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Abstract. Preprocessing and motion correction are essential steps in
resting state functional Magnetic Resonance Imaging (rs-fMRI) of the
fetal brain. They aim to address the difficult task of removing arte-
facts caused by fetal movement or maternal breathing, and aim to sup-
press erroneous signal correlations caused by motion. While preprocess-
ing standards have been established in the adult brain, motion correc-
tion of fetal rs-fMRI and subsequent interpretation of processed data is
still challenging. Here, we evaluate the effect of different preprocessing
methods and motion correction on rs-fMRI sequences by assessing repro-
ducibility of functional connectivity estimates. For slice-based motion
correction of 4D fetal rs-fMRI, we extend a high-resolution reconstruc-
tion approach presented for structural fetal MRI. Correlation, standard
deviation and structural similarity index are evaluated on the whole cor-
tex, on specific regions and at different gestational ages. Results show
improved reproducibility and signal interpretability after preprocessing
with motion correction enabling the quantification of long-range correla-
tion patterns of the developing default mode network in the fetal brain.

1 Introduction

The analysis of spatial and temporal brain signal correlations forms a key com-
ponent to understand the maturation processes of brain activity, their inter-
action and their link to cognition in the developing brain [4]. Preprocessing
methods used in functional Magnetic Resonance Imaging (fMRI) have been
developed for adult or infant brains and have recently been also applied on
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fetal rs-fMRI [4,13]. Here, motion correction is particularly important and nec-
essary, due to continuous movement of the fetus itself or causes such as mater-
nal breathing. Subsequent analysis of Functional Connectivity (FC) relies on
the assumption that measurements have neural origin, while signal disruption
and motion artifacts can artificially increase the correlation between brain voxels
even after re-alignment of image data and thus distort study results [10]. Existing
fetal studies [3,14,15,17] used different processing combinations as normaliza-
tion, smoothing, motion censoring, motion regression or motion correction. The
specific effects of these methods on the reliability of the resulting fetal rs-fMRI
signals and corresponding FC are poorly understood.

Contribution. Here, we assess the effect of state-of-the-art preprocessing tech-
niques on the reproducibility of rs-fMRI signals and the computation of short-
and long-range functional connectivity in the fetal brain, providing an evalua-
tion scheme and corresponding metrics. Jakab et al. [5] used correlation, standard
deviation and the structural similarity index as metrics for evaluating within-
subject reproducibility in diffusion tensor imaging. Inspired by this approach,
we applied these metrics on resting state fetal fMRI for the proposed prepro-
cessing pipelines. To correct for motion, we extend the 3D Motion Correction
(MC) and High-Resolution-Reconstruction (HRR) approach for fetal MRI pro-
posed in [1] for 4D fetal rs-fMRI. Quality assessment of the signal is a necessary
step, since there exists no standardized pipeline for fetal fMRI preprocessing.
We present different quality assessment schemata to evaluate the signal before
and after different preprocessing approaches on the cortex, on specific regions
and age related dependencies. The proposed reproducibility evaluation scheme
is introduced in Sect. 2. The evaluation results are presented in Sect. 3 and in
Sect. 4 this work concludes with a discussion of optimal preprocessing of fetal
rs-fMRI and discussion of possible future directions.

2 Methodology

In this section, the proposed evaluation framework and slice-based motion correc-
tion of 4D fetal rs-fMRI is summarized. Subsequently, the proposed signal qual-
ity assessment strategy is presented. The study population and imaging protocol
used for evaluation is introduced in Sect. 3.

Structural Preprocessing: Fetal MRI preprocessing included atlas-based
alignment, brain segmentation, generating of cortex meshes [11] and manual
registration with functional data.

Preprocessing Pipelines: We incorporated 7 different fMRI preprocessing
pipelines (cf. Table 1 for more detail) into the reproducibility test framework
proposed. Inspired by [9] we used combinations of bias field correction [19], slice
timing correction [6], high resolution 4D motion correction (see Sect. 2.1 for
detailed information) and motion regression [9].



