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Abstract. Two-dimensional echocardiography (2DE) measurements of
left ventricle (LV) dimensions are highly significant markers of several
cardiovascular diseases. These measurements are often used in clinical
care despite suffering from large variability between observers. This vari-
ability is due to the challenging nature of accurately finding the cor-
rect temporal and spatial location of measurement endpoints in ultra-
sound images. These images often contain fuzzy boundaries and varying
reflection patterns between frames. In this work, we present a convo-
lutional neural network (CNN) based approach to automate 2DE LV
measurements. Treating the problem as a landmark detection problem,
we propose a modified U-Net CNN architecture to generate heatmaps
of likely coordinate locations. To improve the network performance we
use anatomically meaningful heatmaps as labels and train with a multi-
component loss function. Our network achieves 13.4%, 6%, and 10.8%
mean percent error on intraventricular septum (IVS), LV internal dimen-
sion (LVID), and LV posterior wall (LVPW) measurements respectively.
The design outperforms other networks and matches or approaches intra-
analyser expert error.
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Deep learning · Convolutional neural networks

1 Introduction

Ultrasound imaging is the primary imaging modality used to assess cardiac mor-
phology and function. Compared to other imaging modalities (e.g. MRI and CT),
ultrasound imaging has a lower cost, is easier to perform, and, unlike CT, does
not produce ionizing radiation. This makes it ideally suited for rapid diagnostic
use for patients with cardiovascular disease. A diagnosis is made by acquiring
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a set of images from different views of the heart and extracting measurements
of heart function from those images. Some of the most frequent measurements
in patient care settings are measurements of the left ventricle (LV) from the
parasternal long-axis view. The typical set of measurements consists of the length
of the intraventricular septum (IVS), left ventricular internal dimension (LVID),
and left ventricular posterior wall (LVPW) at both the end-diastole (ED) and
end-systole (ES) phases of the cardiac cycle. Several examples of these measure-
ments are shown in Fig. 2. Because LV dimension measurements are performed
frequently, automated measurement tools could provide tremendous time savings
for clinical use.

Despite its widespread use, there is a high variability in LV dimension mea-
surements due to variations in training and the difficulty of precisely detecting
relevant structures. The 2010 HUNT study [11] measured inter-analyser (dif-
ference between experts reading the same exam) and intra-analyser (difference
between the same expert reading the same exam several weeks apart) for sev-
eral standard echocardiographic measurements. The intra-analyser mean percent
error (MPE) for IVS, LVID, and LVPW measurements was 10%, 4%, and 10%
respectively and inter-analyser results were similar. For IVS and LVPW mea-
surements this corresponds to about half of the standard deviation of normal
ranges [3] so a patient on the borderline could easily be put in a different diag-
nostic group. The high variability highlights the difficulty of the task at hand,
but effective automation is one promising approach to reduce this variability and
implement a more reproducible diagnostic pipeline.

Previous work on 2D ultrasound measurements has focused on individ-
ual measurements. Snare et al. used deformable models with Kalman fil-
tering to outline the septum shape [9], achieving bias and standard devia-
tion of 0.14± 1.36 mm for automated IVS measurements compared to man-
ual measurements. Baracho et al. used perceptron style neural networks and
filtering to generate a septum segmentation [1]. They achieved results of
0.5477 mm± 0.5277 mm for IVS measurements but failed to validate directly
against measurements from an expert cardiologist. Finally, Sofka et al. devel-
oped an automated method for detecting LVID measurements using convolu-
tional neural networks (CNNs) [10]. Sofka et al. introduce a center of mass layer
to regress keypoint locations and achieved a 50th percentile error of 4.9% and a
95th percentile error of 18.3%. We extend the work of Sofka et al. by targeting
the IVS and LVPW measurements in addition to LVID. Including more mea-
surements increases the difficulty of the task because the network should not
only achieve high accuracy on all measurements but also find measurement vec-
tors that have a logical relationship to each other (i.e. all measurement vectors
should be parallel to follow clinical guidelines). Additionally, the upper IVS and
lower LVPW endpoints do not fall at distinct gradient boundaries within the
image making them more difficult to find, even for an expert.

