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Abstract. One of the biggest challenges for deep learning algorithms in
medical image analysis is the indiscriminate mixing of image properties,
e.g. artifacts and anatomy. These entangled image properties lead to a
semantically redundant feature encoding for the relevant task and thus
lead to poor generalization of deep learning algorithms. In this paper
we propose a novel representation disentanglement method to extract
semantically meaningful and generalizable features for different tasks
within a multi-task learning framework. Deep neural networks are uti-
lized to ensure that the encoded features are maximally informative with
respect to relevant tasks, while an adversarial regularization encourages
these features to be disentangled and minimally informative about irrele-
vant tasks. We aim to use the disentangled representations to generalize
the applicability of deep neural networks. We demonstrate the advan-
tages of the proposed method on synthetic data as well as fetal ultra-
sound images. Our experiments illustrate that our method is capable of
learning disentangled internal representations. It outperforms baseline
methods in multiple tasks, especially on images with new properties,
e.g. previously unseen artifacts in fetal ultrasound.

1 Introduction

Image interpretation using convolutional neural networks (CNNs) has been
widely and successfully applied to medical image analysis during recent years.
However, in contrast to human observers, CNNs exhibit weaknesses of being
generalized to tackle previously unseen entangled image properties (e.g. shape
and texture) [6]. In Ultrasound (US), the image property entanglement can be
observed when acquisition-related artifacts (e.g. shadows) obfuscate the under-
lying anatomy (see Fig. 1). A CNN simultaneously learns anatomical features
and artifacts features for either anatomy classification or artifacts detection [15].
As a result, the model trained by images with certain entangled properties (e.g.
images without acoustic shadows) can hardly handle images with new entangled
properties which are unseen during training (e.g. images with shadows).

Approaches for representation disentanglement have been proposed in order
to learn semantically disjoint internal representations for improving image inter-
pretation [12]. These methods pave a way for improving the generalization of
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Fig. 1. Examples of fetal US data. Green framed images are shadow-free and red framed
images contain acoustic shadows. (Color figure online)

CNNs in a wide range of medical image analysis problems. Specifically for a
practical application in this work, we want to disentangle anatomical features
from shadow features so that to generalize anatomical standard plane analysis
for a better detection of abnormality in early pregnancy.

Contribution: In this paper, we propose a novel, end-to-end trainable represen-
tation disentanglement model that can learn distinct and generalizable features
through a multi-task architecture with adversarial training. The obtained dis-
joint features are able to improve the performance of multi-task networks, espe-
cially on data with previously unseen properties. We evaluate the proposed model
on specific multi-task problems, including shape/background-color classification
tasks on synthetic data and standard-plane/shadow-artifacts classification tasks
on fetal US data. Our experiments show that our model is able to disentangle
latent representations and, in a practical application, improves the performance
for anatomy analysis in US imaging.

Related work: Representation disentanglement has been widely studied in the
machine learning literature, ranging from traditional models such as Indepen-
dent Component Analysis (ICA) [10] and bilinear models [18] to recent deep
learning-based models such as InfoGAN [4] and β-VAE [3,9]. Disentangled repre-
sentations can be utilized to interpret complex interactions of underlying factors
within data [2,5] and enable deep learning models to manipulate relevant infor-
mation for specific tasks [7,8,13]. Particularly related to our work is the work by
Mathieu et al. [14], which proposed a conditional generative model with adver-
sarial networks to disentangle specific and unspecific factors of variation in deep
representations without strong supervision. Compared to [14], Hadad et al. [8]
proposed a simpler two-step method with the same aim. Their network directly
utilizes the encoded latent space without assuming the underlying distribution,
which can be more efficient for learning various unspecified features. Different
from their aim – disentangling one specific representation from unspecific factors
– our work focuses on disentangling several specific factors. Further related to
our research question is to learn only unspecific invariant features, for example,
for domain adaptation [11]. However, unlike learning invariant features, which
ignores task-irrelevant information [2], our method aims to preserve information
for multiple tasks while enhancing feature generalizability.

In the medical image analysis community, few approaches have focused on
disentangling internal factors of representations in discriminative tasks. Ben-
Cohen et al. [1] proposed a method to disentangle lesion type from image appear-
ance and use disentangled features to generate more training samples for data
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augmentation. Their work improves liver lesions classification. In contrast, our
work aims to utilize disentangled features for generalization of deep neural net-
works in medical image analysis.