Reproducibility in Motion Corrected Fetal fMRI 125

2.1 4D High Resolution Motion Correction (HRMC)

In this work, two different HRMC strategies are proposed: (1) Volume-to-Volume
(V2V) and (2) Slice-to-Volume (S2V) HRMC for fetal brain rs-fMRI. Volume-
to-Volume HRMC is performed by rigidly registering each stack (time point)
individually to a target fMRI stack using symmetric block-matching based on
normalized cross correlation [8]. For individual Slice-to-Volume HRMC, a higher-
resolution reference volume is estimated by using the first 15 time points to create
a 1 mm isotropic volume with the super-resolution reconstruction framework [1],
whereby three two-step motion-correction/reconstruction cycles are performed.
Subsequently, all slice stacks each acquired at the same time point are rigidly
registered to this higher-resolution reference using normalized cross correlation
as similarity measure. The final volumes are reconstructed on the original grid
by solving the slice acquisition model [1,2] in a least-squares formulation using
first-order Tikhonov regularization, i.e.

min
x≥0

( K∑
k=1

1
2
‖yk − Akx‖2�2 +

α

2
‖∇x‖2�2

)
, (1)

for all individual slices xk, k = 1, . . . , K associated with a single time point. This
takes into account either the obtained Volume-to-Volume or Slice-to-Volume
motion estimates for the linear blurring and downsampling operator Ak [1].

Table 1. Functional preprocessing pipelines incorporated into the framework proposed.
Each pipeline has different combinations of bias field correction (BFC), slice timing
correction (STC), Slice-to-Volume motion correction (S2V), Volume-to-Volume motion
correction (V2V) and motion regression (MR)

BFC STC BFC+STC STC+BFC S2V V2V MR

Pipeline 1 (P1) �
Pipeline 2 (P2) �
Pipeline 3 (P3) �
Pipeline 4 (P4) �
Pipeline 5 (P5) � �
Pipeline 6 (P6) � �
Pipeline 7 (P7) � � �

2.2 Short-Range and Long-Range Connectivity Computation

The Pearson correlation coefficient is computed between the time course t (t =
1, . . . ,M ;M is the number of time frames) of each brain node xi(t) and xj(t)
(i, j = 1, . . . , N , where N is the number of nodes observed) [7,12]:

CMt =
∑

[(xi(t) − x̄i)(xj(t) − x̄j)]√∑
[(xi(t) − x̄i)2(xj(t) − x̄j)2]

(2)
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As a result an N ×N correlation matrix CMt for every subject S was obtained,
with x̄i, x̄j the mean node intensity across all time points at position i and j. To
define short- and long-range connectivity, we calculate the Euclidean distance
(ED) between coordinates of nodes. For every cortical node, we count high corre-
lating time courses (threshold ≥ 0.4), and assign them to short- and long-range
splitting at a distance roughly equivalent to 15 mm in an adult brain [12]. This
distance is changed from 4.4 mm (gestational age of 20 weeks) to 8.8 mm (gesta-
tional age of 40 weeks) in relation to the fetal brain size, since fetus’ brains are
resampled on a standard brain (fsaverage5)1, which can introduce correlations
from nearby brain nodes [7,12].

2.3 Assessment of Reproducibility

According to [10] signal disruption and motion artifacts increase the correlation
between brain voxels and distort signals. We hypothesize that signals of two
time ranges of a subject should be more similar after preprocessing, compared
to the uncorrected signals, if artefacts are removed. Thus, we divided the rs-fMRI
associated with each fetus in two time ranges u and v. We observed that there
may be more fetal movement and maternal breathing at the beginning of the
recording session, which led us to the following definition of the two time ranges:
u = [[1, M

4 ], [2M
4 , 3M

4 ]] and v = [[M
4 , 2M

4 ], [3M
4 ,M ]] where M is the number of

time points in each dataset. For assessing the reproducibility of a subject’s signal
after preprocessing, the difference of correlations (ΔC) and standard deviations
(Δσ) between a subject’s S extracted time courses x(u) and x(v) are computed
as well as the SSIM index [5].

Correlation Difference ΔC. In a first step for xS(u) and xS(v) correlation
matrices CMS

u and CMS
v are computed following Eq. 2. Subsequently, the cor-

relation difference is computed following Eq. 3

ΔCS =
1

N2

N∑
i=1

N∑
j=1

|CMu(i, j) − CMv(i, j)| (3)

Standard deviation Difference Δσ. The standard deviation σ of a time
course t at node x of a subject is calculated using Eq. 4, where x̄ is the mean of
the time course x(t) at node x:

σt =

√√√√ 1
M

M∑
t=1

(x(t) − x̄)2 (4)

Subsequently, for every subject the standard deviation difference Δσ is computed
based on standard deviation estimates of time course u and v using Eq. 5.

Δσ =
1
N

N∑
i=1

|σu − σv| (5)

1 https://surfer.nmr.mgh.harvard.edu/.

https://surfer.nmr.mgh.harvard.edu/
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Structural Similarity (SSIM) Index. Is a quality assessment metric [5,16],
which is calculated between x(u) and x(v) for all brain nodes of a subject.

