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Preface SUSI 2019

SUSI 2019 is the first workshop on Smart Ultrasound Imaging, organized as a half-day
satellite event of the 22nd International Conference on Medical Image Computing and
Computer Assisted Intervention (MICCAI 2019) in Shenzhen, China. This workshop
aims at promoting ultrasound image computing, particularly focusing on smart
computational methods applied on ultrasound images.

Ultrasound imaging is one of the most widespread imaging modalities, used in a
large number of clinical applications. It is widely available, relatively inexpensive, and
safe for all patients. It is the primary imaging modality in cardiac and maternity units,
and safe to use on patients with implants of any kind. However, ultrasound imaging is
generally difficult to acquire, interpret and analyze compared to other imaging
modalities such as MRI, XRay, PET, and CT.

The MICCAI community has an established history of interest in ultrasound
imaging, both in ultrasound image computing and ultrasound guided interventions.
Ultrasound image analysis is one of the few topics that covers both the MIC and CAI
aspects of this conference, and as such allows the possibility to unite researchers from
each of these worlds in a common forum.

SUSI 2019 accepted 10 high-quality papers, all themed on computational methods
applied to medical ultrasound imaging. The papers cover a wide range of medical
applications of B-Mode ultrasound, including cardiac (echocardiography), abdominal
(liver), fetal, musculoskeletal, and lung. The program has been organized into three oral
sessions (six papers) and a poster session (four papers). The papers accepted for oral
sessions have been grouped by methodology: guided ultrasound examinations, assisted
image interpretation and biometrics, and image formation, reconstruction, and
visualization. In addition to the peer-reviewed papers included in these proceedings, the
workshop featured a keynote presentation by Professor Purang Abolmaesumi from the
University of British Columbia, entitled “AI-driven ultrasound for diagnosis and
intervention.”

We wholeheartedly thank all authors for their submissions, as well as the Program
Committee and the reviewers for their contribution to the workshop program. We also
thank our sponsor, the PIC (Personalised In-silico Cardiology) Innovative Training
Network.

August 2019 Alberto Gomez
Kristin McLeod

Veronika Zimmer
Oliver Zettinig
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Preface PIPPI 2019

The application of sophisticated analysis tools to fetal, neonatal, and paediatric imaging
data has gained additional interest especially in recent years, with the successful large
scale open data initiatives such as the developing Human Connectome Project, the
Baby Connectome Project, and the NIH-funded Human Placenta Project. These
projects enable researchers without access to perinatal scanning facilities to bring in
their image analysis expertise and domain knowledge.

Advanced medical image analysis allows the detailed scientific study of conditions
such as prematurity and the study of both normal singleton and twin development in
addition to less common conditions unique to childhood. The PIPPI workshop
complements the main MICCAI conference by providing a focused discussion of
perinatal and paediatric image analysis. It provides a focused platform for the
discussion and dissemination of advanced imaging techniques applied to young
cohorts.

Emphasis is placed on novel methodological approaches to the study of, for instance,
volumetric growth, myelination and cortical microstructure, placental structure and
function. Methods will cover the full scope of medical image analysis: segmentation,
registration, classification, reconstruction, atlas construction, tractography, population
analysis, and advanced structural, functional, and longitudinal modeling with an
application to younger cohorts or to the long term outcomes of perinatal conditions.

Challenges of image analysis techniques as applied to the preterm, perinatal, and
paediatric setting are discussed and confounded by the interrelation between the normal
developmental trajectory and the influence of pathology. These relationships can be
quite diverse when compared to measurements taken in adult populations and exhibit
highly dynamic changes affecting both image acquisition and processing requirements.

August 2019 Jana Hutter
Roxane Licandro
Emma Robinson
Daan Christiaens
Esra Abaci Turk

Andrew Melbourne
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Straight to the Point: Reinforcement
Learning for User Guidance in Ultrasound

Fausto Milletari(B), Vighnesh Birodkar, and Michal Sofka

4Catalyzer Inc., Santa Clara, USA
fausto.milletari@gmail.com

Abstract. Point of care ultrasound (POCUS) consists in the use of
ultrasound imaging in critical or emergency situations to support clin-
ical decisions by healthcare professionals and first responders. In this
setting it is essential to be able to provide means to obtain diagnostic
data to potentially inexperienced users who did not receive an extensive
medical training. Interpretation and acquisition of ultrasound images is
not trivial. First, the user needs to find a suitable sound window which
can be used to get a clear image, and then he needs to correctly inter-
pret it to perform a diagnosis. Although many recent approaches focus on
developing smart ultrasound devices that add interpretation capabilities
to existing systems, our goal in this paper is to present a reinforcement
learning (RL) strategy which is capable to guide novice users to the cor-
rect sonic window and enable them to obtain clinically relevant pictures
of the anatomy of interest. We apply our approach to cardiac images
acquired from the parasternal long axis (PLAx) view of the left ventricle
of the heart.

1 Introduction

Ultrasound (US) is a flexible, portable, safe and cost effective modality that finds
several applications across multiple fields of medicine.

The characteristics of ultrasound make it extremely suitable for applications
related with emergency medicine and point of care (POC) decision making.
Recently, several ultra-portable and lightweight ultrasound devices have been
announced and commercialized to enable these applications. These products
have been envisioned to be extremely inexpensive, have a long battery life, a
robust design and to be operated by inexperienced users who may have not
received any formal training. In order to reach the latest goal, images need to
be interpreted by a computer vision based system and accurate instruction for
fine manipulation of the ultrasound probe need to be provided to the user in
real time.

In this paper we show how to use deep learning and in particular deep rein-
forcement learning to create a system to guide inexperienced users towards the
acquisition of clinically relevant images of the heart in ultrasound. We focus on
acquisition through the parasternal long axis (PLAx) sonic window on the heart
which is one of the most used views in emergency settings due to its accessibility.
c© Springer Nature Switzerland AG 2019
Q. Wang et al. (Eds.): PIPPI 2019/SUSI 2019, LNCS 11798, pp. 3–10, 2019.
https://doi.org/10.1007/978-3-030-32875-7_1
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4 F. Milletari et al.

In our acquisition assistance framework the user is asked to place the probe
anywhere on the left side of the patient’s chest and receives instructions on how to
manipulate the probe in order to obtain a clinically acceptable parasternal long
axis scans of the heart. Every time an image is produced by the ultrasound equip-
ment, our deep reinforcement learning model predicts a motion instruction that
is promptly displayed to the user. In this sense, we are learning a control policy
that predicts actions (also called instructions) in correspondence of observations,
which makes reinforcement learning a particularly suitable solution. This prob-
lem has several degrees of freedom. Apart from instructions regarding left-right
and top-bottom motions, the user will also receive fine-grained manipulation
indications regarding rotation and tilt of the probe.

Reinforcement learning has been recently employed to solve several computer
vision related problems and specifically to achieve superhuman performances in
playing ATARI games and 3D video-games such as “Doom” [3].

In [7,8] a convolutional deep neural network has been employed together with
Q-learning to predict the expected cumulative reward Q(s, a) associated with
each action that the agent can perform in the game. In [5] a learning strategy
that employs two identical networks, updated at different paces, is presented. In
this paper, the target network is used for predictions and is updated smoothly
at regular intervals, while the main network gets updated batch-wise through
back-propagation. This is particularly useful in continuous control. In [13] the
network architecture used to predict the Q-values is modified to comprise two
different paths which predict, respectively, the value V (s) of being in a certain
state and the advantage of taking a certain action in correspondence to that
state. This strategy has resulted in increased performances. In [12] target Q-
values, which are learned during training, are computed differently than in [7].
Instead of having the network regress Q-values computed as the reward rt plus
γ arg maxa Q∗(st+1, a), they use rt + γQ∗(st+1, at+1). The main difference is
that, in the latter, the action at+1 is the one that is selected by the network
in correspondence of the state st+1, and not a which is the one yielding the
maximum Q-value. This yields increased stability of the Q-values.

Reinforcement learning has been applied in medical domain for the first
time in [10] to segment ultrasound images. In [9] a similar approach has been
applied to heart model personalization on synthetic data. In [1] a DQN has been
employed to solve a optimal view plane selection problem in MRI, through an
agent trained to obtain a specific view of brain scans.

In this work we apply deep reinforcement learning (via a DQN) to a guidance
problem whose goal is to provide instructions to users in order to enable them
to scan the left ventricle of the heart using ultrasound through the parasternal
long axis sonic window. We build our learning strategy to perform end-to-end
optimization of the guidance performances and we train our agent using an
simulated US acquisition environment. We compare the performances of our
method with the ones obtained by training a classifier to learn a policy on the
same data in a fully supervised manner.
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2 Method

A RL problem is usually formulated as a Markov decision process (MDP) (Fig. 1
left). At each point in time, the agent observes a state St and interacts with the
environment, using its policy π ∈ Π, through actions a ∈ A obtaining a finite
reward rt together with a new state St+1. Π is the set of all possible policies
while A is the set of all supported actions.
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Fig. 1. Left: Schematic representation of the reinforcement learning framework. Right:
Network architecture diagram.

The set of supported actions, in our system, contains 9 actions as shown in
Table 1.

Table 1. Set of actions supported by the agent. These action are mapped to the
corresponding effect in the simulated acquisition framework.

Action Effect

NOP Stops the virtual probe. Should be issued at correct view

Move Lateral Translates the probe towards the patient’s left

Move Medial Translates the probe towards the patient’s right

Move Superior Translates the probe towards the patient’s head

Move Inferior Translates the probe towards the patient’s feet

Tilt Supero-laterally Tilts the probe towards the head of the patient

Tilt Infero-medially Tilts the probe towards the feet of the patient

Rotate Clockwise Rotates the probe clockwise

Rotate Counter-Clockwise Rotates the probe counter-clockwise

In this section we present the details of our implementation.
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2.1 Simulated Acquisition Environment

In order to learn from experience, our reinforcement learning agent needs to
collect data according to its policy by physically moving the probe on the chest
of the patient in order to obtain data and rewards. It is unfortunately impossible
to implement real-time interaction due to the fact that acquiring the trajectories
would take an enormous amount of time and a patient would need to be scanned
for the whole duration of learning.

Ttrack>body

T
track>probe

Tprobe>im
age

Vertical

Long Horizontal Sho
rt 

Hor
izo

nt
al

Rotate

Tilt

Rock

Fig. 2. Left: Schematic representation of our data acquisition system which comprises
a probe and a tracking system in order to obtain tracked video frames from the patient.
Right: Schematic representation of the degrees of freedom of the probe during acquisi-
tion.

We have resorted to acquiring, independently from our learning procedure, a
large number of spatially tracked video frames from patients. By drawing spatial
relationships between the frames, we are able to navigate the chest area offline
and obtain simulated trajectories. We have defined, for each participant in the
study, a work area covering a large portion of their chest. We have divided this
area into 7 × 7 mm spatial bins. The bins from which it is possible to obtain a
valid PLAx view by fine manipulation of the probe, are annotated as “correct”
while all other bins remain unmarked. This annotation is necessary to implement
the reward system.

Our system offers guidance for 4 out of the 5 degrees of freedom of probe
motion (Fig. 2 right). We get data for the first two degrees of freedom, left-right
and top-bottom translations, by moving the probe in a regular and dense grid
pattern over the chest in order to “fill” each bin of the grid with at least 25
frames. In correspondence of the bins marked “correct”, the sonographer is also
asked to acquire 50 “correct” frames, showing the best view and 50 frames from
each of the following scenarios: the probe is rotated by an excessive amount in
the (i) clockwise or (ii) counterclockwise direction, or the probe is tilted by an
excessive amount in the (iii) infero-medial or (iv) supero-lateral direction. In this
way data for the last two degrees of freedom is obtained.
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In order to build the environment we need to track both the body of the
patient and the probe as data gets acquired. A schematic representation of our
tracking system is shown in Fig. 2 (left). The tracking system, a NDI Polaris
Vicra optical tracker, produces in real time a tracking stream consisting of
two 4 × 4 transformation matrices Ttrack>probe and Ttrack>body. The transform
Tprobe>image, which is necessary to obtain the true pose of each picture acquired
through our system, is obtained by performing calibration with the open source
software fCal, which is provided as part of the PLUS framework [4]. The video
frames are acquired through an ultrasound probe and supplied to the data
acquisition system through OpenIGTlink interface [11]. The tracking and video
streams are handled and synchronized using the PLUS framework in order to
obtain tracked frames.

During training/testing the agent interacts with the simulated environment
by performing actions which result in state changes and rewards. The actions
can have the effect of either stopping the virtual probe (“NOP” action), bringing
it closer or further away from the nearest goal point.

At the beginning of each episode the environment is reset and a virtual
“probe” is randomly placed in one of the bins. Actions bringing the agent further
from the correct bin result in negative rewards of −0.1, motion towards the
correct view result in a reward of 0.05, “NOPs” issued at the correct bin and for
the correct view result in a 1.0 reward and “NOPs” issued in correspondence of
an incorrect view result in a penalty of 0.25.

2.2 Deep Q-Network

In this work we implement the Q-learning paradigm already employed by [7,8].
This off-policy learning strategy leverages a convolutional neural network to
regress Q-values which are the expected cumulative rewards associated with each
action in correspondence of a state. As previously stated, the input of the model
are ultrasound images, and its output is represented by nine Q-values, one for
each action. Similarly to [5] we instantiate two copies of the same network. We
have a target network which produces the values Qθ∗(s, a) and a main network
which predicts Qθ(s, a).

In order to train our agent we interact with the training environments. Each
environment refers and represents to one patient. During an episode, we select
an environment among those available for training and we reset the virtual probe
to a random position. We then use the main network to collect experience by
interacting with the environment. We implement exploration using an epsilon-
greedy strategy which randomly hijacks and replaces the actions chosen through
arg maxa(Qθ(s, a)) with random ones. In this way we are able to balance the
needs for exploring the environment and the follow the learned policy. All agent’s
experiences are collected in an experience replay buffer of adequate size as pre-
viously done in [7]. Since all our data is pre-acquired it is possible to increase the
memory efficiency of the experience replace buffer by storing in memory image
paths on the file system instead of storing uncompressed images.
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Once there is enough data in the experience replay buffer, we sample random
training batches from it and we use them to update the parameters θ of the main
network using back-propagation. The objective function that we minimize with
respect to the parameters of the network, using ADAM as our optimizer, is

C(θ, st, at) = ‖Qθ(st, at) − T (st, at)‖22
T (st, at) = rt + γ arg max

a
(Qθ∗(st+1, a))

The parameters θ∗ of the target network are updated with the parameters
of the main network once every 250 episodes.

A schematic representation of the network architecture is shown in Fig. 1
(right). This network makes use of global average pooling [6] applied after the
output of the last convolutional layer. All the non-linearities employed through-
out the network are exponential linear units (ELU) [2]. The network outputs a
9-dimensional vector representing Q values.

During testing, the target network interacts with the environment. All actions
are chosen deterministically through arg maxa(Qθ∗(s, a)) which is, therefore, a
stationary deterministic policy.

2.3 Supervised Policy Learning

In order to obtain means of comparison for our approach we have implemented
a supervised policy learning approach which relies on classification and labeled
data to learn the right action to perform in correspondence of each state. When
we acquire data from patients we build environments where the parameters of
the correct view in terms of translation, rotation and tilt are known. This enables
us to label each image in each bin of the grid with one action, which would be
the optimal action to perform in that state if we rely only on the Manhattan
distance abs(x − xgoal) between the bin position x on the grid and the goal bin
position xgoal. In particular, for each bin of the grid, we choose the label for its
images as the action that reduces the distance to the goal on the axis where the
distance is currently the smallest.

We train a classifier with the same architecture shown in Fig. 1 (right), with
the only exception that the last layer is followed by a soft-max activation func-
tion. We use all the data that is available to our reinforcement learning agent,
shuffled and organized in batches of the same size of the ones used for our DQN.

During testing we use the same environments used by the reinforcement
learning agent to test the supervised policy end-to-end on the guidance task. In
this way we can compare on fair grounds the performances of the two strategies.

3 Results

We evaluate our method on the end-to-end guidance task described in the pre-
vious sections, using one environment for each patient. We train our approach
on 22 different environments corresponding to circa 160000 ultrasound images,
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and we test our approach on 5 different environments which contain circa 40
thousand scans. During testing with start from each and every grid bin of each
environment and we test the guidance performances of the approach.

As previously explained, we train both a RL-based approach and a supervised
classification-based approach. Results are shown in Table 2.

We perform data augmentation for both the supervised and RL approaches.
Each training sample is slightly rotated, shifted and re-scaled by a random quan-
tity before being presented as input to the network. Also the gamma of the
images is subject to augmentation. The episodes have a standard duration of
50 steps and “NOP” operations do not terminate the episode. Instead, a new,
randomly selected, image from the same grid bin is returned to the agent. This
is similar to what happens in practice when a user keeps the probe in the same
location.

Table 2. Summary of performance of RL approach versus supervised approach on the
test data-set.

Performances Reinforcement learning Supervised

Correct guidance 86.1% 77.8%

Incorrect guidance 13.9% 22.2%

Incorrect NOP percentage 1.6% 25.9%

Behaviour

Avg. number negative rewards 30.3% 36.9%

Avg. number positive rewards 69.6% 63.1%

Our results are summarized in Table 2. The table is split in two parts: the
first part summarizes the performances of the method on the end-to-end guidance
task and inform us on the percentage of correct and incorrect guidance. That is,
the percentage of episodes that have ended in a “correct” bin. Additionally we
report the percentage of “NOPs” that have been issued at an incorrect location.
Please note that “NOP” can be issued multiple times during a single episode.
The agent may have briefly issued an “incorrect NOP” even during successful
episodes. The evaluation reveals that the supervised approach is less successful
than the RL approach on the guidance task. The second part of the table reveals
information about the behaviour of the reward. Also these results demonstrate
that our RL agent is performing more “correct” actions than its supervised
counterpart.

4 Conclusion

Our approach employs reinforcement learning (RL) to guide inexperienced users
during cardiac ultrasound image acquisition. The method achieves better results
than a similar (non-RL) supervised approach trained on the same data and
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tested on the end-to-end guidance task. The intuition behind this is that RL
is able to avoid and go around areas that are highly ambiguous as the agent
learns to predicted rather low Q-Values in correspondence of actions leading to
ambiguous states.

Although the results have shown to be promising there are still issues related
with the data acquisition strategy of our approach and the long training time.
In conclusion, we believe that this method is the one of the first step to converge
towards a solution which aims to solve the guidance task end-to-end in a more
reliable and effective manner.
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Abstract. Laparoscopic Ultrasound (LUS) can enhance the safety of
laparoscopic liver resection by providing information on the location of
major blood vessels and tumours. Since many tumours are not visible
in ultrasound, registration to a pre-operative CT has been proposed as
a guidance method. In addition to being multi-modal, this registration
problem is greatly affected by the differences in field of view between
CT and LUS, and thus requires an accurate initialisation. We propose
a novel method of registering smaller field of view slices to a larger vol-
ume globally using a Content-based retrieval framework. This problem is
under-constrained for a single slice registration, resulting in non-unique
solutions. Therefore, we introduce kinematic priors in a Bayesian frame-
work in order to jointly register groups of ultrasound images. Our method
then produces an estimate of the most likely sequence of CT images to
represent the ultrasound acquisition and does not require tracking infor-
mation nor an accurate initialisation. We demonstrate the feasibility of
this approach in multiple LUS acquisitions taken from three sets of clin-
ical data.

Keywords: Laparoscopic Ultrasound · Multi-modal Registration ·
Bayesian models

1 Introduction

There are well known advantages of laparoscopic liver resection over open
surgery. However, globally, only 5-30% of cases are deemed suitable for the
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laparoscopic approach, typically low risk cases in which tumours are small and
far from major vessels [1]. Laparoscopic Ultrasound (LUS) can reduce this risk
by imaging sub-surface structures of the liver. However, tumours are not always
visible in these images. Therefore, registration of LUS to CT based on vessel
information has been proposed as a guidance method.

Registering LUS images to CT is a very challenging problem in part due to
the limited field of view of the LUS probe. The majority of US to CT registration
methods rely on the acquisition of complete liver sections using transabdominal
US [2,3]. However, LUS captures much smaller sections of the liver, providing less
information to constrain the registration problem. Therefore, current methods
either require manual point-picking of vessel bifurcations [4] or a fairly accurate
initialisation [5]. During laparoscopic surgery, none of these options are desirable
as they require a challenging and time consuming manual interaction with the
intra-operative data. It has been demonstrated that a globally optimal regis-
tration can be obtained if enough LUS data is acquired [6]. However, tracking
information is required to compose the LUS images in 3D space.

We propose a novel registration method that is globally optimal and uses
a Content-Based Image Retrieval (CBIR) approach to register a group of
untracked ultrasound slices. By simulating a finite number of ultrasound planes
in the pre-operative model, we generate a discrete set of possible solutions for
the alignment. For this to be feasible, we encode the vessel content of each image
to a single feature vector [7]. A registration is then obtained by comparing the
feature vector of a segmented ultrasound image with the pre-computed retrieval
database. Due to differences between the pre-operative and intra-operative data,
the simulated CT will not contain exact matches with the LUS input. Thus a
set of possible matches must be considered. Assuming consecutive images are
close in rotation and translation space, we employ a probabilistic model to esti-
mate the most likely sequence of simulated images in CT space that represents
the LUS acquisition. We formulate a discrete Hidden Markov Model (HMM) in
which each state represents the probability of a CT match representing the orig-
inal LUS and incorporate a kinematic prior as a boundary condition. The most
likely combination of images is then estimated using the Viterbi algorithm. We
hypothesise that this sequence estimation converges to a correct solution after
enough LUS images hence states are combined in the algorithm.

Even though untracked ultrasound registration methods have been presented
[8,9], the initialisation problem has not been solved. Our novel approach is the
first to tackle the problem of initialisation and to work without a tracker. We
perform tests in both synthetic and clinical LUS data from 3 different patients
and show the feasibility of this method.

2 Methods

Given a set of N , 2D ultrasound images {I1, ..., IN} and corresponding acqui-
sition time stamps {t1, ..., tN}, we aim to recover the sequence of LUS slices,
simulated from pre-operative CT slices {J1, ..., JN} that most closely represent



Untracked Ultrasound Registration Using Kinematic Priors 13

the LUS acquisition in terms of vascular content. In a first step we use CBIR to
obtain a set of K possible slices {J1i, ..., JKi} as candidates for each image Ii.
We then apply the Viterbi algorithm with kinematic prior information in order
to find the optimal sequence.

Fig. 1. CBIR database generation. For each position on the liver surface P determined
by the surface mesh faces, each rotation R = [−→x ,−→y ,−→z ], and each depth d along the
surface normal, a binary image is simulated from the CT, capturing the vessels, which
are encoded as a feature vector f.

2.1 Retrieval Based Candidate Selection

The pool of possible solutions J is generated by intersecting the CT segmented
vascular model with 2D planes, bounded by an LUS field of view and parame-
terised by a set of evenly distributed points PS along the segmented liver surface.
At each of these points PS , we create a virtual reference orientation of the LUS
probe by placing it orthogonal to the liver surface normal and aligning its imag-
ing plane with the sagittal plane. Several combinations of rotations Rx, Ry, and
Rz are applied to this reference to generate rotated projections parameterised
by R = [−→x ,−→y ,−→z ]. Additionally, we apply a translation d along the liver surface
normal, simulating the case in which the probe compresses the liver tissue and
images deeper structures. For each combination of PS , R and d a binary image
containing vessel sections is generated, as illustrated in Fig. 1. The 2D Centroid
position and area are extracted from each of the M binary vessel sections and
stored in a feature vector f as a single feature triplet, fi. Therefore, we establish
a retrieval system in which f holds the content that encodes an image J and
corresponding probe configuration [PS , R, d].

Image Retrieval: Assuming prior segmentation of LUS vessel lumens, we
retrieve feasible candidate poses for an input LUS image, I, by comparing its fea-
ture vector fI to all the generated pre-computed vectors f. Comparison between
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vectors is performed by calculating the weighted L2 distance,

D(fS ,MS , fL,ML) =

( ∑ML

1 A(fL
i )∑MS

1 A(m(fS
i , fL))

)
·

MS∑
i=1

‖fS
i − m(fS

i , fL))‖2 (1)

where fS and are fL are feature vectors with a smaller number MS and larger
number ML of vessel sections respectively. In Eq. 1, the function m(fS

i , fL)
returns the feature triplet values in fL with the closest lumen centroid to that of
triplet fSi , and the function A(·) returns the area value from a triplet. We intro-
duce an area ratio to penalise the exclusion of triplets from the longer vector fL

- the total area of all vessels in fL is divided by the sum of the ones that were
included in the matching. The larger the excluded areas, the larger D becomes
and the less similar the vectors.

Fig. 2. HMM formulation of the problem. Left depicts the graphical model of the HMM
that is optimised. Right is a visual representation of the translation probability density
function of an image Jki being followed by image Jki+1.

To perform an efficient search over the database, we only search for vectors
that have a number of sections similar to the input fI . For this reason, we group
feature vectors in lookup tables FM according to their size M . The search for
the best candidates f∗ is expressed in Eq. 2:

f∗ = arg min
fT ∈FT

D(f I ,M I , fT ,MT )
min(M I ,MT )

, FT =
r⋃

l=−r

FMI+l (2)

Here, the distance D is computed between f I and members of the lookup tables
of size M I − r to M I + r, where r is the allowable limit on feature vector length
differences. The results are normalised by the minimum number of sections used
in each comparison, and a set of lowest K candidate f∗ vectors picked. Using
the CBIR encoding, these vectors then become a set of CT images {J1i, ..., JKi}
with corresponding probe poses.
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2.2 Viterbi Algorithm Kinematic Constrained Optimisation

Once we obtain a pool of K possible matches {J1i, ..., JKi} for an image Ii

we introduce kinematic prior information to select the optimal candidate. We
hypothesise that, given enough LUS images and prior knowledge on the kine-
matics of the acquisition, we can pick the sequence of candidates {Jk1, ..., JkN}
that best represents {I1, ..., IN} in CT space. We formulate this problem as the
optimisation of a discrete HMM as described in Fig. 2. In this model, nodes rep-
resent probabilities of images Ii matching a candidate Jki and edges represent a
probability associated with an input kinematic prior. We assume two main priors
in the acquisition: firstly, there is smoothness in the acquisition; secondly, the
probe follows a continuous path along the direction normal to the imaging plane
without moving backwards. We then define the transition probability between 2
candidates with the following multivariate Gaussian:

P (Jki+1|Jki) =
exp(− 1

2δT
ki+1,kiΣ

−1δki+1,ki)√
2π4|Σ| , Σ = (ti+1 − ti)

[
Σt 0
0 σθ

]
(3)

where δki+1,ki is a vector containing the differences in rotation and translation
between the 2 candidates. Specifically this is the 3D difference between probe
contact points Pki+1 and Pki projected along the orientation Rki of Jki and
the angle between the imaging plane normals −→z ki+1 and −→z ki. The covariance
matrix Σ is expressed in block matrix notation and holds a variance σθ and a
diagonal translation covariance Σt with three terms σx, σy and σz. This equation
models a Gaussian distribution centered at the pose of the previous image Jki

with variance proportional to the time difference. The lower the time difference,
the lower the pose difference should be. Since we expect the probe to move along
the imaging plane normal, we define the variance σz to be larger than σx and
σy, favouring differences in that direction (see Fig. 2).

To find the optimal sequence of candidates we find the lowest cost path of
this graphical model by applying the Viterbi algorithm. Since we are mainly
interested in constraining the problem with kinematic information, we assume
node probabilities P (Ii|Jki) to be 1. During optimisation, we introduce a hard
constraint in order to obtain trajectories that fulfil the forward movement prior.
For every path in the graphical model, a sweep direction is defined as the differ-
ence between the two first probe contact positions. The probability P (Jki+1|Jki)
is set to 0 if the angle between Pki+1 − Pki and that direction is above 90◦.

3 Experiments

We apply our method to data from 3 patients. Pre-operative models of the liver
surface and vasculature are segmented1 and respective databases generated using
rotation angles in the intervals Rx = Rz = [−40, 40◦], Ry = [−90, 90◦] with steps
of 10◦ and depth values in the interval d = [0, 20mm] with steps of 5 mm.

1 www.visiblepatient.com.

www.visiblepatient.com
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Initially, we test the validity of our model by registering synthetic sweeps
generated from a CT model to itself. For each of the 3 patients we generate
3 smooth trajectories of 20 images with time stamps t = [1, ..., 20 s]. Retrieval
with search limit r = 0 is applied to find K = 200 candidates for each image and
registrations are performed using model variances σz = 1.5 mm, σx = σy = 0.2σz

and σθ = 2◦.

Fig. 3. Registration results for 9 synthetic sweeps. Left plot shows the number of
plausible sequences found by the Viterbi algorithm. Right plot displays the translation
and rotation error for each path’s optimal registration. For visualisation purposes, the
mean error for these nine optimal paths is displayed. Bars have been placed to show
minimum achieved error and one standard deviation above the mean.

Mean results over the nine sweep registrations are summarised in Fig. 3. Since
the Viterbi algorithm is recursive on the number of columns of the HMM, results
are displayed as a function of the number of images used so far in the optimisation
(from 2 to 20). The left hand graph shows the number of kinematically possible
paths for N images. As expected, the number of plausible trajectories found by
the algorithm converges to 1 if enough images are used (N = 17 in this case). The
right hand graph shows the mean translation error Et and mean rotation error
Eθ across all N registered images for the lowest cost path. Here the convergence
is observed in terms of error: at an average number of 7 images, these errors
converge to 5 mm and 10◦. Such values are expected since the rotation resolution
of the database is 10◦ and the used liver surfaces have a spatial resolution in the
range [3–4 mm].

To test the feasibility of the method on real data, we retrospectively register
LUS acquired intra-operatively with a BK Medical 8666-RF2 probe at a frame
rate of 40 Hz. From each patient, we select 2 sequences of contiguous images
that do not contain shadowing artefacts or large non-tubular vessel sections, and
manually segment their vessels. To avoid redundancy, inside each dataset we pick
evenly spaced images in time that differ in content. We apply the algorithm with
a wider search of r = 2 to find K = 1000 candidates. We double the translation

2 www.bkmedical.com.

www.bkmedical.com
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Table 1. Results of registration of 6 sweeps of clinical LUS. N is the number of images
in the sweep. NC the number of images the Viterbi algorithm required to converge
in error. Et and Eθ are the mean translation and rotation error respectively. TRE
represents the Root Mean Square (RMS) of the TRE of manually picked landmarks
found in the sweep.

Patient 1 Patient 2 Patient 3

Dataset Sweep 1 Sweep 2 Sweep 1 Sweep 2 Sweep 1 Sweep 2

N 42 12 25 11 23 19

NC 6 8 16 6 19 16

Et(mm) 14.7 18.7 11.2 10.3 19.1 15.3

Eθ (◦) 14.8 33.3 17.2 13.9 44.1 32.3

TRE(mm) 18.8 3.7 14.2 11.4 25.3 21.9

Fig. 4. Registration result of Sweep 2 of Patient 2. Left shows the 3D registration of the
LUS planes using the Ground Truth (black planes with yellow dots) and the algorithm
solution (red planes with red dots). Right shows LUS and segmented CT alignment
results of 3 images in the sweep. (Color figure online)

variance values (σz = 3 mm) and keep the rotation the same. For each sweep,
we manually register LUS images to CT and interpolate the result with a cubic
polynomial to generate a ground truth trajectory. After obtaining a solution, we
again measure the errors Et and Eθ and assess the Target Registration Error
(TRE) of a set of manually picked vessel bifurcations found in the path. Since
these bifurcations may land in images in between the sequence that were not
registered, we perform a cubic polynomial fit to predict their position given the
algorithm solution.

Results on the six sweeps are summarised in Table 1. The best trajectory
registration results are found in the sweeps of patient 2, with translation errors
around 10 mm. A visual result with the registration of Sweep 2 is shown in Fig. 4.
Lowest accuracies are obtained for patient 3, but these do not surpass 20 mm.
This value is still usable as we are performing a globally optimised alignment.
We also display the number of images NC at which the errors converge as in the
previous experiment. Since these vary greatly, we assume that this value depends
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on the uniqueness of the registered images that is specific to each dataset. TRE
results are in the range of [3.7 − 25.3 mm] and are in reasonable agreement with
the other errors.

4 Conclusions

Our results show that our framework can register smaller field of view images to
a larger volume globally and without tracking information. While the proposed
method does not perfectly register each LUS frame, the accuracy is sufficient to
act as an initialisation for local registration methods such as [5]. We see this as a
great step forward in this field. It poses both a reduction in manual interaction
and less interruption to the clinical workflow as a tracking device is not required.
Furthermore, our simulation was purely rigid: by increasing the realism of our
database simulations with deformation, higher accuracies can be achieved.

Although the method used manually segmented vessels in ultrasound, we
believe that automatic segmentation results can be obtained using state-of-the-
art Deep Learning frameworks [10]. We did not include ultrasound images with
large non-tubular sections in our validation. This is due to the fact that our
retrieval based in position and area is not specific enough to identify such struc-
tures. We intend to tackle this problem by both refining our encoding and includ-
ing modelling of physics in the simulation step.

It is worth noting that this framework can be translated to other registration
problems. The only requirements are suitable priors on the acquisition and a
robust image-to-feature encoding that describes the target anatomy.
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Abstract. Nuchal Translucency (NT) in ultrasound images are com-
monly used to detect genetic disorder in fetuses. Due to lack of distinc-
tive local features around NT region, existing NT detection methods first
model some other prominent body parts, such as the fetal head. However,
explicit detection of other body parts requires additional annotation,
development and processing costs. It may also introduce cascading error
in cases of unclear head location or non-standard head-NT relations. In
this work, we design a convolutional neural network with fully connected
layers to detect NT region directly. Furthermore, we apply U-Net with
customized architecture and loss function to obtain precise NT segmen-
tation. Finally, NT thickness measurement is calculated using principal
component analysis. A dataset containing 770 ultrasound images were
used for training and evaluation. Extensive experimental results show
that our direct approach automatically detects and measures NT with
promising performance.

1 Introduction

Nuchal Translucency (NT) is a fluid-filled region under the skin of posterior
neck of fetus. In ultrasound images, NT is the bright-dark-bright region below
head, as shown in Fig. 1. Abnormal thickness is related to cardiac defects and
genetic abnormalities such as Down’s Syndrome [14]. NT thickness measurement
is commonly conducted by skilled operators in the first trimester of pregnancy
via ultrasound scans. The manual approach to screening is laborious and prone to
be inconsistent. Therefore, it is important and necessary to develop an accurate
and automated NT measurement tool.

NT measurement is obtained by first detecting the region and then measuring
the thickness. Automated region detection is a challenging task, as NT itself does
not have highly distinctive local patterns and there can be more than one region
with the bright-dark-bright pattern in the image. Both medical experts and
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(a) Clear head (b) Unclear head

Fig. 1. Ultrasound images of fetus with clear and unclear head. NT region is indicated
by the blue bounding box. (Color figure online)

existing detection algorithms rely on the location of some other body parts with
unique patterns to select the correct NT region. For example, Deng et al. [2]
proposed a hierarchical structural model which explicitly locates the head and
body of fetuses before detecting the NT region. Similarly, Park et al. [10] detected
fetal head first then used this information to locate the NT region. The NT
measurement methods proposed by Nie et al. [9] and Sciortino et al. [12] both
require separate algorithms to provide prior knowledge of other body parts, such
as fetal head, jaw bone, and choroid plexus. However, these two-stage approaches
have two limitations. Firstly, it is costly to generate additional labels of the other
body parts so as to develop their detection models; Secondly, it is error-prone for
the NT detection model to rely on the output of the first stage, especially when
the other body parts are unclear due to low resolution of ultrasound images as
shown in Fig. 1(b) or when the fetuses have non-standard head-NT relations.

In this work, to alleviate the extra annotation cost and reduce the uncer-
tainty associated with any additional detection models, we propose to detect
NT region directly based on label information about only NT by using deep
neural networks. Specifically, the contributions of this work are:

– For NT region detection, we design a convolutional neural network with fully
connected layers to extract local patterns and model their relation;

– For precise NT segmentation, we customize U-Net architecture and use a loss
function dedicated to handle the problem of imbalanced classes;

– We select the largest connected component as the final NT region and deter-
mine its orientation using principal component analysis (PCA) technique;

– Extensive experimental results show that the proposed subsystems are very
effective in detecting and segmenting NT;

– We demonstrate that the system achieves promising NT measurement per-
formance without any human annotation of other body parts.

2 Method

Figure 2 shows the pipeline of the proposed system. Given the ultrasound image,
we first detect the center of NT using a neural network regression model. The
region around the center point is cropped as NT region, and it is further seg-
mented using a modified U-Net. NT thickness is calculated using PCA after
size-based suppression.
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Fig. 2. Pipeline of the proposed system.

2.1 NT Region Detection

Instead of explicitly detecting head location and modeling the relation, we pro-
pose to use a simple yet effective convolutional neural network to make use of
the head location implicitly so as to directly detect NT region without the need
for annotating head locations. Building upon the classic VGG16 [13], we make
several adjustments to cope with the small dataset in this task. We use less
convolutional (Conv) layers in each convolutional block (CB) and use an addi-
tional CB to future reduce the size of feature maps before fully connected (FC)
layer, so as to reduce the overall number of network parameters. Dropout layer
is used to prevent overfitting, and batch normalization (BN) [6] layers are used
to prevents model divergence and increase convergence speeds during training.

As shown in Table 1, the input to the network is a single-channel ultrasound
image, and the outputs are normalized long-axial and short-axial coordinates of
the center point. Each CB consists of one Conv layer, followed by BN, rectified
linear unit (ReLU) layer, and max pooling (MaxPool) layer. The output of the
last CB is flattened and connected to a FC layer. Finally, a FC layer with linear
activation function gives the predicted center points. The region with pre-defined
width and height around the center point is considered as NT region and the
orientation of NT will be studied in the NT thickness measurement part. The
model is trained using mean squared error loss.

Table 1. Network architecture of center point detection model. Here f denotes kernel
size, s denotes stride length and n denotes number of filters.

Input (526 × 568 × 1)

Conv (f= 3, s = 1, n = 24) → BN → ReLU → MaxPool (f = 2, s = 2)

Conv (f= 3, s = 1, n = 48) → BN → ReLU → MaxPool (f = 2, s = 2)

Conv (f= 3, s = 1, n = 96) → BN → ReLU → MaxPool (f = 2, s = 2)

Conv (f= 3, s = 1, n = 192) → BN → ReLU → MaxPool (f = 2, s = 2)

Conv (f= 3, s = 1, n = 192) → BN → ReLU → MaxPool (f = 2, s = 2)

Conv (f= 3, s = 1, n = 192) → BN → ReLU → MaxPool (f = 2, s = 2)

FC (768) → BN → ReLU → Dropout

FC (2) → Linear

Output (2 × 1)
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2.2 NT Segmentation

Fig. 3. Network architecture of segmentation model.

