical or dynam-
ical downscaling to resolve island-scale rainfall patterns.
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Findings from the PCCSP and PACSSAP (Australian Bureau of Meteorology
and CSIRO 2011) and the updated climate projection results for different Pacific
Island countries (Australian Bureau of Meteorology and CSIRO 2014) reveal that
on average, wetter conditions are projected over most of the small island countries,
particularly those that lie in the vicinity of the SPCZ such as the Solomon Islands
and Papua New Guinea due to increased moisture convergence in warmer climate.
Small island countries that lie farther southeast or south of the SPCZ mean position,
between Vanuatu and the Cook Islands, are likely to experience decreases in rainfall
in the future, warming climate (see Fig. 3.9 for examples of rainfall projections in
selected Pacific Island countries). On seasonal basis, projected rainfall increases are
widespread during November—April associated with intensification of the
SPCZ. Rainfall increases are also projected during May—October in the deep tropics.

Moreover, a study by Power et al. (2013) evaluated El Nifio-related rainfall vari-
ability in the Pacific. Typically, the rainfall activity in the central and eastern equato-
rial Pacific is enhanced during El Nifio conditions and suppressed during La Nifia
conditions, whereas the activity in the western Pacific is enhanced during La Nifia
and suppressed during El Nifio conditions. Power et al. (2013) found that this pat-
tern of El Nifio-driven drying in the western Pacific Ocean and rainfall increases in
the central and eastern equatorial Pacific is likely to further intensify by the mid- to
late-twenty first century in response to greenhouse warming.

In another study, Power et al. (2017) examined the year-to-year disruptions in
ENSO rainfall over the Pacific to determine whether the likelihood of the frequency
of this disruption has already increased and whether the projected twenty-first-
century increase can be avoided or moderated through sustained reduction in green-
house gas emissions. They found using latest generation of climate models that
humans may have already contributed to the major disruption that occurred in the
real world during the late twentieth century. They also demonstrated that, although
marked and sustained reductions in twenty-first-century anthropogenic greenhouse
gas emissions can greatly moderate the likelihood of major disruption, elevated risk
of occurrence seems locked in now and for at least the remainder of the twenty-first
century.

Note that while these projected changes in rainfall patterns are physically plau-
sible and relatively consistent between climate models, the small-scale details of
these projections should be interpreted with caution given the known biases in
model simulations. In particular, the overly zonal orientation of the SPCZ in most
simulations, as well as the presence of the cold-tongue bias, can have implications
on regional-scale rainfall projections.

Extreme Rainfall

Changes in short-term extreme rainfall events in response to climate change will
have major implications, particularly for the vulnerable small Pacific Island coun-
tries that are subject to flash flood, erosions and landslides. While CMIP3 and
CMIP5 climate models have limitations in resolving extreme daily and sub-daily
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rainfall events, there is an indication from other fine-resolution modelling studies
that extreme rainfall events are likely to intensify for the tropics in the future, warm-
ing climate (e.g. O’Gorman 2015). It is generally accepted that extreme daily events
will increase at a rate of about 6-7% per degree warming, consistent with the
Clausius-Clapeyron relation. Furthermore, a recent regional climate modelling
study by Bao et al. (2017) found a robust increase in daily precipitation (~5.7-15%
°C™") throughout the major Australian cities, including those in the tropics. This
study can provide some indication of what can also be expected for the small Pacific
Island countries in the future, warming climate.

Sea-Level Rise

Reliable projections of sea-level change depend critically on improved understand-
ing and modelling of a wide range of contributing factors. The primary contributors
to contemporary sea-level change are the expansion of the ocean as it warms and the
transfer of water currently stored on land to the ocean, particularly from melting
glaciers and ice sheets. The IPCC’s Fourth Assessment Report (AR4) comprising of
models from CMIP3 included the estimates of ocean thermal expansion, melting of
glaciers and ice caps as well as increased melting of the Greenland ice sheet. Results
from AR4 gave a wide range in global averaged projections of about 20 to 80 cm by
2100 under several illustrative scenarios (Fig. 3.10) (Church et al. 2011).

However, current rate of sea-level rise is already near the upper end of these
projections. Since AR4, climate models have been improved substantially. These
improvements include bias corrections in historical ocean temperature observations
resulting in improved estimates of ocean thermal expansion, a better ability of mod-
els to estimate contributions from melting glaciers and ice caps as well as improve-
ments in modelling the underpinning processes of sea-level rise. These changes are
incorporated in the IPCC’s Fifth Assessment Report (ARS) that uses models from
the CMIP5 experiments, giving improved projections in order of about 28 to 98 cm
by 2100 under different RCPs (Fig. 3.11) (Church et al. 2013).

Regional sea-level changes may differ substantially from a global average, indic-
ative of complex spatial patterns that result from ocean dynamical processes, move-
ments of the sea floor and changes in gravity due to water mass redistribution in the
climate system (Church et al. 2013). The regional distribution is associated with
natural or anthropogenic climate modes rather than factors causing changes in the
global average value and includes such processes as a dynamical redistribution of
water masses and a change of water mass properties caused by changes in winds and
air pressure, air-sea heat and freshwater fluxes and ocean currents. Thus, estimating
mean sea-level rise at regional scale can be very challenging. Figure 3.12 shows
ensemble mean relative sea-level change between 19862005 and 2081-2100 for
RCPs 2.6, 4.5, 6.0 and 8.5 (Church et al. 2013). Based on this analysis, it is very
likely that regional sea level in the Pacific will be higher in the future-climate condi-
tions relative to the current-climate conditions (in order of about 20 cm for RCP2.6
to well over 60 cm for RCP8.5).
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3.5 Summary

Estimating impacts from human-induced climate change often rely on projections
from climate models. Coordinated experiments such as CMIP3 and CMIP5, in
which many climate models run a set of scenarios, have become the de facto stan-
dard to produce climate projections (Meehl et al. 2007). Uncertainties in these mod-
els are a limiting factor (e.g. Knutti and Sedlacek 2013), particularly for small island
countries in the Pacific. Uncertainties in climate projections can be from multiple
sources, and below are some of the key sources of uncertainties that are likely to
affect climate projections of the Pacific.

