
FDS-ML: A New Modeling Formalism
for Probabilistic Risk and Safety Analyses

Liu Yang(B) and Antoine Rauzy

Department of Mechanical and Industrial Engineering (MTP),
Norwegian University of Science and Technology (NTNU),

Trondheim, Norway
liu.yang@ntnu.no

Abstract. In this article, we present FDS-ML, a new modeling formal-
ism dedicated to probabilistic risk and safety analyse. FDS-ML relies
on the notion of finite degradation structures, an algebraic framework
recently introduced by the authors. FDS-ML provides a simple and clear
way to design combinatorial models.

The assessment of FDS-ML models relies on the decision diagram
technology. Classical concepts defined for fault trees, such as those of
minimal cutsets, availability, reliability and importance measures, can
be lifted up to finite degradation structures and computed by means of
decision diagram algorithms.

The article aims at presenting the most important ideas underlying
FDS-ML and its implementation. It illustrates the practical interest of
the proposed approach by means of a case study stemmed from the
ISO/TR 12489 standard.

Keywords: Probabilistic risk and safety analyses · Modeling
language · Finite degradation structures · Combinatorial models ·
Decision diagrams

1 Introduction

Probabilistic risk and safety analyses are used in virtually all industries to deter-
mine whether the risk of operating complex technical systems (aircraft, nuclear
power plants, offshore platforms. . .) is low enough to be socially acceptable.
A large number of modeling formalisms have been proposed to carry out these
analyses. They can be roughly split into two categories: combinatorial formalisms
and stochastic discrete event systems. The first category gathers Boolean for-
malisms such as fault trees [11], reliability block diagrams [4] as well as so-called
multistate systems [12]. In combinatorial formalisms, the state of the system is
described as a combination of the states of its components. The second cate-
gory gathers formalisms such as Markov chains, stochastic Petri nets, stochastic
automata networks as well as high level modeling languages such as AltaRica 3.0
[1]. They provide analysts with a much higher expressive power than the former,
c© Springer Nature Switzerland AG 2019
Y. Papadopoulos et al. (Eds.): IMBSA 2019, LNCS 11842, pp. 78–92, 2019.
https://doi.org/10.1007/978-3-030-32872-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32872-6_6&domain=pdf
https://doi.org/10.1007/978-3-030-32872-6_6

FDS-ML: A New Modeling Formalism 79

but the price to pay is a dramatic increase of the computational complexity of
assessments.

Finite degradation structures (FDS) have been recently introduced by the
authors as a unified algebraic framework for combinatorial models [13,14]. FDS
generalize existing combinatorial formalisms (both for Boolean and multistate
systems) at no algorithmic cost. Classical concepts defined for fault trees—
minimal cutsets, availability, reliability, importance measures,. . . —can be lifted
up to FDS.

FDS-ML is a small domain specific modeling language designed on top of
FDS. It makes it possible to define domains (finite degradation structures), oper-
ators, variables, formulas and eventually sets of equations.

We developed a prototype assessment engine for FDS-ML models. Algorithms
implemented in this prototype rely on the decision diagram technology. As fault
trees, the assessment process works in two steps: first, a decision diagram is built
for the (equivalent of the) top event of the model. Second minimal cutsets and
probabilistic indicators are calculated by traversing this diagram.

This article aims at presenting theoretical foundations of FDS-ML, as well
as the current version of the language. It describes also assessment algorithms.
Finally, it shows the interest of the proposed approach by means of a use case
stemmed from the ISO/TR 12489 standard [6].

The remainder of this article is structured as follows. Section 2 introduces
the use case we shall throughout the article to illustrate the concepts and
algorithms. Section 3 presents FDS. Section 4 presents the language FDS-ML.
Section 5 describes assessment algorithms and the data structures they rely on.
Section 6 presents some experimental results obtained on the case study. Finally,
Sect. 7 concludes the article.

2 Illustrative Use Case

2.1 Presentation

Safety instrumented systems (SIS) are designed to keep an equipment under
control in a safe state when some abnormal conditions occur. As illustrative use
case, we shall consider the TA4 system of ISO/TR 12489 [6], which pictured
Fig. 1.

