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Preface

This volume contains the papers presented at IMBSA 2019: the International
Symposium on Model-Based Safety and Assessment, held during October 16–18,
2019, in Thessaloniki, Greece.

IMBSA focuses on model-based and automated ways of assessing safety and other
attributes of dependability of complex computer systems. Since the first edition in
Toulouse (2011), the workshop has evolved to a forum where brand new ideas from
academia, leading-edge technology, and industrial experiences are brought together.
The objectives are to present experiences and tools, to share ideas, and to federate the
community.

This year a particular space was given to the assessment of open systems,
autonomous systems, and systems that employ artificial intelligence (AI). There are
specific challenges in the assessment of such systems which include unboundness, the
infinity of possible configurations, uncertainty, and particularities related to the
reasoning and operation of AI components.

To foster academic and industrial collaboration, in addition to more traditional talks
reporting on novel advances on hot research topics, the program featured a poster and
tutorial sessions, where speakers had the opportunity to present ongoing research and
industrial experiences, and demonstrate their tool interactively.

We believe that a mixture of conventional talks about the newest achievements, the
presentation of practical experiences, and interactive learning facilitates fruitful
discussions, the exchange of information, as well as future cooperation. Therefore,
following the previous edition of IMBSA in Trento (2017), an important focus of this
year’s edition in Thessaloniki was placed on tool tutorials and demonstrations.
Nevertheless, the main scientific and industrial contributions were presented in
traditional talks and are collected in this volume of LNCS.

For IMBSA 2019, we received 46 regular submissions from authors of 17 countries.
Following rigorous review, the best 24 of these papers were selected by an international
Program Committee to be published in this volume. As organizers, we want to extend a
very warm thank you to all 50 members of the international Program Committee. Each
submission was reviewed by at least three Program Committee members. The
comprehensive review guaranteed the high quality of the accepted papers. We also want
to thank the local organization team in Thessaloniki, and our fellow members of the
Steering Committee: Leila Kloul, Frank Ortmeier, Antoine Rauzy, and Christel Seguin.

Finally, we wish you a pleasant reading of the articles in this volume. On behalf of
everyone involved in this year’s International Symposium on Model-Based Safety and
Assessment, we hope you will be joining us at the next edition of IMBSA.

September 2019 Yiannis Papadopoulos
Koorosh Aslansefat
Panagiotis Katsaros

Marco Bozzano
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Modeling Functional Allocation in AltaRica
to Support MBSE/MBSA Consistency

Mathilde Machin1(&), Estelle Saez1, Pierre Virelizier1,
and Xavier de Bossoreille2

1 IRT Saint-Exupéry, B612 3 rue Tarfaya, 31400 Toulouse, France
{mathilde.machin,estelle.saez}@irt-saintexupery.com,

pierre.virelizier2@safrangroup.com
2 APSYS-Airbus, 36 rue Grimaud, 31700 Blagnac, France
xavier.debossoreille@apsys-airbus.com

Abstract. In order to ensure and maintain the consistency between the safety
analyses and the system design definition during system development iterations,
we propose to follow a model-based approach, using system architecture models
(MBSE) and failure propagation models (MBSA). Most systems engineering
methods define the functional architecture before defining the physical archi-
tecture. We developed a safety modeling method in accordance with this
sequence, leading to perform safety analysis and consistency activities on the
functional architecture first, then on the physical architecture. We therefore had
to address the allocations of functions to physical elements.
This paper focuses on the modeling of functional architecture and allocations

links to the physical architecture. We discuss how to model these concepts using
AltaRica DataFlow proposing several alternatives, and present the difficulties we
faced in the modeling of the allocation behavior, in particular the mapping of
functional failure modes to physical failure modes.

Keywords: MBSE � AltaRica DataFlow � Allocation modeling � Consistency

1 Introduction

This paper is the continuity of our work to define a methodology, based on models
capacities, to maintain the consistency between safety analyses and system design
definition through the system development iterations [1]. These works handle the
design and safety analysis models done during the preliminary design phase.

In the literature, two approaches emerge to link safety models with system archi-
tecture models: the use of a single model both describing the system architecture and
including safety data and the use of two specific models for safety analysis and system
description [2]. We choose the second alternative using system architecture models
(MBSE) for system description and failure propagation models (MBSA) to support
safety analyses [1]. We consider that the system model is the reference for the safety
model, even though the two models remain independent. Consequently, our work aims
at maintaining the consistency between both models by assisting the validation review
of the dysfunctional model performed by the system architect.

© Springer Nature Switzerland AG 2019
Y. Papadopoulos et al. (Eds.): IMBSA 2019, LNCS 11842, pp. 3–17, 2019.
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Most systems engineering methods describe the functional architecture before
defining the physical architecture. We developed a safety modeling method in accor-
dance with this sequence. We perform the safety analysis and the consistency activities
on the functional architecture first, and then extend them to the physical architecture.
We propose to introduce in the safety model concepts defined by MBSE methods such
as functions, allocations, physical elements. As a consequence allocations of functions
to physical components have to be modeled in the safety model.

This paper focuses on the modeling of allocations links to the physical architecture.
It is organized as follows. Section 2 presents the MBSE objects we consider and the
functional architecture as previously modeled which is our starting point. Section 3
presents several alternatives to model this concept using AltaRica DataFlow and define
selection criteria. Section 4 discusses the difficulties we faced in the application of the
chosen alternative to a drone study case. Eventually Sect. 5 concludes the paper.

2 Context

Our methodology is based on MBSE and MBSA modeling characteristics detailed in
the following sections. Note that in our experiment we have used Capella (with
Arcadia) for architecture modeling and Cecilia OCAS for safety modeling.

2.1 System Description Models

The architecture description models we consider allow to hierarchically organize
functions and physical elements, to describe exchanges between functions and physical
elements, as well as corresponding allocation relations. In the following we qualify as
“hierarchical” the functions and the physical elements that are decomposed in sub-

Fig. 1. MBSE model parts we consider. Functions (in green) are allocated (blue dashed) to
physical elements (in yellow). Communication from a function to another is modeled by a
functional flow and conveyed by a physical link. (Color figure online)

4 M. Machin et al.



elements, as opposed to “leaf” functions or physical elements that are not refined in
sub-elements. The Capella tool (following Arcadia method) or SysML editors provide
the capacity of modeling the MBSE models as described in this section.

From a method and process point of view, we use an architecture description model
that describes design at two levels (see Fig. 1): functional architecture on one hand and
physical architecture on the other hand. In order to simplify the modeling activity we
consider no intermediate layer between the functional and physical architecture. For
instance this means that we do not model the “logical components” or the “behavioral
components” from Arcadia [3].

2.2 Safety Assessment and Modeling

Within the ARP4754A [4] and ARP4761 [5] development processes, our work is
positioned in the preliminary system safety analysis. In this framework, the safety
assessment is used to show compliance with certification functional and safety
requirements.

Early in the development, safety analysis at functional level allows to structure the
architecture design by defining the functional independence requirements supporting
the DAL (Development Assurance Level) allocation. Our proposition is to optimize the
benefit of models by performing the safety assessment at functional level as soon as
possible, and by reusing all related safety assessment, modeling, validation and con-
sistency activities when addressing the physical architecture.

As far as safety modeling is concerned, we use the failure propagation modeling
language AltaRica DataFlow. This language allows to create generic modeling bricks
that can be seen as functions, physical elements or any other concept. Each leaf brick
contains some behavior: failure modes occurring inside the function or physical ele-
ment, dysfunctional logics defining how an upstream failure mode combines with the
internal failure modes and functional logics defining how the system is designed to
detect, mitigate or recover failure modes.

We organize AltaRica modeling of functional architecture as described in Fig. 2.

Note that we limit the scope of the proposed safety modeling to failure modes of
functions and physical elements. Even if components, such as wires, are likely to be
modeled as physical links in MBSE (as defined in Fig. 1) and may have critical failure
modes, we do not consider them in the following. The proposed method remains
applicable at cost of modeling critical components as physical elements instead of
links.

Fig. 2. MBSA modeling of functional architecture. Thunderbolts represent failure modes that
are modeled inside functions.

Modeling Functional Allocation in AltaRica to Support MBSE/MBSA 5



The functional model as shown in Fig. 2 supports safety analysis of functional
architecture. Considering this functional model as a starting point, Sect. 3 addresses the
step of modeling physical architecture inspired by allocation modeling methods taken
from literature.

2.3 Related Work

This section presents other works dealing with modeling allocation in MBSA. This
literature review is limited to the scope defined previously, notably the approach of
using two specific models for safety and architecture, the preliminary system safety
analysis and the use of AltaRica as MBSA language.

Our works share with the work proposed by Legendre [5] the overall objective of
consistency of system description models and safety models. In the study case pre-
sented in [5], the architecture consistency is ensured in 4 steps: (1) functional break-
down, (2) physical breakdown, (3) physical links and (4) allocations. Contrary to our
approach, the functional flows are not considered in the functional safety analysis.
Consequently the function behavior is only constituted of internal failure modes,
omitting how upstream failure modes combine to internal failure modes. Allocations
are modeled by the inheritance feature of AltaRica 3.0. The physical element modeling
is based on the function and thus inherits from the failure modes of the function. When
defining the physical elements, it is possible to add some features: inputs and outputs,
propagation logics and additional failure modes.

This approach does not share our objective of having a safety analysis based on the
functional architecture and thus proposes a different modeling of functions. Never-
theless it offers an example of allocation modeling. The inheritance feature is specific to
AltaRica 3.0 and has no graphical representation to our knowledge.

The French institution DGA proposes a MBSA method that includes a functional
view and a physical view [7]. The functions are organized within a hierarchy that is
more expressive than a simple breakdown: it includes logics. For example, it describes
that the communication function is operational if its reception sub-function and its
transmission sub-function are operational. Functions have no internal failure modes,
they are linked to the outputs of the physical layer to define whether they are opera-
tional. Thus, these functions are used to observe the physical layer and combine
observations to analyze the system failure conditions (FC).

This approach is characteristic of the use of functions by safety analysts for pure
safety purposes, excluding any concern of consistency with the functional architecture
from system designers. Indeed DGA uses models for assessing the final architecture
design and not within a development process.

Back to design concerns, the works of Sagaspe [8] aims to generate allocations so
as to ensure safety. Therefore both functional and physical layers are modeled without
the objective of computing cutsets at functional level. Allocations are modeled as
synchronizations, which is a modeling feature common to all versions of AltaRica (see
[9] for more information about synchronization feature). This approach requires two
steps of synchronizations: firstly the failure modes from all the functions allocated to
one physical element are synchronized among themselves. Secondly this “functional”
synchronization is synchronized with the failure mode of the allocated physical

6 M. Machin et al.



element. Let us note that some cases of physical links with failure modes are addressed
by these works.

To conclude, even though several modeling features to model allocations of
functions to physical element exist, there is neither dedicated work, nor comparison of
modeling methods in literature. In the following we present several modeling alter-
natives and describe in detail the method we have experimented.

3 Several Alternatives and Criteria

Based on the functional modeling illustrated by Fig. 2, we present four alternatives to
model allocations of functions to physical elements. To fulfill our objectives of con-
sistency between system and safety models and of reuse of the functional layer, we
focus on modeling solutions that contain both functional and physical failure modes. In
addition, in order to have the same concepts as MBSE, we exclude methods that
represent allocation not by a model element but by labeling functions (labels, known as
attributes or user data, are used to post-process the cutsets).

To obtain results useful for development process, we need to generate cutsets that
combine either functional failure modes or physical failure modes. We need two
separated sets of cutsets. The corresponding generation feature is offered by the tool
Cecilia OCAS. Otherwise, it could be done outside of the tool by post-processing the
mixed set of cutsets, at cost of some computation time.

After a short presentation of each alternative, we compare their properties in
Sect. 3.5.

3.1 The Functional Layer and the Physical Layer Linked
by Synchronizations

This alternative comes from [8]. As shown in Fig. 3, the functional model is com-
pletely reused and allocations are modeled using the synchronization feature offered by
AltaRica language.

Fig. 3. The functional layer and the physical layer linked by synchronizations. Synchronizations
are shown as dashed linked between failure modes.

Modeling Functional Allocation in AltaRica to Support MBSE/MBSA 7



Starting from an existing functional model, this alternative requires the following
tasks to complete the physical model:

– Model fully the physical architecture, including behavior of failure propagation.
– Add synchronization of failure modes.

To our knowledge, synchronization is a feature that is graphically supported by
none of the AltaRica tools. As a consequence, the usage of synchronization may make
model difficult to read and debug.

Furthermore, computing separately functional and physical cutsets is not supported
by Cecilia OCAS, as physical failure modes are synchronizations instead of simple
events. Consequently, with this alternative and this tool, we are not currently able to
recompute functional cutsets once the physical architecture is modeled.

3.2 The Functional Layer and the Physical Layer Linked by Flows

This alternative is an adaptation of the previous one (Sect. 3.1) taking inspiration from
the DGA/TA method [7] to use flows for the modeling of allocation. As shown in
Fig. 4, this alternative reuses completely the functional layer analysis model shown in
Fig. 2.

The use of flows to model allocations require to model the effect of failure modes of
allocation supports in the functional layer apart from the functional failure modes.
Furthermore, changes required in functional layer have to be limited as far as possible.
Thus, the failure modes of allocation supports are taken into account in functional layer
outside of functions, directly on functional flows. To model the effects of physical
failure modes on functional flows, some modeling artifacts are added: they contain the
logics that define how allocation flow and functional flows are combined.

Starting from an existing functional model, this alternative requires the following
tasks to complete the physical model:

Fig. 4. The functional layer and the physical layer linked by flows. In blue, modeling artifacts to
merge allocation flows and functional flows. (Color figure online)
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– Model fully the physical architecture, including behavior of failure propagation.
– Add ports to input allocation flow in the functional layer.
– Add in the functional layer modeling artifacts to merge the allocation flows and the

functional flows.

With respect to synchronizations, using flows to model allocations require more
work, such as defining new ports, oblige to make some changes in functional layer.
Nevertheless, it offers more flexibility in the way the failure modes from both layers
can be combined.

3.3 The Functional Layer Using Physical Resources

As shown in Fig. 5, this alternative reuses completely the functional layer analysis
model shown in Fig. 2 and uses flows to model allocations. Compared to the previous
alternative, the behavior modeled in the physical layer is reduced: The physical layer
provides to the functional layer the state of the physical elements but does not contain
the information flows between physical elements. Yet physical layer can contain
physical dependencies between physical elements, e.g., power supply (not shown in
Fig. 5).

This alternative requires the following tasks to be built from the functional model:

– Model the physical architecture. The behavior modeled in the physical layer is
limited to the impact of physical failures to allocated functions.

– Add ports to input allocation flows in the functional layer.
– Add in the functional layer modeling artifacts to merge the allocation flows and the

functional flows.

Contrary to the previous two alternatives, physical layer is here “minimal”. Each
physical element only propagates its state as an allocation support to its allocated
functions. The physical layer cannot be simulated or computed independently from the
functional layer. The interest of “minimality” is twofold: the physical layer requires less

Fig. 5. The functional layer using physical resources

Modeling Functional Allocation in AltaRica to Support MBSE/MBSA 9



effort to be modeled and, more important, the behavior information is modeled only
once removing problems of behavior consistency between the one modeled in func-
tional layer and the one modeled in the physical layer.

This alternative has some drawbacks. During a step-by-step simulation, the failure
propagation is only visualized inside the functional layer as there is no flow in the
physical layer. Furthermore this alternative cannot support any dynamic modeling (that
includes deterministic events and may results in sequential behavior), e.g. aiming to
model functional behavior that changes or reset physical behavior.

3.4 Functions Nested in Physical Layer

A commonplace practice in MBSA consists in modeling only the physical architecture
with a rich behavior including reconfigurations, typically specified at functional level
by the system architect. To match our objectives of reuse of functional model and
consistency with MBSE, we adapt this practice as shown in Fig. 6. In this alternative,
allocation is modeled as a containment of functions inside the physical element.
Similarly to the allocation by flow, modeling artifacts are used to merge functional flow
and physical state.

In all alternatives, modeling bricks such as functions are implemented in AltaRica
DataFlow as classes. We use this feature to reuse the functional modeling. A function
nested in the physical layer is the second instance of the class defined during functional
modeling and already instanciated in the functional model. This avoids duplication
between functional and physical models and ensures consistency between behaviors
defined in both models in particular for the most difficult part of modeling that is the
behavior such as reconfigurations logics.

Starting from an existing functional model, this alternative requires the following
tasks to complete the physical model:

– Model the physical architecture. The behavior is mainly contained in the new
instances of existing function classes.

– Add modeling artifacts to merge the allocation flows and the functional flows.

Note that this alternative imposes that the functional model has at least the level of
details required to model allocations. Indeed if several functions from MBSE are

Fig. 6. Functions nested in physical layer
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modeled as one MBSA model element and if these functions are allocated on different
physical elements, this method is not applicable. This adds constraint on modeling
structure.

3.5 Summary

Four methods of allocation modeling have been presented and are summed up in
Table 1. We select the alternative described in Sect. 3.3 and named C in Table 1. This
section summarizes our choice criteria.
Modeling Cost. As discussed previously modeling flows and logics in functional and
physical layers raises issues of consistency between both layers and therefore is
expensive in model edition and maintenance. For this reason we choose to discard the
first two alternatives shown in Table 1 (A and B). Note that when renouncing to model
flows and logics in both functional and physical layers, we also lose the capability of
visualizing failures propagation in both layers during step-by-step simulation.
Structure Flexibility. In addition, our goal is to develop a method to keep MBSE and
MBSA models consistent with minimal constraints on the safety model structure. That
is why we choose the modeling of physical resources (C) against the nesting of
functions (D).

Next section presents the issues raised by the application of the method of func-
tional layer using physical resources to a study case.

Table 1. Properties of the four alternatives

Alternatives Allocation
modeling

Reuse of
functional
model

Flows
in two
layers?

Compliance
static and
dynamic
modeling

Remarks

A - Two layers
by
synchronization

Synchronization Breakdown
and leaf
functions

Yes Static and
dynamic

No graphical
support for
synchronizations

B - Two layers
by flow

Flow (and flow
merging)

Breakdown
and leaf
functions

Yes Static and
dynamic

C - Functional
layer using
physical
resources

Flow (and flow
merging)

Breakdown
and leaf
functions

No Static, difficult
in dynamic

D - Functions
nested in
physical layer

Nesting (and
merging)

Leaf
functions by
class
instanciation

No Static and
dynamic

Constraint on
functional
structure
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4 The Functional Layer Supplied by the Physical Resources:
Application

As in previous work [1], the study case is a remotely piloted drone named AIDA1

(Aircraft Inspection Drone Assistant). The system is composed of a quadcopter drone, a
control computer and a remote control. The system mission is to assist the pilot to
inspect the aircraft before flight. The quadcopter drone can be piloted in automated or
manual mode.

The system has been defined by a system architect through a MBSE model in
Capella. The architecture definition focuses on avionics while modeling of actuation,
sensing and body is coarse-grained. It contains 7 high level functions, 96 level-3
functions and 39 physical elements. Three FCs, whose one catastrophic and one
hazardous have been analyzed.

The safety analyst has used the tool Cecilia OCAS to model of functional and
physical layers applying the method from Sect. 3.3. The following sections detail some
issues raised by allocation modeling and Sect. 4.4 gives an overview of lessons learnt
by the case study.

4.1 Allocation of a Functional Flow to Physical Elements

When modeling the allocations, we face the case of a functional flow that is allocated to
physical elements. As an illustration, let us consider in Fig. 7 the functional flow
“Vertical speed consign”. It is produced by the function SF2.2.4 (allocated to the
physical element “Remote control”) and sent to the function SF2.4.1 (allocated to the
physical element “Main computer”). To make this communication physically feasible,
the considered flow goes through several physical elements: communication of remote
control, embedded radio controller and embedded network.

Fig. 7. Example of a functional flow allocated to several physical elements (extracted from our
MBSE model)

1 The MBSE and MBSA models are available under open source license at https://sahara.irt-
saintexupery.com/.
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From a dysfunctional point of view, if one of these physical elements fails, the
functional flow is impacted. Consequently the dependency of the flow with the physical
failures must be taken into account in the safety model. We enrich our allocation
modeling method, by defining an intermediate object of allocation named path (taking
inspiration from a Capella concept), as shown in Fig. 8.

A path is a modeling artifact that does not contain any failure mode but embeds
dysfunctional logics. For instance in Fig. 8 given the flow direction, the logics define
that an erroneous “Radio controller” does not affect the speed consign if the “Main
digital network” is lost.

Any modeling method dealing with functional allocations should address the need
to allocate functional flows to physical elements. Even though our modelling propo-
sition is inspired from Capella modelling, it is generic enough to be applied when using
another MBSE tool.

4.2 Failure Modes More Detailed in Physical Layer than in Functional
Layer

In order to model the physical layer from the functional layer model, we refine the
functional failure modes. The functional layer is built with the generic failure modes
“erroneous” and “loss”. When modeling some components, we need to refine the
erroneous failure mode, for instance, in:

– Higher value than expected (“HighErr”)
– Lower value than expected (“LowErr”)
– Other case of erroneous value (“Erroneous”)

The three cases are distinguished because they have different safety effects,
potentially impacting different FCs. As the information propagation is only modeled in
the functional layer of the model, the functional layer must be enriched, adding new
values to the flows (as illustrated in Fig. 9).

As the functional layer has been significantly updated, it is necessary to perform
again the system validation of the corresponding dysfunctional model. Nevertheless the
associated rework can be limited by formulating the logics in a way that the values of

Fig. 8. Safety modeling of a functional flow allocated to several physical elements (For the sake
of readability, this figure omits the hierarchy representation)
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input and output flows are not explicitly mentioned, as illustrated in Fig. 10. In that
case the logics are untouched and thus are still valid. Note that for functions whose
behavior cannot be modeled following this formulation rule, the addition of physical
layer and allocations requires a significant effort for revalidating the functional layer.

Even though the additional failure modes of our drone could have been identified
before the physical step, the necessity of refining the failure modes can be found in
industrial developments and therefore should be addressed by any allocation modeling
method. The solution we present is generically applicable although it can become
costly.

4.3 Failure Modes More Detailed in Functional Layer than in Physical
Layer

Having different failure modes in the functional and physical layers raise several issues
for modeling and validation. In Sect. 4.2, we have discussed the refinement of the
failure modes at physical level. The opposite case can be found when one physical
failure mode stands for several functional failure modes. In our experiment, we have

Fig. 9. Changes (shown in black) due to failure mode refinement. The domain of the functional
flow from F1.1 to F2.1 contains the new values “highErr” and “lowErr” to propagate failure
modes from the physical element 1. Consequently, the domain of F2.1 ports has changed so as to
its logics. (For the sake of readability, this figure omits the failure modes of loss)

Fig. 10. Example of logics formulation to minimize changes to do when refining failure modes.
The assertion formulation is valid whether input and output flows have “lower” and “higher” than
possible values.
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encounter this case when dealing with control flows. We use this example in the
following to illustrate the problematic.

In addition to many data flows, such as the speed consign mentioned in Sect. 4.1,
our drone model contains a few control flows like the piloting mode. This mode can be
set to auto or manual with significant impacts on system configuration. The mode
selection function is allocated to the main processor whereas it is used in both main
position control function (allocated to main processor) and monitoring position control
function (allocated to monitoring processor).

During the first functional analysis, the failure modes of the “Selection” function
failure modes were “Stuck to auto mode” and “Stuck to manual mode”. In the physical
analysis, this function was allocated to a computer whose failure modes were “Loss”
and “Erroneous”. Both functionally stuck failure modes were possible consequences of
the physical failure mode “Erroneous” and this physical failure mode could not be
refined to map the two functional failure modes.

To solve this issue, we relied on the fact that our drone has only two piloting modes
and we made the assumption that the worst consequence of the physical erroneous was
an inverted mode.

We used modeling artifacts that merge functional flow of piloting mode and
physical failure mode. They inverse the piloting mode in case of an erroneous com-
puter. Moreover, a flow is added in the functional layer to propagate the information
that the piloting mode has been inverted due to a physical failure. Even if another
physical failure occurs, the mode must not be re-inverted. Indeed, in our case, the
failure of both main and monitoring computers should not result in a correct mode.

This modeling solution is specific to our case but it illustrates the difficulty to model
functional failure modes more detailed than physical failure modes.

4.4 Discussion

Based on the application of “The Functional layer using physical resources” method
(alternative (C) from Table 1), the last three sections have presented on the one hand
modeling issues raised during application and on the other hand the modeling solutions
we propose. In addition to the encountered modeling issues explanation and solution
assessments provided in each section, in the following we discuss our alternative
choice as a general lesson learnt.

When adding physical architecture and allocations, the leaf function structure from
MBSE and MBSA models tends to get much closer than they were in the functional
step. As an illustration, let us consider the typical case of several MBSE functions that
are first modeled in one MBSA brick in the functional model. If, in a second time, these
MBSE functions are allocated to different physical elements, the functions tend to be
also modeled separately in the MBSA to ease allocation modeling. In that case the
structure of the MBSE and MBSA models become closer than initially. Consequently
the criteria of structure flexibility is not as clearly fulfilled by the chosen modelling
alternative (C) as expected and the choice between the alternatives (C) and (D) be-
comes less definite.

In addition, the modeling and validation effort to address the differences between
failure modes detail levels have a significant impact on modeling cost. Given the
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revalidation effort, the benefit of reusing the functional model is reduced to the capacity
of re-computing the functional cutsets. Consequently, the cost of the alternative (C) is
higher than expected and the cost of alternatives (A) and (B) should be re-assessed.
Even if (A) and (B) do not solve the problem of functional failure modes more detailed
than physical failure modes, they avoid to modify the functional modeling when
detailed physical failure modes are needed.

As a lesson learnt, the capacity to model functional failure modes and physical
modes needs to be added to the method choice criteria. The three criteria defined:
modeling cost, structural flexibility and the capacity to link physical failure modes to
functional failures need to be evaluated considering the size, complexity and expres-
sivity of the system as well as the constraints from the system description modeling.

5 Conclusion

In this paper we have described several alternatives to model allocations in safety
model. The chosen alternative has been successfully applied to a study case, with
adaptations to unforeseen issues. We have presented modeling solutions to these issues
and assessed their reusability. Based on lessons learnt from practice, we have qualified
the criteria used for alternative choice, cost and structure flexibility, and found new
properties, flow allocation on physical elements and especially, functional and physical
failure mode conciliation.

Further work is required to complete possible modeling situations and find generic
solutions to them. In particular, the application of several modeling alternatives on the
same case would bring interesting lessons. To tackle the main difficulty we have faced,
i.e., the discrepancy of detail level between functional and physical failure modes,
combining both types of failure modes in cutset may be a track to assess, even if some
quantification problems of functional failure modes will emerge.

The study of allocation of functional flows to physical links has not been addressed
yet. In particular we did not analyze how to model and take into account the direction
of physical link and of dysfunctional propagation. Further work will have to address
this case in order to ensure a generic method. In addition we only have considered static
models and it would be very interesting to extend our proposition to dynamic models.
These methodological works will be continued in the project S2C (System and Safety
Continuity), a collaboration between IRT Saint-Exupéry and IRT SystemX.

Acknowledgments. The authors thank all people and industrial partners involved in the MOISE
project. This work is supported by the French Research Agency (ANR) and by the industrial
partners of IRT Saint-Exupéry Scientific Cooperation Foundation (FCS).

References

1. Prosvirnova, T., Saez, E., Seguin, C., Virelizier, P.: Handling consistency between safety and
system models. In: Bozzano, M., Papadopoulos, Y. (eds.) IMBSA 2017. LNCS, vol. 10437,
pp. 19–34. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64119-5_2

16 M. Machin et al.

http://dx.doi.org/10.1007/978-3-319-64119-5_2


2. Lisagor, O., Kelly, T., Niu, R.: Model-based safety assessment: review of the discipline and
its challenges. In: The Proceedings of 2011 9th International Conference on Reliability,
Maintainability and Safety, pp. 625–632 (2010)

3. Voirin, J.-L.: Model-Based System and Architecture Engineering with the Arcadia Method.
Elsevier, Amsterdam (2017)

4. SAE, ARP4754A: Guidelines for development of civil aircraft and systems (2010)
5. SAE, ARP4761: Guidelines and methods for conducting the safety assessment process on

civil airborne systems and equipment (1996)
6. Legendre, A.: Ingénierie système et Sûreté de fonctionnement: Méthodologie de synchro-

nisation des modèles d’architecture et d’analyse de risques. Doctoral dissertation, Paris Saclay
(2017)

7. Frazza, C.: Modélisation dysfonctionnelle des analyses de sécurité dirigées par les modèles
(2016). http://projects.laas.fr/IFSE/FMF/J6/slides/P04_CF.pdf

8. Sagaspe, L.: Allocation sûre dans les systèmes aéronautiques: Modélisation, Vérification et
Génération. Doctoral dissertation, Université Sciences et Technologies-Bordeaux I (2008)

9. Bozzano, M., et al.: Symbolic model checking and safety assessment of altarica models. In:
Electronic Communications of the EASST, vol. 46 (2012)

Modeling Functional Allocation in AltaRica to Support MBSE/MBSA 17

http://projects.laas.fr/IFSE/FMF/J6/slides/P04_CF.pdf


Model Based Approach for RAMS
Analyses in the Space Domain
with Capella Open-Source Tool

Lorenzo Bitetti1(&), Régis De Ferluc1, David Mailland1,
Guy Gregoris1, and Fulvio Capogna2

1 Thales Alenia Space, Cannes, France
lorenzo.bitetti@thalesaleniaspace.com
2 European Space Agency, Noordwijk, The Netherlands

Abstract. The objective of this paper is to evaluate the interest and applica-
bility of a Model Based approach to support Dependability engineers in per-
forming RAMS (Reliability, Availability, Maintainability and Safety) analyses.
In order to address the future challenges of the Space domain and to improve

the co-engineering activities during the whole spacecraft design process, the
open-source Capella tool, based on the Arcadia methodology, has been recently
envisaged and evaluated in Thales Alenia Space.
Capella can already support Model Based System Engineering (MBSE)

activities: from requirement specification to physical architecture definition,
through functional and logical analyses. The MBSE approach has already
demonstrated its benefits for System Engineering activities since it enhance the
ability to capture, to analyze, to share, and to manage the information associated
with the complete specification of a product.
Some features are currently being implemented in Capella in order to support

also dependability activities. The Model Based RAMS approach with Capella is
expected to improve the co-engineering activities between system engineers,
equipment experts and dependability responsible. This will in turn improve the
current Quality Assurance process, which is indispensable for the futures space
missions.
The preliminary applications of the Model Based approach for RAMS anal-

yses have shown some possible limitations and axes of improvements that will
be addressed by future studies.

Keywords: Model based RAMS approach � Capella open-source tool �
Arcadia methodology � Reliability and safety analyses

1 Introduction

1.1 Dependability Process in the Space Domain

The space domain is characterized by some specific needs and constraints which make
the dependability process quite different compared to that of other engineering fields.
Note that this paper is mainly focused on the satellite industry even if some aspects can
be applicable also to launchers or crew missions.
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The satellite industry is characterized by:

– No or very limited production in series, except for the expected new mega-
constellations. In addition each satellite is quite unique, requiring therefore quite
long development phases;

– No maintenance or repairing operations once the satellite is in orbit, even if on-orbit
servicing missions are currently being studied and the corresponding technologies
will be available in the future;

– High reliability and availability requirements, often specified for an extended period
of time (e.g. 15 years of continuous operation for geostationary satellites);

– Very aggressive external environment and operating conditions (e.g. launch efforts,
space radiations, extreme temperatures and thermal cycles, etc.);

– High autonomy of the satellite, especially in case of missions with limited ground
visibility, and therefore nominal and failure scenarios have to be managed by the
satellite itself, at the maximum extend.

In order to tackle all these needs and particularities of the space domain, several
activities are performed during a typical dependability process [4–8]:

• Feared Events Analysis (FEA) is performed at the beginning of the project, it is a
functional top-down analysis whose main objective is to identify the feared events
leading either to interrupt the mission or even to lose the spacecraft. The main
outcomes are the recommendations on how to recover and ideally to avoid these
feared events;

• Failure Mode and Effect Analysis (FMEA) is a bottom-up analysis which is
performed as soon as the design of the satellite is known. The results of the FMEA
are used to improve the design and for the implementation of corrective actions or
operational procedures to be executed, on-board or on ground, in case of failures;

• Fault Tree Analysis (FTA) is performed in order to ensure that the design con-
forms to the failure tolerance requirements even in case of multiple failures. This
analysis is performed for some specific applications, like those linked to safety
requirements or the investigation of in-orbit anomalies;

• Failure Detection, Isolation and Recovery (FDIR) analysis. Fault management
strategies and mechanisms are chosen in order to ensure that availability, autonomy
and failure avoidance or recovery requirements are fulfilled;

• Reliability and Availability analyses which are performed to demonstrate the
compliance with the contractual requirements. Starting from this high level speci-
fication, reliability figures are allocated to the different systems. Then specific
redundancy schemes are chosen for each equipment in order to guarantee an overall
good reliability and availability of the system. Reliability Block Diagrams
(RBD) and other models (e.g. Petri Nets, Markov chains, etc.) are usually used for
these purposes.