¢ Emission scenarios and RCPs: It is uncertain how society will evolve over this
century, and therefore it is not possible to know exactly how anthropogenic emis-
sions of greenhouse gases and aerosols will change. Emission scenarios and
RCPs produced by the IPCC are considered plausible, with the range of uncer-
tainty increasing over the twenty-first century.

e Climate model deficiencies: Climate models have deficiencies in representing
key physical processes. Many important small-scale processes cannot be repre-
sented explicitly in models and so must be included in approximate form as they
interact with larger-scale features. This could be due to limitations in scientific
understanding of those processes and lack of detailed observations of some phys-
ical processes. Subtle differences between models associated with this deficiency
result in a range of climate projections for a given scenario. Climate models are
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based on physical laws, and so they are not perfect representations of the real
world. While most models are able to capture the broad-scale climate features of
the Pacific, a number of deficiencies still remain at local scales. When a country
is located in a region with model deficiencies, less confidence can be placed on
associated climate projections.

e Natural climate variability: Some of the most difficult aspects of understand-
ing and projecting changes in regional climate relate to possible changes in the
circulation of the atmosphere and oceans and their patterns of variability. When
interpreting projected changes in the mean climate, it is important to remember
that natural climate variability (such as ENSO) will be superimposed and can
cause conditions to vary substantially from the long-term mean from 1 year to
the next and sometimes from one decade to the next.

The efforts for current-generation CMIP5 models are enormous, with a larger
number of more complex models run at higher resolution and with more complete
representations of external forcings over CMIP3 models. Therefore, it is widely
expected to provide more detailed and more certain projections. However, this is not
necessarily the case as demonstrated by Knutti and Sedld¢ek (2013). Improving
model complexity and resolution does not essentially reduce model uncertainty.
Some uncertainties will always remain, and these should be carefully considered
when making climate projections. For example, the presence of cold-tongue bias
can have impacts on realistic simulations of several key ocean-atmospheric vari-
ables, such as rainfall, over the small island countries in the Pacific. Adjustments of
these biases, for example, through statistical or dynamical downscaling approaches,
are vital to have more confidence in the projections.

While there has been progress on several fronts to monitor, understand and proj-
ect climate change relevant to the Pacific Island countries (e.g. through PCCSP and
PACCSAP projects), there are still many challenges. Further work to strengthen
scientific understanding of Pacific climate change is required to inform adaptation
and mitigation strategies. Ongoing research and collaboration is necessary to
advance climate science in the Pacific, particularly through improving and expand-
ing the network of ocean and atmospheric observations to advance understanding of
current climate, climate variability and trends, as well as improving climate models
and climate model projections.
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Chapter 4

Comparison of the Physical Susceptibility
of Pacific Islands to Risks Potentially
Associated with Variability in Weather
and Climate

Check for
updates

Lalit Kumar, Ian Eliot, Patrick D. Nunn, Tanya Stul, and Roger McLean

4.1 Introduction

Events such as marine inundation and coastal erosion are associated with natural
variation in weather and climate, the former at short and the latter over longer time
scales. The events unequivocally demonstrate some places are more susceptible to
particular types of events than others. Arguably some are more vulnerable than oth-
ers, making them more or less susceptible to changes in climate. However, vulner-
ability is defined and interpreted in many ways (Hinkel 2011). The Intergovernmental
Panel on Climate Change (IPCC) defines vulnerability as “the extent to which a
system is sensitive to climate change, including climate variability and extremes, or
unable to cope with it” (IPCC 2007). While this definition assumes there are many
forms and physical causes of vulnerability and its impact, the definition commonly
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encompasses a range of concepts, such as harmful effects on biota and lack of adapt-
ability, particularly by humans (IPCC 2014).

Issues related to vulnerability are commonly discussed in a similar context to
risk assessment, in which risk may result from short- to long-term variability in
weather and climate. The risks include floods, droughts, cyclones, heat waves and
other extreme climate-associated events to which ecosystems, people and the econ-
omy are exposed (Mambo 2017). In this context, vulnerability is a useful analytical
tool for defining the exposure to damage, impotence and marginality of physical and
social systems. The multidimensional nature of risk, vulnerability and impact of
physical, social, economic and political frameworks make vulnerability assessment
dynamic, complex and constantly changing (Adger 2006).

Recognition of interactions between physical and biologic factors as components
of natural systems is a significant part of any assessment of vulnerability in its broad
sense. However, it is not the approach adopted here. Instead, the information
reported here is a first step to a more detailed comparison of island vulnerabilities
made possible through the application of GIS techniques. Hence the term suscepti-
bility has been used to identify the narrower, physical assessment of the relative
extent to which small Pacific islands may be affected by climate and oceanographic
processes. The objective of our project was to determine geographic diversity in
susceptibility at a regional scale suited to strategic planning and relate that to marine
and climate processes known to present a risk to island inhabitants.

The approach adopted is partly consistent with the IPCC (2007) definition of vul-
nerability in as much as it examines the physical attributes and oceanographic setting
of 1532 islands across 15 Pacific island countries from a database developed for the
purposes of comparing the relative susceptibility of islands to geographic variation in
ocean water level, the annual average significant wave height and the frequency of
tropical cyclones. The spread of island countries in the database is illustrated in
Fig. 4.1. The database included information such as island name, island type, country,
area, perimeter, maximum elevation and lithology. Most of the information was
extracted from various country reports. The reference for island names was Motteler
and Bryan (1986); however Google Earth and country maps were also used. Time
series information describing change in water levels, wave heights and tropical
cyclone frequencies was obtained from the CSIRO (CSIRO 2015).

4.2 Aim

The aim of the project was to develop of an index for broad-scale comparison of the
susceptibility of small islands in the Pacific to climate change. At a whole-island
scale, some island types are inherently more susceptible or resistant to change
resulting from external processes. Islands or groups of islands have unique physical
characteristics and geographic attributes. Depending on where they are located, they
are exposed to differing climatic and oceanographic conditions. Thus, each island
will either be relatively more at risk or less at risk from climate-related changes.
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Fig. 4.1 Indicative susceptibility of the 1532 islands based on criteria shown in Table 4.1

Table 4.1 Ranking and cut-off values for the variables used to determine the indicative
susceptibility of islands

1. Lithology 2. Circularity 3. Height 4. Area
Roundness Maximum Area

Material Rank | index Rank | elevation (m) Rank | (km?) |Rank

Continental or volcanic 1 Round 1 >100 1 >100 1

high or volcanic low 0.75-1

Composite high or 2 Sub-rounded | 2 30-100 2 10-100 | 2

composite low 0.5 to <0.75

Limestone high or 3 Sub-angular |3 10 to <30 3 1 to 3

limestone low 0.25 to <0.5 <10

Reef island 4 Angular 4 <10 4 <1 4
0 to <0.25

Here three indices were used to organise and objectively interpret the available
information. The first, indicative susceptibility, refers to island type and combines
several physical attributes for each island. This aspect of the analysis has been
described in more detail by Kumar et al. (2018). The indicative susceptibility index
was extended by combining it with a second index, an exposure index, describing
broad-scale climate and oceanic processes. The combination constituted a third
index which arguably describes the geomorphic susceptibility of Pacific islands to
climate and oceanographic change. The term susceptibility is used instead of the
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more widely applied term vulnerability defined by IPCC (2007) and Hinkel (2011)
since only the physical aspects of islands are used in the development of the index
and no human dimensions are utilised. Compilation of the three indices and their
interpretation are described below.