The objective of this SIS is to protect a pipe section from overpressures. It
involves seven main components: three sensors (S1, S2 and S3), two logic solvers
(LS1 and LS2) and two actuators (the isolation valves V1 and V2) which are
activated via the solenoid valves (SV1, SV2 and SV3). When the sensors detect
an overpressure in the protected section, the logic solvers send a control signal
to the solenoid valves which close isolation valves so to release the pressure.
The logic solver LS2 works according to a 1-out-of-2 logic, i.e. that it sends the
order to close the valves if at least one out of two sensors S2 and S3 detects an
overpressure.

80 L. Yang and A. Rauzy

Fig. 1. Architecture of the safety instrumented system in TA4 of ISO/TR 12489

According to the standard IEC61508 [5], failure modes of the components of
a SIS can be classified along two directions: safe versus dangerous failure modes
and detected versus undetected failure modes.

In our example, safe failure modes are those which contribute to close the
isolation valves, even though there is no overpressure (spurious triggers), while
dangerous faire modes are those which contribute to keep the isolation valves
open, even though there is an overpressure. Logic solvers embed autotest facilities
so that their failures are immediately detected. On the contrary, failure of valves
remain undetected between two maintenance interventions. Failures of sensors
may be detected or not.

ISO/TR 12489 makes the additional following assumptions.

– The three solenoid valves are perfectly reliable.
– All other components may fail (independently). Their probabilities of failure

follow negative exponential distributions. The parameters of these distribu-
tions are given Table 1. Safe failures are always detected.

– The system is maintained once a year (once in 8760 h). The production is
stopped during the maintenance. Components are as good as new after the
maintenance.

Table 1. TA4 reliability parameters

Parameter Sensor Logic solver Isolation valve

Dangerous undetected
failure rate

3.0 × 10−7 h−1 NA 2.9 × 10−6 h−1

Dangerous detected
failure rate

3.0 × 10−5 h−1 6.0 × 10−7 h−1 NA

Safe failure rate 3.0 × 10−5 h−1 3.0 × 10−5 h−1 2.9 × 10−4

It is not possible to compare safe failures and dangerous failures, because
the risk they represent, both in terms of frequency of occurrence and severity of

FDS-ML: A New Modeling Formalism 81

consequences, are very different On the one hand, spurious triggers of SIS have
a strong economic impact, but indeed no impact on safety. On the other hand,
dangerous failures have an impact on safety. If they remain undetected, they
may lead to a catastrophic accident.

2.2 Modeling

According to what precedes, we shall consider three failure modes: safe-failure,
dangerous-detected-failure and dangerous-undetected-failure.

Usually, the different failure modes are analysed one-by-one. In our case,
this means that one would design a dedicated fault tree to describe safe-failures
of the system, another one for dangerous-detected-failures and a third one for
dangerous-undetected-failures.

The modeling framework presented in this article makes it possible to study
different failure modes by means of a unique model. This model makes in turn
possible to study, for instance, the combination of a safe-failure of a sensor and
a dangerous-detected-failure of a valve. To the best of authors’ knowledge, such
combinations have not been formally defined in the standard nor in any other
previous work.

We can read Fig. 1 as a block diagram. Each component can be seen as a
basic block, with an internal state, some input and some output flows. Failures
propagates through the block diagram. Therefore, both states and flows may
take one of the four values: W (working), safe-failure (Fs), dangerous-detected-
failure (Fdd) and dangerous-undetected-failure (Fdu).

Two fundamental operations are performed on states and flows: series com-
position, denoted by �, and parallel composition, denoted by ‖. These operators
are defined Table 2.

Table 2. Definition of � and ‖

u v
v

W Fs Fdd Fdu

u

W W Fs Fdd Fdu

Fs Fs Fs Fdd Fdd

Fdd Fdd Fs Fdd Fdd

Fdu Fdu Fs Fdd Fdu

u ‖ v
v

W Fs Fdd Fdu

u

W W Fs W W

Fs Fs Fs Fs Fs

Fdd W Fs Fdd Fdu

Fdu W Fs Fdu Fdu

It is easy to verify that the series operator � is not commutative but asso-
ciative and that the parallel operator ‖ is both commutative and associative.

Using � and ‖, the model for the whole SIS could be as sketched Fig. 2.
In the remaining part of this article, we shall study how to implement the

above ideas in the framework of FDS-ML.