2 Method

Our goal is to disentangle latent representations Z of the data X into distinct
feature sets (ZA, ZB) that separately contain relevant information for corre-
sponding different tasks (TA, TB). The main motivation of the proposed method
is to learn feature sets that are maximally informative about their correspond-
ing task (e.g. ZA → TA) but minimally representative for irrelevant tasks (e.g.
ZA → TB ). While our approach scales to any number of classification tasks, in
this work we focus on two tasks as a proof of concept. The proposed method con-
sists of two classification tasks (TA, TB) with an adversarial regularization. The
classification aims to map the encoded features to their relevant class identities,
and is trained to maximize I(ZA, YA) and I(ZB, YB). The adversarial regular-
ization penalizes the mutual information between the encoded features and their
irrelevant class identities, in other words, minimizes I(ZA, YB) and I(ZB, YA).
The training architecture of our method is shown in Fig. 2.

Fig. 2. Training framework for the proposed method. Res-Blk refers to residual-blocks.
Example 1/2 are two data set examples used in Sect. 3. The classifications enables
the encoded features ZA, ZB to be maximally informative about related tasks while
the adversarial regularization encourages these features to be less informative about
irrelevant tasks.

Classification is used to learn the encoded features that enable high pre-
diction performance for the class identity of the relevant task. Each of the
two classification networks is composed of an encoder and a classifier for a
defined task. Given data X = {xi | i ∈ [1, N ]}, the matching labels are
YA = {yi

A | yi
A ∈ {C1, C2, ..., CK}, i ∈ [1, N ]} for TA and YB = {yi

B | yi
B ∈



50 Q. Meng et al.

{L1, L2, ..., LD}, i ∈ [1, N ]} for TB . N is the number of images and K,D are the
number of class identities in each task. Two independent encoders map X to ZA

and ZB with parameters θA and θB respectively, yielding ZA = EncA(X; θA)
and ZB = EncB(X; θB). Two classifiers are used to predict class identity for
the corresponding task, where ŶA = ClsA(ZA;φA) and ŶB = ClsB(ZB ;φB).
φA and φB are the parameters of the corresponding classifiers. We define the
cost functions LA and LB as the softmax cross-entropy between YA and ŶA and
between YB and ŶB respectively. The classification loss Lcls = LA + LB is min-
imized to train the two encoders and the two classifiers (min{θA,θB ,φA,φB} Lcls)
for obtaining ZA and ZB that are maximally related to their relevant task.

Adversarial regularization is used to force the encoded features to be min-
imally informative about irrelevant tasks, which results in disentanglement of
internal representations. The adversarial regularization is implemented by using
an adversarial network for each task as shown in Fig. 2. These adversarial net-
works are utilized to map the encoded features to class identity of the irrel-
evant task, yielding Ŷ adv

A = Clsadv
A (ZB ;ψA) and Ŷ adv

B = Clsadv
B (ZA;ψB).

Here, ψA and ψB are the parameters of the corresponding adversarial net-
works. By referring to Ladv

A and Ladv
B as the softmax cross-entropy between

YA and Ŷ adv
A and between YB and Ŷ adv

B , the adversarial loss is defined as
Ladv = Ladv

A + Ladv
B . During training, the adversarial networks are trained

to minimize Ladv while two encoders and two classifiers are trained to max-
imize Ladv (min{ψA,ψB} max{θA,θB ,φA,φB} Ladv). This competition between the
encoders/classifiers and the adversarial networks encourages the encoded fea-
tures to be invalid for irrelevant tasks.

By combining the two classifications with the adversarial regularization, the
whole model is optimized iteratively during training. The training objective for
optimizing the two encoders and the two classifiers can be written as

min{θA,θB ,φA,φB} {LA + LB − λ ∗ (Ladv
A + Ladv

B )}, λ > 0. (1)

Here, λ is the trade-off parameter of the adversarial regularization. The training
objective for the optimization of the adversarial networks thus follows as

min{ψA,ψB}{Ladv
A + Ladv

B }. (2)

Network Architectures: EncA(X; θA) and EncB(X; θB) both consist of six
residual-blocks implemented as proposed in [17] to reduce the training error
and to support easier network optimization. ClsA(ZA;φA) and ClsB(ZB ;φB)
both contain two dense layers with 256 hidden units. The adversarial networks
Clsadv

A (ZB ;ψA) and Clsadv
B (ZA;ψB) have the same architecture as ClsA(ZA;φA)

and ClsB(ZB ;φB) respectively.

Training: Our model is optimized for 400 epochs and λ is chosen heuristically
and independently for each data set using validation data. For more stable opti-
mization [8], in each iteration, we train the encoders and classifiers once, followed
by five training steps of the adversarial networks. Similar to [8], we use the Adam
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optimizer (beta = 0.9, learning rate = 10−5) to train the encoders and classifiers
based on Eq. 1, and use Stochastic Gradient Descent (SGD) with momentum
optimizer (momentum = 0.9, learning rate = 10−5) to update the parameters of
the adversarial networks in Eq. 2. We apply L2 regularization (scale = 10−5) to
all weights during training to prevent over-fitting. The batch size is 50 and the
images in each batch have been randomly flipped as data augmentation. Our
model is trained on a Nvidia Titan X GPU with 12 GB of memory.