There are some limits in the dependability approach currently followed in the space
domain that could be ideally solved, or at least partially, with new and innovative
approaches. Recent studies conducted by Thales Alenia Space have pointed out that:
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– Graceful degradations are not, or not always, taken into account during the
requirements specification and design phases. Redundancy schemes and fault
management strategies are therefore chosen in order to guarantee a full success of
the mission also in worst case scenario. This means that alternative and simpler
architectures may probably exist in which the satellite is no longer fully redundant
and cross-strapped;

– The allocation at lower levels (subsystem and equipment) of the satellite reliability
and availability requirements is sometimes more linked to previously known or
expected designs rather than to a real need at mission level. This can lead to a
design where some functional chains may have a reliability higher or lower than the
one really needed to guarantee performance and success of the mission. In addition,
for some subsystems it may be more or less complex and costly to achieve a certain
reliability figure. Therefore, the whole mass and cost of the satellite could be
optimized by taking into account also this aspect during the allocation phase;

– Existing RAMS tools are sometimes not designed or at least not optimized for the
first phases of the satellite development where multidisciplinary activities are per-
formed iteratively in order to compare different designs and to choose the best
solution. In fact these tools are not always linked, or at least not directly, to the ones
used by system engineers. Therefore reliability aspects are taken into account later,
and sometime too late, or the coherence between these models is not always
guaranteed, especially when the hypotheses and designs change very frequently;

– Fault management process usually starts late in the development process since not
enough information are available at the beginning. This could therefore lead to
major design modifications and late changes that are usually costly and with a great
impact on the planning;

– Main inputs for the dependability process are the analyses performed at lower level
and the documents describing the whole functions and architectures. However these
documents are not necessarily complete or not all detailed diagrams are available.
The missing information are therefore to be found in specific documents, if avail-
able at the time of the analysis are done. The gathering of all the up-to-date
information can become a time-consuming activity, especially in case of several re-
issues of the documents or design modifications. Therefore the coherence with the
current design and the correctness of the dependability analyses could be sometimes
difficult to guarantee and especially to verify by a third party;

– Finally some analyses, like Fault Tree Analyses, are performed manually, which
represents a high workload for the dependability responsible.

In order to address the future challenges of the space domain and to improve the co-
engineering activities during the whole satellite lifetime, a Model Based approach has
been considered as a good potential candidate to solve some of the aforementioned
issues, or at least partially. The main goals and functionalities are described in the rest
of this paper.
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2 Model Based Approach with Capella Open-Source Tool

2.1 Arcadia Methodology and Capella Tool

Model Based System Engineering (MBSE) approaches have already been applied in
different engineering domains and have demonstrated their interest and benefits. In fact,
by enhancing the ability to capture, to analyze, to share and to manage the information
associated with a whole product or system, MBSE approaches lead to:

– Improved communications among the different stakeholders (e.g. customer, man-
agers, systems engineers, hardware and software developers, testers, and engineers
of special disciplines);

– Increased ability to manage system complexity by enabling a system model to be
viewed from multiple perspectives, and to analyze the impact of changes;

– Improved product quality by providing an unambiguous and precise model of the
system that can be evaluated for consistency, correctness, and completeness;

– Enhanced knowledge capture and reuse of the information by capturing information
in more standardized ways and leveraging built in abstraction mechanisms inherent
in model driven approaches.

The open source Capella tool [1], based on the Arcadia methodology [2], has been
used in the frame of on-going projects conducted by Thales Alenia Space.

Capella supports system engineering activities from requirements specification to
the definition of the physical architecture, through the functional and logical analyses.
In fact, different engineering steps and the corresponding models and concepts are
defined in Arcadia to cover all these aspects:

• Operational Analysis: focused on the analysis of the user needs and goals, the
expected mission phases and the operational scenarios of the system. It ensures the
good adequacy of the system definition with regards to its real operational use;

• System Analysis: this level is used to model the system, viewed like a black box,
by identifying its boundaries and external actors, and to clarify what the system is
expected to do in the different phases of its whole mission to satisfy the former
operational needs. At this stage the system actors, mission capabilities, functions
and functional exchanges are defined;

• Logical Analysis: used to develop the logical architecture of the system and to
identify the components and their interactions, but excluding the physical imple-
mentation or technical issues. The system is seen here as a white box by defining
how it will work as to fulfill its expectations and by refining the previous system
functions. In addition, the allocation of functions to components and the trade-offs
between alternative architectures can be realized at this stage, before a specific
physical architecture is defined in the next step;

• Physical Analysis: this final step of the Arcadia method aims at identifying the
system physical components, their contents and relationships including the imple-
mentation or technical and technological aspects. It describes how the system will
be developed and built, and makes the logical architecture evolve according to the
final design.
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2.2 Model Based Approach for RAMS Analyses

Several studies have been recently performed by Thales Alenia Space in order to
evaluate the interest and applicability of a Model Based approach to support RAMS
engineers in performing safety and reliability analyses and in producing the corre-
sponding models and artifacts.

Some Capella viewpoints and interfaces with external tools, which were already
available or that have been specifically developed by Thales Alenia Space, have been
used for this purpose. The initial focus has been paid mainly on safety and reliability
analyses for which some activities and studies have been performed, as presented
below.

However it should be noted that in addition to these analyses, a more generic and
global Model Based approach with Capella has been envisaged by Thales Alenia
Space. As depicted in Fig. 1, the main dependability activities that are required to
comply with the satellite Reliability, Availability, Maintainability and Safety (RAMS)
requirements could be performed with or at least supported by this open-source tool.

It should be noticed that this Model Based RAMS approach has not been fully
implemented (yet) in Capella and that additional studies will be conducted in the future
in order to develop all these features, to implement all the required interface with
external RAMS tools and to provide at the same time some guidelines on the modeling
strategy in Capella.

Safety Analyses. Several studies are currently performed at system, segment and
equipment level in the frame of an internship and in collaboration with other Thales
entities and external companies. Several existing tools allowing to perform safety
analyses are evaluated in order to evaluate the interest of these tools and to derive some

Fig. 1. Envisaged Model Based RAMS approach with Capella open-source tool
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recommendations and suggestions leading to an improved and common MBSA
approach.

While using MBSE tools for Safety applications it has been clearly demonstrated
that, at least at that time, it was not possible to generate directly FTA, FMECA or other
RAMS Analyses for the complex systems encountered in the space domain (e.g.
navigation systems). MBSA tools based on AltaRica language [9] have also been
tested. It was possible to perform fault tree analyses but some limitations have been
found:

– It is not possible to make a model of a cold redundancy without introducing “fake”
components in the fault tree. Contrary to other engineering domain, aeronautics for
instance, cold redundancies are widely used in Space domain therefore this is an
important aspect that has to be further addressed.

– A huge amount to time is spent by MBSA user to make his fault tree look like the
expected one and this less time is left for the understanding of the system itself.

– It was not possible with old AltaRica versions to make a model of monitoring (it
leads to a loop), being this latter an important feature of all Safety of Life system.
This has been corrected recently in Alta Rica 3.0 but not tested yet in Thales Alenia
Space.

Future studies will further address these points, eventually allowing MBSE and/or
MBSA tools performing risk analysis of complex systems and supporting the (semi)
automatic generation of FTA and FMEA (Fig. 2).

Reliability Analyses. The already existing add-ons and viewpoints of Capella were not
directly or not completely useful for reliability analyses. This is why a new viewpoint
specifically dedicated to the reliability allocation and assessment has been implemented
in Capella by Thales Alenia Space. The main aim is to compute the reliability figures of
a functional chain or of a given system starting from the Capella model realized by
system engineers. The main features and outputs of this viewpoint are described more
in detail in the following section.

Fig. 2. Envisaged generation of fault trees starting from the model implemented in Capella.
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3 Examples of RAMS Analyses Performed with Capella

This section is mainly focused on the initial proof-of-concept of the Reliability
viewpoint developed in Capella which represents a real innovation in the Model Based
approach in the space domain. Here the steps to be followed to assess the reliability of a
given system are described through the presentation of a practical example.

• The first step is to evaluate the completeness and validity of the Capella model
versus the reliability model in order to derive the inputs, outputs and especially the
level of details needed to have a direct link between them.

As an example, by comparing the Reliability model (a) and the Capella (b) one of
the Electrical Power Subsystem (EPS) it has been derived that, as shown by the red
blocks in Fig. 3, all the different items modeled in Capella are those needed in the
Reliability model, and also with a similar level of details. This means that, in this
particular case, there is no need to further refine the Capella model because of the
reliability assessment purpose. On the other hand, in some cases the Capella model
may have to be improved or even simplified.

A study that will be started in the next months will aim, among other goals, to
define a modeling strategy and to provide some instructions and conditions to be
respected for a successful utilization of the Reliability Viewpoint.

Fig. 3. Comparison of the Reliability model (a) and the Capella one (b) for the EPS subsystem
(Color figure online)
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• Then some additional information have to be filled by dependability engineers in
the Capella model in order to be able to compute the reliability figures:
– The duty cycle (d.c.): the ratio of functioning time over the total time for the

identified element;
– The intrinsic failure rates of the units at full duty cycle (FIT ON), expressed in

failure per 109 h;
– The intrinsic failure rates of the units when not operating (FIT OFF).
– The quantity of units that are necessary to achieve a particular function (m);
– The quantity of units that are available (n);
– The redundancy type: cold, hot, warm or no redundancy;
– Finally the user can also directly provide the reliability figure of one unit. This

has been done especially for the mechanical items for which the reliability is
assessed with the stress-strength method. In this case the probability is time
independent and the failure rates are not defined (Fig. 5).

These values are those already presented in the Excel reliability model (see Fig. 3a)
but with the proposed Model Based approach they are added directly into the Capella
model. The user interface allowing to do that is depicted in Fig. 4.

Fig. 4. User interface allowing to enter the reliability information

Fig. 5. Capella model with reliability inputs (Failure rates and redundancies schemes)
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In the reliability viewpoint, as shown in Fig. 6, the user can also chose the classical
relationship between two units (e.g. HW in series, fully cross-strapped, etc.) or define
any particular link with more complex formulae (e.g. Bayesian expression for not fully
cross-strapped items).

• Once all these reliability information are defined in Capella, the output of the
reliability viewpoint is a table, like the one shown in Fig. 7, which can be easily
imported in Excel where the reliability figures can be then computed.

Note that for this initial proof-of-concept it has been preferred to keep the two
software separated instead of implementing the reliability formulae directly into
Capella. This has been done for the purpose of compatibility with current analyses but
also because it could be interesting in the future to have interfaces also with other
external tools specifically focused on RAMS activities. Finally this has been done also
to guarantee the coherence and quality of RAMS analyses, that could be performed also
by non RAMS experts if everything is implemented directly in Capella, thus losing all
the aforementioned benefits of a Model Based approach.

However this choice could be challenged and revised in the future, if needed, thus
having the possibility of computing the reliability figures directly in Capella.

Fig. 6. User interface allowing to define the relationship between two hardware components

Fig. 7. Output of the Capella viewpoint and input of the Excel reliability model
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Fig. 8. Example of different TT&C architectures modeled in Capella
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• Once the reliability figures can be directly assessed starting from a Capella model of
the system, several interesting analyses can be realized. In fact, multi-disciplinary
trade-offs can be performed by using the Architecture Evaluation feature and other
viewpoints that are already available in Capella (e.g. Mass and Cost Viewpoints
[3]). The main purpose of these viewpoints is to support system engineering trade-
offs and decision making about the architecture in order to address stakeholders
concerns and meet architecture expectations.

As an example, Fig. 8 shows the trade-offs realized for the Telemetry, Tracking &
Command (TT&C) subsystem and in particular for the Ground to satellite TeleCom-
mand link. Some architectures alternative to the current one (case a) have been
envisaged for this particular functional chain:

– case (b) same as the current design but cross-strappings between TC receivers and
the TM/TC/Reconfiguration Module blocs of the PlatForm Computer (PFC) have
been removed;

– case (c) same as the current design but cross-strappings between TC omni antennas
and TC receivers have been removed;

– case (d) merge of the two previous solutions where all cross-strappings between TC
omni antennas, TC receivers and PFC TMTCRM modules have been removed.

For each of the items of these architectures, the mass, cost and reliability data can
be defined in Capella and then the overall results obtained and compared, as shown in
Fig. 9. In this particular example, the solution (c) and (d) would have been probably
preferred if the attention was paid only to the mass and cost reductions. In fact, they
lead to higher gains compared to alternative solution (b). However one can easily
derive that these two solutions are not acceptable from a reliability point of view and
should be excluded from the trade-off.

This simple example shows thus the importance and benefits from computing the
reliability figures at the same time of the system engineering parameters.

Fig. 9. Evaluation and comparison of alternative TT&C architectures
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4 Conclusion and Perspectives

The Model Based approach, by enhancing the ability to capture, to analyze, to share,
and to manage the information associated with the complete specification of a product,
has already demonstrated its benefits for System Engineering activities.

Several studies have been performed in recent years by Thales Alenia Space in
order to evaluate the interest and applicability of a Model Based approach to support
RAMS engineers in performing safety and reliability analyses and in producing the
corresponding models and artifacts. The Capella open-source tool, based on the
Arcadia methodology, has been used for this purpose.

Some Capella viewpoints and interfaces with external tools, which were already
available or that have been specifically developed by Thales Alenia Space, have been
used. The initial focus has been paid mainly on safety and reliability analyses for which
some activities and studies have been performed.

The main outcomes and conclusions of these studies are that the Model
Based RAMS approach is seen as a promising solution that could improve and solve
some of the limitations identified for the current Quality Assurance process.

In fact, compared to the current and classic approach where RAMS analyses are
“based on documents”, several benefits are possible when the same tool is used and the
same models are shared between all the stakeholders involved in the satellite devel-
opment process:

– All information needed for the different activities, including RAMS ones, could be
more easily captured and better structured and visualized;

– The coherence and validity of the different analyses can be guaranteed even during
those phases when hypotheses and designs change frequently;

– Multi-disciplinary activities, including dependability aspects, can be performed
since the early phases of the development process thus allowing to choose the best
satellite architecture from both system engineering and dependability points of view
at the same time;

– One can benefit of the computing power of the tools in order to generate complex
analyses such as Fault Tree Analyses, to automatically check some design rules
impacting the safety: such as the fault tolerance or to verify that no single failure
could lead to catastrophic failure conditions;

– Some analyses and the corresponding artifacts can be automatically generated, or at
least initialized, by the tool itself thus reducing the workload of the RAMS
responsible who could be thus focused on those activities with a higher added value.

On the other hand, these preliminary evaluations have highlighted some classical
open points and limitations of the Model Based approach:

– RAMS analyses often require dedicated and specific models which may differ from
the ones implemented and used by system engineers. This is mainly due to their
different points of view (functional versus dysfunctional behavior of the system,
respectively) and because of the required granularity of the model: more or less
detailed depending on the specific applications and goals;
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– A good knowledge of the tools and good capabilities and experience in modeling
are necessary to be able to fully take advantage of the aforementioned benefits of
the Model Based approach and thus improving the efficiency and efficacy of the
dependability process followed in the space domain;

– Sometimes the traditional functional approach and the currently used tools could be
more powerful and efficient compared to a Model Based approach if the model of
the system to be evaluated is too complex, meaning that is it composed of a very
high number of elements and interactions between them;

– There is sometimes a tendency/psychological bias to develop the models in order to
obtain the desired results, e.g. to demonstrate the validity and utility of a particular
Model Based tool, without being too realistic and showing the existing limits of the
approach;

– People (wrongly) think that, once all the single failures of the system are modeled in
the tool, this latter could “magically” determine also all the propagation of these
failures and/or the impact of multiple failures. In fact, the tools cannot add addi-
tional failure modes by themselves, there is no Artificial Intelligence or other fea-
tures (for the time being) that could replace the analysis of RAMS engineers.
Therefore we can only have, as an output of the tool, what has been modeled in it.

– Finally the models and the outputs (e.g. the fault trees generated by MBSA tools)
could be sometimes not really “readable”, they must be re-arranged and/or sim-
plified in order to be understood and thus fully exploited.

For each of the aforementioned points, some dedicated activities and solutions have
already been identified by Thales Alenia Space and are proposed for future studies (e.g.
definition of guidelines and instructions on how to model the system, development of
interface with commonly used RAMS tools, implementation of libraries and databases
of failure rates and failure modes, identification of specific cases where the Model
Based approach is more efficient than traditional one, etc.).

To conclude, the Model Based approach is thought to be a promising solution that
can improve the co-engineering activities between system and RAMS engineers and
thus the current Quality Assurance process followed in the space domain.

However current applications of the Model Based approach for RAMS analyses
have shown also some possible limitations and improvements that need to be addressed
by future studies.

Thales Alenia Space will evaluate further the Model Based approach in order to
conclude on its interest and real benefits and then to use operationally these tools to
improve the efficacy and efficiency of RAMS analyses.
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Abstract. In this article, we present modeling patterns dedicated to the
assessment of maintenance policies with AltaRica 3.0. From the analyst’s
perspective, these modeling patterns make models easier to design, to
understand by stakeholders and to maintain. From a technical point of
view, their design involves advanced features of AltaRica 3.0 that are
worth presenting.

Keywords: Assessment of maintenance policies · AltaRica 3.0 ·
Modeling patterns

1 Introduction

AltaRica 3.0 is an object-oriented modeling language dedicated to probabilis-
tic risk and safety analyses of complex technical systems [5]. It is of primary
importance, in order to make the modeling process efficient (in AltaRica 3.0
as with any other modeling formalism), to reuse as much as possible modeling
components. In AltaRica 3.0, reuse is mostly achieved by the design of modeling
patterns, i.e. examples of models representing remarkable features of the system
under study. Once identified, patterns can be duplicated and adjusted for spe-
cific needs. Patterns are actually pervasive in engineering, see e.g. [7,8]. Patterns
are not only a mean to organize and to document models, but also and more
fundamentally a way to reason about systems under study.

In this article we present modeling patterns to represent and to assess main-
tenance policies with AltaRica 3.0. We focus actually on corrective maintenance
policies (components are repaired only when they are failed) taking into account
that resources required to perform them (such as the number of repairmen or
spare parts) may be limited. We show different modeling approaches, involving
advanced features of AltaRica 3.0, such as the synchronization of events or the
aggregation of prototypes.
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The contribution of this article is thus twofold: first, it provides effective
modeling patterns for the assessment of maintenance policies; second, it demon-
strates the interest of AltaRica 3.0 advanced modeling constructs.

The remainder of this article is organized as follows. Section 2 introduces
a case study that we use throughout the article to illustrate the presenta-
tion. Section 3 makes a brief description of the AltaRica 3.0 modeling language.
Section 4 presents the maintenance policy modeling, according to three different
modeling patterns. Section 5 provides some results on the three corresponding
models. Finally, Sect. 6 concludes the article and discusses future works.

2 Illustrative Example

Figure 1 shows a system made of two subsystems: an equipment under control
and a control system. We focus our study on the latter. This system is made of
three sensors, a controller and two actuators. The controller is made of three data
acquisition units (one per sensor) and a voter, also called a logic solver, which
works according to a 2-out-of-3 logic. Each actuator is made of two components.

Fig. 1. An equipment under control and its control part.

All the components may fail in operation and be repaired. Failure rates (h−1)
are respectively 10−5 for sensors, 10−6 for data acquisition units, 10−8 for the
logic solver and 10−6 for actuators. A maintenance operation is launched when
the system as a whole is failed, i.e. if either two or more sensors are failed or
two or more data acquisition modules are failed or the voter is failed or the two
actuators are failed. All failed components are repaired during the maintenance
operation and can be considered as good as new after. Failed components are
repaired one by one. Mean times to repair components are one shift, i.e. 8 h for
actuators, 4 h for sensors, data acquisition units and the logic solver. To accel-
erate maintenance operations, two repairers are involved (and can thus repair
components in parallel).
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The objective of this study is to calculate, for example, the system operational
availability during its mission time, taking into account maintenance policies of
the components.

3 AltaRica 3.0 Modeling

3.1 The AltaRica 3.0 Modeling Language

AltaRica 3.0 is an event-based and object-oriented modeling language dedicated
to probabilistic risk and safety analyses of complex technical systems [9]. This
language is the combination of two parts: the mathematical framework GTS,
for Guarded Transition Systems ([4,10]) to describe the behavior of the system
under study; the structuring paradigm S2ML, for System Structure Modeling
Language ([3]), to organize the model.

The execution of an AltaRica 3.0 model, done by the mathematical frame-
work GTS, is quite similar to other event-based formalisms. It means that when
a transition is enabled, it is scheduled and will be potentially fired after its asso-
ciated delay [6,12]. These delays can be deterministic or stochastic. For stochas-
tic delays, AltaRica 3.0 provides usual probability distributions: exponential,
Weibull, uniform or user defined ones.

To structure an AltaRica 3.0 model, S2ML provides the appropriate primi-
tives. S2ML unifies the two main structuring paradigms for modeling languages:
object-oriented and prototype-oriented. With S2ML, one can design the model
in two ways. The ‘top-down’ approach: the system is considered at its high-
est level and modeling patterns are mainly used; it is the realm of prototype-
oriented. The ‘bottom-up’ approach: the system is considered at its lowest level
(the components) and libraries of components are mainly used: it is the realm
of object-oriented.

Two main structural constructs can be used in AltaRica 3.0: a ‘block’ and a
‘class’. A class is an “on-the-shelf”, reusable modeling component. It is defined
and then can be instanced in a model, or inherited by another class or block.
A block is a modeling component with a unique instance, as opposed to a class
which can have several instances. The definition of a block is also its (unique)
instance. More information can be found in [3].

3.2 Modeling with AltaRica 3.0

To design the AltaRica 3.0 model of the system depicted Fig. 1, we start by
modeling the main part. We only consider that this main part contains a set of
hierarchically ordered components, without thinking about how these compo-
nents are internally designed.

Main Part of the AltaRica 3.0 Model. The main part is given Fig. 2. It is
defined with the block System, which contains two parts: one with the declaration
of the different structural elements, the other defining the behavior.
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System
// Declaration of elements
Sensor S1, S2, S3;

Control
DataAcquisition DA1, DA2, DA3;

LogicSolver
RComponent (lambda = 1.0e-8, mu = 4);
in1, in2, in3, out ( = );

out := vs == WORKING
(in1 in2) (in1 in3) (in2 in3)

;

LogicSolver.in1 := DA1.out;
LogicSolver.in2 := DA2.out;
LogicSolver.in3 := DA3.out;

Actuators
Line1

Actuator A1, A2;

A2.in := A1.out;

Line1 Line2;

TE = (Actuators.Line1.A2.out == )
(Actuators.Line2.A2.out == );

// Definition of the behavior

S1.in := ; S2.in := ; S3.in := ;
Control.DA1.in := S1.out;
Control.DA2.in := S2.out;
Control.DA3.in := S3.out;
Actuators.Line1.A1.in := Control.LogicSolver.out;
Actuators.Line2.A1.in := Control.LogicSolver.out;

Fig. 2. AltaRica 3.0 code for the main part.

The main part represents the hierarchy of declared components and the links
between them (the behavioral part). It is composed of:

– Three instances S1, S2 and S3, of the class Sensor. We only assume that this
class Sensor contains two flow variables in and out (we can see them in the
second part defining the behavior).

– A block Control, which is a sub-block of the main block System. This block
declares three instances DA1, DA2 and DA3 of the class DataAcquisition.
It declares an internal block LogicSolver, which inherits from the class
RComponent. We assume that the class RComponent represents reparable com-
ponents and contains two parameters lambda and mu that we overload with
the values 10−8 and 4. This inheritance means that the block LogicSolver
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is a reparable component: it takes the features of the class RComponent. Fur-
thermore, the block LogicSolver declares four flow variables in1, in2, in3
and out. These variables are used in the second part defining the behavior of
the LogicSolver: the assertion defines the external behavior according to the
internal behavior, i.e. the update of the variable out according to the other
variables in1, in2, in3 and a state variable vs (an internal variable) coming
from the inherited class RComponent. Finally the block Control specifies the
external behavior of its sub-parts in the assertion.

– A block Actuator declaring a sub-block Line1. Line1 represents the first line
of actuators. It is composed of two instances A1 and A2 of the class Actuator.
These actuators are linked thanks to the assertion. The sub-block Line1 is
cloned: a copy of Line1 is made and named Line2. One can notice that these
two blocks Line1 and Line2 will independently live their own lives: changes
into one block (e.g. the update of a variable, or the firing of a transition) has
no impact on the other.

– Finally, a Boolean observer TE (Top Event) is declared. This observer observes
if the two flow variables out, coming from the two actuators A2 of the two
lines, are false.

After the first declarative part, the main block System defines the assertion,
which describes how the sub-parts (the sensors, the control and the actuators) are
linked together and with the environment. We assume here that the equipment
under control cannot fail and the sensors always receive a correct value as input
(i.e. the value true because we consider Boolean variables).

Library of Components. The main part of the AltaRica 3.0 model contains
different components, which are instances of classes. These classes are defined
in a dedicated library and are depicted Fig. 3. The class RComponentIO imple-
ments a generic reparable component with one input and one output. It inherits
from another class RComponent, the same as the one inherited by the component
LogicSolver of the block Control. This inheritance means that RComponentIO
takes the features of RComponent. RComponentIO declares two flow variables in
and out, which are used in the second part: the assertion defining the exter-
nal behavior by updating the variable out, according to the variable in and
the state (internal) variable vs, coming from the inherited class RComponent.
Finally, the classes corresponding to the components Sensor, DataAcquistion
and Actuator are defined. They inherit from the class RComponentIO and over-
load the values of the parameters lambda and mu.

4 Modeling Pattern for Maintenance

The (part of the) AltaRica 3.0 model, presented previously, does not integrate
the behavioral description of a reparable component, as well as the maintenance
policy according to the limited number of repairers. We start with the definition
of two AltaRica 3.0 elements in Fig. 4: a domain and an operator. The domain
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RComponentIO
RComponent;
in, out ( = );

out := vs == WORKING in;

Sensor
RComponentIO (lambda = 1.0e-5, mu = 4);

DataAcquisition
RComponentIO (lambda = 1.0e-6, mu = 4);

Actuator
RComponentIO (lambda = 1.0e-6, mu = 8);

Fig. 3. AltaRica 3.0 library of components.

SDomain {WORKING, FAILED, WAITING_REPAIR, REPAIR}

IsNotFailed(SDomain aState)
(aState != FAILED) 1 0

Fig. 4. AltaRica 3.0 code for the domain and operator.

SDomain defines four values, WORKING, FAILED, WAITING REPAIR and REPAIR,
which will be used after to define types of elements (e.g. variables, parameters or
observers). The operator IsNotFailed returns an integer value (1 or 0) according
to the value of the argument aState, of type SDomain.

4.1 Maintenance Policies

According to the European standard NF EN 13306 X 60-319, there are two
main kinds of maintenance. The first one is the corrective maintenance, which is
carried out after failure detection and is aimed at restoring an asset to a condition
in which it can perform its intended function. This kind of maintenance implies
an unavailability either of the overall or of a part of the system. The second
one is the preventive maintenance, which aims at performing an intervention
before the occurrence of a failure. Different kinds of preventive maintenance also
exist. Planned maintenance is realized according to a specific bound reached
by the system (e.g. date, time of running, distance travelled, etc.). Condition-
based maintenance is realized according to a monitoring of the system. Finally,
predictive maintenance uses sensor data to monitor a system, then continuously
evaluates it against historical trends to predict failure before it occurs.
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AltaRica 3.0 is a flexible and versatile tool. Maintenance policies can be taken
into account with AltaRica 3.0, of course by realizing some kinds of abstraction.
For example, [11] presents a modelling methodology for the assessment of pre-
ventive maintenance on a compressor drive system. In the following, we focus on
the corrective maintenance policy at the component level. We introduce some
condition at system level, to realize maintenance actions, i.e. when a sufficient
number of components are failed: at least two sensors are failed, or two data
acquisition units or the logic solver unit or one actuator per lines. Furthermore
we consider only two repairers to repair failed components.

In Fig. 5, two transitions representing the maintenance policy are added to
the main part of the AltaRica 3.0 model.

System
// Declaration of elements
...

maintenanceReq ( = (0.0), = );
maintenance ( = (0.0));

// Definition of the behavior

maintenanceReq: (IsNotFailed(S1.vs) + IsNotFailed(S2.vs)
+ IsNotFailed (S3.vs)) <= 1

...
// The maintenance policy involving all components
-> ;

maintenance: !maintenanceReq
& ?S1.maintenance & ?S2.maintenance & ? ...
// All transitions ’maintenance’ of all components

...

Fig. 5. Main part of the AltaRica 3.0 model with the maintenance policy.

The two events maintenanceReq and maintenance are defined with an
instantaneous delay, represented by the distribution Dirac(0.0). It means that
the transitions, labelled by these instantaneous events, are fired as soon as they
are enabled. In the following, we will associate the transition and its label, if
there is no ambiguity.

The transition maintenanceReq specifies the maintenance policy in the
guard, by using the operator IsNotFailed with the states of the compo-
nents: at least two sensors are failed. This transition is hidden (the attribute
hidden of the labelling event is set to true), meaning it will never be fired
alone, it must be synchronized with other transitions. Furthermore, no action
is associated to this transition: the instruction skip. By defining the two
events, and their associated transitions, maintenanceReq and maintenance, we
totally separate the definition of the maintenance policy (in the guard of the
transition maintenanceReq) and the action of maintenance (in the transition
maintenance).
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The transition maintenance synchronizes the transition maintenanceReq
and all the transitions maintenance of the components. The symbol ! means
that the transition maintenanceReq is mandatory: to fire this transition
maintenance, the guard of the transition maintenanceReq must be true. Con-
versely, the symbol ? means that the transitions maintenance of the components
are optional: the transition can be fired if its guard is true, but it is not required.
When the transition maintenance of a component is fired, it changes its state
from FAILED to WAITING REPAIR: it has to wait the availability of a repairer.

The behavior of a reparable component RComponent is described according
the state machine depicted Fig. 6. Nodes represent the different states of the
component, which are from the domain SDomain. Edges represent transitions
between states. It is a generic behavior which will be adapted according to the
considered modeling pattern.

In the following we present how to model the availability of a repairer to repair
a component, with three different patterns: by propagation of flow variables, by
synchronizing events, or by using the virtual aggregation.

Fig. 6. State machine of a reparable component.

4.2 Repair by Propagation of Flow Variables

Figure 7 represents the reparable component used for the pattern propagation of
flow variables. The component is initialized to the state WORKING: the attribute
init of the state variable vs is set to WORKING. The event maintenance is syn-
chronized at system level: its attribute hidden is set to true. Two flow variables
are defined. rUsed indicates that a repairer repairs the component. rAvailable
takes the value of the availability of a repairer, and is used in the guard of the
transition repairStart, i.e. to launch the repair of the component.

Figure 8 shows the additions to the main part of the AltaRica 3.0 model,
which are needed for the pattern by propagation of flow variables. The param-
eter repairer defines the number of repairers (i.e. 2). The flow variable rUsed
provides the number of used repairers to repair components. This variable is
updated in the assertion by adding all flow variables rUsed of the components.
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RComponent
SDomain vs ( = WORKING);

rUsed ( = 0);
rAvailable ( = );

lambda = 1.0e-5;
mu = 2.0;

failure ( = (lambda));
maintenance ( = (0.0), = );
repairStart ( = (0.0));
repairEnd ( = (mu));

failure: vs == WORKING -> vs := FAILED;
maintenance: vs == FAILED -> vs := WAITING_REPAIR;
repairStart: vs == WAITING_REPAIR rAvailable -> vs := REPAIR;
repairEnd: vs == REPAIR -> vs := WORKING;

rUsed := vs == REPAIR 1 0;

Fig. 7. AltaRica 3.0 code of the reparable component for the pattern by propagation
of flow variables.

Finally the flow variable rAvailable provides the information that a repairer is
available. It is updated according to the value of rUsed and repairer. Then, it
is used to update all the variables rAvailable of the components.

System
// Declaration of elements
...

repairer = 2;
rUsed ( = 0);
rAvailable ( = );

// Definition of the behavior

...

...
rUsed := S1.rUsed + S2.rUsed + S3.rUsed + Control.DA1.rUsed + ...
// All flow variables ’rUsed’ of components
rAvailable := rUsed < repairer;
S1.rAvailable := rAvailable;
S2.rAvailable := rAvailable;
S3.rAvailable := rAvailable;
Control.DA1.rAvailable := rAvailable;
...
// All flow variables ’rAvailable’ of all components
// take the value of the variable ’rAvailable’

Fig. 8. Main part of the AltaRica 3.0 model with the pattern by propagation of flow
variables.
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RComponent
SDomain vs ( = WORKING);

lambda = 1.0e-5;
mu = 2.0;

failure ( = (lambda));
maintenance ( = (0.0), = );
repairStart ( = (0.0), = );
repairEnd ( = (mu), = );

failure: vs == WORKING -> vs := FAILED;
maintenance: vs == FAILED -> vs := WAITING_REPAIR;
repairStart: vs == WAITING_REPAIR -> vs := REPAIR;
repairEnd: vs == REPAIR -> vs := WORKING;

Fig. 9. AltaRica 3.0 code of the reparable component for the pattern by synchronizing
events.

4.3 Repair by Synchronizing Events

Figure 9 represents the reparable component used for the pattern by synchroniz-
ing events. The three events maintenance, repairStart and repairEnd have
their attributes hidden set to true in order to synchronize them at the system
level.

Figure 10 represents the additions to the main part of the AltaRica 3.0 model
used for the pattern by synchronizing events. A new block Repairer is added.
It defines the behavior of the repairer crew according to dedicated events. It
is basic: it defines the start and stop of a repair if one of the two repairers is
available. Then two new events repairStartC and repairEndC are defined for
all components C. These events are used in the transition part to synchronize the
own events repairStart and repairEnd of the component C, with the events
repairStart and repairEnd of the block Repairer.

4.4 Repair by Virtual Aggregation

For the pattern with the virtual aggregation, the class defining the component
is represented Fig. 11. This class is the same as the one defined in Fig. 9. In
addition, it virtually aggregates a new element of type T, which is used in the
class with the alias t. This virtually aggregated element is used in the class
within the two transitions repairStart and repairEnd, by synchronizing them
with two events of t. When the class is instantiated (i.e. when an object with
this class as type is declared), this aggregation is resolved by indicating a real
object (an instance of a class or a block to be used instead of T). This object
must be compatible according to the use of it in the declared class.