82 L. Yang and A. Rauzy

Fig. 2. Model for the SIS TA4 of ISO/TR 12489

3 Finite Degradation Structures

3.1 Definition

Finite degradation structures rely on the algebraic notion partially ordered sets.
A partially ordered set (poset) is pair 〈D,�〉, where D is a set and � is a

binary relation over D, such that ∀a, b, c ∈ D:

– a � a (Reflexivity);
– if a � b and b � c, then a � c (Transitivity);
– if a � b and b � a, then a = b (Antisymmetry).

A finite degradation structure is such poset 〈D,�〉. The elements in D rep-
resent the states of a component, while the partial order � represents the degra-
dation order amongst these states, interpreted informally as “less or equally
degraded than”. For instance, a working state W is less degraded than the failed
state F , therefore W � F .

We require moreover the poset 〈D,�〉 to have a unique least element, denoted
⊥, that represents the initial working state. In other words, a finite degradation
structure is a (meet-)semi-lattice.

Four FDS are graphically represented Fig. 3. These diagrams are called Hasse
diagrams. Vertices represent states and the relation a � b is represented by
drawing as a line segment that goes upward from a to b. For simplicity, we name
the FDS in (a), (b), (c) and (d) by WF, WDF, SWF and W3F.

W3F is essentially the FDS we used Sect. 2. Its least element is the work-
ing state W . The degradation order is described by the inequalities W � Fs,
W � Fdd and Fdd � Fdu. Fs is incomparable with Fdd and Fdu since they
correspond to radically different situations. We have Fdd � Fdu because an
undetected failure is always more dangerous than a detected one.

W3F is indeed not the only way to describe the states of SIS.

3.2 Products and Abstractions

Let S : 〈DS ,�S ,⊥S〉 and T : 〈DT ,�T ,⊥T 〉 be two FDS. Then the product
S ⊗ T of S and T is the FDS 〈D,�,⊥〉 such that,

FDS-ML: A New Modeling Formalism 83

Fig. 3. Graphical representation of FDS.

– D = DS × DT , where × stands for the Cartesian product.
– ∀〈xS , xT 〉, 〈yS , yT 〉 ∈ D, 〈xS , xT 〉 � 〈yS , yT 〉 ⇔ xS �S yS ∧ xT �T yT .
– ⊥ = 〈⊥S ,⊥T 〉.

Let R, S, T be three FDS. It is easy to check that R ⊗ S and S ⊗ R on the
one hand, R ⊗ (S ⊗ T) and (R ⊗ S) ⊗ T on the other hand are equal up to an
isomorphism. In this sense, the product of FDS is commutative and associative.

Let S : 〈DS ,�S ,⊥S〉 and T : 〈DT ,�T ,⊥T 〉 be two FDS, then T is an
abstraction of S, which is denoted S � T , if there exists a surjective structure
preserving mapping from S to T , i.e. a function ϕ : S → T such that:

– x �S y ⇒ ϕ(x) �T ϕ(y) for all x, y ∈ DS .
– ϕ(⊥S) = ⊥T .
– ∀y ∈ DT ,∃x ∈ DS such that ϕ(x) = y.

Let R, S, T be three FDS. It is easy to check that if R � S and S � T
then R � T (the composition of abstraction is an abstraction).

Taken together products and abstractions make possible to define the state
of a system as a combination of the states of its component.

3.3 Finite Degradation Models

Let O be a set of operators defined over finite degradation structures and let V
be a set of variables. We assume that each variable v of V takes its value into
some finite degradation structure, called the domain of v and denoted dom(v).

Formulas over O and V are built as usual, verifying that they are well-
typed, i.e. that each operator has the correct number of arguments and that its
arguments are of the correct types.

We denote by var(f) the set of variables showing up in the formula f .
From now, we shall assume that V is decomposed into two distinct subsets

S and F, i.e. V = S � F. Variables of S and F are called respectively state and
flow variables. State variables play the role of basic events in fault trees while
flow variables play the role of intermediated events.

84 L. Yang and A. Rauzy

A finite degradation model (FDM) φ over O and V is a set of equations of
the form:

φ :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

w1
..= f1

w2
..= f2
...

wn
..= fn

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(1)

such that:

– the wi’s are variables of F;
– the fi’s are well-typed formulas over O and V;
– for any w ∈ F, there is exactly one equation w ..= f in the set whose left

hand side member is w. We say that this equation defines w and that f is
the definition of w.