As a widely used network architecture for segmentation in medical applica-
tions, U-Net [11] consists of a encoder network, which takes a high resolution
image as input and down-samples it to extract the abstract class information,
and a decoder network, which up-samples the image and maps the abstract class
information to high resolution segmentation mask. To tailor to our application
of small dataset of only two classes, we reduce the depth of encoder and decoder
network and reduce the number of filters in each layer. The network architec-
ture is shown in Fig. 3. The segmented NT region can be only a small part of
the input image, which leads to an imbalance between foreground and back-
ground classes, as shown in Fig. 2. To handle this, we use a loss function based
on Dice-coefficient [8] to train the network. Instead of using fixed up-sampling
filters (e.g., bilinear up-sampling), we apply transpose convolution (ConvTrans-
pose) [7] followed by BN and ReLU in order to include both non-linearity and
learnable weights.

2.3 NT Thickness Measurement

The segmentation mask produced by U-Net can consist of several disjoint
regions, while it is known that there is only one NT per image. To remove
false alarm regions, we propose to model the segmentation results as 8-way con-
nected components and retain only the one with the largest area. It turns out
the assumption that false alarm regions are of smaller size works well in this
study. We name this process size-based suppression.

The final segmented NT region is always one connected component. We pro-
pose to approximate the region as an ellipse and use PCA to obtain its minor
axes as the NT thickness. Specifically, given a set of pixels in the segmented
region with coordinates (xi, yi), regarded as data points, the center point (x̄, ȳ)
is first obtained by averaging all data points within the region, and the mean-
centered coordinates are computed as (x′

i = xi− x̄, y′
i = yi− ȳ). We compute the
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two eigen values of the correlation matrix of data points and their correspond-
ing eigenvectors. Finally, NT thickness is computed as the maximum distance
between any pair of data points when projected along the direction of the second
principal component1.

3 Experiments

3.1 Dataset

The data used in this study were collected during ultrasound scanning in the first
trimester of pregnancy. There are in total 770 ultrasound images from different
subjects with clear NT and normal fetus orientation. NT thickness were labeled
by medical doctors, and NT center as a point and NT as a polygon were labeled
by trained experts. We randomly divided the dataset into three disjoint training,
validation and test sets with 637, 66, and 67 samples, respectively. The images
have pixel-level dimensions of 568× 526 and have different pixel-to-mm ratios
ranging from 5.61 to 25.61.

3.2 Experimental Setups

The proposed system was implemented using Keras with Tensorflow backend.
For both NT center point detection and NT segmentation networks, training
were done using SGD optimizer (weight decay = 1e−6, momentum = 0.9), weights
were initialized using the HE initializer [3], and the training mini-batch size was
set to 32. The center point detection network was trained for 400 epochs with
initial learning rate 0.001. For NT segmentation network, the training images
were augmented 10 times by random cropping and horizontal flipping, and the
network was first trained using initial learning rate of 0.01 and fine-tuned using
learning rate of 0.001. All hyper-parameters and the best model were selected
based on performance on the validation set. All experiments were conducted
with 8 Nvidia GeForce GTX 1080Ti GPUs.

3.3 Results

For center point detection, we used average pixel-level L2 distance between
ground-truth point and predicted center point as evaluation metric. A rectan-
gular region centered at predicted center point with an aspect ratio of 4:3 was
regarded as the NT region. We set the height to 128 pixels, which is around
twice of the largest NT region height, to make sure the rectangle region encom-
passes NT. The predicted NT regions containing ground-truth center points are
marked as true positive, otherwise as false positive. We also calculate recall rate
to quantify how reliable center point detection is. We compared our proposed
network with three state-of-the-art networks VGG16 [13] with two FC layers
1 The second principal component is the eigenvector associated with the smaller eigen

value and is the minor axis of the ellipse.
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(768 nodes), and ResNet18 [4], ResNet34 [4] and DenseNet121 [5] with global
average pooling. In addition, we implemented two variants of the proposed net-
work, one without dropout layer and the other with two FC layers, to see effects
of our design choices.

Table 2 shows center point detection results. VGG16 achieved much lower
error than ResNet18, ResNet34 and DenseNet121. As an improvement of VGG,
our proposed network achieved a detection error of 41.58 pixels on long-axis and
15.22 pixels on short-axis. In comparison, the network without dropout layer
overfitted the training sets and performed poorly. The network with two FC
layers achieved much larger errors in short-axis, which probably is also due to
overfitting. The ground-truth center point is defined as the center of the thickest
NT part; NT is an elongated region with similar thickness at many long-axial
locations, which is possibly the reason why long-axis is prone to a larger error for
all detection models. The proposed detection model achieved a detection recall
of 97.01%, indicating that the proposed method is reliable for the subsequent
segmentation task. Sciortino et al. [12] reported a slightly higher detection recall
of 99.95% using the two-stage method. It is worth noting that their method was
test on a different dataset from only 12 patients and thus the two detection recall
results can not be directly compared.

Table 2. Detection error (in pixel) of NT center point detection models. Here εl, εs,
and ε2D denote the average L2 distance on long-axis, short-axis and 2D space.

VGG16 ResNet18 ResNet34 DenseNet121 Ours w/2 FC w/o dropout

εl 42.93 50.39 50.23 50.21 41.68 41.54 69.22

εs 24.91 21.38 26.71 39.49 15.22 19.89 65.63

ε2D 49.63 54.74 56.89 63.88 44.37 46.06 95.39

We used intersection-over-union (IoU) as the metric to evaluate our NT seg-
mentation network. We compared the proposed network with four state-of-the-
art networks: U-Net, VGG16-based FCN32 [7], VGG16-based FCN8 [7], and
SegNet [1] using their original cross entropy loss. We also implemented two vari-
ants of our proposed networks for comparison: one is trained using cross entropy
(CE) loss, and the other is trained without data augmentation (DA).

As shown Table 3, both data augmentation and Dice-coefficient loss brought
significant performance improvement. The proposed model achieved better seg-
mentation performance than the state-of-the-art networks, indicating that it is
highly suited for NT segmentation task. Figure 4 shows a visualization of the
segmentation results. In Fig. 4(a), the ground-truth segmentation mask covers
only a subset of NT, while the proposed segmentation model successfully identi-
fies the entire NT. In Fig. 4(b), a region with similar pattern lies below the true
NT region, the proposed size-based suppression successfully removed false alarm
regions.
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Table 3. IoU of NT segmentation models.

U-Net FCN8 FCN32 SegNet Ours w/o DA w/CE

IoU 0.6991 0.6686 0.6359 0.6428 0.7199 0.6705 0.6249

Fig. 4. Visualization of NT segmentation (blue/red mask) and NT thickness (green
bar). Three columns contain ground truth, predictions before and after size-based sup-
pression. (Color figure online)

The complete system performance is shown in Table 4. The mean error
between the proposed system and manual labeling is 2.64 pixel and 0.21 mm.
We also show a visualization of some typical cases in Fig. 5. Despite the low
quality of the ultrasound images and unclear fetal head structures, the proposed
system still achieved reliable detection results on most cases like Fig. 5(a) and
(b). On 58.21% of the test set, thickness measurement error is less than 0.2 mm.
Figure 5(c) and (d) are failure cases: Fig. 5(c) is due to inaccurate segmentation,
and in Fig. 5(d), two disjoint regions were provided by the segmentation model
but the wrong region was selected under the assumption that the smaller regions
are false alarms. The current region selection strategy only considers the area of
the region. In future work, other constraints on the shape and location can also
be explored.

Table 4. The complete system performance. Mean and standard deviation of thickness
measurement are shown.

Manual labeling Proposed system Error

pixel mm pixel mm pixel mm

17.38 ± 4.67 1.40 ± 0.41 16.94 ± 4.61 1.37 ± 0.40 2.64 ± 2.32 0.21 ± 0.19
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Fig. 5. Visualization of NT region detection, segmentation and measurement obtained
by the complete system. Blue bar shows the ground truth NT thickness, and green bar
shows the detection results. (Color figure online)

4 Conclusion

In this work, we proposed a deep neural network based NT detection and mea-
surement system. Compared with existing two-stage NT detection methods, our
system directly detects NT region and thus does not require the additional
annotation or explicit modeling of other body parts. Qualitative and quanti-
tative results show that the complete system produces accurate NT detection
results and thickness measurements. It would be of interest to test our system
on datasets including abnormal NT thickness, in order to assess its capability of
Down’s syndrome prediction based on NT measurement.
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Abstract. Two-dimensional echocardiography (2DE) measurements of
left ventricle (LV) dimensions are highly significant markers of several
cardiovascular diseases. These measurements are often used in clinical
care despite suffering from large variability between observers. This vari-
ability is due to the challenging nature of accurately finding the cor-
rect temporal and spatial location of measurement endpoints in ultra-
sound images. These images often contain fuzzy boundaries and varying
reflection patterns between frames. In this work, we present a convo-
lutional neural network (CNN) based approach to automate 2DE LV
measurements. Treating the problem as a landmark detection problem,
we propose a modified U-Net CNN architecture to generate heatmaps
of likely coordinate locations. To improve the network performance we
use anatomically meaningful heatmaps as labels and train with a multi-
component loss function. Our network achieves 13.4%, 6%, and 10.8%
mean percent error on intraventricular septum (IVS), LV internal dimen-
sion (LVID), and LV posterior wall (LVPW) measurements respectively.
The design outperforms other networks and matches or approaches intra-
analyser expert error.

Keywords: Ultrasound · Echocardiography · Landmark detection ·
Deep learning · Convolutional neural networks

1 Introduction

Ultrasound imaging is the primary imaging modality used to assess cardiac mor-
phology and function. Compared to other imaging modalities (e.g. MRI and CT),
ultrasound imaging has a lower cost, is easier to perform, and, unlike CT, does
not produce ionizing radiation. This makes it ideally suited for rapid diagnostic
use for patients with cardiovascular disease. A diagnosis is made by acquiring
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a set of images from different views of the heart and extracting measurements
of heart function from those images. Some of the most frequent measurements
in patient care settings are measurements of the left ventricle (LV) from the
parasternal long-axis view. The typical set of measurements consists of the length
of the intraventricular septum (IVS), left ventricular internal dimension (LVID),
and left ventricular posterior wall (LVPW) at both the end-diastole (ED) and
end-systole (ES) phases of the cardiac cycle. Several examples of these measure-
ments are shown in Fig. 2. Because LV dimension measurements are performed
frequently, automated measurement tools could provide tremendous time savings
for clinical use.

Despite its widespread use, there is a high variability in LV dimension mea-
surements due to variations in training and the difficulty of precisely detecting
relevant structures. The 2010 HUNT study [11] measured inter-analyser (dif-
ference between experts reading the same exam) and intra-analyser (difference
between the same expert reading the same exam several weeks apart) for sev-
eral standard echocardiographic measurements. The intra-analyser mean percent
error (MPE) for IVS, LVID, and LVPW measurements was 10%, 4%, and 10%
respectively and inter-analyser results were similar. For IVS and LVPW mea-
surements this corresponds to about half of the standard deviation of normal
ranges [3] so a patient on the borderline could easily be put in a different diag-
nostic group. The high variability highlights the difficulty of the task at hand,
but effective automation is one promising approach to reduce this variability and
implement a more reproducible diagnostic pipeline.

Previous work on 2D ultrasound measurements has focused on individ-
ual measurements. Snare et al. used deformable models with Kalman fil-
tering to outline the septum shape [9], achieving bias and standard devia-
tion of 0.14± 1.36 mm for automated IVS measurements compared to man-
ual measurements. Baracho et al. used perceptron style neural networks and
filtering to generate a septum segmentation [1]. They achieved results of
0.5477 mm± 0.5277 mm for IVS measurements but failed to validate directly
against measurements from an expert cardiologist. Finally, Sofka et al. devel-
oped an automated method for detecting LVID measurements using convolu-
tional neural networks (CNNs) [10]. Sofka et al. introduce a center of mass layer
to regress keypoint locations and achieved a 50th percentile error of 4.9% and a
95th percentile error of 18.3%. We extend the work of Sofka et al. by targeting
the IVS and LVPW measurements in addition to LVID. Including more mea-
surements increases the difficulty of the task because the network should not
only achieve high accuracy on all measurements but also find measurement vec-
tors that have a logical relationship to each other (i.e. all measurement vectors
should be parallel to follow clinical guidelines). Additionally, the upper IVS and
lower LVPW endpoints do not fall at distinct gradient boundaries within the
image making them more difficult to find, even for an expert.

As with Sofka et al., we frame the task as a landmark detection problem,
where the goal is to identify 6 key points (the 2 endpoints of IVS, LVID, and
LVPW measurements) from an input image. A landmark based approach was
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chosen to increase user-interpretability and allow editing of the found points by
users in a clinical workflow. Many architecture variants have been applied in
previous work on landmark detection problems, but the most common approach
is to generate a heatmap of likely locations for each key point of interest [6,7,12].
The heatmap is directly compared to a reference heatmap generated from the
key point’s known location, or the coordinates of the key points are regressed
from the heatmap and compared to known coordinates.

We propose several modifications to the general landmark detection strat-
egy above because, in contrast to facial recognition, there is no defined local
appearance of these landmarks. Instead, their location is determined from local
appearance and global structural information. For example, while the septum
typically extends through a large part of the image, ASE guidelines recommend
measuring at the level of the mitral valve leaflets [4] which means an algorithm
needs to be aware of structural information to find the correct IVS endpoints.

The novelty of our approach lies in it’s ability to handle these challenges and
achieve high accuracy. First, we generate anatomically meaningful ground truth
heatmaps which follow the expected spatial distribution of the point. Second, we
propose the integration of coordinate convolution layers [5] within feature detec-
tion networks for medical imaging. Third, we optimize network performance
using a multi-component loss function which provides feedback to the network
in multiple components including measurement endpoint coordinate locations,
angle of measurement, and measurement distances. Including all these terms
allows us to optimize for both measurement accuracy and a logical relationship
between measurement vectors. Finally, we evaluate several different architec-
tures within the constraints of our first two contributions to show the optimal
architecture for the given task.

2 Methods

2.1 Network

The input to the proposed network is a single 2D frame. The accurate detec-
tion of ES and ED frames from a full cardiac loop is left for future work. The
image is first passed through a CoordConv layer, which adds pixel-wise spatial
location information to allow CNNs to more easily find objects [5]. The core of
our approach is a U-Net [8]. A U-Net is a CNN with a sequence of down and up
sampling paths with skip connections concatenating each down-sampling output
to the corresponding up-sampling level. In each successive down-sampling layer,
the number of filters doubles and the spatial resolution in each dimension is cut
in half, while the reverse is true in up-sampling. We make several modifications
in our implementation. The number of down-sampling levels and the number of
filters are parameterized to tune the network. Padding is added on all layers to
ensure output heatmap resolution matches the input. Batch normalization and
spatial dropout layers are included between convolutional blocks for regulariza-
tion, avoiding standard dropout since neighboring pixels are strongly correlated
[12]. Each convolutional layer uses a kernel size of 3× 3.
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Our output is the same size as the original image but contains 6-channels,
with each channel representing a heatmap corresponding to one landmark.
Although the top and bottom endpoints of LVID typically match the bottom of
IVS and top of LVPW respectively, they can be different for some pathologies
which is the reason they are independent points in our framework. Each channel
is normalized to be a probability map and passed through a differential spatial-
numerical transform block [7] to calculate the center of mass in x and y: the
endpoints of the three measurement vectors. From the coordinate endpoint loca-
tions, we calculate the final distance measurements. The network architecture is
shown in Fig. 1.

Fig. 1. Network architecture. The input image (256× 256) is appended with x and y
coordinate channels to create a 3 channel image and passed through a U-Net-based
architecture. The output contains 6 heatmaps (Ĥ), one for each detected landmark.
The center of mass of each heatmap is extracted as the found coordinates (ĉ), and
vectors for each measurement are obtained (d̂). Label distances (d) and heatmaps (H)
are generated from labeled endpoints (c) to compare to the network output.

2.2 Loss Function

Our labels are the coordinate locations of all caliper endpoints. We extrapolated
these to match the network output including heatmaps of coordinate locations,
and distances between coordinate pairs. For the label heatmaps, a 2D gaussian
is centered at the location of the labeled coordinate. The gaussian is elongated
in one dimension with a ratio of 20 to 1 between the variances of the long and
short axes and rotated such that the long axis was orthogonal to the direction
of measurement (see H in Fig. 1 for example). This both followed the expected
spatial distribution of the points and gave the network feedback that a miss
orthogonal to the direction of measurement was more acceptable than one par-
allel to the measurement, which would substantially affect measurement results.
The variance of the gaussian in the long axis is 14 pixels (or 5% of the image
size).
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L2 loss is used for the six coordinate locations and three distance measure-
ments, although the distance loss was divided by the relative actual distance
(d) to equally weight each measurement. The heatmap loss is the root mean
squared error (RMSE) between the generated and output heatmaps, following
Newell et al. [6]. The heatmap loss helps the network converge to a reasonable
result quickly, because feedback is provided to the network at every pixel in
the output, rather than just a single metric fed back to all pixels such as with
the distance or coordinate measures. The difference in the relative angles of the
measurement vectors is also included in the loss function as the cosine similarity
between the two vector sets. Including the angle loss is critical because even if
the network can correctly find point delineations across the relevant structure
(e.g. septum), if the measurement vector is not orthogonal to that structure then
the measurement will be overestimated. The angle and coordinate loss also help
promote a logical relationship between measurement vectors.

3 Experiments

3.1 Datasets and Pre-processing

LV intraventricular septum (IVS), internal diameter (LVID), and posterior wall
(LVPW) dimensions were annotated in parasternal long axis 2DE scans. To
avoid overfitting to a single acquisition protocol, exams were collected from four
sites. All measurements were performed by a single cardiologist experienced in
2DE measurements. Diagnostic information was stripped from the images, but
a mix of normal patients and varied pathologies is typical for the chosen sites.
Exams were labeled at ED and ES except for where image quality in one phase
prohibited accurate measurements. A total of 585 images were gathered from
309 unique patients. To generate a comparison with intra-analyser variability,
32 recordings (mixed ED and ES) were labeled multiple times by the same
expert. These 64 images were set aside to be used as the test set for the network
leaving 521 images for training and validation. The training, validation, and test
sets were split such that images from the same patient would always remain in
the same set. The coordinates and image data from the relevant frames were
extracted from the stored files and converted to 256× 256 one-channel images.

During training, random brightness, contrast, and gamma transformations
were applied to each image. Additionally, we used mean normalization and
applied random translations of 0 to 40 pixels in each direction, while ensuring
coordinate locations were never within 16 pixels of the image boundaries.

3.2 Implementation Details

The network was implemented using PyTorch 0.4.1 with Python 3.6 on an
Ubuntu 18.04 machine with an NVIDIA Titan X GPU. The batch size was
16 images for training and 4 images for validation. We trained for 120 epochs
and reduced the learning rate by a factor of 10 every 50 epochs. Using 10% of the
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Fig. 2. Top row: Qualitative results on the best, median and worst images from the
test set showing expert labels and network outputs for each measurement. Bottom
row: Characteristic heatmaps showing how the network learns to prioritize a small
distribution in the direction parallel to the measurement direction. Only four heatmaps
are shown for simplicity since the top and bottom LVID endpoints overlap with the
bottom of IVS and top of LVPW respectively and produce very similar heatmaps.

training set for validation of hyperparameters, we found 4 levels was the optimal
network depth and 26 was the optimal number of filters in the first layer.

The primary metric important for clinical use is the accuracy of the distances
for each of the three measurements. The coordinate locations of the endpoints
and angle of the measurement vectors are secondary metrics that are important
to create a tool that accurately follows clinical guidelines. For clinical use, it
is not important that the generated heatmap matches the artificial heatmap.
However, we found that keeping the relative weighting of the heatmap loss high
compared to the other metrics helped improve network accuracy on all metrics.

3.3 Evaluation and Comparison

The primary metric for evaluation was the mean percent error between the
network output and ground truth distance measurements on IVS, LVID, and
LVPW. The test set was composed of the 32 images that had been labeled
multiple times. The median of the two labels was set as ground truth although
comparing to a randomly chosen label yielded very similar results.

While much of the strategy revolved around pre- and post-processing, we
implemented several other networks in addition to U-Net for comparison. Results
were compared to a stacked hourglass network [6], which currently obtains state
of the art results on the FLIC and MPII human pose estimation metrics as well
as ResNet18, ResNet34, and ResNet50 networks [2]. We tuned the number of
stacks (4) and blocks (2) of the stacked hourglass network on the validation set.
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We implemented the ResNet networks following the strategy proposed by Nibali
et al. [7], reducing the stride in several layers to increase output heatmap res-
olution, while using dilated convolutions to maintain receptive field sizes. The
output heatmap size for the ResNet and stacked hourglass networks was 64× 64
and we appended up-sampling layers to achieve 256× 256 resolution. A Coord-
Conv layer was added to the beginning of all networks and the same coordinate
regression method and loss function were used. For a fair comparison to the
other networks, results with default values of an out-of-the-box implementation
of U-Net is included (no batch normalization or dropout, depth and number of
filters set to 5 and 26 respectively).

4 Results

The best, median, and worst examples (in terms of RMSE) from the test set
are shown in Fig. 2. The network achieves intra-analyser accuracy on LVPW
and LVID measurements, and slightly worse than intra-analyser on IVS mea-
surements. The algorithm’s worse performance on IVS measurements possibly
occurs because the upper septum is often not defined as a clear gradient bound-
ary because the septum blurs together with trabeculae in this region (see median
image in Fig. 2, although the network correctly found the location in this case).
Expert labelers typically rely on scrolling back and forth between several frames
to accurately find these points. In general, intra-analyser error is high on this task
since boundaries are often blurred and lost in the noise (see the upper LVPW
boundary in the worst image in Fig. 2 for example). The network’s ability to
approach intra-analyser error using only a single frame indicates that it is accu-
rately detecting the important structures despite the high noise level. Full results
on the final test set are summarized in Table 1. The proposed network compares
favorably to the other networks implemented on this task, achieving lower error
on most metrics. We hypothesize that the performance of the other deeper net-
works would improve if the training dataset size were increased. However, our
network has fewer parameters (which translates to a smaller memory size) and
faster inference time. It is encouraging that close to expert level performance
was achieved with a small network since efficient and fast implementations are
important for clinical implementations.

5 Conclusion

In this work we present an effective landmark detection network for 2D measure-
ments of the LV. We demonstrate the application of these techniques in deter-
mining LV dimensions. Implementation of this network could reduce high clin-
ical inter-/intra-analyser variability in these measurements and lead to a more
repeatable diagnostic pipeline. Additionally, it enables rapid historical analy-
sis of patients to provide robust long-term analysis. We expect that many of
the techniques presented here would be applicable to other landmark detection
problems in 2D and 3D ultrasound. In the future we will increase the size of the
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Table 1. Comparison of proposed network to implementations of state-of-the-art net-
works in landmark detection and intra-analyser results. Inference time is for a single
image.

Model Mean percent error (%) Params Time (ms)

Total IVS LVID LVPW

ResNet18 12.8 12.7 11.7 14.2 1e7 21

ResNet34 13.0 11.2 12.1 15.8 2e7 38

ResNet50 11.6 13.7 8.8 12.3 2e7 43

Stacked Hourglass 11.3 12.1 7.4 14.4 3e7 79

U-Net 13.5 14.0 8.3 18.1 3e7 10

Modified U-Net 10.0 13.4 6.0 10.8 7e6 11

Intra-analyser 8.9 8.0 5.2 13.8 n/a −

datasets, apply cross-validation, automate the detection of ED and ES frames
from a full cardiac cycle, and add a confidence metric for detecting outlier results
to provide a fully automated measurement tool for clinical use.
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Abstract. Fetal standard plane recognition is a crucial clinical part of prenatal
diagnosis. However, it is also a sophisticated, subjective, and highly empirical
process. Thus, there is a huge demand for proposing an effective and precise
automatic method to help experienced as well as inexperienced doctors to
complete this process, efficiently. In order to satisfy this clinical need, we
propose an automatic fetal standard plane recognition network called SPRNet.
Specifically, we adopt DenseNet as the basic network of SPRNet and implement
data-based partial transfer learning on it by weight-sharing strategy. We then
train our network with a task dataset (fetal ultrasound images) and a transferring
dataset (placenta ultrasound images) so that our network can discover and learn
the potential relationship between these two datasets to improve the performance
and avoid overfitting. Finally, we achieve automatic fetal standard plane
recognition by utilizing the feature extracted from SPRNet. The experimental
results indicate that our network can attain an accuracy of 99.00% and perform
better than conventional networks.

Keywords: Fetal standard plane recognition � Data-based partial transfer
learning � Fetal ultrasound images � Placenta ultrasound images

1 Introduction

Prenatal diagnosis is an effective examination to assess the growth of fetuses and it is
also helpful to reduce birth defect rate and neonatal mortality. Due to the advantages of
the non-invasion, no radiation and low cost, ultrasonography plays an important role in
prenatal diagnosis, nowadays. This ultrasonography method can be generally divided
into five steps: ultrasound images scanning, standard planes recognition, structural
observation, parameter measurement, and diagnosis. Among these steps, standard plane
recognition is the key part of the process, as the standard planes are the foundation of
parameter measurement and directly reveal the congenital anomaly of fetus [1].
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Currently, the recognition of standard planes mainly depends on artificial exami-
nation. Slight differences exist between standard planes and non-standard planes and an
example is shown in Fig. 1. This high similarity between the planes make it hard for
sonographers to effectively distinguish the planes and increases likelihood for misdi-
agnosis, especially when they are working in a high-workload environment. In addi-
tion, underdeveloped areas are lacking of experienced prenatal diagnosis doctors. This
is detrimental to decline the birth defect rate and neonatal mortality. Therefore, it is
great significance to propose an effective and automatic method to help experienced as
well as inexperienced sonographers to efficiently distinguish fetal standard planes from
non-standard planes.

Recently, the-state-of-the-art deep learning based method, convolutional neural
network (CNN) and it variants like VGG [2], ResNet [3] and SeNet [4], showed high
performance in different image classification tasks. It can also provide a new insight for
researchers to realize automatic fetal standard planes recognition. Accordingly, many
works also have been devoted into this area [5, 6]. Although some of these works
addressed the automatic recognition of certain fetal standard planes, their frameworks
have limitations in the generalization ability and accuracy. Recently, Kong et al. [11]
and Cai et al. [12] address these issues by higher performance network and multi-task
learning respectively. Inspired by their works, we propose an automatic fetal standard
plane recognition network called SPRNet. Specifically, the proposed SPRNet is based
on DenseNet architecture [7], which could maximize the use of features and outperform
other different deep neural network architectures. However, it still suffers from the
problem of overfitting. Inspired by work in Wang et al. [8], we propose a transfer
learning method called data-based partial transfer learning to alleviate overfitting and
adopt a placenta ultrasound image dataset as the transferring dataset. After prepro-
cessing, the features extracted from SPRNet are used to classify input images into
corresponding categories by Softmax layer. The experimental results indicate that, with
the transfer learning method we proposed, our network can utilize the potential rela-
tionships between two different datasets to improve classification performance, show
higher generalization ability, and outperform other conventional networks.

(a) (b)

Fig. 1. Abdominal standard plane (a) and non-standard plane (b) appear in two adjacent frames
of an ultrasound video. The green and red boxes show the nuanced difference between these two
images. (Color figure online)
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2 Methodology

The overall architecture of the proposed SPRNet is shown in Fig. 2. The principles of
the method used in this network are demonstrated as follow.

2.1 Data Processing

The datasets used to train SPRNet is composed of a task dataset and a transferring
dataset. The task dataset is constituted by fetal plane images in ultrasound and contains
seven categories: 4 channel chamber (4CH), abdomen, brain, axial face (AF), coronal
face (CF), sagittal face (SF) and others. Others are a collection of all non-standard
planes, and the rest categories are collections of corresponding structures’ standard
planes. The transferring dataset is a collection of placenta ultrasound images, and it is
divided into four grades: grade 0 to 3, according to Grannum standards [9].

The sizes of task and transferring datasets are summarized in Tables 1 and 2,
respectively. Due to the limited number of cases and the difficulties of data annotation,
the size of transferring dataset is significantly smaller than task dataset. This problem
may impose an adverse effect on the performance of SPRNet. Therefore, we extend the
training set of transferring dataset by cropping original images (700 � 500 pixels) into

n n
BN R
eL

U

C
on

v 
 (1

×1
)

BN R
eL

U

C
on

v 
 (3

×3
)

n × kB 4 × kB kB

Represents channels concatenation

B
-L

ay
er

 1

B
- L

ay
er

 N

B
-L

ay
er

 2

BN R
eL

U
C

on
v 

(1
×1

)

A
vg

 P
oo

l 

kT = k0 × θ M

Pl
ac

en
ta

 L
os

s

BN

G
lo

ba
l 

A
vg

 P
oo

l

FC

C
on

v 
 (7

×7
)

M
ax

 P
oo

l

T
-B

lo
ck

 1

D
-B

lo
ck

 1

C
on

v 
 (7

×7
)

M
ax

 P
oo

l

T
-B

lo
ck

 1

D
-B

lo
ck

 1

T
-B

lo
ck

 2

D
-B

lo
ck

 2

T
-B

lo
ck

 3

D
-B

lo
ck

 3

T
-B

lo
ck

 4

D
-B

lo
ck

 4 Fe
ta

l L
os

s

BN

G
lo

ba
l 

A
vg

 P
oo

l

FC

Fetal Plane Images

Placenta Images

softmax

Forward Backward (a)

(b) (d)

(c)

(N + 1) × kBkB = k0 × θ M - 1

Fig. 2. Overall structure of the proposed method. (a) the architecture of SPRNet; (b), (c) and
(d) represent the basic modules in our network. k0 is the number of initial feature channels, kB and
kT denote the number of feature channels, M represents the index of D-Block and T-Block, N is
the amount of B-Layer in D-Block M, n (1 � n � N) refers to the index of B-Layer in D-Block
M, and h (0 < h � 1) denotes the channel decay coefficient.
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448 � 448 pixels from top left corner to bottom right corner with different strides for
different grades. The horizontal cropping strides for grade 0 to grade 3 are 126 pixels,
84 pixels, 63 pixels, and 21 pixels, respectively, and the longitudinal cropping stride for
all images is 26 pixels. Eventually, we get more than 1,000 images in each category of
transferring dataset and solve the problem of unbalanced data.

2.2 Basic Modules

We adopt the B-Layer (Bottleneck Layer), D-Block (Dense Block) and T-Block
(Transition Block) in DenseNet as the basic modules of our network.

D-Block is an intensive connection mechanism. It connects each layer to the pre-
vious layers in the same block and reuse the features extracted from previous layers by
concatenation. The advantage of this connection strategy is that, it protects the infor-
mation while reusing them and allows gradient to propagate from deep layers to
shallow layers more easily. With this structure, D-Block performs better than the
residual block in ResNet with less parameters and alleviates the problems of gradient
vanishing and model degradation. B-Layer is the basic unit of D-Block, which is used
for extracting information. T-Block, which is an interlayer between two D-Blocks, is
mainly used for reducing the number of parameters.

In our SPRNet, there are 4 D-Block and 4 T-Block, and we set k0 = 32 and h = 0.5.
From D-Block 1 to 4, N is 6, 16, 24 and 24, respectively.

2.3 Data-Based Partial Transfer Learning

Transfer learning is used to utilize the knowledge learned from transferring dataset to
improve the performance of CNN in task dataset and it was proved to be effective to
augment the generalization ability of CNN by Yosinski et al. [10]. The conventional
methods of transfer learning are based on transferring the weights of a pre-trained
model to a new model as initial weights and then fine-tuning the new model. Although
this method can boost the generation ability of network, it ignores the relationship
between task dataset and transferring dataset during the fine-tuning process and still

Table 1. The size of every category of training and testing in task dataset.

Fetal 4CH Abdomen Brain AF CF SF Others

Training set 1927 1349 1472 966 1542 1376 9208
Testing set 481 337 367 241 385 343 2301

Table 2. The size of every grade of original and extended training and testing in transferring
dataset.

Placenta Grade 0 Grade 1 Grade 2 Grade 3

Original training set 149 108 68 28
Extended training set 1341 1296 1020 1092
Testing set 37 26 16 7
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suffers from the problem of overfitting when dataset size is limited. Wang et al. pro-
posed a novel transfer learning method called data-based transfer learning [8]. In this
method, networks for different datasets are integrated into a general network by weight-
sharing strategy, but they still possess their own fully connected layer and loss function
to finish their own task. With this structure, the general network is able to extract and
learn the potential relationship between task dataset and transferring dataset, prevent
network from overfitting to any one dataset and perform better generalization ability
than conventional transfer learning methods.

Conventional transfer learning method usually adopt natural images like ImageNet
[13] as transferring data, but for transfer learning in medical area, there is huge dif-
ference between medical images and natural images, such as morphological difference
and acquisition method, which may bring some adverse effects. So, in order to avoid
these disadvantages, we also try to adopt the placenta ultrasound images as transferring
data. Although there is still huge morphological difference between placenta ultrasound
images and fetal plane ultrasound images, we believe that the different medical images
which are collected by the same method have some common features which can be
used for transfer learning.

When we apply data-based transfer learning into our network, we discover that the
performance of our network declines. The reason is that, unlike the datasets used in
Wang’s et al. work [8], which are selected and closely related, there are huge mor-
phological differences between our task dataset and transferring dataset, and these
differences make it difficult for shallow layers, which are prone to extract morpho-
logical information like textures and corner point, to extract common features from task
dataset and transferring dataset. To settle this problem, we do not apply weight-sharing
strategy into shallow layers and only use deep layers to extract the common features
hidden in the task and transferring datasets. Therefore, our network can avoid the
performance decline while the task dataset and transferring dataset are not closely
related to each other. We call this method as data-based partial transfer learning.

3 Experiments and Results

3.1 Experiment Design

We design a control experiment which uses three different networks (DenseNet-145,
DenseNet-145-global-transfer and SPRNet) to finish two tasks (fetal standard plane
recognition and placenta maturity grading), respectively, to demonstrate the improve-
ment of SPRNet. DenseNet-145 is a densely connected convolutional networks with
145 convolutional layers. DenseNet-145-global-transfer is a network where weight-
sharing strategy is applied on every convolutional layer. SPRNet is our proposed and it
also includes 145 convolutional layers.

We randomly divide both datasets into 80% for training set and 20% as testing set,
and data processing is applied to the training set.

The experiments are implemented using Python via Tensorflow and runs at a
32 GBs-RAM computer with a GeForce GTX 1080 Ti GPU. Accuracy (ACC),
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sensitivity (SEN), specificity (SPE), and F1-Score (F1) are adopted to evaluate the
performance of the networks.

3.2 Results

As shown in Table 3, benefitting from data-based partial transfer learning, SPRNet
outperforms other methods in fetal standard plane recognition as well as placenta
maturity grading. However, for the DenseNet-145-global-transfer, there is a perfor-
mance degradation in both tasks, if we regard DenseNet-145 as the benchmark. This
degradation of performance mainly caused by the huge morphological differences
between task dataset and transferring dataset. As shown in Fig. 3(b) and (c), the
features extracted from the separated shallow layers in SPRNet mainly contain mor-
phological information, such as corner point and texture, and there are huge differences
between the features extracted from different datasets, which will result in an intense
antagonism in shallow weight-sharing convolutional layers. For the data-based global
transfer learning, this intense antagonism is too strong for it to find a proper point to
learn common information from both datasets and yields performance degradation. On
the contrary, data-based partial transfer learning, which cancels the weight-sharing on
shallow layers, can effectively weaken this strong antagonism, ensuring the network
will not be impaired. Furthermore, the improvement of SPRNet in placenta maturity
grading task suggest that data-based partial transfer learning can effectively prevent the
overfitting problem which is caused by limited data and improve the performance of
network by extracting common features from task dataset and transferring dataset.

Table 4 shows the SPRNet’s recognition results of different fetal planes, indicating
that SPRNet achieves the best results in this task. The confusion matrix shown in Fig. 4
reveals the specific recognition result of SPRNet and prove the effectiveness of the
proposed method.

To further explain the effectiveness of SPRNet, we implement feature visualization
by t-SNE. Specifically, we reshape all the input test images and the feature extracted
from SPRNet to a matrix, respectively, in which every row represents an images or
features, and then demonstrate the distribution of these two matrixes by the t-SNE

Table 3. The performance of the proposed SPRNet against other networks.

Task Network ACC % SEN % SPE % F1 %

Fetal standard plane
recognition

DenseNet-145 98.86 96.04 99.34 95.24
DenseNet-145-
global-transfer

98.03 93.11 98.85 92.25

SPRNet 99.00 96.51 99.41 95.58
Placenta maturity
grading

DenseNet-145 92.44 84.88 94.96 85.13
DenseNet-145-
global-transfer

91.27 82.55 94.18 83.02

SPRNet 94.76 89.53 96.51 90.85
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Placenta

(a) (b) (c) (d) (e) (f)

Fetal plane

Fig. 3. Feature maps extracted from SPRNet. (a) is the original input image. (b) is the output of
the first convolutional layer. (c)–(f) refer to the feature extracted from D-Block 1 to 4,
respectively.

Table 4. Recognition results

Classes ACC % SEN % SPE % F1 %

4CH 99.51 97.54 99.75 97.74
Abdomen 99.00 95.60 99.27 93.54

Brain 99.17 98.92 99.20 95.21
AF 99.37 99.58 99.36 94.50
CF 99.42 93.81 99.97 96.67

SF 99.04 96.56 99.22 93.87
Others 97.48 96.16 98.89 97.53

Fig. 4. Confusion matrix of SPRNet.

Fig. 5. Feature visualization via t-SNE. (a) the distribution of the input test images; (b) the
distribution of the features extracted from SPRNet.
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function provided in the sklearn. Different colors refer to different categories of fetal
ultrasound planes. As shown in Fig. 5, the distribution of the input test images is
unordered, showing that the distinction of standard fetal planes and non-standard
planes is unobtrusive. On the contrary, after feature extraction of SPRNet, corre-
sponding categories are grouped together, and the distribution of features becomes
separable. This result further proves the effectiveness of the proposed network.

4 Conclusion

In this paper, we propose an effective fetal standard plane recognition network, which
adopts D-Block and T-Block as the basic module and introduces data-based partial
transfer learning. The experimental results demonstrate that SPRNet is accurate and
effective, and the data-based partial transfer learning brings a considerable improve-
ment to our network. In the future, we will expand our dataset to realize standard plane
recognition on more fetal structures and try to apply automatic parameter measurement
and structure localization to our method.
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Abstract. One of the biggest challenges for deep learning algorithms in
medical image analysis is the indiscriminate mixing of image properties,
e.g. artifacts and anatomy. These entangled image properties lead to a
semantically redundant feature encoding for the relevant task and thus
lead to poor generalization of deep learning algorithms. In this paper
we propose a novel representation disentanglement method to extract
semantically meaningful and generalizable features for different tasks
within a multi-task learning framework. Deep neural networks are uti-
lized to ensure that the encoded features are maximally informative with
respect to relevant tasks, while an adversarial regularization encourages
these features to be disentangled and minimally informative about irrele-
vant tasks. We aim to use the disentangled representations to generalize
the applicability of deep neural networks. We demonstrate the advan-
tages of the proposed method on synthetic data as well as fetal ultra-
sound images. Our experiments illustrate that our method is capable of
learning disentangled internal representations. It outperforms baseline
methods in multiple tasks, especially on images with new properties,
e.g. previously unseen artifacts in fetal ultrasound.

