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Abstract. Fetal functional Magnetic Resonance Imaging (fMRI) has
emerged as a powerful tool for investigating brain development in utero,
holding promise for generating developmental disease biomarkers and
supporting prenatal diagnosis. However, to date its clinical applications
have been limited by unpredictable fetal and maternal motion during
image acquisition. Even after spatial realignment, these cause spurious
signal fluctuations confounding measures of functional connectivity and
biasing statistical inference of relationships between connectivity and
individual differences. As there is no ground truth for the brain’s func-
tional structure, especially before birth, quantifying the quality of motion
correction is challenging. In this paper, we propose evaluating the effi-
cacy of different regression based methods for removing motion artifacts
after realignment by assessing the residual relationship of functional con-
nectivity with estimated motion, and with the distance between areas.
Results demonstrate the sensitivity of our evaluation’s criteria to reveal
the relative strengths and weaknesses among different artifact removal
methods, and underscore the need for greater care when dealing with
fetal motion.
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1 Introduction

For over two decades, it has been known that motion artifacts cause serious dis-
ruptions to fMRI data such that even sub-millimeter head movement can add
spurious variance to true signal and bias inter-individual differences in fMRI
metrics [13,16]. The severity of this problem is especially pronounced in fetal
imaging due to unpredictable fetal movement, maternal respiration, and sig-
nal non-uniformities [10]. To date, advanced motion correction methods, often
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relying on super resolution techniques, have been proposed to address motion
artifact by reconstructing a high resolution motion-free volume from several clin-
ical low resolution MR images of a moving fetus [3,7]. As methods to counteract
motion artifacts are being developed, it is of critical importance to know if a
technique has improved the quality of data or introduced additional artifacts.
Among several quality-control benchmarks that have been recently employed in
adult studies [2,9,12], Quality Control-Functional Connectivity (QC-FC) corre-
lation was found to be the most useful metric of quality as it directly quantifies
the relationship between motion and the primary outcome of interest over a
population [13]. The QC-FC benchmark is based on the correlation between
the FC of each pair of regions and the average motion of each subjects in the
dataset to determine how that connectivity is modulated by subject motion.
Since both FC and motion are calculated as a mean value over the entire scan,
for the rest of paper we call it static FC-FD. For the purpose of assessing resid-
ual artifacts in fetuses, the average motion is insufficient, due to excessive fetal
motion, exhibiting large movement spikes and overall more continuous motion
during acquisition [10]. Furthermore, using the average motion as a means to
quantify spurious connectivity allows for no subject-specific evaluation as it pro-
vides only group specific motion dependencies. It therefore is not able to decide
whether a specific acquisition should be removed from analysis entirely, or could
be salvaged by excluding specific contaminated time-points using methods such
as scrubbing [14].

In this paper, we developed a dynamic FC-FD benchmark for systematic
evaluation of subject-specific fMRI data quality, comparing the efficacy of exist-
ing regression strategies for mitigating motion-induced artefacts. We evaluated
our benchmark on fetal fMRI as an application with irregular motion. However,
the proposed methodology is general and can be applied to any fMRI study.

2 Data, Preprocessing and Motion Correction

Experiments in this study were performed on 24 in-utero BOLD MRI sequences
obtained from fetuses between 19 and 39 weeks of gestation. None of the cases
showed any neurological pathologies. Pregnant women were scanned on a 1.5T
clinical scanner (Philips Medical Systems, Best, Netherlands) using single-shot
echo-planar imaging (EPI), and a sensitivity encoding (SENSE) cardiac coil with
five elements. Image matrix size was 144 × 144, with 3 × 3mm2 in-plane resolu-
tion, 3 mm slice thickness, a TR/TE of 1000/50 ms, and a flip angle of 90. Each
scan contains 96 volumetric images obtained in an interleaved slice order to min-
imize cross-talk between adjacent slices. Preprocessing of the resting-state data
included correction for distortions induced by magnetic field inhomogeneity, slice
timing correction, motion correction, de-meaning and removal of any linear or
quadratic trends. Motion correction comprised iterative rigid-body registration
of all slice stacks to a resulting mean volume so that the objective function of
normalized correlation ratio was optimized. After 25 iterations, a realigned ver-
sion of each volume was created using trilinear interpolation, and two slices were
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Table 1. Eight nuisance regression strategies evaluated.