Figure 12 represents the additions to the main part of the AltaRica 3.0 model
used for the pattern by virtual aggregation. A new block Repairer is defined. It
is the same as for the previous pattern by synchronizing events. This block is used
when all classes are instantiated, inheriting from the class RComponent, to resolve
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System
// Declaration of elements
...

Repairer
repairer = 2;

rAvailable ( = repairer);
repairStart, evRepairEnd ( = (0.0), = );

repairStart: rAvailable > 0 -> rAvailable := rAvailable - 1;
repairEnd: -> rAvailable := rAvailable + 1;

repairStartS1 ( = (0.0));
repairEndS1 ( = (S1.mu));
repairStartS2 ( = (0.0));
repairEndS2 ( = (S2.mu));

...
// For all components, two new events ’repairStart’ and ’repairEnd’
// Definition of the behavior

...
repairStartS1: !S1.repairStart & !Repairer.repairStart;
repairEndS1: !S1.repairEnd & !Repairer.repairEnd;
repairStartS2: !S2.repairStart & !Repairer.repairStart;
repairEndS2: !S2.repairEnd & !Repairer.repairEnd;
...
// All events previously defined are used to synchronize the events
// of the considered component with the events of the block

’Repairer’

...

Fig. 10. Main part of the AltaRica 3.0 model with the pattern by synchronizing events.

the virtually aggregated element. The resolution of the virtual aggregation is
done by the attribute (virtual T = main.Repairer). It means that the virtual
element T, used in the class with the alias t, is equal to the block Repairer. The
keyword main, preceding the word Repairer with a dot between them, indicates
that the object Repairer is declared at the main hierarchical level of the model,
i.e. the block System.

5 Experiments

Table 1 shows different quantitative features of the models for these three pat-
terns: the model Mf for the pattern propagation of flow variables, the model Me
for the pattern synchronizing events, and the model Mv for the pattern virtual
aggregation. The first two features are done for the designed models, whereas
the others are done for the compiled models. The difference between models Mf
and Me concerns the number of flow variables and their updates in the assertion:
more important in the model Mf. Nevertheless, this result hides the additional
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RComponent
T t;

SDomain vs ( = WORKING);
lambda = 1.0e-5;
mu = 2.0;

failure ( = (lambda));
maintenance ( = (0.0), = );
repairStart ( = (0.0));
repairEnd ( = (mu));

failure: vs == WORKING -> vs := FAILED;
maintenance: vs == FAILED -> vs := WAITING_REPAIR;
repairStart: !t.repairStart & vs == WAITING_REPAIR -> vs := REPAIR;
repairEnd: !t.repairEnd & vs == REPAIR -> vs := WORKING;

Fig. 11. AltaRica 3.0 code of the reparable component for the pattern by virtual
aggregation.

events, per components, defined in Me; which is not indicated in this table but
can be found thanks to the number of lines. Furthermore models Me and Mv seem
to be equal when compiled. More precisely, they are equal and it is totally nor-
mal because the virtual aggregation pattern considers synchronization of events,
but from a generic way: by including it directly into the class. The main dif-
ference is thus according to the size of the designed models. In the following,
especially with the assessment tools, these two models are used equally. Finally
it is recommended to use the pattern by virtual aggregation. On the one hand,
fewer errors are made at the design phase. On the other hand, it defines fewer
flow variables, than the pattern by propagation of flow variables, which has a
cost when the model is evaluated by the assessment tools: these variables are
updated in the assertion and there is a computational cost for that at runtime.

Table 1. Quantitative features for the three patterns.

Features Mf Me Mv

Number of lines, at design 143 177 130

Number of lines of the main block (System), at design 84 124 66

Number of state variables 11 12 12

Number of flow variables 48 24 24

Number of events 34 34 34

Number of lines of the assertion 48 24 24

Some experiments are also realized in order to evaluate the Boolean observer
TE. This observer indicates when the values of the two flow variables out, of the
two actuators A2 of the two lines, are false. It means that the system is failed.
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System
// Declaration of elements

Repairer
repairer = 2;

available ( = repairer);
repairStart ( = (0.0), = );
repairEnd ( = (0.0), = );

repairStart: available > 0 -> available := available - 1;
repairEnd: -> available := available + 1;

Sensor S1, S2, S3 ( T = .Repairer);
Control

DataAcquisition DA1, DA2, DA3 ( T = .Repairer);
LogicSolver

RComponent (lambda = 1.0e-8, mu = 4.0,
T = .Repairer);

...

...

Actuator
Line1

Actuator A1, A2 ( T = .Repairer);
...

...

...
// Definition of the behavior
...

Fig. 12. Main part of the AltaRica 3.0 model with the pattern by virtual aggregation.

We used the AltaRica 3.0 stochastic simulator of the OpenAltaRica platform
([1]) to perform the experiments.

Table 2 shows the means of fired transitions for the following number of gener-
ated histories: 105, 106 and 107, for a mission time equal to 20 years (175200 units
of time). The execution time, to generate these histories, has not been taken into
account. On the one hand, it is quick: 1–2 min for 107 histories on a personal
laptop. On the other hand, our interest does not focus on performance analysis
of the tool. Elements can be found in [2] or [1].

Table 2. Means of fired transitions.

Number of histories 105 106 107

Mv 22.9015 22.9089 22.9002

Mf 22.9133 22.8936 22.8997
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Table 3 shows statistics provided by the stochastic simulator, on the observer
TE, for 107 generated histories. The considered mission time was 20 years and we
also considered different time instants: 5, 10 and 15 years. We focused on the two
following statistics. ‘had-value’ (denoted h-v) is equal to 1 if the observer took
the value true for a non-null period at least once from time 0 to time d (with
d equals to 5, 10, 15 or 20 years), and 0 otherwise. ‘number-of-occurrences’
(denoted n-o) is equal to the number of dates the observer started taking the
value true over the time period [0, d] (with d equals to 5, 10, 15 or 20 years).
The obtained results are quite similar.

Table 3. Statistics on the observer.

Mf Mv

5 years h-v 0.315882 0.315438

n-o 0.343274 0.343362

10 years h-v 0.646718 0.646189

n-o 0.848165 0.849419

15 years h-v 0.830037 0.829901

n-o 1.35688 1.3594

20 years h-v 0.919748 0.920068

n-o 1.86367 1.86752

6 Conclusion

In this article, we presented three different modeling patterns with the AltaR-
ica 3.0 modeling language to represent a corrective maintenance policy on a set
of components, with a limited number of repairers. A main modeling part of the
system has first been proposed. This part is common to the three modeling pat-
terns and was realized with a ‘top-down’ approach. Behaviors of the components
were not directly defined. Furthermore we included the maintenance policy into
this main part.

Regarding the limited number of repairers, meaning their assignment to failed
components according to their availability, the three different patterns were pre-
sented. The first one uses the propagation of flow variables. This pattern is not
difficult but error prone. In addition it could be less efficient during execution.
In fact it duplicates the number of flow variables, thus the number of elements
to update in the assertion. The second and third patterns use the synchroniza-
tion of events. The second one defines these synchronizations by hand, for all
the components. The third one uses the virtual aggregation to integrate these
synchronizations into a generic class. This third pattern is more easy to design
models, and thus less error prone.

These modeling patterns for maintenance policies with AltaRica 3.0 open the
way to new opportunities. On the one hand, modeling patterns allow engineers
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to model simply and efficiently classical safety features: e.g. periodically tested
component, (warm) redundancies, shared resources, common cause failures, etc.
Some of these patterns are defined in libraries. For the others, it is possible,
in an easy way, to design tools helping engineers to create models with such
patterns. On the other hand, it is possible to extend the use of AltaRica 3.0
modeling language to study other performance indicators than those for safety,
e.g. scheduling maintenance policies.
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Abstract. To deal with the rising system complexity, Model-Based Sys-
tem Development (MBSD) approaches are becoming popular due to their
promise to improve consistency between different views of the system
model. For dependable systems, safety analysis is one of the important
views. Model-Based Safety Analysis (MBSA) can partially automate the
generation of safety artifacts and provide traceability between the system
model and the generated safety artifacts. Thus, MBSA not only supports
the safety analysis of the system, it also eases an impact analysis of model
changes and hence supports an iterative and agile development of safety-
critical systems. This paper presents an MBSA approach for the Hazard
and Operability (HAZOP) studies using a Domain-Specific Language
(DSL) for guidance and establishing strong links to the system model
and requirements for consistency and traceability. The combination with
the DSL and features like auto-completion and consistency checks that
we implement in our tool help to detect flaws in the safety analysis at
early design stages, when elimination of such flaws is typically cheap as
opposed to later development stages. Our approach is evaluated based
on a SysML model of Bosch’s Boost Recuperation System (BRS).

1 Introduction

The complexity of modern, software-intensive systems continues to increase
due to the rising number of features and functionalities [2]. When complex
software-intensive systems are used in safety-critical domains such as automo-
tive, robotics, and avionics, their malfunction might lead to severe damages or
even loss of lives. Consequently, safety of these systems is of paramount impor-
tance. To ensure safety, these systems have to be developed according to safety
standards such as IEC 61508 or ISO 26262 in the automotive domain. These
standards require safety analysis methods such as Failure Mode and Effects Anal-
ysis (FMEA), Fault Tree Analysis (FTA), or Hazard and Operability (HAZOP),
c© Springer Nature Switzerland AG 2019
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all of which inherently require a model of the system. Thus, these methods ana-
lyze the safety of a system based on a model of the system [5,6,13,14], focusing,
e. g., on FMEA [15] or FTA [8].

In previous work, we presented Model-Based Safety Analysis (MBSA) meth-
ods for FMEA [11] and FTA [12] by combining and linking both with Model-
Based System Development (MBSD) methods and artifacts. However, a system-
atic integration of HAZOP is missing. Without links between HAZOP study
elements and MBSD artifacts, there is a high risk that the safety analysis and
the system model become inconsistent, potentially leading to forgotten hazards
as well as incomplete and inconsistent risk evaluations.

In this paper, we present an approach that uses a Domain-Specific Langu-
age (DSL) with strong links to a System Modeling Language (SysML) model to
support HAZOP studies with features like traceability and consistency checks.
In this work, we do not attempt to fully automate the HAZOP study because as
per Taylor [18], “to be able to accept the responsibility for risk reduction recom-
mendations the HAZOP team requires full understanding of the problems and
the basis for analysis. This cannot be achieved via a purely computer generated
HAZOP”. Instead, we implemented our DSL with its metamodel in a tool and
provide the user with auto-completion and context menus to ease HAZOP stud-
ies. Thus, our main contribution is to provide comprehensive automated support
based on a DSL that assists users in conducting HAZOP studies while automati-
cally maintaining consistency with a SysML model and system requirements. We
show the applicability of the proposed approach in a case study of an industrial
automotive product, the Boost Recuperation System (BRS) from Bosch.

2 Background and Related Work

The Hazard and Risk Analysis (HARA) is fundamental for ensuring the safe
design and operation of a system and it is the precondition for both FTA and
FMEA. Success of a HARA relies on identifying and subsequently analyzing pos-
sible scenarios that can cause hazardous events with different degrees of severity.
Several techniques are available to identify these hazardous events, all of which
require rigorous, thorough, and systematic application. One particular technique
typically used as part of the HARA is the HAZOP study.

A HAZOP study is a structured and systematic technique for examining
a defined system with the objective to identify potential hazards and their
causes [1]. For an examined hazard, a solution or an action is provided to change
the system design in order to avoid the hazard. The HAZOP study is structured
in a tabular format. In each column, the hazard examination is made for an
element or attribute of the system. An example for a coolant transfer system is
provided in Table 1 while a more detailed explanation and more examples can
be found in IEC 61882:2016 [1]. The standard columns of a HAZOP table based
on [1] and [16] are given in the following. Please note that in the remainder of
this paper we enumerate each HAZOP Column by HCn .
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Table 1. Example for a HAZOP Table [1].

Element
(HC1)

Guide word
(HC2)

Deviation
(HC3)

Consequen-
ces
(HC4)

Cause (HC5) Action
required
(HC6)

Transfer
Coolant

No No transfer
of coolant
takes place

Pump
stopped

Explosion (Due
to the
temperature
greater than
900 ◦C)

Consider
low-level
alarm for flow
of coolant

Element (HC1): The design intent for a given part of a system is expressed
in terms of elements.

Guide word (HC2): A word or phrase which expresses and defines a specific
type of deviation from an element’s design intent.

Deviation (HC3): A deviation is a way in which the process conditions may
depart from their design/process intent.

Consequences (HC4): The results of the deviation, in the case that the devi-
ation actually occurs. Several consequences may follow from one cause and,
in turn, one consequence can have several causes.

Cause (HC5): The reason(s) why the deviation could occur. Several causes
may be identified for one deviation.

Action Required (HC6): The actions required for addressing uncertainties
(or) recommendations for mitigation of the hazard.

Performing a complete and consistent HAZOP study can be a difficult,
time-consuming, and labor-intensive activity [4]. Therefore, several researchers
have attempted to develop expert systems to resolve these drawbacks. Dunjó et
al. [4, Sect. 3.5] discuss the efforts made towards this goal. Most of the surveyed
approaches are rule-based and apply expert systems to suggest guide words or
potential deviations based on the analyzed system elements [7,10]. Only a very
limited number of approaches are model-based or leverage the benefits of a DSL.
However, Völter et al. [19] propose and justify the use of DSLs in safety-critical
environments in order to introduce rigor, consistency, and traceability. Yet, to
the best of our knowledge, no comprehensive model-based approach supporting
HAZOP studies by the use of a DSL exists.

For example, Lhannaoui et al. [9] provide a conceptual HAZOP metamodel
to describe business-related risk analysis. However, they do not provide any
implementation and tool support for their metamodel as they focus mainly on
improving business processes rather than engineering processes, which are the
focus of our work. Guiochet [7] and Hansen et al. [10] both provide rule-based
approaches that suggest appropriate HAZOP guide words based on the selected
UML (Unified Modeling Language) element and attribute. Guiochet additionally
demonstrates the integration of the HAZOP study with the system model. Both
need to be modeled in the same standalone HAZOP tool, which allows estab-
lishing consistency of HAZOP study results and the UML system model as well
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as checking for completeness of all possible failures for the modeled elements.
Thus, both approaches rely on the standard general-purpose UML metamodel.

Attasara-Mason [3] provides an integrated system and HAZOP metamodel,
expressed in the open-source database management system ConceptBase. To the
best of our knowledge, this is the only approach that facilitates a metamodel to
ensure traceability and consistency between the HAZOP study and the system
model. Their approach imports the system model and the HAZOP study into
the ConceptBase and is able to check dependencies as well as consistency based
on the Object Constraint Language (OCL). However, in contrast to our app-
roach, changes in the system model that break the consistency with the HAZOP
study cannot be detected automatically. Furthermore, our implementation pro-
vides the user with auto-completion and context help. Thus, our approach is
more comprehensive in terms of providing traceability and automated support
for users conducting HAZOP studies.

3 Approach

Our approach targets machine support for and during a HAZOP study, mainly
based on a strong link to a system model to ensure consistency of the HAZOP
study with the system. As large parts of the automotive domain as well as
several Bosch business units use SysML models, we want to provide HAZOP
support for SysML models and their respective system requirements that are
stored separately in a requirement management tool. We designed a DSL that is
capable of formalizing HAZOP study results and link them with SysML elements
of all SysML diagram types.

3.1 Metamodel

Figure 1 shows the main concepts of the metamodel of the proposed HAZOP-
DSL that will later be arranged in the concrete language syntax.

The main concept of the HAZOP-DSL is the Analysis, which captures the
results of a HAZOP study as shown in Table 1 with an arbitrary number of
Statements. A Statement consists of three parts: (1) One ColumnType that
defines the column (HC3–HC6), so either Deviation, Consequence, Cause, or
ActionRequired. (2) One Element that references the SysML model element the
statement is targeting, which is HC1. (3) An arbitrary number of Utilities
that specify the actual content of the HAZOP table cell. Note that since the
guide word (HC2) is already part of the Deviation (HC3), we do not express
it separately again but provide them as part of the Utility and highlight them
visually with red color as illustrated by the example in Fig. 2.

The different Utilities that structure the content of HAZOP table cells are
described in the following. Please note that we enumerate them with (Um) for
later use. The GuideWord (U1) provides a reference to one guide word from a
given list and the guide word’s description collected from [7]. The Element (U2)
allows referencing elements from a SysML system model, e. g., SysML blocks
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Fig. 1. Simplified metamodel of the proposed HAZOP-DSL.

and activities. The Operation (U3) allows referencing SysML operations of
system model elements. The Port (U4) allows referencing ports of system model
elements. The Requirement (U5) allows referencing system requirements. The
FreeText (U6) allows input of arbitrary text strings. The TextReference (U7)
allows re-use of previously defined FreeText (U6), text snippets from a user-
defined list of commonly used HAZOP phrases, and user-defined lists of short
terms instead of longer sentences. The SIUnit (U8) allows the use of SI units
that can be looked up by name for convenience and consistency.

3.2 Constraints

Depending on the ColumnType, certain utilities are mandatory or not allowed, as
listed in Table 2. The columns HC3–HC6 do not use the utility Requirement
(U5) because these columns focus only on deviation from the original design,
failure cause due to deviation, consequences to the system due to the failure, and
actions required to overcome the failure. Therefore, references to requirements
are not required for these columns. The column HC3 uses the utility Guide-
Word (U1) to find out possible deviations or failures. Therefore, utility U1 is
used in column HC3 and restricted for columns HC4–HC6.

3.3 Concrete Syntax

The concrete syntax of the HAZOP-DSL provides a fixed structure for State-
ments expressing HC3–HC6, as defined by the grammar shown in Listing 1.1
and expressed in the Extended Backus-Naur form (EBNF). Each Statement
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Table 2. Constraints for usage of Utilities depending on the ColumnType. Note that
U5 is used in Sect. 5 as an extension of the HAZOP study for the BRS example.

ColumnType Utility constraints

Deviation (HC3) U1 | U2 | U3 | U4 | U5 | U6 | U7 | U8

Consequences (HC4) U1 | U2 | U3 | U4 | U5 | U6 | U7 | U8

Cause (HC5) U1 | U2 | U3 | U4 | U5 | U6 | U7 | U8

Action required (HC6) U1 | U2 | U3 | U4 | U5 | U6 | U7 | U8

starts with the ColumnType, followed by the Element of interest, and an arbi-
trary number of Utilities, i. e., text snippets, references to system elements or
requirements, and SI units (cf. metamodel in Sect. 3.1).

Listing 1.1. Grammar of the proposed HAZOP-DSL in EBNF.

Statement = ColumnType , "for" , Element , ":" , Utilities;

ColumnType = HC3 | HC4 | HC5 | HC6;

Element = HC1;

Utilities = { Utility };

Utility = U1 | U2 | U3 | U4 | U5 | U6 | U7 | U8;

Figure 2 shows four exemplary Statements, one per line, in the proposed
DSL, expressing columns HC3–HC6 from Table 1. These Statements are
(i) the Deviation (HC3) statement (“No/none Transfer of coolant takes
place”) emphasizing the GuideWord (U1) utility (“No/None”), (ii) the Conseq-
uences (HC4) statement with the TextReference (U7) utility (“Pump is sto-
pped”), (iii) the Cause (HC5) statement with the SIUnit (U8) utility (“◦C”)
used with a FreeText (U6) utility (“Explosion (Due to . . . )”), and (iv) the
ActionRequired (HC6) statement with the Port (U4) utility (“coolant”) in
combination with the FreeText (U6) utility (“Consider the low-level alarm...”).
All four statements refer to the same Element called “Transfer Coolant”.

Fig. 2. Screenshot of HAZOP-DSL statements describing the example of Table 1.

4 Implementation

We implemented the proposed approach in a language workbench that has
been shown to be beneficial for safety-critical applications [19]. The proposed
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Fig. 3. Integration of the DSL with the system model and requirements.

HAZOP-DSL is developed using the language workbench Meta Programming
System (MPS) from Jetbrains for its flexibility as well as for integrating the
HAZOP-DSL with our previous model-based FMEA [11] and FTA [12]. In our
approach, the SysML model to be analyzed is imported from IBM’s system mod-
eling tool Rational Rhapsody and the system requirements are imported from
IBM’s requirements tool DOORS Next Generation (DNG). Several Bosch busi-
ness units and other automotive companies use Rhapsody and SysML to model
the automotive system architectures and DNG to manage requirements.

The following sections introduce our implementation of integrating the sys-
tem model and requirements, and of the DSL in MPS. A technical overview of
the integration of the DSL with the system model and requirements is given in
Fig. 3. The required system model and system requirements are imported, the
HAZOP study is performed using the DSL referring to the imported model and
requirements, and finally the analysis results are exported in the Excel format.

4.1 System Model and Requirements Import

SysML model elements from Rhapsody can either be imported via XMI export
or by directly accessing the Java-based Rhapsody API. System requirements are
imported using DNG’s Open Services for Lifecycle Collaboration (OSLC) API.
The primary motive of referencing system model elements and requirements in
our DSL is to detect inconsistencies between references and HAZOP study.

Inside our language workbench, we provide options to manually trigger the
import of the system model from Rhapsody and requirements from DNG. If
the system model or the requirements changed, a pop-up is raised for each of
the changes for the user to either accept or neglect the specific change, e. g., a
changed Element, Operation, or Port. To avoid false positives based on renam-
ing, the system model and requirements imports are based on their unique IDs
as provided by both, Rhapsody and DNG. The imported system model and the
requirements are stored inside the language workbench next to the DSL to be
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referenced by the respective Utilities. From this list, the user manually selects
the Element and Requirement for column HC3–HC6.

4.2 DSL Implementation

DSLs are implemented in MPS by so-called language aspects. In the following, we
discuss the relevant aspects that we used to implement the proposed HAZOP-
DSL and to integrate it with the system model and system requirements.

Structure. The structure aspect of MPS defines the metamodel of the language,
i. e., its concepts, their properties, dependencies, and relations. The MPS struc-
ture aspect supports extension and inheritance among concepts, so that, fol-
lowing Sect. 3.1 and Fig. 1, the ColumnType concept is extended by Deviation,
Cause, Consequences, and the ActionRequired concepts. Similarly, the specific
utilities (U1–U8) extend the Utility base concept.

Editor. The editor aspect of MPS allows to provide the concrete syntax of the
DSL. MPS supports projectional editors, i. e., for each concept of the language’s
structure aspect, a projection can be provided. Due to stakeholder demands,
the HAZOP-DSL was implemented as a textual DSL, i. e., the editor aspect
provides a textual projection for all concepts. Similarly, tabular, mathematical,
and graphical notations can be provided as projections, or a mix of those [19].

The projections of the Statement concept realize the grammar presented in
Sect. 3.3. The projection of the Analysis concept realizes a document that con-
tains an author, a version, and an arbitrary number of Statements. Figure 2
shows an example of an Analysis in the textual editor of our HAZOP-DSL.

In the Analysis editor, once the user starts typing ColumnType, auto-compl-
etion for all possible ColumnTypes is provided. Furthermore, the editor displays
the according Statement editor, where the Element and the Utilities have
to be filled in. Since a textual editor in MPS is just a textual projection of
the language structure, i. e., an abstract syntax tree (AST), auto-completion is
automatically provided by MPS. For example, in all places in the editor where
Elements are allowed in the syntax, MPS will automatically provide a list of
all legal instances, i. e., all elements from the imported system model. Figure 5
shows an example of the editor, show-casing the introduced auto-completion.

Constraints and Type System. The constraints discussed in Sect. 3.2 are imple-
mented using the constraints aspect of MPS. Additional constraints are realized
using the type system aspect, which allows to implement inference rules that
check the model for constraints and annotate errors and warnings inside the
editor. In our DSL, we provide checks for redundant Statements, i. e., multiple
Statements that refer to the same Element and ColumnType. In this case, a
warning is raised as shown in Fig. 5. Similarly, checks for missing Statements
and, as mentioned in Sect. 4.1, broken links to the system model and require-
ments are in place and raise errors. Furthermore, an error is raised for a missing
GuideWord (U1) in the Deviation statement as shown in Fig. 5.
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Intentions. The MPS intentions aspect allows to provide context help options
as shown in Fig. 5. For example, we provide intentions on Statements that
will, upon selection, add missing Statements for system model elements, i. e.,
Statements with the specific ColumnTypes that have not been specified yet for
the Element of the selected Statement.

Plug-In Action. The plug-in aspect of MPS allows to provide actions that the
user can trigger, e. g., through buttons or menu options. The imports of the
system model and requirements, including handling of system model changes as
described in Sect. 4.1, are realized with this plug-in aspect.

5 Application Example

This section introduces an industrial case study based on the Bosch Boost Recu-
peration System (BRS) to demonstrate the feasibility of our proposed approach.

5.1 Boost Recuperation System

The BRS is a 48 V electrical machine integrated with the internal combustion
engine of a car using a belt drive. BRS uses recuperation to recover energy for
use of vehicle acceleration. The BRS consists of a 48/12 V DC/DC converter, a
48 V lead-acid battery, a DC electric motor, and a combustion engine [17]. The
BRS system is modeled in SysML activity diagrams. Figure 4 shows a simplified
BRS activity diagram, the phase-current measurement, on which we will focus
in the following. Within this diagram, the PhaseCurrentControl provides the
calculated pulse-width modulation (PWM ) signal that is applied to the DC
motor. The PhaseCurrentControl depends on the measured phase-current, rotor
speed, and angle of the motor.

The top left of the diagram contains the package name and the diagram name.
The three columns are known as swim lanes, the blocks inside the swim lanes
are called call operation actions. Figure 4 shows three swim lanes, namely, CAN
with one, SystemControl with two, and PhaseCurrent with two call operation
actions. Such actions are connected by activity edges via their pins.

Making changes in the system becomes harder with time to analyze all the
deviations and their impact on each iteration by using standard spreadsheet-
based HAZOP analysis. The activity diagram in Fig. 4 was modeled in Rhap-
sody. The BRS model comprises 35 main packages, 57 swim lanes, and 123 call
operation actions of hardware and software functions. With 1–3 deviations per
swim lane and call operation action, there is a need to analyze 320 deviations.

5.2 HAZOP Study for BRS

Table 3 shows an exemplary row of the BRS HAZOP study for the call oper-
ation action PhaseCurrentMeasurement in the swim lane PhaseCurrent. The
Deviation for this swim lane and call operation action is represented based on
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the GuideWord “more”, i. e., a quantitative increase. Thus, the Deviation is “too
high voltages (greater than 48 V) are measured in one or all phases”.

For the BRS, the process followed for the HAZOP study is the same as
introduced in Sect. 2 and given by IEC 61882:2016 [1]. However, the resulting
Table 3 differs from the standard HAZOP table in several aspects, cf. Table 1.
The required adoptions and extensions to the metamodel in order to support
the BRS HAZOP flavor are explained in the following.

A first adoption to our metamodel is the Element that is used in HC1. While
it was a reference to a generic SysML model element in the generic approach,
Element is now a reference to the combination of a swim lane and one of its call
operation action. Column HC1 is represented in the BRS HAZOP table by the
first two columns (see columns BC1 and BC2 in Table 3). Columns 3–6 and 8 in
Table 3 (BC3–BC6 and BC8) are unchanged with respect to columns HC2–
HC6 in the standard HAZOP. Columns 7, 9 and 10 in Table 3, namely, BC7,
BC9 and BC10 are additional columns added for the BRS HAZOP study:

SG Violation (BC7): The list of affected safety goals (SGs) due to the devi-
ation and consequences. SGs are a collection of safety requirements.

Derived SA Requirement (BC9): Based on the proposed solution in
ActionRequired (BC8), the necessary changes in the system architecture
(SA) are added as requirements in DNG and their requirement IDs are
referenced.

Impact Verification (BC10): Analyzing the impact of the Cause (BC6) on
the system using techniques such as verification or simulation.

Fig. 4. Activity diagram of the BRS torque calculation, simplified for intellectual prop-
erty reasons.
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Table 3. One exemplary row of the BRS HAZOP study, split into two rows for lay-
outing purpose. (SG = safety goal, SA = system architecture).

# Element
(BC1)

Function
(BC2)

Guide Word
(BC3)

Deviation (BC4) Consequences
(BC5)

. . .

1 PhaseCurrent PhaseCurrent-
Measurement

More/too high too high voltages
(greater than 48 V)
are measured in one
or all phases

HW related fail-
ures, e. g., ageing
or random failure
of control unit

. . .

. . . Cause (BC6) SG Viola-
tion (BC7)

Action Re-
quired (BC8)

Derived SA
Require-
ment (BC9)

Impact Verifi-
cation (BC10)

. . . wrong measure-
ment of current
could lead to
wrong torque
generation

SG01, SG02,
SG03

Add Phase-
current plau-
sibility check
component with
ASIL-B

16634, 17444 Simulated and
verified with fault
injection

Table 4. Constraints for the usage of Utilities for the additional columns.

ColumnType Utility constraints

SG violation (BC7) U1 | U2 | U3 | U4 | U5 | U6 | U7 | U8

Derived SA requirement (BC9) U1 | U2 | U3 | U4 | U5 | U6 | U7 | U8

Impact verification (BC10) U1 | U2 | U3 | U4 | U5 | U6 | U7 | U8

The constraints on the utilities for the additional columns are listed in
Table 4. The columns BC7 and BC9 use the utility Requirement (U5) to refer
to imported system requirements from DNG. Additionally, column BC7 uses
the utility TextReference (U7) to refer to user-defined short terms for a col-
lection of system requirements. The column BC10 does not use the utilities
GuideWord (U1) and Requirement (U5) because it refers only to information
from the verification or simulation.

5.3 Development Workflow

This section presents the envisioned development workflow when performing a
HAZOP study with support of the proposed HAZOP-DSL. The steps to perform
the analysis expressed in Table 3 with the HAZOP-DSL are the following:

1. The HAZOP-DSL document is started by entering the author’s name and the
version number of the analysis.

2. After the header, HAZOP statements are added line by line by selecting the
ColumnType. Selection of the ColumnType will create a sentence structure that
leaves two placeholders: element and content.

3. In the first placeholder, the Element of the system model is selected from the
auto-completion option and causes the function name to appear in the second
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placeholder. In the example shown in Fig. 5, the element is PhaseCurrent and
the function is PhaseCurrentMeasurement.

4. In the second placeholder, the user fills the analysis content by concatenating
utilities, e. g., guide words, text, and references. In the example shown in
Fig. 5, the utilities selected for Deviation (BC4) are a GuideWord (U1)
(“too high”), FreeText (U6) (“voltages...”), and SIUnit (U8) (“V”).

5. As shown in Fig. 5, the context help can be used to add more columns (BC5–
BC10) to the same element, or to auto-populate the analysis with all remain-
ing columns for this element.

6. For the remaining ColumnTypes, the statements use the TextReference (U7)
utility from a user-defined list in Consequences (BC5) and another Text-
Reference (U7) utility from a user-defined short term for a safety goal
requirement in SG Violation (BC7), as well as a Requirement (U5) utility
in Derived SA Requirement (BC9). The listed utilities are combined with
the FreeText (U6) utility.

7. In Fig. 5, the last statement appears with an error and warning. The
error indicates that no GuideWord (U1) utility is selected for the Devia-
tion (BC4) statement, and the warning indicates that there is an existing
Deviation statement with same element and function name.

8. In the second to last statement for Impact Verification (BC10), the func-
tion name is highlighted to indicate a broken link to the system model.

Fig. 5. HAZOP study row from Table 3 expressed in the proposed HAZOP-DSL with
an context help, auto-completion, error and warning example.
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6 Discussion

The first advantage to mention is introducing structure into the HAZOP study
results, i. e., a metamodel and clear syntax for the content that otherwise is
just prose text in a standard spreadsheet-based HAZOP analysis. This already
improves readability, increases consistency among HAZOP statements, and
reduces the potential for errors. HAZOP statements written in the proposed DSL
are in parts already correct by construction as they have to follow the structure
given by the syntax shown in Sect. 3.3 and restrict the use of GuideWords to a
fixed set that was agreed on beforehand for a particular analysis. Further utili-
ties raise consistency even more, e. g., by ensuring consistent use of text modules
and physical units. All of these features enforce rigor in HAZOP studies, which
is required for safety analysis of high quality.

A second and—from our point of view—a more important advantage of the
proposed approach is the established link between the system model and the
HAZOP study. While the features above ensure consistency among HAZOP
study results, the system link ensures traceability and consistency between the
HAZOP studies and the system model. This feature is a strong help during system
design and system evolution, in particular:

1. During initial system design, when doing the HAZOP study in early design
phases of the project, support by our approach is provided for consistency
and completeness. Consistency is ensured through the import of the system
models and Utilities (U2–U4) referring not just to the correct Element
names, but to unique identifiers that will remain consistent during further
updates and imports of the system model. The constraints introduced in
Sect. 3.2 ensure Completeness to the extent that analysis of the Elements
of interest is complete.

2. An even stronger support is provided during the naturally occurring sys-
tem evolution. In standard spreadsheet-based HAZOP analysis, ensuring
consistency of the HAZOP study with the system model is extremely time-
consuming and error-prone, demanding strict processes and a large amount
of discipline from all team members. Since the Utilities (U2–U5) refer
to unique identifiers of system elements and requirements, HAZOP-DSL
Statements remain valid even during renaming. However, if Statements refer
to Elements that were deleted, replaced, or structurally changed (changed
Operations or Ports), Statements referring to deprecated Elements will
immediately be invalidated and the analyst is pointed to parts of the HAZOP
study that need to be checked or reworked.

Our main motivation to provide a DSL for what is usually prose text in a
standard HAZOP study, is to support the user during the analysis. The main
advantages of our approach are delivered to the user, the HAZOP analyst, by
features provided in the MPS-based editing environment, namely:

Traceability and Impact Analysis. If the system model changes, e. g., in the course
of a regular system design evolution, when the user triggers the system import
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as explained in Sect. 4.2, she is presented with the changes and may accept or
reject them. Based on the accepted changes, Statements that comprise a system
model reference (U2–U4) can automatically be checked and invalidated if out-
of-date, raising a warning or an error at the according Statement; see Fig. 5 for
an illustration. Additionally, all HAZOP study results regarding a certain system
model element can be aggregated automatically and consistently as opposed to
text-based matches in a classical text-based HAZOP.