1 Introduction

Image interpretation using convolutional neural networks (CNNs) has been
widely and successfully applied to medical image analysis during recent years.
However, in contrast to human observers, CNNs exhibit weaknesses of being
generalized to tackle previously unseen entangled image properties (e.g. shape
and texture) [6]. In Ultrasound (US), the image property entanglement can be
observed when acquisition-related artifacts (e.g. shadows) obfuscate the under-
lying anatomy (see Fig. 1). A CNN simultaneously learns anatomical features
and artifacts features for either anatomy classification or artifacts detection [15].
As a result, the model trained by images with certain entangled properties (e.g.
images without acoustic shadows) can hardly handle images with new entangled
properties which are unseen during training (e.g. images with shadows).

Approaches for representation disentanglement have been proposed in order
to learn semantically disjoint internal representations for improving image inter-
pretation [12]. These methods pave a way for improving the generalization of
c© Springer Nature Switzerland AG 2019
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Fig. 1. Examples of fetal US data. Green framed images are shadow-free and red framed
images contain acoustic shadows. (Color figure online)

CNNs in a wide range of medical image analysis problems. Specifically for a
practical application in this work, we want to disentangle anatomical features
from shadow features so that to generalize anatomical standard plane analysis
for a better detection of abnormality in early pregnancy.

Contribution: In this paper, we propose a novel, end-to-end trainable represen-
tation disentanglement model that can learn distinct and generalizable features
through a multi-task architecture with adversarial training. The obtained dis-
joint features are able to improve the performance of multi-task networks, espe-
cially on data with previously unseen properties. We evaluate the proposed model
on specific multi-task problems, including shape/background-color classification
tasks on synthetic data and standard-plane/shadow-artifacts classification tasks
on fetal US data. Our experiments show that our model is able to disentangle
latent representations and, in a practical application, improves the performance
for anatomy analysis in US imaging.

Related work: Representation disentanglement has been widely studied in the
machine learning literature, ranging from traditional models such as Indepen-
dent Component Analysis (ICA) [10] and bilinear models [18] to recent deep
learning-based models such as InfoGAN [4] and β-VAE [3,9]. Disentangled repre-
sentations can be utilized to interpret complex interactions of underlying factors
within data [2,5] and enable deep learning models to manipulate relevant infor-
mation for specific tasks [7,8,13]. Particularly related to our work is the work by
Mathieu et al. [14], which proposed a conditional generative model with adver-
sarial networks to disentangle specific and unspecific factors of variation in deep
representations without strong supervision. Compared to [14], Hadad et al. [8]
proposed a simpler two-step method with the same aim. Their network directly
utilizes the encoded latent space without assuming the underlying distribution,
which can be more efficient for learning various unspecified features. Different
from their aim – disentangling one specific representation from unspecific factors
– our work focuses on disentangling several specific factors. Further related to
our research question is to learn only unspecific invariant features, for example,
for domain adaptation [11]. However, unlike learning invariant features, which
ignores task-irrelevant information [2], our method aims to preserve information
for multiple tasks while enhancing feature generalizability.

In the medical image analysis community, few approaches have focused on
disentangling internal factors of representations in discriminative tasks. Ben-
Cohen et al. [1] proposed a method to disentangle lesion type from image appear-
ance and use disentangled features to generate more training samples for data
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augmentation. Their work improves liver lesions classification. In contrast, our
work aims to utilize disentangled features for generalization of deep neural net-
works in medical image analysis.

2 Method

Our goal is to disentangle latent representations Z of the data X into distinct
feature sets (ZA, ZB) that separately contain relevant information for corre-
sponding different tasks (TA, TB). The main motivation of the proposed method
is to learn feature sets that are maximally informative about their correspond-
ing task (e.g. ZA → TA) but minimally representative for irrelevant tasks (e.g.
ZA → TB ). While our approach scales to any number of classification tasks, in
this work we focus on two tasks as a proof of concept. The proposed method con-
sists of two classification tasks (TA, TB) with an adversarial regularization. The
classification aims to map the encoded features to their relevant class identities,
and is trained to maximize I(ZA, YA) and I(ZB, YB). The adversarial regular-
ization penalizes the mutual information between the encoded features and their
irrelevant class identities, in other words, minimizes I(ZA, YB) and I(ZB, YA).
The training architecture of our method is shown in Fig. 2.

Fig. 2. Training framework for the proposed method. Res-Blk refers to residual-blocks.
Example 1/2 are two data set examples used in Sect. 3. The classifications enables
the encoded features ZA, ZB to be maximally informative about related tasks while
the adversarial regularization encourages these features to be less informative about
irrelevant tasks.

Classification is used to learn the encoded features that enable high pre-
diction performance for the class identity of the relevant task. Each of the
two classification networks is composed of an encoder and a classifier for a
defined task. Given data X = {xi | i ∈ [1, N ]}, the matching labels are
YA = {yi

A | yi
A ∈ {C1, C2, ..., CK}, i ∈ [1, N ]} for TA and YB = {yi

B | yi
B ∈
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{L1, L2, ..., LD}, i ∈ [1, N ]} for TB . N is the number of images and K,D are the
number of class identities in each task. Two independent encoders map X to ZA

and ZB with parameters θA and θB respectively, yielding ZA = EncA(X; θA)
and ZB = EncB(X; θB). Two classifiers are used to predict class identity for
the corresponding task, where ŶA = ClsA(ZA;φA) and ŶB = ClsB(ZB ;φB).
φA and φB are the parameters of the corresponding classifiers. We define the
cost functions LA and LB as the softmax cross-entropy between YA and ŶA and
between YB and ŶB respectively. The classification loss Lcls = LA + LB is min-
imized to train the two encoders and the two classifiers (min{θA,θB ,φA,φB} Lcls)
for obtaining ZA and ZB that are maximally related to their relevant task.

Adversarial regularization is used to force the encoded features to be min-
imally informative about irrelevant tasks, which results in disentanglement of
internal representations. The adversarial regularization is implemented by using
an adversarial network for each task as shown in Fig. 2. These adversarial net-
works are utilized to map the encoded features to class identity of the irrel-
evant task, yielding Ŷ adv

A = Clsadv
A (ZB ;ψA) and Ŷ adv

B = Clsadv
B (ZA;ψB).

Here, ψA and ψB are the parameters of the corresponding adversarial net-
works. By referring to Ladv

A and Ladv
B as the softmax cross-entropy between

YA and Ŷ adv
A and between YB and Ŷ adv

B , the adversarial loss is defined as
Ladv = Ladv

A + Ladv
B . During training, the adversarial networks are trained

to minimize Ladv while two encoders and two classifiers are trained to max-
imize Ladv (min{ψA,ψB} max{θA,θB ,φA,φB} Ladv). This competition between the
encoders/classifiers and the adversarial networks encourages the encoded fea-
tures to be invalid for irrelevant tasks.

By combining the two classifications with the adversarial regularization, the
whole model is optimized iteratively during training. The training objective for
optimizing the two encoders and the two classifiers can be written as

min{θA,θB ,φA,φB} {LA + LB − λ ∗ (Ladv
A + Ladv

B )}, λ > 0. (1)

Here, λ is the trade-off parameter of the adversarial regularization. The training
objective for the optimization of the adversarial networks thus follows as

min{ψA,ψB}{Ladv
A + Ladv

B }. (2)

Network Architectures: EncA(X; θA) and EncB(X; θB) both consist of six
residual-blocks implemented as proposed in [17] to reduce the training error
and to support easier network optimization. ClsA(ZA;φA) and ClsB(ZB ;φB)
both contain two dense layers with 256 hidden units. The adversarial networks
Clsadv

A (ZB ;ψA) and Clsadv
B (ZA;ψB) have the same architecture as ClsA(ZA;φA)

and ClsB(ZB ;φB) respectively.

Training: Our model is optimized for 400 epochs and λ is chosen heuristically
and independently for each data set using validation data. For more stable opti-
mization [8], in each iteration, we train the encoders and classifiers once, followed
by five training steps of the adversarial networks. Similar to [8], we use the Adam
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optimizer (beta = 0.9, learning rate = 10−5) to train the encoders and classifiers
based on Eq. 1, and use Stochastic Gradient Descent (SGD) with momentum
optimizer (momentum = 0.9, learning rate = 10−5) to update the parameters of
the adversarial networks in Eq. 2. We apply L2 regularization (scale = 10−5) to
all weights during training to prevent over-fitting. The batch size is 50 and the
images in each batch have been randomly flipped as data augmentation. Our
model is trained on a Nvidia Titan X GPU with 12 GB of memory.

3 Evaluation and Results

Evaluation on Synthetic Data: We use synthetic data as a proof of con-
cept example to verify our model. This data set contains a randomly located
gray circle or rectangle on a black or white background. We split the data into
1200/300/300 images for train/validation/test and these images consist of cir-
cles on white background, rectangles on black background and rectangles on
white background. To keep the balance between image properties in the train-
ing split, we use circle:rectangle = 1:1 and black:white = 7:5. In this case, TA is a
background color classification task and TB is the a shape classification task. We
implement our model as outlined in Sect. 2 and choose λ = 0.01. We evaluate our
model on the test data. The experimentation illustrates that the encoded fea-
tures successfully identify the class identities of the relevant task (e.g. ZA → TA :
OAacc = 100%, ZB → TB : OAacc = 99.67%) but fail to handle irrelevant task
(e.g. ZA → TB : OAacc = 62%, ZB → TA : OAacc = 59.67%). Here, OAacc

is the overall accuracy. To show the utility of the proposed method on images
with previously unseen entangled properties, we additionally compare the shape
classification performance of our model and a baseline (our model without the
adversarial regularization) on images with a previously unseen entangled prop-
erties (circles on black background). The proposed model achieves OAacc = 99%
and outperforms the baseline which achieves OAacc = 10%. We use PCA to
examine the learned embedding space at the penultimate dense layer of the
classifiers. The top row of Fig. 3 illustrates that the extracted features is able
to identify class identities for relevant tasks (see (a, c)) but unable to predict
correct class identities for irrelevant tasks (see (b, d).

Evaluation on Fetal US Data: We verify the applicability of our method
on fetal US data. Here, we refer to an anatomical standard plane classification
task as TA and an acoustic shadow artifacts classification task as TB . We want to
learn the corresponding disentangled features ZA for all anatomical information,
separated from ZB containing only information about shadow artifacts. YA is
the label for different anatomical standard planes while Y i

B = 0 and Y i
B = 1 are

the labels of the shadow-free class and the shadow-containing class respectively.

Data Set: The fetal US data set contains 8.4 k images sampled from 4120 2D
US fetal anomaly screening examinations with gestational ages between 18−22
weeks. These sequences consist of eight standard planes defined in the UK FASP
handbook [16], including three vessel view (3VV), left ventricular outflow tract
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Table 1. Data split. “Others” contains standard planes 4CH, femur, kidneys, lips and
RVOT. Test seen, LVOT(W S) and Artifacts (OTHS) are used for testing.

Train Validation Test seen LVOT(W S) Artifacts(OTHS)

3VV W/O S (W S) 180 (320) 50 (50) 334 (41) − (−) − (−)

LVOT W/O S (W S) 500 (−) 50 (−) 79 (−) − (418) − (−)

Abd W/O S (W S) 125 (375) 50 (50) 190 (220) − (−) − (−)

Others W/O S (W S) − (−) − (−) − (−) − (−) 3159 (2211)

(LVOT), abdominal (Abd.), four chamber view (4CH), femur, kidneys, lips and
right ventricular outflow tract (RVOT), and are classified by expert observers
as shadow-containing (W S) or shadow-free (W/O S) (Fig. 1). We split the data
as shown in Table 1. Train, Validation and Test seen are separate data sets.
Test seen contains the same entangled properties (but different images) as used
for the training data set, while LVOT (W S) and Artifacts (OTHS) contain new
combinations of entangled properties.

Evaluation Approach: We refer to Std plane only as the networks for stan-
dard plane classification only (consists of EncA and ClsA), and Artifacts only
as the networks for shadow artifacts classification only (consists of EncB and
ClsB). Proposedw/o adv refers to the proposed method without the adversarial
regularization and Proposed is our method in Fig. 2.

The proposed method is implemented as outlined in Sect. 2 choosing λ = 0.1.
ClsA(ZA;φA) contains three dense layers with 256/256/3 hidden units while
ClsB(ZB ;φB) contains two dense layers with 256/2 hidden units. We choose
a bigger network capacity for ClsA(ZA;φA) by assuming that anatomies have
more complex structures than shadows to be learned.

Table 2 shows that our method improves the performance of standard plane
classification by 16.08% and 13.19% on Test seen when compared with the Std
plane only and the Proposedw/o adv method (see OAacc in Col. 5). It achieves
minimal improvement (Artifacts only : +0.35% and Proposedw/o adv: +0.31%
classification accuracy) for shadow artifacts classification (see OAacc in Col. 8).
We also demonstrate the utility of the proposed method on images with pre-
viously unseen entangled properties. Table 2 shows that the proposed method
achieves 73.68% accuracy of standard plane classification on LVOT (W S) (∼36%
higher than other comparison methods) while it performs similar to other meth-
ods on Artifacts (OTHS) for shadow artifacts classification.

We evaluate the performance of disentanglement by using the encoded fea-
tures for the irrelevant task on Test seen, e.g. ZA → TB and ZB → TA. Here,
ZA and ZB are encoded features of the proposed method. Proposedirr task in
Table 2 indicates that ZB contains much less anatomical information for stan-
dard plane classification (OAacc = 94.44% in proposed vs. OAacc = 64.35% in
Proposedirr task), while ZA contains less shadow features information (OAacc =
79.05% in proposed vs. OAacc = 72.57% in Proposedirr task). We additionally
use PCA to show the embedded test data on the penultimate dense layer. The
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Table 2. The classification accuracy (%) of different methods for the standard clas-
sification (TA) and shadow artifacts classification (TB) on Test seen data set and
data sets with unseen entangled properties (LVOT(W S) and Artifacts(OTHS)). “Pro-
posed” uses encoded features for relevant tasks, namely, ZA → TA and ZB → TB .
“Proposedirr task” uses encoded features for irrelevant tasks, namely, ZA → TB and
ZB → TA. OAacc is the overall accuracy.

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6 Col. 7 Col. 8 Col. 9 Col. 10

Methods Test seen LVOT

(W S)

Artifacts

(OTHS)3VV LVOT Abd. OAacc W/O S W S OAacc

Std plane only 60.80 96.59 67.09 78.36 − − − 34.93 −
Artifacts only − − − − 77.94 80.46 78.70 − 69.26

Proposedw/o adv 63.73 97.80 78.48 81.25 78.77 77.78 78.74 37.56 69.50

Proposed 93.87 97.56 81.01 94.44 87.89 58.62 79.05 73.68 68.49

Proposedirr task 39.20 83.90 82.28 64.35 68.49 81.99 72.57 − −

(a) ZA → TA (b) ZB → TA (c) ZB → TB (d) ZA → TB

Fig. 3. Visualization of the embedded data on the penultimate dense layer. The top
row shows embedded synthetic test data while the bottom row shows embedded fetal
US Test seen data. (a, c) are the results of using encoded features for relevant tasks,
e.g. ZA for TA and ZB for TB ; separated clusters are desirable here. (b, d) are the
results of using encoded features for irrelevant tasks, namely, ZA for TB and ZB for
TA; mixed clusters are desirable in this case.

bottom row in Fig. 3 shows that encoded features are more capable of classifying
class identities in the relevant task than the irrelevant task (e.g. (a) vs. (d)).

Discussion: Acoustic shadows are caused by anatomies which block the prop-
agation of sound waves or by destructive interference. With this dependency
between anatomy and artifacts, separating shadow features from anatomical
features may lead to decreased performance of artifacts classification (Table 2,
Col. 7, Proposed). However, this separation enables feature generalization
so that the model is less limited to certain image formation and able to
tackle new combinations of entangled properties (Table 2, Col. 9, Proposed).
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Generalization of supervised neural networks can also be achieved by extensive
data collection across domains and in a limited way by artificial data augmen-
tation. Here, we propose an alternative through feature disentanglement, which
requires less data collection and training effort. Figure 3 shows PCA plots for the
penultimate dense layer. Observing entanglement in earlier layers reveals that
disentanglement occurs in this very last layer. This is due to the definition of our
loss functions and is partly influenced by the dense layers interpreting the latent
representation for classification. Finally, perfect representation disentanglement
is likely infeasible because image features are rarely totally isolated in reality. In
this paper we have shown that even imperfect disentanglement is able to provide
great benefits for artifact-prone image classification in medical image analysis.

4 Conclusion

In this paper, we propose a novel disentanglement method to extract generaliz-
able features within a multi-task framework. In the proposed method, classifica-
tion tasks lead to encoded features that are maximally informative with respect
to these tasks while the adversarial regularization forces these features to be
minimally informative about irrelevant tasks, which disentangles internal repre-
sentations. Experimental results on synthetic and fetal US data show that our
method outperforms baseline methods for multiple tasks, especially on images
with entangled properties that are unseen during training. Future work will
explore the extension of this framework to multiple tasks beyond classification.

Acknowledgments. We thank the Wellcome Trust IEH Award [102431], Nvidia
(GPU donations) and Intel.
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Abstract. We present an adversarial learning algorithm for deep-learning-
based deformable image registration (DIR) and apply to 3D liver ultrasound
image fusion. We consider DIR as a parametric optimization model that aims to
find displacement field of deformation. We propose an adversarial learning
framework inspired by generative adversarial network (GAN) to predict the
displacement field without ground-truth spatial transformation. We use convo-
lutional neural network (CNN) and a spatial transform layer as registration
network to generate the registered image. Similarity metrics of image intensity
and vessel masks are used as loss function for the training. We also optimize a
discrimination network to measure the divergence between the registered image
and the fixed image. Feedback from the discrimination network can guide the
registration network for more accurate and realistic deformation. Moreover, we
incorporate an autoencoder network to extract anatomical features from vessel
masks as shape regularization. Our approach is end-to-end, only requires image
pair as input in registration tasks. Experiments show that the proposed method
outperforms state-of-the-art deep-learning-based methods.

Keywords: GAN � Deformable image registration � Deep learning

1 Introduction

Radiofrequency ablation (RFA) a low invasive therapy for liver cancer. In RFA,
doctors often use ultrasound image fusion during or after the operation to assess the
treatment effect. Deformable image registration (DIR) is significant technology for
image fusion since it can deal with tissue deformation and body movement. In DIR, a
dense, non-linear correspondence is estimated between a pair of 2D or 3D images.
Most registration methods [1–5] solve an optimization problem that aligns voxels with
similar appearance. However, it requires calculation of image similarity in every
optimizing iteration. Therefore, it is computationally intensive and extremely slow in
practice.

Several recent works proposed machine-learning-based methods to learn a trans-
formation function to replace the iterative optimization in deformable registration. Most
of these [6–9] rely on ground-truth or synthesized displacement fields which are dif-
ficult to be obtained in medical imaging applications. Recent works in [10, 11, 17, 18]
presented weakly supervised or unsupervised methods based on a convolutional neural
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network (CNN) and a spatial transformation network (STN) [12]. For better registration
accuracy and robustness, generative adversarial network (GAN) [13, 14] was adopted
in [19–21]. However, the work in [20] requires initial registration ground-truth, and the
methods in [19, 21] only work on training data of 3D ROIs or 2D synthesized slices.

In this work, we propose a framework of adversarial learning for deformable image
registration (AL-DIR). The AL-DIR model can run deformable registration in one pass
and can be trained without ground-truth spatial transformation. AL-DIR consists of
three networks: a CNN-based registration network (generator) using similarity metrics
of image intensity and vessel masks as loss function; a discrimination network (dis-
criminator) that distinguishes between the registered image and the fixed image; an
autoencoder for measuring the anatomical shape difference before and after an iteration
of registration. Main contributions of this work are as follow:

• We propose an end-to-end registration network to predict 3D displacement field of
DIR without ground-truth spatial transformation. The single-pass prediction lever-
ages information of image intensity and anatomical shape features (such as vessels
and organs) and only requires image pair as input.

• We present an adversarial learning framework to train the registration network. The
discrimination network can guide the registration for more accurate and realistic
deformation. Unlike most of GAN-based supervised methods, our approach only
requires vessel masks for training, so it is in weakly supervised manner.

• We incorporate the encoder part of an autoencoder to extract anatomical shape
difference for better convergence of deformation.

2 Methodology

Image registration aims to find a spatial transformation between a moving image M xð Þ,
and a fixed image F xð Þ. Here, x refers to coordination of image pixels. Image regis-
tration can be considered as an optimization problem for minimizing a cost function:

C(lÞ¼ � S(F xð Þ;M g x; lð Þð ÞÞþ kCr lð Þ; ð1Þ

where g is transformation function; l is displacement field; S is similarity measure
between F xð Þ and M g x; lð Þð Þ; Cr is a regularization term for smooth deformation; k is
a weighting factor.

In this work, we present an adversarial learning framework to predict the dis-
placement field. As shown in Fig. 1, the proposed framework consists of three net-
works: a registration network, a discrimination network and an autoencoder network.
After training, the registration network only requires image pair as input, as shown in
Fig. 2.
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2.1 Registration Network

In registration network, we adopt a CNN architecture that is similar to U-Net [15]. In
training, a pair of training images to align, F xð Þ and M xð Þ, are concatenated and input
to the CNN. Displacement of each voxel in M xð Þ, i.e. the displacement field l, is
output as prediction. Since it is difficult to obtain the ground-truth of l, we use sim-
ilarity metrics of image intensity and vessel region as loss function of the registration
network: image similarity metric that penalizes appearance difference between F xð Þ
and M gðx; lð ÞÞ, and anatomical region (vessel region in our work) correspondence that
guarantees deformation accuracy on important tissues and areas. We adopt local cross-
correlation (CC) of F xð Þ and M gðx; lð ÞÞ as image similarity metric:

CC(F xð Þ;M g x; lð Þð ÞÞ¼
X

x

P
y2N xð Þ F̂ yð ÞM̂ g y; lð Þð Þ

� �2

P
y2N xð Þ F̂ yð Þ2

� � P
y2N xð Þ M̂ g y; lð Þð Þ2

� �
þ �

2
64

3
75; ð2Þ

where F̂ yð Þ and M̂ gðy; lð ÞÞ denote images with local mean intensities subtracted out.
The local mean is calculated over a N xð Þ local volume around each voxel y. � is a small
constant to avoid numerical issues. Size of the local volume N xð Þ is set as 11� 11�
11 experimentally.
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We also calculate the similarity of anatomical region correspondence to guarantee
accuracy on clinically important regions. In this work, we measure l1 distance between
liver vessel masks F xð Þm and M gðx; lð ÞÞm. We also adopt gradient of displacement
field as the regularization term Cr lð Þ. Therefore, the training of the registration network
requires correspond vessel regions and is in weakly supervised manner. The registra-
tion network loss is calculated as follows:

Lreg ¼ �CC(F xð Þ;M g x; lð Þð Þ)þ km F xð Þm�M(gðx; l)Þm
�� ��

l1 þ krCr lð Þ: ð3Þ

The network consists of an encoder-decoder with skip connections that is
responsible for estimating l given F xð Þ and M xð Þ. Figure 3 shows the network
architecture. The input of the network is formed by concatenating the F xð Þ and M xð Þ
into a two-channel 3D image of size N1 � N2 � N3 � 2. We apply 3D convolution
layers followed by layers of ReLU activation, batch normalization and dropout. The
convolution kernel size is fixed to 3� 3� 3. The network output l is of size of
N1 � N2 � N3 � 3. The last 3 channels of the output represent voxel displacement of a
coordination x in M xð Þ.

2.2 Discrimination Network

On the purpose of better guidance for the training of registration network, we propose a
discrimination network and train it simultaneously with the registration network. As
shown in Fig. 1, the discrimination network also has a two-channel 3D image as input.
The first channel is the fixed image F xð Þ in both of the real case and the fake case. The
second channel is the vessel segmented region F xð Þves¼ F xð Þ � F xð Þm in the “real” case
and the corresponding region of the deformed image M gðx; lð ÞÞves ¼ M gðx; lð ÞÞ �
M gðx; lð ÞÞm in the “fake” case. The loss of discrimination network is defined as a
binary cross-entropy metric as follows:

Ladv ¼ E � log D F xð Þ;F xð Þves
� �� �� �þE �log 1� D F xð Þ;M gðx; lð ÞÞves

� �� �� �
: ð4Þ

The discrimination network is optimized by maximizing the perfect registration (by
minimizing � log D F xð Þ;F xð Þves

� �� �
) and by minimizing the registration without high

accuracy (by minimizing �log 1� D F xð Þ;M gðx; lð ÞÞves
� �� �

). In this way, the training
of the discrimination network does not require any ground-truth of spatial transfor-
mation, which makes our approach be easier to be utilized in practical medical imaging
applications.

The architecture of the discrimination network is shown in Fig. 4(a). In order to
achieve faster and better training convergence, the first half of discrimination network
adopts the same configuration of the encoder part (without skip connections) of the
registration network and shares the network weights during training. The resting part of
the discrimination network consists of 3D convolution layers and fully connected
layers. The convolution kernel size is fixed to 3 � 3 � 3. The output is the classifi-
cation result of “real” or “fake”. The loss Ladv is not only used to fit the discrimination
network but also used to feedback to the registration network.
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2.3 Autoencoder of Anatomical Shape

Deformation of image fusion tasks is required to be smooth and realistic, especially on
important tissues and regions for medical imaging applications. We incorporate a loss
term by training an autoencoder network on liver vessel masks of fixed images F xð Þm.
The encoder part reduces the vessel mask to low resolution features Enc F xð Þm

� �
in

non-liner manner [16], and the decoder part generates the original vessel mask F xð Þm
from Enc F xð Þm

� �
. In this work, the autoencoder network is pre-trained, and the

encoder part is leveraged to extract anatomical shape features of F xð Þm and
M gðx; lð ÞÞm in each iteration of registration training. The architecture of the autoen-
coder network is shown in Fig. 4(b). The loss retrieved from the encoder network is
defined as the l2 distance between features of F xð Þm and M gðx; lð ÞÞm:

Lenc ¼ Enc F xð Þm
� �� Enc M gðx; lð ÞÞm

� ��� ��
l2: ð5Þ

2.4 Adversarial Learning

In this work, the networks of registration, discrimination and the pre-trained encoder
are combined to an adversarial learning framework. The registration network and
discrimination network are trained simultaneously. The loss in the combined training
procedure of the proposed AL-DIR is defined as follows:

LAL�DIR ¼ Lreg þ kadv � Ladv þ kenc � Lenc; ð6Þ

where kadv ¼ 1:0 and kenc ¼ 0:25 are set experimentally. By minimizing LAL�DIR,
accurate, smooth and realistic deformation of M xð Þ can be obtained.

Conv + BatchNorm + ReLU + Dropout Copy & Crop
Max pool Up sampling Conv

32 32 64 64 128 64 64 32 32 3

Fig. 3. Architecture of registration network.
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Fig. 4. Architectures of discrimination network and autoencoder network.
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3 Experiments and Results

3.1 Materials and Training/Evaluation Details

We use clinical image data acquired in liver RFA surgery to evaluate the proposed
method. In total, 510 image pairs from 98 patients are used, and 3-fold cross-validation
is performed in the experiments. All images are resampled to size of 128� 112� 96
with resolution of 1:0� 1:0� 1:0 mm3. Corresponding masks of liver vessels are
annotated for training. The study was approved by the ethics committee of Hitachi
group headquarters.

The proposed method is implemented in Keras with TensorflowTM backend. All the
experiments are run on an 11 GB NVIDIA GTXTM 1080 Ti GPU. In the training stage,
we use an Adam optimizer with a learning rate of 10�4. We set batch size as 1 for
reducing GPU memory usage. First, we train the autoencoder network with the vessel
masks of fixed images for 20,000 iterations. Then we train the registration network and
discrimination network with the resulted encoder for 40,000 iterations.

As pre-registration, a rigid registration is firstly performed on each image pair by
using the vessel masks in the evaluation experiment. After that, the proposed AL-DIR
model is trained, and evaluation of deformable registration is run. Distance between
corresponding landmarks of portal vein branches on F xð Þ and M gðx; lð ÞÞ are used to
measure the registration error. Moreover, Dice coefficient between vessel regions on
the fixed images and the deformed images are calculated:

Dice ¼ 2 F xð Þm \M gðx; lð ÞÞm
� �

F xð Þm [M gðx; lð ÞÞm
� � : ð7Þ

We compare the proposed AL-DIR with two deep-learning-based methods:
VoxelMorph-2 [17] and LabelReg [18]. We apply the same pre-registration results to
both models and follow the implementation details and training parameters in [17, 18].
VoxelMorph is trained on image pairs without vessel masks, and LabelReg is trained
by using both image pairs and vessel masks.

In order to evaluate the effect of the proposed discrimination network and
autoencoder network, we also evaluate the following combinations of registration
networks: (1) registration network only (referred as “Reg”), (2) registration network
with discrimination network (referred as “Reg + GAN”) and (3) registration network
with autoencoder network (referred as “Reg + Enc”).

3.2 Evaluation Results

Target registration errors (TREs) on portal vein branches and Dice coefficients of vessel
regions are measured and listed in Table 1. As mentioned before, all the evaluated
methods start deformable registration after the rigid registration (TRE = 10.6 mm,
Dice = 0.33). We can see that VoxelMorph is able to achieve relatively good accuracy
of TREs but is gives the worst performance of vessel region Dice, because it only uses
information of image intensity to train the registration model. On the other hand,
LabelReg achieves good performance of vessel region Dice since it is trained based on
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the loss of vessel region Dice directly. However, the loss of LabelReg does not adopt
any image similarity metrics, so it gives a worse TRE than VoxelMorph. Compared to
this methods, the registration network (Reg) in this work utilizes similarity metrics of
both image and vessel masks, so better performance of both TRE and Dice can be
achieved. Moreover, the discrimination network and autoencoder network contribute
on better training guidance for the registration networks. As a result, the combination of
the three networks, i.e., the proposed AL-DIR, gives the best performance of both TRE
and Dice. The running time of AL-DIR is 0.3 s on the GPU.

Some examples of registration results of AL-DIR are shown in Fig. 5. The regis-
tration is run on 3D images, and 2D axial slices are given here. Vessel masks before
and after registration are highlighted by circles. We can see that AL-DIR can handle
large changes in shapes and provide accurate deformation on important anatomical
regions (liver vessels in this work) defined by user.

Table 1. Evaluation results.

Methods TRE Dice

Before registration 26.5 mm 0.18
Rigid registration 10.6 mm 0.33
VoxelMorph-2 [17] 5.1 mm 0.48
LabelReg [18] 5.3 mm 0.56
Reg 4.7 mm 0.61
Reg + GAN 4.4 mm 0.63
Reg + Enc 4.5 mm 0.64
AL-DIR 4.2 mm 0.66

Fixed image

Initially aligned
moving image

Deformed
moving image

Fig. 5. Examples of deformable registration results.
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4 Conclusion

We propose an adversarial learning framework for deep-learning-based deformable
image registration. The end-to-end registration network can be trained to predict dis-
placement field of deformable registration without ground-truth spatial transformation.
The single-pass prediction leverages information of image intensity and anatomical
shape features and only requires image pair as input. The discrimination network can
guide the registration for more accurate and realistic deformation. Moreover, the
autoencoder network can extract anatomical shape difference for better convergence.
We apply our method to image fusion of 3D liver ultrasound images, and experimental
results show that our method achieve better performance than the state-of-the-art deep-
learning-based methods.
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Abstract. Achilles tendon rupture is a debilitating injury, which is typi-
cally treated with surgical repair and long-term rehabilitation. The recov-
ery, however, is protracted and often incomplete. Diagnosis, as well as
healing progress assessment, are largely based on ultrasound and mag-
netic resonance imaging. In this paper, we propose an automatic method
based on deep learning for analysis of Achilles tendon condition and esti-
mation of its healing progress on ultrasound images. We develop custom
convolutional neural networks for classification and regression on heal-
ing score and feature extraction. Our models are trained and validated
on an acquired dataset of over 250.000 sagittal and over 450.000 axial
ultrasound slices. The obtained estimates show high correlation with
the assessment of expert radiologists, with respect to all key parame-
ters describing healing progress. We also observe that parameters associ-
ated with i.a. intratendinous healing processes are better modeled with
sagittal slices. We prove that ultrasound imaging is quantitatively useful
for clinical assessment of Achilles tendon healing process and should be
viewed as complementary to magnetic resonance imaging.

Keywords: Achilles tendon rupture · Deep learning · Ultrasound

1 Introduction

The Achilles tendon is the largest and strongest tendon in the human body. How-
ever, it is one of the most frequently injured tendons, especially among middle-
aged people who participate in recreational sports. The incidence of Achilles
tendon ruptures has been increasing over the last years [1]. Usually, the diagno-
sis of an acute rupture is based on detailed musculoskeletal examinations and
c© Springer Nature Switzerland AG 2019
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comprehensive medical history. Ultrasonography (US) and Magnetic Resonance
Imaging (MRI) are routinely used for confirming the clinical diagnosis.

The surgical treatment of acute Achilles tendon rupture has been shown to
reduce the risk of re-rupture, but it might also lead to a higher complication
rate [1]. Furthermore, recent studies show that early functional rehabilitation
could also stimulate tendon healing. For the above reasons, regular evaluation of
the early tendon healing process is needed to establish patient prognosis and plan
further treatment. The US findings correlate with several healing parameters,
including cross-sectional area, tendon length or intratendinous morphology and
are considered a safe and convenient method of assessing the healing progress [2].
However, some studies have found only a moderate correlation of US findings
with clinical assessment of Achilles tendinopathy and clinical outcomes [3].

Quantitative methods based on deep learning are well-suited for modelling
the complex relationships between medical images and their interpretation.
Recently, approaches using convolutional neural networks (CNNs) have outper-
formed traditional image analysis methods and proved their usefulness in the
analysis of the Achilles tendon MRI scans [4].

In this study, we present a method for the automatic evaluation of the heal-
ing process of reconstructed Achilles tendon based on CNNs. We extend the
approach proposed in [4] to US images in the axial and the sagittal plane and
develop a novel method for healing phase estimation. To our knowledge, there
are no other approaches in the literature to quantitatively asses the process of
tendon healing through automated analyses of MRI and US imaging. Within
this paper we also show that the method applied to MRI cannot by directly
transferred to US data, which might result from problematic interpretation of
the US images.

More precisely, we first train and evaluate neural networks for the task of
binary classification of a single ultrasound slice as healthy or injured. We then
present our approaches to modelling the healing progress with respect to 6 key
healing parameters. We analyse the applicability of the method using outputs of
a pre-trained network with a linear classifier on the PCA-reduced space of the
features to assess the progress with the US data. We find that this method fails
to learn the accurate representation of the healing phase, therefore we propose
an end-to-end CNN performing regression on healing parameters as a new, alter-
native approach. We further discuss the meaningfulness of the results for US and
compare them with MRI results, to finally determine the clinical usefulness of
used modalities and applicability of automatic methods for healing assessment.

2 Methods

In this section we describe our method based on the Convolutional Neural Net-
works. CNNs are discriminative deep architectures, able to extract high-level
spatial and configuration information from an image, thus making them suitable
for classification of 2D US imaging.

We use models with weights pretrained on ImageNet and train them to explic-
itly model radiologist assessments. To this end, we modify the architecture of the



Monitoring Achilles Tendon Healing Progress in Ultrasound Imaging 67

top dense layer of the CNN in such a way that the output layer performs linear
regression on the high-level features from the penultimate layer. For initial tests
we use three models of various complexity to eventually select Inception-v3 [5]
architecture as a base for our final solution. These experiments are described as
the supervised approach. We then exploit the latent representation and reduce
the dimensionality, which makes it possible to obtain a single-number summary
of the tendon condition on one US examination. We refer to it as semi-supervised
approach. In general, our approach leverages the ability of neural networks to
approximate non-linear mappings directly and implicitly accounts for the inter-
mediate feature representations. It maps the images to the tendon healing scores
for the different protocols and clinical parameters. We train separate models for
both US planes and for all of the ground-truth parameters described in the next
subsection.

Fig. 1. Achilles healing process for a chosen patient on US imaging. On the sagittal
images one can observe the gradual recovery of the fibrillary pattern of tendon fibres
with hyperechoic bands. In the axial plane the typical change is the widening of the
Achilles tendon and the loss of the hypoechoic fluid collection surrounding the tendon.
The images also exemplify certain artifacts typical for ultrasound, including reverber-
ation, refraction and acoustic shadowing.

2.1 Healing Progress Scoring

Our ground-truth is a survey that has been devised by expert radiologists, in
order to quantitatively characterize their subjective assessment of Achilles ten-
don healing progress based on MRI and US. The survey evaluates the anatomy,
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Table 1. Five-fold cross-validation results for the balanced dataset of 2D US scans.

Architecture Sagittal Axial

Accuracy Precision Recall Accuracy Precision Recall

AlexNet 0.846 ± 00.087 0.92 ± 00.08 0.78 ± 00.11 0.843 ± 00.075 0.93 ± 00.06 0.73 ± 00.11

Inception-v3 0.916 ± 00.049 0.97 ± 00.04 0.90 ± 00.06 0.901 ± 00.052 0.95 ± 00.3 0.87 ± 00.07

ResNet50 0.907 ± 00.039 0.96 ± 00.05 0.89 ± 00.08 0.912 ± 00.046 0.95 ± 00.04 0.88 ± 00.06

metabolic activity and general functionality of the tendon. The following 6
parameters describing the tendon healing process were proposed [4]:

1. Structural changes within the tendon (SCT)
2. Tendon thickening (TT)
3. Sharpness of the tendon edges (STE)
4. Tendon edema (TE)
5. Tendon uniformity (TU)
6. Tissue edema (TisE)

Each parameter is evaluated on a 7-point scale, where 1 corresponds to healthy
and 7 to severely injured tendon. We use the scores as ground-truth labels in
the training process. Our image dataset is presented in the next subsection.

2.2 Dataset

The original ultrasound dataset includes 49 patients with acute Achilles ten-
don rupture, all of whom underwent repair surgery and were closely monitored
thereafter. The age of patients ranged from 18 to 50 years with a mean age of
36 years. The ultrasound examination was performed at 10 respective intervals:
preoperatively, 1 week, 3, 6, 9, 12 weeks after, 4.5, 6, 9 and 12 months after the
reconstruction. Additionally, 18 healthy volunteers have been scanned once. For
all the examinations a GE 3D high-resolution Voluson E8 Expert ultrasound
machine has been used with linear probes 5–18 MHz. The total dataset con-
sists of 565 3D US exams but in this work, we focus on 2D scans only. Clin-
ically, sagittal and axial scanning planes are used interchangeably by rotating
the transducer, so we conduct the experiments separately for both. Consider-
ing the 2D slices, the final dataset includes 253,639 sagittal scans, 245,366 from
patients with ruptured tendon and 8,273 from healthy patients. Alternatively, it
consists of 467,548 axial scans, 450,816 injured and 16,732 healthy. The healing
progression for an exemplary patient is shown in Fig. 1.