4.3 The Indicative Susceptibility Index

4.3.1 Methods and Variables Used

The variables used for developing the indicative susceptibility index were lithology,
maximum elevation, area and circularity. Each of the variables was ranked on a
four-point scale, with one being least susceptible to change and four being most
susceptible. These individual rankings were then summed across all four variables
to calculate the indicative susceptibility index.

Lithology provides a measure of erodibility or ability to resist change through
erosion or weathering. It describes the relative hardness or softness of the dominant
rock type of a particular island. For example, an island comprised mainly of volca-
nic rocks is less likely to readily change its form compared to an island made up
primarily of unconsolidated sediments, such as sandy or reef islands. The island
categories used here are described in detail in Chap. 2. For lithology, continental
and volcanic high and low islands were ranked as one (least susceptible to change),
composite low and high islands were ranked as two, limestone high and low islands
were ranked as three, and reef islands ranked as four (most susceptible to change
(see Table 4.1).

Maximum elevation was used as a variable since it provides a surrogate measure
of an island to marine inundation. While it would have been better to use a median
or mean value for elevation, accurate elevation data for whole islands for all islands
in the Pacific is not available. In the absence of such data, maximum elevation val-
ues were used.

The islands in the database had elevations ranging from 0 m to 2715 m. The
islands having the lowest elevations would be most susceptible to marine inundation
and change and thus were given the lowest rank. The divisions were subjective and
are explained in more detail in Chap. 2. The rankings used for maximum elevation
were greater than 100 ranked one, 100 m to 30 m ranked two, 30 m to 10 m ranked
three and less than 10 m ranked four (Table 4.1).

Island area was used as one of the variables since area can be related to suscep-
tibility of an island to change. All other variables being equal, a larger island would
be more stable than a smaller island. Island areas in the database ranged from 0.013
sq. km to 35,780 sq. km. These were divided into four categories, again subjectively,
as greater than 100 sq. km ranked one (least susceptible), 100 sq. km to 10 sq. km
ranked two, 10 sq. km to 1 sq. km ranked three, and less than 1 sq. km ranked four
(most susceptible) (Table 4.1).
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Circularity essentially describes the plan shape of an island. The variable was
used as a measure in development of the susceptibility index because the shape of
an island can also determine how vulnerable it is, although this proposition may
require closer investigation. The shape of an island arguably affects factors such as
wave focussing due to refraction, amplification of storm surge in embayments and
patterns of nearshore water movement. Circularity was calculated as the ratio of the
shape of a circle to the shape of an island polygon. A circle has a shape factor of
3.54 (P! \/Aci,cle = 27r/A/(nr?) = 3.54), with the circularity of an island calculated
as 3.54/(Pigand! \/Aisland). If an island was perfectly circular, the ratio would be one,
and for all other islands, it would be less than one, approaching zero for the least
circular islands. This index was then divided into four classes in 0.25 intervals and
ranked from lowest to highest susceptibility according to 1, >0.75; 2, 0.5 to <0.75;
3, 0.25 to <0.5; and 4, <0.25 (Table 4.1).

The four variables were summed without any weightings being applied. There
were suggestions that lithology is a more important factor and so could be given a
higher weight than the other factors; however, for this exercise, it was decided to
stay with equal weightings. The sums of the four variables gave scores from 4 to 16;
these were then categorised into five susceptibility classes as 4—6 (very low suscep-
tibility), 7-8 (low susceptibility), 9—11 (moderate susceptibility), 12—13 (high sus-
ceptibility) and 14—16 (very high susceptibility).

4.3.2 Results: Susceptibility Index

The indicative susceptibility of the 1532 islands in the database is shown in Fig. 4.1.
All indicative susceptibility classes are represented in the distribution. Figure 4.1
also shows that the distribution of susceptibility classes across the Pacific is not
uniform; there are clusters of susceptibility classes. A high percentage of high and
very high susceptibility classes occur in an arc from Palau in the northwest to the
Tuamotus in the southeast. Many of the islands in Micronesia and Polynesia fall
into high and very high susceptibility classes. On the other hand, most of the
Melanesian islands and islands in the eastern Pacific fall into low and very low sus-
ceptibility classes. Overall, 12% of islands are in the very low susceptibility class,
23% in the low, 25% in the medium, 31% in the high and 9% in the very high class
(Fig. 4.2). The overall distribution closely follows a normal distribution curve.

The distribution of the indicative susceptibilities for the different island-type
groups is illustrated in Fig. 4.3. There is a marked difference in the distributions for
different island types. The majority of volcanic islands have either very low or low
indicative susceptibility, with no islands falling in the high or very high susceptibil-
ity classes. Conversely, the majority of reef islands fall into the very high or high
indicative susceptibility classes, with no reef island falling in the low or very low
susceptibility classes. Limestone low islands generally fall into the medium and
high susceptibility classes, while most of the limestone high islands fall in the
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Fig. 4.3 Distribution of indicative susceptibility by island type

medium susceptibility class, similar to the volcanic low islands. Composite high
islands are distributed across the very low, low and medium susceptibility classes.
Island susceptibility breakdown by country is given in Table 4.2 and Fig. 4.4.
The table and figure reveal there are marked differences in how different countries
fare in this distribution. Some of the countries (such as Nauru, Niue and Samoa)
have all their islands in the very low and low indicative susceptibility classes,
whereas others (such as Marshall Islands, Tokelau and Tuvalu) have all their islands
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Table 4.2 Counts of indicative susceptibility by country with modal indicative susceptibility
shown in bold and colour coded

Susceptibility

% of % of % of % of % of No. % of
Country (n) Count  Country Count Country Count Country Count Country Count Country Islands Islands