Auto-Completion. Most parts of a Statement are supported by auto-completion,
when potential candidates for the respective Utility are known. This is trivial
for the concepts that have a fixed set of candidates, namely ColumnType and the
utility GuideWord (U1). It is also implemented for the Element, as candidates
are known from the imported system model, as well as all utilities referencing
the system model and requirements (U2–U5). Auto-completion of the utility
SIUnit (U8) relies on a static lookup table. For example, when using the utility
Element (U2), all available elements of the system model are provided and the
appropriate Element can be selected. For utility SIUnit (U8), the user can
select the unit notation by typing its complete or partial name, which leads to
the correct unit notation through a SI unit lookup table, e. g., m2

s .

Context Help. All Statements can be manually typed or they can be added
using context help as described in Sect. 4.2. For example, this allows adding
all remaining ColumnTypes for a certain Element, ensuring completeness of the
analysis for the according Element. In addition, the user has an option to auto-
generate only one particular of the missing ColumnTypes for the Element of the
currently selected Statement.

7 Conclusion

To the best of our knowledge, the proposed approach is the first to explore the
use of a DSL to establish strong links between a HAZOP study and the analyzed
system model. The presented DSL supports the user during analysis with auto-
completion, context help, consistency, and traceability to the system model and
requirements. Through linking the HAZOP study with a system model, the
impact of changes in the system model on the analysis results can be detected and
the user is pointed to required changes in the analysis. Thereby, consistency is
increased while manual effort of dealing with system evolution is decreased. Our
approach was evaluated with an industrial system and we successfully adapted
it to support the extended HAZOP study with additional columns.

As next steps, we consider providing the standard HAZOP table format,
which in MPS leaves the DSL largely unchanged by providing an additional tab-
ular projection. To enhance HAZOP-DSL’s usability, we plan to present our tool
to safety engineers and evaluate our tool with further real-world use-cases. While
we currently provide a standard set of HAZOP guide words, suggesting guide
words based on the properties of the selected element following the approach by
Guiochet [7] is another potential extension point.
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Abstract. Migrating systems and safety engineering (often with legacy
processes and certified tools) towards a model based systems engineer-
ing (MBSE) environment is a socio-technical problem. Establishing a
common conceptual framework requires agreement on modelling arte-
facts and the integration of existing tool chains to minimise disruption.
We discuss our experience integrating a SysML Safety Profile to model
fault trees but which has the prerequisite requirement to continue the
analysis of those models by existing tools. We demonstrate a lightweight
profile that minimally captures the fault logic for a Rolls-Royce gas tur-
bine engine controller and provides specific in-house extensions for both
fault tree and engine dispatch analysis by exporting model entities and
relationships from the SysML fault trees. During integration we realised
a more fundamental need to reconcile the systems engineers’ functional
view with the safety engineers’ focus on failure modes and fault logic in
order to maximimse the longer term benefits of MBSE development.

Keywords: SysML · Fault Tree Analysis · Failure modes

1 Introduction

Systems engineers have traditionally used separate models of the system func-
tions from those used for safety analysis. Part of this stems from the need to
consider the system from a functional perspective on one hand and on the other
hand how it will fail. As failures frequently cut across functional boundaries and
model very different things, system and safety models can be difficult to reconcile
and verify for consistency. While it can be argued that maintaining two models
from a single set of system specifications can act as an independent check that
the system will behave as expected under failure, the differences between the
system and safety models is often a source of inefficiency and misinterpretation.

In this paper we document our experience that trying to reconcile system and
safety perspectives is not simply a question of sharing a single data repository
captured in a modelling language such as SysML (Systems Modelling Language).
Support for different perspectives requires alignment not only of artefacts, but of
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how the system should be modelled to gain a common understanding across the
company’s engineers. The context of this work is as part of Rolls-Royce’s Ultra-
Fan engine demonstrator program,1 which has elected to trial SysML during
system development.

1.1 Paper Structure

Section 1.2 gives some background to safety critical and systems modelling using
SysML perspective and previous work. Section 1.3 describes the specific require-
ments for the ENCASE (Enabling Novel Controls and Advanced Sensors for
Engines) project. Section 2 looks at our implementation of the fault tree SysML
profile. Section 3 details our bespoke SysML profile that provides support for
modelling fault logic both within SysML and through the use of export scripts
to existing fault tree analysis tools. Section 4 gives a summary of engine dispatch
analysis.2 The issue of gradually introducing MBSE through integration with the
existing analytical toolchain is covered in Sect. 5. In Sect. 6 we discuss some of the
problems and solutions to reconcile different modelling viewpoints with respect
to the functional specification and derived safety requirements. Finally Sect. 7
concludes our experience and outlines the work going forward.

1.2 Background and Previous Work

Model Based Systems Engineering (MBSE) brings different modelling viewpoints
and tool chains under the umbrella of a single model repository that forms the
basis of all development and analytical effort. Various flavours of MBSE have
been proposed over the last two decades [12] that targeted the needs of systems
development. The references listed here are mostly pertinent to safety critical
civil aerospace development as to cover all topic domains within MBSE would
require a more extensive review. However, even within the more restricted remit
of safety critical aerospace systems and safety modelling there is a wide variety
of approaches, with many based around particular languages (AltaRica [3,5,
13], SCADE/Lustre [10]), or around a modelling environment such as Matlab
Simulink [15] in combination with other tools, such as HiP-Hops [16] or physical
simulation environments such as Modelica or Simscape ([14,15]. The decision
to adopt SysML as the modelling language for UltraFan was taken prior to our
work starting on ENCASE.

SysML is an extension of the Unified Modelling Language (UML) that focuses
on systems modelling. SysML supports the specification, analysis, design, ver-
ification and validation of a broad range of systems and systems-of-systems.3

1 Part of Innovate UK’s ENCASE (Enabling Novel Controls and Advanced Sensors
for Engines) project.

2 Dispatch refers to the engine’s ability to carry a fault for given time before mainte-
nance action is taken.

3 This paper refers to the current Object Modelling Group (OMG) SysML v1.5, not
the upcoming 2.0 standard. See http://www.omgsysml.org/.

http://www.omgsysml.org/
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However, ‘support’ in this sense is intended to mean a well-defined specification
to describe the system, so that development and analysis can be performed using
tools that take their data from a single model repository. This allows existing
(perhaps certified) tools to be used provided that a means to export the data
from the repository into a format the tool can use is made available. In order to
do that, an input method must be provided that allows the critical information
and knowledge capture of both system and safety concerns. Unfortunately while
a graphical interface for system modelling is widely supported by tool vendors for
SysML, a similar environment for safety analysts to model fault logic is rarely
provided. Fault logic is typically modelled using a graphical representation of
logic gates that traces the fault from base event to effect and which can contain
additional information, such as failure rate, dispatch information and descriptive
failure modes. A typical example is shown in Fig. 1 and the technique is defined
in standards like IEC 61025 [9].

In 2017 the OMG issued a Request for Proposals on how to represent fault
trees in SysML as part of the Safety and Reliability Analysis Profile for UML,
which will extend the SysML language with “the capability to model safety
information, such as hazards and the harms they may cause, model reliability
analyses, including Fault Tree Analysis (FTA) and Failure Mode and Effects
Analysis (FMEA), and use structured argument notation to organise the model
and specify assurance cases” [2]. As part of this, an early profile for Fault Tree
Analysis (FTA) and Failure Mode and Effects Analysis (FMEA) has been devel-
oped and published [2] and is likely to form part of SysML 2.0. However, while
the new profile is moving in the right direction, it isn’t sufficiently defined to be
adopted for use on the development of UltraFan within Rolls-Royce and neither
is it likely to support the specific requirements for Rolls-Royce to model engine
dispatch availability. Our work attempts to bridge this current gap in SysML
capability by providing a bespoke SysML profile to support Rolls-Royce’s Fault
Tree and Time Limited Dispatch (TLD) analyses.

1.3 ENCASE Project

ENCASE’s initial starting point to model fault trees in SysML was an early
paper from the National Aeronautics and Space Administration (NASA)’s Jet
Propulsion Laboratory on fault protection modelling, which captured fault logic
using UML (Unified modelling language) activity diagrams [6]. We investigated
the potential of this approach but found issues with it. Firstly, while it is possible
to model OR logic gates on activity diagrams using nodes, there is no provision
for AND gate representation. The nature of the system redundancy provided
by a dual channel FADEC (Full Authority Digital Engine Control) [11] means
that modelling fault logic requires the use of AND gates (due to the possibil-
ity of the same function on both channels failing). Secondly activity diagrams
were never intended to model fault trees, and trying to use them for that pur-
pose inevitably brings compromises. At Rolls-Royce Controls, system engineers
are already using activity diagrams to model system functions and incorporat-
ing safety model artefacts like fault logic gates using activity diagram notation
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would cause confusion and the potential for misunderstood syntax/semantics.
Furthermore, at least as implemented in PTC’s Integrity Manager, activities on
activity diagrams become Call Behaviour Actions, which semantically seems an
over specification for fault logic that is minimally expressed as set of fault propa-
gation paths containing logic gates. Although there are other potential diagram
types within SysML, none offer specific support for fault tree analysis and we
decided we could best meet our needs by creating a bespoke diagram type.

There is also recent work investigating the formal translation of activity
diagrams in UML/SysML to fault trees [7]. While this is a rigorous method, that
entails a one to one correspondence between the two models, at this stage in the
ENCASE project a more pragmatic approach is required due to the variety of
ways engineers model activities. For example there are parts of activity diagrams,
such as Join Nodes, that are semantically ambiguous and can be used/interpreted
differently by users which would make automated translation difficult. However
there is a more fundamental problem with attempting a direct translation, in
that traditional fault logic models often contain quite abstract failure modes
that will not have a corresponding entity in a functional model. For example
system engineers may model functional behaviour that mitigates against a known
hazard, but they are unlikely to model the loss of that function and its effect
on the system. Therefore the fault tree may contain fault logic that cannot be
linked to or directly translated from entities within activity diagrams. It may be
possible to do a partially automated translation if both models were carefully
constructed to reflect the same functional hierarchy and channel implementation.
We discuss this possibility in more detail in Sect. 6.

The primary practical concern for the safety team was that the SysML fault
tree models should be capable of modelling the system fault logic as it had been
done historically and exporting it in a format where it could be analysed by
their existing tools such as FaultTree+ (part of Isograph’s Reliability Workbench
suite). Their requirements were that the graphical user interface should be as
close as possible to FaultTree+ and that the information kept in the SysML
model should be the minimum required to export the fault logic for analysis.
This made adapting some existing approaches, such as Component Based Fault
Trees [1] unsuitable as they were felt to be too complex for what was needed,
despite the requirement for modular fault trees. Being able to compose sub fault
trees that can be joined to existing branches of fault logic for specific forms of
analysis, such as time limited dispatch analysis, is supported via transfer gates
and in this respect mirrors the functionality offered by FaultTree+.

2 Implementation

The current modelling environment for UltraFan is provided by PTC’s Integrity
Modeler (formerly Artisan) using SysML extended to aid efficient modelling
of gas turbine controllers. A typical screenshot is shown in Fig. 2 and to date
the software is mostly used to capture system specification through activity
diagrams. In the left hand panel, below the activity diagrams in the package
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Fig. 1. Lower level of a fault tree showing base events with FMES (Failure Mode and
Effects Summary) identifiers unique names as rendered by RWB’s FaultTree+.

hierarchy can be seen the fault tree structures. Our initial trials showed that
there are some user interface issues with very large fault trees being represented
in a ‘file browser’ type format, as the user can quickly get lost scrolling through
hundreds of gates. However, there are tools within PTC IM that allow a quick
search between entities on the fault tree diagrams and their location with the
package browser.

In order to bridge the gap between traditional safety engineering that uses
separate models from the system engineers’ models, and in a similar spirit to the
OMG RFP mentioned earlier, we have drafted the first stage of our Model Based
Safety Assurance (MBSA) profile that will in time allow the full integration
of safety analysis models with existing system models. Our profile remains a
work in progress and this part is sufficient to start to migrate the existing fault
tree models into the SysML repository. Similar to SysML extensions in UML,
the proposed Fault Tree Profile reuses a subset of UML 2.5 and provides a
bespoke diagram type (an extension of structured diagram) and additional gate
definitions to aid specific types of Fault Tree and dispatch analysis for Rolls-
Royce. The initial version of our profile is detailed in [4] and the profile’s entities
and linkages are described in detail there. However, we have since released a new
version with substantive changes, in particular the removal of ‘failure modes’ as
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Fig. 2. Example of activity diagram modelled in PTC Integrity Modeler (formerly
Artisan).

a first class entity, due to issues with the user interface and ease of export to
analytical tools (see Sect. 3).

The main aim of the profile was to capture the minimum information needed
to accurately export the fault logic to FaultTree+ and to ensure that a single
specification was used to drive both safety and systems modelling. Using as
lightweight a profile as possible means much of the FMES (Failure Modes and
Effects Summary) base event and dispatch information does not need to be kept
in the SysML model.4 Instead, the events and gates have unique identifiers that
is sufficient for the information associated with them to be extracted from the
FMES database. The reason for this is that the FMES is quite large (>3K rows
with many columns) and there has to be an explicit case made for bringing that
information into the SysML model where it is less easy to keep it maintained
and checked.

Therefore it is easiest when a new analysis is to be run to extract the summary
failure rate data directly from the databases, while keeping the fault propagation
logic, base and dispatch events within the SysML model. This is in keeping with
our belief that the SysML model represents a knowledge repository, whereas
the FMECA and FMES databases are designed to handle, import and export
large amounts of data efficiently and are able to interface with a wide range of

4 The FMES is a derived summary of the Failure mode, effects and criticality analysis
(FMECA) database (>25K rows) which is maintained with the latest failure rates.
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Fig. 3. Lower level of H01 (this is a top level hazard for turbine overspeed) fault tree
showing OR gates and base events with FMES identifiers, as rendered by PTC Integrity
Modeler using our Fault Tree SysML profile.

analytical tools. Figure 3 shows an example fault tree modelled using our profile
in PTC Integrity Modeler. Removing the FMES data (which is not used by the
safety analysts when modelling the fault logic—it is added by FaultTree+ by
combining the failure rates of base events) gives a much cleaner interface. The
gate descriptions or ‘failure modes’ are tags on both events and gates.

3 Changes to the Previous Fault Tree Profile for SysML

Version 1 of our profile is shown in [4] which describes in detail the profile’s
entities. However, due to user experience studies, we have had to make some
fundamental changes to the profile and have further extended it with trans-
fer gates, null gates and dispatch events (see Fig. 4) in order to accommodate
the types of analysis for engine dispatchability that are specific to Rolls-Royce
(civil aerospace). As engine dispatch analysis is a complex topic, we give a short
summary in Sect. 4.

Our changes to the profile centre around the removal of ‘failure modes’ as a
first class entity that could be linked to other parts of the SysML specification
(see Fig. 3 that shows using gate descriptions as ‘failure modes’). The motivation
for having them as first class entities in the profile was to enable a more flexible
traceability to derived safety requirements and to enable verification checks so
that each failure mode was associated with a function and every function was
associated with at least one failure mode. Unfortunately, user tests revealed that
users would often ‘copy and paste’ failure mode instances when modelling dual
channel functions (instead of creating unique failure modes for each channel).
The effect of this was that the model would link that failure mode instance
to both logic gates, so that it would end up with two inputs (one from each
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Fig. 4. Meta model of the proposed Fault Tree Profile, which will form part of a larger
MBSA profile. The Fault Tree Diagram scripts are not part of the profile but serve to
recreate a familiar user interface for safety analysts in PTC Integrity Modeller (PTC
IM). The export script is not shown.

channel).5 While the fault tree diagrams looked fine to the user, on exporting
the fault tree logic to Reliability Workbench, it was realised that these failure
modes had the wrong number of inputs to the next gate. Although this issue
could perhaps have been addressed by suitable user training, it was felt that
this was not particularly user friendly due to the linked inputs being effectively
‘hidden’ from the user (i.e. the additional links were not visible on the fault tree
diagram).

The solution was to remove failure modes and instead consider them as
‘human readable’ descriptions of the logic gates in the fault tree. This sim-
plified the model parsing for export and removed some of the ‘clutter’ of the
fault tree diagrams. As most gates have a unique identification with respect
to their channel, this reduced the possibility of the user creating ‘hidden’ links

5 As explained later, a single gate with two inputs from either channel is possible
where both channels access the same hardware component and therefore share the
same fault logic. However, that is a specific case and is definitely not correct in the
case of a duplicate control function running on each channel.
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in the model by using an existing gate defined for another channel. There are
exceptions to this, as there are hardware components that both channels use
(such as the fuel shutoff valve) and for which there is a single set of associated
base events and fault logic. In this case, the user must take care to define the
gates and events that represent the shared hardware above the split in the fault
tree branch that models the implementation of a specific channel’s fault logic, so
that both channels can have access to an instance of the gate or event on their
respective branches of the fault tree. This ability to model the shared hardware
for either channel or repeated instances of hardware is particularly important
for common cause analysis.

3.1 Additional Extensions to the Profile

The rationale for creating a bespoke fault tree SysML profile is so that in-house
modelling techniques and practices can be maintained with as little disruption
or additional training as possible as the transition is made to MBSE. In the case
of Rolls-Royce, a specific gate called a TRANSFER gate is used for linking sub
trees (often stored in separate files) to branches of an existing fault tree. This
means that sub fault trees that model shared system resources (such as hardware
or network buses) can be built up into libraries and added to models as required.
This has the advantage that if change needs to be made to a sub tree, it can be
made once and the change will be reflected wherever that sub tree is used.

The second type is a variant of a base event termed a House event and this is
used to model the presence of dispatch faults in certain configurations needed for
dispatch analysis (see next section). House events as implemented in FaultTree+
are base events except that their logic mode is restricted to either true or false.
Selecting them to TRUE (logic mode) incorporates the event into the analysis.
Selecting the house event to FALSE removes it from the analysis. House events
can be modelled under an OR gate or an AND gate dependent upon the system
effect being modelled.

At Rolls-Royce Controls NULL gates are sometimes used above a house event
as a type of neutral interface. NULL gates do nothing except pass the input
onward, however they are more flexible than a direct input from a base event if
changes are needed, as NULL gates can take an input another gate or subtree,
whereas a base or house event cannot. House events are primarily of interest for
engine dispatch analysis in order to satisfy the requirements of CS-E 1030 and
the process is briefly described in the following section.6

4 Modelling Time Limited Dispatch

A FADEC system is designed to be fault tolerant so that many single faults
lead to loss of redundancy rather than functionality. This enables airlines to

6 See [8] for a detailed discussion on the Time Limited Dispatch requirements for
more-electric gas turbine engines with respect to CS-E 1030.
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operate engines with faults in the control system until a convenient place and
time of repair is reached. At the end of each flight the on-condition maintenance
ensures that the system provides a record of known faults (if any) and deter-
mines whether the faults within the system are sufficient to prohibit dispatch.
If departure is allowed with known faults then in many cases a time limit is set
for the repair to be carried out.

With respect to base event models and time limited dispatch, there are two
types of maintenance policy:

– On-condition maintenance requires that a fault be repaired within a fixed
period of time after a fault is detected. This is modelled using the time at
risk model with all faults conservatively assumed repaired at the end of the
allowable period.

– Fixed interval maintenance only repairs faults at one of a number of scheduled
maintenance slots. When a fault is detected it is repaired at the next slot.
This is modelled with the ‘dormant’ model with repair rate set to zero and
the inspection interval set to the period between maintenance slots. Note,
zero repair time is used since the safety models only consider flight time and
the repairs effectively take no flight time (no repairs in flight!) regardless of
the actual repair time on-ground.

Certain events do not have an associated control systems dispatch period and
instead have an immediate effect. These are modelled as Do Not Dispatch (DND)
faults and may be designated as initiating events. A number of event groups have
been defined and these include an event group for each of the main exposure
periods (i.e. DND, Short Time Dispatch (STD), Long Time Dispatch (LTD),
Unlimited Dispatch (ULD), and Dormant) along with additional groups for any
exposure periods that may arise that do not fall within the main categories.
In general the dispatch period used for a base event should be that set by the
dispatch status generated by that fault when it occurs while the system is in a
‘full-up configuration’. This strategy gives the correct results for one or two fault
cut sets. Issues may occur with three fault cut sets. The dispatch information
is not kept in the SysML model, in keeping with our principle that the profile
should be as lightweight as possible and that information is easier to maintain
and manage via the FMES and FMECA databases.

There are three main aspects to the Fault Tree Analysis for Time limited
Dispatch (TLD):

1. Fleet average rate calculation.
2. Specific rates for individual dispatchable configurations.
3. Cut set analysis to demonstrate that no hazardous event can be caused by a

single control system fault in any dispatchable configuration.

The first is covered by setting exposure periods for base events. The second is
covered by modelling dispatchable configurations using House Events. The house
events are added for each Dispatchable Fault (DF) identified in the dispatch
summary. These are added both to the individual main and sub-models, and



Towards a SysML Profile for Safety Analysis 73

their logic mode set FALSE. Each house event in turn is selected to TRUE and
the model run, giving results for each dispatchable configuration. The third also
uses the dispatchable fault house events. It involves setting their logic mode to
basic to ensure they appear in cut sets and then examining the cut sets for all
Hazardous events to ensure that there are no cut sets where both a dispatchable
fault and a single control system fault occur. If such a cut set existed it would
indicate that there is a dispatchable configuration where a single control system
fault results in a hazardous event.

In FaultTree+ a base event can take three values for its logical mode—basic,
true or false. A house event can only take either true or false, and therefore it is
either part of tree as a dispatch fault that is ‘on’ or excluded as an input. This
is a tool specific extension we include in profile so that export to FaultTree+
will support existing methods of analysis. If a different tool was being used for
analysis, it would be possible to create a profile that extended the base event class
to create a dispatchable fault that contained a simple boolean tag to indicate if
it should be part of dispatchable configuration for analysis. The ability to extend
profiles in this way to match the export needs of specific analytical tools is one
of the great advantages of SysML.

In order to demonstrate compliance to the requirements of CS-E 1030 it
is required to calculate the top event rates of the various hazards in each
of the declared dispatchable configurations. To facilitate this analysis requires
the addition of a number of dispatchable events to the fault trees in order to
model degraded configurations. Previously this analysis was performed manually
through the use of NULL gates that ‘switched’ house events to TRUE. However,
as we discuss in the following section, thanks to the extensive automation inter-
face provided with PTC IM, it will in future be possible to largely automate this
configuration of this task using export scripts.

5 Using Scripts to Integrate Analytical Tools

Bringing together different engineering perspectives under the SysML umbrella
is complicated by the established traditions and processes for those disciplines.
Engineers get used to particular tool idiosyncrasies and work arounds, but more
fundamentally they establish a level of trust through methods of working with
the tools. In order that the migration process towards MBSE retains these
trusted methods, accommodating existing analytical tools is essential. Fortu-
nately, many tools allow import and export of data into spreadsheets or CSV
(comma separated values) files. The current environment for modelling SysML
at Rolls-Royce Controls is PTC’s Integrity Manager (Fig. 5).

PTC’s IM comes with an extensive automation interface that can use Visual
Basic (VB) scripts to provide customisations to the user interface, to edit and
change models and to export data via formats such Microsoft’s Excel database.
This facility has been of great benefit when creating the user interface for our
bespoke fault tree diagram. For example, it was possible to replicate to a large
extent the look and feel of FaultTree+, so that users could use familiar icons
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Fig. 5. Dispatch event shown with NULL gate. Export scripts can identify these events
through Rolls-Royce’s naming convention and enable them by setting their logical mode
to TRUE and then exporting the fault logic for that dispatch configuration.

and graphic symbols in their diagrams. An example of additional functionality
is to enable them to create new branches of the fault tree by double clicking
on a gate with no inputs. This opens a new fault tree diagram if one does not
already exist and the user can use the same gate instance on the new diagram
to help readability. Furthermore the use of scripts can limit the types of action
allowed on fault tree diagrams by prohibiting the wrong ‘links’ between entities
or warn the user if the cardinality between entities is exceeded, it is even possible
to perform look ups to match gate names against the FMES database. But the
real value of scripts in the SysML model is allow exports to analytical tools.

5.1 Exporting Fault Tree Logic

By choosing a minimal capture of fault logic for the fault tree profile, the informa-
tion required to extract for import into FaultTree+ is relatively easy to obtain.
FaultTree+ requires fault logic imports to summarise two worksheets, one for
base events and one for the gates and their inputs. Due to the automation inter-
face, the data repository can easily parse all classes belonging to a package. In
our case, the gates and events are extensions of classes and so these can be
filtered from the data dictionary. The complexity comes from maintaining and
identifying the dependents and dependees for each gate. The dependent relation-
ship is the output of that gate into another gate. The dependee relationship is
the inputs to that gate from other gates or events. A typical output is shown in
Fig. 6. Once the fault logic has been imported, the analysis can be run as usual.
The probability and exposure data behind the fault logic remains in the FMES
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and FMECA databases and can be extracted as needed into the SysML model
or FaultTree+.

Fig. 6. Export of gate logic to Excel worksheet. The fault logic is represented by the
inputs to each gate (up to 17, including whether it came from an event or another
gate) and the dependent gate (the gate that receives the output). The failure modes
in the previous profile were replaced as descriptions of the gate. Although 25 columns
in the worksheet for the gates are specified (and a similar number for events), the gate
and base event unique IDs are sufficient for extracting additional information from the
FMES/FMECA as needed to analyse dispatch configurations.

5.2 Automating the Dispatch Analysis

As explained in Sect. 4, dispatch analysis is carried out by selecting house events
and setting them to TRUE in the fault tree and running the analysis. To date
this has been a manual task, and quite a substantial one given the combination
of dispatch configurations and events. However, now that information is in the
SysML model, it can be parsed by scripts that can generate a set of dispatch
configurations for export into FaultTree+. The dispatch status of each event is
maintained in the FMES (Failure Mode and Effects Summary) database and
can be extracted to create a list of dispatch configurations. The script loops
through each configuration, and selectively generates an export containing each
enabled dispatch event integrated into the fault logic as needed. These are then
passed on to FaultTree+ and the analysis run as usual. Being able to automate
the generation of fault logic for the different dispatch configurations represents
a considerable saving of man hours.

6 Alignment of Safety and System Models

Advocates of MBSE are quick to point out the improved fidelity and efficiency of
maintaining a single development model. However, as safety engineers have tra-
ditionally modelled their understanding of the system’s fault logic with respect
to a hazard independently of other system models, some abstract failure con-
ditions may have little obvious connection to system functions. In such cases,
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a realignment and reassessment of failure modes may be necessary. For exam-
ple safety engineers often model a system with respect to its redundancy and
mitigation against a hazard, thus an analysis for a dual channel control system
might query why the mitigation provided by the redundant channel has failed
in addition to the channel in control. Contrast this with the system engineer’s
perspective, which is to consider an engine protection feature in its abstract
specification first, then its implementation and finally how it is implemented
on a respective channel. In the move towards using a single SysML model for
all system development and analysis, little benefit is going to be gained unless
concept and viewpoints on the system share a common understanding and ref-
erence points. For example, rather than the top level fault logic models starting
by querying channel redundancy, they could follow where possible the functional
hierarchy provided by the system engineers and instead consider redundancy at
the level of channel implementation. Fault trees are often “richer” than system
models in that they may have to include physical or external factors that lie
outside the system’s functional specification but are required to understand how
that function could fail. In such cases it can seem there is little correspondence
between the system and safety models, but such differences can be overcome
by ensuring a flexible profile that allows links to hardware and activity models
alike from the fault logic. Visibility of the associated fault logic for functions can
then be provided to the system’s engineers without the unnecessary addition of
unrelated events that are present in the full fault tree.

7 Conclusions

In this paper we have sought to identify some of the benefits and problems
when migrating system and safety modelling under the MBSE SysML umbrella.
Through the use of lightweight bespoke profiles and user interface scripts, ana-
lysts gain familiar means to input their models into the SysML repository. The
short term benefits are that analysts are able to continue with tried and trusted
analytical methods by exporting data to existing tools, with the additional ben-
efit of potentially time saving auto-generation of certain analyses such as dis-
patch configurations. However, longer term benefit requires a more significant
shift towards a common understanding of how the system should be specified
and analysed, so that system and safety engineers can cross-reference each others
models and ensure better traceability from derived safety requirements. Look-
ing longer term still, we can expect to see the OMG’s SysML 2.0 safety profile
solidify to give stricter semantics within meta-models, leading to the possibility
that large parts of the fault logic could be auto-generated from system functions
and hardware models.
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Abstract. In this article, we present FDS-ML, a new modeling formal-
ism dedicated to probabilistic risk and safety analyse. FDS-ML relies
on the notion of finite degradation structures, an algebraic framework
recently introduced by the authors. FDS-ML provides a simple and clear
way to design combinatorial models.

The assessment of FDS-ML models relies on the decision diagram
technology. Classical concepts defined for fault trees, such as those of
minimal cutsets, availability, reliability and importance measures, can
be lifted up to finite degradation structures and computed by means of
decision diagram algorithms.

The article aims at presenting the most important ideas underlying
FDS-ML and its implementation. It illustrates the practical interest of
the proposed approach by means of a case study stemmed from the
ISO/TR 12489 standard.

Keywords: Probabilistic risk and safety analyses · Modeling
language · Finite degradation structures · Combinatorial models ·
Decision diagrams

1 Introduction

Probabilistic risk and safety analyses are used in virtually all industries to deter-
mine whether the risk of operating complex technical systems (aircraft, nuclear
power plants, offshore platforms. . . ) is low enough to be socially acceptable.
A large number of modeling formalisms have been proposed to carry out these
analyses. They can be roughly split into two categories: combinatorial formalisms
and stochastic discrete event systems. The first category gathers Boolean for-
malisms such as fault trees [11], reliability block diagrams [4] as well as so-called
multistate systems [12]. In combinatorial formalisms, the state of the system is
described as a combination of the states of its components. The second cate-
gory gathers formalisms such as Markov chains, stochastic Petri nets, stochastic
automata networks as well as high level modeling languages such as AltaRica 3.0
[1]. They provide analysts with a much higher expressive power than the former,
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but the price to pay is a dramatic increase of the computational complexity of
assessments.

Finite degradation structures (FDS) have been recently introduced by the
authors as a unified algebraic framework for combinatorial models [13,14]. FDS
generalize existing combinatorial formalisms (both for Boolean and multistate
systems) at no algorithmic cost. Classical concepts defined for fault trees—
minimal cutsets, availability, reliability, importance measures,. . . —can be lifted
up to FDS.

FDS-ML is a small domain specific modeling language designed on top of
FDS. It makes it possible to define domains (finite degradation structures), oper-
ators, variables, formulas and eventually sets of equations.

We developed a prototype assessment engine for FDS-ML models. Algorithms
implemented in this prototype rely on the decision diagram technology. As fault
trees, the assessment process works in two steps: first, a decision diagram is built
for the (equivalent of the) top event of the model. Second minimal cutsets and
probabilistic indicators are calculated by traversing this diagram.

This article aims at presenting theoretical foundations of FDS-ML, as well
as the current version of the language. It describes also assessment algorithms.
Finally, it shows the interest of the proposed approach by means of a use case
stemmed from the ISO/TR 12489 standard [6].

The remainder of this article is structured as follows. Section 2 introduces
the use case we shall throughout the article to illustrate the concepts and
algorithms. Section 3 presents FDS. Section 4 presents the language FDS-ML.
Section 5 describes assessment algorithms and the data structures they rely on.
Section 6 presents some experimental results obtained on the case study. Finally,
Sect. 7 concludes the article.

2 Illustrative Use Case

2.1 Presentation

Safety instrumented systems (SIS) are designed to keep an equipment under
control in a safe state when some abnormal conditions occur. As illustrative use
case, we shall consider the TA4 system of ISO/TR 12489 [6], which pictured
Fig. 1.

The objective of this SIS is to protect a pipe section from overpressures. It
involves seven main components: three sensors (S1, S2 and S3), two logic solvers
(LS1 and LS2) and two actuators (the isolation valves V1 and V2) which are
activated via the solenoid valves (SV1, SV2 and SV3). When the sensors detect
an overpressure in the protected section, the logic solvers send a control signal
to the solenoid valves which close isolation valves so to release the pressure.
The logic solver LS2 works according to a 1-out-of-2 logic, i.e. that it sends the
order to close the valves if at least one out of two sensors S2 and S3 detects an
overpressure.
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Fig. 1. Architecture of the safety instrumented system in TA4 of ISO/TR 12489

According to the standard IEC61508 [5], failure modes of the components of
a SIS can be classified along two directions: safe versus dangerous failure modes
and detected versus undetected failure modes.

In our example, safe failure modes are those which contribute to close the
isolation valves, even though there is no overpressure (spurious triggers), while
dangerous faire modes are those which contribute to keep the isolation valves
open, even though there is an overpressure. Logic solvers embed autotest facilities
so that their failures are immediately detected. On the contrary, failure of valves
remain undetected between two maintenance interventions. Failures of sensors
may be detected or not.

ISO/TR 12489 makes the additional following assumptions.

– The three solenoid valves are perfectly reliable.
– All other components may fail (independently). Their probabilities of failure

follow negative exponential distributions. The parameters of these distribu-
tions are given Table 1. Safe failures are always detected.

– The system is maintained once a year (once in 8760 h). The production is
stopped during the maintenance. Components are as good as new after the
maintenance.