Let w be a flow variable defined by the equation w ..= f and let v be a
variable. We say that f depends on the variable v if either v ∈ var(f) or there
is a flow variable u ∈ var(f) such that u depends on v.

A finite degradation model is data-flow if no variable depend on itself. In the
sequel, we shall only consider data-flow models.

The set of equations presented Fig. 2 is thus a finite degradation model. The
variables X.state are state variables and the variables X.in and X.out are flow
variables. All of the variables of this model take their values into the finite
degradation structure W3F.

A finite degradation model over O and V = S � F can thus be interpreted
as a function from

⊗
v∈S dom(v) into

⊗
w∈F dom(w) (the data-flow property

warranties that this construction is possible and uniquely defined).
If operators are correctly chosen, i.e. if they are abstractions, then the model

itself is an abstraction.
It is easy to verify that both operators � and ‖ are abstractions. Therefore

the model presented Fig. 2 can be seen as an abstraction (W3F)7 � (W3F)15,
as it involves 7 state variables and 15 flow variables.

3.4 Minimal Cutsets

Let M be a finite degradation model built over O and V = S � F.
Conventionally, we call the flow variable on which the current analysis is

focused on the observer of the analysis. Observers play the role of top-events in
fault trees.

Let w ∈ F be the observer of the analysis. According to w, the model M
can be interpreted as an abstraction φ|w :

⊗
v∈S dom(v) � dom(w). Then,

∀ y ∈ dom(w), we define the set of cutsets of w for y, denoted by CS(w, y), as
follows.

CS(w, y)
def
= {v|v ∈

⊗

v∈S

dom(v), φ|w(v) = y} (2)

FDS-ML: A New Modeling Formalism 85

A cutset CS(w, y) represents a combination of the states of components that
leads the state of the observer w to be y. Therefore, the set of minimal cutsets,
denoted by MCS(w, y), is defined as follows:

MCS(w, y)
def
= {v ∈ CS(w, y), �u ∈ CS(w, y),u � v} (3)

The minimality of cutsets is captured by the degradation order defined in⊗
v∈S dom(v). In this sense, a minimal cutset of w and y represents one of the

least degraded composition of components’ states that degrades the state of
the observer w from its least element ⊥ to y. The extension of the concept of
minimal cutsets from Boolean systems into multistate systems is one of the most
important contributions of FDS.

3.5 Probabilistic Indicators

Let S : 〈D,�,⊥〉 be a FDS. We can equip S with a probability measure p, i.e.
a function p : D → [0, 1] such that

∑
d∈D p(d) = 1.

The probability measure could also be a function of time, i.e. p : D × R+ →
[0, 1], where p(d, t) represents the probability of being in the state d ∈ D at time
t ∈ R+. However, as it makes no difference in terms computationally speaking,
we keep the above simplest definition.

Now, let S : 〈DS ,�S ,⊥S〉 and T : 〈DT ,�T ,⊥T 〉 be two FDS equipped
respectively with probability measures pS and pT .

Then, their product S ⊗ T can be equipped with the natural probability
measure p defined as follows. ∀〈x, y〉 ∈ DS × DT ,

p (〈x, y〉) def
= pS(x) × pT (y)

It is easy to verify that p is actually a probability measure on S ⊗ T . Its con-
struction assumes indeed that the events represented by S and T are statistically
independent.

Let S : 〈DS ,�S ,⊥S〉 and T : 〈DT ,�T ,⊥T 〉 be two FDS. Assume that S is
equipped with pS and that T is an abstraction of S. Then, the natural probability
measure pT is defined as follows. ∀y ∈ DT

pT (y) =
∑

x∈ϕ−1{y}
pS(x)

The above two natural constructions make it possible to lift-up probabilistic
indicators defined for fault trees to finite degradation models.

4 FDS-ML

FDS-ML stands for Finite Degradation Structures - Modeling Language. In its
current version, which is purely textual, this small domain specific modeling
language provides constructs to declare domains (finite degradation structures)
and operators on the one hand, state and flow variables and equations on the
other hand. We shall review these constructs in turn.

86 L. Yang and A. Rauzy

4.1 Domains and Operators

The syntax of FDS-ML is rather straightforward and is strongly inspired from
the one of AltaRica 3.0 [1]. Therefore, we shall present it on example.