Cook Islands (15) 2 3 20% 27% 15 1%

13%

F.5. Micronesia (127) 8 6% 19 1% 10 8% 65  51% 25 20% 127 8%
Fili (211) 39 18% 80  38% 47 2% 44 21% 1 0s0% 211 14%
Kiribati (33) 0 0% 0 0% 6 18% 15 4s% 12 36% 33 2%
Marshall Islands (34) 0 0% 0 0% 0 0% 5 i [ - 2%
Nauru (1) 0 0% 1 100% o 0% 0 0% 0 0% 1 0%
Niue (1) 0 0% 1 100% o 0% 0 0% 0 0% 1 0%
Palau (33) 1 3% 3 9% 16 48% 12 36% 1 3% 33 2%
PapuaNew Guinea (437) 61  14% 93 21% 126  29% 130  30% 29 7% 439 20%
samoa (7) [s | mx 2 29% 0 0% 0 0% 0 0% 7 0%
Solomon Islands (415) 29 7% 114 28% 107 26% 137 33% 26 6% 413 27%
Tokelau (3) 0 0% 0 0% 0 0% 0 o[BG 0%
Tonga (124) 6 5% 5 % 56 4% 51 41% 6 5% 124 8%
Tuvalu (10) 0 0% 0 0% 0 0% 5 B 0 1%
Vanuatu (81) 7 3% 28 3% 18 22% 8 10% 0 0% 81 5%
TOTAL 178 12% 349 25% 387 23% 476 3% 182 9% 1532
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Fig. 4.4 Breakdown of indicative susceptibility by country

in the very high or high susceptibility classes. The Cook Islands, Federated States
of Micronesia, Fiji, Palau, Papua New Guinea, Solomon Islands and Tonga have
islands distributed across all the indicative susceptibility classes. Of the 15 countries
in this study, 1 country has a modal indicative susceptibility class as very low, 4 as
low, 2 as moderate, 4 as high and 4 as very high (Table 4.2).
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4.3.3 Discussion: Indicative Susceptibility

This is a first-pass broad-scale assessment of island susceptibility at a whole-island
scale, and many other attributes will affect the stability of islands. The variables
used to compile the indicative susceptibility index were available for all 1532
islands. Despite the apparent limitations of scale and availability of information, the
index provides a comprehensive measure of the indicative susceptibility of the 1532
islands in the Pacific to projected climate change. While the measure is coarse and
is based on a limited set of physical variables of islands, it nonetheless allows us to
rank the islands in terms of their physical susceptibility. This may not be a perfect
measure, but it is an important step towards developing an index of direct relevance
to the Pacific region.

The physical variables used have facilitated compilation of regional-scale maps
of indicative susceptibility of islands independent of changes in climate or oceanic
forces. The maps reveal the diversity and distribution of relative susceptibility of
islands. They indicate which islands or island groups are more susceptible than oth-
ers. The results also provide the first comprehensive breakdown of which countries
are more at risk compared to others based on how many islands from each country
fall in the high and very high susceptibility classes. Tokelau has all its islands in the
very high susceptibility class, while Marshall Islands and Tuvalu have all their
islands in the high and very high susceptibility classes. Kiribati has all its islands in
the moderate, high and very high susceptibility classes. This in itself is useful infor-
mation that can be used in planning and support of such countries. It provides an
indication of where more support is needed. For example, the above results can be
readily combined with population data for each of the islands to identify those sec-
tions of the communities who may be more vulnerable.

4.4 An Exposure Index

4.4.1 Methods and Variables Used

Processes associated with climate and oceanic factors all have major impacts on
islands and island components, albeit to varying levels of intensity, frequency and
duration. The most significant climate and ocean processes driving coastal change
in the Pacific region are associated with prevailing (most common) and dominant
(tropical storm) winds, wave action by sea and extra-tropical swell, tide type and
range, sea-level variability associated with ENSO phase and longer-term sea-level
change. All are occurring naturally and, perhaps with the exception of tides, may
change in response to projected change in climate.

Three suites of process variables were considered for selection of parameters to
indicate the vertical range of water level and wave activity, together with the influ-
ence of tropical cyclones on coastal dynamics. A range of parameters was available
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for each suite. However, due to questions of whether the parameter was meaningful
for coastal response at an island scale, it had variability across the Pacific, and
whether a dataset fully covering the Pacific region was available, only one parame-
ter was selected from each suite to allow a ranking to be developed. For example,
frequency, intensity, duration and approach direction are all relevant for wave activ-
ity and tropical cyclones, but only average annual significant wave height and tropi-
cal cyclone frequency were selected.

The three parameters selected for ranking exposure were a composite water-level
range (tide and ENSO), average annual significant wave height and tropical cyclone
frequency. Each parameter was separated into five categories to ensure sufficient
spatial variation across the Pacific. Here, exposure was determined as the location
of an island with respect to comparative variation of each parameter and expressed
through a combination of their rankings.

A composite water-level parameter was developed to incorporate the vertical
range of frequent (tide) and inter-annual (ENSO) variations in water level. Emphasis
is placed on the vertical range of water-level fluctuations to demonstrate the signifi-
cance of any projected long-term rise in sea level which would have its largest
effects in areas of low water-level ranging. The parameter selected for total tidal
range was a numerical model output of lowest astronomical tide to highest astro-
nomical tide (LAT to HAT) as this is a measure that is not dependent on tide type,
which is variable through the region, but indicates the maximum likely tidal
excursion.

However, tidal range is not the sole consideration in the Pacific due to variations
in water level attributable to ENSO, particularly in areas with a low tidal range. The
absolute magnitude of water-level range due to ENSO is included when consider-
ing future effects of potential sea-level rise as it provides an indication of inter-
annual water-level ranging and some likely resilience to landforms to small
longer-term variations in mean sea level. To ensure the ENSO signal is incorporated
appropriately in the ranking, it was added at twice its value (double weighted). This
is particularly important as ENSO phases sustain higher or lower mean sea level for
months or years as opposed to more frequent tidal movements. Thus the composite
water-level parameter is a sum of the tidal range and twice the ENSO range. The
LAT, HAT and ENSO raster layers were obtained from CSIRO numerical modelling.

The composite water-level parameter was split into five categories from very low
(<1 m) to very high (>2.5 m) in 0.5 m intervals ensuring there was gradation across
the Pacific (Table 4.3). The geographical variation in composite water-level catego-
ries is shown in Fig. 4.5.