Table 1. TA4 reliability parameters

Parameter Sensor Logic solver Isolation valve

Dangerous undetected
failure rate

3.0 × 10−7 h−1 NA 2.9 × 10−6 h−1

Dangerous detected
failure rate

3.0 × 10−5 h−1 6.0 × 10−7 h−1 NA

Safe failure rate 3.0 × 10−5 h−1 3.0 × 10−5 h−1 2.9 × 10−4

It is not possible to compare safe failures and dangerous failures, because
the risk they represent, both in terms of frequency of occurrence and severity of
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consequences, are very different On the one hand, spurious triggers of SIS have
a strong economic impact, but indeed no impact on safety. On the other hand,
dangerous failures have an impact on safety. If they remain undetected, they
may lead to a catastrophic accident.

2.2 Modeling

According to what precedes, we shall consider three failure modes: safe-failure,
dangerous-detected-failure and dangerous-undetected-failure.

Usually, the different failure modes are analysed one-by-one. In our case,
this means that one would design a dedicated fault tree to describe safe-failures
of the system, another one for dangerous-detected-failures and a third one for
dangerous-undetected-failures.

The modeling framework presented in this article makes it possible to study
different failure modes by means of a unique model. This model makes in turn
possible to study, for instance, the combination of a safe-failure of a sensor and
a dangerous-detected-failure of a valve. To the best of authors’ knowledge, such
combinations have not been formally defined in the standard nor in any other
previous work.

We can read Fig. 1 as a block diagram. Each component can be seen as a
basic block, with an internal state, some input and some output flows. Failures
propagates through the block diagram. Therefore, both states and flows may
take one of the four values: W (working), safe-failure (Fs), dangerous-detected-
failure (Fdd) and dangerous-undetected-failure (Fdu).

Two fundamental operations are performed on states and flows: series com-
position, denoted by �, and parallel composition, denoted by ‖. These operators
are defined Table 2.

Table 2. Definition of � and ‖

u v
v

W Fs Fdd Fdu

u

W W Fs Fdd Fdu

Fs Fs Fs Fdd Fdd

Fdd Fdd Fs Fdd Fdd

Fdu Fdu Fs Fdd Fdu

u ‖ v
v

W Fs Fdd Fdu

u

W W Fs W W

Fs Fs Fs Fs Fs

Fdd W Fs Fdd Fdu

Fdu W Fs Fdu Fdu

It is easy to verify that the series operator � is not commutative but asso-
ciative and that the parallel operator ‖ is both commutative and associative.

Using � and ‖, the model for the whole SIS could be as sketched Fig. 2.
In the remaining part of this article, we shall study how to implement the

above ideas in the framework of FDS-ML.
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Fig. 2. Model for the SIS TA4 of ISO/TR 12489

3 Finite Degradation Structures

3.1 Definition

Finite degradation structures rely on the algebraic notion partially ordered sets.
A partially ordered set (poset) is pair 〈D,�〉, where D is a set and � is a

binary relation over D, such that ∀a, b, c ∈ D:

– a � a (Reflexivity);
– if a � b and b � c, then a � c (Transitivity);
– if a � b and b � a, then a = b (Antisymmetry).

A finite degradation structure is such poset 〈D,�〉. The elements in D rep-
resent the states of a component, while the partial order � represents the degra-
dation order amongst these states, interpreted informally as “less or equally
degraded than”. For instance, a working state W is less degraded than the failed
state F , therefore W � F .

We require moreover the poset 〈D,�〉 to have a unique least element, denoted
⊥, that represents the initial working state. In other words, a finite degradation
structure is a (meet-)semi-lattice.

Four FDS are graphically represented Fig. 3. These diagrams are called Hasse
diagrams. Vertices represent states and the relation a � b is represented by
drawing as a line segment that goes upward from a to b. For simplicity, we name
the FDS in (a), (b), (c) and (d) by WF, WDF, SWF and W3F.

W3F is essentially the FDS we used Sect. 2. Its least element is the work-
ing state W . The degradation order is described by the inequalities W � Fs,
W � Fdd and Fdd � Fdu. Fs is incomparable with Fdd and Fdu since they
correspond to radically different situations. We have Fdd � Fdu because an
undetected failure is always more dangerous than a detected one.

W3F is indeed not the only way to describe the states of SIS.

3.2 Products and Abstractions

Let S : 〈DS ,�S ,⊥S〉 and T : 〈DT ,�T ,⊥T 〉 be two FDS. Then the product
S ⊗ T of S and T is the FDS 〈D,�,⊥〉 such that,
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Fig. 3. Graphical representation of FDS.

– D = DS × DT , where × stands for the Cartesian product.
– ∀〈xS , xT 〉, 〈yS , yT 〉 ∈ D, 〈xS , xT 〉 � 〈yS , yT 〉 ⇔ xS �S yS ∧ xT �T yT .
– ⊥ = 〈⊥S ,⊥T 〉.

Let R, S, T be three FDS. It is easy to check that R ⊗ S and S ⊗ R on the
one hand, R ⊗ (S ⊗ T ) and (R ⊗ S) ⊗ T on the other hand are equal up to an
isomorphism. In this sense, the product of FDS is commutative and associative.

Let S : 〈DS ,�S ,⊥S〉 and T : 〈DT ,�T ,⊥T 〉 be two FDS, then T is an
abstraction of S, which is denoted S � T , if there exists a surjective structure
preserving mapping from S to T , i.e. a function ϕ : S → T such that:

– x �S y ⇒ ϕ(x) �T ϕ(y) for all x, y ∈ DS .
– ϕ(⊥S) = ⊥T .
– ∀y ∈ DT ,∃x ∈ DS such that ϕ(x) = y.

Let R, S, T be three FDS. It is easy to check that if R � S and S � T
then R � T (the composition of abstraction is an abstraction).

Taken together products and abstractions make possible to define the state
of a system as a combination of the states of its component.

3.3 Finite Degradation Models

Let O be a set of operators defined over finite degradation structures and let V
be a set of variables. We assume that each variable v of V takes its value into
some finite degradation structure, called the domain of v and denoted dom(v).

Formulas over O and V are built as usual, verifying that they are well-
typed, i.e. that each operator has the correct number of arguments and that its
arguments are of the correct types.

We denote by var(f) the set of variables showing up in the formula f .
From now, we shall assume that V is decomposed into two distinct subsets

S and F, i.e. V = S � F. Variables of S and F are called respectively state and
flow variables. State variables play the role of basic events in fault trees while
flow variables play the role of intermediated events.
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A finite degradation model (FDM) φ over O and V is a set of equations of
the form:

φ :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

w1
..= f1

w2
..= f2
...

wn
..= fn

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(1)

such that:

– the wi’s are variables of F;
– the fi’s are well-typed formulas over O and V;
– for any w ∈ F, there is exactly one equation w ..= f in the set whose left

hand side member is w. We say that this equation defines w and that f is
the definition of w.

Let w be a flow variable defined by the equation w ..= f and let v be a
variable. We say that f depends on the variable v if either v ∈ var(f) or there
is a flow variable u ∈ var(f) such that u depends on v.

A finite degradation model is data-flow if no variable depend on itself. In the
sequel, we shall only consider data-flow models.

The set of equations presented Fig. 2 is thus a finite degradation model. The
variables X.state are state variables and the variables X.in and X.out are flow
variables. All of the variables of this model take their values into the finite
degradation structure W3F.

A finite degradation model over O and V = S � F can thus be interpreted
as a function from

⊗
v∈S dom(v) into

⊗
w∈F dom(w) (the data-flow property

warranties that this construction is possible and uniquely defined).
If operators are correctly chosen, i.e. if they are abstractions, then the model

itself is an abstraction.
It is easy to verify that both operators � and ‖ are abstractions. Therefore

the model presented Fig. 2 can be seen as an abstraction (W3F)7 � (W3F)15,
as it involves 7 state variables and 15 flow variables.

3.4 Minimal Cutsets

Let M be a finite degradation model built over O and V = S � F.
Conventionally, we call the flow variable on which the current analysis is

focused on the observer of the analysis. Observers play the role of top-events in
fault trees.

Let w ∈ F be the observer of the analysis. According to w, the model M
can be interpreted as an abstraction φ|w :

⊗
v∈S dom(v) � dom(w). Then,

∀ y ∈ dom(w), we define the set of cutsets of w for y, denoted by CS(w, y), as
follows.

CS(w, y)
def
= {v|v ∈

⊗

v∈S

dom(v), φ|w(v) = y} (2)
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A cutset CS(w, y) represents a combination of the states of components that
leads the state of the observer w to be y. Therefore, the set of minimal cutsets,
denoted by MCS(w, y), is defined as follows:

MCS(w, y)
def
= {v ∈ CS(w, y), �u ∈ CS(w, y),u � v} (3)

The minimality of cutsets is captured by the degradation order defined in⊗
v∈S dom(v). In this sense, a minimal cutset of w and y represents one of the

least degraded composition of components’ states that degrades the state of
the observer w from its least element ⊥ to y. The extension of the concept of
minimal cutsets from Boolean systems into multistate systems is one of the most
important contributions of FDS.

3.5 Probabilistic Indicators

Let S : 〈D,�,⊥〉 be a FDS. We can equip S with a probability measure p, i.e.
a function p : D → [0, 1] such that

∑
d∈D p(d) = 1.

The probability measure could also be a function of time, i.e. p : D × R+ →
[0, 1], where p(d, t) represents the probability of being in the state d ∈ D at time
t ∈ R+. However, as it makes no difference in terms computationally speaking,
we keep the above simplest definition.

Now, let S : 〈DS ,�S ,⊥S〉 and T : 〈DT ,�T ,⊥T 〉 be two FDS equipped
respectively with probability measures pS and pT .

Then, their product S ⊗ T can be equipped with the natural probability
measure p defined as follows. ∀〈x, y〉 ∈ DS × DT ,

p (〈x, y〉) def
= pS(x) × pT (y)

It is easy to verify that p is actually a probability measure on S ⊗ T . Its con-
struction assumes indeed that the events represented by S and T are statistically
independent.

Let S : 〈DS ,�S ,⊥S〉 and T : 〈DT ,�T ,⊥T 〉 be two FDS. Assume that S is
equipped with pS and that T is an abstraction of S. Then, the natural probability
measure pT is defined as follows. ∀y ∈ DT

pT (y) =
∑

x∈ϕ−1{y}
pS(x)

The above two natural constructions make it possible to lift-up probabilistic
indicators defined for fault trees to finite degradation models.

4 FDS-ML

FDS-ML stands for Finite Degradation Structures - Modeling Language. In its
current version, which is purely textual, this small domain specific modeling
language provides constructs to declare domains (finite degradation structures)
and operators on the one hand, state and flow variables and equations on the
other hand. We shall review these constructs in turn.
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4.1 Domains and Operators

The syntax of FDS-ML is rather straightforward and is strongly inspired from
the one of AltaRica 3.0 [1]. Therefore, we shall present it on example.

Figure 4 shows the FDS-ML code that declares the FDS W3F and the oper-
ators � and ‖ involved in the model described Fig. 2.

Fig. 4. Declarations of the FDS W3F and the operators � and ‖.

The declaration W3F is self-explanatory.
The declaration of operators is just a bit more tricky. The first part consists

in giving a name to the operator, and to declare the type of its arguments and its
output. In the current version of FDS-ML, operators can return only one value.

The body of the declaration is a list of statements that are read in order.
The first one that matches the values of the argument is taken. * matches any
value.

Declarations of domains and operators can be reused from model to model.
One of our objectives is to develop domain specific libraries of such declarations.

4.2 Variables and Equations

In FDS-ML, a model is declared as a block, i.e. a prototype in the sense of
object-oriented theory.
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Fig. 5. Model of the SIS TA4 of ISO/TR 12489 written in FDS-ML.

This block is made of two parts: first variables are declared, then equations
are given. Figure 5 sketches the model of the SIS.

The FDM for the SIS, as written in FDS-ML, is given in Fig. 5. The domains
(i.e. FDSs) and the operators should be defined separately before use. The model
is written in the part of block, where state variables should be declared and
assigned with probabilities in parentheses (W=..., Fs=..., Fdd=...). Formu-
las are written in the part of assertion and the observer should be declared
right after.

5 Algorithms

The implementation of FDS-ML is programmed in Python. Only the main algo-
rithms are presented in this section.

In the implementation, formulas are encoded by binary trees, which is the
same as fault trees. The leaves of a formula tree are state variables. Each internal
node (♦, fl, fr) encodes the formula fl♦fr.

The decision diagram (DD) used in this article is a particular type of binary
decision diagrams (BDD) that represent multi-valued functions in binary way
[7,8]. Algorithms presented in this article is similar to those for BDD.

In the DD in this article, each internal node (s, v, nd, nr) is labelled with state
s, variable v, down-child nd and right-child nr. The terminal node (s, /, /, /) is
only labelled with state s.

The DD is built for the top of a formula.
If the formula contains only a variable v without any operator, its DD is

called a one-level DD. The one-level DD of v such that dom(v) = W3F is shown
in Fig. 6. For every s ∈ dom(v), we create an internal node (s, v, nd, nr) where
nd represents the resulting node if v = s. These internal nodes are connected
successively by their right-child nr in a chain. We fix the order of states in such
chain for a given variable v.

The algorithms of building DD for formulas are given in Fig. 7. The input of
BuildDD is the node of formula tree. The function n.IsTermi() returns true if
n is a terminal node while n.IsInter() is true if n is a internal node.



88 L. Yang and A. Rauzy

Fig. 6. The one-level DD of v such that dom(v) = W3F.

Note that the Combine algorithms, as well as the Prob algorithms in Fig. 9,
use caching [3]. Caching makes it possible to not redo an operation that has been
already done.

Fig. 7. Recursive algorithm of building DD for formulas.

The symbol ≺ in the algorithm represents the variable ordering of DD. It
is worth noting that if all the operators used in the model are commutative,
then the variable ordering is arbitrary. Otherwise, for instance u � v, the local
ordering of u, v should be u ≺ v. Note that only the state variables in the model
need to be ordered.
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Figure 8 shows the DD built for u � v, where dom(u) = dom(v) = W3F.

Fig. 8. DD of the formula u � v, where dom(u), dom(v) = W3F.

Once the DD is built, we can calculate the probabilistic indicators for the
flow variable defined by the formula associated to this DD. The algorithms are
given in Fig. 9. For any internal node n = (s, v, nd, nr), pn = p(s) ∈ [0, 1] where
s ∈ dom(v) and p is the probability measure defined in dom(v).

Fig. 9. Algorithms of calculating probabilities from DD.

6 Experiments

In this section, we provide the assessment results of the model of SIS presented
in Sect. 2.

The flow variable SIS of the model in Fig. 2 is selected as the observer of
the analysis.

The variable ordering in this case is not arbitrary as � is not commutative.
According to the model in Fig. 2, we select a valid variable ordering: S1.state ≺
LS1.state ≺ V 1.state ≺ S2.state ≺ S3.state ≺ LS2.state ≺ V 2.state.

As inputs, the state probabilities of each type of the components are cal-
culated according to the failure rates given in Table 1. For those with NA (not
applicable), the probability is set to be zero.

The calculation results of the number of cutsets |CS(SIS, y)| and the number
of minimal cutsets |MCS(SIS, y)| for each state y ∈ dom(SIS) are given in
Table 3.
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As illustration, the seven minimal cutsets in MCS(SIS, Fdd) are listed in
Table 4, which are the least degraded scenarios that SIS is degraded from W to
Fdd.

Table 3. The number of cutsets |CS(SIS, y)| and minimal cutsets |MCS(SIS, y)| for
each state y ∈ dom(SIS).

y W Fs Fdd Fdu

|CS(SIS, y)| 433 9623 4169 2159

|MCS(SIS, y)| 1 7 7 17

Table 4. The minimal cutsets in MCS(SIS, Fdd).

S1.state LS1.state V 1.state S2.state S3.state LS2.state V 2.state

Fdd W W W W Fdd W

W W Fdd W W W Fdd

Fdd W W Fdd Fdd W W

W Fdd W W W Fdd W

W Fdd W Fdd Fdd W W

W W Fdd W W Fdd W

W W Fdd Fdd Fdd W W

0 2000 4000 6000 8000
Mission time (hours)

10-10
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10-6
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W
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Fdd
Fdu

Fig. 10. The results of the probability of each state in dom(SIS).
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For probabilistic indicators, the results of the state probabilities in dom(SIS)
are pictured Fig. 10. Numerically, the average probabilities Pavg within the mis-
sion time (8760 h for each state are: Pavg(W ) = 1.449 × 10−1, Pavg(Fs) =
8.550 × 10−1, Pavg(Fdd) = 7.6916 × 10−5 and Pavg(Fdu) = 4.6073 × 10−5.

7 Conclusion

In this article, we introduced a new modeling formalism, so-called FDS-ML,
dedicated to the design of combinatorial probabilistic risk assessment models.
We presented decision diagram based algorithms to assess FDS-ML models and
we showed by means of a use case stemmed from ISO/TR 12489 standard the
interest of the proposed approach.

FDS-ML relies on the notion of finite degradation structures. Finite degra-
dation structures can be seen as the most general mathematical framework to
design combinatorial probabilistic risk assessment models. As of today, the lan-
guage is rather simple: it just provides constructs to define domains (finite degra-
dation structures) and operators as well as to declare variables and equations.
This is necessary and sufficient for basic uses, but our ambition is to make
FDS-ML a full object-oriented language, using the S2ML+X paradigm [2,10].
Here X would stand for the current FDS-ML. Object-orientation, in the sense of
S2ML, is a key enabler for the design of reusable modeling patterns, as demon-
strated with AltaRica 3.0 [1]. The design of such patterns for finite degradation
models is of primary importance for their industrial deployment as it makes it
possible to hide, to some extent, the mathematical difficulties: with suitable,
domain-specific libraries of modeling patterns, analysts can design their models
by copying existing ones and adjusting them to their particular needs.

Regarding the implementation, much remains also to do. So far, our proto-
type is implemented in Python, which is indeed not ideal in terms of efficiency.
We plan to move to C++ as soon as concepts and methods will be sufficiently
stable. Decision diagram algorithms are now relatively mature. We plan to imple-
ment also bottom-up algorithms generalizing those designed for fault tree assess-
ment [9].
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Abstract. Applying a safety artifact language as Safety Design Mod-
eling Language SafeDeML integrates the generation of the safety design
into the system modeling stage – directly within the system architec-
ture. In this paper, we present a modeling process and a prototype for
the CASE tool Enterprise Architect for SafeDeML. The goal is to support
the system designer in developing a standard (in this paper Iso 26262)
conform system and safety design containing all relevant safety artifact
within one model. Such integration offers several modeling guarantees
like consistency checks or computation of coverage and fault metrics.
Since all relevant information and artifacts are contained within the
model, SafeDeML and the prototype can help to decrease the effect
of structural faults during the safety design and further supports the
safety assessment. To give an idea to the reader of the complexity of
the approach’s application, we present an exemplary implementation of
the safety design for a brake light system, a real case-study from the
Iso 26262 context.
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1 Introduction

Modeling and developing the safety design of a complex system is a challeng-
ing task. One major challenge is, in our point of view, that the modeling of
relevant artifacts, e.g., fault or failure definitions, are not integrated within the
original system architecture. Therefore, a task like ensuring that all relevant ran-
dom hardware faults have been covered or the structured analysis of the failure
propagation behavior, based on the system structure, can be error-prone.
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In this paper, we present a way of integrating the failure modeling and all
artifacts generated while developing the safety design into the system devel-
opment. Therefore, we defined the modeling formalism Safety Design Modeling
Language (SafeDeML), which integrates into SysMLdevelopment models.

Since modeling using SafeDeML is integrated into the system architecture,
safety-relevant information are directly derivable from the model including ran-
dom hardware faults common for specific hardware parts according to a standard
or interdependencies between connected components. This implies two major fea-
tures: the safety design, which is derived from the system design (e.g., component
structures and interconnections), is directly connected with the design artifacts
without any break of the medium also enabling easy consistency checks between
system and safety design. Further, since all relevant artifacts of the design are
placed within the system model, decisions taken for the safety design get more
traceable and the interoperability with other design teams, the maintainability,
and the comprehensibility of the design increases.

Based on this theoretical concept we developed a structured modeling and
analysis process guiding the developer through the stages of modeling fault and
failure behavior in a local and in a global scope. Further, it supports the analysis
of failure propagation of defined failure through the system architecture and
helps the designer in ensuring that relevant faults are covered by the safety
design. SafeDeML and the corresponding design process are implemented in the
prototype SafeDeTool as a plugin for the CASE-tool Enterprise Architect. We
applied this prototype for validating SafeDeML and the process on a real case
study from the Iso 26262 context, a brake light system driver.

The improvements we see in applying SafeDeML and the prototype
SafeDeTool are the following:

– Direct integration of the safety design into the system modeling.
– Integration of underlying artifacts from which design decisions were derived.
– Separation of the design into hardware and system level.
– An extendable fault library providing automatically fault import.
– A modeling process guiding the designer for decreasing structural faults.

In the following, we present the process integration and its benefits in
more detail. Before, we give a short introduction into fault modeling with
Iso 26262 and SafeDeML in Sect. 3 and provide an overview over existing mod-
eling schemata in Sect. 3. After that we investigate the modeling process in more
detail and present its applicability on a real case study (cf. Sect. 4). In the last
section (Sect. 5), we conclude the paper and give an outlook on possible future
work.

2 Background

2.1 Error Modeling and Iso 26262 in a Nutshell

In general, the scope of the Iso 26262[1,17,22] is the development of an item, i.e.,
the vehicle part under development. This item consists of several (sub) systems.



Integrating Safety Design Artifacts into System Development 95

Further, an item defines functions that are provided by the item and are realized
by the systems it consists of. The system is also defined as an abstraction of
components which are again an abstraction containing both hardware parts and
software units.

Safety Goals are top-level safety requirements for the item under develop-
ment, leading to the functional requirements that must be concerned for avoiding
a hazardous event. These safety requirements must be traceable to the design
element (e.g., component, software, or function) implementing it. To be com-
pliant with the defined safety goals, the design must ensure that no safety goal
could be violated by the malfunction of any element. Such a malfunction is in
general defined as failure.

A Failure is the termination of the ability of an element of an item under
development to perform a function as required (in particular regarding the set
of safety goals). They are often defined as the inability of performing a required
function or service, required on the outside of the element. The internal state
causing the failure is often referred to as error. An Error is a discrepancy between
a computed, observed or measured value or condition, and the true, specified,
or theoretically correct value or condition. Such an error can occur subsequent
to an unforeseen condition during operation or to a fault within an element. A
Fault (e.g., a random hardware fault) is an abnormal condition that can cause
an element or the complete item to fail.

Further, according to [3], we assume that not every error occurring within
an element leads to an observable failure and therefore not every fault has the
potential of leading to a violation of the safety goal. The goal of our modeling
method is to support the designer in concerning all relevant faults. For preventing
that a safety goal relevant fault leads to a failure and eventually to a potential
hazard, safety measures are defined.

A Safety Measure is an activity or technical solution to avoid or control sys-
tematic failures and to detect or control random hardware failures or to mitigate
their harmful effects. Especially while modeling the safety design, a designer can
apply a specialization of safety measures, safety mechanisms. A Safety Mecha-
nism is a technical solution implemented to detect, or mitigate, or tolerate faults
or to control or avoid failures in order to maintain intended functionality or a
safe state.

2.2 Safety Design Modeling Language

The Safety Design Modeling Language (SafeDeML) was first published in [13].
SafeDeML is intended to be a modeling extension for system models which
integrates the basic fault/failure modeling concepts within the actual system
architecture model. We developed the language itself as a SysML extending
UML-profile, so it can be adapted to be used within several CASE tools. This
UML-profile is presented in Fig. 1.
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Fig. 1. UML-profile as SysML extension for the language SafeDeML. (Color figure
online)

For SafeDeML the basic elements are Faults (blue circle), Failure (red trian-
gle), and Diagnosis (blue star)1. Faults in that context represent random hard-
ware faults. Such hardware faults can either be «effectless» or can be con-
nected to a failure element via a «results in» relation, depending on whether
the fault leads to a recognizable failure at the border of the corresponding hard-
ware component. If a failure is not introduced by single but multiple faults,
logical operators can be used. Further, a modeler can define FIT and FTTI
values for each failure and, in addition, which safety goal is directly linked to
that particular fault. This is especially useful if the current model-based systems
engineering (MBSE) approach of a company not yet includes the connection
of safety goals, corresponding safety requirements and the model components
which are derived from these safety requirements.

To model a possible failure diagnosis and further mitigation, we introduced
the diagnosis element. These are connected to a failure using a «detected by»
relation. A diagnosis can either be a diagnosis detected on the hardware com-
ponent or by a corresponding software implementation (System Diagnosis) or
defined a diagnosis perceivable by the user of the system (Driver Diagnosis).

SafeDeML also implements atomic hardware elements (HW Element) taken
from the Iso 26262 standard. An assignment of such a hardware element, e.g., a
power supply or a simple clock, automatically introduces all corresponding pos-
sible hardware faults into this particular component. Further, it is also possible
that a failure is not directly diagnosed on a specific hardware component and
therefore propagates its erroneous behavior over particular hardware ports (HW
Port, HW Input Ports, HW Output Ports) to adjacent components connected
via a link in the system model.

1 For reasons of space, for a visualization of the model elements and their connections,
we refer the reader to the implementation images in Sect. 4, Fig. 5.
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For the verification and validation of the system we say that a safety goal is
violated if a failure exists that is marked as relevant for that safety goal but is
not covered by any measure, i.e., a diagnosis element.

3 Related Work

The essential idea of SafeDeML and SafeDeTool is the integration of fault – fail-
ure – safety mechanism modeling into the standard system architecture devel-
opment and derive information like failure propagation directly from the system
model. In the literature, there also exist several works on the synthesis of system
and safety design and also further safety analysis.

HipHops [15,20,21], for example, provides a language and tool integration
for failure modeling and propagation analysis. From a given system architecture
HipHops generates a parallel model used for failure definition and propagation
analysis. This model, however, must again be kept up to date with the system
model and does also not support the definition of related safety mechanisms for
the system and generated artifacts are not integrated back into actual system
models. This is the same for the Marte UML extension [23] which together with
the DAM profile [5] provides a framework of defining dependability analysis
specific extensions to the modeling language. Unfortunately, it is not provided
to model the intended Fault – Failure – Diagnosis chain as it is desirable when
executing a fault related safety measure.

The Component Fault Tree (CFT) [2,16] methodology is another work, focus-
ing on the fault modeling and analysis. It provides an extended failure propa-
gation and analysis mechanism based on the system component structure. Even
a tool integration, the SafeT toolbox [18], exists. This methodology, however,
again focus rather on the safety analysis than on the safety design.

Another related work to SafeDeML is SafeML [7,8]. SafeML provides an
UML-profile extending standard SysML, too. This integration, however, has
another focus that SafeDeML. It rather focuses on a static safety design arti-
fact elements like faults, failures, and hazards, but they are not used to support
the design process by means of propagation analysis or decreasing the effect of
structural faults. They are instead used for integrating safety design results in
the system model. However, if SafeML would be integrated into SysML (cf. [6]),
it could be conceivable to define a relation between SafeML and SafeDeML.

The work [19] from the Chess framework [9,24] also presents an approach to
model the fault – failure relations on a system model. Further, they also provide
propagation analysis based on the model structure [12]. This model, however,
is intended to be used for the safety analysis rather than for the direct design
purpose and therefore does not integrate essential design elements, e.g., the defi-
nition of safety mechanisms, into the model. Moreover, the model containing the
failure definitions is defined in a separated modeling language and framework
that must again be kept up to date with the system design.

What, in our point of view, are still open problems are (i) the propagation
analysis of potentially critical faults with respect to defined safety and diagno-
sis mechanisms (directly within the system model) and (ii) the support of the
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designer in validating that all necessary faults have been addressed during the
safety design process.

Fault
Modeling

Failure
Modeling Diagnosis Model 

Analysis

Local Context / Hardware View

Failure Propaga on and Handling

Global
Design

Integra on

Global System View
1 2 3 4

5

6

Fig. 2. A schema of the proposed safety design analysis and development process.

4 A Modeling Process for the Safety Design Integration

One integral step of the safety design definition is analyzing the error behavior
of the system. This, in general, includes the analysis of the hardware component
faults, i.e., which fault (combination) leads to a hazardous behavior and thereby
violates a safety goal.

The normal system model is, in the context of complex systems, not designed
by a single engineer. There are experts responsible for designing particular hard-
ware components, often connected, in a higher abstraction level, with several
other hardware elements to form the complete overall system. We split, therefore,
the safety design modeling into two different views, the Local Context/Hardware
View and the Global System View. In the Hardware View, we define the failure
behavior of single hardware components. Here, the hardware designer can define
a specific failure behavior or only a specific failure reaction at the component’s
borders. This includes the propagation of component failure not covered on the
particular hardware component or the handling of faults. In the Global System
View, the failure behavior of the single components is integrated into the sys-
tem architecture and global failure properties like the failure propagation can be
analyzed using already defined interconnections between adjacent components
from the system architecture.

Figure 2 presents the general process for the failure modeling workflow con-
sisting of 6 different steps. These are in the Local Context the Fault Modeling
1© providing all information about possible random hardware faults, the Failure
Modeling 2© where it is defined whether an existing fault leads to an erroneous
behavior at the component’s border and which failure is connected to which
safety goal, and Diagnosis 3© where appropriate safety mechanisms or propa-
gation strategies are defined for possible failure elements.

In the Global System View during the Global Design Integration 4© the
interconnections between the hardware components are analyzed and the fail-
ure propagation is simulated. Failure Propagation and Handling 5© represents



Integrating Safety Design Artifacts into System Development 99

the refinement of a components failure mitigation strategy, i.e., extending diag-
nosis and propagation strategies, when additional propagated failures must be
handled. After the global system model is defined, during Model Analysis 6©
consistency checks like fault analysis rate, safety goal violations by unhandled
failures or measures like diagnostic coverage are executed.

4.1 A Brake Light Case Study

To provide an impression on the applicability of our method, we present the
developed process and prototype at a lightweight real-world case study – a brake
light controller2 (Fig. 3). This includes a mechanical interface (ME ) directly
passing the outputs from the electrical engineering component (EE ) to the LED
elements. The EE itself consists of four brake light drivers (BLD) responsible for
transforming the digital signal from the main controller (MaC ) to an analog out-
put signal for the LED. We have four BLD each responsible for a specific brake
light (left/right and trunk lid/bumper). As a fallback for the MaC and the BLD
the system contains a hardware part co-controller (CoC ) directly generating an
analog output signal for the brake light LED.

MaC and BLD are connected via a serial/parallel interface and the BLD
passes the signal form the MaC using daisy chaining. The CoC is connected to
each BLD via a parallel line and each BLD implements one outgoing connection
to the corresponding LED.

4.2 1© Fault Modeling

In this stage, the goal is to define the random hardware faults which must be
taken into account for the safety-related system analysis. The improvement is
that we define the faults integrated into the system design, i.e., we embed the
fault definition into the SysML component instantiation and heredity idea. This
results in two different modeling contexts. On the one hand, all faults defined
for a superclass are also passed to the inherited to the child class. On the other
hand, we derive the relevant faults by the atomic hardware types contained on
a hardware component. Such atomic types are components that are, in normal
situations, not extra modeled, e.g., a clock, a power supply, or specific memory
registers. To be compliant with the Iso 26262, we defined the atomic components
and the related faults according to Table D.1 of part 5 of the standard.

An example for such a definition is given by the Element Fault Diagrams
presented in Fig. 4. Here the atomic hardware parts are assigned to the par-
ticular components MaC, CoC, and BLD. Further, the MaC get assigned to
additional fault elements for the serial/parallel interface output, which could
not been directly derived from the atomic parts. MaC and CoC also inherit all
atomic hardware parts from their supercomponent HW Part Controller.

2 For complexity and space reasons we only provide the physical architecture part of
the system model.
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Fig. 3. Cases study architecture of the Brake Light Systems visualizing the relevant
elements: Brake Light Driver 1–4 (BLD) within the electrical engineering block (EE),
the hardware main controller (hardware part MaC ), and hardware part co-controller
(hardware part CoC ). The mechanical interface (ME) represents the connection to the
outer system context, i.e., pins and plugs.

Fig. 4. Element Fault Diagram of the MaC and BLD component definition with
assigned Iso 26262 atomic hardware parts.

This fault modeling concept offers the possibility of building up a fault library
that can be extended during a single and across multiple projects. Thereby, the
applied reuse of already proven in use system elements supports the designer
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in several situations, but in particular for the system analysis, verification, and
validation.

4.3 2© Failure Modeling

After the fault modeling 1© all defined and derived faults are imported into the
component specific Internal Fault Diagram. During this phase we define per
fault element whether it introduces a component failure. If it does, we connect
the fault to a corresponding, newly created, failure element. This connection
can either be direct or via a logical junction in connection with one or more
additional faults. During this phase of the process, the tool-guided approach
ensures that each defined fault has been under investigation at least once and
has been classified whether it leads to a failure or is marked as «effectless».
This step is shown in Fig. 5 for the MaC and one of the BLD.

Thereby we reduce the possibility of systematic faults related to the over-
seeing a fault or a missing recording whether a fault has already been handled.
Further, we assign to each failure properties like FIT or FTTI. If it is not possi-
ble to derive safety goal dependencies of the hardware components, e.g., because
the safety requirements are not linked within the model, we offer the possibil-
ity to directly link a failure to a safety goal. In this setting, however, we lose
the possibility of deciding whether a corresponding fault is a Single Point Fault

Fig. 5. Internal Fault Diagram of the MaC and BLD component containing the addi-
tional failure definitions.
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(SPOF) or a Multi Point Fault (MPOF). Therefore the designer must decide if
the specific failure alone is sufficient to violate a safety goal or if multiple must
occur.

4.4 3© Diagnosis

One important aspect within the standards for handling faults and failures is
the definition of appropriate safety mechanisms, in our context depicted as diag-
noses elements. Such diagnosis elements can either be implemented directly in
hardware but also linked to a specific software functionality, responsible for that
diagnosis. During the process execution, the tool guides the user through each
open failure element and for each the designer must decide whether the element
will be diagnosed on the particular hardware element.