Though a detailed analysis can be done only by a trained medical profes-
sional, one can observe that the filamentous structures are more visible on the
sagittal cross-sections while axial slices present in more details the tissue sur-
rounding, edema and internal tendon pattern.
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3 Experiments

3.1 Binary Classification

We train three network architectures: AlexNet [6], Inception-v3 and ResNet50 [7]
independently on sagittal and axial slices for the task of binary classification of
the tendon on a 2D US scan as healthy or injured. The injured class is represented
by all the exams of ruptured Achilles tendon performed preoperatively or 1 week
after surgery. In order to balance the two classes we use mirroring on the healthy
slices and we subsample injured patients for every training epoch.

The accuracy is assessed in 5-fold cross-validation (Table 1). ROC and
Precision-Recall Curves of the best performing model in terms of highest accu-
racy (Inception-v3 on sagittal slices) are presented in Fig. 2. For both Inception-
v3 and ResNet50 we obtained an accuracy of over 90% on both sagittal and axial
scans, which proves that a CNN can be successfully trained on ultrasound data
to differentiate between healthy and injured state.

Fig. 2. ROC and Precision-Recall curves for the Inception-v3 on sagittal US images.

We also experiment with the region of interest (ROI) segmentation as a pre-
processing step for sagittal scans, applying Active Contours Without Edges [8],
which is widely used in the medical field. We hypothesize that focusing exclu-
sively on the tendon region might reduce the noise and artifacts inherently
present in US imaging. However, the experiments show lower accuracy with
ROI segmentation cropping as compared to non-cropped images, which suggests
that the tissues surrounding the Achilles tendon contribute relevant information
to the classification.

3.2 Healing Progress Estimation

Semi-supervised Approach. The neural networks trained for binary classi-
fication are used as feature extractors for the task of computing the healing
progress score. Principal Component Analysis (PCA) is applied on the feature
space to reduce its dimensionality and the first principal component is consid-
ered as a representative score for the 2D US scan. For every examination, the
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Table 2. 5CV results for the tendon healing progress using end-to-end approach

Network Sagittal

SCT TT STE TE TU TisE

AlexNet MAE 0.96 ± 0.41 0.80 ± 0.27 0.82 ± 0.29 0.95 ± 0.41 0.87 ± 0.39 1.08 ± 0.47

MAX-AE 1.75 1.32 1.87 1.35 1.61 2.03

Corr 0.53 ± 0.47 0.69 ± 0.38 0.11 ± 0.32 0.68 ± 0.44 0.31 ± 0.51 0.22 ± 0.53

Inception-v3 MAE 0.88 ± 0.35 0.67 ± 0.23 0.80 ± 0.31 0.82 ± 0.23 0.84 ± 0.32 0.93 ± 0.29

MAX-AE 1.69 1.32 1.69 1.31 1.58 1.64

Corr 0.83 ± 0.44 0.71 ± 0.40 0.19 ± 0.34 0.64 ± 0.47 0.56 ± 0.40 0.71 ± 0.40

ResNet50 MAE 0.89 ± 0.12 0.74 ± 0.15 0.83 ± 0.22 0.81 ± 0.31 0.92 ± 0.31 0.99 ± 0.32

MAX-AE 1.53 1.22 1.64 1.43 1.67 1.71

Corr 0.62 ± 0.31 0.38 ± 0.51 0.23 ± 0.41 0.62 ± 0.51 0.12 ± 0.43 0.43 ± 0.50

Axial

SCT TT STE TE TU TisE

AlexNet MAE 0.98 ± 0.39 0.83 ± 0.33 0.82 ± 0.35 0.94 ± 0.52 0.95 ± 0.50 0.86 ± 0.28

MAX-AE 1.79 1.36 1.86 1.41 1.61 1.59

Corr 0.45 ± 0.33 0.62 ± 0.39 0.20 ± 0.45 0.60 ± 0.47 0.03 ± 0.42 0.59 ± 0.40

Inception-v3 MAE 1.03 ± 0.46 0.70 ± 0.24 0.76 ± 0.26 0.86 ± 0.19 0.87 ± 0.32 0.85 ± 0.25

MAX-AE 2.52 1.45 1.45 1.24 1.67 1.56

Corr 0.77 ± 0.47 0.69 ± 0.40 0.22 ± 0.37 0.65 ± 0.41 0.55 ± 0.44 0.72 ± 0.41

ResNet50 MAE 1.05 ± 0.31 0.78 ± 0.33 0.80 ± 0.24 1.02 ± 0.25 0.87 ± 0.15 0.91 ± 0.28

MAX-AE 1.98 1.51 1.59 1.63 1.45 1.57

Corr 0.52 ± 0.41 0.47 ± 0.44 0.22 ± 0.35 0.65 ± 0.55 0.18 ± 0.54 0.57 ± 0.39

aggregate score is calculated as a truncated mean of all 2D scan scores within a
single study.

Although this method was proven to work for MRI scans [4], for ultrasound
we observed a very weak correlation with actual healing parameters, which
should be attributed to lower variance preserved by the first principal com-
ponents and higher variance between scans from one examination. Therefore we
do not present the results here. We believe that speckle noise, a random granu-
lar pattern produced mainly by multiplicative disturbances, as well as frequent
artifacts are the main reasons for the weak performance of the tested method.

Supervised Approach. Healing scores are evaluated in 5-fold cross-validation
using mean absolute error (MAE), maximal absolute error for a single
exam (MAX-AE) and mean correlation, computed with the use of Fisher
Z-Transformation (Table 2).

We observe a good correspondence between the estimated healing scores and
the experts’ assessment, with MAE ranging from 0.67 to 1.08, on a 7 point scale.
For all the networks we notice a positive mean correlation of our method’s output
and healing parameters. Although the results are consistent between different
networks, Inception-v3 usually achieves the best fit and the simplest network
architecture, AlexNet, performs noticeably worse. Two healing parameters, SCT
and TT are more accurately estimated on sagittal rather than axial US images
and one parameter, TisE, vice versa.
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The final evaluation of the regression task has been done on a separate test
set, consisting of 4 injured patients who underwent a full rehabilitation process,
i.e. 40 studies in total (Table 3). For the best performing Inception-v3, we report
MAE ranging from 0.53 to 0.87 and correlations in the range of 0.31 to 0.80. The
resulting healing progress for a selected parameter is compared with radiologist
evaluation in Fig. 3. In general, axial and sagittal models give similar results,
which tend to correlate well with ground-truth labels.

4 Discussion

We show that a neural network learns to extract features from the US images
which strongly correlate with the healing progress score assigned by expert radi-
ologists. Out of the three healing parameters: tendon uniformity (TU), structural
changes (SCT) and tendon thickening (TT), which correspond to morphological
changes within the Achilles tendon and are typically evaluated in the longitudi-
nal axis, SCT and TT are better modeled by the sagittal ultrasound, while TU
still retains MAE of <1 point. On the other hand, sharpness of the tendon edges
(STE), tendon edema (TE) and tissue edema (TisE) are typically evaluated on
axial slices and for STE and TisE, all our networks achieve lower MAE and
higher mean correlation when trained in the axial plane.

In comparison with the results from [4], we notice that a convolutional neural
network is able to achieve a better accuracy of binary classification on MRI
data rather than US data (99.83% vs. 91.6% for the best respective models).
Furthermore, a high correlation of automated method output with the ground
truth in terms of three parameters: TE, TisE and STE has been reported for
MRI scans. MR-acquired stacks of axial images of the Achilles tendon have a
major limitation in the form of lower spatial resolution along the longitudinal

Table 3. Results for the tendon healing progress using end-to-end approach on the
test dataset

Network Sagittal

SCT TT STE TE TU TisE

AlexNet MAE 0.90 ± 0.31 0.63 ± 0.12 0.69 ± 0.31 0.81 ± 0.11 0.89 ± 0.20 1.01 ± 0.35

Corr 0.55 ± 0.15 0.70 ± 0.24 0.22 ± 0.49 0.61 ± 0.28 0.12 ± 0.43 0.28 ± 0.27

Inception-v3 MAE 0.81 ± 0.38 0.63 ± 0.06 0.56 ± 0.18 0.85 ± 0.20 0.54 ± 0.04 0.87 ± 0.29

Corr 0.80 ± 0.39 0.77 ± 0.28 0.31 ± 0.33 0.52 ± 0.36 0.69 ± 0.34 0.62 ± 0.52

ResNet50 MAE 0.88 ± 0.33 0.65 ± 0.15 0.66 ± 0.09 0.83 ± 0.25 0.75 ± 0.12 0.93 ± 0.22

Corr 0.60 ± 0.32 0.55 ± 0.38 0.25 ± 0.27 0.55 ± 0.41 0.34 ± 0.29 0.56 ± 0.38

Axial

SCT TT STE TE TU TisE

AlexNet MAE 1.12 ± 0.36 0.81 ± 0.29 0.58 ± 0.12 0.87 ± 0.19 0.70 ± 0.24 0.85 ± 0.25

Corr 0.46 ± 0.50 0.54 ± 0.32 0.26 ± 0.41 0.38 ± 0.38 0.12 ± 0.34 0.70 ± 0.31

Inception-v3 MAE 0.84 ± 0.54 0.75 ± 1.45 0.58 ± 0.10 0.83 ± 0.10 0.53 ± 0.16 0.83 ± 0.30

Corr 0.69 ± 0.49 0.68 ± 0.41 0.45 ± 0.15 0.51 ± 0.42 0.66 ± 0.16 0.68 ± 0.39

ResNet50 MAE 0.92 ± 0.37 0.76 ± 0.32 0.68 ± 0.08 0.81 ± 0.17 0.65 ± 0.20 0.94 ± 0.11

Corr 0.55 ± 0.41 0.57 ± 0.38 0.35 ± 0.31 0.44 ± 0.39 0.39 ± 0.35 0.61 ± 0.33
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axis, which is determined by the slice selection pulse. Because of this spatial
anisotropy, they are not suitable for assessing healing parameters, which rely on
the intratendinous processes or the alignment of fibrous bands.

Fig. 3. Inception-v3 results for the TU parameter on test dataset (correlations refer to
sagittal scans).

The results suggest that features extracted by deep learning models from
MR and US imaging focus on different qualities of the rehabilitation process.
This indicates that ultrasound should be viewed as an imaging method that
complements MRI rather than one that competes with MRI in the evaluation
of musculoskeletal abnormalities. It should be noted, however, that the previous
work on MRI was validated on a smaller dataset and did not apply the supervised
end-to-end approach, which limits us to an indirect qualitative comparison.

5 Conclusions

In this paper, we proposed deep learning models that achieve high perfor-
mance in clinical classification and healing phase estimation of ruptured Achilles
tendon. We have compared two approaches to modelling tendon rehabilita-
tion progress and shown that the supervised method is superior to the semi-
supervised method. Currently, monitoring the healing process requires a radiol-
ogist to analyze US and MRI data and subjectively evaluate the condition of the
tendon.

As suggested in [2], tendon morphology may be the more robust measure
to gauge patient healing progress over time compared to mechanical properties
of the tendon. Therefore, we believe that a model which accurately estimates
healing parameters from standardized images may be useful in clinical practice.
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Future studies are needed to improve the generalizability of deep learning
models for medical imaging in musculoskeletal disorders and to determine the
effect of model assistance in the clinical setting.
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Abstract. Pneumothorax (PTX) is a medical and surgical emergency that can
lead to hemodynamic instability and life-threatening collapse of the lung. PTX is
usually detected using chest X-ray but can be detected using lung ultrasound,
which requires interpretation by an expert radiologist. We are developing an AI
based algorithm for the automated interpretation of lung ultrasound video to
enable fast diagnosis of pneumothorax at the point of care by health care pro-
viders without extensive training in ultrasound. In this work, we developed and
compared several deep learning methods for identifying pneumothoraces in 3-s
ultrasound videos collected with a handheld ultrasound system. The first group
of methods were based on convolutional neural networks (CNNs) paired with
time-mapping preprocessing algorithms, including reconstructed M-mode and
the proposed simplified optical flow transform (SOFT). These preprocessing
methods were either used alone or in combination in a single “fusion” CNN. The
second class of algorithm used a Deep Learning architecture that combines a
CNN for processing spatial information (Inception V3) with a recurrent network
(long-short-term-memory, or LSTM) for temporal analysis, enabling raw video
to be fed directly into the neural network without preprocessing. We used data
from a swine pneumothorax model to train and test the proposed algorithms,
comparing their performance. Despite limited data, all algorithms achieved an
AUC for pneumothorax detection greater than 0.83.

Keywords: Deep Learning � Pneumothorax � Lung ultrasound

1 Introduction

Pneumothorax, or collapsed lung, is a problem seen in trauma patients, as well as those
with acute and chronic medical conditions. Undetected, pneumothorax can have dis-
astrous consequences for high-risk patients. Chest X-ray (CXR) is the primary imaging
modality used to screen for pneumothorax. Despite high specificity, CXR sensitivity
for detection of pneumothorax is estimated at only 28–75% for blunt trauma [1].
Computed tomography (CT) is the current gold standard for diagnosis, but it has major
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drawbacks including delay due to limited availability, high radiation dose, and high
cost. Lung ultrasound (LUS) is an alternative imaging modality for the detection of
pneumothorax, with a reported sensitivity of 95–100% and specificity of 91–100%
depending on patient population and LUS features considered [1, 2]. One sonographic
feature that can be used to detect pneumothorax is lack of lung sliding. In B-mode, lack
of lung sliding appears as the absence of relative motion between the parietal and
visceral pleura, which is normally visible in a healthy lung during respiration. In
M-mode, a single ‘barcode’ pattern can be observed when there is lack of lung sliding
[3], as shown in Fig. 1 below. The difficulty of image interpretation limits the adoption
of LUS for point-of-care pneumothorax diagnosis.

In situations where trained radiologists are unavailable, automated ultrasound
interpretation is an appealing alternative. Machine learning, part of the broad field of
artificial intelligence, has made substantial progress in automated medical ultrasound
imaging. Applications include classification, regression, and tissue segmentation on
organs such as breast, heart, thyroid, liver, and fetus [4, 5]. However, there have been
very few studies applying machine learning to pulmonary ultrasound, especially
pneumothorax. One group has used deep learning for detecting pneumothorax based on
B-mode image frames and M-mode images [6] and reports 99.8% and 98.3% accuracy
respectively. We believe both of these results to be spurious for two reasons. First, the
authors fail to enforce strict separation at the patient level between training and testing
groups. Second, they elide the question of how individual B-mode frames were used to
detect pneumothorax, a quintessentially temporal phenomenon.

To show the effectiveness of deep learning-based computer vision algorithms for
the detection of pneumothorax, the current work leverages a swine model and ultra-
sound videos acquired with a handheld ultrasound system. We use video-based
methods to extract the temporal information in B-mode videos to detect pneumothorax.
Using a strict separation of animals into training or testing groups, we also compare
performance between several deep learning architectures.

The main contribution of this work is the introduction of a novel, fast method of
computing optical flow (SOFT), which is a useful pre-processing step for the detection
of pneumothorax in B-mode ultrasound video. We have demonstrated this application
using several deep learning methods, permitting near real-time diagnosis of

(a) (b)

Fig. 1. Example M-mode images of (a) normal sliding and (b) absence of lung sliding.

Deep Learning-Based Pneumothorax Detection in Ultrasound Videos 75



pneumothorax with a low-cost, hand-held, radiation-safe, and user-friendly ultrasound
device.

2 Approach

2.1 Animal Model, Data Collection and Annotation

All animal studies and ultrasound data were collected at Oregon Health & Sciences
University, following approval by its Institutional Animal Care and Use Committee
(IACUC) and the US Army Medical Research and Development Command’s Animal
Care Use Review Office. A swine model was developed to generate desired lung
pathologies and ultrasound lung features were captured for both normal and abnormal
lung. For pneumothorax, a total of four swine were used. A percutaneous thoracic
puncture was performed on one side of the chest with a 6 Fr sheath insertion under
ultrasound guidance. A total of 100 to 750 cc of air was injected in 100 to 150 cc
increments to induce different degrees of pneumothorax. The lung was then vented
using a one-way valve to expel the air at a rate of 250 ml each time to resolve the
pneumothorax.

Ultrasound data were acquired using a Lumify curvilinear (C5-2, Philips, WA,
USA) handheld system, with its default lung preset. According to the guideline of
point-of-care LUS [7], the swine chest area was divided into 4 zones on each side,
including upper anterior, lower anterior, upper lateral and basal lateral chest areas. The
parasternal, anterior axillary, and posterior axillary lines were used as anatomical land-
marks. For each zone, at least two 3-s B-mode videos were collected at a frame rate of
20 per second. Ultrasound videos were collected from each animal before insertion and
following the injection of each increment of air, and the aspiration of the pneumoth-
orax, for a total of 10 collection sessions per animal. Each video clip was then reviewed
by a LUS expert and marked as either exhibiting lung sliding or absence of lung
sliding, the latter being considered a positive pneumothorax diagnosis.

2.2 Algorithm Architectures

Reconstructed M-mode. Lung sliding was detected in each video using reconstructed
M-mode images—the trace of an azimuthal line in the video over time (with dimen-
sions of radial depth by frame count)—as described in [8]. (Direct M-mode from the
device is not used here because our goal is to detect pneumothorax purely from B-mode
video without the need for an additional data collection step.) Prior to M-mode image
reconstruction, a single shot detector (SSD) [9] was used to determine a bounding box
for the pleural line (PL), if present, in each intercostal space [8]. For each detected PL,
the vertical location of the PL was identified as the position where the horizontal sum
within the bounding box was maximum. The region of each video frame from 5 pixels
above to 95 pixels below the PL was cropped and transformed from polar to cartesian
coordinates. Azimuthal traces were extracted from the resulting cropped videos to
obtain reconstructed M-mode images (Fig. 2a). M-mode images were reconstructed
from 11 evenly-spaced columns centered about the middle of the PL bounding box in
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videos used for algorithm training. To minimize computation, only 5 such images are
reconstructed for each intercostal space during inference. A custom convolutional
neural network (CNN), depicted in Fig. 2c, top row, was trained on the reconstructed
M-mode images. The trained system was then used for prediction: reconstructed M-
mode images in the test set were classified as “sliding” or “no sliding”. An intercostal
space is designated as “no sliding” if at least 3 out of 5 M-lines are classified as “no
sliding”; a video is classified as “no sliding” if any intercostal space is classified as “no
sliding”, and “sliding” otherwise.

Simplified Optical Flow Transform (SOFT). Notwithstanding the common use of
M-mode to diagnose pneumothorax, many clinicians discern lung sliding, or lack
thereof, directly from B-mode video, where lung sliding appears as shimmering of, and
periodic lateral motion below, the pleural line. The use of optical flow to detect motion
in video is commonplace [10]. Optical flow algorithms compute image gradients in x, y,
t and solve the motion equation:

dI=dt ¼ rtIþrxI dx=dtð ÞþryI dy=dtð Þ ¼ 0 ð1Þ

for the underlying motion images, dx=dt and dy=dt. Here, I is ultrasound intensity. The
solution must be obtained iteratively as no closed form general solutions are possible
[10]. This renders the computation too slow for a real-time diagnostic device. The
equation of motion can be simplified, however, by noting that movement induced by
lung sliding is primarily lateral, i.e., along x. With the assumption that dy=dt ¼ 0 the
motion equation admits a closed form solution:

dx=dt ¼ �rtI=rxI ð2Þ
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Fig. 2. (a) Preprocessing for reconstructed M-mode from B-mode video. (b) Preprocessing for
SOFT from the same B-mode video. (c) Deep learning architectures for M-mode (top row) and
SOFT (bottom row), and fusion architecture (middle row, green data path). (Color figure online)

Deep Learning-Based Pneumothorax Detection in Ultrasound Videos 77



We use this equation to compute dx=dt between every pair of consecutive frames;
dx=dt is an x-motion field video that has one fewer frame than the original video.

The x-motion field video indicates the x-velocity of the lung motion as a function of
position and time. Because of the periodic nature of lung sliding, it will have both
positive and negative values. A measure of the amount of the lateral movement in the
video is the absolute value of the x-motion field, which would indicate the speed of the
lung motion vs. position and time. The absolute value of the x-motion field video may

be summed across frames to obtain the time-integrated motion image: Dx
 ! ¼P

dx=dtj j,
where the sum is taken over frames. The appearance of the time-integrated motion

image Dx
 !

depends on video content, but it may be summed horizontally to compute a

vertical x-motion profile, vx yð Þ ¼P
Dx
 !

; where the sum is taken over image columns.
We refer to the vertical x-motion profile as the SOFT profile. SOFT profiles were
computed for each video in the training set, and a small CNN model, shown in Fig. 2c,
bottom row, was trained based on whether the video exhibited sliding or not. The
resulting model was tested on SOFT profiles of the testing set videos.

Fusion Architecture. We previously described a method that uses reconstructed M-
mode images to detect lack of lung sliding, as well as a method involving the use of
SOFT profiles. The two methods may be combined in a fusion architecture that has two
separate input streams and a single output as shown in Fig. 2(c) by the green data path.
The top stream ingests a reconstructed M-mode image and computes CNN features
(using the convolutional layers of the top row of Fig. 2c), and the bottom stream
receives the SOFT profile from the corresponding video and computes CNN features
(using the convolutional layers of the bottom row of Fig. 2c). The two streams are
concatenated and processed by two fully connected layers before being classified by
the fully connected + softmax layer at the output (middle row). This network may be
trained end-to-end using back propagation and stochastic gradient descent.

Long-Short-Term-Memory (LSTM). We utilized LSTM [11]—a type of recurrent
neural network (RNN) that looks for temporal patterns in sequential data—to detect
lateral movement around the pleural line. Unlike feed-forward neural networks, RNNs
accept past variable states as temporal feedback—allowing information to flow in
time—thus making them capable of learning long-term dependencies [12].

In this work, we first extracted Inception V3 [13] features from each frame and fed
the feature vectors to the LSTM layers sequentially. We chose to use spatial feature
extraction followed by LSTM rather than spatiotemporal convolutions (3D CNN)
because the latter typically requires more data for end-to-end training. We used two
LSTM layers with 2048 units/layer. After processing all the video frames, the last
LSTM layer generated a 2048-dimensional spatiotemporal LSTM feature vector.
The LSTM feature vector was further processed through two fully connected layers
before applying the softmax activation function. The architectural diagram is shown in
Fig. 3. Since we had a limited training dataset, we held the Inception weights fixed (at
their ImageNet trained values) and learned only the LSTM weights and the subsequent
fully connected layer weights. Video frames were resized to 300 � 300. The length of
the input sequence was fixed to 60 frames in order to include a significant portion of a
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breath cycle. We used dropout (rate = 0.7), data augmentation (described in Sect. 2.3
below) and narrow dense layers to control overfitting on limited training data. The
number of LSTM units had the most influence on overall performance, achieving
optimal results with 2048 units.

2.3 Training and Hyperparameters

For all methods, training and testing were performed in a cross-validated fashion over 4
folds, each with training data from 3 animals and the 4th reserved for testing.
Approximately 20% of training data was assigned to a validation set to determine
hyperparameters and assess model generalization. Prior to further processing, the fol-
lowing types of data augmentation were performed: horizontal and vertical shift,
temporal scale, contrast increase/decrease, Gaussian blur, and random pixel value
decrement.

For the LSTM, categorical cross entropy loss was minimized using the Adam
optimizer [9], with batch size of 3 videos/iteration. For the remaining methods, cross-
entropy loss was minimized over 2000 epochs using gradient descent with a batch size
of 64, learning rate of 0.0004 and momentum 0.9. Batch normalization was employed
prior to each non-linearity to accelerate training, and dropout was used to control
overfitting. This process required 3–4 h on a NVIDIA DGX system. Weights at the
iteration corresponding to minimum validation loss were selected for the final model.

3 Results

We compare the performance of four methods for identifying absence of lung sliding in
swine pulmonary ultrasound videos: reconstructed M-mode, SOFT, fusion, and LSTM,
which are described in Sect. 2. M-mode and fusion algorithms are only applied when a
pleural line is detected; the M-mode detection algorithm achieves 95% sensitivity on
pleural line detection using the method described in [8]. The results for all methods are
reported only for videos with detectable pleural lines to simplify the comparison
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between the methods. The absence of intercostal space in a video was treated as a
pleural line negative sample. The performance of each algorithm was assessed using 4-
fold cross-validation, with data from 3 of the 4 animals used for training and validation,
and videos from the remaining animal used for testing in each fold. This resulted in
testing a total of 130 positive videos with absence of lung sliding caused by pneu-
mothorax and 122 negative videos with normal lung sliding. Table 1 shows the final
test results, averaged over cross-validation folds, for all 4 methods. We also compared
the test performance of the 4 approaches via ROC curves, which are shown in Fig. 4.
The inference time is also reported in Table 1. Models were run on a PC with Intel i7
6600U quad-core processor @ 2.6 GHz, 16 GB RAM with no GPU processor.

To partly compensate for the small number of animals, we used leave-one-animal-
out cross-validation, so that data from all 4 animals could be used to assess perfor-
mance. Furthermore, the dataset contains diversity because videos collected from the
same animal have variation due to (1) differences in anatomy between zones, (2) small
shifts in acquisition location within a zone, and (3) differences between collection
sessions (air was injected in the same animal at multiple times to induce pneumoth-
orax). Despite the small dataset, all models learned informative representations of the
data, all achieving AUCs greater than 0.83 on unseen data. While all models performed
similarly with the data available, this result may be impacted by data scarcity; models
with a larger number of parameters (Fusion and LSTM) might especially benefit from
increased training data.

4 Conclusions and Future Work

LUS is a promising diagnosis modality for pneumothorax because of its portability and
use of non-ionizing sound waves. Widespread adoption of LUS is limited, however, by
the difficulty of interpreting LUS images (due to lack of anatomical clues), shortage of
personnel with adequate training, and inter- and intra- operator variability. We have
shown that machine learning, and particularly deep learning, can be used to automate

Table 1. Testing results.

Method Sensitivity^ Specificity^ Mean
AUC

Inference
time (ms)

M-mode 78 ± 12% 85 ± 2% 0.837 230*
SOFT 83 ± 2% 82 ± 8% 0.863 1200
Fusion 82 ± 6% 87 ± 9% 0.872 1400*

LSTM 84 ± 4% 82 ± 9% 0.876 5300

^ mean ±standard deviation over 4 folds, using operating
point that maximizes harmonic mean of sensitivity and
specificity for each method and fold
*does not include time for pleural line detection Fig. 4. ROC for test data
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detection of absence of lung sliding from ultrasound B-mode video. Computer-assisted
LUS video analysis, as demonstrated here, when coupled with a hand-held ultrasound
device, can bring improved diagnosis capability to remote and resource-limited
healthcare settings. In the future, we plan to address how pneumothorax can be dif-
ferentiated from other causes of the absence of lung sliding algorithmically [17]. We
will also use clinical patient data to train, assess, and improve the algorithms described
here. This will help validate the efficacy of these methods in humans while providing
sufficient patient diversity and data quantity to assess patient-level diagnostic accuracy.
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Abstract. Deep learning has been applied to ultrasound imaging
recently, and it needs to be further studied to improve ultrasound beam-
forming methods. According to the latest research, deep neural network
was able to suppress off-axis scattering signals in ultrasound channel
data, which enhanced the performance of beamforming and improved
the contrast of the output ultrasound images. Minimum variance beam-
forming was capable to present high lateral resolution, but lacked of high
image contrast of ultrasound images. In order to effectively improve the
contrast of minimum variance beamforming, this work investigated the
combination of deep neural network and minimum variance beamform-
ing. In the experiments, the simulated point target and cyst scenarios
were adopted to evaluate the performance of the proposed methods. The
results demonstrated that combining deep neural network and minimum
variance beamforming can effectively reduce the side lobe level and thus
can improve the contrast of the ultrasound images while maintaining the
lateral resolution performance.

Keywords: Minimum variance beamforming · Deep learning · High
image contrast · Ultrasound imaging

1 Introduction

Beamforming is the critical procedure in ultrasound imaging. The most widely
used beamforming method nowadays is delay-and-sum (DAS) beamforming [4].
It consists of two steps, of which the first step is applying phase delays to the
channel data and the second step is summing the delayed channel data to get
the pixel value. Minimum variance (MV) beamforming [11] is a kind of adap-
tive beamforming methods. The main difference between MV and DAS is that
MV computes the adaptive channel apodization weights using the delayed chan-
nel data while DAS uses fixed channel weights. The ultrasound images pro-
duced by MV are of higher quality, especially higher lateral resolution. However,
MV cannot effectively improve the contrast of ultrasound images, meanwhile
the robustness of MV is not guaranteed. Hence, spatial averaging and diagonal
loading techniques were utilized to enhance the robustness of MV. Moreover,
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Asl et al. proposed forward-backward MV beamforming to improve MV’s per-
formance on both contrast and robustness [2] and they proposed eigenspace
based MV (ESBMV) beamforming to improve image resolution and image con-
trast of ultrasound images [1]. Liu et al. combined ESBMV with sign coherence
factor [8], which improved the image quality of ultrasound images as well as the
robustness of MV.

In recent years, deep learning has been widely used in many applications
such as natural language processing and computer vision. There have been two
ways of combining deep learning and ultrasound imaging. One is the high quality
reconstruction of poor quality ultrasound images, and the other is using deep
learning techniques to enhance ultrasound beamforming performance. Our work
focuses on the deep learning enhanced beamforming method. In 2012, Zaharis
et al. proposed a novel neural network based adaptive beamforming method [12].
The method used mutation Boolean particle swarm optimization to compute the
apodization weights which served as groundtruth during network training. The
neural network consisted of an input layer, a hidden layer and an output layer.
Such method effectively suppressed side lobes and enhanced main lobe. In 2016,
an improved neural network architecture was designed to deal with MV’s uncer-
tainty about interference coherence [13]. The proposed network contained two
hidden layers. The first hidden layer was divided into sublayers, and the number
of sublayers was equal to the dimension of inputs. The neurons in each sublayer
only connected their corresponding input. This method alleviated the perfor-
mance degradation caused by the uncertainty about interference coherence. In
2018, Simson et al. proposed a fully convolutional neural network based beam-
former, producing smooth images on sub-sampled raw data [10]. Luchies and
Byram ensembled deep neural network (DNN) into a DAS beamformer [9], in
which DNN was responsible for suppressing the off-axis scattering signals. The
method effectively improved the contrast of the produced ultrasound images.
Inspired by the previous work, we proposed a method combining DNN and MV
beamforming, aiming to improve the contrast of MV beamforming.

The rest of the paper is organized as follows. Section 2 will illustrate two
ways of combining DNN and MV beamforming and the detailed construction of
the deep learning based high-contrast MV beamforming method. Experimental
results will be presented in Sect. 3 and the conclusion will be drawn in Sect. 4.

2 Combining DNN and MV Beamforming

The core operation of MV is apodization weight calculation which is conducted
on the delayed channel data. DNN is used to process the delayed channel data
in order to suppress off-axis scattering signals. There are two ways to calcu-
late apodization weights. The first one is to calculate the weights using delayed
channel data before DNN processing (DNNMV before), and the second one
is to calculate the weights using delayed channel data after DNN processing
(DNNMV after). Figure 1 shows these two different ways. DNN acts as an opti-
mization operator in the MV beamforming framework as shown in Fig. 1.
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Fig. 1. The flow chart of DNN based MV beamforming with two different apodization
weight calculation ways.

2.1 MV Beamforming with Spatial Averaging and Diagonal
Loading

Assuming the number of receiving channels is M and the length of subaperture
is L, then there are totally (M − L + 1) subapertures. The subaperture signal
vector xi, i = 1, 2, ...,M − L + 1 contains delayed data from ith channel to
(i + L − 1)th channel. The spatial covariance matrix Rcov of each subaperture
is then calculated and averaged, as illustrated in (1):

Rcov =
1

M − L + 1

M−L+1∑

i=1

xi · xH
i . (1)

Subsequently, diagonal loading is applied to Rcov by adding a certain proportion
of Gaussian white noise, which is expressed as:

Rcov = Rcov + σ · trace(Rcov · I), (2)

where σ is the diagonal loading factor which is often set as 1/(100L), and I is a
unit matrix. The apodization weight vector w is calculated as:

w =
R−1

cov · a
aH ·R−1

cov · a
, (3)

where a is a steering vector of all ones. w is then combined with xi to obtain
the beamformed pixel amplitude value v.

v =
1

M − L + 1

M−L+1∑

i=1

wH · xi. (4)
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2.2 Suppressing Off-Axis Scattering Signals with DNN

To train DNN for the purpose of suppressing off-axis scattering signals, specific
training data is needed so that DNN can learn how to distinguish off-axis scatter-
ing signals and then suppress them. Field II [6] is used to simulate the training
data. The configuration of the simulated transducer is listed in Table 1. The
inputs of DNN consist of individual responses from scatters which are randomly
placed along the annular sector shown in Fig. 2. For scatters in the acceptance
region, the outputs of DNN are exactly the same as the inputs, but for scatters
in the rejection region, the outputs are all zeros which means the signals are
totally suppressed.

After applying delays to the received channel data, short-time Fourier trans-
form (STFT) is performed to convert the delayed channel data into frequency
domain representation. STFT is indeed a series of discrete Fourier transforms
(DFTs) operating on the segmented channel data. In the proposed method, a
rectangle window function whose window length is 16 is used, and the stride is
1. Because the signal values are real numbers, the outcome of a DFT is conju-
gate symmetrical. Therefore, only 9 complex amplitudes of 9 Fourier frequencies
are needed to record. After Fourier transforms, the real component and the
imaginary component of complex amplitudes are separated. As a result, for each
scanline with P imaging pixels, after performing STFT, a data matrix whose size
is (2×Nelements)×9× (P −16+1) can be obtained, where Nelements represents
the number of receiving channel elements that is 128 in our setting.

Acceptance 
regionRejection 

region
Rejection 

region

Fig. 2. Scatter placement, accep-
tance and rejection regions.

...

Input layer

... ... ... ...

Output layerFive hidden 
layers

256
dimensions

256
dimensions

5×170 neurons

Fig. 3. Topology of the deep learning neural
network.

Totally 9 neural networks are trained, each for one frequency. The first trained
network is the network for the transmit center frequency, and transfer learning
strategy is then adopted for the other 8 networks, which means that the trained
network for the center frequency is used as the starting point of training of
networks for the other 8 frequencies. The topology of the adopted neural network
is shown in Fig. 3. The input and the output of the network are both of 256
dimensions. There are five hidden layers, and each network layer except the
output layer is fully connected to its next layer. The training data set consists
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of responses from 10,000 scatters. Half of them are in the acceptance region and
the other half of them are in the rejection region. The validation data set and the
test data set both consist of responses from 2,500 scatters. Also half of them are
in the acceptance region and the other half of them are in the rejection region.
To better train the neural networks, Adam optimizer [7] which is a variant of
gradient descent optimizers, is adopted with the learning rate of 1.1×10−3. The
learning rate decay is 4.1× 10−8. The weight initialization strategy is employed
to initialize the weights of networks [5]. The activation function chosen for the
neurons in hidden layers is ReLU function [3] and that chosen for the output
layer is linear activation function.

Table 1. The simulated scenario con-
figuration

Parameter Value

Active elements 64

Transmit center frequency 5.208MHz

Pitch 209µm

Width 48µm

Sampling frequency 20.832MHz

Sound speed 1540m/s

Transmit focal depth 70mm

Table 2. Cyst image contrast and signal-to-
noise ratio comparison

Metric MV DNNMV after DNNMV before

CR 0.3568 0.3808 0.3900

SNR 1.708 1.4388 1.5156

3 Experiments and Results

3.1 Experimental Setup

For single scatter simulation, only one scatter was placed in the transmit focal
depth. For cyst simulation, a spherical cyst was placed with its center in the
focal depth. The imaging volume was filled with scatters with the density of 25
scatters per square micrometers and the phantom amplitudes of scatters within
the cyst were set to zeros. The evaluation metrics of cyst simulation were image
contrast (CR) and speckle signal-to-noise ratio (SNR). As shown in Fig. 4, two
round regions with the same area as the cyst region were drawn in the left side
and the right side of the cyst, respectively. The mean values of pixel amplitudes
within these two regions were denoted as Sout1 and Sout2, the mean value of
them was denoted as Sout, and the mean value of pixel amplitudes within the
cyst region was denoted as Sin. Hence, CR was calculated as:

CR =
Sout − Sin

Sout
, (5)

where CR value was between 0 and 1. Moreover, SNR was calculated as:

SNR =
μbackground

σbackground
, (6)
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where μbackground referred to the mean value of the uncompressed envelop signals
and σbackground referred to the standard deviation of the uncompressed envelop
signals in the background speckle region.

3.2 Experimental Results and Discussions

As mentioned in Sect. 2, two different apodization weight calculation ways were
examined. Figure 6 presented single scatter images of traditional MV and the
proposed MV with two different apodization weight calculation ways. It was
observed that after DNN processing, the tail of the scatter was greatly suppressed
and the imaging results of two different calculation ways were comparable. As
seen from the point target spread function comparison in Fig. 5, the proposed
DNNMV before and DNNMV after methods suppressed the side lobe levels by
approximately 60 dB, and not affecting the main lobe width, which means that
the lateral resolution performance of MV was preserved.

For cyst simulation, Fig. 7 demonstrated the cyst images of traditional MV
and the proposed MV with two different apodization weight calculation ways.
With DNN processing, there were more dark regions within the cyst, meaning
that off-axis scattering signals were indeed suppressed. Table 2 showed the image
CR and SNR comparisons of cyst images, and higher CR value represented better
contrast. It was observed from Table 2 that image contrasts of images using the
proposed DNNMV before and DNNMV after methods were both higher than
that of traditional MV, which was consistent with the demonstration in Fig. 7.
But for speckle SNR, traditional MV performed better. This was because that
signals within the cyst which consisted of responses from scatters in the rejec-
tion region were the signals which DNN learned to suppress, while signals in

Sin Sout2Sout1

Fig. 4. Contrast calcula-
tion of a cyst image.
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apodization weight calculation ways.
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Fig. 6. Single scatter images of traditional MV and the proposed MV with two different
apodization weight calculation ways.
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Fig. 7. Cyst images of traditional MV and the proposed MV with two different apodiza-
tion weight calculation ways.

the background speckle which consisted of responses from scatters in the accep-
tance region were the signals which DNN learned to reconstruct. The SNR result
demonstrated that reconstructing signals was harder to learn than suppressing
signals, resulting the SNR performance not good enough to outperform that
of traditional MV. This indicated that in future work, experiments with larger
training data set with more random scatters in the acceptance region should be
conducted for further improvements of speckle SNR as well as contrast.
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Fig. 8. The final determined model combining DNN and MV beamforming.
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Reducing the level of side lobes can improve the contrast of ultrasound
images, so it was beneficial to combine DNN and MV beamforming to
improve MV’s contrast performance. As observed from Table 2 in terms of
both image contrast and speckle SNR, DNNMV before performed better than
DNNMV after. Therefore, the final determined model of our method was
DNNMV before, as shown in Fig. 8.