Annual average significant wave height (H;) was selected as the parameter for
representing wave energy. This is an annual average of the wave height that is
greater than two thirds of all modelled wave heights. The parameter is a proxy for
the average wave energy available to move sediments within the average water-level
range (e.g. composite water level; Fig. 4.6). The wave parameter is considered in
conjunction with tropical cyclones to compare ambient and extreme conditions, as
well as for consideration of the capacity of a system to be resilient to potential sea-
level rise.
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Table 4.3 Three variables used for the exposure index

Variable
1. Composite water-level | 2. Annual 3. Tropical cyclone
ranging average H, frequency
Description | Composite WL = (HAT- Annual average | Based on the number of
LAT) + 2 x (ENSO significant wave | tropical cyclone tracks in
ranging) height longest dataset available
Value | Very low <1.0m <1.0m None in available dataset
Low 1.0to<l.5m 1.0to<1.5m 1 (<1 in 20 years)
Moderate 1.5to<2m 1.5t0<1.75 m 2-8
High 2.0-2.5m 1.75-2.0 m 9-15
Very high |>=25m >2.0m >15 (>1 in 3 years)

Composite Water Level

<10
[ J10-<15
[15-<20
I 20-<25
B =25

Fig. 4.5 Composite water-level categories in the Pacific Islands region

The wave height parameter (H) is a raster layer prepared by CSIRO (2015) oper-
ating a numerical model to generate 30 years (1979-2009) of wave information at
30 km spatial resolution. The model was run hourly, with a monthly average applied,
with a final average applied to each monthly average. The parameter was split into
five categories from very low (<1 m) to very high (>2 m) according to the values in
Table 4.4. Values for categories were selected to incorporate physical meaning for
sheltering provided by island chains and ridges, as well as to correlate with wave
energy (H,?). The geographical variation in categories in Fig. 4.6 clearly shows an
east to west decline in wave height as well as a zonal decline towards the equator in
both hemispheres.
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Fig. 4.6 Annual average significant wave height (H,) categories in the Pacific Islands region

Table 4.4 Combining annual average significant wave height and tropical cyclone frequency
variables

TC
Very low Low Moderate High Very high
H, Very low 1 35 5 7 8
Low 1.75 5.5 6.75 6.75 6.75
Moderate 4 7.25 8 6.5 5
High 2 5 5.5 35 2.5
Very high 1 1.25 1.25 1 1

Tropical cyclone frequency was selected to represent extreme weather events.
Frequency indicates whether an island experiences tropical cyclones. Here it is used to
provide an indication of potential inundation related to storm surge and landform
response to extreme events based on estimates of resilience and likelihood of distur-
bance. A map of tropical cyclone tracks from 1985 to 2005 (Wikipedia 2019) was
annotated to separate the Pacific into five categories of tropical cyclone frequency from
very low to very high (Table 4.3). This annotated figure was converted to a raster layer
at 30 km spatial resolution. The very low category represents no tropical cyclones in the
available dataset. This was required as the interaction of waves and water level would
only be considered in these areas to ensure registration of a score on the index. A very
high category indicates areas where tropical cyclones occur more frequently than one
in 3 years. Geographical variation in the rankings is shown in Fig. 4.7.
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Fig. 4.7 Tropical cyclone frequency categories in the Pacific Islands region

4.4.2 Compilation of the Exposure Index

The three parameters were combined in three steps to yield a single value for ranking
exposure. First, the rankings of tropical cyclone frequency and annual average sig-
nificant wave heights (H;) were combined. Tropical cyclone influence is integrated
with wave response. These parameters are linked in terms of the island landform
resilience and likely disturbance as a result of potential sea-level rise, particularly
storm surge and marine inundation of lowlands. Areas with exposure to frequent
tropical cyclones are highly likely to have a high resilience to changing environmen-
tal parameters, and an area with exposure to no record of tropical cyclones will
respond to waves only. Areas with low wave heights and high tropical cyclone fre-
quency are more sensitive to changes in mean sea level as the coastal landforms have
a limited capacity to rebuild when they are eroded or deflated during extreme events.
Areas with high wave heights and low tropical cyclone frequency are likely to have
a large hydraulic zone with capacity for rebuilding. However, such areas are most
susceptible to human modification on coastal landforms and reef structures.

Based on this, the rankings of tropical cyclone frequency and annual average
significant wave heights (H;) were combined into a matrix to obtain a score
(Table 4.4) for combination with water level in the second step. The results of
applying this matrix to the Pacific are demonstrated in Fig. 4.8.

The second step determined the relationship of water level and sensitivity to
changing environmental variables. The result is monotonic and inverse to the
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Fig. 4.8 Combined tropical cyclone frequency and annual average significant wave height (H;)

Table 4.5 Composite Multiplier
water-level multiplier

Composite water level | Very low |2

Low 1.5
Moderate | 1
High 0.5

Very high | 0.05

Table 4.6 Cut-off values for Range

the exposure index Process-based index | Very low | 0-0.625
Low 0.63-2
Moderate | 2.1-4
High 4.1-8
Very high | 8.1-16

water-level range. A very low water-level range is most sensitive to changing envi-
ronmental variables. A composite water-level multiplier (Table 4.5) was applied to
the results in Fig. 4.5.

The third step involved multiplication of the values in Step 1 (Table 4.4; Fig. 4.8)
and Step 2 (Table 4.5, Fig. 4.5) to generate values from 0.05 to 16 for the 125 unique
combinations of the 3 parameters. Cut-off values were applied to this score to obtain
the five-point process ranking (Table 4.6). The cut-off values were selected to gen-
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Fig. 4.9 Process sensitivity spatial distribution

erate a physically meaningful process ranking according to the authors’ understand-
ing of dynamics in the Pacific Ocean. The process rank is presented in Fig. 4.9 as a
five-class raster. For each of the islands, the process ranking value that was the
closest to that island in terms of Euclidean distance was selected and attributed with
a process-based index.

The process-based index for the Pacific islands is presented in Fig. 4.10. The
index was mainly moderate (26%), high (27%) and very high (30%) with less
islands falling into the lower ranks of very low (5%) and low (12%). This skewness
towards the moderate to higher rankings is attributed to the location of islands in
areas of a combination of lower composite water-level ranging, moderate to high
wave heights and some tropical cyclone activity zones.

4.5 Compilation of the Geomorphic Sensitivity Index

The term geomorphic sensitivity is applied to the combination of island susceptibil-
ity and process-based indices. Although the processes under consideration would
have their greatest effect close to the shorelines of the islands, this is a means of
considering the sensitivity and exposure of whole islands to potential environmental
change by integrating both the processes and susceptibility. The five-point rankings
of indicative susceptibility were combined with the five-point process-based index
as shown in Table 4.7.
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Fig. 4.10 Exposure index for the islands in the Pacific

Table 4.7 Combining indicative susceptibility and process-based indices to obtain a geomorphic
sensitivity index

Process-based index
Very low | Low Moderate | High Very
high
Indicative susceptibility Very low | Very low | Very low | Very low | Low Low
index Low Very low | Low Low Moderate | Moderate
Moderate | Low Moderate | Moderate | High High
High Moderate | High High Very Very high
high
Very high | Moderate | High Very high | Very Very high
high

4.6 Results

The geomorphic sensitivity for all islands is presented in Fig. 4.11. The geomorphic
sensitivities for whole islands were mainly moderate (23%), high (28%) and very
high (25%) with less falling into the lower ranks of very low (5%) and low (19%)
(Fig. 4.12a). Even though many of the islands fall in the lower indicative suscepti-
bility classes (Fig. 4.12b), they are located in the areas with higher process-based
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Fig. 4.11 Geomorphic sensitivity for the islands in the Pacific
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Fig. 4.12 Distributions of (a) geomorphic sensitivity and (b) indicative susceptibility (previous
section)
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index; hence they get bumped up in the rankings when considering geomorphic
sensitivities. As an example, only 9% of the islands were in the very high indicative
susceptibility class, but in geomorphic sensitivity ranking this increased to 25%.