As with Sofka et al., we frame the task as a landmark detection problem,
where the goal is to identify 6 key points (the 2 endpoints of IVS, LVID, and
LVPW measurements) from an input image. A landmark based approach was
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chosen to increase user-interpretability and allow editing of the found points by
users in a clinical workflow. Many architecture variants have been applied in
previous work on landmark detection problems, but the most common approach
is to generate a heatmap of likely locations for each key point of interest [6,7,12].
The heatmap is directly compared to a reference heatmap generated from the
key point’s known location, or the coordinates of the key points are regressed
from the heatmap and compared to known coordinates.

We propose several modifications to the general landmark detection strat-
egy above because, in contrast to facial recognition, there is no defined local
appearance of these landmarks. Instead, their location is determined from local
appearance and global structural information. For example, while the septum
typically extends through a large part of the image, ASE guidelines recommend
measuring at the level of the mitral valve leaflets [4] which means an algorithm
needs to be aware of structural information to find the correct IVS endpoints.

The novelty of our approach lies in it’s ability to handle these challenges and
achieve high accuracy. First, we generate anatomically meaningful ground truth
heatmaps which follow the expected spatial distribution of the point. Second, we
propose the integration of coordinate convolution layers [5] within feature detec-
tion networks for medical imaging. Third, we optimize network performance
using a multi-component loss function which provides feedback to the network
in multiple components including measurement endpoint coordinate locations,
angle of measurement, and measurement distances. Including all these terms
allows us to optimize for both measurement accuracy and a logical relationship
between measurement vectors. Finally, we evaluate several different architec-
tures within the constraints of our first two contributions to show the optimal
architecture for the given task.

2 Methods

2.1 Network

The input to the proposed network is a single 2D frame. The accurate detec-
tion of ES and ED frames from a full cardiac loop is left for future work. The
image is first passed through a CoordConv layer, which adds pixel-wise spatial
location information to allow CNNs to more easily find objects [5]. The core of
our approach is a U-Net [8]. A U-Net is a CNN with a sequence of down and up
sampling paths with skip connections concatenating each down-sampling output
to the corresponding up-sampling level. In each successive down-sampling layer,
the number of filters doubles and the spatial resolution in each dimension is cut
in half, while the reverse is true in up-sampling. We make several modifications
in our implementation. The number of down-sampling levels and the number of
filters are parameterized to tune the network. Padding is added on all layers to
ensure output heatmap resolution matches the input. Batch normalization and
spatial dropout layers are included between convolutional blocks for regulariza-
tion, avoiding standard dropout since neighboring pixels are strongly correlated
[12]. Each convolutional layer uses a kernel size of 3× 3.
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Our output is the same size as the original image but contains 6-channels,
with each channel representing a heatmap corresponding to one landmark.
Although the top and bottom endpoints of LVID typically match the bottom of
IVS and top of LVPW respectively, they can be different for some pathologies
which is the reason they are independent points in our framework. Each channel
is normalized to be a probability map and passed through a differential spatial-
numerical transform block [7] to calculate the center of mass in x and y: the
endpoints of the three measurement vectors. From the coordinate endpoint loca-
tions, we calculate the final distance measurements. The network architecture is
shown in Fig. 1.

Fig. 1. Network architecture. The input image (256× 256) is appended with x and y
coordinate channels to create a 3 channel image and passed through a U-Net-based
architecture. The output contains 6 heatmaps (Ĥ), one for each detected landmark.
The center of mass of each heatmap is extracted as the found coordinates (ĉ), and
vectors for each measurement are obtained (d̂). Label distances (d) and heatmaps (H)
are generated from labeled endpoints (c) to compare to the network output.