4 Conclusion

In this work, we explored the combination of DNN and MV, and proposed a deep
learning based MV beamforming method in which deep neural network acted
as an optimization operator of the MV beamformer. The experimental results
of simulated single scatter and cyst scenarios demonstrated that our method
reduced the level of side lobes effectively and improved the image contrast while
maintaining the resolution performance of MV. Future studies should be con-
ducted to improve DNNMV’s performance on speckle SNR with more scatters in
the acceptance region. Moreover, more deep neural network structures for MV
beamforming is worth exploring.

Acknowledgements. This work is supported by “National Natural Science Founda-
tion of China” (No. 61802130), “Guangdong Natural Science Foundation” (No. 2018
A030310355), and “Guangzhou Science and Technology Program” (No. 201707010223).

References

1. Asl, B.M., Mahloojifar, A.: Eigenspace-based minimum variance beamforming
applied to medical ultrasound imaging. IEEE Trans. Ultrason. Ferroelectr. Freq.
Control 57(11), 2381–2390 (2010)

2. Asl, B.M., Mahloojifar, A.: Contrast enhancement and robustness improvement
of adaptive ultrasound imaging using forward-backward minimum variance beam-
forming. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58(4), 858–867 (2011)

3. Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y.: Deep Learning. MIT Press,
Cambridge (2016)

4. Havlice, J.F., Taenzer, J.C.: Medical ultrasonic imaging: an overview of principles
and instrumentation. Proc. IEEE 67(4), 620–641 (1979)

5. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-
level performance on imagenet classification. In: Proceedings of IEEE International
Conference on Computer Vision, pp. 1026–1034 (2015)

6. Jensen, J.A.: Field: a program for simulating ultrasound systems. In: Proceedings
of Nordic-Balttc Conference on Biomedical Imaging, pp. 351–353 (1996)

7. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings
of International Conference for Learning Representations, pp. 1–15 (2015)

8. Liu, T., Zhao, H., Zheng, Y.: Eigenspace-based minimum variance beamforming
combined with sign coherence factor for ultrasound beamforming. Acta Acustica
40(6), 855–862 (2015). (in Chinese)

9. Luchies, A.C., Byram, B.C.: Deep neural networks for ultrasound beamforming.
IEEE Trans. Med. Imaging 37(9), 2010–2021 (2018)



Deep Learning Based MV Beamforming for Ultrasound Imaging 91

10. Simson, W., Paschali, M., Navab, N., Zahnd, G.: Deep learning beamforming for
sub-sampled ultrasound data. In: Proceedings of IEEE International Ultrasonics
Symposium, pp. 1–4 (2018)

11. Synnev̊ag, J.F., Austeng, A., Holm, S.: Adaptive beamforming applied to medical
ultrasound imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(8), 1606–
1613 (2007)

12. Zaharis, Z.D., Gotsisa, K.A., Sahalos, J.N.: Adaptive beamforming with low side
lobe level using neural networks trained by mutated boolean PSO. Prog. Electro-
magnet. Res. 127, 139–154 (2012)

13. Zaharis, Z.D., et al.: Implementation of antenna array beamforming by using a
novel neural network structure. In: Proceedings of International Conference on
Telecommunications and Multimedia, pp. 25–27 (2016)



4th Workshop on Perinatal, Preterm and
Paediatric Image Analysis



Estimation of Preterm Birth Markers
with U-Net Segmentation Network

Tomasz W�lodarczyk1(B), Szymon P�lotka1,5, Tomasz Trzciński1,4,
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Abstract. Preterm birth is the most common cause of neonatal death.
Current diagnostic methods that assess the risk of preterm birth involve
the collection of maternal characteristics and transvaginal ultrasound
imaging conducted in the first and second trimester of pregnancy. Anal-
ysis of the ultrasound data is based on visual inspection of images by
gynaecologist, sometimes supported by hand-designed image features
such as cervical length. Due to the complexity of this process and its
subjective component, approximately 30% of spontaneous preterm deliv-
eries are not correctly predicted. Moreover, 10% of the predicted preterm
deliveries are false-positives [1]. In this paper, we address the problem
of predicting spontaneous preterm delivery using machine learning. To
achieve this goal, we propose to first use a deep neural network architec-
ture for segmenting prenatal ultrasound images and then automatically
extract two biophysical ultrasound markers, cervical length (CL) and
anterior cervical angle (ACA), from the resulting images. Our method
allows to estimate ultrasound markers without human oversight. Fur-
thermore, we show that CL and ACA markers, when combined, allow
us to decrease false-negative ratio from 30% to 18%. Finally, contrary to
the current approaches to diagnostics methods that rely only on gynae-
cologist’s expertise, our method introduce objectively obtained results.

Keywords: Preterm birth · Segmentation · Deep learning

1 Introduction

Preterm birth (PTB) affects 5–18% of pregnancies worldwide, which is equivalent
to 15 million preterm neonates each year [1]. Despite major advances in perinatal
care, preterm birth still accounts for 75% of neonatal deaths and over 50% of

c© Springer Nature Switzerland AG 2019
Q. Wang et al. (Eds.): PIPPI 2019/SUSI 2019, LNCS 11798, pp. 95–103, 2019.
https://doi.org/10.1007/978-3-030-32875-7_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32875-7_11&domain=pdf
https://doi.org/10.1007/978-3-030-32875-7_11


96 T. W�lodarczyk et al.

neurological handicap in children [2]. Preterm birth is defined as birth before 37
weeks of gestation, however high mortality and morbidity mainly affects neonates
delivered before 34 weeks, often referred to as early preterm (1–3% of all preg-
nancies) [3]. Prediction and early detection of women at high risk of PTB are
crucial as it allows timely intervention. Despite potentially effective treatments
like cervical cerclage, vaginal progesterone or pessaries, accurate, early diag-
nosis still remains a major challenge [4–9]. Current screening methods combine
maternal characteristics, obstetric history and cervical length measured at 20–24
weeks [3]. A major disadvantage of this approach lies in failing to identify women
with cervical incompetence before the second trimester and therefore missing the
opportunity for successful intervention. Attempts have been made at validating
the same screening markers in the first trimester with variable results, the best
yielding a detection rate of 54.8% at a false-positive rate of 10% [10].

In this paper, we address the problem of spontaneous preterm birth pre-
diction. We present a novel method for estimating two biophysical ultrasound
markers: cervical length (CL) and anterior cervical angle (ACA). Cervical length
marker refers to the length of the lower end of uterus. Anterior cervical angle is
defined by angle between the uterine wall and the cervical canal. We introduce
additional feature - ACA marker - for preterm birth prediction as suggested by
the results published in [12]. Extending [12], we computed ACA automatically
and combined the results with the CL marker, what significantly improved the
overall prediction quality. To achieve that goal, we use a deep neural network
architecture trained for segmenting prenatal ultrasound images. To overcome
the fact that our ultrasound dataset, after balancing procedure, is very small
and it could be a vital reason for poor performance, we decide to use a differ-
ent dataset to perform prediction, to what is described in Sect. 3.3. Finally, we
present that in comparison to regular analysis of ultrasound data, our method
performs better and can be used to obtain different biophysical markers as well.

Fig. 1. The proposed workflow of estimation preterm birth markers. Our method after
data preprocessing uses the U-Net network for segmentation of the cervix, and then
allows the estimation of CL and ACA markers.

2 Method

In this section we present our method of estimation of CL and ACA markers that
relies on cervix extraction with U-Net segmentation, as depicted in Fig. 1. The
U-Net [11] architecture is an encoder-decoder neural network implementation
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used for semantic segmentation, mainly designed for biomedical image process-
ing. This architecture is illustrated in Fig. 2

Fig. 2. The U-Net architecture [11]. Each box represents feature maps. The number of
channels is signed under each feature map.

We start training a U-Net model for the segmentation task of extracting a
cervical shape from ultrasound images. Once trained, we use our neural network
to obtain binary masks of the cervix. Finally, we use them to estimate CL and
ACA markers and then for binary classification task (preterm vs. control). To
perform cervical length estimation we apply the centerline algorithm [13] to the
binary masks. Such algorithm relies on a generation of a Voronoi diagram for
given cervix shape to get the polygon skeleton where the skeleton centerline is
selected and smoothed. We use the same extracted masks for ACA estimation
with different approach based on a recurential split on centroid location for a
given shape.

3 Experiments

In this section, we present results obtained with the proposed method. We first
describe the dataset used in our experiments and show the results obtained using
the segmentation algorithm. We then verify if the estimated CL and ACA metrics
correspond to the ground truth one. In the second part we evaluate whether CL
and ACA combined, perform better than current methods and present results
of the classification task (preterm vs control).

The first stage in our workflow is cervical segmentation using the U-Net
neural network. The segmentation results are used to estimate CL and ACA
described in the second stage.

3.1 U-Net Segmentation

Dataset and Preprocessing: The data collection was collected at King’s Col-
lege London and Warsaw Medical University and it contains data from 359
pregnant women with 316 control pregnancies and 43 preterm deliveries, which
is defined as birth before 37 weeks of gestation. The data was registered and
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labeled using standard infrastructure for ultrasound imagery operated by spe-
cialized physicians. Since our dataset contains images (and not the raw data),
the annotations are embedded in the graphical layer and hence cannot be filtered
automatically out of the data. To overcome this shortcoming and prevent U-Net
from focusing only on annotated markers we decide to remove all annotations
from images using inpainting method. Inpainting methods using machine learn-
ing did not give satisfactory results on our ultrasound images, so we use standard
computer vision algorithms. At first we convert our dataset from the RGB to
the HSV colour space. Next, we define the range of colours of all annotations in
the HSV space, what allows us to detect these ones which we want to get rid
of. The next step is to create a mask. Then through thresholding we obtain a
binary image based on defined color range. We then use dilation (a morphological
operation on the image) to expand our mask to completely remove annotations
around the extracted pixels in the first step. The inpainting method was used
in order to prevent the U-Net network from focusing on coloured markers in
the images. The diagram of the method described above is presented in Figs. 3
and 4.

Input image RGB to HSV Create a mask Thresholding

Dilatation Inpainting Add noise Output image

Fig. 3. Data preprocessing flow.

(a) Image with annotations (b) Image without annotations

Fig. 4. Example of using our inpainting method. On the left, we presented the original
image, and on the right after applying our inpainting algorithm. Our method was used
in order to prevent the U-Net network from focusing on coloured markers in the images.
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The dataset contains around 20% preterms which reflects the statistical
occurrence of this phenomenon in reality. To mitigate this shortcoming we bal-
anced the dataset by applying data augmentation to achieve a 50:50 ratio, to
avoid heavily focusing on the majority class by classification algorithm. We aug-
mented the dataset to 6359 images (359 original and 6000 augmented) by random
rotations in the range of −10 to 10◦, random contrast and brightness adjust-
ments. We divide it into training and validation subsets maintaining a ratio of
70:30.

Experimental Settings: We use our augmented dataset to train a network on
a machine with AMD FX-8320 @ 3.5 Ghz CPU and NVIDIA TITAN X 12 GB
GPU. We implement our models using the PyTorch library with CUDA support.
We train U-Net for 650 epochs with a batch size of 4, Adam optimizer with a
learning rate of 10−4 and weight decay of 10−4. We use BCEWithLogits as a loss
function. We use the 256 px × 256 px images as input while initializing weights
with Xavier uniform method (also known as Glorot initialization) with

√
2 gain.

Binary Segmentation Mask: We evaluate the U-Net neural network on the
task of cervix segmentation of the dataset. We use Jaccard Index, also known as
Intersection over Union (IoU) as the evaluation metric during training. For two
sets A and B, the Jaccard index is defined as the following:

J(A,B) =
|A ∩ B|
|A ∪ B| (1)

For cervix segmentation task we obtain average Jaccard Index of 0.91 (min - 0.89,
max - 0.92, SD - 0.1). Several results are presented in Fig. 5. In the optimisation
of the neural network, we controlled for both Dice and Jaccard index, but more
consistent results were obtained with the Jaccard index.

3.2 CL and ACA Estimation

Cervical Length Estimation: For this task we use obtained cervix segmen-
tation masks and perform centerline algorithm [13] on that image set. Then
we evaluate whether the cervical length can be estimated by centerline length
by conducting linear regression between estimated and ground truth lengths of
cervix. We obtain a RMSE of 110.88 and a correlation coefficient of 0.94 what
show that these two sets are almost linearly dependent with constant offset. The
results are presented in Fig. 6a.

Anterior Cervical Angle Estimation: For this task we develop an algorithm
which we apply to binary segmentation mask in order to obtain an estimation
of Anterior Cervical Angle. Such algorithm is a recursion where on each step we
split obtained cervical mask in two parts, based on its centroid location. We per-
form three iterations of that algorithm on every binary mask. Figure 7 presents
results of each iteration. Then we evaluate whether our approach can be used
to estimate anterior cervical angle by conducting linear regression between esti-
mated and ground truth dataset. We obtain a RMSE of 16.22 and a correlation
coefficient of 0.693. The results are presented in Fig. 6b.
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Fig. 5. Segmentation results on our dataset. We present from top to bottom: input
image after removing the annotation from the original images, ground truth and pre-
diction after applying the U-Net network. Our method allowed us to achieve an average
Jaccard index of 0.91, a minimum of 0.89 and a maximum of 0.92, with a standard
deviation of 0.1.

3.3 Preterm Birth Prediction

In this section we evaluate classification algorithm on cervical lengths and ante-
rior cervical angles, to assign preterm vs. control label to the (CL, ACA) pair. For
this purpose, we used four popular machine learning algorithms: Support Vector
Machines (SVM), K-Nearest Neighbour, Naive Bayes and Decision Trees. We
used the above algorithms for classification due to the fact that they perform
well with this type of data.

The best results in terms of accuracy were obtained for classifiers, which
were trained on data containing CL and ACA features of the first and sec-
ond trimesters. This is due to the greater number of features in the set, thus
increasing the diversity, which allows for better separation of classes in binary
classification.

Despite the simplicity of the naive Bayes classifier, surprisingly high results
were obtained, both by analyzing the measures of accuracy, precision and sensi-
tivity for both classes. In addition we conducted a 5-fold cross validation and we
obtained the result of accuracy 0.77, confirming the superiority of Bayes clas-
sifier. Using this classifier, the highest probability was also obtained that the
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(a) CL estimation (b) ACA estimation

Fig. 6. Evaluation of our estimation of: (a) cervical length (CL) and (b) anterior cer-
vical angle (ACA). We obtain a RMSE of 110.88, correlation of 0.94 for cervical length
and RMSE of 16.22 and correlation of 0.693 for the anterior cervical angle.

1st iteration 2nd iteration 3rd iteration

Fig. 7. Three first iterations of ACA estimation algorithm. On every iteration algo-
rithm finds centroid point of a given shape, splits it into two shapes and proceeds
further with the same steps. In the end, we measure ACA between the anterior wall
(red line) and the line between the last two centroids. (Color figure online)

classifier would determine a randomly chosen positive example higher than the
randomly selected negative example, based on the AUC score. Perhaps using the
naive Bayes classifier the best results were obtained due to the small correlations
between features.

The worst average results in terms of accuracy, precision, sensitivity and area
under the ROC curve were obtained by using the algorithm K-nearest neighbors
for classification. The probable reason is the small distance of the samples from
each other, which significantly reduces the efficiency of the algorithm.

At this stage, to overcome fact that our ultrasound dataset, after balancing
procedure, is very small and it could be a vital reason for poor performance
of mentioned four algorithms, we decide to use a different dataset. It contains
380 balanced numerical samples with precomputed cervical length and anterior
cervical angle for first and second trimester. It was obtained from King’s College
Hospital and Warsaw Medical University.
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According to paper [12], we have got better results in the classification of
spontaneous birth preterm than can be done manually by gynecologists. For the
first trimester, we obtained 18% of false negatives, where manually it is 30%.
This, in turn, can lead to significant time savings and increase the efficiency of
prevention treatment (Table 1).

Table 1. Classification results for four different classifiers

Classifier Trimester Accuracy Precision Recall AUC

SVM I 69.56 77.0 65.0 70.19

II 62.28 65.0 68.0 61.75

I + II 72.5 71.0 75.0 72.5

KNN I 71.74 78.0 73.0 72.1

II 58.77 61.0 69.0 57.75

I + II 72.5 75.0 78.0 71.43

Naive Bayes I 73.91 82.0 69.0 74.62

II 59.64 61.0 73.0 58.4

I + II 77.5 85.0 74.0 78.13

Decision Trees I 69.56 83.0 58.0 71.34

II 59.65 61.0 69.0 58.72

I + II 75.0 88.0 65.0 78.13

In Table 2, we presented the confusion matrix after classification on numerical
data using the naive Bayesian classifier algorithm. We obtained 18% of false
negatives and 14% false positives for the best classification results.

Table 2. Confusion matrix

Predicted

Control Preterm

A
ct

u
a
l Control 46 16

Preterm 21 31

The false negative ratio in our study is higher than the one in [10], since
we balanced our dataset (it was unbalanced in [10] which leads to the accuracy
paradox and precision and recall bias.) Still, our reported detection rate is 74%
- much higher than 54.8% reported in [10].
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4 Conclusions

In this paper we propose a method to automatically extract and estimate two
biophysical ultrasound markers: CL and ACA based on usage of convolutional
neural network. In addition we show that those markers combined can be promis-
ing predictor of preterm birth. The results presented in this paper show that
methods based on deep neural networks can provide automatic, quantitative
analysis of ultrasound images. This, in turn, can lead to significant time sav-
ings and increase the efficiency of current diagnostic methods without losing its
precision.

As future work, we plan to focus on predicting preterm birth with different
biophysical markers like shape of cervix or cervix tissue density and on preparing
end-to-end method for segmentation and classification task as well.
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Abstract. Deep learning algorithms have recently become the dominant
trend in medical image classification. However, the decision-making ratio-
nale of convolutional neural network (CNN) classifiers can be obscure.
Interpretable machine learning techniques, such as layer-wise relevance
propagation (LRP), can provide a visual interpretation of these decisions.
In this work, we build a 3D CNN model to classify neonatal T2-weighted
magnetic resonance (MR) scans into term or preterm. Additionally, we
investigate the impact of different registration techniques applied to the
image dataset on the classifier’s predictions. Finally, we compute LRP
‘relevance maps’, which indicate each voxel’s importance to the outcome
of the decision. Our resulting LRP heatmaps show no visually strik-
ing differences between the different registration techniques, while also
revealing anatomically plausible features for term and preterm birth.

Keywords: Preterm birth · Classification · Layer-wise relevance
propagation

1 Introduction

In recent years, deep learning research has made incredible advances in solv-
ing a wide range of scientific problems. Despite their success, these models are
often incapable of providing explanations for their predictions. As a result, it
has become increasingly important for the machine learning research commu-
nity to build explainable models that are able to provide insights into their
behaviour and thought processes. This is particularly vital in medical imag-
ing, where interpretable algorithms can provide a way of understanding if the
model is taking decisions based on clinically plausible features, thus increasing
the medical experts’ trust.

Layer-wise relevance propagation [2] is one such technique which has been
introduced as a way of illustrating network decisions. In LRP, a ‘relevance’ quan-
tity is assigned to every voxel in the input image, where a high positive value
c© Springer Nature Switzerland AG 2019
Q. Wang et al. (Eds.): PIPPI 2019/SUSI 2019, LNCS 11798, pp. 104–112, 2019.
https://doi.org/10.1007/978-3-030-32875-7_12
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represents a strong influence of that particular voxel towards the network’s deci-
sion. In this study, we aim to investigate the possibility of using the LRP method
to uncover features of preterm birth by expanding on the work of [6]. Addition-
ally, we assess our model’s performance when different types of image registration
have been applied to the input images prior to feeding them into the classifier.
Finally, we apply the LRP method in order to identify regions of interest used
by our classification models to distinguish between term and preterm birth.

2 Method

2.1 Data Acquisition

The image data used in this study was collected as part of the developing Human
Connectome Project using a Philips 3T scanner and a 32-channels neonatal
head coil [7]. A turbo spin echo (TSE) sequence was used to acquire the T2-
weighted (T2w) images in two stacks of 2D slices (sagittal and axial planes),
with parameters: TR = 12 s, TE = 156ms, and SENSE factors of 2.11 for the
axial plane and 2.58 for the sagittal plane. The data was subsequently corrected
for motion [4] and resampled to an isotropic voxel size of 0.5mm. The resulting
images were checked for abnormalities by a paediatric neuroradiologist.

2.2 Image Selection

In this work we use a dataset of 157 MRI scans of infants born between 23−42
weeks gestational age (GA) and scanned at term-equivalent age (after 37 weeks
GA). Their age distribution is shown in Fig. 1.

(a) Distribution of gestational age at birth
and post-menstrual age (PMA) at scan

(b) Distribution of term (93 subjects) and
preterm infants (64 subjects)

Fig. 1. Age distribution of subjects in our dataset
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2.3 Image Preprocessing

In order to investigate the effect of registration on both the classification and
interpretability of our study, we performed a series of pre-processing steps to our
dataset. First, we registered all of our data to a common 40 weeks gestational
age atlas space [11] using a rigid registration, an affine registration and a non-
rigid B-spline registration (B-spline control point spacing 10mm) available in
the IRTK [10] software toolbox. Then, we downsampled the images to 1mm3

isotropic resolution. Finally, we performed skull-stripping and we cropped the
volumes to a 112 × 128 × 112 size in order to allow an entire 3D volume to be
fed into the network at one particular time.

2.4 Data Preprocessing

Our dataset of 157 T2w 3D MRI scans was initially divided into 135 volumes
for training and 17 volumes for holdout. When performing cross-validation, the
135 volumes were further divided into 90% training and 10% validation. In each
division, the ratio between our two classes (term and preterm) was kept the same.
The validation sets were used to inform us about our model’s performance during
training, while the holdout set was used to report our final model’s results and
showcase its capability to generalize. A full description of the dataset partition
is shown in Table 1.

Table 1. Number of scans in different datasets used for the CNN model

Dataset Total number of 3D volumes

Training 125 (74 term and 51 preterm)

Validation 15 (9 term and 6 preterm)

Holdout 17 (10 term and 7 preterm)

2.5 Network Architecture

The proposed 3D convolutional neural network (3D-CNN) architecture uses T2w
volumes of neonates at term equivalent age as inputs and classifies them into
either preterm or term. A schematic illustration of the overall network is shown
in Fig. 2. The network contains repeated blocks of 3×3×3 convolutions (with a
stride of 1), batch normalization [8], rectified linear unit (ReLU) activations and
2×2×2 average pooling layers (with a stride of 1), followed by two fully connected
layers. The network outputs the probabilities of an input image belonging to
either of the two classes.

The network was trained by minimizing a categorical cross entropy loss func-
tion using the Adam optimizer with the default parameters (β1 = 0.9 and
β2 = 0.999). The learning rate was varied in a decaying cyclical fashion [12] with
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Fig. 2. The proposed network architecture for our classification task. Each rectangle
represents a 3D volume, where the number of channels is shown inside the rectangle,
while the spatial resolution with respect to the input volume is shown underneath.

a base learning rate of 10−5 and a maximum learning rate of 10−3. To account
for the class imbalance between the preterm and term classes, we introduced a
stronger weight in the loss function for the under-represented class (preterm).
Dropout layers, as well as image augmentation in the form of translations (of
up to 3 voxels in x, y and z directions), rotations (of up to 30◦ in all three direc-
tions) and a combination of both were used during training in order to regularize
the learning process.

2.6 Layer-Wise Relevance Propagation

Layer-wise relevance propagation [2] is a backward propagation technique that
was found to be applicable in a variety of computer vision applications [1,3]
and medical data [13]. This method assigns a ‘relevance’ score to each input
voxel by iteratively propagating through the network each layer’s output to its
predecessors until the input layer is reached [9]. This redistribution rule is guided
by a conservation principle, in which every neuron in the architecture receives a
share of the network output [2]. For example, given two neurons from successive
layers j and k, where layer k is closer to the output of the network than layer j,
this rule can be written as:

Rj =
∑

k

ajw
+
jk∑

j ajw
+
jk

R+
k +

∑

k

ajw
−
jk∑

j ajw
−
jk

R−
k (1)

where: R+
k = αRk and R−

k = −βRk, α − β = 1 and β ≥ 0 [3]. A graphic
representation of the LRP method is shown in Fig. 3.

Setting α = 1 and β = 0 discards the negative values and will produce
relevance maps that only show regions in the input image which positively influ-
ence the network to classify into either preterm or term, while setting α = 2
and β = 1 will propagate both positive and negative values, thus also showing
the regions of the brain which negatively influenced the classifier. In this work
we implemented the LRP rules, as described in [9], for our 3D classification
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network and applied them to compute relevance maps for both preterm and
term neonates.

Fig. 3. Schematic representation of the LRP method. Figure adapted from [9].

3 Results

3.1 Cross-Validation Results

Figure 4 summarizes the results of our 10-fold cross-validation study for all three
pre-processing steps (rigid, affine and non-rigid alignment). Having a small vali-
dation set (15 scans) in each of our 10 folds means that the accuracy metric can
vary significantly between folds and between epochs, as a small change in the
output probability can cause a sudden shift in the reported accuracy. However,
based on the behaviour of the validation loss (categorical cross-entropy) and the
validation accuracy across the 10 folds, we decided that the best performance of
our model is achieved at 200 epochs of training. After 200 epochs, even if the
loss function continues to decrease, the validation accuracy does not improve
anymore, causing our model to overfit.

3.2 Final Model Results

Our final models were trained for 200 epochs for both affine, rigid and non-rigid
datasets. Their performance on the holdout dataset is summarised in Table 2.
In the rigid case, 1 subject was incorrectly classified as preterm, while another
subject was incorrectly classified as term; in the affine case, 2 subjects were
incorrectly classified as preterm, while 1 subject was incorrectly classified as
term; and in the non-rigid case, 2 subjects were incorrectly classified as preterm,
while all the remaining subjects were correctly classified.

3.3 Relevance Maps

We generate relevance maps using the LRPα=2,β=1 rules for all the correctly
classified subjects in our datasets. Figure 5 shows the average relevance maps
of both term and preterm classes, across different ages at scan. Our results
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Fig. 4. The results of our 10-fold cross-validation for every 50 epochs during the
training

show that in all of our three datasets, our trained models learnt to distinguish
between term and preterm birth by looking at similar brain regions. In the case
of the rigid and affine datasets, the resulting individual relevance maps were first
propagated into a common space using the transformations generated through
the creation of the non-rigid dataset, and then used to compute the average
maps as shown in Fig. 5.

As a secondary analysis, we also investigated individual relevance maps. A
few examples from the non-rigidly aligned dataset of both correctly classified
and incorrectly classified cases are shown in Fig. 6, where the leftmost incorrectly
classified subject was considered preterm by all three of our trained models. This

Table 2. Model performance on the holdout set, for all three types of data pre-
processing, where: rig - rigid alignment, aff - affine alignment, nrr - non-rigid align-
ment, TPR - true positive rate (term class) and TNR - true negative rate (preterm
class)

Accuracy TPR TNR

Dataset rig aff nrr rig aff nrr rig aff nrr

Holdout 0.88 0.82 0.88 0.9 0.8 0.8 0.86 0.86 1.0
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(a) Axial slices of average relevance maps for different ages at scan

(b) Sagittal slices of average relevance maps for different ages at scan

Fig. 5. Average T2w images together with their average LRPα=2,β=1 relevance maps
for both the preterm and term classes.

subject was born very close to the 37 weeks threshold (38 weeks gestational age
and 42 weeks age at scan).

In both our individual and average relevance maps, our classifier learnt that
the most prominent feature for preterm birth was the cerebrospinal fluid (CSF)
found in the ventricles and surrounding the brain. This is in agreement with
previous clinical literature where it was found that preterm babies have more
CSF and less cortical folding due to impaired brain growth [5]. In fact, the
subject that was incorrectly classified by our models as preterm appears to have
a larger amount of CSF in its brain.
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Fig. 6. LRPα=2,β=1 relevance maps for the non-rigid dataset of both axial and sagittal
slices of individual subjects plotted against the decision boundary of our classifier.

4 Discussion and Future Work

In this study we showed the application of 3D convolutional neural networks with
layer-wise relevance propagation for neonate T2w magnetic resonance imaging.
Additionally, we investigated the impact of pre-registering our data to a com-
mon 40 weeks template on the classifier’s performance. Our analysis showed that
for our study the pre-alignment did not have a meaningful impact on the accu-
racy of our CNN model, and the generated relevance maps supported the same
hypothesis.

Our study found that CSF is an important feature for distinguishing between
term and preterm birth. For future work we plan to investigate the impact of reg-
istration errors in our proposed framework and to compare our results with voxel
based statistical approaches, such as voxel-based morphometry. Moreover, we
aim to include diffusion MRI data in our proposed framework in order to under-
stand the different microstructural environments of term and preterm birth,
and to explore and compare our current method with different interpretability
techniques in order to evaluate the stability of our obtained results.
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Abstract. Pediatric echocardiography is a commonly used medical imaging
method for examining congenital heart disease (CHD). Accurate segmentation
of pediatric echocardiography is usually used to derive quantitative measure-
ments or biomarkers for subsequent CHD diagnosis and treatment planning. In
order to achieve quality segmentation results, clinical pediatric echocardiogra-
phy segmentation now is mainly performed by sonographers manually, which is
time-consuming, labor-intensive, and highly dependent on the professional level
of the sonographers. To address these issues, in this paper, we propose a novel
convolutional neural network (CNN) architecture, called dual network genera-
tive adversarial networks (DNGAN). DNGAN consists of one generator and two
discriminators, the generator uses parallel dual networks to extract more useful
features to improve its performance. We use a dual discriminator to force the
generator to learn more spatial features and segment the edges of the left heart
more accurately. Experiments on the self-collected dataset shows that our pro-
posed method achieves superior results over the state-of-the-art approaches and
may help sonographers segment the left heart area faster and more accurately.
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1 Introduction

Congenital heart disease (CHD) refers to an abnormal anatomical structure of the heart
or large blood vessels during the fetal period, or the automatically closed channel fails
to close after birth. CHD has become China’s most important birth defect, with an
incidence rate about 1%, and the incidence in other parts of the world is similar [1, 2].
If the CHD is examined early and treated promptly, it can restore CHD back to normal
[3]. The pediatric echocardiography is a commonly used medical imaging method for
the CHD diagnosis. The physiological parameters by pediatric echocardiography can
help diagnose and make treatment plans [4], while the accurate segmentation of cardiac
anatomy is a key step for measuring physiological parameters. Currently, the CHD
diagnosis is mainly based on the manual segmentation of sonographers, which has the
low efficiency and the segmentation result is heavily dependent on the experience of the
sonographers. The automated segmentation task of pediatric echocardiography has
always been a hot topic for researchers.

For the cardiac segmentation, more and more researchers have focused on the
convolutional neural network (CNN) and its variants since they have made remarkable
achievements in the field of medical image analysis [5]. As one of the most segmen-
tation structures, U-Net architecture has been widely used in medical image segmen-
tation because of its flexible structure. For example, Zyuzin et al. [6] adopted U-Net
architecture for echocardiographic left ventricle (LV) segmentation, and achieved good
results of segmenting LV. Leclerc et al. [7] used U-Net and U-Net++ to segment LV of
the echocardiogram, and measured the end-diastolic and end-systolic LV volumes,
followed by the ejection fraction of the LV. Although the accuracy is lower than the
ground truth, it opens the door to the field of automatic segmentation and echocar-
diography measurement. However, all these works are aimed at adult echocardiogra-
phy. Unlike adult hearts, pediatric heart volume varies with age, and the heart is smaller
than that of adult, which makes segmentation more difficult. Measuring the function of
left heart clinically is very import for assessing the function of the heart. Hence,
segmenting the LV and left atrium (LA) regions of the pediatric echocardiogram are
quite important as well.

In Fig. 1, the first line indicates the pediatric echocardiogram four chamber (4CH)
view and the second line shows the manual segmentation labels of LV and LA. The
size of the LA changes more obviously during the cardiac cycle, and the boundary is
more blurred. Hence, the accurate segmentation of LV and LA in 4CH echocardiog-
raphy images has the following challenges: (1) Unclear boundaries due to noise and
shadowing. (2) The size of the heart is different for everyone. (3) The size of the
ventricles and atrium changes during each cycle of the heart. Based on the experience
of our previous works, a wider network can learn more useful features and result in
better segmentation results. Goodfellow et al. [8] proposed a generative adversarial net
(GAN), which is a generative framework that uses generator and discriminator against
each other to produce a better model. For the first time, Xue et al. [9] introduced
adversarial neural network into medical image segmentation. By calculating multi-scale
loss, the generator and discriminator are forced to learn more features of close and long
distances, making the segmentation results better. In this paper, we propose a novel
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CNN architecture using the FCN and U-Net networks to widen the network in parallel,
which can extract more useful features. In order to achieve better segmentation per-
formance of the network, the GANs framework is used to train the network. In order to
extract both global and local features, we multiply the segmentation result by original
image and label image, and calculate multi-scale l1 loss. In order to learn more spatial
features, the original image is connected with label image and segmentation result by
width respectively, and the connection results are input to the discriminator. This will
enable the model to segment the edges better. We test the proposed method on our own
pediatric echocardiographic dataset, and find that the proposed method can reduce the
influence of the changes of the left heart size and achieve better segmentation on the
left heart region.

2 Method

2.1 Overview

Figure 2 demonstrates our proposed DNGAN architecture. DNGAN consists of one
generator and two discriminators, the generator is composed of parallel fully convo-
lutional network (FCN) and U-Net, FCN and U-Net extract features from image sep-
arately, multiply the extracted features elementally. This allows the generator to extract
rich information and make the generator’s segmentation results better. The structure of
the two discriminators is the same. The segmentation result is multiplied by original
image and label image respectively, and the results are input into the discriminator one
to calculate multi-scale l1 loss to force the generator and discriminator to learn both
global and local features. The original image is connected with label image and seg-
mentation result by width respectively, and the connection results are input to dis-
criminator. Hence more spatial information can be learned.

Fig. 1. The pediatric echocardiogram 4CH view is illustrated in the first line and the obvious
noise is circled in red, the second line shows the manual segmentation labels of LV (in red) and
LA (in green). (Color figure online)
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2.2 Generator

The generator is an end-to-end network that inputs original image and generates a
segmentation mask. Throughout the development of the entire neural network, the
wider network makes it perform better by extracting more useful information. There-
fore, we use the parallel dual networks as generators.

FCN [10] is a full convolutional network without a fully connected layer, which
can adapt to any picture size input. FCN is an end-to-end network using original image
as input and the segmentation result as output. By classifying the pixels of the image,
semantic level image segmentation is achieved. In the feature extraction part, the
original images are convolved by 3 � 3 kernel, convolution layer followed by batch
normalization (BN) [11] and rectified linear unit (ReLU). BN layer is used to accelerate
convergence and reduce over-fitting problems, and ReLU function can improve the
nonlinearity of network. Down-sampling uses max pooling with size of (2, 2) and
deconvolution is implemented in the up-sampling. The deconvolution kernel size is
3 � 3 and stride is 1.

The U-Net [12] network is similar to FCN, in which down-sampling first, and then
up-sampling to the original size. In the feature extraction part, we use a 3 � 3 filter
with stride = 1 like in FCN, convolution layer followed by BN and ReLU layers.

lm

lD2

lossD

C
N
N

FCN

U-Net

mask

Generator Discriminator1

Discriminator2

Original image

Label image

Convolution layer

Element-wise multiply

Concatenation

Add together

DNGAN

C
N
N

Fig. 2. Overview of the DNGAN, generator consists of two nets: FCN and U-Net. These two
nets respectively extract features, and then fusion is adopted on these two nets. Discriminator has
two identical CNN networks, each of them calculates the loss function, and then the loss is added
and backward to generator.
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Down-sampling uses max pooling with size of (2, 2). In the up-sampling part, we use
the method of bilinear interpolation. The method of skip connection is adopted between
down-sampling and up-sampling. The feature map is cropped to ensure the same size
before being concatenated to each other.

After the original image passes through FCN, the feature map f1 is obtained. After
the original image passes through U-Net, the feature map f2 is obtained, and then f1 and
f2 are multiplied. Hence, the final feature map FG generated by the generator is:

FG ¼ f1 � f2 ð1Þ

2.3 Discriminator

The discriminator is a six-layer convolutional neural networks and convolved by three
kernels with size of 7 � 7, 5 � 5, and 3 � 3, respectively. Convolution layer is fol-
lowed by batch normalization, and ReLU is replaced with LeakyReLU, which can
effectively prevent the issue of gradient sparse. The feature maps of all layers are finally
concatenated together, which can fuse features of different scales. By calculating multi-
scale l1 loss, it can capture long distance and short distance features, making seg-
mentation results better. In order to study more spatial feature, the original image is
connected with label image and segmentation result by width, respectively, and the
connection results are input to the discriminator to calculate the loss. The two CNN
networks have the same structure but the calculated loss functions are different. In
details, the discriminator1 calculates the multi-scale loss, while the discriminator2
calculates the MESLoss and BCELoss.

2.4 Loss Function

The loss function of conventional GANs is defined as:

min
G

max
D

V D;Gð Þ ¼ Ex�Pdata xð Þ logD xð Þ½ � þEz� pz zð Þlog 1� D G zð Þð Þð Þ� ð2Þ

In this function, x is the real image, and z is a random input for the generator, G zð Þ is
the generated mask, D xð Þ indicates the probability that the discriminator discriminates
whether the x is true, D G zð Þð Þ indicates the probability that the discriminator dis-
criminates whether the mask is true. The network achieves a balance by advertise learn.
In our proposed DNGAN, the loss function is defined as:

min
G

max
D

L D; Gð Þ ¼ 1
N

XN

n¼1
lmðfD1 xn � G xnð Þð Þ; fD1 xn � ynð ÞÞþ lcos G xnð Þ; ynð Þþ lD2 G xn; ynð Þð Þ ð3Þ

In this function, given a dataset with N training images xn and the corresponding
ground truth label maps yn, where lm is the mean absolute error, lm can be described as:
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lm fD xð Þ; fD x0ð Þð Þ ¼ 1
L

XL

i¼1
j f iD xð Þ � f iD x0ð Þ�� ��j1 ð4Þ

where fD xð Þ represents the feature extracted by the discriminator D, L represents the
total number of layers of the discriminator, f iD xð Þ represents the feature learned by the
i-th layer, lcos is a typical cross entropy loss, which can be described as:

lcos ¼ � 1
N

X
i
log

exp pið ÞP
j exp pj

� � ð5Þ

where pi is the probability distribution of prediction result, pj is probability distribution
of label maps. lD2 is the second loss function of the discriminator, and the discriminator
discriminates whether the input image is a generated mask or a truth label. The loss
function consists of two parts, the first part is to calculate the loss function of the input
ground truth. We use MESLoss and the formula is:

lossd1 ¼
PN

i¼1 xi � yið Þ2
N

ð6Þ

where x is the ground truth, y is the same as x, all tensors with a value of 1, i indicates
the position of the element. The second part calculates the loss function of the gen-
erated mask input discriminator. We use BCELoss and the formula is:

lossd2 ¼ � yilogxi þ 1� yið Þlog 1� xið Þ
wi

ð7Þ

where x is generated mask, y is the same as x, all tensors with a value of 0, i indicates
the position of the element. Finally, we define lD2 as:

lD2 ¼ lossd1þ lossd2
2

ð8Þ

3 Experiments and Results

3.1 Dataset and Implementation

The dataset we trained and tested includes a total of 87 pediatric echocardiographic
videos, which are collected from the local hospital. The collected subjects are healthy
child aged from 0 to 10 years. Each video has at least 24 frames and contains a
complete cardiac cycle. We randomly select 67 videos to extract 1765 images as
training set, and the rest of 20 videos are decompressed 451 images as test set. The
resolution of the original image is 1016 � 708 and 636 � 432. Before training, all
images are properly center cropped. The resolution of the cropped image is 704 � 704
and 448 � 448.

