
SPRNet: Automatic Fetal Standard Plane
Recognition Network for Ultrasound Images

Jiajun Liang1, Rian Huang1, Peiyao Kong1, Shengli Li2,
Tianfu Wang1(&), and Baiying Lei1(&)

1 School of Biomedical Engineering, National-Regional Key Technology
Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory
for Biomedical Measurements and Ultrasound Imaging, Shenzhen University,

Shenzhen, China
{tfwang,leiby}@szu.edu.cn

2 Department of Ultrasound, Affiliated Shenzhen Maternal and Child Healthcare
Hospital of Nanfang Medical University, Shenzhen, China

Abstract. Fetal standard plane recognition is a crucial clinical part of prenatal
diagnosis. However, it is also a sophisticated, subjective, and highly empirical
process. Thus, there is a huge demand for proposing an effective and precise
automatic method to help experienced as well as inexperienced doctors to
complete this process, efficiently. In order to satisfy this clinical need, we
propose an automatic fetal standard plane recognition network called SPRNet.
Specifically, we adopt DenseNet as the basic network of SPRNet and implement
data-based partial transfer learning on it by weight-sharing strategy. We then
train our network with a task dataset (fetal ultrasound images) and a transferring
dataset (placenta ultrasound images) so that our network can discover and learn
the potential relationship between these two datasets to improve the performance
and avoid overfitting. Finally, we achieve automatic fetal standard plane
recognition by utilizing the feature extracted from SPRNet. The experimental
results indicate that our network can attain an accuracy of 99.00% and perform
better than conventional networks.
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1 Introduction

Prenatal diagnosis is an effective examination to assess the growth of fetuses and it is
also helpful to reduce birth defect rate and neonatal mortality. Due to the advantages of
the non-invasion, no radiation and low cost, ultrasonography plays an important role in
prenatal diagnosis, nowadays. This ultrasonography method can be generally divided
into five steps: ultrasound images scanning, standard planes recognition, structural
observation, parameter measurement, and diagnosis. Among these steps, standard plane
recognition is the key part of the process, as the standard planes are the foundation of
parameter measurement and directly reveal the congenital anomaly of fetus [1].
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Currently, the recognition of standard planes mainly depends on artificial exami-
nation. Slight differences exist between standard planes and non-standard planes and an
example is shown in Fig. 1. This high similarity between the planes make it hard for
sonographers to effectively distinguish the planes and increases likelihood for misdi-
agnosis, especially when they are working in a high-workload environment. In addi-
tion, underdeveloped areas are lacking of experienced prenatal diagnosis doctors. This
is detrimental to decline the birth defect rate and neonatal mortality. Therefore, it is
great significance to propose an effective and automatic method to help experienced as
well as inexperienced sonographers to efficiently distinguish fetal standard planes from
non-standard planes.

Recently, the-state-of-the-art deep learning based method, convolutional neural
network (CNN) and it variants like VGG [2], ResNet [3] and SeNet [4], showed high
performance in different image classification tasks. It can also provide a new insight for
researchers to realize automatic fetal standard planes recognition. Accordingly, many
works also have been devoted into this area [5, 6]. Although some of these works
addressed the automatic recognition of certain fetal standard planes, their frameworks
have limitations in the generalization ability and accuracy. Recently, Kong et al. [11]
and Cai et al. [12] address these issues by higher performance network and multi-task
learning respectively. Inspired by their works, we propose an automatic fetal standard
plane recognition network called SPRNet. Specifically, the proposed SPRNet is based
on DenseNet architecture [7], which could maximize the use of features and outperform
other different deep neural network architectures. However, it still suffers from the
problem of overfitting. Inspired by work in Wang et al. [8], we propose a transfer
learning method called data-based partial transfer learning to alleviate overfitting and
adopt a placenta ultrasound image dataset as the transferring dataset. After prepro-
cessing, the features extracted from SPRNet are used to classify input images into
corresponding categories by Softmax layer. The experimental results indicate that, with
the transfer learning method we proposed, our network can utilize the potential rela-
tionships between two different datasets to improve classification performance, show
higher generalization ability, and outperform other conventional networks.

(a) (b)

Fig. 1. Abdominal standard plane (a) and non-standard plane (b) appear in two adjacent frames
of an ultrasound video. The green and red boxes show the nuanced difference between these two
images. (Color figure online)
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2 Methodology

The overall architecture of the proposed SPRNet is shown in Fig. 2. The principles of
the method used in this network are demonstrated as follow.

2.1 Data Processing

The datasets used to train SPRNet is composed of a task dataset and a transferring
dataset. The task dataset is constituted by fetal plane images in ultrasound and contains
seven categories: 4 channel chamber (4CH), abdomen, brain, axial face (AF), coronal
face (CF), sagittal face (SF) and others. Others are a collection of all non-standard
planes, and the rest categories are collections of corresponding structures’ standard
planes. The transferring dataset is a collection of placenta ultrasound images, and it is
divided into four grades: grade 0 to 3, according to Grannum standards [9].