2.2 Loss Function

Our labels are the coordinate locations of all caliper endpoints. We extrapolated
these to match the network output including heatmaps of coordinate locations,
and distances between coordinate pairs. For the label heatmaps, a 2D gaussian
is centered at the location of the labeled coordinate. The gaussian is elongated
in one dimension with a ratio of 20 to 1 between the variances of the long and
short axes and rotated such that the long axis was orthogonal to the direction
of measurement (see H in Fig. 1 for example). This both followed the expected
spatial distribution of the points and gave the network feedback that a miss
orthogonal to the direction of measurement was more acceptable than one par-
allel to the measurement, which would substantially affect measurement results.
The variance of the gaussian in the long axis is 14 pixels (or 5% of the image
size).
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L2 loss is used for the six coordinate locations and three distance measure-
ments, although the distance loss was divided by the relative actual distance
(d) to equally weight each measurement. The heatmap loss is the root mean
squared error (RMSE) between the generated and output heatmaps, following
Newell et al. [6]. The heatmap loss helps the network converge to a reasonable
result quickly, because feedback is provided to the network at every pixel in
the output, rather than just a single metric fed back to all pixels such as with
the distance or coordinate measures. The difference in the relative angles of the
measurement vectors is also included in the loss function as the cosine similarity
between the two vector sets. Including the angle loss is critical because even if
the network can correctly find point delineations across the relevant structure
(e.g. septum), if the measurement vector is not orthogonal to that structure then
the measurement will be overestimated. The angle and coordinate loss also help
promote a logical relationship between measurement vectors.

3 Experiments

3.1 Datasets and Pre-processing

LV intraventricular septum (IVS), internal diameter (LVID), and posterior wall
(LVPW) dimensions were annotated in parasternal long axis 2DE scans. To
avoid overfitting to a single acquisition protocol, exams were collected from four
sites. All measurements were performed by a single cardiologist experienced in
2DE measurements. Diagnostic information was stripped from the images, but
a mix of normal patients and varied pathologies is typical for the chosen sites.
Exams were labeled at ED and ES except for where image quality in one phase
prohibited accurate measurements. A total of 585 images were gathered from
309 unique patients. To generate a comparison with intra-analyser variability,
32 recordings (mixed ED and ES) were labeled multiple times by the same
expert. These 64 images were set aside to be used as the test set for the network
leaving 521 images for training and validation. The training, validation, and test
sets were split such that images from the same patient would always remain in
the same set. The coordinates and image data from the relevant frames were
extracted from the stored files and converted to 256× 256 one-channel images.

During training, random brightness, contrast, and gamma transformations
were applied to each image. Additionally, we used mean normalization and
applied random translations of 0 to 40 pixels in each direction, while ensuring
coordinate locations were never within 16 pixels of the image boundaries.

3.2 Implementation Details

The network was implemented using PyTorch 0.4.1 with Python 3.6 on an
Ubuntu 18.04 machine with an NVIDIA Titan X GPU. The batch size was
16 images for training and 4 images for validation. We trained for 120 epochs
and reduced the learning rate by a factor of 10 every 50 epochs. Using 10% of the
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Fig. 2. Top row: Qualitative results on the best, median and worst images from the
test set showing expert labels and network outputs for each measurement. Bottom
row: Characteristic heatmaps showing how the network learns to prioritize a small
distribution in the direction parallel to the measurement direction. Only four heatmaps
are shown for simplicity since the top and bottom LVID endpoints overlap with the
bottom of IVS and top of LVPW respectively and produce very similar heatmaps.

training set for validation of hyperparameters, we found 4 levels was the optimal
network depth and 26 was the optimal number of filters in the first layer.

The primary metric important for clinical use is the accuracy of the distances
for each of the three measurements. The coordinate locations of the endpoints
and angle of the measurement vectors are secondary metrics that are important
to create a tool that accurately follows clinical guidelines. For clinical use, it
is not important that the generated heatmap matches the artificial heatmap.
However, we found that keeping the relative weighting of the heatmap loss high
compared to the other metrics helped improve network accuracy on all metrics.