The diagnosis definition for our case study is presented in Fig. 6. Elements
outside the Global Context frame are directly defined and intended to be imple-
mented on the hardware component. If a failure is not diagnosed at the initial
hardware, the failure can also be deployed over the connections of the system
design further to other adjacent components (cf. Global Context of MaC in
Fig. 6). The propagation simulation and the according import handling are dis-
cussed in the following section.

Fig. 6. Internal Fault Diagram of the MaC and BLD component containing all diag-
nosis elements and relevant for the global context propagated failure and their import.
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4.5 4© Failure Propagation and 5© Refinement

An error-prone part of the system safety design is the tracing of propagated fail-
ures through complex system design, especially if the analysis is not executable
within the actual system architecture. Without appropriate support within the
system model, overseeing a relevant failure effect is quite likely. In this con-
text, the process and tool implementation provide automatic failure propagation
mechanism derived from the actual system architecture. Therefore, all failures
not diagnosed are propagated regarding the defined propagation schema through
the system model.

Failure Propagation 4©. If a failure element is not diagnosed at all or connected
to a specific outport, it is propagated. For the case a non-diagnosed failure is
not connected to a specific outport, it is propagated through all available ports
and connections. On the other side, a propagated failure can also be imported
through an inport. In the Global Context of the BLD in Fig. 6 we see such an
import of the failures unable to calculate signal and faulty transmission of the
signal to BLD of the MaC.

Handling of Propagated Failure Elements 5©. The SafeDeTool prototype sup-
ports the designer by pointing to these propagated failures and demanding a
reaction. Either these failures are again propagated or they get connected to a
new hardware failure in the importing component. If nothing, in particular, is
defined, the failure simply gets propagated further of all available outports of the
component. This breadth style propagation is indeed an over-approximation. If
required, also a default propagation defining failure form which import a prop-
agated via which outport, e.g., according to the physical implementation and
wiring on the component, is also provided.

During this stage, the designer is automatically guided by the tool such to not
handled failure component-wise such that at least all failure could be analyzed
once without overseeing a single one. If a failure in a propagation change is
diagnosed in a later step, all following propagations are removed.

4.6 6© Model Analysis: Consistency and Further Analysis

After having implemented the system’s failure behavior and safety design fol-
lowing the process, we can execute several qualitative checks:

– Fault and Failure Modeling Consistency: Since all necessary fault elements are
derived from, e.g., a hardware part library or additional standard elements, it
can be validated whether all faults have at least been once processed by the
designer. The same processing coverage metric applies to failure elements.

– Safety Goal Violation: During the modeling process, we connected the safety
goals via their requirements, either by existing links between requirements
and system model elements or by defining the affected safety goals using the
failure properties. By utilizing this connection, we can compute whether there
exists a not diagnosed or mitigated fault, possibly violating a connected safety
goal.
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– Computation of the Diagnostic Coverage: Having the connection of the
defined Iso 26262 hardware parts, the corresponding faults, and the direct
implementation in the model we can compute the diagnostic coverage of the
diagnosis elements for a specific component.

– Single Point and Latent Fault Metric: During the modeling, we defined
whether a possible failure is a single point or latent failure. Analyzing this
information and the derived diagnostic coverage for a specific component, we
can compute and evaluate single point and latent point fault metric.

In addition to these metrics, we could (not implemented yet) also use external
tools to evaluate our system. Therefore, we interpret the extended system model
as a starting point for further analysis. The idea is to have all relevant informa-
tion within one specific model and transform the system architecture, behavior
and injected fault and failure definitions into the corresponding input language
of an analysis tool. From the full static architecture and, if logical computation
and corresponding computing time are of interest, from a set of corresponding
state machines, a formal model can be generated as presented in [10,11]. Having
the formal model and the additional information, e.g., FFTI or FIT values, it
is possible to apply a formal verification tool or IDE (e.g., [4,14]) and parse the
results back into the given model. The benefit of this approach, in comparison
with simply modeling several models by hand containing only the information
relevant for the verification scopes, are: (i) Generated models are consistent since
they are always generated from one specific model and (ii) if the model genera-
tion process is automated, also the trust in the consistency and the traceability
of the results increases (especially during an assessment).

Further, from the information contained in a SafeDeML mode, necessary
information is given to execute inductive verification techniques, e.g., Failure
Mode and Effect Analysis (FMEA) [25].

5 Conclusion

In this paper, we presented a process and a prototypical implementation for
integrating SafeDeML into the normal system design and applied it one a real
case study. What can be seen is that the integration of the fault analysis artifacts
into the system modeling eases the analysis of the global failure behavior when
failure propagation is of interest.

When following the presented process in addition to the provided prototype,
the occurrence of systematic faults can be prevented or at least mitigated. This is
induced by the fact that defined process presents a structured approach defining
libraries for error-prone tasks like failure definition or the resulting handling of
fault and failure elements were for complex systems single elements can easily
be overseen. Further, these failures can be mitigated by the fact that we have
all relevant information and artifacts that are generated during the analysis
and provide the base for specific safety design decisions, are within one single
model. In addition, implemented change management and consistency checks
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must focus only on one particular model rather than on many, not necessarily
traceable consistent models.

Moreover, the artifacts generated by the presented process contribute to the
following safety artifacts, defined by part 4 of the Iso 26262. This contribution
is given for the Technical Safety Concept and System design specification by
the generation of the fault propagation and mitigation artifacts, for Hardware-
software interface specification by the connection between the defined diagnosis
elements and the implementing function and software definitions, and for the
System verification report and Safety analysis report by the consistency checks,
computed coverage metrics, and also by the generation of the inductive analysis
artifacts (e.g., for an FMEA).

All in all, we think that applying SafeDeML and the prototype SafeDeTool
could decrease the effort of the safety design modeling and analysis and provide
a first step for integrating all different design document within one system model
for applying model-based system design and safety assessment.
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Abstract. Reliability evaluation for ensuring the uninterrupted system
operation is an integral part of dependable system development. Model-
based safety analysis (MBSA) techniques such as Hierarchically Per-
formed Hazard Origin and Propagation Studies (HiP-HOPS) have made
the reliability analysis process less expensive in terms of effort and time
required. HiP-HOPS uses an analytical modelling approach for Fault
tree analysis to automate the reliability analysis process, where each sys-
tem component is associated with its failure rate or failure probability.
However, such non-state-space analysis models are not capable of mod-
elling more complex failure behaviour of component like failure/repair
dependencies, e.g., spares, shared repair, imperfect coverage, etc. State-
space based paradigms like Markov chain can model complex failure
behaviour, but their use can lead to state-space explosion, thus under-
mining the overall analysis capacity. Therefore, to maintain the benefits
of MBSA while not compromising on modelling capability, in this paper,
we propose a conceptual framework to incorporate complex basic events
in HiP-HOPS. The idea is demonstrated via an illustrative example.

Keywords: Fault tree · Markov Process · Model-based safety
analysis · HiP-HOPS · Reliability · Real time analysis

1 Introduction

By performing safety and reliability analysis of systems, it is possible to know
how they can fail and what is the probability that they will operate without any
failure for a specific time period. Fault Tree Analysis (FTA) [32] is a widely used
top-down deductive approach for reliability analysis. Using FTA, it is possible
to understand the potential causes of system failure and the probability of that
failure.

Although FTA is primarily performed manually by analysts, the emergence
of model-based safety analysis (MBSA) [26] has greatly reduced required manual
effort by proposing ways for automating FTA. Among different available MBSA
approaches, Hierarchically Performed Hazard Origin and Propagation Studies
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(HiP-HOPS) [22] offers multiple state-of-the-art functionalities, supported by a
tool. HiP-HOPS can automatically generate fault trees and Failure Mode and
Effects Analyses (FMEAs) from system models. HiP-HOPS also supports multi-
objective optimisation of system models and semi-automatic allocation of safety
requirements to system components in the form of Safety Integrity Levels (SILs).
These features automate some of the processes for the ASIL allocation specified
in ISO 26262 [24].

Safety analysis through traditional FTA cannot model dynamic behaviour
of systems by taking into account the complex interactions and dependencies
between system components. To model complex dependencies and dynamic sys-
tem behaviour, classical static fault trees are extended as dynamic fault trees
by introducing dynamic gates. However, this approach is rarely used in indus-
try due to the complexity associated with the analysis of such models and lack
of training [35]. Moreover, there is lack of support for model-based analysis of
DFTs.

Generally, during reliability analysis via a static or dynamic fault tree, system
components are assumed to have various states of nominal operation or of failure.
Component failure behaviours are defined accordingly either as probability of
failure or failure rate or distribution of time of failure. However, components in
practical systems can operate in multiple states and can have complex failure
behaviour. For instance, in [17,25,31], Trivedi et al. illustrated the concepts of
reliability and availability analysis of systems by considering the complex failure
behaviour of components. In doing so, they utilised the modelling capability of
Markov chains and used exponentially distributed data.

In [1,4], Markov chain-based complex behaviour modelling of system com-
ponents were considered and basic events of fault trees were proposed to be
substituted by such state-space models. Zixian et al. [36] combined a Markov
model and fault tree for the analysis of time-independent and dependent failure
behaviour of components in medical industry. In their approach, failure of all
medical equipment was modelled using a single type of Markov model and the
human error was modelled using another type of Markov model. This implies that
all physical components are assumed to have same failure behaviour, however,
this may not be true in all practical applications. Recently, Zeller and Montrone
[35] proposed a component-oriented concept of Markov chains to incorporate
the Markov chain-based model of basic events in Component Fault Trees. At
the same time, Nguyen et al. [20] used stochastic reward nets instead of Markov
chains to model the complex behavior of basic events in fault trees. Note that
none of the above concepts was proposed in the context of MBSA and they are
only applicable to exponentially distributed data. Moreover, all the approaches
focus only on design time (offline) analysis, hence there is no provision for incor-
porating runtime evidence about components’ states in the analysis to update
the belief about system reliability and/or availability.

Currently, reliability analysis through HiP-HOPS lacks an appropriate com-
ponent concept that would allow to model the complex failure behaviour of a
component as a Basic Event (BE) in the form of a separate subgraph. HiP-HOPS
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neither offers the modelling of multi-state components nor can the annotation of
the BEs incorporate complex degradation behaviour and repair actions. There-
fore, considering the advantages provided by HiP-HOPS, and MBSA in general,
in this paper we propose a conceptual framework to incorporate the concept
of complex basic event in the HiP-HOPS. Note that our goal is not to model
the state-space-based failure behaviour of a system due to complex interactions
between its components. Instead, we aim to model the behaviour of some selected
components of the system using state-space-based methods. As part of reliabil-
ity analysis using HiP-HOPS, in the proposed framework, firstly we identify the
components that have complex failure behaviour. Subsequently, we propose to
model the failure behaviour of the basic events associated with such components
using a Semi-Markov Process (SMP). Then, offline reliability analysis is per-
formed based on the parameters available at design time. The framework can
also perform real-time analysis during system operation by monitoring and pro-
viding evidence in the state-space models of the basic events. In summary, our
work is different from other existing works and is advantageous because:

– It considers component-level complex behaviour modelling in the context of
model-based safety analysis.

– Via the use of SMP, the proposed framework could analyse systems with both
exponentially and non-exponentially distributed data.

– In addition to performing design time offline analysis, the approach has the
capability to perform runtime analysis.

2 Background

2.1 Reliability Analysis in HiP-HOPS

Hierarchically Performed Hazard Origin and Propagation Studies (HiP-HOPS)
is a state-of-the-art software reliability analysis method. The tool and the sur-
rounding methodology [21] have evolved as a body of work over the past decade,
incorporating further techniques for design [23] and dependability requirement
optimization [27,28], temporal fault tree analysis [13], integration with the
EAST-ADL [5] and AADL [19] modeling languages, uncertainty analysis [14]
and more.

At the core of the HiP-HOPS approach is its ability to perform semi-
automatic Fault Tree Analysis (FTA). FTA is a deductive, top-down anal-
ysis approach, applied extensively across numerous industries involved in
dependability-critical systems development. See [18] for an extensive but older
review and [11] for a more recent one. In FTA, system-level ‘failures’ (undesir-
able events, depending on the context) are modeled as the root of tree structures,
whose leaf nodes represent basic events which cannot be further analyzed in the
context of the analysis. Between the root (aka ‘top-event’) and the leaves of the
tree, logic gates link and propagate the logic that governs the tree. Tradition-
ally, gates used have been Boolean AND and OR gates, however more advanced



112 S. Kabir et al.

options have also been explored in the literature e.g. temporal [33] and fuzzy
logic events and operators, first seen in [29].

In HiP-HOPS, the user begins by annotating a model of the system archi-
tecture with mostly local (per system element) failure behaviour information.
This information describes any basic events associated with the given element
and the logic with which they are propagated from the element’s inputs to its
outputs. As the information is limited to the boundaries of this black-box view
of each element, users do not need to break their modeling workflow to cross-
reference potentially complex relationships with other, distant elements in the
system architecture hierarchy. In addition to the qualitative failure logic, HiP-
HOPS allows to associate failure and repair rates with basic events, which can
be used for reliability analysis in later stages. It is important to note that, in
HiP-HOPS, all the quantitative information provided is under the assumption
that the failure a BE represents can either occur or not. In other words, the state
of a BE is binary and can thus only represent up to one failure class per BE.

Once the annotation of a system model is complete, the HiP-HOPS tool can
be invoked, automatically synthesizing local fault trees for each system element.
The algorithm combines the local fault trees into a merged one, which is then
minimized using logical rules to eliminate redundant sub-trees and so forth. Once
the resulting minimal fault tree is complete, it can be analysed qualitatively and
quantitatively. In the former case, the necessary and sufficient combinations of
basic events, known as the minimal cut set, can be determined. Minimal cut sets
are useful for directly identifying single points of failure as single-member cut sets
as well as other critical combinations of low-level failures that can cause systemic
failure. For quantitative analysis, the basic events of the fault tree can be assigned
probabilities in various forms, most often failure rates according to some assumed
distribution. The logical operators found in the fault tree structure can be used to
combine the probabilities of linked basic events. For instance, AND and OR gates
would combine, respectively, via multiplication and addition, the probability of
basic events occurring, assuming the events are considered independent.

2.2 Complex Failure Behaviour Modelling of a System

In traditional fault-tree-based reliability analysis, systems and their components
are usually considered to have two types of states: working and failed. To facil-
itate reliability analysis, each of such elements can have their probability of
failure or failure rate or distribution of time of failure or steady-state or instan-
taneous (un)availability defined. At the same time, if a component/system can
be repaired then a repair rate is defined. However, modern large-scale complex
systems have the capacity to work in different states and have complex repair
processes. A component in such a system can work as a primary at a particular
point in time, and in another instance the same component can work as a sec-
ondary or spare. Moreover, if a component acts as a spare, it can be in different
modes of spare such as cold, warm, and hot spares.

A component does not necessarily transition directly from a working state to
a failed state, and vice versa. The complete failure of a component may occur
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following a complex degradation process and recovery from failure may also
involve complex repair processes. For instance, a battery, when fully charged,
may be considered as a fully operational component. From this mode, the battery
can fail directly. The battery may be discharged to different levels over the course
of operation. Consider each of the distinct charged levels such as 75%, 50%, and
25% as a distinct mode of operation. From each of these modes the battery
can transition to the failed mode. The battery can also shift from one mode of
operation to another mode either through further discharging or by recharging.

Such multi-modal operation capability of systems and their components gives
rise to different dynamic failure characteristics like priorities among events and
functionally dependent events. However, using the classical fault tree approach,
it is not possible to model such complex dynamic behaviour. Expressiveness of
traditional fault trees has been enhanced through different extensions of fault
trees such as Dynamic Fault Trees [8] and State/Event Fault Trees [16]. These
approaches are mostly useful in modelling dependencies and priorities among
events. For a quantitative analysis, these models are usually transformed to
state-space-based models like Markov chains or Semi Markov Process and [3]
Petri Nets [15]. This leads to a state-space explosion problem, which limits their
applicability to large-scale industrial systems. In addition to this, Markov mod-
els, the most widely used approach for dynamic reliability analysis, are applicable
only to systems consisting of components with exponentially distributed lifetime.

2.3 Reliability Modelling Using Semi Markov Process

Semi-Markov Process (SMP) has been widely used in reliability evaluation of
industrial systems [30]. The SMP has the ability to consider non-exponential
probability distributions that can be counted as an advantage in comparison to
other state-space methods. In this paper, three SMP parameters of (p, P, F (t))
are considered, where: p is the initial probability distribution vector, P is condi-
tional transition probabilities matrix and F (t) describes matrix of distribution
functions of sojourn times in state ith, when jth state is next.

Considering Xi, ∀i = 0, 1, 2, . . . as random variables, the time-homogeneous
SMP X is determined by a vector of initial state probabilities p(0) = �P{X0 =
i}� = �1, 0, . . . , 0� and the matrix of conditional transition probability P (t) =
�Pij(t)� is computed by Eq. (1).

Pij(t) = P{X(t) = j|X(0) = i} i, j ∈ States (1)

The Pij(t) matrix provided in previous equation can be satisfied by
Kolmogorov-Feller’s equation in Eq. (2) [34].

Pij(t) = δij [1 − Gi(t)] +
∑

k∈S

∫ t

0

Pkj(t − x)dQik(x) (2)

where δij = 1 if i = j and δij = 0 otherwise, Gi is the distribution of the sojourn
time in state i described by Eq. (3) [6], and Qij(t) describes the kernel matrix
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by Eq. (4) [9].

Gi(t) = P{Si ≤ t | X0 = i} =
i∑

j=1

Qij(t) (3)

where Si, i = 0, 1, 2, . . . is the state of the system at time t.

Qij(t) = P{X1 = j, Si ≤ t | X0 = i} (4)

The solution of Eq. (2) can be found by applying the Laplace Stieltjes Trans-
formation (LST) in Eq. (5) [10]. Note that for non-exponential failure distribu-
tions such as Weibull and Gamma, some approximation algorithm is needed
(refer to [2,7,34]).

p̃ij(s) = δij [1 − g̃i(s)] +
∑

k∈S

q̃ik(s)p̃kj(s) (5)

Equation (5) in matrix form can be rewritten as follows:

p̃(s) = �1 − g̃(s)� + q̃(s)p̃(s) (6)

Hence, it can be rewritten as Eq. (7).

p̃(s) = �1 − q̃(s)�−1
g̃(s)) (7)

In the above Eq. (7), the inverse of 1 − q̃(s) can be replaced by the summation
of powers of q̃(s). Equation (7) can then be rewritten as Eq. (8). This equation
is useful for singular kernel matrices.

p̃(s) =
( ∞∑

n=0

q̃(s)n
)
g̃(s) (8)

Having solved Eq. (8) with taking the inverse LST of p̃(s), the unconditional
state probabilities in time domain are determined as follows:

P (t) = P (0)P (t) (9)

Finally, the reliability of a system can be achieved through summation of
probability of operational state in the SMP.

3 Proposed Approach

Figure 1 shows the framework of the proposed approach. As seen in the frame-
work, the Annotation, Synthesis, and Analysis phases of the HiP-HOPS method-
ology are extended with new activities. Additionally, a new phase for real-time
evaluation is added in the new approach. In this new approach, the annotation
phase of the HiP-HOPS is extended by introducing an additional check. If, for
quantitative analysis, the failure rate and repair rate are not sufficient to model
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Fig. 1. Framework of the proposed approach

a BE, then a complex BE must be defined instead. In that case, a suitable state-
space based model is selected to model its behaviour. As a result of this, the
logical annotations of the components do not change.

Consider the architecture of a system in Fig. 2. Each component is annotated
with its failure behaviour according in HiP-HOPS’ format. For instance, the
annotation of component C3 is: O-C3 = O-C1 OR I-C3. This means that the
component C3 will fail to produce any output (‘O’ stands for the ‘Omission’
failure class) if there is no output from C1 (O-C1) or if there is an internal (‘I’)
failure of C3 (I-C3). As mentioned earlier, the annotation would remain the same
in the current approach. For quantitative analysis, HiP-HOPS uses λC1 and μC1

as the failure and repair rates of component C1. However, if the component C1
has a complex failure behaviour then this kind of data cannot be used. For this
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Fig. 2. An example system architecture with failure annotations

reason, the proposed approach would use a state-space-based model to represent
the failure behaviour of C1. For instance, Fig. 2 shows a semi-Markov process
based complex failure behaviour of component C1’s.

The synthesis and analysis steps would produce both qualitative and quan-
titative results. For qualitative results, following the procedure described in
Sect. 2.1, fault trees would be generated first and minimal cut sets would be
generated next. However, as we currently have a Semi-Markov (SM) model for
the complex BEs, we cannot perform the quantitative analysis as described in
Sect. 2.1 until we solve the SMP models. Therefore, the first step of quantitative
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analysis in the proposed approach is to solve the SMP-based models of the com-
plex BEs to obtain the failure probability of the BEs. The process of solving
SMP-based models are discussed in Sect. 2.3. Afterwards this data will be used
to obtain the probability of the top event of the fault tree. Additional analysis
such as criticality analysis of BEs can also be performed.

Note that all the above analyses are performed at design time. However,
the proposed framework also introduces real-time analysis via HiP-HOPS. For
real-time analysis, fault trees created during design time and the observations
about system operation are used to update the knowledge about the system
failure probability and criticality of BEs. As the complex BEs have state-space
models of failure behaviour, the basic idea of this phase is to utilise the real-
time operational knowledge of the system to place observations in the state-
space models. Thus, during run-time, the approach can identify in which state
a BE is in, which was not possible to determine at design time. Based on this
new knowledge, the probability of each complex BE will be updated, which will
eventually be propagated to update the belief about system failure probability.

Consider the failure behaviour model of component C1 in Fig. 2. At design
time, it is not possible for analysts to know in which state the component will
work during operation. As a result, the design time analysis will calculate the
probability of the BE associated with this component by solving the state-space
of the model of Fig. 2. However, at run-time, based on the observation of the
system operation, the analysts may find that the component is working in state
S4. Due to this new knowledge, a modified state-space would be solved for the
model to obtain a new failure probability of the BE.

4 Illustrative Example

To illustrate the idea of safety analysis of systems with complex BEs via HiP-
HOPS, we use a simplified version of the oxygen sensing and generation unit
of an Automatic Pond Oxygen Management System first presented in [12], and
shown in Fig. 3. The role of this system is to continuously sense the oxygen level
of a pond and if the oxygen level falls below certain level then the system will
automatically generate oxygen. The system contains two oxygen level sensing
blocks, A and B. Each of these blocks contains a battery and an oxygen sensor.
The battery keeps the sensor alive and the sensor senses the pond’s oxygen level.
Readings from both blocks are fed to the Decision Making (DM) block. Based
on these readings, the DM can decide whether to generate oxygen or not. Note
that although both block A and B work simultaneously, input from at least one
of them is necessary to make a decision by the DM. When the DM finds that
it is necessary to generate oxygen, it uses the oxygen generator (OG) unit to
generate oxygen. During operation the OG draws power from the power supply.

For a model-based analysis of this system using HiP-HOPS, the architecture
of the system was annotated by taking into account the failure behaviour of
each of the system components. A fault tree was automatically generated based
on this annotated architecture and shown in Fig. 4. Table 1 shows the ID and
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Fig. 3. An example system

description of the basic and intermediate events of the fault tree. In this study,
basic events 1, 4, and 6 were considered as complex basic events. The SMP-based
failure behaviour models of these BEs are shown in Fig. 5. Parameters associated
with these models and failure rates of other BEs are shown in Table 2.

Fig. 4. Fault tree of the system in Fig. 3

Without loss of generality we evaluate the reliability of the system of Fig. 3 for
a mission time of 500 h. To illustrate the effectiveness of proposed framework,
we have created some scenarios as shown in Table 3. As can be seen, at time
interval [0, 100] no observation has been provided for the states of the system
components. As a result, analysis performed within this interval is like an offline
analysis. At time interval [101, 200], it is observed that the battery system is in
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Table 1. ID and description of the basic and intermediate events of the fault tree

Event ID Event description

TE No oxygen generated when required

IE1 No outputs from decision making block

IE2 No output from oxygen level sensing blocks

IE3 No output from oxygen level sensing block A

IE4 No output from oxygen level sensing block B

BE1 Power supply failure

BE2 Internal failure of oxygen generator

BE3 Internal failure of decision making block

BE4 Battery in oxygen level sensing block A failed

BE5 Sensor in oxygen level sensing block A failed

BE6 Battery in oxygen level sensing block B failed

BE7 Sensor in oxygen level sensing block B failed

Table 2. Parameters for the BEs and their SMP-based models in Fig. 5

BEs Parameters BEs Parameters

BE1 F1,2(t) = 1 − e−0.00065t BE2 λ = 0.00023

F2,1(t) = 1 − e−0.00073t BE3 λ = 0.00023

F2,3(t) = 1 − e−0.00633t BE4, BE6 α(t) = 1 − e−0.00078t

F2,5(t) = 1 − e−0.00044t β(t) = 1 − e−0.00082t

F3,2(t) = 1 − e−0.00075t D(t) = 1 − e−0.00064t

F3,5(t) = 1 − e−0.00044t FPower(t) = 1 − e−0.00285t

F1,4(t) = 1 − e−0.00860t BE5 λ = 0.00015

F4,5(t) = 1 − e−0.00088t BE7 λ = 0.00091

Table 3. Experimental settings

Mission time Real time observation

t = [0, 100] No observation

t = [101, 200] State D2 in the SMP of battery has been observed

t = [201, 500] State S4 in the SMP of power system has been observed

state D2 and at time interval [201, 500], the power system has been observed to
be in state S4. Figure 6 shows the reliability of the battery and power systems
with and without observation. The changes in reliability of these systems due to
real time monitoring is clearly reflected in the figure. For instance, for battery
system and the power system, the reliability declined steadily until 100 h and
200 h, respectively. After 100 h and 200 h, respective reliability per each system
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(a) Failure behaviour of BE1 (b) Failure behaviour of
BE4 and BE6

Fig. 5. State-based behaviour of BEs 1, 4, and 6

Fig. 6. Reliability of Battery and Power systems with and without observation

drops sharply and then continue to decline steadily again. That means because of
our real time observation of the battery and power system states, our knowledge
about the reliability of these systems is updated accordingly, which is not possible
with design time analysis. Figure 7 shows the reliability of the whole system for
500 h mission time. The effects of the observing the operating states of battery
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Fig. 7. Reliability of the whole system with and without observation

and power system on the reliability of the whole system is clearly visible in the
figure. This real-time analysis feature not only helps us to update our belief
about the system reliability, but also allows us to perform a meaningful analysis
by taking into account the real operational status of the system.

5 Conclusion

In this paper, we have presented a framework for incorporating the concept of
SMP-based complex behaviour modelling of system components in HiP-HOPS.
The framework retained all the functionality provided by HiP-HOPS while offer-
ing a simple way for modelling the failure behaviour of complex systems. Thus,
it enables fast, modular and compositional MBSA of such complex systems. The
SMP-based basic event modelling supports distribution-independent analysis of
system. Moreover, the proposed framework enables us to perform evidence-based
runtime systems analysis.

The current approach focuses solely on the quantitative analysis part of the
HiP-HOPS approach. In the future, we plan to explore the qualitative analysis
aspects by considering the complex behaviour of basic events. Currently, the
effectiveness of the approach is evaluated via a small illustrative example. In
future work, more detailed evaluation using large-scale industrial systems will
be pursued to illustrate the advantage of our proposed framework in MBSA of
complex systems.
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Abstract. In order to deal with the rising complexity of safety-
critical systems, model-based systems engineering (MBSE) approaches
are becoming popular due to their promise to improve consistency
between different views of the system model. Component Fault Trees
(CFTs) are one particular technique to integrate the well-known Fault
Tree Analysis (FTA) with a model of the system. CFTs decompose the
specification of fault propagation on component level, which results in
smaller, easier to manage models and leads to a safety analysis view that
is consistent with the system model. However, although CFTs gain more
and more popularity, their semantics is not well defined and the compo-
sitionality of CFTs is not formally proven to the best of our knowledge.

In this paper, we provide a formal basis for CFTs, formalize semantics
of CFTs and formally prove compositionality of CFTs by mapping them
to information flow semantics, which is well-researched in the security
analysis domain. Our results allow insights in the compositionality of
CFTs, showing a high potential for validation techniques of CFTs and
discuss these consequences in detail. We claim that this proof is crucial
for the use of CFTs in assurance cases for safety-critical systems and one
fundamental approach to integrate safety and security engineering.

1 Introduction

With systems becoming increasingly complex, analyzing and assuring their
dependability becomes more and more challenging, e.g., in the domain of highly-
automated driving [2]. Since safety is a system property, component tests are not
sufficient. Hence, analysis has to be done on system level, requiring potentially
large safety artifacts to be reviewed. With growing complexity, the number of
test cases and size of analysis results to be reviewed grows exponentially.

The challenge of the growing size of a particular safety artifact, the fault tree,
led to the proposal of Component Fault Trees (CFT) by Kaiser et al. [17,18].
CFTs decompose the fault tree of a system and link its parts to system elements.
This allows specification and review of fault propagation on component level and
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analysis on system level after automatically generating the system’s fault tree
based on the CFTs and the system architecture. This automation speeds up
the impact analysis of a system’s safety properties after changes. However, to
the best of the authors’ knowledge, the composability property of CFTs has not
been formally proven so far.

We argue that a proof of the composability of CFTs is key to allow their usage
in assurance cases of safety-critical systems. This paper presents such a formal
proof, resulting in two main contributions: First, we provide formal semantics
for CFTs and a formal proof that the correctness of CFTs is compositional. This
is shown by mapping CFTs to the formalization of non-interference [8], a well-
known property from the security engineering domain. We discuss consequences
of our formalization and compositionality of CFTs for event types, component
reuse, and validation. Second, we show that this mapping is one fundamental
approach to integrate safety and security engineering.

2 Components and Component Fault Trees

CFTs are a compositional way to describe the propagation of faults through a
system in Model-based Systems Engineering (MBSE). Depending on the point
of view of the user of a CFT, it either represents the description of the actual
behavior of the component in case of a fault, or it represents the specification
of the fault behavior the component is supposed to implement. While both use
cases are valid, the intended meaning of when a component is consistent with a
CFT is the same. In the remainder, we consider CFTs to be the description of
the actual fault propagation of a component.

In this section, we formally define the semantics of CFTs. In Sect. 2.1 we
introduce the formal computational model of components. In Sect. 2.2 we for-
mally define CFTs and what it means for a CFT to correctly describe the fault
propagation of a component.

2.1 Components

In the remainder of this work we take the formalization of components from
Greiner and Grahl [8] and reuse their notation for better comparability of further
results in this paper.

A component has an internal state, input ports, and output ports. A com-
ponent can receive messages via input ports and send messages via its output
ports. Received messages can trigger the component to change its internal state.
Formally, we consider components as Input-Output Labeled Transition Systems
(see [26] for a formal definition of IOLTS). A port has a name and a signature,
i.e. names and types of variables that can be communicated via the port. For a
message m communicated via an input port with name p with value v, we write
m = p?v, for a message n communicated via an output port with name q with
value w, we write n = q!w. We refer to the set of all messages communicated
via an input port as inputs, and the set of all messages communicated via an
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output port as outputs. If it does not matter whether a message is an input or
an output, we write m = p.v or n = q.w respectively. We write c

m−→ c′ for a
component c communicating message m and transitioning to a component c′.
You can consider c′ to have a changed internal state. If c′ is irrelevant, we write
c

m−→, if there exists some c′ such that c
m−→ c′.

The behavioral definition of a component limits the sequence of messages a
component can communicate. We refer to a sequence of messages as a trace. We
use � as the concatenation operator for traces and ∅ to refer to the empty trace.
The length of a trace is defined as the amount of messages in a trace. We write
c

t−→ c′ if a component c transitions to component c′ while communicating the
trace t. A component c can communicate a trace t � m while transitioning to
component c′, if there exists a component c′′ such that c

t−→ c′′ and c′′ m−→ c′. We
again write c

t−→, if there exists some c′ such that c
t−→ c′. We refer to all possible

traces as T . Finally, we explicitly define environments in which components can
run. Environments model the entities providing inputs to a component after
observing the behavior of the component.

Definition 1 (Environment). An environment ω is a function T �→ P(I),
where P(I) is the powerset of all inputs.

Environments limit the traces components can communicate while running in
environments to those traces, where the environment provides necessary inputs.

Definition 2 (Communication under Environment). A component c can
communicate a trace t under an environment ω, written ω |= c

t−→, iff c
t−→ and

for all t1, t2, p?v with t = t1 � p?v � t2, it holds that p?v ∈ ω(t1).

2.2 Component Fault Trees (CFTs)

Following the definition of Kaiser et al. [17,18], we consider a CFT as a visual
description for a given component that tells which output events are caused by
which combinations of input events and basic events.

An event, as used in a CFT, belongs to a port of a component, over which
a message is communicated in a erroneous way. The type of an event states in
which way the communicated message deviates from a correct one. We introduce
the examples ex and val as types of events later in this section.

Definition 3 (Event). An event E is a tuple (p, t), where p is port and t is a
type. If p is an input (output) port, E is an input (output) event.

Herein, we distinguish between input events (or input errors), output events
(or output errors), and basic events (or internal faults). Basic events are caused
by internals of the component, e.g., the breaking of hardware, glitches in a clock,
and similar. Hence, basic events are happening independent from the modeled
interfaces. For a concise presentation in this paper, we consider basic events in
a CFT to be communicated by the environment as a message via an implicit
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Fig. 1. Two simple CFTs, where output events (black triangle) depend on input events
(yellow triangles). (Color figure online)

special port into the component. In the remainder, we thus treat basic events
analogously to input events.