Figure 4 shows the FDS-ML code that declares the FDS W3F and the oper-
ators � and ‖ involved in the model described Fig. 2.

Fig. 4. Declarations of the FDS W3F and the operators � and ‖.

The declaration W3F is self-explanatory.
The declaration of operators is just a bit more tricky. The first part consists

in giving a name to the operator, and to declare the type of its arguments and its
output. In the current version of FDS-ML, operators can return only one value.

The body of the declaration is a list of statements that are read in order.
The first one that matches the values of the argument is taken. * matches any
value.

Declarations of domains and operators can be reused from model to model.
One of our objectives is to develop domain specific libraries of such declarations.

4.2 Variables and Equations

In FDS-ML, a model is declared as a block, i.e. a prototype in the sense of
object-oriented theory.

FDS-ML: A New Modeling Formalism 87

Fig. 5. Model of the SIS TA4 of ISO/TR 12489 written in FDS-ML.

This block is made of two parts: first variables are declared, then equations
are given. Figure 5 sketches the model of the SIS.

The FDM for the SIS, as written in FDS-ML, is given in Fig. 5. The domains
(i.e. FDSs) and the operators should be defined separately before use. The model
is written in the part of block, where state variables should be declared and
assigned with probabilities in parentheses (W=..., Fs=..., Fdd=...). Formu-
las are written in the part of assertion and the observer should be declared
right after.

5 Algorithms

The implementation of FDS-ML is programmed in Python. Only the main algo-
rithms are presented in this section.

In the implementation, formulas are encoded by binary trees, which is the
same as fault trees. The leaves of a formula tree are state variables. Each internal
node (♦, fl, fr) encodes the formula fl♦fr.

The decision diagram (DD) used in this article is a particular type of binary
decision diagrams (BDD) that represent multi-valued functions in binary way
[7,8]. Algorithms presented in this article is similar to those for BDD.

In the DD in this article, each internal node (s, v, nd, nr) is labelled with state
s, variable v, down-child nd and right-child nr. The terminal node (s, /, /, /) is
only labelled with state s.

The DD is built for the top of a formula.
If the formula contains only a variable v without any operator, its DD is

called a one-level DD. The one-level DD of v such that dom(v) = W3F is shown
in Fig. 6. For every s ∈ dom(v), we create an internal node (s, v, nd, nr) where
nd represents the resulting node if v = s. These internal nodes are connected
successively by their right-child nr in a chain. We fix the order of states in such
chain for a given variable v.

The algorithms of building DD for formulas are given in Fig. 7. The input of
BuildDD is the node of formula tree. The function n.IsTermi() returns true if
n is a terminal node while n.IsInter() is true if n is a internal node.

88 L. Yang and A. Rauzy

Fig. 6. The one-level DD of v such that dom(v) = W3F.

Note that the Combine algorithms, as well as the Prob algorithms in Fig. 9,
use caching [3]. Caching makes it possible to not redo an operation that has been
already done.

Fig. 7. Recursive algorithm of building DD for formulas.

The symbol ≺ in the algorithm represents the variable ordering of DD. It
is worth noting that if all the operators used in the model are commutative,
then the variable ordering is arbitrary. Otherwise, for instance u � v, the local
ordering of u, v should be u ≺ v. Note that only the state variables in the model
need to be ordered.

FDS-ML: A New Modeling Formalism 89

Figure 8 shows the DD built for u � v, where dom(u) = dom(v) = W3F.

Fig. 8. DD of the formula u � v, where dom(u), dom(v) = W3F.

Once the DD is built, we can calculate the probabilistic indicators for the
flow variable defined by the formula associated to this DD. The algorithms are
given in Fig. 9. For any internal node n = (s, v, nd, nr), pn = p(s) ∈ [0, 1] where
s ∈ dom(v) and p is the probability measure defined in dom(v).

Fig. 9. Algorithms of calculating probabilities from DD.

6 Experiments

In this section, we provide the assessment results of the model of SIS presented
in Sect. 2.

The flow variable SIS of the model in Fig. 2 is selected as the observer of
the analysis.