The sizes of task and transferring datasets are summarized in Tables 1 and 2,
respectively. Due to the limited number of cases and the difficulties of data annotation,
the size of transferring dataset is significantly smaller than task dataset. This problem
may impose an adverse effect on the performance of SPRNet. Therefore, we extend the
training set of transferring dataset by cropping original images (700 � 500 pixels) into
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Fig. 2. Overall structure of the proposed method. (a) the architecture of SPRNet; (b), (c) and
(d) represent the basic modules in our network. k0 is the number of initial feature channels, kB and
kT denote the number of feature channels, M represents the index of D-Block and T-Block, N is
the amount of B-Layer in D-Block M, n (1 � n � N) refers to the index of B-Layer in D-Block
M, and h (0 < h � 1) denotes the channel decay coefficient.
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448 � 448 pixels from top left corner to bottom right corner with different strides for
different grades. The horizontal cropping strides for grade 0 to grade 3 are 126 pixels,
84 pixels, 63 pixels, and 21 pixels, respectively, and the longitudinal cropping stride for
all images is 26 pixels. Eventually, we get more than 1,000 images in each category of
transferring dataset and solve the problem of unbalanced data.

2.2 Basic Modules

We adopt the B-Layer (Bottleneck Layer), D-Block (Dense Block) and T-Block
(Transition Block) in DenseNet as the basic modules of our network.

D-Block is an intensive connection mechanism. It connects each layer to the pre-
vious layers in the same block and reuse the features extracted from previous layers by
concatenation. The advantage of this connection strategy is that, it protects the infor-
mation while reusing them and allows gradient to propagate from deep layers to
shallow layers more easily. With this structure, D-Block performs better than the
residual block in ResNet with less parameters and alleviates the problems of gradient
vanishing and model degradation. B-Layer is the basic unit of D-Block, which is used
for extracting information. T-Block, which is an interlayer between two D-Blocks, is
mainly used for reducing the number of parameters.

In our SPRNet, there are 4 D-Block and 4 T-Block, and we set k0 = 32 and h = 0.5.
From D-Block 1 to 4, N is 6, 16, 24 and 24, respectively.

2.3 Data-Based Partial Transfer Learning

Transfer learning is used to utilize the knowledge learned from transferring dataset to
improve the performance of CNN in task dataset and it was proved to be effective to
augment the generalization ability of CNN by Yosinski et al. [10]. The conventional
methods of transfer learning are based on transferring the weights of a pre-trained
model to a new model as initial weights and then fine-tuning the new model. Although
this method can boost the generation ability of network, it ignores the relationship
between task dataset and transferring dataset during the fine-tuning process and still

Table 1. The size of every category of training and testing in task dataset.

Fetal 4CH Abdomen Brain AF CF SF Others

Training set 1927 1349 1472 966 1542 1376 9208
Testing set 481 337 367 241 385 343 2301

Table 2. The size of every grade of original and extended training and testing in transferring
dataset.

Placenta Grade 0 Grade 1 Grade 2 Grade 3

Original training set 149 108 68 28
Extended training set 1341 1296 1020 1092
Testing set 37 26 16 7
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suffers from the problem of overfitting when dataset size is limited. Wang et al. pro-
posed a novel transfer learning method called data-based transfer learning [8]. In this
method, networks for different datasets are integrated into a general network by weight-
sharing strategy, but they still possess their own fully connected layer and loss function
to finish their own task. With this structure, the general network is able to extract and
learn the potential relationship between task dataset and transferring dataset, prevent
network from overfitting to any one dataset and perform better generalization ability
than conventional transfer learning methods.

Conventional transfer learning method usually adopt natural images like ImageNet
[13] as transferring data, but for transfer learning in medical area, there is huge dif-
ference between medical images and natural images, such as morphological difference
and acquisition method, which may bring some adverse effects. So, in order to avoid
these disadvantages, we also try to adopt the placenta ultrasound images as transferring
data. Although there is still huge morphological difference between placenta ultrasound
images and fetal plane ultrasound images, we believe that the different medical images
which are collected by the same method have some common features which can be
used for transfer learning.

When we apply data-based transfer learning into our network, we discover that the
performance of our network declines. The reason is that, unlike the datasets used in
Wang’s et al. work [8], which are selected and closely related, there are huge mor-
phological differences between our task dataset and transferring dataset, and these
differences make it difficult for shallow layers, which are prone to extract morpho-
logical information like textures and corner point, to extract common features from task
dataset and transferring dataset. To settle this problem, we do not apply weight-sharing
strategy into shallow layers and only use deep layers to extract the common features
hidden in the task and transferring datasets. Therefore, our network can avoid the
performance decline while the task dataset and transferring dataset are not closely
related to each other. We call this method as data-based partial transfer learning.