For each output event, the CFT describes the logical combination of input
events and basic events that lead to the output event by means of chained AND
and OR gates. Together, input events, basic events, AND gates, and OR gates
describe a formula in propositional logic where the events are the literals which
only appear non-negated in the formula.

Please note that general fault tree standards such as the IEC 61025 [14] define
more complex gates such as a voter gate. We neglect these in this work since they
can be transformed into combinations of AND and OR gates. Additionally, the
IEC 61025 [14] defines a NOT gate (and a derived XOR gate) together with the
hint that it “is advised that this gate be used carefully by an experienced ana-
lyst to avoid unwanted results”. This hint and the lack of use cases might be the
reason why we are unaware of industrial fault trees that use NOT gates, except
for mimicking behavior that is inherent to CFTs, namely exchanging subtrees
depending on variants used. For this reason, we neglect NOT gates and derived
gates as well, assuming literals to occur non-negated in the resulting proposi-
tional formula. We can thus formally define a CFT as a tuple of a propositional
formula of input (and basic) events and an output event.

Definition 4 (CFT). A CFT is a tuple (P,E), where P is a propositional
logic formula, where each literal in P is an input event, and each input event
only appears non-negated in P . E is an output event.

A CFT describes which combinations of input and basic events lead to which
output events. Figure 1 (right) shows the exemplary component C1 with input
ports pa, pb, pc, and pd, and the output ports pe and pf . The CFT shows the
events A, B, and C on the respective ports and the output event E on port pe.

Example 1. The CFT (P,E) shown in Fig. 1 (right) defines P = (A � B) � C.
The semantics of the specification given by the CFT is that E may happen, if
either an event A and an event B happen or the event C happens. In other
words, the CFT states: if E happened, then previously either the events A and
B happened, or the event C happened (or both). In our example, the complete
propositional logic formula of the CFT is E ⇒ P , i.e. E ⇒ ((A � B) � C).
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Please note that a CFT does not state that event E has to happen (equiva-
lence instead of implication), if the other events happen, i.e. a CFT describes a
worst-case fault propagation.

We consider two types of events:

1. A timing event (p, ex ) describes for a correct message communicated over
the port p that in the erroneous case, this message is not communicated (i.e.,
commission error); or in the correct case a message is not communicated over
p, while it is communicated in the erroneous case (omission error).

2. A value event (p, val) describes that in the correct case a message is com-
municated over p with value v, while in the erroneous case a message on the
port is communicated with a value v′, different from v.

Example 2. Reconsidering our example in Fig. 1, we assume the events (in the
sense of Definition 3 describing a deviation from correct behaviour) to be defined
as A = (pa, ex ), B = (pb, val), C = (pc, val), and E = (pe, val). Assume the
component for which the CFT provides a specification can communicate the
following traces:

tc = pa?1, pb?2, pc?3, pd?4, pe!5
t1 = pb?2, pc?3, pd?4, pe!5

t2 = pb?2, pc?3, pd?4, pe!6
t3 = pb?3, pc?3, pd?4, pe!6

Let tc above be a correct execution without any input events occurring. For t1,
the CFT correctly describes the behavior of the component: Here, only a timing
event happens on port pa, i.e. the message is not received. The CFT states that
the component still sends the correct output message (E = (pe, val)), since no
value event occurred at port b (pb, val) and P = (A � B) � C.

However, the behavior in t2 is a counterexample for the correctness of the
CFT w.r.t. the component’s behavior, because the timing event A happened in
the form of not communicating pa?1, while the value event B does not happen.
Yet E occurred and the component sends the wrong output value.

The component’s behavior in trace t3 would again be correctly described by
the CFT, since additionally to A the value event B happened, and thus the value
event E happens.

We will see in the following that it is easier to provide a formal definition of the
semantics of a CFT in terms of when an event must not happen. So, instead
of expressing when a output event may happen, we rephrase the semantics of
a CFT such that it describes when an output event must not happen. For a
CFT describing E ⇒ P , we consider the contrapositive of the formula and gain
P ⇒ E. The resulting formula states that if P is not satisfied, i.e., if a respective
combination of input events does not happen, then the event E must not happen.

Example 3. For our example, the reformulation is as follows:

((A � B) � C) ⇒ E ≡ ((A � B) � C) ⇒ E ≡ ((A � C) � (B � C)) ⇒ E

In other words: If neither event A nor event C happens, then event E must not
happen. Also, if neither event B nor C happens, then event E must not happen.
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For every propositional formula P , with literals only appearing non-negated,
the formula P is a propositional formula with literals only appearing negated.
For P we can find a disjunctive normal form with clauses P1, . . . Pn, such that
P = P1 � . . .�Pn. P ⇒ E then holds, iff for all clauses P i it holds that P i ⇒ E.

Definition 5 (Clause). A clause Pi is a propositional formula, where each
literal only appears negated and � is the only logical operator in the formula.

A clause P i only considers events on particular ports. Let for a given CFT:
P i = A1 � . . . � An and F be the negated output event, where Ai = (qi, ti) and
F = (qf , tf ). So in Example 3, A � C and B � C are two separate clauses.

For this specification, messages on ports other than qi and qf are irrelevant
to the specification. We can now define when messages at most differ from each
other according to an event or a clause.

Definition 6 (Message Event-Equivalence). A message m = q.v is irrele-
vant w.r.t. an event Ai = (qi, ti), if q 	= qi. For a message m that is irrelevant,
we write m ≈Ai

�.
Two messages m1 = q1.v1 and m2 = q2.v2 are event-equivalent w.r.t. an

event Ai = (qi, ti), written m1 ≈Ai
m2, if

m1 ≈Ai
� and m2 ≈Ai

� or

qi = q1 = q2 and ti = ex or
qi = q1 = q2 and ti = val and v1 = v2

Two messages m1 = q1.v1 and m2 = q2.v2 are event-equivalent w.r.t. a clause
Pi = A1 � . . . � An, written m1 ≈Pi

m2, if m1 ≈Ai
m2 for all 0 < i ≤ n

Two messages m1 = q1.v1 and m2 = q2.v2 are event-equivalent w.r.t. a clause
Pi and an event E, written m1 ≈Pi,E

m2, if m1 ≈Pi
m2 and m1 ≈E m2.

Example 4. Revisiting Example 2, ≈A is defined as

q1.v1 ≈A � if q1 	= qa and
q1.v1 ≈A q2.v2 if q1 = q2 = qa or q1.v1 ≈A � and q2.v2 ≈A �

Analogously ≈C is defined as

q1.v1 ≈C � if q1 	= qc and
q1.v1 ≈C q2.v2 if q1 = q2 = qc and v1 = v2 or q1.v1 ≈C � and q2.v2 ≈C �

Given event equivalence of messages, we can canonically define equivalence
of traces. Two traces are equivalent w.r.t. an event, if both traces at most differ
on irrelevant messages and other messages in the traces are equivalent.
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Definition 7 (Trace Event-Equivalence). Two traces t1, t2 are event-
equivalent w.r.t. an event Ai, written t1 ≈Ai

t2, iff

t1 = ∅ and t2 = ∅ or
t1 = m1 � t′1 and m1 ≈Ai

� and t′1 ≈Ai
t2 or

t2 = m2 � t′2 and m2 ≈Ai
� and t1 ≈Ai

t′2 or

t1 = m1 � t′1 and t2 = m2 � t′2 and m1 ≈Ai
m2 and t′1 ≈Ai

t′2

Event-equivalence of traces w.r.t. a clause is defined analogously.

Example 5. For the clause B � C the trace tc from Example 2 is equivalent to
traces t1 and t2. However, tc is not equivalent to t3, since pb?2 ≈B�C pb?3 does
not hold. For the clause A � C, tc is not equivalent to any of the traces t1, t2, t3,
since pa?1 ≈A � does not hold, but no message on pa is communicated in one
of the traces t1, t2, or t3.

To provide formal semantics of the specification of a CFT for a component,
we compare correct runs of the component with runs where erroneous inputs
are provided to the component. Given an environment ω, we define erroneous
environments ωf w.r.t. a clause Pi and an output event E such that ωf can
provide input messages that deviate from correct messages according to Pi. ωf ,
however, may provide arbitrary input messages after observing an output from
the component, which is not specified by E. In that case, the CFT is not correct
w.r.t. the component.

Definition 8 (Erroneous Environment). ωf is an erroneous environment
for ω w.r.t. a clause Pi and an output event E, written ωf ≈Pi,E

ω, iff for all
t1 ≈Pi,E

t2 it holds that

∀p?v ∈ ω(t1) • (p?v ≈Pi,E
� or ∃q?u ∈ ωf (t2) • p?v ≈Pi

q?u) and (1)

∀q?u ∈ ωf (t2) • (q?u ≈Pi,E
� or ∃p?v ∈ ω(t1) • p?v ≈Pi

q?u) (2)

Definition 8 limits how the inputs provided by a correct and an erroneous
environment may differ, after observing behaviors of the component which differ
in the correct and the erroneous run at most according to the specification
provided by Pi and E. Line 1 defines that the erroneous environment must not
omit a message, which is provided by the correct environment, unless the correct
message is irrelevant. However, the messages may differ according to the clause
Pi and the output event E. Line 2, states that the erroneous environment must
not provide messages, which are not provided by the correct environment, except
irrelevant messages. Again, the messages may, however, differ according to the
fault specification.

Erroneous environments describe all possible environments, which a compo-
nent can run in, such that at most input events according to a clause are pro-
vided. Therefore, an environment should be an erroneous environment to itself
(i.e. no input events happen at all). We extend the definition of environments
from above.
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Definition 9 (Environment (extd.)). A function ω is an environment w.r.t.
a clause Pi and an event E, iff it is an environment according to Definition 1, and
ω is an erroneous environment to itself according to Definition 8 (i.e., ω ≈Pi,E

ω).

We can now define correctness of a CFT w.r.t. a component. A clause P
and an output event E are correct w.r.t. a component, if for every execution in
an erroneous environment, there is also an execution in the respective correct
environment, such that the correct and the erroneous execution at most differ
on input messages allowed by P and output messages allowed by E.

Definition 10 (Clause correctness w.r.t. a component). Given the rela-
tion ≈P,E for the clause P and the output event E. P and E are correct w.r.t.
a component c, if

∀ωf , ωc∀tf • ωf ≈P,E ωc ∧ ωf |= c
tf−→ =⇒ ∃tc • ωc |= c

tc−→ ∧ tf ≈P,E tc

Finally, we can define for the complete CFT when it is correct w.r.t. a com-
ponent c, if all clauses defined by the CFT are correct w.r.t c.

Definition 11 (CFT correctness w.r.t. a component). Given a component
c, a CFT (P,E) with P = P1 � . . . � Pn. (P,E) is correct w.r.t. c, iff Pi and E
are correct w.r.t. c for all 0 < i ≤ n.

In this section we have formalized CFTs and CFT correctness w.r.t. a com-
ponent. In the following section we formally discuss CFT composition and show
that CFT correctness is compositional.

3 Compositionality of Component Fault Tree Correctness

The core idea of components is to compose them to larger, typically more com-
plex systems. When composing components, we also have to compose their CFTs
to a CFT for the composition. In this section, we formally prove that the cor-
rectness of CFTs is compositional. The formalization of the semantics of CFTs
in Sect. 2 is equal to the formalization of non-interference, a well-known security
property that describes information flow through a system. For details on non-
interference, we refer to Sect. 5. For proving compositionality of CFT correctness,
we re-use results compositionality of non-interference from [8].

In Sect. 3.1 we formally define CFT composition and discuss in Sect. 3.2 com-
positionality of correctness of composed CFTs w.r.t. composed components. In
Sect. 3.3 we show that some restrictions we made in this paper for presentation
purposes can be relaxed without violating the core of our results.

3.1 CFT Composition

The composition of components in a model is defined by connectors between
one output port of one component and an input port of the other component,
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see Fig. 1. These connectors are implicitly directed, with the direction from an
output port to an input port. We assume that the composition of components
is acyclic. This means that we assume that if an output port of component a is
connected to an input port of component b, then there is no output port of com-
ponent b, which is connected to an input port of component a (and analogously
for compositions). For sake of simplicity of the presentation in this paper, we
assume that connectors only connect ports with the same name. For two compo-
nents c and d each providing the ports pa, we write c.pa and d.pa to distinguish
them. Also, for simplicity of the presentation, we assume that an output event
is at most connected to one input port.

For the CFTs of composed components, we assume, for a simpler presenta-
tion, that two ports connected by a connector define the same events, i.e. if a
connector connects c.pa and d.pa, and for c.pa an event (pa, t) is defined, then
an event (pa, t) is also defined for d.pa and vice versa.

Two CFTs can be composed, if the output event of one CFT is the same
as an input event of the other CFT. If (Pc, E) is a CFT of component c and
(Pd, A) is a CFT of component d, and c and d are composed via a connector on
the port which has defined event A, then we can also compose the CFTs. The
CFT of the composition comp is (P ′

c, E), where P ′
c is the formula Pc where each

occurrence of A is replaced by the formula Pd.

Definition 12 (CFT composition). Let c and d be components, p1 . . . pn
ports, which are input ports of c and outputs ports of d, A1

1 . . . A1
m1

, . . . An
1 . . . An

mn

events with Ai
j being an event on port pi, i.e. an input event of c and an output

event of d. Let further be (Pc, E) be a CFT of c and (P i
j , A

i
j) the CFTs of d for

the output events Ai
j.

We define the CFT of the composition of c and d for output event E as
(Pc,d, E), where Pc,d is formula Pc with each occurrence of Ai

j is replaced by P i
j .

Note that by assumption, compositions of components are acyclic. Therefore
for all compositions of c and d it is clear in which direction messages are passed.
The composition of two CFTs thus itself is a CFT according to Definition 4. As
such, we can discuss the correctness of a composed CFT w.r.t. a component.

3.2 Compositionality of CFT Correctness

If two CFTs (Pc, E) and (Pd, A) are correct w.r.t. the components c and d
respectively, it is not obvious that their composition (Pc,d, E) is correct w.r.t.
the composition of c and d. We consider here the composition of two components
as the interleaving composition of their LTS.

For the following proofs, we assume components to (1) accept inputs only
depending on the port, not the communicated value (no discrimination on inputs
over the same port), (2) not to produce indeterministic output and (3) not to
have indeterministic internal behavior.
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Definition 13 (Deterministic components). A component c is determin-
istic, if

c
p?v−−→ =⇒ c

p?v′
−−−→ for all v and v′ and

c
m1−−→ and c

m2−−→ and m1 	= m2 =⇒ m1 and m2 are inputs, and
c

m−→ c1 and c
m−→ c2 =⇒ c1 = c2

In the remainder, we assume all components to be deterministic.
We can now show that the composed CFT is also correct w.r.t. the compo-

sition of the components.

Theorem 1 (Composed CFT correctness w.r.t. composition). Given
components c and d, CFT (Pc, E) of c and (P i

j , A
i
j) of d as in Definition 12, such

that the CFTs are correct w.r.t. the respective components. Then the composed
CFT (Pc,d, E) is correct w.r.t. the composition of c and d.

Proof. The full formal proof for this theorem can be found in an accompanying
technical report1. ��

3.3 Discussion of Restrictions

In the previous sections we made several restrictions on components, their ports,
allowed event types and others. Several of these restrictions were made in order
to allow a compact description of our results in this paper. In the following, we
lift several of these restrictions without invalidating our core compositionality
result. Please note that all proofs were made such that they also hold in the less
restricted case without changes.

In Sect. 3.1 we assume that connectors only connect ports with the same
name. This assumption is typically not satisfied in a real model, however, it can
easily be achieved with a simple renaming of ports.

We further assume that an output port is at most connected to one input
port. Practically, an output port is often connected to several input ports, mod-
eling the property that a message sent via this port is read by several other
components. Again, a 1:1 relation between ports can be achieved by duplicating
the output port, renaming it, and connecting one input port to one of the dupli-
cated output ports. Similarly, multiple events on a single port are not restricted.

Concerning event types, we only considered timing and value events in
Sect. 2.2. Our results hold for more complex type systems, as long as the type
system defines an equivalence relation ≈ over messages, such that m1 ≈ m2

implies that either m1 and m2 are irrelevant, or m1 and m2 are messages over
the same port. For detailed examples, see [8].

For example we allow event types which state that messages may differ on
the last bit, or that messages may differ on the last bit, if the first bit of the

1 Greiner, S., Munk, P., and Nordmann, A.: Compositionality of Component Fault
Trees - Definitions and Proofs. (2019). http://arxiv.org/pdf/1907.09920.

http://arxiv.org/pdf/1907.09920


Compositionality of Component Fault Trees 135

value is 1 (e.g., encoding a break signal), or even that a message is irrelevant iff
the first bit of the value is 0 (e.g., encoding a log message).

Also in Sect. 3.1 we assume that if two ports are connected, the event types
defined on the ports are equal. This assumption is made for presentational pur-
poses. We do require that the event types defined on the ports satisfy a subtype
relation. A similar, but informal, subtype definition for CFTs is provided by
[21]. If pi is the input port, and po is the output port with events Ai and Ao

respectively, it has to be satisfied that for all messages m1 and m2 it holds
that m1 ≈Ai

m2 implies m1 ≈Ao
m2. For a detailed discussion of this subtype

property, the interested reader is referred to [10] and [9, Sect. 7.3].

4 Consequences

Apart from the central result of this paper, the compositionality of correctness
of CFTs, our work has some fundamental consequences for safety engineering
concerning fault propagation as well as security engineering. For one, composi-
tionality allows easier re-using of components and their CFTs in different con-
texts since analysis results can be re-used and only have to be acquired once.
Additionally, our formalization of CFTs connects the well-known security prop-
erty non-interference with the safety method concerning CFTs. Thus the results
in the respective domains can be re-used to a certain extent in the other domain.

4.1 Consequences for Safety Engineering

Limits of Compositionality. In this paper, we use equivalence relations over
messages as a basis for event specifications. The main reason is that equiv-
alence relations allow for a general and rather simple-to-use compositionality
result. Other approaches from non-interference research are not that strict on
the specification. In particular [4,7] discuss specifications, where the secrecy (or
criticality in our case) of some output information depends on previously com-
municated inputs, e.g., some information is secret if the user did not previously
log in with a password. They show that in general these specifications can also
be compositional. However, this result is not general, but heavily depending on
internal properties of the program, in particular invariants of the program state
and properties connecting those invariants to the external communication his-
tory. The proofs of these properties are specific to a concrete specification and
the system, complicated, complex, time-consuming, and hence not practicable
for real-world programs.

Event Types. Different work on CFTs is concerned with type systems and hierar-
chies for event types. Typically, this work also provides sub-type relations, often
w.r.t. semantic sub types, i.e., a type is a subtype of another, if from common
understanding of the expressed fault, it is more specific. Our equivalence rela-
tions in combination with their effect on compositionality (see Sect. 3.3) provide
a formal condition for subtypes relations.
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CFT Validation. Fault propagation descriptions are typically validated against
the implementation of the system using time-consuming and inherently incom-
plete fault injection tests. Our formalization shows that CFTs in essence describe
an information flow property, thus we can re-use validation methods originally
designed for information flow analysis. Most of these methods are focused on
software components.

For example, a very common method for analyzing information flow are type
systems. See [12] for an overview. Here inputs and outputs of a software compo-
nent are typed with security types (similar to our event types) and by automat-
ically inferring types of statements and local variables, it can be shown that the
information flow of an implementation is consistent with the specification, i.e.,
the CFT in our case.

Another technique is taint analysis, e.g., [3], where inputs are tainted to be
secret (faulty in our case), and taints are propagated through the program. It
can now be checked that public outputs (in our case outputs over critical ports)
are not tainted. Taint analysis can be performed statically and dynamically.

Other techniques build on program dependency graphs (e.g., [11]), where
through program slicing the flow of information (propagation of faults in our
case) is analyzed. Dependency graph based analysis are in particular interesting
in terms of scalability. These techniques can be useful for automatically gener-
ating information flow specifications (CFTs) from a given program.

Finally, non-interference is a well-defined property, which allows for theorem
proving approaches for the verification of information flow (fault propagation).
Different approaches have been developed building on different theoretical back-
grounds, e.g., [27]. Since non-interference (CFT correctness) is compositional, a
combination of different analyses can be relatively easily achieved by using differ-
ent analyses either for different component or even different partial specifications
(Clauses in our case).

4.2 Consequences for Security Analysis

While methods for the analysis of information flow properties is well-researched,
it is an open problem how to gain the necessary specifications. For a non-
interference specification for security-critical programs, inputs and outputs have
to be marked as secret or public. Practically, those specifications do not exist
for real-world programs.

Non-interference is often used for modeling confidentiality properties, i.e.,
properties stating that some secret information must not leak to publicly avail-
able outputs. In particular in safety-relevant systems, e.g., automotive systems, a
more interesting security property is integrity, i.e. the property that an attacker is
not able to influence safety-relevant outputs. Safety norms, e.g., ISO 26262 [15],
recommend fault propagation analysis for those outputs in form of FTA and
FMEA anyway. Thus, a CFT in essence defines an integrity specification for
safety-critical outputs. This specification could generally be re-used in a threat
and risk analysis in security engineering, e.g., SAE J3061 [16], to decide whether
an attacker can indirectly influence a particular safety-relevant output.
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5 Related Work

Extensive overviews of MBSA methods, including CFTs, are given by Aizpurua
and Muxika [1], Sharvia et al. [28], and Lisagor et al. [19]. CFTs have been used
in different industrial domains, such as railway [13] and automotive [22,24].
The underlying principle of all CFT approaches and implementation is to stitch
together the fault tree for a given top event based on the individual CFTs and
the components of the system model [17,18].

Thums and Schellhorn [31] present an FTA semantics in Computational Tree
Logic (CTL). Later, Thums [30] also introduces an FTA semantics in Interval
Temporal Logic (ITL) and compares it with previous formalization, e.g., in Dura-
tion Calculus (DC). However, Thums did not consider CFTs.

Bozzano et al. [5] present a trace-based formalization of hierarchical com-
ponents and their contracts. Extending this formalization with contract-based
fault injection, they show how fault trees can automatically be generated. While
this is a very powerful approach, it requires components, their contracts, and
the refinement of these contracts to be specified. As opposed to this work, we
directly prove the composability of CFTs.

Mahmud et al. [20] generate Pandora temporal fault trees (TFT) based on the
behavior of components defined by state machines. The approach is to generate a
TFT from each state machine and combine these to a TFT of the entire system.
However, the authors do not formally prove the compositionality property. To
the best of our knowledge, the correctness of this composability has not been
formally proven so far. Our formalization of components as Labeled Transition
Systems, and formalizing the semantics of CFTs using equivalence relations is
an extension of previous work in [8].

Formalizing information-flow properties with an explicit environment was
pioneered by Wittbold and Jonson [32], and Rafnsson et al. [26] show that non-
interference is also compositional when the presence of messages is secret.

In [8], compositionality is shown for specifications using the more general
notion of equivalence relations, and the theory is extended to components which
offer their functionality in the form of services. In [10], the authors show that
non-interference for service components directly follows from non-interference of
services, which allows a combination of analysis methods on a more fine-grained
level, hence with increased precision. Bauereis et al. [4] show that composition-
ality of non-interference for specifications with a dependency on the history, e.g.,
access to information after logging in, is possible, however complicated and not
generalizable.

As mentioned in Sect. 4, the analysis of information flow properties is well-
known in the security domain. Several analysis methods from the security domain
or the safety domain have been adopted and applied in the respective other
domain [25]. One prominent example is the attack tree analysis that is concep-
tually based on the fault tree analysis [25]. A survey of both techniques is given
by Nagaraju [23]. Fovino et al. [6] integrate attack trees and fault trees. While
the authors propose a sound mathematical basis for the quantitative security
risk assessment, they do not base their analysis on the system model. Steiner
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and Liggesmeyer [29] propose to extend CFTs with attack trees. The authors
propose to leverage the data flow in the system to create new security events
besides the safety events in CFTs. For cut sets that contain both, security and
safety events, the rating of combined security events and the probability of com-
bined safety events are calculated separately. Steiner and Liggesmeyer do not
leverage the information flow that is already modeled in the system model and
do not prove the composability of their approach.

6 Conclusion and Future Work

In this paper, we present a formalization of Component Fault Trees (CFTs)
by mapping their semantics to the information-flow property non-interference
for Input-Output Labeled Transition Systems. We re-use results from security
research to formally prove that the correctness of CFTs for components is compo-
sitional. By bringing together a well-known safety engineering approach (CFTs)
and a well-known security property (non-interference), we enable to check the
validity of CFTs against their implementation, leveraging existing validation
methods from security engineering such as information flow analysis using type
systems, taint analysis, or program dependency graphs and program slicing.
Hence, we argue that CFTs provide the integrity specification of safety-critical
outputs that is required by threat and risk analysis in security engineering.

As future work, we plan to explore the mutual benefits of other combinations
of safety and security engineering methods and processes.
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Abstract. Processes and techniques used for assessing the safety of a
complex system are well-addressed by safety standards. These standards
usually recommend to decompose the assessment process into different
stages of analysis, so called tiered safety assessment. Each analysis stage
should be performed by applying recommended assessment techniques.
To provide confidence in the correctness of the whole analysis, some ver-
ification techniques, usually traceability checking, are applied between
two stages. Even if the traceability provides some confidence in the cor-
rectness of the decomposition, the following problems remains How to
model the system behaviours at each stage of safety assessment? How to
efficiently use these stages during the design process? What is the for-
mal relationship between these modelling stages? To tackle these prob-
lems, we propose a way to specify, formalize and implement the relations
between assessment stages. The proposal and its pros & cons are illus-
trated on a Remotely Piloted Aircraft System (RPAS) use-case.

1 Introduction

The development of smart transport systems is classically addressed by tiered
processes (for instance V cycle) where product specifications are successively
refined until the final implementation phase.

The components of these systems may be subject to various kinds of faults
which may result in unacceptable safety issues. The safety effects of the poten-
tial faults must therefore be carefully analysed and their acceptability assessed.
Achieving such activities with a monolithic safety assessment may be tedious,
error-prone, and would fail to provide confidence in the system dependability.

Standards like ARP-4754 [17] (aeronautics domain) provide a safety process
used successfully in the industrial domain to perform the safety assessment of
complex systems. One key of its success is the tight coupling of the development
and safety processes, that is in each development tier the relevant safety assess-
ment are processed and fed the next development steps with analyses results. A
safety process therefore generates analyses made at various level of granularity
and addressing various kinds of systems and components.

In addition to classical methods like fault trees or Markov chains (available in
[18]), newer approaches like Model Based Safety Assessment (MBSA) can be used
to perform the mentioned analyses. Altarica [2] is one of the most successful
safety modelling and assessment language used in an industrial context [12].
c© Springer Nature Switzerland AG 2019
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Besides the modelling and assessment ease brought by these approaches,
ensuring the consistency and traceability of safety analyses is still a prominent
problem. We claim that, like MBSE can been used [20] to tackle traceability and
consistency problems during development, the MBSA offers a suitable environ-
ment to produce consistent and traceable safety analyses for complex systems.

The contribution of this paper is twofold, first it provides a methodology
to model the relations between development tiers, second it formalises these
relations with Altarica to benefit from the automated safety assessment. The
remainder of the paper is organised as follows: 1. the classical safety process
and its resulting analyses are succinctly presented (Sect. 2) and the need of
traceability and consistency is motivated; 2. our modelling methodology and
its implementation using Altarica are presented (Sect. 3); 3. the benefit of
our methodology (Sect. 4) is demonstrated on a simplified RPAS use-case; 4.
eventually the related work on safety analysis of complex systems is detailed
(Sect. 5).

2 Safety Process and MBSA

Complex systems are usually developed using a tiered process, that is some
design and validation activities are performed at each stage of development and
then fed the subsequent stages. Safety activities are performed throughout the
design process. Designers can rely on classical formalisms (for instance listed
in the ARP-4761 [16]). As identified by [14], the classical formalisms like fault-
trees or Markov chains embrace an architecture-agnostic modelling. Hence, a
tedious abstraction work must be achieved by the safety engineers to derive
the safety models out-of the system specification. Furthermore, adapting the
safety models after an evolution of the system design may be cumbersome and
error-prone. Architecture-aware formalisms, like component fault trees [8], finite
automata [4], mode automata [2] or hierarchic safety assessments [13] have been
introduced to overcome the limitations of classical formalisms. Architecture-
aware formalisms provide a way to define the dysfunctional behaviour of entities
called components that are instantiated and connected to build the architecture
of a system. Ultimately this interconnection of components can be analysed by
automatic solvers like [3,15], this kind of analyses is the so-called Model-Based
Safety Assessment.

2.1 Reminder on MBSA and Altarica

Amongst the possible formalisms, Altarica [2] is one of the most popular and
successfully applied MBSA language in both academic and industrial fields. Since
Altarica is a formal language, its behaviour can be simulated and automated
safety assessment (like [15]) can be performed. Therefore, the underlying lan-
guage used in the models presented in this paper is Altarica and their analysis
is performed by the tool Cecilia-OCAS [5] from Dassault Aviation.
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A system modelled with Altarica is a set of interconnected components,
these connections are considered as constraints over the possibles values of the
inputs and outputs of the components. These components therefore own the
following elements: 1. flow variables the inputs and outputs that are used to
interface the node with its environment; 2. state variables the internal variables
that can encode node’s functional or dysfunctional state (e.g. failure modes); 3.
events the elements used to trigger the transitions amongst node’s states, note
that these events can be deterministic (e.g. reconfiguration events) or proba-
bilistic (failure events). The node’s functional and/or dysfunctional behaviour is
defined by the following relations between states, flows and events: 1. transitions
encode the possible state evolutions, each transition written g � e → a infor-
mally means “when the guard g (condition over the current state and the value
of the flow variables) is true when the event e is triggered then the action a is
performed (assignment of state variables)”; 2. assertions encode the constraints
between the possible values of flow and state variables. In the sequel we assume
that the output flows are defined by the inputs flows and the state variables
(dataflow restriction).

2.2 Reminder on the Safety Assessment Process

To ensure the dependability of complex systems, the safety assessment process
must be tailored to the development process. The standards like ARP4754 and
ISO26262 promote a safety assessment process where various safety activities
are performed throughout the development process.

Generally, a safety plan can be seen as an application of the following safety
assessment pattern at various levels:

Hazard Analysis (HA). Identify the conditions, in a given context, that may
rise safety issues so-called failure conditions (FC) and allocate safety objec-
tives (called SOs) to these failure conditions commensurate with the hazard’s
severity (or the previous safety objectives). These safety objectives are bounds
over safety indicators (called SIs) such as the acceptable minimal number of
root failures of a FC, the upper bound of a FC occurrence rate.

Safety Assessment (SA). Assess the proposed architecture against the objec-
tives and derive from this assessment the safety objectives that must be met
by the subsequent architectures designed during the development process.

For instance, during the aircraft specification definition an Aircraft Level,
Functional Hazard Assessment (AFHA) is performed and provides the failure
conditions and their severity. The context is specified through a set of assump-
tions that must be traced and ultimately confirmed to ensure the validity of the
analysis.

Once the aircraft’s sub-systems are known and their dependencies identified,
then a Preliminary Aircraft Safety Assessment (so-called PASA) is performed.
This analysis provides the appropriate safety objectives that must be fulfilled by
the aircraft’s systems.
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The applicant must then demonstrate the fulfilment of the PASA safety
objectives on each system with various assessments performed throughout the
system’s development process. In the sequel we will adopt the following three-
stage development process (used in [7]): 1. operational: considering the system
failures and their impact in its operational environment (AFHA/PASA); 2. func-
tional: considering the safety impact of function failures on the system’s envi-
ronment (FHA/PSSA functional); 3. physical: considering the safety impact of
implementation failures on the function or system environment (PSSA physical).

2.3 Relations Between Safety Assessments

When moving from one stage to another one, failures of the former architecture
will depend on the failures of the components of the new architecture. The
Fig. 1a identifies the relations between assessment performed during the safety
activities. The explicit relations (plain arrows) are the data exchanged by the
analysts to perform the safety assessments. For instance, performing the FHA
of a system needed some knowledge of the system specification and the safety
objectives allocated to assessed system. Some other relations are implicit (dotted
line), since they fall under the expertise of the analyst to properly deriving and
tracing some piece of information between stages. For instance, the analyst must
identify the failure conditions (expressed over functions) that are related to a
system failure mode for which a safety objective has been allocated.
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Fig. 1. Safety assessment processes

According to the Fig. 1a, we can identify two kinds of implicit relations:

Allocations express the dependencies between components of two architectures,
such as the resource dependencies created by mapping functions on physical
components.

Replacements link some parameters of two assessments performed at various
stages, typically the environment assumptions between AFHA and FHA.
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The validity of the global safety assessment relies on the identification and
tracing of these relations. The prominent threats to validity are:

Traceability. If the analyst is not able to trace the dependencies or the links
between assessments’ parameters, the demonstration of the global safety
objectives can be compromised by inconsistencies between safety assessments.

Composability. The assessments performed throughout the design process are
dedicated to the identification and assessment of precise kinds of failures
e.g. operational specification failures for PASA. The fulfilment of the global
objective is achieved by a composition of the safety assessments. Some piece
of information of an assessment may be considered during subsequent assess-
ments. If the assessment framework does not provide some mechanisms to
handle such dependencies between assessments, the analyst must handle them
manually; that may be error-prone and time-consuming.

Maintainability. The safety assessment is more likely to be an iterative process
than a linear process. The analyst needs to efficiently reflect the evolution of
the design on the safety assessments. Because of the system’s complexity
the safety impact of a design choice may spread way beyond the considered
architecture, so handling system’s evolution manually is error-prone and can
compromise the whole safety assessment.

To tackle these problems, we present an MBSA approach extended with a for-
mal modelling of the relations between the safety assessments built throughout
the design process, so-called Tiered Model-Based Safety Assessment.

3 Formalisation of the Tiered Safety Assessment
with Altarica

We introduce the notion of Tiered Model-Based Safety Assessment providing a
formal modelling of the relations between the safety assessments identified in
the previous section.