SSIM(u, v) = [l(u, v)]α[c(u, v)]β [s(u, v)]γ (6)

It consists of three terms, the luminance, contrast and structural term:

l(u, v) =
2μuμv + c1

μ2
u + μ2

v + c1
(7)

c(u, v) =
2σuσv + c2

σ2
u + σ2

v + c2
(8)

s(u, v) =
σuv + c3
σuσv + c3

(9)

where μu, μv, σu, σv and σuv are the means, standard deviations and cross
covariance. α, β and γ are used to adjust relative importance of the three terms,
where the constants c1, c2 and c3 are included to avoid term instabilities [16].

3 Results

We analysed the reproducibility of a subject’s signal after the application of 7
different preprocessing pipelines using the difference of correlations (ΔC), stan-
dard deviations (Δσ) and the SSIM index [5] as evaluation metrics (introduced
in Sect. 2.3).

Data. The study includes a total of 21 fMRI sequences from fetuses between
the 20th and 40th gestational week (GW, mean: 28.43, standard deviation: 5.43)
with normal brain development. Functional magnetic resonance imaging was per-
formed on a 1.5 T clinical scanner (Philips Medical Systems, Best, The Nether-
lands) using a sensitivity encoding (SENSE) cardiac coil with five elements (three
posterior, two anterior) wrapped around the mother’s abdomen, utilizing single-
shot gradient-recalled echo-planar imaging (EPI) and no cardiac gating with
the following setup: 50 ms echo time, 1000 ms repetition time, 3 mm slice thick-
ness, 18 slices and 96 volumes. The pregnant women were examined in the supine
or left decubitus position (feet first), and no contrast agents or sedatives were
administered. In order to receive the optimal MR signal, the coil was readjusted
depending on the position of the fetal head during the imaging procedure.

3.1 Reproducibility of Functional Connectivity on the Cortex

In Fig. 1 (upper left plot) a boxplot of the ΔC metric estimated over all subjects,
for the uncorrected signal and for the signal after every 7 preprocessing approa-
ches is visualised. The Δσ and SSIM metric are visualised in the same way in the
upper right and lower right part of Fig. 1. In case of correlation and standard
deviation a low value refers to better reproducibility, while for the similarity
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Fig. 1. Reproducibility metrics with correlation differences, standard deviation dif-
ferences and structural similarity index comparison between the uncorrected input
(UNC), bias field correction (BFC), slice timing correction (STC), Slice-to-Volume
motion correction (S2V MC), volume to volume motion correction (V2V MC) and
motion regression (MR).

index a higher value is interpreted as better reproducibility. First we evaluated
if bias field correction and slice timing correction have a positive impact on the
reproducibility. Therefore, the uncorrected signal (UNC) is preprocessed using
Pipeline P1, P2, P3 and P4 introduced in Sect. 2.

Among P1–P4, P3 shows the best result, since the correlation differences
(mean: 0.24, SD: 0.06) and standard deviation differences (mean: 3.53, SD: 1.65)
are reduced and the SSIM score shows similar results (mean: 0.23, SD: 0.17)
compared with the pipelines P1, P2 and P4. Thus, building on the P3, the Slice-
to-Volume (S2V) and Volume-to-Volume (V2V) motion correction approaches
are evaluated (P5 and P6) and visualised in Fig. 1. The correlation differences
of S2V (P5, mean: 0.21) and V2V (P6, mean: 0.21) show similar results, while
S2V leads to higher standard deviation differences (mean: 4.52), but a higher
SSIM value (mean: 0.25, SD: 0.18, Q3: 0.36) compared to V2V (mean: 0.25, SD:
0.16, Q3: 0.35). Therefore, we chose P5 as the best preprocessing pipeline. An
increase of the average SSIM mean value from 0.2 (UNC) to 0.25 is observable
after motion correction, which can be refered to a positive effect from the motion
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correction technique. Motion regression (P7) relies on the precise estimate of
motion parameters during the alignment, errors in the estimates can cause the
regression to introduce or amplify artifacts in the data leading to comparably
worse reproducibility (mean SSIM: 0.1, SD SSIM: 0.06, ΔC: 0.27, Δσ: 15.69).
In that light, using other proxy measures of motion induced signal might be a
better strategy. The three evaluation measures assess the reproducibility of signal
correlation analysis, and the overall loss of structure in the data. The value of
reproducibility as a quality measure relies on the assumption that motion is
different across the entire scan.