Strategy Summary of regressors #R

1: GSR Mean time-series averaged across the entire brain 1

2: 2Phys Two physiological time-series computed across white
matter (WM) and cerebrospinal fluid (CSF)

2

3: 6HMP 6 motion parameter estimates derived from realignment 6

4: 6HMP+ 2Phys
+ GSR

6 motion parameter estimates, 2 physiological
compartments and GSR

9

5: 24HMP 6 motion parameters, their temporal derivatives, together
with quadratic expansions of parameters and derivatives

24

6: 24HMP+
8Phys + 4GSR

Quadratic expansion of model 4: 9 regressors, their
derivatives, quadratic terms, and squares of derivatives

36

7: aCompCor 5 principal components each from the WM and CSF [1] 10

8: tCompCor 6 principal components from high-variance voxels [1] 6

interpolated between every two slices to eliminate the effect of slice interleaving
in different stacks, tripling the slice number after motion correction.

3 Functional Connectivity After Nuisance Regression

Individual functional connectivity analysis was performed in the native func-
tional space. For this, cortical regions of interest (ROIs) were first obtained using
an automatic atlas-based segmentation of T2 scans of the same subject acquired
during the same scan session as the fMRI volumes, using a publicly available
atlas of fetal brain anatomy [4]. The resulting parcellation consists of 98 ROIs
and was mapped to the motion corrected fMRI space using a rigid transforma-
tion computed between each individual structural T2 scan and the first volume of
fMRI data. For each parcel, we calculated the mean time course of all voxels, and
applied one of eight different common nuisance regression strategies (Table 1).
The resulting time course served as basis for calculating functional connectivity
in the form of a correlation matrix estimated using Pearson’s correlation.

4 Assessing Spurious Motion Artifacts in fMRI Data

Motion correction first aims to re-align individual slices of the fMRI volume
sequence such that the anatomical position of a voxel is consistent for the whole
time-series. Then, information such as spatial displacement and other surrogate
measurements of non-neural signal are used as nuisance regressors to remove
non-physiological residual signal components. We propose a dynamic FC-FD
method based on the fact that the sources of motion in fMRI time series are non-
stationary and can potentially induce changes in FC over time [5,8]. It expands
on subject level static FC-FD [13] by taking variation of motion and FC over
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time into account. We use the association between FC variation and motion
before and after the application of each nuisance regression strategy to evaluate
its effectiveness in fMRI data of a subject. FC varies over time due to noise
and actual non-stationary neural behavior with the magnitude of variation not
differing from simulated stochastic time-series [5]. Nevertheless, we can exploit
the relationship between FC fluctuation, estimated motion, and the distance
between areas to quantify possible residual non-neural confounds in the signal
after motion correction and nuisance regression. Here we focus on comparing
different variants of the latter based on several measures. It includes three steps:
quantifying FC variation, measuring a subject-specific motion time-course, and
evaluating the association between these two together with the distance between
regions.

4.1 Capturing Fluctuations of Connectivity with a Sliding Window

We estimate fluctuating connectivity over time using a sliding window approach,
resulting in a vector of FC values for every pair of regions. Ideally, the window
should be large enough to permit robust estimation of FC, yet small enough to
detect transient effects properly. We extracted 50 overlapping windows for each
time series, corresponding to a duration of 46 s and 1 s step-size of the sliding
window. This is consistent with the majority of previously published values rang-
ing from 30- to 60-s [15]. Finally, a Fisher z-transformation was applied to all
correlations, resulting in a three-dimensional (98 × 98 × 50) tensor of FC values
for each subject.

4.2 Capturing Head Motion as Framewise Displacement Vector

For measuring subject-specific motion, we used rigid body realignment estimates
obtained from motion correction step. These six realignment parameters (trans-
lation: x, y, z; rotation: α, β, γ) describe the relative displacement of every
volume from a fixed reference volume in the scan. Based on these parameters we
calculated framewise displacement (FD) as proposed in [6]. For each sliding win-
dow, we then computed the average FD to quantify a dynamic subject-specific
vector of head motion.

4.3 Evaluating the Association Between FC and Motion

Static association is measured across the study population using the correla-
tion of mean functional connectivity and framewise displacement averaged over
the whole fMRI scan [13]. For example, 24 fetuses in our study would yield 24
mean FD and 24 FC values for a specific edge in their FC map. The corre-
lation between these two is used as surrogate for the modulated of this edge
by subject motion. [14] provides an extended rationale. To take the dynamic-
ity of motion within each fMRI sequence into account, we can calculate FC-FD
association analogously on measurements in sliding windows. For each pair of
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regions, we calculated correlation between FC and FD across the sequence of
sliding windows, resulting in a dynamic FC-FD association. This captures the
subject-specific residual effect of motion for each pair of regions. To assess the
efficacy of nuisance regression strategy, we compared the proportion of edges
with significant correlations of FC and FD as well as the median absolute value
of their distribution. Fewer significant correlations or lower absolute median of
correlations are indicative of better performance.