3.3 Evaluation and Comparison

The primary metric for evaluation was the mean percent error between the
network output and ground truth distance measurements on IVS, LVID, and
LVPW. The test set was composed of the 32 images that had been labeled
multiple times. The median of the two labels was set as ground truth although
comparing to a randomly chosen label yielded very similar results.

While much of the strategy revolved around pre- and post-processing, we
implemented several other networks in addition to U-Net for comparison. Results
were compared to a stacked hourglass network [6], which currently obtains state
of the art results on the FLIC and MPII human pose estimation metrics as well
as ResNet18, ResNet34, and ResNet50 networks [2]. We tuned the number of
stacks (4) and blocks (2) of the stacked hourglass network on the validation set.
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We implemented the ResNet networks following the strategy proposed by Nibali
et al. [7], reducing the stride in several layers to increase output heatmap res-
olution, while using dilated convolutions to maintain receptive field sizes. The
output heatmap size for the ResNet and stacked hourglass networks was 64× 64
and we appended up-sampling layers to achieve 256× 256 resolution. A Coord-
Conv layer was added to the beginning of all networks and the same coordinate
regression method and loss function were used. For a fair comparison to the
other networks, results with default values of an out-of-the-box implementation
of U-Net is included (no batch normalization or dropout, depth and number of
filters set to 5 and 26 respectively).

4 Results

The best, median, and worst examples (in terms of RMSE) from the test set
are shown in Fig. 2. The network achieves intra-analyser accuracy on LVPW
and LVID measurements, and slightly worse than intra-analyser on IVS mea-
surements. The algorithm’s worse performance on IVS measurements possibly
occurs because the upper septum is often not defined as a clear gradient bound-
ary because the septum blurs together with trabeculae in this region (see median
image in Fig. 2, although the network correctly found the location in this case).
Expert labelers typically rely on scrolling back and forth between several frames
to accurately find these points. In general, intra-analyser error is high on this task
since boundaries are often blurred and lost in the noise (see the upper LVPW
boundary in the worst image in Fig. 2 for example). The network’s ability to
approach intra-analyser error using only a single frame indicates that it is accu-
rately detecting the important structures despite the high noise level. Full results
on the final test set are summarized in Table 1. The proposed network compares
favorably to the other networks implemented on this task, achieving lower error
on most metrics. We hypothesize that the performance of the other deeper net-
works would improve if the training dataset size were increased. However, our
network has fewer parameters (which translates to a smaller memory size) and
faster inference time. It is encouraging that close to expert level performance
was achieved with a small network since efficient and fast implementations are
important for clinical implementations.

5 Conclusion

In this work we present an effective landmark detection network for 2D measure-
ments of the LV. We demonstrate the application of these techniques in deter-
mining LV dimensions. Implementation of this network could reduce high clin-
ical inter-/intra-analyser variability in these measurements and lead to a more
repeatable diagnostic pipeline. Additionally, it enables rapid historical analy-
sis of patients to provide robust long-term analysis. We expect that many of
the techniques presented here would be applicable to other landmark detection
problems in 2D and 3D ultrasound. In the future we will increase the size of the
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Table 1. Comparison of proposed network to implementations of state-of-the-art net-
works in landmark detection and intra-analyser results. Inference time is for a single
image.

Model Mean percent error (%) Params Time (ms)

Total IVS LVID LVPW

ResNet18 12.8 12.7 11.7 14.2 1e7 21

ResNet34 13.0 11.2 12.1 15.8 2e7 38

ResNet50 11.6 13.7 8.8 12.3 2e7 43

Stacked Hourglass 11.3 12.1 7.4 14.4 3e7 79

U-Net 13.5 14.0 8.3 18.1 3e7 10

Modified U-Net 10.0 13.4 6.0 10.8 7e6 11

Intra-analyser 8.9 8.0 5.2 13.8 n/a −

datasets, apply cross-validation, automate the detection of ED and ES frames
from a full cardiac cycle, and add a confidence metric for detecting outlier results
to provide a fully automated measurement tool for clinical use.
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