The variable ordering in this case is not arbitrary as � is not commutative.
According to the model in Fig. 2, we select a valid variable ordering: S1.state ≺
LS1.state ≺ V 1.state ≺ S2.state ≺ S3.state ≺ LS2.state ≺ V 2.state.

As inputs, the state probabilities of each type of the components are cal-
culated according to the failure rates given in Table 1. For those with NA (not
applicable), the probability is set to be zero.

The calculation results of the number of cutsets |CS(SIS, y)| and the number
of minimal cutsets |MCS(SIS, y)| for each state y ∈ dom(SIS) are given in
Table 3.

90 L. Yang and A. Rauzy

As illustration, the seven minimal cutsets in MCS(SIS, Fdd) are listed in
Table 4, which are the least degraded scenarios that SIS is degraded from W to
Fdd.

Table 3. The number of cutsets |CS(SIS, y)| and minimal cutsets |MCS(SIS, y)| for
each state y ∈ dom(SIS).

y W Fs Fdd Fdu

|CS(SIS, y)| 433 9623 4169 2159

|MCS(SIS, y)| 1 7 7 17

Table 4. The minimal cutsets in MCS(SIS, Fdd).

S1.state LS1.state V 1.state S2.state S3.state LS2.state V 2.state

Fdd W W W W Fdd W

W W Fdd W W W Fdd

Fdd W W Fdd Fdd W W

W Fdd W W W Fdd W

W Fdd W Fdd Fdd W W

W W Fdd W W Fdd W

W W Fdd Fdd Fdd W W

0 2000 4000 6000 8000
Mission time (hours)

10-10

10-8

10-6

10-4

10-2

100 State probabilities of SIS

W
Fs
Fdd
Fdu

Fig. 10. The results of the probability of each state in dom(SIS).

FDS-ML: A New Modeling Formalism 91

For probabilistic indicators, the results of the state probabilities in dom(SIS)
are pictured Fig. 10. Numerically, the average probabilities Pavg within the mis-
sion time (8760 h for each state are: Pavg(W) = 1.449 × 10−1, Pavg(Fs) =
8.550 × 10−1, Pavg(Fdd) = 7.6916 × 10−5 and Pavg(Fdu) = 4.6073 × 10−5.

7 Conclusion

In this article, we introduced a new modeling formalism, so-called FDS-ML,
dedicated to the design of combinatorial probabilistic risk assessment models.
We presented decision diagram based algorithms to assess FDS-ML models and
we showed by means of a use case stemmed from ISO/TR 12489 standard the
interest of the proposed approach.

FDS-ML relies on the notion of finite degradation structures. Finite degra-
dation structures can be seen as the most general mathematical framework to
design combinatorial probabilistic risk assessment models. As of today, the lan-
guage is rather simple: it just provides constructs to define domains (finite degra-
dation structures) and operators as well as to declare variables and equations.
This is necessary and sufficient for basic uses, but our ambition is to make
FDS-ML a full object-oriented language, using the S2ML+X paradigm [2,10].
Here X would stand for the current FDS-ML. Object-orientation, in the sense of
S2ML, is a key enabler for the design of reusable modeling patterns, as demon-
strated with AltaRica 3.0 [1]. The design of such patterns for finite degradation
models is of primary importance for their industrial deployment as it makes it
possible to hide, to some extent, the mathematical difficulties: with suitable,
domain-specific libraries of modeling patterns, analysts can design their models
by copying existing ones and adjusting them to their particular needs.

Regarding the implementation, much remains also to do. So far, our proto-
type is implemented in Python, which is indeed not ideal in terms of efficiency.
We plan to move to C++ as soon as concepts and methods will be sufficiently
stable. Decision diagram algorithms are now relatively mature. We plan to imple-
ment also bottom-up algorithms generalizing those designed for fault tree assess-
ment [9].