118 L. Guo et al.



All experiments are conducted on a computer with Intel(R) Xeon(R) CPU E5-2620
v4 @ 2.10 GHz, GPU NVIDIA TITAN Xp, and 64G of RAM, using PyTorch deep
learning framework. In the training phase, we set the initial learning rate of the gen-
erator to 1e-3, and gradually falling during training. The stochastic gradient descent
(SGD) is utilized for optimization and updating weights. We set the momentum = 0.99.
While training the discriminator, we initialize the learning rate to 1e-4. The adaptive
moment estimation (Adam) is utilized for optimization and updating weights. To
evaluate our approach, we use the Dice index, Jaccard similarity coefficient, Recall and
Precision as evaluation indices.

In order to verify the effectiveness of our proposed approach, we design and complete
the following experiments. The performances of FCN and U-Net networks are firstly
evaluated. In order to verify that the wider network has better performance, we use two
parallel FCN, two parallel U-Net, one FCN and one U-Net to expand the network and
evaluate their performance separately. We train the network in adversarial framework to
verify its effectiveness. The performance of different networks is shown in Table 1.

In this table, U_UNet means parallel U-Net, F_FNet means parallel FCN, UmulF
means parallel FCN and U-Net and then the extracted features are fused by the multiply
method, UmulF_G indicates that the UmulF network is trained with proposed GAN
network framework. In order to find the best way to fuse network features, we perform the
following experiments. We multiply the feature elements of FCN and U-Net networks,
add the corresponding elements and concatenate them by channel, and thenwe use a 1X1
convolutionwith a stride = 1. The different fusionmethods of the network are put into the
proposed GAN framework for training, and the comparison results are shown in Table 2.

Table 1. Segmentation performance comparison of different networks.

Network Dice Jaccard Recall Precision

LV LA Mean LV LA Mean LV LA Mean LV LA Mean

U-Net 0.918 0.846 0.882 0.853 0.748 0.800 0.953 0.899 0.926 0.894 0.831 0.863
U_UNet 0.923 0.868 0.896 0.860 0.778 0.818 0.918 0.898 0.908 0.932 0.862 0.897

FCN 0.927 0.847 0.887 0.867 0.751 0.809 0.942 0.892 0.917 0.918 0.840 0.879
F_FNet 0.945 0.893 0.919 0.898 0.813 0.855 0.937 0.919 0.928 0.956 0.883 0.920

UmulF 0.945 0.900 0.922 0.896 0.824 0.860 0.934 0.884 0.909 0.959 0.930 0.945
UmulF_G 0.945 0.901 0.923 0.897 0.824 0.861 0.938 0.898 0.918 0.955 0.918 0.936

Table 2. Network performance comparison with different fusion methods.

Network Dice Jaccard Recall Precision

LV LA Mean LV LA Mean LV LA Mean LV LA Mean

UmulF 0.945 0.900 0.922 0.896 0.824 0.860 0.934 0.884 0.909 0.959 0.930 0.945
UmulF_G 0.945 0.901 0.923 0.897 0.824 0.861 0.938 0.898 0.918 0.955 0.918 0.936

UaddF 0.946 0.896 0.921 0.898 0.817 0.857 0.942 0.912 0.927 0.953 0.895 0.924
UaddF_G 0.947 0.889 0.917 0.900 0.806 0.854 0.950 0.914 0.932 0.947 0.884 0.916

UcatF 0.943 0.895 0.919 0.893 0.817 0.855 0.947 0.904 0.926 0.942 0.902 0.922
UcatF_G 0.944 0.897 0.921 0.896 0.820 0.857 0.947 0.910 0.928 0.945 0.901 0.923
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In Table 2, UaddF indicates that the FCN and U-Net networks are fused by the
addition method, UcatF indicates that the FCN and U-Net networks are fused by
channel. The suffix _G indicates that the network is trained with the proposed GAN
framework. The best results are bolded in Table 2. It can be observed that the per-
formance of the wider network segmentation is better. By the additional GAN network
framework, the performance is improved. The radar chart of the comparison results of
different networks segmentation performance is shown in Fig. 3. We can see that
different fusion methods have less impact on network performance, and network
segmentation performance of different widths is quite different. The visual comparison
of the segmentation results is shown in Fig. 4. On the other side, according to the
results, we find that the segmentation result of the LA is worse than that of the LV.

Fig. 3. Segmentation results of different networks in terms of a radar chart.

FCN U-Net FaddU

F_Fnet U_Unet FaddU_G

FmulU FcatU

FmulU_G FcatU_G

Fig. 4. Segmentation results of different networks, the red curve is the label marked by the
expert manually, and the green curve is the prediction result of the network. (Color figure online)
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That is because the size of LA changes more obviously than LA during the whole
cardiac cycle, and the boundary is not clear enough.

4 Conclusion

In this paper, we propose a novel adversarial framework for pediatric echocardio-
graphic segmentation. In this proposed framework, the structure of parallel FCN and U-
Net is used to widen the network. Moreover, multi-scale l1 loss is calculated so that
generator and discriminator learn more features from long distance and short distance.
Also, in this work, more spatial features are learned by concatenating the original
image with segmentation result and the dimension image by width. The dual dis-
criminator can boost the performance of the generator. Benefiting from the above
contributions, our method has achieved better results in the pediatric echocardiography
left heart segmentation task, compared to state-of-the-art methods. In the future, we
plan to further measure the volumes of LV and LA. Moreover, our proposed method is
memory consuming, we plan to use knowledge distillation to reduce memory
consumption.
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Abstract. Preprocessing and motion correction are essential steps in
resting state functional Magnetic Resonance Imaging (rs-fMRI) of the
fetal brain. They aim to address the difficult task of removing arte-
facts caused by fetal movement or maternal breathing, and aim to sup-
press erroneous signal correlations caused by motion. While preprocess-
ing standards have been established in the adult brain, motion correc-
tion of fetal rs-fMRI and subsequent interpretation of processed data is
still challenging. Here, we evaluate the effect of different preprocessing
methods and motion correction on rs-fMRI sequences by assessing repro-
ducibility of functional connectivity estimates. For slice-based motion
correction of 4D fetal rs-fMRI, we extend a high-resolution reconstruc-
tion approach presented for structural fetal MRI. Correlation, standard
deviation and structural similarity index are evaluated on the whole cor-
tex, on specific regions and at different gestational ages. Results show
improved reproducibility and signal interpretability after preprocessing
with motion correction enabling the quantification of long-range correla-
tion patterns of the developing default mode network in the fetal brain.

1 Introduction

The analysis of spatial and temporal brain signal correlations forms a key com-
ponent to understand the maturation processes of brain activity, their inter-
action and their link to cognition in the developing brain [4]. Preprocessing
methods used in functional Magnetic Resonance Imaging (fMRI) have been
developed for adult or infant brains and have recently been also applied on
c© Springer Nature Switzerland AG 2019
Q. Wang et al. (Eds.): PIPPI 2019/SUSI 2019, LNCS 11798, pp. 123–132, 2019.
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fetal rs-fMRI [4,13]. Here, motion correction is particularly important and nec-
essary, due to continuous movement of the fetus itself or causes such as mater-
nal breathing. Subsequent analysis of Functional Connectivity (FC) relies on
the assumption that measurements have neural origin, while signal disruption
and motion artifacts can artificially increase the correlation between brain voxels
even after re-alignment of image data and thus distort study results [10]. Existing
fetal studies [3,14,15,17] used different processing combinations as normaliza-
tion, smoothing, motion censoring, motion regression or motion correction. The
specific effects of these methods on the reliability of the resulting fetal rs-fMRI
signals and corresponding FC are poorly understood.

Contribution. Here, we assess the effect of state-of-the-art preprocessing tech-
niques on the reproducibility of rs-fMRI signals and the computation of short-
and long-range functional connectivity in the fetal brain, providing an evalua-
tion scheme and corresponding metrics. Jakab et al. [5] used correlation, standard
deviation and the structural similarity index as metrics for evaluating within-
subject reproducibility in diffusion tensor imaging. Inspired by this approach,
we applied these metrics on resting state fetal fMRI for the proposed prepro-
cessing pipelines. To correct for motion, we extend the 3D Motion Correction
(MC) and High-Resolution-Reconstruction (HRR) approach for fetal MRI pro-
posed in [1] for 4D fetal rs-fMRI. Quality assessment of the signal is a necessary
step, since there exists no standardized pipeline for fetal fMRI preprocessing.
We present different quality assessment schemata to evaluate the signal before
and after different preprocessing approaches on the cortex, on specific regions
and age related dependencies. The proposed reproducibility evaluation scheme
is introduced in Sect. 2. The evaluation results are presented in Sect. 3 and in
Sect. 4 this work concludes with a discussion of optimal preprocessing of fetal
rs-fMRI and discussion of possible future directions.

2 Methodology

In this section, the proposed evaluation framework and slice-based motion correc-
tion of 4D fetal rs-fMRI is summarized. Subsequently, the proposed signal qual-
ity assessment strategy is presented. The study population and imaging protocol
used for evaluation is introduced in Sect. 3.

Structural Preprocessing: Fetal MRI preprocessing included atlas-based
alignment, brain segmentation, generating of cortex meshes [11] and manual
registration with functional data.

Preprocessing Pipelines: We incorporated 7 different fMRI preprocessing
pipelines (cf. Table 1 for more detail) into the reproducibility test framework
proposed. Inspired by [9] we used combinations of bias field correction [19], slice
timing correction [6], high resolution 4D motion correction (see Sect. 2.1 for
detailed information) and motion regression [9].
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2.1 4D High Resolution Motion Correction (HRMC)

In this work, two different HRMC strategies are proposed: (1) Volume-to-Volume
(V2V) and (2) Slice-to-Volume (S2V) HRMC for fetal brain rs-fMRI. Volume-
to-Volume HRMC is performed by rigidly registering each stack (time point)
individually to a target fMRI stack using symmetric block-matching based on
normalized cross correlation [8]. For individual Slice-to-Volume HRMC, a higher-
resolution reference volume is estimated by using the first 15 time points to create
a 1 mm isotropic volume with the super-resolution reconstruction framework [1],
whereby three two-step motion-correction/reconstruction cycles are performed.
Subsequently, all slice stacks each acquired at the same time point are rigidly
registered to this higher-resolution reference using normalized cross correlation
as similarity measure. The final volumes are reconstructed on the original grid
by solving the slice acquisition model [1,2] in a least-squares formulation using
first-order Tikhonov regularization, i.e.

min
x≥0

( K∑
k=1

1
2
‖yk − Akx‖2�2 +

α

2
‖∇x‖2�2

)
, (1)

for all individual slices xk, k = 1, . . . , K associated with a single time point. This
takes into account either the obtained Volume-to-Volume or Slice-to-Volume
motion estimates for the linear blurring and downsampling operator Ak [1].

Table 1. Functional preprocessing pipelines incorporated into the framework proposed.
Each pipeline has different combinations of bias field correction (BFC), slice timing
correction (STC), Slice-to-Volume motion correction (S2V), Volume-to-Volume motion
correction (V2V) and motion regression (MR)

BFC STC BFC+STC STC+BFC S2V V2V MR

Pipeline 1 (P1) �
Pipeline 2 (P2) �
Pipeline 3 (P3) �
Pipeline 4 (P4) �
Pipeline 5 (P5) � �
Pipeline 6 (P6) � �
Pipeline 7 (P7) � � �

2.2 Short-Range and Long-Range Connectivity Computation

The Pearson correlation coefficient is computed between the time course t (t =
1, . . . ,M ;M is the number of time frames) of each brain node xi(t) and xj(t)
(i, j = 1, . . . , N , where N is the number of nodes observed) [7,12]:

CMt =
∑

[(xi(t) − x̄i)(xj(t) − x̄j)]√∑
[(xi(t) − x̄i)2(xj(t) − x̄j)2]

(2)
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As a result an N ×N correlation matrix CMt for every subject S was obtained,
with x̄i, x̄j the mean node intensity across all time points at position i and j. To
define short- and long-range connectivity, we calculate the Euclidean distance
(ED) between coordinates of nodes. For every cortical node, we count high corre-
lating time courses (threshold ≥ 0.4), and assign them to short- and long-range
splitting at a distance roughly equivalent to 15 mm in an adult brain [12]. This
distance is changed from 4.4 mm (gestational age of 20 weeks) to 8.8 mm (gesta-
tional age of 40 weeks) in relation to the fetal brain size, since fetus’ brains are
resampled on a standard brain (fsaverage5)1, which can introduce correlations
from nearby brain nodes [7,12].

2.3 Assessment of Reproducibility

According to [10] signal disruption and motion artifacts increase the correlation
between brain voxels and distort signals. We hypothesize that signals of two
time ranges of a subject should be more similar after preprocessing, compared
to the uncorrected signals, if artefacts are removed. Thus, we divided the rs-fMRI
associated with each fetus in two time ranges u and v. We observed that there
may be more fetal movement and maternal breathing at the beginning of the
recording session, which led us to the following definition of the two time ranges:
u = [[1, M

4 ], [2M
4 , 3M

4 ]] and v = [[M
4 , 2M

4 ], [3M
4 ,M ]] where M is the number of

time points in each dataset. For assessing the reproducibility of a subject’s signal
after preprocessing, the difference of correlations (ΔC) and standard deviations
(Δσ) between a subject’s S extracted time courses x(u) and x(v) are computed
as well as the SSIM index [5].

Correlation Difference ΔC. In a first step for xS(u) and xS(v) correlation
matrices CMS

u and CMS
v are computed following Eq. 2. Subsequently, the cor-

relation difference is computed following Eq. 3

ΔCS =
1

N2

N∑
i=1

N∑
j=1

|CMu(i, j) − CMv(i, j)| (3)

Standard deviation Difference Δσ. The standard deviation σ of a time
course t at node x of a subject is calculated using Eq. 4, where x̄ is the mean of
the time course x(t) at node x:

σt =

√√√√ 1
M

M∑
t=1

(x(t) − x̄)2 (4)

Subsequently, for every subject the standard deviation difference Δσ is computed
based on standard deviation estimates of time course u and v using Eq. 5.

Δσ =
1
N

N∑
i=1

|σu − σv| (5)

1 https://surfer.nmr.mgh.harvard.edu/.

https://surfer.nmr.mgh.harvard.edu/
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Structural Similarity (SSIM) Index. Is a quality assessment metric [5,16],
which is calculated between x(u) and x(v) for all brain nodes of a subject.

SSIM(u, v) = [l(u, v)]α[c(u, v)]β [s(u, v)]γ (6)

It consists of three terms, the luminance, contrast and structural term:

l(u, v) =
2μuμv + c1

μ2
u + μ2

v + c1
(7)

c(u, v) =
2σuσv + c2

σ2
u + σ2

v + c2
(8)

s(u, v) =
σuv + c3
σuσv + c3

(9)

where μu, μv, σu, σv and σuv are the means, standard deviations and cross
covariance. α, β and γ are used to adjust relative importance of the three terms,
where the constants c1, c2 and c3 are included to avoid term instabilities [16].

3 Results

We analysed the reproducibility of a subject’s signal after the application of 7
different preprocessing pipelines using the difference of correlations (ΔC), stan-
dard deviations (Δσ) and the SSIM index [5] as evaluation metrics (introduced
in Sect. 2.3).

Data. The study includes a total of 21 fMRI sequences from fetuses between
the 20th and 40th gestational week (GW, mean: 28.43, standard deviation: 5.43)
with normal brain development. Functional magnetic resonance imaging was per-
formed on a 1.5 T clinical scanner (Philips Medical Systems, Best, The Nether-
lands) using a sensitivity encoding (SENSE) cardiac coil with five elements (three
posterior, two anterior) wrapped around the mother’s abdomen, utilizing single-
shot gradient-recalled echo-planar imaging (EPI) and no cardiac gating with
the following setup: 50 ms echo time, 1000 ms repetition time, 3 mm slice thick-
ness, 18 slices and 96 volumes. The pregnant women were examined in the supine
or left decubitus position (feet first), and no contrast agents or sedatives were
administered. In order to receive the optimal MR signal, the coil was readjusted
depending on the position of the fetal head during the imaging procedure.

3.1 Reproducibility of Functional Connectivity on the Cortex

In Fig. 1 (upper left plot) a boxplot of the ΔC metric estimated over all subjects,
for the uncorrected signal and for the signal after every 7 preprocessing approa-
ches is visualised. The Δσ and SSIM metric are visualised in the same way in the
upper right and lower right part of Fig. 1. In case of correlation and standard
deviation a low value refers to better reproducibility, while for the similarity
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Fig. 1. Reproducibility metrics with correlation differences, standard deviation dif-
ferences and structural similarity index comparison between the uncorrected input
(UNC), bias field correction (BFC), slice timing correction (STC), Slice-to-Volume
motion correction (S2V MC), volume to volume motion correction (V2V MC) and
motion regression (MR).

index a higher value is interpreted as better reproducibility. First we evaluated
if bias field correction and slice timing correction have a positive impact on the
reproducibility. Therefore, the uncorrected signal (UNC) is preprocessed using
Pipeline P1, P2, P3 and P4 introduced in Sect. 2.

Among P1–P4, P3 shows the best result, since the correlation differences
(mean: 0.24, SD: 0.06) and standard deviation differences (mean: 3.53, SD: 1.65)
are reduced and the SSIM score shows similar results (mean: 0.23, SD: 0.17)
compared with the pipelines P1, P2 and P4. Thus, building on the P3, the Slice-
to-Volume (S2V) and Volume-to-Volume (V2V) motion correction approaches
are evaluated (P5 and P6) and visualised in Fig. 1. The correlation differences
of S2V (P5, mean: 0.21) and V2V (P6, mean: 0.21) show similar results, while
S2V leads to higher standard deviation differences (mean: 4.52), but a higher
SSIM value (mean: 0.25, SD: 0.18, Q3: 0.36) compared to V2V (mean: 0.25, SD:
0.16, Q3: 0.35). Therefore, we chose P5 as the best preprocessing pipeline. An
increase of the average SSIM mean value from 0.2 (UNC) to 0.25 is observable
after motion correction, which can be refered to a positive effect from the motion
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correction technique. Motion regression (P7) relies on the precise estimate of
motion parameters during the alignment, errors in the estimates can cause the
regression to introduce or amplify artifacts in the data leading to comparably
worse reproducibility (mean SSIM: 0.1, SD SSIM: 0.06, ΔC: 0.27, Δσ: 15.69).
In that light, using other proxy measures of motion induced signal might be a
better strategy. The three evaluation measures assess the reproducibility of signal
correlation analysis, and the overall loss of structure in the data. The value of
reproducibility as a quality measure relies on the assumption that motion is
different across the entire scan.

3.2 Reproducibility of Functional Connectivity in 7 Yeo Networks

We used the Yeo parcellation [18] to subdivide the brain into seven networks
(visual (Yeo 1), somatomotor (Yeo 2), dorsal attention (Yeo 3), ventral atten-
tion (Yeo 4), limbic (Yeo 5), frontoparietal (Yeo 6) and default mode network
(Yeo 7)). Figure 2 shows boxplots of the correlation differences over all subjects
for uncorrected (UNC, red) and Pipeline 5 (blue) for all Yeo networks. The
results indicate that the signal after applying Pipeline 5 is more reproducible
compared to the uncorrected input, since a reduced correlation difference and a
higher SSIM values are observable. Furthermore it shows consistant differences
across networks, with highest SSIM in ventral attention (mean: 0.27), limbic
(mean: 0.36) and frontoparietal networks (mean: 0.3).

P5
UNC

P5
UNC

P5
UNC

Fig. 2. Correlation differences (top), standard deviation differences (middle) and SSIM
(bottom) between the uncorrected input (UNC) and after application of Pipeline 5 for
each Yeo network. (Color figure online)
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3.3 Age-Related Reproducibility

To test if age has an influence on reproducibility, we divided our dataset into
two age ranges: GW 20–24 (6 subjects) and GW 25–40 (15 subjects), moti-
vated by pronounced cortical folding process starting around the GW 24 [11].
In both ranges, motion correction improves reproducibility, and the resulting
value ranges are largely comparable, but more data is needed to test for specific
trends. Figure 3 shows values for the default mode network (Yeo 7).

P5
UNC

P5
UNC

P5
UNC

Fig. 3. Age related correlation differences (left), standard deviation differences (mid-
dle) and SSIM value (right) in the default mode network (Yeo 7) of the uncorrected
input (UNC) and after application of Pipeline 5 (P5).

3.4 Connectivity Comparison

Finally, in the last experiment we compare the degree of short- and long-range
connectivity before and after preprocessing on every cortical surface point.
Figure 4 shows for the uncorrected input (top row) for each of the two parts
of the time course the mean short- and long-range degree value visualized on
the surface over all subjects. The bottom row shows the connectivity after the
best reproducibility preprocessing pipeline P5 including bias field, slice tim-
ing and Slice-to-Volume motion correction. The short-range connectivity (left
side) is less sensitive to motion compared to long-range connectivity (right side),
and preprocessing shows a stronger effect. In particular long-range connectivity
shows high values across the entire cortex, while after motion correction, a more
nuanced image emerges. High long-range connection areas partly correspond-
ing to the default mode network become visible, suggesting that these network
develops already during gestation. The SSIM values between the two time win-
dows on the cortex for the uncorrected input (short-range: 0.92, long-range:
0.36) and after preprocessing (short-range: 0.93, long-range: 0.26) indicate, that
with preprocessing a higher short-range reproducibility is achieved. The lim-
itations of the SSIM metric are visible in the long-range comparison, where
the motion motivated uncorrected input obtained a higher SSIM value as after
preprocessing.
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Fig. 4. Short- and long-range mean connectivity degree value visualized on the surface
between the uncorrected input and after preprocessing with Pipeline 5. Long-range
connections benefit substantially from preprocessing.

4 Conclusion

In this work, we introduced a reproduciblity test framework, for evaluating the
effect of 7 different preprocessing and motion correction pipelines for fetal rs-
fMRI sequences and corresponding functional connectivity estimates. The com-
parisons of the proposed pipelines were performed based on the reproduciblity
of correlation, standard deviation and the structural similarity index for two
parts of every time course from each subject. The combination of bias field, slice
timing and slice-to-volume motion correction performed best. We showed that
preprocessing with motion correction leads to better reproducibility results on
the whole cortex and on the Yeo 7 networks. We show that preprocessing has a
positive effect on reproducibility for in utero rs-fMRI acquisitions, and in partic-
ular that long-range connectivity is more sensitive to motion artefacts compared
to short-range connectivity patterns. Reproducible long-range connectivity are
located at the default mode network after applying preprocessing and motion
correction. For future work, we will use a greater population to increase the
generalisability and investigate how short-range an long-range patterns develop
during gestation across the cortex. We did not study the link between motion
and gestational age in this paper, but note that there might be a relationship.
Another point of future work is to take motion estimates for assessing the impact
of different levels of motion into account.
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Abstract. This paper presents a novel deformable registration frame-
work, leveraging an image prior specified through a denoising function,
for severely noise-corrupted placental images. Recent work on plug-and-
play (PnP) priors has shown the state-of-the-art performance of recon-
struction algorithms under such priors in a range of imaging applications.
Integration of powerful image denoisers into advanced registration meth-
ods provides our model with a flexibility to accommodate datasets that
have low signal-to-noise ratios (SNRs). We demonstrate the performance
of our method under a wide variety of denoising models in the context
of diffeomorphic image registration. Experimental results show that our
model substantially improves the accuracy of spatial alignment in appli-
cations of 3D in-utero diffusion-weighted MR images (DW-MRI) that
suffer from low SNR and large spatial transformations.

1 Introduction

Placental pathology, such as immune cell infiltration and inflammation [4], is
a common reason for preterm labor. It occurs in around 11% of world preg-
nancies. Diffusion-weighted magnetic resonance imaging (DW-MRI) is a non-
invasive technique that is extensively used to monitor placental health and to
assess its function throughout the entire pregnancy. However, this method is
quite susceptible to motion artifacts caused by maternal breathing and fetal
movements [13]. Additionally, DW-MRI scans often suffer from noise and severe
artifacts induced by low signal-to-noise ratios (SNRs) at high b-values [22,32].
To address these issues, a noise-robust registration algorithm is needed.

Many attempts have been made to develop registration methods that are
robust to image noise [12,14,17,25]. A traditional approach integrates an image
c© Springer Nature Switzerland AG 2019
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https://doi.org/10.1007/978-3-030-32875-7_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32875-7_15&domain=pdf
https://doi.org/10.1007/978-3-030-32875-7_15


134 J. Xing et al.

reconstruction algorithm for removing noise and artifacts as a pre-processing step
to the registration task [29]. Further improvements can be achieved by develop-
ing a joint framework that alternates between image reconstruction and regis-
tration [12,16,28,32]. The most widely used image reconstruction algorithms
are based on optimization of an objective function that includes a regular-
ization term for mitigating noise. Recently, however, the interest in the area
has shifted towards a more flexible approach, known as plug-and-play priors
(PnP) [30], that regularizes the problem using off-the-shelf image denoising algo-
rithms. It has been shown that the combination of reconstruction algorithms with
advanced denoisers, such as non-local means [7] or block matching and 3D filter-
ing (BM3D) [11], leads to the state-of-the-art performance for various imaging
problems [8,9,18,26].

In this paper, we extend the current family of joint reconstruction-registration
algorithms by introducing a new method for deformable image registration called
PnP-RR (where RR stands for registration-reconstruction). Our algorithm lever-
ages PnP image priors, which makes it robust for registering severely noise-
corrupted images. PnP-RR is very easy to implement by using a wide variety of
existing algorithms with minimal effort to modify the infrastructure. We demon-
strate how PnP priors can be used to mix and match a wide variety of existing
reconstruction models with the state-of-the-art registration algorithm on both
2D synthetic data and real 3D images. To show the effectiveness of the algorithm
in improving the performance of spatial alignment for severely noise-corrupted
images, we test on 3D in-utero DW-MRI scans, affected by a low signal-to-noise
(SNR) ratio and large motions.

2 Background: Deformable Image Registration

In this section, we briefly review the mathematical foundation of image reg-
istration. Consider a d-dimensional image I defined as a continuous mapping
I : Ω → R

d, where Ω is the image domain. The transformation φ : Ω → Ω
deforms a source image S by function composition S ◦ φ−1, where ◦ denotes
resampling. The goal of image registration is to find an optimal transformation
φ, such that the deformed image S ◦ φ−1 is similar to a target image T .

The desired transformation φ is typically computed by minimizing an energy
function E(φ) = dist(S ◦ φ−1, T ) + reg(φ). Here, the distance function dist(·, ·)
measures the dissimilarity between two images, such as sum-of-squared differ-
ences of image intensities [3], mutual information [15], and normalized cross
correlation [1]. The regularization term reg(·) guarantees the smoothness of
the transformation. A very original function φ is defined as a linear function
φ(x) = x + u(x), where x ∈ Ω and u is a displacement vector field. With the
regularity being set to ‖Lu‖2L2 (L is a differential operator), the optimization of
the energy function E over u arrives at a solution for elastic registration [6].

However, such algorithm is not able to avoid geometric artifacts (e.g., fold-
ing, tearing, or flipping) of the transformations, especially when large defor-
mation occurs, and may destroy the topology of local structures [10]. Instead,
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an elegant algorithm called large deformation diffeomorphic metric mapping
(LDDMM) was developed to ensure a smooth and invertible smooth mapping of
φ between images [3]. The regularization term is defined as an integration over
time-dependent velocity fields derived from the transformations. We have the
objective function of LDDMM as

arg min
vt

1
σ2

∥
∥S ◦ φ−1

1 − T
∥
∥
2

L2 +
∫ 1

0

(Lvt, vt) dt, s.t.
dφt

dt
= vt(φt), (1)

where σ2 is a weighting parameter, and (·, ·) acts similar to an inner product.
The optimization of the original LDDMM is solved by gradient-based method

over the entire time sequence of vt, which is computationally expensive on high-
dimensional images (e.g., a 3D placental MRI with the size of 1283). Later, a
geodesic shooting algorithm [19,31] shows that once given an initial velocity v0,
the shortest path of φ can be uniquely determined by integrating the geodesic
evolution equation (also known as Euler-Poincare differential equation (EPDiff))
defined by

dvt

dt
= −K

[

(Dvt)T · mt + Dmt · vt + mt · div vt

]

, (2)

where K is an inverse operator of the differential operator L, mt = Lvt is a
momentum vector living in the dual space of vt, D denotes a Jacobian matrix,
and div is a divergence operator.

The optimization of Eq. (1) can be equivalently reformulated as

arg min
v0

1
σ2

‖S ◦ φ−1
1 − T‖2L2 + (Lv0, v0), s.t.

dφt

dt
= vt(φt) & Eq. (2). (3)

This effectively shrinks the searching space from a time collection of {vt} to a
single initial point v0, thus significantly reducing the computational complexity
of the entire optimization.

It has been recently demonstrated that the initial velocity v0 can be effi-
ciently captured via a discrete low-dimensional bandlimited representation in
the Fourier space [33]. We develop our model by employing this fast registration
algorithm named FLASH, which is the start-of-the-art variant of LDDMM with
geodesic shooting algorithm [34,35].

3 Our Method: Image Registration with PnP Priors

In this section, we introduce a novel noise-robust registration model that incor-
porates a PnP prior as an additional image regularizer. We show that the our
model can be implemented using two independent software modules – one for
image reconstruction and the other for image registration. Therefore, changing
the prior model only involves the implementation of image reconstruction. That
is to say, our framework can be used to match a wide variety of priors with a
suitable registration model.
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3.1 Formulation as a Proximal Algorithm

We first consider the following joint objective function that builds on Eq. (3) to
combine image regularization with deformable registration

F(v0, T̃ ) =
1
σ2

‖S ◦ φ−1
1 − T̃‖2L2 + (Lv0, v0) + λ1R(T̃ ) + λ2‖T − T̃‖2L2 , (4)

where T is the target image, T̃ is the reconstructed image, R(·) is the regulariza-
tion term characterizing the prior on the image, λ1 is the parameter controlling
the strength of regularization, and λ2 controls the fidelity of the reconstructed
and noisy images.

In order to solve the problem (4) efficiently, we adopt an alternating min-
imization approach [20], where v0 is first minimized for a fixed T̃ under the
constraints in Eq. (3) and vice versa, as follows

vk
0 = arg min

v0

F(v0, T̃ k−1), s.t.
dφt

dt
= vt(φt) and Eq. (2), (5a)

T̃ k = arg min
T̃

F(vk
0 , T̃ ), (5b)

where k denotes the k-th iteration.
By ignoring the terms independent of v0, the step (5a) can be expressed as

vk
0 = registerσ(S, T̃ k−1) = arg min

v0

1
σ2

‖S ◦ φ−1
1 − T̃ k−1‖2L2 + (Lv0, v0),

where we didn’t explicitly write the constraints for better readability. Note that
this step precisely matches the deformable image registration problem in Eq. (3).
Similarly, the step (5b) can be simplified to the following form

T̃ k = proxτR(Zk) = arg min
T̃

1
2
‖T̃ − Zk‖2L2

+ τR(T̃ ), (6)

where we define

Zk =
λ2T + (1/σ2)(S ◦ φ−1)

λ2 + (1/σ2)
and τ =

λ1

2(λ2 + (1/σ2))
.

The minimization problem (6) is widely known as the proximal operator [21]
and corresponds to an image denoising formulates as R(·) regularized optimiza-
tion. For many popular regularizers, such as �1-norm or total variation penalty,
the proximal operator either has a closed form solution or can be efficiently
implemented [2], without differentiating R(·).

3.2 Formulation as a PnP Algorithm

Our alternating minimization algorithm in Eq. 5 iteratively refines a denoised
image T̃ k by applying the proximal operator defined in Eq. (6). Recently,
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the mathematical equivalence of the proximal operator to image denoising has
inspired Venkatakrishnan et al. [30] to introduce a powerful PnP framework for
image reconstruction. The key idea of PnP is to replace the proximal operator
in an iterative algorithm with a state-of-the-art image denoiser (e.g., BM3D),
which does not necessarily have a corresponding regularization function R(·).
This implies that PnP methods generally lose interpretability as optimization
problems. Nonetheless, the framework has gained in popularity due to its effec-
tiveness in a range of applications. Additionally, several recent publications
have theoretically characterized the convergence and fixed points of PnP algo-
rithms [8,9,24,26,27].

Algorithm 1 summarizes our PnP-RR algorithm for joint image reconstruc-
tion and registration. The fixed point (v∗

0 , T̃
∗) of PnP-RR is defined by a balance

between denoising and registration operators, rather than the minimum of a cost
function. This makes the algorithm easy to adapt to specific datasets by simply
swapping denoisers or registration operators. We corroborate the performance of
PnP-RR in the next section by applying it to the challenging problem of image
registration under severe amounts of noise.

Algorithm 1. PnP-RR
1: input: Source image S, target image T , parameters λ1, λ2, and σ
2: set: τ = λ1/(2(λ2 + (1/σ2)))
3: for k = 1, 2, . . . do
4: vk

0 ← registerσ(S, T̃ k−1) � registration step
5: Zk ← (λ2T + (1/σ2)(S ◦ φ−1))/(λ2 + (1/σ2))
6: T̃ k ← denoiseτ (Zk) � denoising step
7: end for

4 Experimental Evaluation

To evaluate our proposed method, we test its performance with three existing
reconstruction algorithms - total variation (TV) [23], total generalized variation
(TGV) [5], and BM3D [11] on both synthetic 2D images and real 3D placental
DW-MRI scans with different b-values.

We compare our method with the state-of-the-art fast registration method
FLASH [34] (downloaded from: https://bitbucket.org/FlashC/flashc). In all
experiments, we set L as a Laplacian operator, e.g., L = −(α� + I)c with a
positive weight parameter α = 1.5 and a smoothness parameter c = 3.0. We set
σ = 0.015 and the number of time integration steps n = 10 across all algorithms.
We also perform registration-based segmentation and examine the resulting seg-
mentation accuracy of the algorithm. To evaluate volume overlap between the
propagated segmentation A and the manual segmentation B for placenta, we
compute the Dice Similarity Coefficient DSC(A,B) = 2(|A| ∩ |B|)/(|A| + |B|),
where ∩ denotes an intersection of two regions.

https://bitbucket.org/FlashC/flashc
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Data. For 2D synthetic images, we generate a collection of binary images with
resolution 1002. We then add white Gaussian noise with standard deviation
σ = 0.3 to the target images.

For real 3D placental DW-MRIs, two healthy pregnant subjects (singleton
pregnancies) with gestational age between 20 ± 1 weeks were recruited and con-
sented. All subjects were scanned in left lateral position during free breathing.
Echo-planar DW-MRIs were acquired on a 3T Siemens VIDA scanner with a
30 channel phase-array torso coil (FOV = 386 × 386 × 300 − 330 mm3, 3 mm
isotropic voxels, interleaved slice acquisition, TR = 14600 ms, TE = 62 ms, Flip
Angle = 90◦). Multiple scans with different b values (b = 0, 75, 100, 150 s/mm2)
were tested and the placenta were manually delineated for images with b = 0
by radiologists. All DW-MRIs are of dimension 128 × 128 × 50 and underwent
bias field correction, co-registration with affine transformations and intensity
normalization.

Experiments. We first run an experiment on 2D synthetic data registering from
a clean source image to a noisy target image, and compare the performance of
our method with the baseline algorithm FLASH. For the denoisers, we cross-
validate a variety of different parameters and set λ1 = 0.045, λ2 = 0.067 for TV.
Similarly, we have λ1 = 0.045, λ2 = 0.015 for TGV, and λ1 = 0.045, λ2 = 0.225
for BM3D. We run each algorithm till convergence.

We run similar experiments on real 3D placental DW-MRIs. MR images with
low b-value (e.g., b = 0) are considered as source images, while others with high
b-values (typically noisy images) are target images. After testing a set of different
parameters, we set λ1 = 0.0225, λ2 = 0.000225 for TV, λ1 = 0.0338, λ2 = 0.1 for
TGV, and λ1 = 0.0225, λ2 = 0.1 for BM3D. To further evaluate the registration
accuracy, we measure the Dice score by applying the estimated transformation
on manually labeled segmentations of placenta.

Fig. 1. Top: source image, clean target image, and noisy target image; Bottom: regis-
tration results from the baseline method FLASH and our model with TV, TGV, and
BM3D denoisers.
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Results. Figure 1 displays the registration results of the baseline algorithm and
our model with different denoisers. It shows that our method achieves better
transformations that nicely deform the source image fairly close to the target
image, without being affected by the noises.

Figure 2 demonstrates an example of the transformed segmentation of pla-
centa (outlined in magenta) estimated by all algorithms. It clearly shows that
the segmentations produced by our algorithm align better with the manual seg-
mentation (outlined in blue) than the baseline algorithm. Our model provides
much reliable segmentation than the baseline algorithm, especially on the left
part of the placenta where relatively large deformation occurs.

Fig. 2. Top: source and target images; Bottom: comparison of estimate segmentations
of all algorithms overlapped with manually labeled delineation. (Color figure online)

2-Steps (TV) Ours (TV) 2-Steps (TGV) Ours (TGV) 2-Steps (BM3D) Ours (BM3D)

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

Fig. 3. Comparison of averaged Dice score estimated from two-step approaches and
ours.
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Figure 3 shows another advantage of our model compared to two-step
approaches where image reconstruction is preformed before registration. We
compute average dice scores with different parameter settings on both meth-
ods. Our higher average dice scores with smaller variations indicate that the
proposed algorithm is more robust to parameter-tuning.

5 Conclusion

In this paper, we presented a novel reconstruction-based registration algorithm,
named PnP-RR, for severely noise-corrupted images. Our method is the first to
introduce PnP priors, represented through denoising functions, into the state-
of-the-art registration framework. In contrast to previous approaches, our model
has the flexibility to allow any reconstruction algorithm integrated with the reg-
istration task. This provides a much more robust way to register images with
low SNRs and large motions. The theoretical tools developed in our work are
broadly applicable to a wide variety of joint reconstruction-registration algo-
rithms. In addition, our method can be easily implemented through the current
implementation of registration and reconstruction algorithms. Future research
will involve collecting more dataset on placental images and exploring other
cutting-edge denoisers, such as deep learning based approaches.