3 Evaluation and Results

Evaluation on Synthetic Data: We use synthetic data as a proof of con-
cept example to verify our model. This data set contains a randomly located
gray circle or rectangle on a black or white background. We split the data into
1200/300/300 images for train/validation/test and these images consist of cir-
cles on white background, rectangles on black background and rectangles on
white background. To keep the balance between image properties in the train-
ing split, we use circle:rectangle = 1:1 and black:white = 7:5. In this case, TA is a
background color classification task and TB is the a shape classification task. We
implement our model as outlined in Sect. 2 and choose λ = 0.01. We evaluate our
model on the test data. The experimentation illustrates that the encoded fea-
tures successfully identify the class identities of the relevant task (e.g. ZA → TA :
OAacc = 100%, ZB → TB : OAacc = 99.67%) but fail to handle irrelevant task
(e.g. ZA → TB : OAacc = 62%, ZB → TA : OAacc = 59.67%). Here, OAacc

is the overall accuracy. To show the utility of the proposed method on images
with previously unseen entangled properties, we additionally compare the shape
classification performance of our model and a baseline (our model without the
adversarial regularization) on images with a previously unseen entangled prop-
erties (circles on black background). The proposed model achieves OAacc = 99%
and outperforms the baseline which achieves OAacc = 10%. We use PCA to
examine the learned embedding space at the penultimate dense layer of the
classifiers. The top row of Fig. 3 illustrates that the extracted features is able
to identify class identities for relevant tasks (see (a, c)) but unable to predict
correct class identities for irrelevant tasks (see (b, d).

Evaluation on Fetal US Data: We verify the applicability of our method
on fetal US data. Here, we refer to an anatomical standard plane classification
task as TA and an acoustic shadow artifacts classification task as TB . We want to
learn the corresponding disentangled features ZA for all anatomical information,
separated from ZB containing only information about shadow artifacts. YA is
the label for different anatomical standard planes while Y i

B = 0 and Y i
B = 1 are

the labels of the shadow-free class and the shadow-containing class respectively.

Data Set: The fetal US data set contains 8.4 k images sampled from 4120 2D
US fetal anomaly screening examinations with gestational ages between 18−22
weeks. These sequences consist of eight standard planes defined in the UK FASP
handbook [16], including three vessel view (3VV), left ventricular outflow tract
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Table 1. Data split. “Others” contains standard planes 4CH, femur, kidneys, lips and
RVOT. Test seen, LVOT(W S) and Artifacts (OTHS) are used for testing.

Train Validation Test seen LVOT(W S) Artifacts(OTHS)

3VV W/O S (W S) 180 (320) 50 (50) 334 (41) − (−) − (−)

LVOT W/O S (W S) 500 (−) 50 (−) 79 (−) − (418) − (−)

Abd W/O S (W S) 125 (375) 50 (50) 190 (220) − (−) − (−)

Others W/O S (W S) − (−) − (−) − (−) − (−) 3159 (2211)

(LVOT), abdominal (Abd.), four chamber view (4CH), femur, kidneys, lips and
right ventricular outflow tract (RVOT), and are classified by expert observers
as shadow-containing (W S) or shadow-free (W/O S) (Fig. 1). We split the data
as shown in Table 1. Train, Validation and Test seen are separate data sets.
Test seen contains the same entangled properties (but different images) as used
for the training data set, while LVOT (W S) and Artifacts (OTHS) contain new
combinations of entangled properties.

Evaluation Approach: We refer to Std plane only as the networks for stan-
dard plane classification only (consists of EncA and ClsA), and Artifacts only
as the networks for shadow artifacts classification only (consists of EncB and
ClsB). Proposedw/o adv refers to the proposed method without the adversarial
regularization and Proposed is our method in Fig. 2.

The proposed method is implemented as outlined in Sect. 2 choosing λ = 0.1.
ClsA(ZA;φA) contains three dense layers with 256/256/3 hidden units while
ClsB(ZB ;φB) contains two dense layers with 256/2 hidden units. We choose
a bigger network capacity for ClsA(ZA;φA) by assuming that anatomies have
more complex structures than shadows to be learned.