References

1. Batteux, M., Prosvirnova, T., Rauzy, A.: Altarica 3.0 in 10 modeling patterns. Int.
J. Crit. Comput.-Based Syst. 9(1–2), 133–165 (2018). https://doi.org/10.1504/
IJCCBS.2019.098809

2. Batteux, M., Prosvirnova, T., Rauzy, A.: From models of structures to structures
of models. In: IEEE International Symposium on Systems Engineering, ISSE 2018.
IEEE, Roma, October 2018. https://doi.org/10.1109/SysEng.2018.8544424. Best
paper award

3. Brace, K.S., Rudell, R.L., Bryant, R.S.: Efficient implementation of a BDD pack-
age. In: Proceedings of the 27th ACM/IEEE Design Automation Conference, pp.
40–45. IEEE, Orlando (1990). https://doi.org/10.1145/123186.123222

https://doi.org/10.1504/IJCCBS.2019.098809
https://doi.org/10.1504/IJCCBS.2019.098809
https://doi.org/10.1109/SysEng.2018.8544424
https://doi.org/10.1145/123186.123222

92 L. Yang and A. Rauzy

4. Guo, H., Yang, X.: A simple reliability block diagram method for safety integrity
verification. Reliab. Eng. Syst. Saf. 92(9), 1267–1273 (2007). https://doi.org/10.
1016/j.ress.2006.08.002

5. International IEC standard IEC61508 - functional safety of electri-
cal/electronic/programmable safety-related systems (E/E/PE, or E/E/PES).
Standard, International Electrotechnical Commission, Geneva, Switzerland, April
2010

6. ISO/TR 12489:2013 petroleum, petrochemical and natural gas industries - relia-
bility modelling and calculation of safety systems. Standard, International Orga-
nization for Standardization, Geneva, Switzerland, November 2013

7. Minato, S.I.: Zero-suppressed BDDs for set manipulation in combinatorial prob-
lems. In: Proceedings of the 30th ACM/IEEE Design Automation Conference,
DAC 1993, pp. 272–277. IEEE, Dallas (1993). https://doi.org/10.1145/157485.
164890

8. Minato, S.I.: Binary Decision Diagrams and Applications for VLSI CAD. Kluwer
Academic Publishers, Dordrecht (1996)

9. Rauzy, A.: Anatomy of an efficient fault tree assessment engine. In: Virolainen,
R. (ed.) Proceedings of International Joint Conference PSAM 2011/ESREL 2012,
June 2012

10. Rauzy, A., Haskins, C.: Foundations for model-based systems engineering and
model-based safety assessment. J. Syst. Eng. (2018). https://doi.org/10.1002/sys.
21469

11. Ruijters, E., Stoelinga, M.: Fault tree analysis: a survey of the state-of-the-art in
modeling, analysis and tools. Comput. Sci. Rev. 15, 29–62 (2015). https://doi.org/
10.1016/j.cosrev.2015.03.001

12. Ushakov, I.: Probabilistic Reliability Models. Wiley, Hoboken (2012)
13. Yang, L., Haskins, C., Rauzy, A.: Finite degradation structures: a formal framework

to support the interface between MBSE and MBSA. In: IEEE International Sym-
posium on Systems Engineering, ISSE 2018. IEEE, Roma, October 2018. https://
doi.org/10.1109/SysEng.2018.8544411

14. Yang, L., Rauzy, A.: Reliability modeling using finite degradation structures. In:
Proceedings of the 3rd International Conference on System Reliability and Safety
(ICSRS), pp. 168–175. IEEE, Barcelona, November 2018. https://doi.org/10.1109/
ICSRS.2018.00035

https://doi.org/10.1016/j.ress.2006.08.002
https://doi.org/10.1016/j.ress.2006.08.002
https://doi.org/10.1145/157485.164890
https://doi.org/10.1145/157485.164890
https://doi.org/10.1002/sys.21469
https://doi.org/10.1002/sys.21469
https://doi.org/10.1016/j.cosrev.2015.03.001
https://doi.org/10.1016/j.cosrev.2015.03.001
https://doi.org/10.1109/SysEng.2018.8544411
https://doi.org/10.1109/SysEng.2018.8544411
https://doi.org/10.1109/ICSRS.2018.00035
https://doi.org/10.1109/ICSRS.2018.00035

	FDS-ML: A New Modeling Formalism for Probabilistic Risk and Safety Analyses
	1 Introduction
	2 Illustrative Use Case
	2.1 Presentation
	2.2 Modeling

	3 Finite Degradation Structures
	3.1 Definition
	3.2 Products and Abstractions
	3.3 Finite Degradation Models
	3.4 Minimal Cutsets
	3.5 Probabilistic Indicators

	4 FDS-ML
	4.1 Domains and Operators
	4.2 Variables and Equations

	5 Algorithms
	6 Experiments
	7 Conclusion
	References