4.4 Evaluating the Association Between Distance and FC-FD
Correlations

Previous studies have shown that in-scanner movement primarily inflates short-
range FC while decreases long-range connectivity [13,16]. Motion thus affects
more severely the FC of short range connections, and the correlation between
FC-FD association and distance of region is a possible marker of residual motion
artifacts. To determine the residual distance-dependence effects of motion on FC
variation, We calculated the distance Dij between regions based on the center of

Fig. 1. A static benchmark reveals associations between FC and motion (FC-FD), and
the association between distance and FC-FD (FC-FD-D) on a population level. Note
that every point in the FC-FD-D plots shows the correlation between the FC of one
specific edge and the average FD over the whole sample. Quantitative values can be
found in Table 2. According to this benchmark, 6HMP outperforms other strategies, as
no significant FC-FD association remained. However, the average FC map after 6HMP
exhibits dramatically increased FC values across the cortex.
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Table 2. The summary metrics of the static FC-FD/-D association benchmark for
each nuisance regression method.

Pipeline #Edges related
to motion (%)

Absolute median
FC-FD assoc.

FC-FD-D
assoc.

No Regression 242 (5.09) −0.099 0.007

1: GSR 8 (0.17) 0.001 −0.03

2: 2Phys 361 (7.60) 0.083 −0.01

3: 6HMP 0 (0.00) 0.061 −0.03

4: 6HMP+ 2Phys+ GSR 283 (5.95) 0.071 −0.04

5: 24HMP 40 (0.84) 0.075 0.029

6: 24HMP+ 8Phys+ 4GSR 15 (0.31) 0.052 0.02

7: aCompCor 95 (2.00) 0.043 0.08

8: tCompCor 103 (2.16) 0.029 0.14

mass of each parcel resulting in distance matrix D. We then calculated the corre-
lation between the distance between each pair of parcels and the corresponding
FC-FD correlation, we call this FC-FD-D association.

5 Results

Fetal head motion were quantified by framewise displacement ranged from ∼0
to 43.06 [mm, average: 1.84 ± 2.12]. To evaluate possible covariation of fetal age
and the estimated motion, we measured the correlation between gestational week
of subjects and both mean and maximum FD. Although in our study cohort,
neither mean FD (r = 0.16, p = 0.43) nor maximum FD (r = 0.33, p = 0.12)
doesn’t show significant correlation with gestational age.

Static Benchmark of FC-FD/-D Associations. The result of static FC-
FD analysis is illustrated in Fig. 1, where for each method, in the top panel
FC-FD correlations for all possible pairs of parcels are plotted against their
Euclidean distance. The bottom panel indicates the distribution of static FC-
FD correlations across the study cohort, and the right panel shows the aver-
age connectivity matrix of the study cohort. According to this benchmark, all
regression techniques were very effective in removing the effects of head motion
on FC, reducing the number of connections that were significantly related to
motion to less than 8% with the corresponding absolute median ranging from
0.01 to 0.001. In addition, very small correlation values of the static FC-FD-D
association suggest that the relationship between motion, FC, and distance has
become negligible after applying regression techniques (see Table 2). However,
the average connectivity matrices are different, and suggest that the resulting
FC still carries motion effects, or that these artifacts have even be increased.
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Fig. 2. Dynamic FC-FD association: the proportion of functional connectivity varia-
tions that showed significant associations (p ≤ .05, uncorrected) with subject-motion
after nuisance regression. Fewer significant correlations is indicative of better perfor-
mance.

Notably, the regression with realignment parameters (3:6HMP) yielded all FC-
FD correlations near zero and removed the distance dependent slope and positive
offset in the FC-FD measure, whereas it is obvious from the resulting average
FC matrix that FC values are entirely dominated by motion-induced variance,
resulting in a strong increase in connectivity among brain regions, regardless of
their distance. This suggests that motion parameter estimates were not accurate,
or linear regression is not a suitable strategy to remove associated signal com-
ponents, and in both cases static FC-FD couldn’t correctly reveal the residual
effects of motion on data.