Acknowledgement. This work was supported by NIH grant R01HD094381, NIH
grant R01AG053548, and BrightFocus Foundation A2017330S.
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Abstract. Cortical folding in humans is different for every individual,
and is associated with functional specificities. It forms mainly during the
last trimester of pregnancy, hence its development lacks description, espe-
cially in a longitudinal way. To cope with this issue, this study focused
on the evolution of the central sulcus’ variability of 71 preterm infants
studied longitudinally with MRI at 30 and 40weeks (w) postmenstrual
age (PMA). Our aim was to investigate the main shape characteristics
and whether they are encoded early on or appear closer to term birth. We
captured shape dissimilarity between the sulci using a distance matrix
after pairwise co-registration using an Iterative Closest Point algorithm.
We applied non-linear dimensionality reduction to this matrix using the
Isomap algorithm in order to capture the most discriminative shape fea-
tures among the central sulci. We characterized the three most discrim-
inative features over the group, and found that the sulci evolved con-
sistently from a given feature at 30w PMA to the 40w PMA equivalent
feature. We incidentally captured a feature that could coincide with the
most discriminative adult feature, both visually and by its asymmetry in
left and right sulcal distribution. These results captured the main shape
features of the central sulcus in preterm infants and suggest that they
are already encoded at 30w PMA.
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1 Context and Purpose of the Study

In humans, the cortical folding pattern is unique among individuals. It is complex
in shape but still presents a form of homogeneity within the species which allows
us to label homologous sulci in individuals. Sulci are especially interesting as
some have been observed to be proxies for localizing functional areas of the brain,
specifically in primary regions. In particular, the link between their shape and the
location of functional activations is being investigated [1]. Sulcal patterns have
been used for brain cartography [2], and as neurosurgical landmarks [3]. These
types of approach led to research efforts in pattern recognition, classification and
automatic sulcal labelization [4], which in turn led to more recent findings about
links between specific folding patterns and some clinical conditions (epilepsy [5],
schizophrenia [6]).

These specific folding patterns are mostly already present at birth, since cor-
tical folding mainly occurs during the third trimester of pregnancy. Therefore,
following the development of sulcation longitudinally is a complex matter, as
the transition between in utero and ex utero has an impact on cortical morphol-
ogy [7]. Consequently, the choice is left between in utero longitudinal imaging,
which is complex both because of fetal motion and the difficulty of acquisition
just before birth, and ex utero longitudinal imaging on very preterm infants,
which is the option chosen in this study.

The global complexity of the cortical gyrification and the ability to identify
homologous sulci in a group of subjects makes it necessary to dissociate the prob-
lem in less complex sub-questions. Here we focused on a given sulcus, in order to
restrict the question to a specific brain region and to enable a future extension
of this study on topical functional aspects. In particular, we chose to focus on
the central sulcus for three main reasons. First of all, it is the boundary between
the primary motor and somatosensory areas (in the pre- and post-central gyri
respectively), so it is rather easy to identify the potential functional implica-
tions linked to it. In particular, it benefits from classical somatotopic maps [8],
in which the hand area is generally localized in a protrusion in the precentral
gyrus inducing a hump on the upper part of the central sulcus referenced as the
“hand knob” [9]. Secondly, it seems a good starting point for a sulcal-specific
approach of cortical gyrification since it is one of the deepest and most stable
sulci, as well as one of the first to appear [10]. Thirdly, shape variability of
the central sulcus has already been studied on adults using a similar methodol-
ogy, linking shape with handedness [11] and confirming the match between the
anatomical “hand-knob” and the motor functional activation [1].

To investigate the shape development of the central sulcus, we observed it
at 30 weeks (w) post-menstrual age (PMA) and 40w PMA. This allowed us to
capture its shape at an early developmental stage – when the start of secondary
folding is hardly observable – and at a developed stage – when this wave is mainly
achieved while the tertiary folding is ongoing [12,13]–. As a result, in this study,
we applied non-linear dimensionality reduction to a distance matrix capturing
the intervariability of the central sulci of the preterm cohort in a descriptive aim.
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2 Materials and Pre-processing of the Data

The cohort studied was the same as that presented in a previous study about
cortical folding, risk factors and clinical outcome of very preterm children [14].
It was comprised of 71 infants with gestational age at birth between 24 and
28 weeks. Infants were scanned twice: once around 30w PMA (28.7–32.7w) and
again around term equivalent age (TEA) (40.0–42.7w). MR imaging was per-
formed on a 3-Tesla MR system (Achieva, Philips Medical Systems, Best, The
Netherlands). The protocol included T2-weighted imaging with a turbo-spin
echo sequence in the coronal plane (at early MRI: repetition time (TR) 10.085
ms; echo time (TE) 120 ms; slice thickness 2 mm, in-plane spatial resolution
0.35 × 0.35 mm; at TEA: TR 4847 ms; TE 150 ms; slice thickness 1.2 mm, in-
plane spatial resolution 0.35 × 0.35 mm).

The images pre-processing is also described in the previous study [14]. After
generating a brain mask, T2-weighted images were segmented using masks
between grey matter, unmyelinated white matter and cerebrospinal fluid using
supervised voxel classification. By adapting the anatomical pipelines of the
BrainVISA software, the inner cortical surfaces of both hemispheres were recon-
structed using these segmentations.

Using this preprocessed data, the brains were co-registered to the Talairach
space [3] in order to dismiss brain shape and size variability. We then used the
Morphologist toolbox of the BrainVISA software [15] for central sulci extraction,
as shown on Fig. 1.

Fig. 1. Inner cortical surface and sulcus extraction for a given subject (L/R: left/right,
A/P: anterior/posterior). Left: 30w PMA, right: 40w PMA. Red: central sulcus. (Color
figure online)

The right central sulci were then mirrored in order for them to have the same
spatial orientation as the left central sulci. 30w PMA and 40w PMA sulci were
classified together on the same axes, in order to ensure that we could compare
the relative positioning of the 30w PMA sulci and the 40w PMA sulci.

3 Methodology for Shape Characterization

The methodology applied in this study is inspired from a methodology assessed
for sulcal shape characterization in the adult brain [11]. It had to be adjusted
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in order to fit the problematic of a longitudinal study and to allow comparisons
to be made between sulci which presented different developmental stages. Let
nsulci be the number of sulci included for shape characterization.

3.1 Construction of a Distance Matrix for Shape Characterization

Each pair of sulci from the whole group (regardless of age and subject) was
co-registered using the Iterative Closest Point (ICP) algorithm from the python
Point Cloud Library [16] in order to capture its pairwise distance. For a given pair
of sulci labeled i and j (with (i, j) ∈ [[1, nsulci]], i �= j), the sulcus i was registered
on the sulcus j using ICP, and the residual distance di→j was computed. The
sulcus j was then registered on the sulcus i to obtain dj→i. We then defined
the pairwise pseudo-distance di,j between these sulci as the maximum of these
two distances. This differs from the adult methodology which kept the minimal
distance and not the maximum, but this would have resulted in smaller distances
between registration of 30w PMA on 40w PMA sulci than between 40w PMA
sulci pairs, independently from their shape similarity, just because of the smaller
size of the 30w PMA sulci. Hence, we defined:

∀(i, j) ∈ [[1, nsulci]]2, di,j = max(di→j , dj→i) (1)

di,j is a pseudo-distance because it does not verify the triangle inequality: with
registrations of uneven quality, it can verify di,j > di,k + dk,j . A nsulci × nsulci

symmetrical pseudo-distance matrix Mdist was then built, so that Mdist =
(di,j)(i,j)∈[[1,nsulci]]2 .

3.2 Dimensionality Reduction Using Isomap

The resulting pseudo-distance matrix captured the shape variability within the
whole cohort but was of very high dimension (for the whole group, dimension =
284 × 284; for age subgroups, dimension = 142 × 142). In order to capture the
main variability features, we had to operate a dimensionality reduction. Instead
of applying a classical Multi-Dimensional Scaling (MDS) algorithm on the origi-
nal pseudo-distance matrix, we preferred to use the Isomap algorithm [17], which
takes a geodesic distance matrix as the input for the MDS. The geodesic dis-
tance matrix is built the following way: a graph is created using every sulcus’ k
nearest neighbours and weighted by their pairwise pseudo-distances di,j , with k
as an adjustable parameter. The geodesic distance between any two sulci is then
defined as the sum of the pseudo-distances traveled by following the shortest
path in the graph between these two sulci. In our case, we computed a geodesic
pseudo-distance matrix from the Mdist matrix, which allowed us to bypass links
resulting from poor registration scores (in comparison to a classical MDS), and
we used k = nsulci − 1, which maximized the number of links in the weighted
graph between the 30w and 40w PMA sulci (instead of using of a smaller value
for k). This choice of k differs from the adult methodology which did not need
to maximize interconnection between subgroups.
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Here, we captured the first 4 axes obtained using this dimensionality reduc-
tion (the number of axes was chosen using shape considerations linked to the
study on adults). In order to visualize the shape variability captured, we pro-
jected the sulci to their position on the axes studied, after aligning them on a
template sulcus in order for their orientation to be consistent (the sulcus cho-
sen for alignment was the one minimizing the distance to every other sulcus).
Figure 2A shows an example of generated output for the first axis.

3.3 Genesis of Moving Averages for Interpretation

The visual result of the dimensionality reduction is hard to interpret because of
the complexity of the shape of individual sulci, as can be seen on Fig. 2A. Moving
averages were therefore computed in order to capture the average shape of sulci
in different regions of the axis. Ten equidistant moving averages were computed
for an axis. For each one of them, every sulcus from the graph was exponentially
weighted depending on the distance to the location of the moving average; the
closer a sulcus was to the position of a moving average, the more it affected its
shape. The weighed sulci were then all summed. The resulting weighted point
cloud was then convoluted with a 3D Gaussian in order to obtain an average
volume, which was then thresholded for 3D rendering. The threshold was chosen
at the lowest value preventing holes to appear in the moving averages. For visual
interpretation, it was generally useful to dissociate 30w PMA sulci from 40w
PMA sulci to generate the moving averages. Visual results of moving averages
for the first axis can be seen on Fig. 2B.

Fig. 2. A: projection of the sulci on the first axis of the Isomap. This axis specifically
arranges the 40w PMA sulci (yellow) on the left and the 30w PMA sulci (blue) on the
right, but it is generally not the case for other axes. B: Moving averages for the first
axis of the Isomap. Here the moving averages make sense without differentiating the
30w and 40w PMA subgroups since they are already dissociated by their positioning
on the Isomap axis. (Color figure online)
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3.4 Statistical Analyses Led on Isomap Results

In addition to visual interpretation of the Isomap classification, statistical analy-
ses were led to check for relationships between sulci subgroups and their relative
positioning on the Isomap axes. Three different tests were applied. The first one
was a Wilcoxon rank sum test comparing the median of the 30w PMA and 40w
PMA subgroups. This test allowed us to check for axes which would capture
inter-age shape differences. The second test applied was a Pearson correlation
between 30w PMA and 40w PMA sulci, to check if any axis captured shape fea-
tures which were globally maintained along the time period observed. Thirdly,
we applied an age-subgroup-specific Wilcoxon sign-rank test to compare the rel-
ative positioning of left and right central sulci at a given age. This was applied
to check for hemispheric asymmetry regarding sulcal shape. For each statistical
test, p-values were corrected for multiple comparisons (4 axes) with the Bonfer-
roni method.

4 Results

The first Isomap axis was omitted because the 30w and 40w PMA subgroups
were too dissociated due to differences in size and other shape characteristics
not relevant for this study (see Fig. 2A, difference in median between subgroups:
Wilcoxon rank sum: t = −15, p = 2.10−47).

Figure 3 displays the visual results of the second, third and fourth Isomap
axes and subsequent moving averages on the 30w and 40w subgroups after hav-
ing been classified together. Reading from left to right, the second axis seems
to pinpoint a reduction of the amplitude of the hand knob, compensated by
the apparition of a hump just under it and pushing in the opposite direction,
accompanied by the widening of a second, lower knob on the bottom part of the
moving averages. On the third axis, we observe the amplification of both the
hand knob and the hump just under it, them being almost absent on the left
and very prominent on the right. The fourth axis varies from a configuration
with the hand knob as the only hump to a configuration where a second lower
hump appears, giving a “w” shape characteristic.

We calculated the Pearson correlation coefficients for the two age subgroups
and obtained the following results: axis 2: r = 0.68 (p = 8.10−20), axis 3:
r = 0.65, (p = 8.10−18), axis 4: r = 0.70, (p = 8.10−22). These high correlations
suggest that the features captured by this method were evolving consistently
from a given shape at 30w PMA to its corresponding shape at 40w PMA.

In addition, we observed an asymmetry in positioning of the left and right
sulci on the fourth axis (Wilcoxon signed-rank test: stat = 2904, p = 4.10−5),
as shown in Fig. 4A. This axis happened to be similar to the first axis captured
previously in adults [11] and which showed the same type of asymmetry, with
the right sulci tending towards a configuration referred as “single knob” and the
left ones tending towards a configuration referred as “double knob” (Fig. 4B).
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Fig. 3. Isomap results for the axes 2 (A), 3 (B), and 4 (C). Top: projection of the 30w
PMA (blue) and 40w PMA (yellow) sulci on the axis. Middle and bottom: Moving
averages (dark grey) superimposed with corresponding sulci (light grey) on the axis.
Middle: 30w subjects, bottom: 40w subjects. The purple star indicates the hand knob,
the orange star indicates the second lower hump. (Color figure online)
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Fig. 4. A. Mean shape for right central sulci (pink) and left central sulci (green) shown
over the moving averages for axis 4. Top/bottom: 30w/40w PMA moving averages.
B. Moving averages captured for the first axis in adults (adapted from the paper on
adults [11]). The pink (resp. green) star is added to indicate the location of average
shape for right (resp. left) central sulci on dextrals. (Color figure online)

5 Discussion

In this study we have characterized the main shape variability of central sulci
in a preterm cohort, and assessed that it is captured as soon as 30w PMA.
We have also found the main variability trait reported by a previous study on
adults in infants. Regarding the methodology, we believe it has been consistently
adapted for a longitudinal study involving subgroups of sulci varying in length
and depth, by choosing to use the maximum of the distances obtained after
pairwise registration, and then by maximizing the number of nearest neighbours
on the Isomap to encourage links in the neighbours graph between 30w and 40w
PMA sulci. Nevertheless, using the maximum distance from the ICP calculation
could impact the comparison of similar-sized sulci. It would be interesting to
implement a different distance to characterize the registration by ICP (e.g. the
Wasserstein distance).

The high correlation between the positions of 30w PMA sulci and that of
40w PMA sulci suggests a consistent evolution of the main shape of the central
sulcus studied longitudinally. This gives insight about the fact that the wave of
secondary folding does not seem to drastically alter the folding dynamic of a
profound and early-developing fold such as the central sulcus. This infers that
the growth of later folds, such as the precentral and post-central sulci, is not
responsible for the main shape features of the central sulcus.

The finding of the main adult variability trait, but not encoded as the main
trait in the preterm brain, raises questions about the shape features captured
by the two prior axes: do they encode information about the developing brain?
Or are these two axes also important in adult central sulci, but downgraded in
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importance relative to the main adult trait? An additional longitudinal study
imaging subjects close to birth and at an older age (for example at adulthood)
could enable us to answer these questions.

These first shape features could also be representative of abnormalities in sul-
cation linked to severe prematurity. Indeed, preterm infants have been reported
to have an altered cortical gyrification compared to term-born infants [13], which
would remain at the adult age [18]. To our knowledge, this deviation has not
yet been quantified pattern-wise. Therefore, this study needs to be completed
with a classification of the shape of central sulci in term-born infants, in order
to assess whether the shape features captured here are representative of nor-
mal sulcation or are prematurity-induced. Furthermore, acquiring MRI data of
the current cohort at an older age (late childhood, teenage or adulthood) could
enable a quantitative comparison of shape variability between the 30w PMA,
40w PMA and more mature central sulci. This could both help investigate the
question of prematurity-induced shape variability, and confirm quantitatively
rather than visually the link between the fourth axis from this study and the
main variability trait in the mature central sulcus.

It is common for studies to assess basic folding properties such as sulcal depth
or length. In contrast, very few studies focus on characterizing the more com-
plex shape of sulci. Studies have used voxel-wise approaches to quantify folding
asymmetries in the fetus [10], in the preterm newborn [19] and in the infant [20],
yet none have reported early asymmetries in the development of the central sul-
cus. Here, the left-right asymmetry captured on the fourth axis highlights the
interest of studying the shape of sulci, especially since this asymmetry has been
shown to be linked with hand-related features on adults [1,11].

Our approach can be applied to other sulci and help to assess the dynamics
of cortical folding on a broader scale. Longitudinally evaluating the variability
of the sulci in preterm infants is a milestone towards two important directions in
the understanding of cortical development. On the one hand, it is an interesting
way to assess the sulcal folding dynamics on a general point of view, since it is an
efficient way to cope with the underlying problems of longitudinally comparing
fetal and post-natal MRI. On the other hand, it could contribute to the under-
standing of developmental abnormalities induced by severe prematurity [18].
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Abstract. Induction of labor (IOL) is a very common procedure in cur-
rent obstetrics; about 20% of women who undergo IOL at term pregnancy
end up needing a cesarean section (C-section). The standard method to
assess the risk of C-section, known as Bishop Score, is subjective and
inconsistent. Thus, in this paper a novel method to predict the failure
of IOL is presented, based on the analysis of B-mode transvaginal ultra-
sound (US) images. Advanced radiomic analyses from these images are
combined with sonographic measurements (e.g. cervical length, cervical
angle) and clinical data from a total of 182 patients to generate the pre-
dictive model. Different machine learning methods are compared, achiev-
ing a maximum AUC of 0.75, with 69% sensitivity and 71% specificity
when using a Random Forest classifier. These preliminary results suggest
that features obtained from US images can be used to estimate the risk
of IOL failure, providing the practitioners with an objective method to
choose the most personalized treatment for each patient.

Keywords: Radiomics · Ultrasound · Induction of labor · Machine
learning

1 Introduction

Induction of labor (IOL) is a very common procedure in current obstetrics;
according to the American College of Obstetricians and Gynecologists, between
20% and 40% of births are induced. IOL is the treatment that stimulates child-
birth and delivery. About 20% of women who undergo IOL at term pregnancy
end up needing a C-section, mainly due to the failure of induction, failure of
progression of labor or fetal distress.

Bishop Score is the most widely used method for the assessment of cervical
tissue properties and aims at determining the readiness of the cervix for IOL.
However, it is a subjective measure and has been found to be inconsistent [9].
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Thus, proposing a method for the proper selection of candidates for successful
IOL is an open issue in obstetric practice.

During pregnancy and delivery, the cervix transforms from a stiff, long and
closed structure to a soft, short and dilated structure that allows delivery. While
collagen is aligned and organized in the cervix of non-pregnant women, it is
more disorganized during the remodeling of the cervix during pregnancy. Water
content of the cervical tissues is also increased in the process of preparation for
delivery. All these changes are expected to be reflected in the image obtained
from a transvaginal ultrasound (US), since the consistency of tissues affects their
interaction with US waves.

Therefore, an analysis of image features extracted from US images could
reveal the cervical tissue properties before IOL, even when they are not apparent
to a human observer. This idea has been applied to study the neonatal respiratory
morbidity from fetal lung US [5], to assess the cervical structure in spontaneous
preterm births [2] or to predict the fetus gestational age [3]. In [10,11], US image
analysis is also used to predict failure of induction of labor [10,11]. In [10], local
binary patterns were used to extract texture features from the image, while in
[11], symmetric local binary patterns and Gabor filterbanks were used.

The aim of this study is to analyze the predictive value of radiomic features
extracted from transvaginal US images to predict IOL failure, and to compare
their performance against other sonographical features studied in the literature,
such as cervical length and cervical angle [1,4,8], and clinical data. To the best of
our knowledge, this is the first study that uses radiomics, in the sense of a large
amount of imaging features, to predict IOL failure, since previous works were
limited to a reduced set of texture features [10,11]. Furthermore, clinical data
is included as complementary information to the radiomics to build a predictive
model. Different combinations of imaging and clinical data and different machine
learning classifiers are explored, and an extensive comparison of the results is
provided.

2 Materials and Methods

The following subsections describe the employed data, including the imaging
and clinical data available for each patient, as well as the extracted radiomic
features, the experiments and the proposed machine learning classifiers used to
build the predictive models.

2.1 Dataset Annotation

The database used in this study consists of images and clinical data from patients
admitted for IOL at Cruces University Hospital (Bilbao, Spain). The patients
underwent a transvaginal US before IOL. Images were acquired with a Voluson
ultrasound scanner from General Electric by an expert obstetrician following
the same protocol for all patients. All images were provided in DICOM format.
Image resolution is 720 × 960 pixels with a pixel spacing of 0.11. An expert
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Fig. 1. Transvaginal ultrasound images of three patients and the selected region of
interest for radiomic analysis.

obstetrician manually selected a region of interest (ROI) delimiting the upper
part of the cervix, which is thought to have the most relevant information and
less noise for the analysis. Figure 1 shows examples of the input images and
ROIs.

Data from a total of 182 patients with US images, annotation of the ROI
and clinical data was available, from which 130 had a vaginal delivery and 52
needed a C-section. Only in 30 cases the cause of the C-section was related to a
cervical motive. Figure 2 summarizes the database composition.

Fig. 2. Database composition.

Twenty relevant clinical attributes were selected from the database to be
included in the study (such as age, weight, height, race, body mass index, num-
ber of abortions, weeks of gestation, information about previous pregnancies).
Seven sonographic measurements, manually extracted from the transvaginal US,
were also included. Sonographic features consist of different measures of the cer-
vical anatomy: basal cervical length, compressed cervical length, basal anterior-
posterior diameter, compressed anterior-posterior diameter, basal lateral diam-
eter, compressed posterior diameter, compressed lateral diameter and segment.
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2.2 Radiomic Feature Extraction

Radiomic features were extracted from the selected ROI using the PyRadiomics
[7] Python software package. First order intensity-based features and texture-
based features are included. To measure image texture, the following four matri-
ces are calculated, from which descriptive values are computed:

Gray Level Co-occurrence Matrix (GLCM): GLCM describes the second-
order joint probability function of an image region constrained by the mask.
Each (i, j)th element of this matrix represents the number of times the com-
bination of levels i and j occur in two pixels in the image that are separated
by a given distance of pixels along a certain angle. We chose a distance of one
pixel (angles are computed automatically).

Gray Level Run Length Matrix (GLRLM): GLRLM quantifies gray level
runs, which are defined as the length in number of pixels of consecutive pixels
that have the same gray value. In a GLRLM the (i, j)th element describes the
number of runs with gray level i and length j that occur in the ROI along
angle θ. The distance is 1 and angles are again computed automatically.

Gray Level Dependence Matrix (GLDM): GLDM quantifies gray level
dependencies in an image. A gray level dependency is defined as a the number
of connected voxels within a given distance that are dependent on the center
voxel. A neighboring voxel with gray level j is considered dependent on center
voxel with gray level i if |i− j| ≤ α. In a GLDM the (i, j)th element describes
the number of times a voxel with gray level i with j dependent voxels in its
neighborhood appears in image. The parameters used are distance = 1 and
α = 0.

Neighbouring Gray Tone Difference Matrix (NGTDM): it quantifies the
difference between a gray value and the average gray value of its neighbours
within a given distance (1 in this study).

By extracting mathematical descriptors from these matrices (mean, variance,
entropy, uniformity ...), a total of 58 features were obtained. Moreover, 19 first-
order features based on image intensity are included (energy, entropy, minimum,
maximum, mean, median, interquartile range, skewness, kurtosis ...), resulting
in a vector of 77 features.

2.3 Experimental Settings

Four experiments are proposed in order to find the best model for IOL failure
prediction. In each experiment the following features are employed:

– Experiment 1: clinical data (20 features).
– Experiment 2: sonographic measurements (7 features).
– Experiment 3: sonographic measurements plus clinical data (27 features).
– Experiment 4: sonographic measurements, clinical data and radiomic fea-

tures (104 features).
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For some experiments, the feature vector is too long compared to the number
of instances in the database, which can lead to poor performance of machine
learning classifiers. Therefore, a filter method is applied to rank the features and
select only the most relevant ones.

An additional problem when training machine learning classifiers for this
task is class imbalance, which can lead the classifiers to have a bias towards
the majority class. We used the Synthetic Minority Over-sampling Technique-
SMOTE [6] to generate synthetic samples from the minority class (C-section
deliveries), which are used to train the classifiers.

2.4 Machine Learning Classifiers

The following machine learning classifiers (from the Python scikit learn [12]
library) are trained and validated to compare their performance: Gaussian Naive
Bayes (GNB), Random Forest (RF), Multi Layer Perceptron (MLP), Support
Vector Machine (SVM), Decision Tree (DT) and Extra Tree (ET). Table 1 sum-
marizes the parameters used to train each classifier. Furthermore, to provide
robustness to the results, we used a 10-fold cross-validation approach.

Table 1. Relevant meta-parameters for the classifiers used in the study. GNB: Gaussian
Naive Bayes, RF: Random Forest, MLP: Multi Layer Perceptron, SVM: Support Vector
Machine, DT: Decision Tree, ET: Extra Tree.

Classifier Parameters

GNB Variance smoothing: 1e–9

RF Number of estimators: 150, impurity: Gini; minimum samples per split: 2

MLP Maximum number of iterations: 1000; number of layers: 100

SVM Kernel: radial basis function

DT Impurity: Gini; minimum samples per split: 2

ET Number of estimators: 150; minimum samples per split: 2; impurity: Gini

3 Results and Discussion

Table 2 summarizes the results obtained for each of the experiments described in
Sect. 2.3. Clinical data alone (experiment 1) does not seem to have high predic-
tive value, while the predictive value of the sonographical measurements alone
(cervical length, cervical angle ...) is shown to be better, with a maximum AUC
of 0.682 ± 0.009 when using a GNB classifier. This is consistent with previous
studies in the literature which have shown a correlation between cervical length
and other anatomical measurements and the outcome of IOL [8].

Regarding experiment 3, which combined clinical data and sonographic mea-
surements, and experiment 4, including radiomic features, similar maximum
AUC values are achieved. The RF and ET classifiers perform the best in both
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Table 2. Mean AUC (area under the ROC, Receiver Operating Characteristic, curve)
and standard deviation for the 10 k-fold cross validation for every classifier: GNB: Gaus-
sian Naive Bayes, RF: Random Forest, MLP: Multi Layer Perceptron, SVM: Support
Vector Machine, DT: Decision Tree, ET: Extra Tree. Results for all the experiments
are shown.

Classifier Experiment 1 Experiment 2 Experiment 3 Experiment 4

AUC Std AUC Std AUC Std AUC Std

GNB 0.622 0.029 0.682 0.009 0.705 0.010 0.501 0.026

RF 0.621 0.014 0.652 0.012 0.763 0.011 0.750 0.017

MLP 0.512 0.058 0.678 0.012 0.582 0.040 0,505 0.051

SVM (RBF) 0.515 0.035 0.506 0.029 0.480 0.046 0.500 0

DT 0.572 0.030 0.525 0.037 0.637 0.018 0.62 0.031

ET 0.614 0.020 0.639 0.016 0.747 0.012 0.769 0.014

cases, yielding AUC values between 0.747 and 0.769. When comparing the high-
est AUC values from both experiments (experiment 3, random forest: 0.763 ±
0.011; experiment 4, extra trees: 0.769 ± 0.014) the obtained difference is not
statistically significant (T-test, p value = 0.1934).

Nonetheless, differences in the performance of the classifiers can be seen by
analyzing their behaviour with respect to false negatives and false positives.
A more detailed analysis of the results is provided in Table 3, which shows the
sensitivity, specificity, false positive rate and false negative rate for the classifiers
that yielded the best AUCs for each experiment. Overall, false negative rate
is higher than false positive rate. From a clinical point of view, this situation
(sending a patient for IOL that ends up in C-section) is better than the opposite
(performing a C-section when IOL would have succeeded).

Thus, comparing the models from experiment 4 with experiment 3, it can
be observed that adding radiomic features increases the sensitivity and, con-
sequently, reduces the false negative rate of the classifiers. We obtain useful
information from the radiomic analysis that makes the model more balanced,
with a sensitivity of 69% and a specificity of 71%, in contrast to the rest of
models which achieve good specificity but have too low sensitivity. This means
that radiomics contain relevant information and may help avoiding unnecessary
C-sections.

It is worth noting that the same feature selection procedure was applied
to experiment 3 and experiment 4, to make the results comparable. The feature
selection process allows us to understand which features are more important. For
experiment 3 many of the high-ranked features are sonographical (5 features),
but a few clinical data are kept as well: weight, height, age, estimated fetal
weight, number of previous pregnancies, previous vaginal births, weeks of preg-
nancy. While using only clinical data is not enough to predict IOL (experiment
1), adding this information to sonopraphical measurements helps improving the
models, according to the results from experiments 2 and 3. In experiment 4, five
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Table 3. Sensitivity, specificity, false positive rate (FPR) and false negative rate (FNR)
for the best performing classifiers for every experiment

Data Classifier Sensitivity Specificity FPR FNR

Exp. 1 Clinical data RF 0.808 0.338 0.662 0.192

ET 0.423 0.885 0.223 0.635

Exp. 2 Sonographic
measurements

GNB 0.632 0.682 0.318 0.368

MLP 0.600 0.677 0.323 0.400

Exp. 3 Clinical data and
sonographic measurements

RF 0.596 0.825 0.175 0.404

ET 0.451 0.858 0.142 0.549

Exp. 4 Clinical data, sonographic
measurements and
radiomics

RF 0.692 0.715 0.285 0.308

ET 0.481 0.846 0.154 0.519

sonographic measurements are again selected, as well as some clinical variables
(height, estimated fetal weight, body mass index, number of vaginal births) and
4 radiomic values (energy, long run high gray level emphasis, run length non
uniformity, run entropy). The fact that radiomic features are high-ranked in the
feature selection process and that the results in experiment 4 are better than in
experiment 3 suggests that radiomic features from transvaginal US can be useful
for the prediction of IOL failure.

4 Conclusion

Correctly evaluating the probability of successful IOL is still an open issue in
modern obstetrics, since 20% of the induced women have a C-section and the
current evaluation method, Bishop Score, has been found to be subjective and
inconsistent. Transvaginal US is cheap and widely available at hospitals, and it is
performed routinely in other stages of pregnancy. The results presented in this
paper agree with previously reported results [4,8] in that cervical length and
cervical angle measured from the transvaginal US are useful for the prediction
of IOL failure (0.682 AUC, 63% sensitivity, 68% specificity).

Furthermore, a novel methodology for IOL failure prediction based on
radiomics has been applied to these images for the first time. We have shown
how a combination of radiomic features with cervical measurements and clinical
data can be used to build a predictive model that achieves an AUC of 0.75 with
69% sensitivity and 71% specificity. These preliminary results indicate that US
can provide the clinicians with useful information prior to the IOL.

An important limitation of our study is the size of the patient cohort, with
182 patients from which only 52 had a C-section. Furthermore, only in 30 cases
the IOL failure was related to a cervical motive. All the images come from
the same hospital and have been acquired following the same protocol with
US devices from the same vendor. Poor generalization is a common problem
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working with radiomics, as different protocols or vendors could result in different
image properties, which implies that the selected features and models could be
overfitted for the current available data. Further validation should be performed
with a larger and more diverse database to assess the robustness of the proposed
method. Future works should also develop a technique to obtain measurements
as cervical length and cervical angle automatically from the US images.
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Abstract. Open spina bifida (SB) is one of the most common congenital
defects and can lead to impaired brain development. Emerging fetal surgery
methods have shown considerable success in the treatment of patients with this
severe anomaly. Afterwards, alterations in the brain development of these
fetuses have been observed. Currently no longitudinal studies exist to show the
effect of fetal surgery on brain development. In this work, we present a fetal
MRI neuroimaging analysis pipeline for fetuses with SB, including automated
fetal ventricle segmentation and deformation-based morphometry, and demon-
strate its applicability with an analysis of ventricle enlargement in fetuses with
SB. Using a robust super-resolution algorithm, we reconstructed fetal brains at
both pre-operative and post-operative time points and trained a U-Net CNN in
order to automatically segment the ventricles. We investigated the change of
ventricle shape post-operatively, and the impacts of lesion size, type, and GA at
operation on the change in ventricle shape. No impact was found. Prenatal
ventricle volume growth was also investigated. Our method allows for the
quantification of longitudinal morphological changes to fully quantify the
impact of prenatal SB repair and could be applied to predict postnatal outcomes.

1 Introduction

Neural tube defects are some of the most common types of congenital defects and can
lead to long-term physical and cognitive disabilities as well as social and psychological
issues [1]. Myelomeningocele (MMC) and myeloschisis (MS) are open dysraphic
neural tube defects, more commonly referred to as spina bifida (SB). They occur when
the neural tube does not neurulate properly during development. Subsequently, the
exposed part of the spinal cord suffers progressive damage during gestation [26].
Advances in fetal magnetic resonance imaging (MRI) have better enabled identification
and evaluation of SB at an early gestational age. The fetus can then undergo in utero
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repair of the spinal lesion in which the anatomy is reconstructed, protecting the spinal
cord from any further damage during gestation and birth [2, 3]. The procedure often
leads to changes in brain structure, such as the reduction of the hindbrain herniation and
the restoration of intracranial cerebrospinal fluid (CSF) space [4]. Reliability of the
measurements of the posterior fossa and brain stem have been studied in SB using low
resolution images, and while the posterior fossa measurements were reliable between
observers, the brain stem measurements were not [5]. An early longitudinal MRI
imaging analysis of the brain in SB fetuses would allow the visualization and objective
quantification of changes occurring in the brain related to the pathology, and the impact
of the surgical intervention on the developmental trajectory of the central nervous
system.

Many advances have been made in the analysis of fetal MRI, especially in the
creation of high resolution 3D volumes [6–10]. However, the analysis of these high-
resolution volumes and their usage in longitudinal studies has not been explored in
detail. In addition, the automatic segmentation of 3D volumes of pathological fetal
brains and the usage of deformation-based morphometry (DBM) on fetal images to
investigate brain growth of fetuses with SB have not been explored.

Automatic segmentation of fetal MRI has been explored in both pathological and
healthy brains but has primarily focused on segmenting the fetal brain within the
maternal tissue [10–14]. The segmentation of fetal brain tissues has been investigated to
a lesser extent [12, 15–17]. However, many of these methods are atlas-based or rely on
existing priors, which do not exist for fetal SB brains. Therefore, these methods are not
yet applicable.

Another category of automatic segmentation methods that do not rely on atlases are
convolutional neural networks (CNNs). One popular type of CNN for the automatic
segmentation of medical images is the U-Net [18], which has been used for the
localization and segmentation of the fetal brain within the overall fetal image [14] and
has been tested on the segmentation of a normal fetal brain [19]. We propose to use the
same network to segment brain tissues within a high-resolution 3D reconstructed
volume of a fetal SB brain, both pre-operatively and post-operatively. These seg-
mentations can then be used to perform a detailed longitudinal volumetric study of the
brain growth and development of fetuses with SB.

In addition to a purely volumetric analysis, we propose the usage of DBM to
explore changes in brain growth rates of the SB fetus through looking at deformation
field for each subject between the pre-operative and post-operative period. This could
potentially provide insight into regional changes in fetal brain shape, which isn’t given
just by looking at the volumes alone.

We propose a pipeline of fetal MRI image analysis, from fetal brain extraction and
super-resolution reconstruction to automatic tissue segmentation of fetal SB brains and
the quantification of structural brain growth in pathological brains using DBM. Due to
its importance in SB and other congenital fetal pathologies, we demonstrate the
applicability of a U-Net CNN to segment normal and dilated ventricles for longitudinal
and volumetric analysis.
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2 Methods

2.1 Dataset

Prenatal surgical repair of the MMC or MS lesion was carried out in 93 subjects at the
Zurich Center for Fetal Diagnosis and Therapy between March 2012 and June 2019,
with both pre- and post-operative MRIs available. Multiple MRI scans of the brain
were acquired at each time point on 1.5T and 3T clinical GE whole-body scanners
using a T2-weighted single-shot fast spin echo sequence (SSFSE), with an in-plane
resolution of 0.5 � 0.5 mm and a slice thickness of 3–5 mm. The average gestational
age in weeks (GA) of the subjects at the pre-operative scans, open fetal surgery, and
post-operative scans were 23.2 ± 1.5 GA, 25.0 ± 0.8 GA, and 27.7 ± 1.2 GA,
respectively. The length and width of the overall lesion size was measured and
recorded intra-operatively for each patient. The MRI images of 15 non-pathological
fetal brains were acquired in the same manner as the fetal SB brains. These fetuses were
scanned to confirm or rule out suspected abnormalities and were determined to have
unaffected brain development.

2.2 Brain Extraction and Super-Resolution Reconstruction

We reoriented and masked the fetal brains in each of the individual low-resolution
(LR) scans for each subject using a semi-automated atlas-based custom MeVisLab
module. A super-resolution (SR) algorithm was then applied to each stack of images
(comprising of between 3 and 14 LR scans, with at least one scan in each orientation:
axial, sagittal, coronal) for each subject at both the pre-operative and post-operative
time points, creating a 3D SR volume of brain morphology [9]. See Fig. 1a for an
overview of the processing steps for each subject. The quality of the SR reconstructions
was then reviewed. Of the original 93 cases, 44 cases had both high quality pre- and
post- operative images, while the remaining cases were excluded due to excess fetal
movement present in the LR scans, causing movement artefact in the images. This
results in a sub-optimal SR reconstruction in either the pre- or post-operative time point
(see Fig. 2 for an example of SR reconstructions). The majority of poor-quality SR
reconstructions were at the pre-operative time point (36 cases), due to the relatively
small size of the fetus allowing for increased motion. SR reconstructions of the 15
fetuses with normal brain development were performed in the same manner.

2.3 Automatic Ventricle Segmentation Using U-Net

46 high quality SR volumes (15 normally developing fetal brains, 16 post-operative SB
fetal brains, and 15 pre-operative SB fetal brains; the SB fetal brains were chosen from
the larger 93 case sample set) were manually segmented into the following tissue
classes: white matter, grey matter, ventricles, cerebellum, brain stem, CSF. More cases
were not segmented due to the time-consuming nature of this task. Fetal brains from all
three categories were chosen in order to create as general of a network as possible. The
ventricle label was isolated from the overall segmentation in order to train the neural
network. 43 ventricle cases were used as the training and testing data with an 80/20
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split, with small amounts of data augmentation. The U-Net used in [14] was used and
modified, adding batch normalization as well as changing the learning rate to 10E–5,
and re-trained with the ventricle labels. The neural network was trained for 100 epochs.
The additional 3 cases (one normally developing fetal brain, one pre-operative SB, and
one post-operative SB) were preserved as an independent validation set (see Fig. 1b).
A larger validation set would be desirable, however due to the relatively small training
set we decided to maximize the cases used in the training in order to improve the
performance of the network. Once the network was trained, the ventricles of the 46
post-operative and 46 pre-operative SR volumes were segmented using the network.