3.2 Reproducibility of Functional Connectivity in 7 Yeo Networks

We used the Yeo parcellation [18] to subdivide the brain into seven networks
(visual (Yeo 1), somatomotor (Yeo 2), dorsal attention (Yeo 3), ventral atten-
tion (Yeo 4), limbic (Yeo 5), frontoparietal (Yeo 6) and default mode network
(Yeo 7)). Figure 2 shows boxplots of the correlation differences over all subjects
for uncorrected (UNC, red) and Pipeline 5 (blue) for all Yeo networks. The
results indicate that the signal after applying Pipeline 5 is more reproducible
compared to the uncorrected input, since a reduced correlation difference and a
higher SSIM values are observable. Furthermore it shows consistant differences
across networks, with highest SSIM in ventral attention (mean: 0.27), limbic
(mean: 0.36) and frontoparietal networks (mean: 0.3).

P5
UNC

P5
UNC

P5
UNC

Fig. 2. Correlation differences (top), standard deviation differences (middle) and SSIM
(bottom) between the uncorrected input (UNC) and after application of Pipeline 5 for
each Yeo network. (Color figure online)
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3.3 Age-Related Reproducibility

To test if age has an influence on reproducibility, we divided our dataset into
two age ranges: GW 20–24 (6 subjects) and GW 25–40 (15 subjects), moti-
vated by pronounced cortical folding process starting around the GW 24 [11].
In both ranges, motion correction improves reproducibility, and the resulting
value ranges are largely comparable, but more data is needed to test for specific
trends. Figure 3 shows values for the default mode network (Yeo 7).

P5
UNC

P5
UNC

P5
UNC

Fig. 3. Age related correlation differences (left), standard deviation differences (mid-
dle) and SSIM value (right) in the default mode network (Yeo 7) of the uncorrected
input (UNC) and after application of Pipeline 5 (P5).

3.4 Connectivity Comparison

Finally, in the last experiment we compare the degree of short- and long-range
connectivity before and after preprocessing on every cortical surface point.
Figure 4 shows for the uncorrected input (top row) for each of the two parts
of the time course the mean short- and long-range degree value visualized on
the surface over all subjects. The bottom row shows the connectivity after the
best reproducibility preprocessing pipeline P5 including bias field, slice tim-
ing and Slice-to-Volume motion correction. The short-range connectivity (left
side) is less sensitive to motion compared to long-range connectivity (right side),
and preprocessing shows a stronger effect. In particular long-range connectivity
shows high values across the entire cortex, while after motion correction, a more
nuanced image emerges. High long-range connection areas partly correspond-
ing to the default mode network become visible, suggesting that these network
develops already during gestation. The SSIM values between the two time win-
dows on the cortex for the uncorrected input (short-range: 0.92, long-range:
0.36) and after preprocessing (short-range: 0.93, long-range: 0.26) indicate, that
with preprocessing a higher short-range reproducibility is achieved. The lim-
itations of the SSIM metric are visible in the long-range comparison, where
the motion motivated uncorrected input obtained a higher SSIM value as after
preprocessing.
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Fig. 4. Short- and long-range mean connectivity degree value visualized on the surface
between the uncorrected input and after preprocessing with Pipeline 5. Long-range
connections benefit substantially from preprocessing.

4 Conclusion

In this work, we introduced a reproduciblity test framework, for evaluating the
effect of 7 different preprocessing and motion correction pipelines for fetal rs-
fMRI sequences and corresponding functional connectivity estimates. The com-
parisons of the proposed pipelines were performed based on the reproduciblity
of correlation, standard deviation and the structural similarity index for two
parts of every time course from each subject. The combination of bias field, slice
timing and slice-to-volume motion correction performed best. We showed that
preprocessing with motion correction leads to better reproducibility results on
the whole cortex and on the Yeo 7 networks. We show that preprocessing has a
positive effect on reproducibility for in utero rs-fMRI acquisitions, and in partic-
ular that long-range connectivity is more sensitive to motion artefacts compared
to short-range connectivity patterns. Reproducible long-range connectivity are
located at the default mode network after applying preprocessing and motion
correction. For future work, we will use a greater population to increase the
generalisability and investigate how short-range an long-range patterns develop
during gestation across the cortex. We did not study the link between motion
and gestational age in this paper, but note that there might be a relationship.
Another point of future work is to take motion estimates for assessing the impact
of different levels of motion into account.
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