3 Experiments and Results

3.1 Experiment Design

We design a control experiment which uses three different networks (DenseNet-145,
DenseNet-145-global-transfer and SPRNet) to finish two tasks (fetal standard plane
recognition and placenta maturity grading), respectively, to demonstrate the improve-
ment of SPRNet. DenseNet-145 is a densely connected convolutional networks with
145 convolutional layers. DenseNet-145-global-transfer is a network where weight-
sharing strategy is applied on every convolutional layer. SPRNet is our proposed and it
also includes 145 convolutional layers.

We randomly divide both datasets into 80% for training set and 20% as testing set,
and data processing is applied to the training set.

The experiments are implemented using Python via Tensorflow and runs at a
32 GBs-RAM computer with a GeForce GTX 1080 Ti GPU. Accuracy (ACC),
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sensitivity (SEN), specificity (SPE), and F1-Score (F1) are adopted to evaluate the
performance of the networks.

3.2 Results

As shown in Table 3, benefitting from data-based partial transfer learning, SPRNet
outperforms other methods in fetal standard plane recognition as well as placenta
maturity grading. However, for the DenseNet-145-global-transfer, there is a perfor-
mance degradation in both tasks, if we regard DenseNet-145 as the benchmark. This
degradation of performance mainly caused by the huge morphological differences
between task dataset and transferring dataset. As shown in Fig. 3(b) and (c), the
features extracted from the separated shallow layers in SPRNet mainly contain mor-
phological information, such as corner point and texture, and there are huge differences
between the features extracted from different datasets, which will result in an intense
antagonism in shallow weight-sharing convolutional layers. For the data-based global
transfer learning, this intense antagonism is too strong for it to find a proper point to
learn common information from both datasets and yields performance degradation. On
the contrary, data-based partial transfer learning, which cancels the weight-sharing on
shallow layers, can effectively weaken this strong antagonism, ensuring the network
will not be impaired. Furthermore, the improvement of SPRNet in placenta maturity
grading task suggest that data-based partial transfer learning can effectively prevent the
overfitting problem which is caused by limited data and improve the performance of
network by extracting common features from task dataset and transferring dataset.

Table 4 shows the SPRNet’s recognition results of different fetal planes, indicating
that SPRNet achieves the best results in this task. The confusion matrix shown in Fig. 4
reveals the specific recognition result of SPRNet and prove the effectiveness of the
proposed method.

To further explain the effectiveness of SPRNet, we implement feature visualization
by t-SNE. Specifically, we reshape all the input test images and the feature extracted
from SPRNet to a matrix, respectively, in which every row represents an images or
features, and then demonstrate the distribution of these two matrixes by the t-SNE

Table 3. The performance of the proposed SPRNet against other networks.

Task Network ACC % SEN % SPE % F1 %

Fetal standard plane
recognition

DenseNet-145 98.86 96.04 99.34 95.24
DenseNet-145-
global-transfer

98.03 93.11 98.85 92.25

SPRNet 99.00 96.51 99.41 95.58
Placenta maturity
grading

DenseNet-145 92.44 84.88 94.96 85.13
DenseNet-145-
global-transfer

91.27 82.55 94.18 83.02

SPRNet 94.76 89.53 96.51 90.85
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Placenta

(a) (b) (c) (d) (e) (f)

Fetal plane

Fig. 3. Feature maps extracted from SPRNet. (a) is the original input image. (b) is the output of
the first convolutional layer. (c)–(f) refer to the feature extracted from D-Block 1 to 4,
respectively.

Table 4. Recognition results

Classes ACC % SEN % SPE % F1 %

4CH 99.51 97.54 99.75 97.74
Abdomen 99.00 95.60 99.27 93.54

Brain 99.17 98.92 99.20 95.21
AF 99.37 99.58 99.36 94.50
CF 99.42 93.81 99.97 96.67

SF 99.04 96.56 99.22 93.87
Others 97.48 96.16 98.89 97.53

Fig. 4. Confusion matrix of SPRNet.

Fig. 5. Feature visualization via t-SNE. (a) the distribution of the input test images; (b) the
distribution of the features extracted from SPRNet.
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function provided in the sklearn. Different colors refer to different categories of fetal
ultrasound planes. As shown in Fig. 5, the distribution of the input test images is
unordered, showing that the distinction of standard fetal planes and non-standard
planes is unobtrusive. On the contrary, after feature extraction of SPRNet, corre-
sponding categories are grouped together, and the distribution of features becomes
separable. This result further proves the effectiveness of the proposed network.

4 Conclusion

In this paper, we propose an effective fetal standard plane recognition network, which
adopts D-Block and T-Block as the basic module and introduces data-based partial
transfer learning. The experimental results demonstrate that SPRNet is accurate and
effective, and the data-based partial transfer learning brings a considerable improve-
ment to our network. In the future, we will expand our dataset to realize standard plane
recognition on more fetal structures and try to apply automatic parameter measurement
and structure localization to our method.
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