Fig. 1. (a) Flowchart of processing steps at a subject level. For each subject, the post-operative
ventricles are registered to the pre-operative ventricles, creating a deformation field. The log of
the determinant of the Jacobian is calculated for each deformation field, which is then registered
to the custom template. (b) Flowchart of processing steps for training and validating the U-Net
for ventricle segmentation. One case was kept out from each group (pre- and post-operative, and
normally developing) for validation.

Fig. 2. Example SB SR reconstructions where the pre-operative reconstruction was poor (4 LR
scans used, 21.6GA) and the post-operative reconstruction was successful (5 LR scans used,
27.0GA). (a) example pre-operative LR scan, (b) example post-operative LR scan, (c) pre-
operative SR volume, (d) post-operative SR volume
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2.4 Deformation-Based Morphometry and Atlas Creation

The segmented ventricles of the pre-operative SR volume was resampled to 0.5 mm
and histogram-matched to the respective resampled post-operative SR volume [20].
Ventricle enlargement between the two time points was determined for each subject
using DBM. The post-operative image was registered to the pre-operative image using
a series of rigid, affine, and SyN registrations, creating a deformation field representing
the ventricle enlargement. This field was then transformed into the same space, using a
custom-made atlas of the post-operative SB brain. The custom atlas was created using
the ANTS template reconstruction software [21, 22]. The log of the Jacobian deter-
minant map of the deformation between the two images was calculated, and then scaled
to create a daily Jacobian, as the difference between the two imaging time points was
variable. The registrations and Jacobian calculations were performed using ANTs [23].
The transformed ventricle enlargement maps were then combined into a single 4D
volume. In addition, the volumes of the ventricles were determined using the label
maps.

2.5 Statistical Analysis

FSL’s randomise was used to perform a statistical analysis of the ventricle enlargement
maps using a general linear model with threshold free cluster enhancement [24]. We
looked at the effect on ventricle enlargement of the area of the lesion, lesion type
(MMC or MS), lesion location, and gestational age at operation. Gestational age at both
the pre-operative and post-operative time points were controlled for, as well as ges-
tational age at time of surgery.

3 Results

3.1 Ventricle Segmentation

Ventricle segmentation was assessed using the Dice overlap coefficient, comparing the
segmentation from the U-Net with the ground truth (Table 1). The segmentations
created by the U-Net can be seen in Fig. 3.

Table 1. Dice coefficients of ventricle segmentation validation of the U-Net CNN.

Image GA Dice coefficient Sensitivity Specificity

Pre-operative MS 24.4 0.94 0.95 1.00
Post-operative MMC 30.1 0.91 0.91 1.00
Normal 23 0.91 0.90 1.00
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3.2 Longitudinal Analysis

Atlas Creation
A custom template was generated for both pre-operative and post-operative fetal brains
with the average GA at each time point. The pre-operative custom template was
generated using 10 pre-operative SR volumes with an average GA of 23.1 ± 0.3, and
the post-operative template was generated using 20 post-operative SR volumes with an
average GA of 27.3 ± 0.3. There were fewer good quality SR volumes available for
the creation of the pre-operative template. However, there are fewer features and less
variation at younger gestational ages, therefore fewer subjects are required [25]. The
atlases created can be seen in Fig. 4.

Volumetry
From the segmented volumes, the volumes of each of the fetuses at both time points
were determined and can be seen in Fig. 5 and Table 2. Two cases were excluded due
to failure of the segmentation algorithm, mainly due to the quality of the SR

Fig. 3. Ventricle Segmentation with the U-Net of (a) pre-operative MS brain (24.4GA);
(b) post-operative MMC brain (30.1GA); (c) normally developing fetal brain (23GA)

Fig. 4. Custom SB templates (a) pre-operative, 23 GA; (b) post-operative, 27 GA
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reconstruction. The average daily volume growth within the ventricles was
449.8 ± 285.9 mm3. All SB fetal ventricle volumes were determined based on seg-
mentations created using the U-Net network and were reviewed for accuracy. In some
cases where there were errors, minor adjustments were made to ensure that the wide
range of ventricle volumes found reflected the pathology and not errors in segmenta-
tion. All normal fetal ventricle volumes were determined through manual segmentation
and taken from the training set used for the U-Net.

DBM
Deformation based morphometry was performed on the segmented ventricles for each
case and registered to the custom template. Mean ventricle enlargement can be seen in
Fig. 6. As expected, ventricle enlargement occurs in all sections of the ventricles.
However, some asymmetry in the ventricles is present, most likely due to the under-
lying pathology of the SB patients. The SR volumes used to create the atlas were a
subset of the overall population, and there was potentially more asymmetry in the
overall population than in the atlas subgroup.

In addition, a regression analysis using threshold free cluster enhancement was
performed investigating the impact of lesion size, lesion type, and GA at operation on
ventricular enlargement. Lesion size, lesion type. and GA at operation had no impact
on the ventricular enlargement.

Fig. 5. Left: GA vs ventricle volume. Blue: pre-operative, Red: post-operative. Right: Change
in ventricle volume for each fetus. (Color figure online)

Table 2. Ventricle volume overview for SB pre-operative, SB post-operative, and normal
groups. The SB volumes were found using the U-Net, and the normal volumes from the manual
segmentations performed for the U-Net training set.

Dataset n Average GA Average volume (mm3)

Pre-operative SB 44 23.5 ± 1.4 8953 ± 6345
Post-operative SB 44 27.5 ± 1 20480 ± 10922
Normal 15 27.9 ± 3.5 7139 ± 3063
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4 Discussion and Conclusion

In this work, we have presented a fetal MRI image analysis pipeline for fetuses with
SB, including automated fetal ventricle segmentation. We demonstrated its applica-
bility with an analysis of ventricle enlargement in fetuses with SB. Using a robust
super-resolution algorithm [9], we reconstructed fetal brains at both the pre-operative
and post-operative time point, and then used 46 manual segmentations, applied data-
augmentation, and trained a U-Net CNN in order to automatically segment the ven-
tricles within the SB SR volume. We then used DBM to investigate the change in shape
of ventricles of the SB fetuses post-operatively and the impact of lesion size, type, and
GA at operation on the change in ventricle shape, all of which had no impact.

Overall, the quality of the automatic segmentation depended on the quality of the
super-resolution reconstruction. As many subjects were excluded due to poor quality
reconstructions, it would be beneficial to improve this step in order to reduce the
number of subjects excluded.

The volumetric analysis of SR volumes using the U-Net is very promising and will
be expanded to other brain tissues. Further data augmentation methods can potentially
be applied in order to increase the training set without having to manually segment
more volumes, as it is an incredibly time-consuming process prone to error.

The use of DBM as a method of quantifying brain growth is very dependent on the
atlas creation and improved atlases would be beneficial. The pre-operative atlas is fuzzy
when compared to standard atlases of healthy fetal brains. However, the quality of the
atlas is directly related to the quality of the input volumes, which for the young pre-
operative fetal brains are not as sharp as the post-operative brains. In addition, one
cannot draw any results from only looking at the change in shape of the ventricles, as
that does not consider all the other changes in the brain occurring. A more complete
analysis would need to investigate all brain tissues.

In the future, we aim to expand the analysis of tissue brain growth of SB fetuses to
other structures of the brain. In particular, we aim to explore the post-operative changes
in the hindbrain herniation occurring in the context of Chiari II malformation. We aim
to quantify the impact of fetal SB repair, and ideally to better predict the outcome of the
surgery in order to aid prenatal parental guidance.

Fig. 6. Left: Custom pre-operative atlas; Right: Mean fetal ventricle enlargement (log of the
Jacobian determinant of the deformation field) between the pre-operative and post-operative time
points overlaid on the custom pre-operative atlas. (Color figure online)
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Abstract. Fetal functional Magnetic Resonance Imaging (fMRI) has
emerged as a powerful tool for investigating brain development in utero,
holding promise for generating developmental disease biomarkers and
supporting prenatal diagnosis. However, to date its clinical applications
have been limited by unpredictable fetal and maternal motion during
image acquisition. Even after spatial realignment, these cause spurious
signal fluctuations confounding measures of functional connectivity and
biasing statistical inference of relationships between connectivity and
individual differences. As there is no ground truth for the brain’s func-
tional structure, especially before birth, quantifying the quality of motion
correction is challenging. In this paper, we propose evaluating the effi-
cacy of different regression based methods for removing motion artifacts
after realignment by assessing the residual relationship of functional con-
nectivity with estimated motion, and with the distance between areas.
Results demonstrate the sensitivity of our evaluation’s criteria to reveal
the relative strengths and weaknesses among different artifact removal
methods, and underscore the need for greater care when dealing with
fetal motion.

Keywords: Fetal fMRI · Motion correction · Functional connectivity

1 Introduction

For over two decades, it has been known that motion artifacts cause serious dis-
ruptions to fMRI data such that even sub-millimeter head movement can add
spurious variance to true signal and bias inter-individual differences in fMRI
metrics [13,16]. The severity of this problem is especially pronounced in fetal
imaging due to unpredictable fetal movement, maternal respiration, and sig-
nal non-uniformities [10]. To date, advanced motion correction methods, often
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relying on super resolution techniques, have been proposed to address motion
artifact by reconstructing a high resolution motion-free volume from several clin-
ical low resolution MR images of a moving fetus [3,7]. As methods to counteract
motion artifacts are being developed, it is of critical importance to know if a
technique has improved the quality of data or introduced additional artifacts.
Among several quality-control benchmarks that have been recently employed in
adult studies [2,9,12], Quality Control-Functional Connectivity (QC-FC) corre-
lation was found to be the most useful metric of quality as it directly quantifies
the relationship between motion and the primary outcome of interest over a
population [13]. The QC-FC benchmark is based on the correlation between
the FC of each pair of regions and the average motion of each subjects in the
dataset to determine how that connectivity is modulated by subject motion.
Since both FC and motion are calculated as a mean value over the entire scan,
for the rest of paper we call it static FC-FD. For the purpose of assessing resid-
ual artifacts in fetuses, the average motion is insufficient, due to excessive fetal
motion, exhibiting large movement spikes and overall more continuous motion
during acquisition [10]. Furthermore, using the average motion as a means to
quantify spurious connectivity allows for no subject-specific evaluation as it pro-
vides only group specific motion dependencies. It therefore is not able to decide
whether a specific acquisition should be removed from analysis entirely, or could
be salvaged by excluding specific contaminated time-points using methods such
as scrubbing [14].

In this paper, we developed a dynamic FC-FD benchmark for systematic
evaluation of subject-specific fMRI data quality, comparing the efficacy of exist-
ing regression strategies for mitigating motion-induced artefacts. We evaluated
our benchmark on fetal fMRI as an application with irregular motion. However,
the proposed methodology is general and can be applied to any fMRI study.

2 Data, Preprocessing and Motion Correction

Experiments in this study were performed on 24 in-utero BOLD MRI sequences
obtained from fetuses between 19 and 39 weeks of gestation. None of the cases
showed any neurological pathologies. Pregnant women were scanned on a 1.5T
clinical scanner (Philips Medical Systems, Best, Netherlands) using single-shot
echo-planar imaging (EPI), and a sensitivity encoding (SENSE) cardiac coil with
five elements. Image matrix size was 144 × 144, with 3 × 3mm2 in-plane resolu-
tion, 3 mm slice thickness, a TR/TE of 1000/50 ms, and a flip angle of 90. Each
scan contains 96 volumetric images obtained in an interleaved slice order to min-
imize cross-talk between adjacent slices. Preprocessing of the resting-state data
included correction for distortions induced by magnetic field inhomogeneity, slice
timing correction, motion correction, de-meaning and removal of any linear or
quadratic trends. Motion correction comprised iterative rigid-body registration
of all slice stacks to a resulting mean volume so that the objective function of
normalized correlation ratio was optimized. After 25 iterations, a realigned ver-
sion of each volume was created using trilinear interpolation, and two slices were
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Table 1. Eight nuisance regression strategies evaluated.

Strategy Summary of regressors #R

1: GSR Mean time-series averaged across the entire brain 1

2: 2Phys Two physiological time-series computed across white
matter (WM) and cerebrospinal fluid (CSF)

2

3: 6HMP 6 motion parameter estimates derived from realignment 6

4: 6HMP+ 2Phys
+ GSR

6 motion parameter estimates, 2 physiological
compartments and GSR

9

5: 24HMP 6 motion parameters, their temporal derivatives, together
with quadratic expansions of parameters and derivatives

24

6: 24HMP+
8Phys + 4GSR

Quadratic expansion of model 4: 9 regressors, their
derivatives, quadratic terms, and squares of derivatives

36

7: aCompCor 5 principal components each from the WM and CSF [1] 10

8: tCompCor 6 principal components from high-variance voxels [1] 6

interpolated between every two slices to eliminate the effect of slice interleaving
in different stacks, tripling the slice number after motion correction.

3 Functional Connectivity After Nuisance Regression

Individual functional connectivity analysis was performed in the native func-
tional space. For this, cortical regions of interest (ROIs) were first obtained using
an automatic atlas-based segmentation of T2 scans of the same subject acquired
during the same scan session as the fMRI volumes, using a publicly available
atlas of fetal brain anatomy [4]. The resulting parcellation consists of 98 ROIs
and was mapped to the motion corrected fMRI space using a rigid transforma-
tion computed between each individual structural T2 scan and the first volume of
fMRI data. For each parcel, we calculated the mean time course of all voxels, and
applied one of eight different common nuisance regression strategies (Table 1).
The resulting time course served as basis for calculating functional connectivity
in the form of a correlation matrix estimated using Pearson’s correlation.

4 Assessing Spurious Motion Artifacts in fMRI Data

Motion correction first aims to re-align individual slices of the fMRI volume
sequence such that the anatomical position of a voxel is consistent for the whole
time-series. Then, information such as spatial displacement and other surrogate
measurements of non-neural signal are used as nuisance regressors to remove
non-physiological residual signal components. We propose a dynamic FC-FD
method based on the fact that the sources of motion in fMRI time series are non-
stationary and can potentially induce changes in FC over time [5,8]. It expands
on subject level static FC-FD [13] by taking variation of motion and FC over
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time into account. We use the association between FC variation and motion
before and after the application of each nuisance regression strategy to evaluate
its effectiveness in fMRI data of a subject. FC varies over time due to noise
and actual non-stationary neural behavior with the magnitude of variation not
differing from simulated stochastic time-series [5]. Nevertheless, we can exploit
the relationship between FC fluctuation, estimated motion, and the distance
between areas to quantify possible residual non-neural confounds in the signal
after motion correction and nuisance regression. Here we focus on comparing
different variants of the latter based on several measures. It includes three steps:
quantifying FC variation, measuring a subject-specific motion time-course, and
evaluating the association between these two together with the distance between
regions.

4.1 Capturing Fluctuations of Connectivity with a Sliding Window

We estimate fluctuating connectivity over time using a sliding window approach,
resulting in a vector of FC values for every pair of regions. Ideally, the window
should be large enough to permit robust estimation of FC, yet small enough to
detect transient effects properly. We extracted 50 overlapping windows for each
time series, corresponding to a duration of 46 s and 1 s step-size of the sliding
window. This is consistent with the majority of previously published values rang-
ing from 30- to 60-s [15]. Finally, a Fisher z-transformation was applied to all
correlations, resulting in a three-dimensional (98 × 98 × 50) tensor of FC values
for each subject.

4.2 Capturing Head Motion as Framewise Displacement Vector

For measuring subject-specific motion, we used rigid body realignment estimates
obtained from motion correction step. These six realignment parameters (trans-
lation: x, y, z; rotation: α, β, γ) describe the relative displacement of every
volume from a fixed reference volume in the scan. Based on these parameters we
calculated framewise displacement (FD) as proposed in [6]. For each sliding win-
dow, we then computed the average FD to quantify a dynamic subject-specific
vector of head motion.

4.3 Evaluating the Association Between FC and Motion

Static association is measured across the study population using the correla-
tion of mean functional connectivity and framewise displacement averaged over
the whole fMRI scan [13]. For example, 24 fetuses in our study would yield 24
mean FD and 24 FC values for a specific edge in their FC map. The corre-
lation between these two is used as surrogate for the modulated of this edge
by subject motion. [14] provides an extended rationale. To take the dynamic-
ity of motion within each fMRI sequence into account, we can calculate FC-FD
association analogously on measurements in sliding windows. For each pair of
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regions, we calculated correlation between FC and FD across the sequence of
sliding windows, resulting in a dynamic FC-FD association. This captures the
subject-specific residual effect of motion for each pair of regions. To assess the
efficacy of nuisance regression strategy, we compared the proportion of edges
with significant correlations of FC and FD as well as the median absolute value
of their distribution. Fewer significant correlations or lower absolute median of
correlations are indicative of better performance.

4.4 Evaluating the Association Between Distance and FC-FD
Correlations

Previous studies have shown that in-scanner movement primarily inflates short-
range FC while decreases long-range connectivity [13,16]. Motion thus affects
more severely the FC of short range connections, and the correlation between
FC-FD association and distance of region is a possible marker of residual motion
artifacts. To determine the residual distance-dependence effects of motion on FC
variation, We calculated the distance Dij between regions based on the center of

Fig. 1. A static benchmark reveals associations between FC and motion (FC-FD), and
the association between distance and FC-FD (FC-FD-D) on a population level. Note
that every point in the FC-FD-D plots shows the correlation between the FC of one
specific edge and the average FD over the whole sample. Quantitative values can be
found in Table 2. According to this benchmark, 6HMP outperforms other strategies, as
no significant FC-FD association remained. However, the average FC map after 6HMP
exhibits dramatically increased FC values across the cortex.
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Table 2. The summary metrics of the static FC-FD/-D association benchmark for
each nuisance regression method.

Pipeline #Edges related
to motion (%)

Absolute median
FC-FD assoc.

FC-FD-D
assoc.

No Regression 242 (5.09) −0.099 0.007

1: GSR 8 (0.17) 0.001 −0.03

2: 2Phys 361 (7.60) 0.083 −0.01

3: 6HMP 0 (0.00) 0.061 −0.03

4: 6HMP+ 2Phys+ GSR 283 (5.95) 0.071 −0.04

5: 24HMP 40 (0.84) 0.075 0.029

6: 24HMP+ 8Phys+ 4GSR 15 (0.31) 0.052 0.02

7: aCompCor 95 (2.00) 0.043 0.08

8: tCompCor 103 (2.16) 0.029 0.14

mass of each parcel resulting in distance matrix D. We then calculated the corre-
lation between the distance between each pair of parcels and the corresponding
FC-FD correlation, we call this FC-FD-D association.

5 Results

Fetal head motion were quantified by framewise displacement ranged from ∼0
to 43.06 [mm, average: 1.84 ± 2.12]. To evaluate possible covariation of fetal age
and the estimated motion, we measured the correlation between gestational week
of subjects and both mean and maximum FD. Although in our study cohort,
neither mean FD (r = 0.16, p = 0.43) nor maximum FD (r = 0.33, p = 0.12)
doesn’t show significant correlation with gestational age.

Static Benchmark of FC-FD/-D Associations. The result of static FC-
FD analysis is illustrated in Fig. 1, where for each method, in the top panel
FC-FD correlations for all possible pairs of parcels are plotted against their
Euclidean distance. The bottom panel indicates the distribution of static FC-
FD correlations across the study cohort, and the right panel shows the aver-
age connectivity matrix of the study cohort. According to this benchmark, all
regression techniques were very effective in removing the effects of head motion
on FC, reducing the number of connections that were significantly related to
motion to less than 8% with the corresponding absolute median ranging from
0.01 to 0.001. In addition, very small correlation values of the static FC-FD-D
association suggest that the relationship between motion, FC, and distance has
become negligible after applying regression techniques (see Table 2). However,
the average connectivity matrices are different, and suggest that the resulting
FC still carries motion effects, or that these artifacts have even be increased.
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Fig. 2. Dynamic FC-FD association: the proportion of functional connectivity varia-
tions that showed significant associations (p ≤ .05, uncorrected) with subject-motion
after nuisance regression. Fewer significant correlations is indicative of better perfor-
mance.

Notably, the regression with realignment parameters (3:6HMP) yielded all FC-
FD correlations near zero and removed the distance dependent slope and positive
offset in the FC-FD measure, whereas it is obvious from the resulting average
FC matrix that FC values are entirely dominated by motion-induced variance,
resulting in a strong increase in connectivity among brain regions, regardless of
their distance. This suggests that motion parameter estimates were not accurate,
or linear regression is not a suitable strategy to remove associated signal com-
ponents, and in both cases static FC-FD couldn’t correctly reveal the residual
effects of motion on data.

Therefore, although this benchmark has been successfully used in adult stud-
ies, it doesn’t establish reliable results for fetal studies. The most likely expla-
nation is that in contrast to adult studies where subjects span a wide range
of mean FD values, all fetuses show similarly high levels of motion. Hence, the
resulting FD vector for adult studies covers a large range of variability, allowing
FC-FD correlations to reveal distance-dependence, however, the narrow-ranged
FD vector over the fetal sample cannot adequately account for subject’s motion
and so the reliability of FC-FD correlations would be questionable.

Dynamic FC-FD Association. The correlation between head motion and FC
variation was measured for each subject independently across the sliding win-
dows to see if performing a certain regression strategy has decreased the effect of
motion on the data or induced additional artificial variance. Figure 2 shows the
percentage of network connections where a significant relationship (correlations
with p-value ≤ .05, uncorrected) with motion was present. The benchmark sug-
gests no regression strategy was effective, leaving the majority of network edges
with a residual relation with motion. However, aCompCor showed more homo-
geneous performance over subjects and the commonly used regression strategy
relying only on the six motion parameters fared the worst.
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Fig. 3. A density plot of FC-FD association over distance between regions. Trendlines
are shown in red. A successful strategy should remove the distance dependent slope
and positive offset in of FC-FD vs. distance. Besides, there should be a more density of
datapoints around zero axis for an effective strategy. Consistent with previous measure,
aCompCor performed better than other strategies, however, this dynamic FC-FD/-D
benchmark reveals that clear remaining signs of motion artifacts are still present in
datasets.

Dynamic FC-FD-D Association. The benchmark yields an assessment for
each subject, with 4753 FC-FD associations per subject. To provide an inter-
pretable visualization of the relationship between edge-wise FC-FD association
and region distance, we use a binned scatter plot indicating the density of points
with color (Fig. 3).

Using no regression model shows that motion influenced BOLD signal in
proximal regions homogeneously, resulting in spuriously inflated correlations
among those regions. The least effective methods in mitigating such effect were
tCompCor and 6HMP. As expected, global signal regression introduced negative
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correlations due to spurious anti-correlations [11]. aCompCor and the
24HMP + 8Phys + 4GSR model showed overall better performance relative to
other regression strategies. However, the latter is the costliest strategy in terms
of the loss of temporal degrees of freedom leading to less statistical confidence
in the analysis of fMRI data.

6 Discussion

Quality control of fetal fMRI is of utmost importance since its susceptibility to
motion artifacts can result in false observations. A variety of regression strate-
gies provides a choice for removal of non-neural fMRI signal components. As it
increasingly becomes more common to use hundreds or even thousands of scans
for a single study, it is not practical to manually assess data quality, and in
addition, manual assessments are biased and suffer from lack of reproducibility.
Group-wise assessment of motion artifacts, such as static FC-FD, can be decep-
tive when there are excessive motion spikes, or generally high motion across the
entire population, leading to a ceiling-like effect of motion on correlation values
[14]. Here, we present a dynamic FC-FD/-D benchmark for single-subject fMRI
acquisitions that at the same time enables the comparison of nuisance regression
approaches. The proposed method was applied to fetal fMRI scans as an appli-
cation of particularly pronounced and irregular motion. Results suggest that a
static FC-FD benchmark is not suitable for fetal fMRI studies, as it is not able to
capture the relationship between fetal motion and FC, leading to false negative
results.

A general limitation of benchmarks evaluating the association with motion
is their dependency on realignment based estimates of movement. This is partic-
ularly challenging for irregular and substantial motion of fetuses moving inside
the uterus and exhibiting spurious large motion spikes. We used one motion
correction algorithm to re-align the image data and obtain movement param-
eter estimates, and better results might be obtained by a different approach.
The scope of the paper is the comparison of nuisance regression approaches
given likely imperfect movement parameter estimates, and not the comparison
of the motion correction approaches themselves. A limiting factor of fetal fMRI
is the typically shorter acquisition time, resulting in limitations of FC reliability
regardless of motion. Never-the-less quantitative assessment of motion related
artifacts is feasible, and dynamic measures as those evaluated in this paper do
offer a means to compare methods. In summary, we presented a benchmark for
the efficacy of nuisance regression. Results suggest that while they improve the
signal, they are not yet adequately effective in removing motion-related variance,
given the used motion correction approach.
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Abstract. Patient-specific 3D printing of congenital heart anatomy
demands an accurate segmentation of the thin tissue interfaces which
characterise these diagnoses. Even when a label set has a high spatial
overlap with the ground truth, inaccurate delineation of these interfaces
can result in topological errors. These compromise the clinical utility
of such models due to the anomalous appearance of defects. CNNs have
achieved state-of-the-art performance in segmentation tasks. Whilst data
augmentation has often played an important role, we show that conven-
tional image resampling schemes used therein can introduce topological
changes in the ground truth labelling of augmented samples. We present
a novel pipeline to correct for these changes, using a fast-marching algo-
rithm to enforce the topology of the ground truth labels within their
augmented representations. In so doing, we invoke the idea of cardiac
contiguous topology to describe an arbitrary combination of congenital
heart defects and develop an associated, clinically meaningful metric to
measure the topological correctness of segmentations. In a series of five-
fold cross-validations, we demonstrate the performance gain produced by
this pipeline and the relevance of topological considerations to the seg-
mentation of congenital heart defects. We speculate as to the applicabil-
ity of this approach to any segmentation task involving morphologically
complex targets.

Keywords: Image segmentation · Data augmentation · Topology

Nick Byrne is funded by a National Institute for Health Research (NIHR), Doctoral
Research Fellowship for this research project. This report presents independent research
funded by the NIHR. The views expressed are those of the author(s) and not necessarily
those of the NHS, the NIHR or the Department of Health and Social Care. The authors
have no conflicts of interest to disclose.
G. Montana and A. P. King—Joint last authors.

c© Springer Nature Switzerland AG 2019
Q. Wang et al. (Eds.): PIPPI 2019/SUSI 2019, LNCS 11798, pp. 181–188, 2019.
https://doi.org/10.1007/978-3-030-32875-7_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32875-7_20&domain=pdf
https://doi.org/10.1007/978-3-030-32875-7_20


182 N. Byrne et al.

1 Introduction

Medical image segmentation is an integral part of many pipelines for the analy-
sis of clinical data. For many applications, such as the calculation of ventricular
volumes, algorithmic approaches need only achieve a segmentation that shares a
sufficient overlap with an expert defined reference standard. This can be assessed
using the Dice Similarity Coefficient (DSC). However, in other cases the topol-
ogy of the segmentation is also important. For example, topologically correct
segmentation is a prerequisite for the detailed visualisation of paediatric con-
genital heart disease (CHD) anatomy using patient-specific 3D printed models.

Segmentation of the congenitally malformed heart from CMR images is a
challenging task due to inhomogeneity in signal intensity, limited contrast-to-
noise ratio and the presence of image artefacts [5]. Furthermore, significant vari-
ation in the structural presentation of disease limits the success of conventional
methods such as atlas-based strategies [9]. Finally, patient-specific 3D print-
ing demands a high fidelity representation of disease, demonstrating anatomy
at the limit of spatial resolution. Segmentation results should accurately repre-
sent clinically meaningful thin tissue interfaces such as the atrial septum (see
Fig. 1). Inaccurate interface segmentation introduces anomalous topological fea-
tures that may falsely indicate the presence of congenital heart defects. Con-
sequently, exponents of patient-specific 3D printed heart models have hitherto
relied on manual and semi-automated segmentation methods, typically requiring
at least an hour of manual interaction per patient [5].

Convolutional neural networks (CNNs) have been successfully applied to a
multitude of image segmentation tasks, including the delineation of congenital
heart defects from CMR data. Wolterink et al. [6] trained a slice-wise, 2D CNN
using dilated convolutions. Meanwhile, Yu et al. [7] explored deep supervision [8]
and dense connectivity within 3D CNNs. Considering a limited training set of
just ten cases, these approaches achieved impressive results in terms of spatial
overlap. However, automated approaches cannot yet match the overlap perfor-
mance of the leading semi-automated procedures [3,5], and have largely paid
little attention to topological correctness.

Especially in the paediatric setting, developers of medical image segmenta-
tion algorithms cannot generally assume a database of thousands or millions
of training cases. Instead, state-of-the-art CNNs have relied on data augmenta-
tion schemes. Augmentation acts as a source of regularisation and generalisa-
tion, capturing modes of variation likely to exist in the underlying population
but which are absent from the training data. Spatial scaling, small angle rota-
tion and non-rigid deformation are attractive transformations for augmentation,
accounting for variation in patient size, orientation and posture. However, under
such schemes, and when subsequently resampled by nearest neighbour interpola-
tion, each of these can cause violations of ground truth topology near thin tissue
interfaces (see Fig. 2(b)).

Knowingly or otherwise, the best-performing previous work [6–8] has lim-
ited spatial augmentation to a subset of transformations that are topology-
preserving: orthogonal rotation and lateral inversion only. However, given that
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Fig. 1. An error in the segmentation of thin tissue interfaces such as the septum
between left and right atria (LA, RA) can give rise to topological changes and the
anomalous appearance of a congenital heart defect (yellow arrow). Whilst the DSC
between ground truth (orange) and inferred (green) blood pool is high, (c) demon-
strates the presence of five topologically and clinically relevant segmentation errors.
(Color figure online)

orthogonal rotation has no clinical rationale, this is unlikely to aid the generali-
sation of CNNs, providing a source of regularisation alone.

We hypothesise that topology-preserving label map augmentation is a pre-
requisite to any advanced provision for topologically-informed deep learning. To
investigate this hypothesis we make the following contributions in the context
of CHD segmentation from 3D CMR:

– We present a novel pipeline for the augmentation of label map data in a
topology-preserving manner.

– We present a novel metric for assessing the topological correctness of segmen-
tation results, using it to demonstrate improved performance compared with
previous work and with conventional image resampling schemes.

2 Methods

2.1 Topology-Preserving Augmentation Pipeline

The notion of simple points1 is central to the fast-marching topology correc-
tion tool developed by Bazin et al. [1]. Starting from a scalar representation of
the naively transformed object, this algorithm removes non-simple points from
all isosurfaces, correcting the topology to match a known template. Whilst cor-
recting object topology to match that of a ball is straightforward, defining the
template for morphologically complex congenital anatomy presents a greater
algorithmic challenge.

Our solution (see Fig. 2) is predicated on the idea that the whole heart blood
pool has an uncomplicated topological representation. In reality, the topology of
the blood pool label can be highly complex, demonstrating numerous fine-scale

1 Those whose binary label value can be flipped without changing the topology of the
overall label map.
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Fig. 2. Spatial transformation and nearest neighbour resampling of a ground truth
label set (a), can result in anomalous topological changes such as defects within the
atrial septum (b). Such changes can be corrected by consideration of a CCT template
(f). Having two shunts between the respectively topologically spherical left and right
heart (ventricular and atrial septal defect), this patient exhibits toroidal CCT. The
template is derived by topological erosion of a multi-class representation of the blood
pool (d, e) and subsequently transformed to the space of the augmented image (g, h).

features associated with the trabeculated, endocardial surfaces. To avoid this
complexity, we invoke a property that we refer to as cardiac contiguous topology
(CCT). This describes the structural relationships between sub-classes of the
cardiac blood pool and their communication. Importantly, the CCT captures
the appearance of thin tissue interfaces and defects by defining how and where
the heart’s chambers and vessels are contiguous.

To remove topological features associated with trabeculation, each sub-class
is corrected (via the approach in [1]) to have topology equivalent to a ball at
the outset. Once recombined, the topology of the blood pool is defined only
by the connections of each cardiac sub-class. Furthermore, we require that the
blood pool class constitutes a well-composed set2. Such label maps have the
advantageous property that repeated topological erosion is guaranteed to result
in a one voxel wide CCT template. This captures the topology of the ground
truth blood pool in a morphologically simple object free from thin interfaces (see
Fig. 2(f)).

Having established a CCT template for each ground truth label map, the two
can be spatially transformed in tandem. Whilst nearest neighbour resampling is
likely to cause topological errors in the label map, the morphologically simpler
CCT template can be resampled without incurring such changes.

We resample the transformed blood pool label using trilinear interpolation,
realising an image bounded in the range [0, 1]. Akin to a probability map, this
is corrected to share the topology of the transformed CCT template, ensuring
that the arbitrary CCT of the ground truth labels is maintained (see Fig. 2(c)).

Most often, the sub-valvular apparatus and its association with the papil-
lary muscles are only partially visualised in CMR: the true-to-life topological

2 The topology of a well-composed set is independent of neighbourhood connectivity.
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Fig. 3. The V-net architecture used. Output feature map sizes at training are indicated.

properties of the myocardium are rarely apparent. Hence, we resample the spa-
tially transformed myocardium label by naive nearest neighbour interpolation.

2.2 Study Design

Data—We employ the ten cases provided during the training phase of the
HVSMR Challenge 2016 (see [5] for acquisition and clinical details). Each
case includes an isotropic, high-resolution, axially-reformatted, 3D CMR vol-
ume acquired at Boston Children’s Hospital and demonstrating CHD anatomy.
This is tightly cropped around a provided set of manually segmented labels,
delineating the whole heart blood pool and myocardium as two separate classes.

Prior to experimentation, an expert in paediatric, CHD segmentation cor-
rected small topological errors that were present in the provided blood pool label
maps. The vast majority of corrections removed false positive voxels from within
thin interfaces. Totally, 0.098% and 0.0059% of the blood pool and myocardium
classes were changed respectively. In a series of five-fold cross-validations (train
on eight, test on two), we address a three-class segmentation problem, separat-
ing the blood pool, myocardium and background classes. In the context of a
deep CNN, the performance of the topology-preserving augmentation pipeline
is compared with a naive, nearest neighbour resampling of label data and with
augmentation by orthogonal rotation and lateral flipping only (as in [6–8]).

Architecture—We adopt the V-net architecture (see Fig. 3) in all experiments
[4], using 3D convolution to learn residual features across spatial scales.

Metrics—Overlap performance was assessed using the DSC. However, such
global metrics are largely insensitive to errors in thin interface regions. To charac-
terise the topology of the inferred blood pool, we introduce a novel, interpretable
metric. This extends the notion of simple points to connected components, algo-
rithmically counting the number of topologically relevant clusters of voxels where
inferred and ground truth segmentations disagree (see Fig. 1(c)). This approach
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is clinically meaningful as clusters of topologically relevant errors indicate the
anomalous appearance of congenital defects.

Implementation—Prior to augmentation, all CMR data were normalised
to have zero mean and unit variance. The topology-preserving augmentation
pipeline used the SimpleITK package for spatial transformation and resampling;
fast-marching topology correction [1] and associated topological operations used
relevant plugins for the Medical Image Processing And Visualisation (MIPAV)
platform. From the ten cases provided by the HVSMR Challenge, a total of
10,000 training examples were pre-computed by data augmentation according
to Fig. 2. For comparison we pre-computed a further 10,000 training examples
by augmentation using orthogonal rotation and lateral inversion alone. In both
cases we also made small perturbations to the voxel intensity of the image data.

All models were trained for 8,000 iterations using the Adam optimiser
(Pytorch default settings for learning rate and beta parameters) and the categor-
ical cross entropy loss. Each batch contained eight image patches of 96×96×96
voxels, randomly cropped from the augmented data. With respect to the sub-
mission of batches and weight initialisation, models were trained identically.

3 Results and Discussion

Our results assess the impact of two characteristics of data augmentation: (i)
whether spatial transformation is clinically informed; and (ii) whether label map
topology is preserved after transformation and resampling.

Perhaps for their ease of implementation, previous work has employed orthog-
onal rotations [6–8] and lateral inversion [7,8] only. Whilst these transformations
are guaranteed to preserve label map topology, they are not representative of
the distribution of CMR data seen in the clinic. For example, since patient posi-
tion is invariably head first-supine, orthogonal rotations are unrealistic. Though
small variations in patient orientation are observed, these are best captured by
small angle rotations. We seek to describe this distribution through the use of
the clinically justified transformations shown in Fig. 2.

With respect to spatial overlap, Fig. 4 suggests a benefit to this approach.
The DSC improves from 0.918 (0.891, 0.934)3 to 0.925 (0.918, 0.938) and from
0.839 (0.808, 0.854) to 0.868 (0.828, 0.888), for the blood pool and myocardium
classes respectively. These results suggest that unlike orthogonal rotation, clini-
cally justified transformations act not only as a source of regularisation but are
also beneficial to the generalisability of the network. Overall, these results are
consistent with, or in the case of the myocardium class, exceed those achieved
by previous work [2,6–8].

As well as spatial overlap, we are also concerned with the topology of the
inferred blood pool label map. Of particular interest are the false positive clusters
which characterise defective interface segmentations and the anomalous presence
of defects. Figure 4 demonstrates that compared to previous work, the naive

3 All results reported as median (interquartile range).
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Fig. 4. CNN segmentation performance in terms of spatial overlap (left) and topological
accuracy (right), where training data are augmented by spatial transformation which
is: CJ - clinically justified; TP - topology-preserving; CJ + TP - clinically justified and
topology-preserving *using our novel augmentation pipeline.

introduction of clinically justified transformations has a detrimental effect on
inferred blood pool topology. The median number of topologically relevant false
positive clusters increases from 9.0 (6.0, 12.0) to 12.0 (6.3, 22.5). However, when
coupled with our topology-preserving augmentation pipeline and its consider-
ation of CCT, this number falls dramatically to 6.5 (6.0, 10.5): a statistically
significant improvement according to Wilcoxon Signed Rank test (p = 0.022).
This also represents improved performance compared with the clinically unreal-
istic though topology-preserving augmentation schemes used in previous work.

These observations suggest that the topological features of inferred cardiac
segmentations are strongly dependent on the training data. Though perhaps
predictable, it must be remembered that in the context of complex morphology,
topological features can be encapsulated by relatively few voxels. In fact, across
the ten thousand augmented representations of the ten ground truth label sets
we produced, less than 0.5% of blood pool voxels were changed by our topology-
preserving pipeline.

Figure 4 shows that best performance can be attributed to augmentation
pipelines which are both clinically justified and which preserve ground truth
label topology. Our topology-preserving augmentation pipeline provides a means
of simultaneously achieving both qualities.

4 Conclusion

Our work demonstrates for the first time the importance of label map topology
to the task of CNN-based CHD segmentation from 3D CMR images of paediatric
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patients. We have presented a novel pipeline for the augmentation of training
data for CNN optimisation. Invoking the concept of CCT and developing an asso-
ciated, clinically meaningful metric, we show that the properties of this pipeline
- allowing for clinically justified data augmentation whilst preserving arbitrary
label map topology - are beneficial to the topological properties of inferred seg-
mentations. We speculate that these findings may be applicable to any medical
image segmentation task for which morphologically complex foreground objects
can be represented as a number of contiguous sub-classes.
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