Table 2 shows that our method improves the performance of standard plane
classification by 16.08% and 13.19% on Test seen when compared with the Std
plane only and the Proposedw/o adv method (see OAacc in Col. 5). It achieves
minimal improvement (Artifacts only : +0.35% and Proposedw/o adv: +0.31%
classification accuracy) for shadow artifacts classification (see OAacc in Col. 8).
We also demonstrate the utility of the proposed method on images with pre-
viously unseen entangled properties. Table 2 shows that the proposed method
achieves 73.68% accuracy of standard plane classification on LVOT (W S) (∼36%
higher than other comparison methods) while it performs similar to other meth-
ods on Artifacts (OTHS) for shadow artifacts classification.

We evaluate the performance of disentanglement by using the encoded fea-
tures for the irrelevant task on Test seen, e.g. ZA → TB and ZB → TA. Here,
ZA and ZB are encoded features of the proposed method. Proposedirr task in
Table 2 indicates that ZB contains much less anatomical information for stan-
dard plane classification (OAacc = 94.44% in proposed vs. OAacc = 64.35% in
Proposedirr task), while ZA contains less shadow features information (OAacc =
79.05% in proposed vs. OAacc = 72.57% in Proposedirr task). We additionally
use PCA to show the embedded test data on the penultimate dense layer. The
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Table 2. The classification accuracy (%) of different methods for the standard clas-
sification (TA) and shadow artifacts classification (TB) on Test seen data set and
data sets with unseen entangled properties (LVOT(W S) and Artifacts(OTHS)). “Pro-
posed” uses encoded features for relevant tasks, namely, ZA → TA and ZB → TB .
“Proposedirr task” uses encoded features for irrelevant tasks, namely, ZA → TB and
ZB → TA. OAacc is the overall accuracy.

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6 Col. 7 Col. 8 Col. 9 Col. 10

Methods Test seen LVOT

(W S)

Artifacts

(OTHS)3VV LVOT Abd. OAacc W/O S W S OAacc

Std plane only 60.80 96.59 67.09 78.36 − − − 34.93 −
Artifacts only − − − − 77.94 80.46 78.70 − 69.26

Proposedw/o adv 63.73 97.80 78.48 81.25 78.77 77.78 78.74 37.56 69.50

Proposed 93.87 97.56 81.01 94.44 87.89 58.62 79.05 73.68 68.49

Proposedirr task 39.20 83.90 82.28 64.35 68.49 81.99 72.57 − −

(a) ZA → TA (b) ZB → TA (c) ZB → TB (d) ZA → TB

Fig. 3. Visualization of the embedded data on the penultimate dense layer. The top
row shows embedded synthetic test data while the bottom row shows embedded fetal
US Test seen data. (a, c) are the results of using encoded features for relevant tasks,
e.g. ZA for TA and ZB for TB ; separated clusters are desirable here. (b, d) are the
results of using encoded features for irrelevant tasks, namely, ZA for TB and ZB for
TA; mixed clusters are desirable in this case.

bottom row in Fig. 3 shows that encoded features are more capable of classifying
class identities in the relevant task than the irrelevant task (e.g. (a) vs. (d)).

Discussion: Acoustic shadows are caused by anatomies which block the prop-
agation of sound waves or by destructive interference. With this dependency
between anatomy and artifacts, separating shadow features from anatomical
features may lead to decreased performance of artifacts classification (Table 2,
Col. 7, Proposed). However, this separation enables feature generalization
so that the model is less limited to certain image formation and able to
tackle new combinations of entangled properties (Table 2, Col. 9, Proposed).
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Generalization of supervised neural networks can also be achieved by extensive
data collection across domains and in a limited way by artificial data augmen-
tation. Here, we propose an alternative through feature disentanglement, which
requires less data collection and training effort. Figure 3 shows PCA plots for the
penultimate dense layer. Observing entanglement in earlier layers reveals that
disentanglement occurs in this very last layer. This is due to the definition of our
loss functions and is partly influenced by the dense layers interpreting the latent
representation for classification. Finally, perfect representation disentanglement
is likely infeasible because image features are rarely totally isolated in reality. In
this paper we have shown that even imperfect disentanglement is able to provide
great benefits for artifact-prone image classification in medical image analysis.

4 Conclusion

In this paper, we propose a novel disentanglement method to extract generaliz-
able features within a multi-task framework. In the proposed method, classifica-
tion tasks lead to encoded features that are maximally informative with respect
to these tasks while the adversarial regularization forces these features to be
minimally informative about irrelevant tasks, which disentangles internal repre-
sentations. Experimental results on synthetic and fetal US data show that our
method outperforms baseline methods for multiple tasks, especially on images
with entangled properties that are unseen during training. Future work will
explore the extension of this framework to multiple tasks beyond classification.
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