Therefore, although this benchmark has been successfully used in adult stud-
ies, it doesn’t establish reliable results for fetal studies. The most likely expla-
nation is that in contrast to adult studies where subjects span a wide range
of mean FD values, all fetuses show similarly high levels of motion. Hence, the
resulting FD vector for adult studies covers a large range of variability, allowing
FC-FD correlations to reveal distance-dependence, however, the narrow-ranged
FD vector over the fetal sample cannot adequately account for subject’s motion
and so the reliability of FC-FD correlations would be questionable.

Dynamic FC-FD Association. The correlation between head motion and FC
variation was measured for each subject independently across the sliding win-
dows to see if performing a certain regression strategy has decreased the effect of
motion on the data or induced additional artificial variance. Figure 2 shows the
percentage of network connections where a significant relationship (correlations
with p-value ≤ .05, uncorrected) with motion was present. The benchmark sug-
gests no regression strategy was effective, leaving the majority of network edges
with a residual relation with motion. However, aCompCor showed more homo-
geneous performance over subjects and the commonly used regression strategy
relying only on the six motion parameters fared the worst.
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Fig. 3. A density plot of FC-FD association over distance between regions. Trendlines
are shown in red. A successful strategy should remove the distance dependent slope
and positive offset in of FC-FD vs. distance. Besides, there should be a more density of
datapoints around zero axis for an effective strategy. Consistent with previous measure,
aCompCor performed better than other strategies, however, this dynamic FC-FD/-D
benchmark reveals that clear remaining signs of motion artifacts are still present in
datasets.

Dynamic FC-FD-D Association. The benchmark yields an assessment for
each subject, with 4753 FC-FD associations per subject. To provide an inter-
pretable visualization of the relationship between edge-wise FC-FD association
and region distance, we use a binned scatter plot indicating the density of points
with color (Fig. 3).

Using no regression model shows that motion influenced BOLD signal in
proximal regions homogeneously, resulting in spuriously inflated correlations
among those regions. The least effective methods in mitigating such effect were
tCompCor and 6HMP. As expected, global signal regression introduced negative
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correlations due to spurious anti-correlations [11]. aCompCor and the
24HMP + 8Phys + 4GSR model showed overall better performance relative to
other regression strategies. However, the latter is the costliest strategy in terms
of the loss of temporal degrees of freedom leading to less statistical confidence
in the analysis of fMRI data.

6 Discussion

Quality control of fetal fMRI is of utmost importance since its susceptibility to
motion artifacts can result in false observations. A variety of regression strate-
gies provides a choice for removal of non-neural fMRI signal components. As it
increasingly becomes more common to use hundreds or even thousands of scans
for a single study, it is not practical to manually assess data quality, and in
addition, manual assessments are biased and suffer from lack of reproducibility.
Group-wise assessment of motion artifacts, such as static FC-FD, can be decep-
tive when there are excessive motion spikes, or generally high motion across the
entire population, leading to a ceiling-like effect of motion on correlation values
[14]. Here, we present a dynamic FC-FD/-D benchmark for single-subject fMRI
acquisitions that at the same time enables the comparison of nuisance regression
approaches. The proposed method was applied to fetal fMRI scans as an appli-
cation of particularly pronounced and irregular motion. Results suggest that a
static FC-FD benchmark is not suitable for fetal fMRI studies, as it is not able to
capture the relationship between fetal motion and FC, leading to false negative
results.

A general limitation of benchmarks evaluating the association with motion
is their dependency on realignment based estimates of movement. This is partic-
ularly challenging for irregular and substantial motion of fetuses moving inside
the uterus and exhibiting spurious large motion spikes. We used one motion
correction algorithm to re-align the image data and obtain movement param-
eter estimates, and better results might be obtained by a different approach.
The scope of the paper is the comparison of nuisance regression approaches
given likely imperfect movement parameter estimates, and not the comparison
of the motion correction approaches themselves. A limiting factor of fetal fMRI
is the typically shorter acquisition time, resulting in limitations of FC reliability
regardless of motion. Never-the-less quantitative assessment of motion related
artifacts is feasible, and dynamic measures as those evaluated in this paper do
offer a means to compare methods. In summary, we presented a benchmark for
the efficacy of nuisance regression. Results suggest that while they improve the
signal, they are not yet adequately effective in removing motion-related variance,
given the used motion correction approach.
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