The distribution of geomorphic sensitivity with island type is included in
Fig. 4.13a. Volcanic high and composite high islands tend to have lowest geomor-
phic sensitivity. The islands with the highest geomorphic sensitivity are reef islands
and the limestone low islands.

If an island is a volcanic high or composite high, it is most likely to be in the low
or moderate geomorphic sensitivity categories. If an island is volcanic low, it is
most likely to be in the moderate or high category. For composite low or limestone
high islands, it is most likely to be in the high category. If an island is limestone low
or a reef island, it is most likely to be in the very high category. This distribution is
mainly related to their location in the Pacific.

The distribution of geomorphic sensitivity for each country is included in
Fig. 4.14a and Table 4.8. The figure and table demonstrate a range of geomorphic
sensitivities for all but single island countries, along with Tokelau. The five coun-
tries with the modal category of very high geomorphic sensitivity are the Federated
States of Micronesia, Marshall Islands, Solomon Islands, Tokelau (all three islands)
and Tuvalu. None of the countries have a very low modal geomorphic sensitivity.
Three countries (Palau, Samoa and Vanuatu) have modal category as low geomor-
phic sensitivity. Three countries (Fiji, Papua New Guinea and Vanuatu) have a
relatively even distribution of geomorphic sensitivity ranks, with islands in all five
categories.

Table 4.8 Counts of geomorphic sensitivity by country with modal geomorphic sensitivity shown
in bold and colour coded

Geomorphic sensitivity
Very Low Low Moderate High _ Total

% of % of % of % of % of No. % of
Country (n) Count Country Count Country Count Country Count Country Count Country Islands Islands
Cook Islands (15) 2 13% 3 20% 1 7% 3 20% 6 40% 15 1%
F.S. Micronesia (127) 1 1% 1 9% s 1w s 22 [N > 8%
Fiji (211) 11 5% 57 27% 62 29% 53 25% 28 13% 211 14%
Kiribati (33) 0 0% 0 0% 10 30% 12 36% 11 33% 33 2%
Marshall Islands (34) 0 0% 0 0% 0 0% 7 21% -- 34 2%
Nauru (1) 0 0% 1 100% 0 0% 0 0% 0 0% 1 0.1%
Niue (1) 0 0% 1 100% 0 0% 0 0% 0 0% 1 0.1%
Palau (33) 4 12% 16 48% 13 9% 0 0% 0 0% 33 2%
Papua New Guinea (437) 52 12% 86 20% 111 25% 139 32% 49 11% 437 29%
Samoa (7) 0 0% 5 71% 2 29% 0 0% 0 0% 7 0.5%
Solomon Islands (415) 5 1% 70 17% 106 26% 107 26% -- 415 27%
Tokelau (3) 0 0% 0 0% 0 0% 0 o[BG - 0.2%
Tonga (124) 1 1% 8 6% 3 2% 57 46% 55 44% 124 8%
Tuvalu (10) 0 0% 0 0% 0 0% 5 50% -- 10 1%
Vanuatu (81) 3 4% 28 35% 27 33% 16 20% 7 9% 81 5%

TOTAL 79 5% 286 19% 351 23% 427 28% 389 25% 1532
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Fig. 4.13 Rankings separated by island type for (a) geomorphic sensitivity and (b) indicative
susceptibility (previous section)
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4.7 Discussion and Conclusions

The index of geomorphic sensitivity considers how relatively sensitive whole
islands are to changes in potential changes in climatic and oceanographic processes.
Its use is illustrated in this assessment by comparison of geomorphic sensitivity of
islands which combines indicative susceptibility (physical structure of islands
including lithology, circularity, maximum elevation and area; Kumar et al. (2018))
and an exposure-based index (water-level ranging, wave height, tropical cyclone
frequency) at a whole-island scale. Although this is a coarse assessment of geomor-
phic sensitivity, it provides a comparative perspective of islands in the Pacific on the
basis of consistent information across the region. In particular, the study provides a
regional-scale analysis and maps of areas where coastal fringes of, if not whole,
islands are more likely to be sensitive to potential changes in sea level and storm
activity based on physical island characteristics and natural variability of climate
and oceanic processes.

The exposure index was developed to consider whole-island sensitivity to poten-
tial changes in weather, climate and sea level based on natural variability in the
ranging of the hydraulic zone and potential resilience and disturbance of the system
by extreme events, with less emphasis on present-day risk. This index incorporated
three parameters and was intended to provide a proxy for other drivers, with inves-
tigation restricted to three parameters only to limit the number of outcomes and
ensure a range of sensitivities are achieved. The composite water-level parameter
represented the vertical range of frequent and inter-annual variations in water level,
as a proxy for the hydraulic zone. Sensitivity to projected sea-level rise is inversely
proportional to natural water-level ranging. The other two parameters are
incorporated to compare ambient (annual average wave height) and extreme (tropi-
cal cyclone frequency) conditions. This approach does not incorporate the influence
of human modification on the system resilience. For example, areas with high wave
heights and low tropical cyclone frequency already have a large hydraulic zone with
capacity for rebuilding and have a low exposure index, with these areas most sus-
ceptible to modified coastal landforms and reef structures.

Further parameters should be considered when investigating sensitivity and vul-
nerability at finer scales. The focus of which landforms are likely to be susceptible
to change, together with the driving processes, significantly alters as scale becomes
finer. For example, the whole-island approach becomes less relevant, and it is pos-
sible to exclude high ground from the analyses as focus shifts to land levels known
to be subject to marine inundation and likely to be affected by projected change in
sea level. Similarly, the roles of sea and swell could be expected to vary around an
island or in different parts of an archipelago. Additionally, the exposure index was
developed using modelled information at a regional scale due to sparsity of actual
datasets. A 30 km spatial resolution was available for the modelled information, and
therefore the exposure index was prepared at this resolution. An example of a limi-
tation of this resolution is that it is unlikely to capture the variability in processes
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influencing small islands within an archipelago, with all islands attributed the same
exposure rank due to scale effects.

Categorisation cut-offs for the three process parameters, the combined tropical
cyclone and wave height rank and the geomorphic sensitivity rank, were subjective,
albeit with some consideration of spatial controls. It is not anticipated that slightly
altering the cut-offs would alter the broader spatial trends observed, with potential
changing of one level in rank for islands located near boundaries in the process
ranking. Indicative susceptibility was weighted with a non-linear skewness in the
geomorphic sensitivity ranking as it is the notional “receptor” or response variable.
This results in islands with very low indicative susceptibility only able to result in
very low or low geomorphic sensitivity rankings. Islands with very high indicative
susceptibility rankings are skewed to have a higher likelihood of a very high geo-
morphic sensitivity ranking.

Despite the limitations of scale and availability of information, the exposure
ranking in Fig. 4.11 provides an indication of regional variability in relative sensi-
tivity to projected changes in climate and oceanographic processes. Focal high and
very high exposure ranks occur in the area of low composite water level through
Federated States of Micronesia, through Papua New Guinea and Tuvalu (Fig. 4.9).
This is the area with low tidal ranges and is the node for ENSO fluctuations. The
majority of the area considered has a low exposure ranking because of the coverage
of either high wave heights or very low (no) tropical cyclones; the latter is a central
band through the area. Very low exposure ranks are in the west and in patches near
Kiribati and Tuvalu due to the very low water-level rank associated with high tidal
ranges. Areas of moderate exposure are either attributed to high water-level ranging
or very low water-level ranging in the south-east with very high wave heights and
low to moderate tropical cyclones. Many divisions of the exposure ranking are asso-
ciated with wave sheltering by large islands and island ridges, such as leeward of
Kiribati, and sheltering within island groups, such as Fiji. When the exposure rank-
ing is attributed to islands as an exposure index (Fig. 4.6), there is a skewness
towards moderate to higher rankings due to the location of many islands in areas
with lower composite water-level ranging, moderate wave heights and some tropical
cyclone activity.

When the exposure and indicative sensitivity indices are combined, most (93%)
of the reef islands are ranked as high and very high geomorphic sensitivity
(Fig. 4.13a) since they have moderate indicative susceptibility with high to very
high exposure, high indicative susceptibility with low to moderate exposure or very
high indicative susceptibility with low to very high exposure. Reef and limestone
low islands are the only island types with very high geomorphic sensitivity largely
attributed to the physical susceptibility of the islands. Composite low and limestone
high islands have a modally high geomorphic sensitivity (48-59%) with most
(83-86%) categorised as moderate to high. The high geomorphic sensitivity for
these island types is attributed to moderate susceptibility and high to very high
exposure. Volcanic low islands have mostly (95%) moderate and high geomorphic
sensitivities, with equal distributions of the two ranks due to the moderately ranked
susceptibility of the islands located in areas ranging from low to very high exposure.
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Composite high islands are mainly (80%) low to moderate ranks of geomorphic
sensitivity with low susceptibility with higher exposure or moderate susceptibility
with low to moderate exposure. Volcanic high islands are mostly very low to moder-
ate (96%), with the modal rank of low (47%). The low ranking is attributed to a very
low susceptibility with high to very high exposure or low susceptibility with low to
moderate exposure. Very low geomorphic sensitivity is restricted to volcanic and
composite island types because of the low to very low indicative susceptibility and
very low to moderate exposure.

Geomorphic sensitivity varied regionally, between and within countries. On a
regional scale, the northern and eastern areas of the Pacific region are geomorphi-
cally sensitive with 80% high and very high rankings. Most (92%) of these are reef
islands of small size and contribute to less significant wave sheltering of adjacent
islands. Elsewhere, many islands with very low and low geomorphic sensitivity are
attributed to wave sheltering due to their location in the lee of larger islands or
island ridges (e.g. Papua New Guinea) or within island groups (e.g. Fiji).

On a country scale, Palau is an exception to the higher sensitivity islands in the
north and east, with lower geomorphic sensitivities due to very low exposure (high
natural variability of all processes). The Federated States of Micronesia have mostly
very high geomorphic sensitivity (61%) due to the location of susceptible small,
reef islands in areas of very high process-based index. The very low to low water-
level ranging in areas of moderate wave conditions and subject to tropical cyclones
suggests a small projected sea-level rise would disturb the coastal landforms.
Kiribati has modal moderate geomorphic sensitivity, with some highly susceptible
reef and limestone low islands located in an area of low exposure. A combination of
relatively large water-level ranging, no tropical cyclone activity and low wave
heights contributes to the low exposure index. Solomon Islands and Fiji demon-
strate the influence of sheltering on geomorphic sensitivity for islands located in the
lee of ridge of islands or large islands (Solomon Islands) and internal sheltering in
clustered islands (Fiji). Both Solomon Islands and Fiji are located on boundaries of
water-level ranging, with sheltering demonstrated by areas of lowest wave energy
rank. The local wave sheltering contributes to exposure indices in all five categories.

The modal sensitivity to projected changes in environmental conditions for vol-
canic islands is one rank higher than the susceptibility for all island types other than
volcanic high islands. Volcanic low, composite low and limestone high islands had
minimal high susceptibilities, with 50-60% high in geomorphic sensitivity. The
proportion of very high ranks for limestone low and reef islands changed from
1-27% for indicative susceptibility to 49-58% for geomorphic sensitivity. A greater
proportion of islands in the very low category occurred for geomorphic sensitivities
for volcanic low and composite low islands compared to indicative susceptibility,
with decrease in proportion for volcanic high and composite high islands.

Countries where the distribution of rankings within it changed for geomorphic
sensitivity compared to indicative susceptibility were the Federated States of
Micronesia, Kiribati, Palau, Samoa, Tonga and Vanuatu (Fig. 4.14a, b). The
Federated States of Micronesia had a modal (51%) high rank for indicative suscep-
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tibility and is located in an area with modal (61%) very high exposure ranking,
generating an upward shift to a modal (56%) very high geomorphic sensitivity.
Kiribati had a decrease in the rankings for geomorphic sensitivity compared to
indicative susceptibility due to some areas of low process ranking as explained
above. Palau had 40% of islands with high or very high indicative vulnerability with
no geomorphic sensitivities in these categories due to a downward shift from a very
low exposure ranking in an area of high exposure. The islands of Samoa all increased
rank by one when applying the high and very high exposure ranks with very low and
low indicative susceptibilities and low and moderate geomorphic sensitivities.
Tonga has a modal (79%) very high exposure ranking (generally lower water levels
and high wave energy), generating geomorphic sensitivities of 90% high or very
high, for islands with 45% high or very high indicative susceptibility. Vanuatu had
33% of islands with very low indicative susceptibility with no very high ranks.
Application of modally high (69%) exposure ranking reduced the ranks of very low
to 4% and resulted in 9% very high geomorphic sensitivities compared to no very
high indicative susceptibilities.

Compilation of the index of geomorphic sensitivity establishes how relatively
sensitive whole islands are to changes in potential weather, climate and oceanic
conditions through consideration of their physical characteristics (Kumar et al.
2018) and exposure to existing regional climate and oceanic processes. The value of
assessing geomorphic sensitivity is that it establishes a method to consider which
islands are more sensitive to projected environmental change, relative to other
islands in the Pacific region. Although further detailed assessment is required for
each island, the geomorphic sensitivities potentially provide a basis for regional
strategic planning by countries within the region and external donor organisations
supporting mitigation of the impacts of climate and ocean processes driving
coastal change.
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Chapter 5

Downscaling from Whole-Island

to an Island-Coast Assessment of Coastal
Landform Susceptibility to Metocean
Change in the Pacific Ocean

Ian Eliot, Lalit Kumar, Matt Eliot, Tanya Stul, Roger McLean,
and Patrick D. Nunn

5.1 Introduction

This chapter describes coastal vulnerability assessment downscaling for Pacific
Islands, from a primary-scale, regional assessment (Kumar et al. 2018, Chap. 4) to
an intermediate secondary-scale assessment, intended to inform coastal manage-
ment at an archipelagic or country level. It forms part of a hierarchical suite of
assessments with potential to downscale in a consistent manner from regional to
local scale. The step described in this chapter involves relating vulnerability of
whole islands to changing climate and ocean conditions, appropriate for regional
strategic planning, to holistic assessment of the marine and terrestrial landforms that
form island shores.
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At a broad-level, regional-scale analysis of the physical character of 1779 islands
outlined in Chap. 4, Nunn et al. (2015) and Kumar et al. (2018) enabled an indicative
assessment of island susceptibility based on their lithologic and geometric charac-
teristics. Such assessment is relevant to high-level strategic planning in that the
measures of indicative susceptibility provide insight allowing regional and country-
wide evaluation; yet it does not identify problems of direct relevance at a local level,
either within a particular island subgroup or for the coastal fringe around a specific
island. However, such foci are necessary adjuncts to the regional approach because
environmental problems most acutely occur on coastal landforms skirting the main
structural body of an island. For example, retreat of the shoreline along a narrow,
low-lying coastal plain adjoining a steeply rising hinterland is likely to affect built
infrastructure. It is therefore desirable to downscale from the high-level primary
assessment to more detailed levels for country, district (subnational) and local com-
munity planning and management purposes.

The overall approach comprises a series of steps, relating different scales in a
management hierarchy ranging from regional, through country and island scales to
local governance. The first downscaling step was developed through consideration
of the separate but related concepts of susceptibility and instability, which deter-
mine the overall vulnerability of an island to changing conditions. Susceptibility is
used here for physical characteristics that describe if a coast will respond to chang-
ing conditions, whereas instability is used to characterise the relative response to
those changes. A simple illustration of this distinction is that a sandy coast is more
susceptible to change than a rock coast, and a cliffed coast is more unstable than a
gently graded coast. Examined at a broad, indicative scale, the physical structure of
whole islands together with landforms of the coastal fringe around them is therefore
characterised in terms of lithology, gross structural features and landform features.

When considered over a hierarchy of spatial scales, assessment of coastal vulner-
ability to changing conditions focuses on island geology at a coarse, regional scale,
grading to interpretation of geomorphic features as the focus becomes finer. The
envisaged transition encompasses increased detail of interaction between coastal
processes and morphology but also reflects a transition from characteristics mainly
describing susceptibility, increasingly towards those describing instability. The cor-
responding change to coastal vulnerability assessment with downscaling may alter
the perception of marine and climate processes driving coastal dynamics as more
subtle interactions between landform and process become apparent.

The following objectives were set in order to downscale: (1) establish a pathway
for downscaling landform assessments at a conceptual level suited to the use of
sparse or coarse information; (2) extend the range of variables used by Kumar et al.
(2018) (and Chap. 4) to estimate the indicative susceptibility of island structure to
changing climate and ocean; (3) develop criteria to comparatively estimate the rela-
tive instability of coastal landforms; and (4) apply the analysis to a variety of island
types sufficient to demonstrate utility of the framework at a whole-island scale and,
separately, for sections of an island coast sharing a common landform assemblage.
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5.2 Downscaling and Upscaling

Downscaling and upscaling are techniques to deal with information and applica-
tion occurring at multiple scales. Downscaling (upscaling) refers to the process of
relating information derived from characterisation over larger (finer) scales to
application at a finer (coarser) scale. The two techniques are important in coastal
vulnerability assessment, as information is clustered, either as broadly available
coarse information such as satellite-derived shoreline change (Luijendijk et al.
2018) or more sparsely available detailed measurement and evaluation (e.g. Davis
2013). In some situations, this results in separate methods of assessment based on
information levels (Duong et al. 2017, 2018); however, this provides potential for
inconsistency. For coastal systems, meaningful downscaling or upscaling typi-
cally is not simple interpolation or aggregation of information, with spatial rela-
tionships typically non-linear or even fractal in character and the process of
aggregation being complicated by coherence or exchange. Downscaling and
upscaling therefore require an introduction or loss of information with the change
of scale. A hierarchical, internally consistent scaling framework can therefore be
developed through progressive addition of information with each step of
downscaling.

Although the dynamics of island coasts are broadly relatable to the dynamics of
continental shelf coasts, differences in behaviour need to be considered at all
scales of coastal management (PRIF 2017; Govan 2011; Giardino et al. 2018).
Consequently, the process of downscaling and upscaling requires a framework
that is specifically relevant to islands, with relevance to applied levels of
decision-making.

A hierarchical scaling framework is ultimately proposed for management of
Pacific islands, with the upper three scales indicated in Fig. 5.1, and the relationship
between the two largest scales described in this paper. At all scales, a consistent
procedure should be used to estimate the susceptibility of the most common geo-
logic and morphologic features apparent: regional, whole-island, whole-island
coast, coastal segment and individual landform scale (Fig. 5.1). Selection of these
features is intended to provide consistency in methodology bridging the gap
between regional-scale assessments of island susceptibility and fine-scale analyses
applicable at a community level. At each scale, lithologic and morphologic features
are used as criteria to determin