3.1 Overview of the Approach

The formalisation provides a convenient way to express replacement and alloca-
tion relations between two architectures. Thanks to this modelling, the relations
between safety assessments (identified in the Fig. 1a) can be greatly reduced and
boils down to the ones depicted in the Fig. 1b.

The formalisation mainly addressed the relations PASA/functional PSSA
and functional PSSA/physical PSSA. The former can been seen as a replace-
ment relation where the failure modes of the systems are expressed as failure
conditions over the functions of the systems. The latter is an allocation relation
introducing the dependencies of functions on physical items. Thanks to MBSA,
these relations can be modelled as constraints between the models of various
architectures and the safety assessment can be delegated to an automatic solver.
Since the relations between architectures will be formally modelled, the failure
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conditions contributing to the global hazards identified in the AFHA does not
need to be further refined in subsequent architectures. One just enables the rela-
tions that must be considered according to the assessment level and performs its
assessment (whatever the level) on the failure conditions of the operational level.
Therefore the safety objective allocation phase and the adaption of system fail-
ure as function failure conditions (FHA) are not needed any more. Beyond this
simplification, the proposed process provides a solution to the following threats
of validity:

Traceability. By formalising the relations between the models, the analyst will
need to identify and express them to perform the safety assessments. So the
relations between safety assessments and the assumptions made on the impact
of component failures on another architecture are natively traced.

Composability. The analyst can perform an assessment using the information
dispatched over several models since the relations are formally expressed.
The relations can then be activated to perform a safety assessment of the
aggregation of the safety knowledge contained in the models.

Maintainability. Eventually the safety impact of any evolution of an architec-
ture (at any level) is automatically considered during safety assessment since
its impact will spread through the relations between models.

3.2 Relation Specifications

To properly integrate the notion of relation in the safety assessment models, one
must provide a formal definition of such relations.

Definition 1 (Notations and Modelling assumption). Let us consider that
the behaviour of a component c is described by a set of state transitions Tc and
an output function σc providing the output failure modes according to the inputs
valuations and the current state. Let the valuation of a variable x be denoted
by V [x] and the Cartesian product of the valuations of a set X of variables be
denoted by V [X] =

∏
x∈X V [x]. Let Vx�→a be the extension of V with x ∈ X.

To introduce the definitions of the relations we assume that if a component c
can fail then its possible failure modes are encoded by a unique state variable S
of type FM containing the failure modes and a mode encoding the correct state
denoted by ok which is the initial value of S.

Allocation. The purpose of an allocation relation is to consider the resource
dependencies of a component, in addition to its own failures. Let c be the initial
component modelling the component without considering the allocation depen-
dencies. Adding an allocation relation can be seen as a transformation of c into
another component a. Let R be an input of a providing the failure mode of the
component’s resource, then the transitions remains unchanged, thus Tc = Ta and
when the resource dependencies are fulfilled (R = ok) then for any valuation V
of I and state s we have σa(VR �→ok, s) = σc(V, s).
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Replacement. The purpose of a replacement relation is to replace the sponta-
neous occurrence of a failure mode (encoded in S) by a some function over the
component failures of another architecture. So let us consider the initial compo-
nent c modelling the component without considering the replacement relation.
Replacement can be seen as a transformation of c into another component r.
Let R be an input of r providing the new failure mode then the transitions of
c involving S assignment must be no more fireable in r for any valuation of the
state and inputs. Moreover for any state s and valuation V of I ∪ R such that
s = V [R] then σr(V ) = σc(V [I], s). Note that σr does not depends on S any
more since it is totally replaced by R.

3.3 Modelling Relations

The formalisation of the relations is founded on dependency modelling through
Altarica flows. These flows carry the information gathered from one architec-
ture model to another one. The integration of the information in the targeted
architecture model is achieved by flow connection to the standard interface of
the Definition 2.

Definition 2 (Relation interface). Let c be a component, FM be its failure
modes then the following inputs must be provided by c:

Activation (A) is a boolean input enabling the failure mode transitions.
Resource (R) is an input of type FM providing the failure mode of the under-

lying resources used by c.

From the specification of the replacement and allocation relations, one can
transform any components c satisfying the assumptions of the Sect. 3.2 into a
component c′ that can be used to encode the replaced and allocated version of
c. The activation of the desired relation is based on the A and R inputs of the
interface.

Definition 3 (Interface implementation). Let c be a component, Tc be its
transition set, σc its output function, TE be the set of transitions containing an
assignment of S, V be a valuation of I ∪ R and s be the current state. The
transition set Tc′ and output function σc′ of the adaptation c′ of c implementing
the interface can be defined as follows:

Tc′ = {g ∧ ¬A � e → a|g � e → a ∈ TE} ∪ (Tc \ TE)

σc′(V, s) =
{

σa(V, s) if A
σc(V [I], V [R]) otherwise

No Relation. If the component is not linked by a replacement nor an allocation
relation then its internal failures (S) and inputs (I) only impact its outputs,
so the activation input should be set to true and the resource input should be
ok. Since A is always true then in any transition of c′, g ∧ A ⇒ g so Tc′ = Tc.
Moreover, for any valuation V of I∪R and state s we have σc′(V, s) = σa(V, s), in
addition when R = ok we also have σa(V [I]R �→ok, s) = σc(V [I], s) so σc′(V, s) =
σc(V [I], s) holds.
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Replacement. When a component failure modes are replaced, A must be set
to false and R connected to the replacement function. Since A = false, for
all transition g � e → a ∈ Tc′ containing an assignment of S we have ¬A ⇒
¬g hence the transitions encoding the failure evolution of c are not fireable.
Furthermore, let σr(V ) = σc(V [I], V [R]) then we have σc′(V, s) = σr(V ) so for
any state s and valuation V of I ∪ R such that s = V [R] we have σc′(V, s) =
σr(V ) = σc(V [I], s).

Allocation. When component resource dependencies are considered A must be
set to true and R connected to the allocation function. Since A = true, we have
Tc = Tc′ and the output function is σc′(V, s) = σa(V, s). By definition of σa for
any state s, valuation V of I ∪R where V [R] = ok we have σa(V, s) = σc(V [I], s)
so σc′(V, s) = σc(V [I], s) holds.
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Fig. 2. Standard components

3.4 Standard Components

The Altarica models presented in the remainder of the paper are build on top
of a library of generic components providing the interface of the Definition 2.
The fallible components of the Figs. 2a and b are named blocks (graphically dis-
criminated by an internal circle) and provides the relation interface. Conversely
the infallible components of the Figs. 2c and d, named operators, does not pro-
vide the relation interface. The operator best of Fig. 2c (resp. worst of Fig. 2d)
provides the lowest (resp. greatest) failure mode amongst I1 and I2 according a
total order < over the failure modes. A possible definition and concretisation of
the generic block is provided by the Example 1.
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Example 1 (Interface implementation). The generic block is generic over the
set of failure modes (FM) and thus the Altarica code 1.1 must be concretised
with a given failure mode set to obtain the Altarica model of this block.
As requested by the Definition 2 the initial state is ok. To fulfil the Transition
constraints for allocation and replacement, the transition’s guards complies to
the Definition 3. The function worst is used whatever the value of A i.e. σc′ =
σa = σc. Nevertheless, when A is true we have σc′ = σa and when A is false
we know that S = ok so σc′(I,R, S) = worst(I, worst(R, ok)) = worst(I,R) =
σc(I,R). So this implementation complies to the Definition 3.

In the sequel we will consider that blocks own the following generic failure
modes: the block does not provide its intended behaviour (called lost); the block
provides an erroneous behaviour (called err). A system can then be a concrete
block where FM = {ok, err, lost}.

3.5 Decomposing Analyses

A safety assessment considering only the component failures of a specific archi-
tecture is obtained by deactivating all the components of the other architec-
tures and building replacement relations. The only contributors to the high-
level hazards will be the component failures of the target architecture. Through
the replacement relation, the analyst will benefit from the failure propagation
modelled in the higher level architectures to perform its safety assessment.

If the analyst want to consider the failure of several architecture levels simul-
taneously then the considered components must be activated and an allocation
relation must be defined between the considered levels. For instance, such an
analysis on functional and physical levels can provide the combination of func-
tion specification and physical failures that may contribute to top level hazards.

4 Safety Assessment of an RPAS System

Let us illustrate the modelling framework on a simplified remotely piloted air-
craft system (RPAS)1. The drone’s mission is to inspect an infrastructure locate
in a pre-defined evolution zone. Since some populated areas located nearby, the
drone should not fly, land nor crash outside the evolution zone.

If one wants to use such system, the hazards inherent to the RPAS must
be identified and their likelihood demonstrated as acceptable. To do so, the
hazards should be identified out-of the failure modes of the top level functions
of the RPAS that are Control Flight i.e. stay in the evolution zone and Abort
Flight i.e. detect the conditions where motors must be cut off.

The severity of a failure condition is classified using a severity scale derived
from the ARP4754, here let us only consider Catastrophic as a potential ground
or in-flight collision leading to one or several fatalities and Hazardous as a con-
trolled crash in a predefined zone without stringent access control. The simplified
AFHA of the Table 1 provides an assessment of the safety impacts.
1 Available at www.onera.fr/sites/default/files/274/IMBSA2019code.zip.

www.onera.fr/sites/default/files/274/IMBSA2019code.zip
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In addition, the AFHA must provide the safety objectives attached to these
failure conditions, in the remainder of this paper we consider that Catastrophic
failure conditions must not be reached by single failures. We will not illustrate
the safety assessment based on quantitative measure. Note that one can easily
perform such quantitative assessment with the minimal cutsets computed for
each architecture. Consequently we will assess only the failure condition Fly
away without flight abortion capability (CAT) that could lead to collision with
vehicles or other aircraft.

Table 1. Simplified AFHA of the RPAS

Function Failure Context Consequences Severity

Control flight err Cannot abort flight Crash outside evolution zone Catastrophic

Can abort flight Crash inside evolution zone Hazardous

lost – Crash inside evolution zone

Abort flight lost Cannot control flight Crash outside evolution zone Catastrophic

Can control flight No safety effect NSE

err – Crash inside evolution zone Hazardous

4.1 Operational-Level Assessment

The RPAS is constituted of a Flight Controller System (FCS) managing the
flight plan and the trajectory of the drone. The Flight Termination System
(FTS) monitors the FCS and can reconfigure the FCS to mitigate its failure,
the ultimate action of the FTS is to trigger a controlled crash to avoid a fly-
away. The identified failure conditions are encoded as observers over the FCS
and FTS systems as follows: 1. a fly-away occurs when the FCS provides an
erroneous control of the drone and the FTS is not able to trigger a controlled
crash; 2. a crash in the zone occurs when the FCS is lost or if the FTS triggers
a controlled crash. The minimal cutsets of these failure conditions has been
generated automatically by Cecilia-OCAS:

MCS = {{FCS.err, FTS.lost}}

So at this stage the no single failure mode requirement for Catastrophic failure
condition is fulfilled. Nevertheless the latter result holds if no common mode of
failures are added during functional and physical architecture design.

4.2 Functional-Level Analysis

The functional architecture is depicted by the Fig. 3a wherein Acquisition func-
tions acquire flight parameters and monitor adversary conditions; Monitoring
acquires data are checked by independent alarms; TrajectoryControl functions
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(a) Functional Architecture (b) Physical Architecture

Fig. 3. Functional and physical architectures

controlling the drone from flight parameters and control mode; MotorSwitch
cutting motors’ power supply if the flight termination mode is selected.

The last node called FDIRBoard encodes the on-board safety policy that
selects the control mode according to the alarm states. The selection rules are
coded as an Altarica automaton selecting the control mode according the
alarm states. More precisely, at any time flight termination is chosen when the
attitude or trajectory are not correct, otherwise emergency landing is chosen if
the rain or wind or altitude or energy are not correct, otherwise hovering mode
is chosen in case of loss of GNSS or localization, otherwise the mission mode is
selected.

To perform the safety assessment, the analyst must replace the operation
failure modes by some failure conditions over the functional architecture. To
achieve that we saw that the component must be deactivated and the new failure
mode must be provided trough R. The replacement relation considered is 1. the
trajectory state provides the state of the FCS; 2. when the trajectory or the
attitude estimation is not correct then the flight termination must be triggered
and the switch should cut the motor otherwise the FTS does not works properly.

Thanks to the replacement relation, the analyst can compute the follow-
ing cutsets integrating the safety knowledge of the functional architecture. The
result shows that the functional architecture does not integrate common mode
of failure for the Catastrophic failure conditions. The analyst can then allocate
these functions on physical resources.

MCS =

⎧
⎪⎪⎨

⎪⎪⎩

{GPSSignalMonitoring.err, T rajectoryControl.P ilot.err},
{Localisation.err, T rajectoryControl.P ilot.err},
{MotorSwitch.lost, AttitudeAcq.err},
{MotorSwitch.lost, T rajectoryControl.P ilot.err}

⎫
⎪⎪⎬

⎪⎪⎭
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4.3 Physical-Level Analysis

The physical architecture shown by the Fig. 3b is composed of two processors
executing the software, sensors, motors, and two power supply channels.

Each acquisition function is allocated both on a processor and on a sensor.
The monitoring, control mode selection, trajectory control and abort flight are
implemented as software executed on the processors. The trajectory manage-
ment additionally depends on the motor to control the drone’s trajectory. Let
us consider that the analyst wants to consider only one processor and power
supply channel in the physical architecture. The safety assessment considering
this allocation relation can be assessed by computing the new cutsets, for the
sake of readability we display the cutsets containing only physical failures.

MCS = {{Alim1.err}, {Processor1.err}, {Alim1.lost, IMU.err}{Processor1.lost, IMU.err}}

Allocating all components on the same power supply and processor produces a
common mode of failures identified by the minimal cutsets generator. The ana-
lyst must reconsider its allocation relation to avoid such a single point of failure.
For instance, allocating the monitoring, FDIR and MotorSwitch on the second
processor and the other software on the first one. Hence the second processor
should be powered by the second power supply. The validity of the reallocation
is assessed by recomputing the minimal cutsets:

MCS =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

{Alim2.err, Alim1.err}, {Alim2.err, IMU.err},
{Alim2.err, Processor1.err}, {Alim2.lost, Alim1.err},
{Alim2.lost, IMU.err}, {Alim2.lost, Processor1.err},
{Processor2.err, Alim1.err}, {Processor2.err, IMU.err}
{Processor2.err, Processor1.err}, {Processor2.lost, Alim1.err},
{Processor2.lost, IMU.err}, {Processor2.lost, Processor1.err}

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

5 Related Work

Tiered safety assessment processes propose to decompose the global task in sev-
eral easiest sub-tasks to master the analysis of complex systems. Each sub-task
uses a specific model for an analysis which is focussed on an abstract system
view or a more detailed subpart. The issue is to ensure the maintainability,
traceability and composability of all these models and analyses.

We explored in this paper the use of a unique model which can progressively
integrate several models, while keeping possible the analyses of the model sub-
parts at the relevant granularity level. We used of course the composition and
hierarchy features of AltaRica. However, this is not enough. Safety models are
not limited to structures: they encompass more or less sophisticated failure prop-
agation logics. So our main contribution was to clarify the logical dependencies
between the subparts of interest and to show how they can be encoded to ease
the model update and its tiered analysis. A difficulty was to do it in a way which
preserves the analysis tractability and the results readability for all tiers of the
process.
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This is rather original. Indeed, the mainstream idea of the literature is to
handle the maintainability, traceability and composability of all the sub-models
and analyses by characterizing the relations between analyses made at different
design stages, more or less formally and outside the models.

5.1 Relation Through Refinement

The approaches propose to consider a complex system as a layered system. For
instance in [19], a framework of safety modelling is for layered safety mechanisms
is implemented using event-B [1]. The notion of layer can encompass various
meaning, in [19] and [9], a layer is a model of a safety mechanism handling fail-
ures either locally, or by using dedicated safety mechanisms (sub-layers) or by
invoking more general-purpose safety mechanism (up-layer). Instead of perform-
ing safety analyses for each layer of safety mechanisms and handling manually
the relations between them, the authors of [9] propose to formalise the layer hier-
archy with the notion of refinement of event-B. Using such a framework enables
the designers to formalise the behaviour of fault-tolerance mechanisms and to
perform a global formal analysis for some fault-tolerance properties.

Another notion of layer is exploited in [6] as a way to represent several
abstraction stages. The proposed framework is based on component fault trees
where the user can define abstract component fault trees. A notion of concretisa-
tion can then be used to provide a realisation of a specification. The framework
assists the analyst be providing automatic consistency checks.

As shown by the presented works, providing a formal notion of refinement
is a way to ensure the maintainability, the traceability and the composability of
the assessment. Nevertheless, the refinement preserve logical properties and it
does not offer any guaranty on the preservation of probabilities. Our approach
does not pretend to solve this issue. However, the replacement and allocation
enable a quick computation of cutsets and associated probabilities.

5.2 Relation Through Synchronisation

The approach of [12] addressed the safety assessment of tiered system by focusing
their effort on the formalisation of the allocation between architectures produced
at various design stages. The authors propose to use the MBSA to model the
dysfunctional models of these architectures in a single model. The allocation is
then formalised through the notion of synchronization provided by the mode
automaton formalism (more information on synchronisation can be found in
[14]).

Allocation through synchronisation is an efficient and light way to model
the dependencies between components of various architectures. Nevertheless, an
allocation dependency can be considered as an arbitrary complex function of
resource failures, for instance the dependency of a function on its implemen-
tation resource can be a set of resource failure combinations. Unfortunately
the synchronisation language expressivity limits the modelisable dependencies.
Moreover, the synchronisation are not oriented, so it is not possible to encode
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that a failure event is caused by a combination of failure events (as a safety
analyst may want to represent the resource dependency). Usual dependencies
like common causes are not sufficient to cover the full spectrum of dependencies
of an allocation.

5.3 Relation Through Traceability

Another kind of approaches like [11] relies on the traceability between the safety
and design process. In this work the analysis and design phases are modelled
as UML elements and the relations between them are explicitly modelled. The
analyst is then able to link the designed architecture to the corresponding safety
model. The traceability between the safety and design is used to ease the manual
checking.

The approach of [7] proposes to analyse complex system using MBSA. The
idea is to decompose the system’s architecture at various levels straightforwardly
linkable to the design phase of the system. At each level the failure conditions and
the dependencies between the components of the architecture are modelled. Note
that a model may embed some information from an upper level. Furthermore,
the failure conditions expressed at a given level must be refined at subsequent
analysis levels. The traceability and consistency between models is then manually
handled. Some methods like [10] can be used to link component failures and then
compare the minimal cutsets produced by the safety assessments.

Such approaches suffer from the following issues: 1. the integration of some
information of an upper level architecture is tedious and can generate some
inconsistencies between models if the information is not integrated properly; 2.
without formal modelling of the relations the maintainability is not addressed;
3. manual handling of the traceability for complex system can be the source of
inconsistencies between models and assessments. Nevertheless, our approach can
be seen as an extension of the approach of [7] wherein the architectural models
are formally linked through allocation and replacement relations.

6 Conclusion

Summary. The tiered safety assessment is recommended by the safety standards
to master the complexity of assessment of complex systems. This recommenda-
tion is currently implemented by performing separately complementary fault
tree analysis or failure mode and effect analysis and by tracing in documents the
links between hypothesis or results provided by each analysis. When possible, a
sub-fault tree replaces a leaf when design details are given, e.g. after allocating
physical resources to a function. However, it is not easy to maintain the traceabil-
ity links between all these data when the analysis of a new component is added
or when hypotheses are modified. This paper identified the replacement and allo-
cation relation used in multi-staged safety assessment. It formalises the meaning
of these relations and shows how they can be implemented with Altarica. The
practical interest of the approach is illustrated on a RPAS case study.
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Limitations and Future Works. The relations considered in our approach
always trace a safety knowledge to a higher architecture level. Nevertheless,
the behaviour of an architecture can be needed to model the failure propaga-
tion in a lower-level architecture. This kind of relations needs to be specifically
address since it can considerably enhance the accuracy of the safety assessment
on complex systems. Moreover, the proposed modelling approach provides a way
to build a monolithic model containing various levels of safety knowledge. Con-
sequently, the automatic safety assessment does not benefit from this modelling
paradigm, that may lead to poor assessment performance. A solution would be
to develop a solver considering the modelling paradigm to enhance the efficiency
of the assessment.

Acknowledgment. This work is part of the Phydias french study which is granted
by the DGAC to study drone safety.
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Abstract. In this article, we present the conceptual foundations and
implementation principles of model synchronization, a formal framework
for the management of heterogeneous models. The proposed approach
relies on S2ML (System Structure Modeling Language) as a pivot lan-
guage. We show, by means of a case study, that model synchronization
can be used to ensure the consistency between system architecture mod-
els designed with Capella and safety models written in AltaRica 3.0.

Keywords: Heterogeneous models · Model synchronization · S2ML

1 Introduction

To face the increasing complexity of technical systems, systems engineers
are designing models. These models serve different purposes: system architec-
ture, control engineering, multi-physics simulation, safety analyses, performance
assessments. They are designed at different levels of abstraction and by different
teams. They may have also different levels of maturity. Ensuring that these mod-
els are consistent one another is one of today’s major industrial challenges. As
of today, their integration relies almost exclusively on organizational processes.

Collaborative data bases (PDM/PLM) and tools to set up traceability links
between models provide a support to manage models in version and configu-
ration, but not to ensure consistency between them. Different model transfor-
mation techniques have been proposed (e.g. [12,18]) but they often assume a
master/slaves’ organization of models, which is not realistic in practice. As an
interesting alternative, two-sided model transformation based on triple graph
grammars has been proposed see e.g. [9].

In this article, we present the conceptual foundations and implementation
principles of model synchronization, a formal framework to ensure the consis-
tency of heterogeneous models. Model synchronization relies on ideas stemmed
c© Springer Nature Switzerland AG 2019
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from Cousot’s abstract interpretation [6], but its implementation is dedicated to
the problem at stake. Namely, the overall approach relies on four theses:

Thesis 1. The diversity of models is irreducible. Moreover, each model has its own
life-cycle. In other words, attempts to derive models for one purpose (e.g. safety
analyses) from models designed for another purpose (e.g. system architecture),
are essentially vain and even counter-productive.

Thesis 2. Heterogeneous models cannot be compared directly. Therefore, the
synchronization process is made of three steps: first, models are abstracted in
a common language; second, their abstractions are compared; third, actions are
possibly taken to adjust original models according to findings of the comparison.

Thesis 3. Systems engineering models are made of two types of constructs: behav-
ioral descriptions and structuring constructs. Behavioral descriptions are specific
to each engineering domain. It is thus in general impossible to perform cross-
domain comparisons. On the contrary, the structures of models reflect to some
extent the structure of the system under study. Therefore, model synchronization
focuses on structural comparisons.

Thesis 4. The overall objective of model synchronization is not to reach a perfect
matching between (the structures of) original models. Rather, it is to agree on
disagreements and to trace the possible discrepancies.

In a word, model synchronization is a pragmatic approach providing a formal
framework and concrete tools to improve current processes. Its implementation
relies on three basic constituents: first, one needs a pivot language in which
models are abstracted. S2ML (System Structure Modeling Language) [2] is an
excellent candidate for this purpose as it gathers in an organized and unified
way most of the structuring constructs found in systems engineering modeling
formalisms. Second, one needs tools to abstract original models into the pivot
language. Ideally, the abstraction process should be fully automated. It is pos-
sible however to do this part of the work by hand or in a semi-automated way.
Finally, one needs software tools to compare abstractions. The development of
these tools is justified for at least two reasons: first, they depend only on the
pivot language and are therefore reusable for the synchronization of any type of
models; second, they ensure the soundness, the completeness and the traceability
of the comparison process.

The contribution of this article is thus to present model synchronization and
to discuss its conceptual foundations and its implementation into the SmartSync
platform. We illustrate the discussion by applying the proposed approach on a
case study – an electrical power supply system borrowed from [5]. We show how
it can be used to maintain the consistency between system architecture models
designed with Capella [16] and safety models written in AltaRica 3.0 [3].

The remainder of this article is organized as follows. Section 2 introduces the
case study. Section 3 describes the model synchronization process. Section 4 dis-
cusses model comparison. Section 5 presents the SmartSync platform and gives
some experimental results. Finally, Sect. 6 concludes this article and discusses
future works.
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2 Illustrative Example

2.1 Description

As an illustrative example, we shall consider a power supply system borrowed
from [5] and pictured Fig. 1. We shall use this case study to illustrate the different
concepts of model synchronization, i.e. to show how to ensure consistency of
heterogeneous models.

Fig. 1. A power supply system

This system is in charge of supplying electrical power to the busbar BB. It
is divided into a primary power supply or a backup power supply. The primary
power supply receives the power from the grid and is itself made of two redundant
lines. Each of lines is made of a transformer TRi and two circuit breakers CBUi
and CBDi, i = 1, 2. Lines 1 and 2 are used in alternation. The passive one is in
cold redundancy with the active one. The backup power supply part is made of
the diesel generator DG and the circuit breaker CB3. It is in cold redundancy
with the primary power supply.

2.2 Models

We consider this system from two engineering point of views: the point view
of the system architect, supported by models designed in Capella [16], and the
point view of the safety analyst, supported by models written in AltaRica 3.0 [3].

Figure 2 shows the functional architecture diagram of the power supply sys-
tem, while Fig. 3 presents its physical architecture diagram. The latter is quite
similar to the process and instrumentation diagram showed Fig. 1. Figure 4 on
the left represents the life-cycle diagram of the operational architecture.
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Fig. 2. Functional architecture of the power supply system represented with Capella.

Fig. 3. Physical architecture of the power supply system represented with Capella.

Fig. 4. Capella life-cycle diagram (operational architecture) and graphical representa-
tion of the AltaRica 3.0 controller of the power supply system.

Table 1 summarizes the allocation between functions and physical compo-
nents depending on different operational phases of the system. Phase 1 corre-
sponds to the mode Line1 of the diagram Fig. 4, Phase 2 corresponds to the
mode Line2, and Emergency mode – to the mode Backup.

Figure 5 shows an excerpt of the AltaRica code for the power supply system.
There are two failure conditions of interest: loss of electrical power delivered to
the busbar and loss of isolation (of non-functioning parts). They are represented
by two observers in the AltaRica model. The structure of the model is inspired
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Table 1. Power supply system: functions allocation table

Phase Control
electrical
power
delivered
by the Grid

Transform
electrical
voltage
delivered
by the Grid

Control
electrical
power
delivered to
the Busbar

Generate
backup
electrical
power

Control
power
delivered to
Busbar

Isolate non-
functioning
parts

Phase 1
(Line1)

CBU1 TR1 CBD1 CBU2,
CBD2,
CB3

Phase 2
(Line2)

CBU2 TR2 CBD2 CBU1,
CBD1,
CB3

Emergency
mode
(Backup)

DG CB3 CBU1,
CBD1,
CBU2,
CBD2

by the phased-mission systems modeling pattern [4] and is close to the struc-
ture of the Capella model. The block Controller, which graphical representation
is sketched in Fig. 4 on the right, corresponds to the life-cycle diagram given
Fig. 4 on the left, the block Functional – to the functional architecture diagram
given Fig. 2 and the block Physical to the physical architecture diagram given
Fig. 3. The allocation of functions (see Table 1) is represented by the aggrega-
tion relation (“embeds” clause). For instance, the function SupplyPowerByGrid
aggregates the grid, the circuit breakers and the transformer of the Line 1 of the
primary power supply system in the phase 1.

System architecture and safety analyses can be seen as two faces of the same
medal. System architecture focuses on how the system works, what it should
do and should be. It is ruled by so-called architectural frameworks such as the
CESAM framework [11]. Safety analyses focus on how the system may fail and
what are the consequences of failures.

Although they consider the system at about the same level of abstraction,
models designed by system architects and safety analysts are quite different.
In particular, the former are pragmatic while the latter are formal [15], two
characteristics that we shall define formally in the next section. Ensuring the
consistency of these models is thus both extremely important and far from easy.

3 Model Synchronization

3.1 Models = Behaviors + Structures

Ensuring the consistency of two or more heterogeneous models requires to under-
stand the nature and the role of each of these models. Models involved in systems
engineering serve actually very different purposes. They can be roughly separated
into two categories [15]:
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domain MODE {LINE1, LINE2, BACKUP}
block PowerSupplySystem
block Controller
// body of the block Controller

end
block Functional
block SupplyElectricalPowerToBusbar
block SupplyPowerByGrid
block Phase1
embeds main.Physical.PrimaryPowerSupply.GR as GR;
embeds main.Physical.PrimaryPowerSupply.Line1.CBIn as CBU1;
embeds main.Physical.PrimaryPowerSupply.Line1.TR as TR1;
embeds main.Physical.PrimaryPowerSupply.Line1.CBOut as CBD1;
Boolean vfFailed (reset = true);
assertion
vfFailed := GR.vfFailed or TR1.vfFailed or CBU1.vfFailedToClose or

CBD1.vfFailedToClose;
end
// the remainder of the block SupplyPowerByGrid

end
// the remainder of the block SupplyElectricalPowerToBusbar

end
// the remainder of the block Functional

end
block Physical
block PrimaryPowerSupply
Grid GR;
block Line1
embeds owner.GR as GR;
Boolean vfInflow, vfOutflow, vfFailed (reset = false);
CircuitBreaker CBIn, CBOut;
Transformer TR;
// the remainder of the block Line1

end
clones Line1 as Line2;
Boolean vfOutflow (reset = false);
assertion
Line1.vfInflow := GR.vfOutflow;
Line2.vfInflow := GR.vfOutflow;
vfOutflow := Line1.vfOutflow or Line2.vfOutflow;

end
// the remainder of the block Physical

end
observer Boolean LossOfBusbarPowerSupply = if (Controller.mode==LINE1) then

Functional.SupplyPowerByGrid.Phase1.vfFailed else if (Controller.mode==LINE2) then
Functional.SupplyPowerByGrid.Phase2.vfFailed
else Functional.BackupSupply.EmergencyMode.vfFailed;

observer Boolean LossOfIsolation = if (Controller.mode==LINE1) then
Functional.IsolateNonFunctioningParts.Phase1.vfFailed else if
(Controller.mode==LINE2) then Functional.IsolateNonFunctioningParts.Phase2.vfFailed
else Functional.IsolateNonFunctioningParts.EmergencyMode.vfFailed;

end

Fig. 5. Excerpt of the AltaRica code for the power supply system.

– Pragmatic models that are used primarily to support the communication
amongst stakeholders.

– Formal models that are used primarily to calculate indicators or to perform
simulations.

The latter encode eventually mathematical objects. Their syntax and their
semantics must be perfectly defined. They are written in modeling languages
such as Modelica [8], Matlab Simulink [10] or AltaRica [3]. On the contrary,
the former can only be understood by referring to the system under study.
They are often written in standardized graphical notations such as SysML [7] or
Capella [16]. For this reason, they have no formal syntax and even less a formal
semantics.
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Note that formal languages could be used to design pragmatic models (the
reverse is indeed not true). However, there is an epistemic gap between pragmatic
and formal models: as the former aim primarily at supporting the communica-
tion, they keep a lot of knowledge implicit. Making this knowledge explicit would
overload them uselessly. Even if we restrict our attention to formal models, their
underlying mathematical frameworks can be very different, e.g. systems of ordi-
nary differential equations for Modelica and Simulink and guarded transition
systems for AltaRica. This is the reason why, comparing behaviors described by
heterogeneous models is essentially meaningless: the comparison should focus on
the structural part of models.

Systems engineering modeling formalisms and languages are actually made
of two parts: an underlying mathematical model, that aims at describing behav-
iors, and a structuring paradigm that makes it possible to organize models, i.e. to
design them by assembling parts into hierarchical descriptions. The structural
parts of SysML and Capella are stemmed from prototype-oriented program-
ming [13], although without clearly acknowledging it. Modelica and Simulink
rely on object-orientation. AltaRica 3.0 relies on a combination of both.

3.2 Model Synchronization Principle

As already said, two models, possibly written into two different languages, can-
not in general be compared directly, see [17] for an interesting survey on model
comparison techniques. Therefore, the synchronization process is made of three
steps: first, models are abstracted in a common language; second, their abstrac-
tions are compared; third, actions are possibly taken to adjust original models
according to findings of the comparison. This third step is called concretization,
according to the abstract interpretation terminology. This process is illustrated
Fig. 6.

Fig. 6. Model synchronization: principle.

It is worth noticing that different abstractors and comparators can be defined.
The choice of the abstractors and the comparators to apply depends on the
system under study and the level of maturity of the project.
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3.3 System Structure Modeling Language (S2ML)

Describing the structure of a system is fully part of the modeling process. It
helps to design, to share, to maintain and eventually to synchronize models.

S2ML aims at providing a structuring paradigm of systems engineering mod-
eling languages. It gathers and unifies concepts from object-orientation [1] and
prototype-orientation [13]. Due to space limitations, we shall only sketch here
S2ML ideas. The reader interested in a more detailed presentation should refer
to our article [2].

As heterogeneous models can be essentially compared by their structure,
S2ML is a perfect candidate as a pivot language for the abstraction.

S2ML relies on only eight constructs:

– Three types of basic objects: ports, connections and blocks.
– Three structural relations: composition, inheritance and aggregation.
– Two mechanisms making possible to reuse modeling elements: the prototype-

/clone and the class/instance mechanisms.

Ports are basic objects of models, e.g. variables, events, parameters. They
have a basic type such as Boolean, integer, real or some enumerated value.

Connections are used to describe relations between ports, e.g. equations,
transitions, assertions.

Blocks are containers to compose ports, connections and other blocks. They
are prototypes in the sense of object-oriented theory.

Attributes are pairs (name, value) used to associate information to ports,
connections and blocks.

The most important and the simplest structural relation is the composition:
a container (prototype or class) composes an element if this element “is part of”
the container. The inheritance and the aggregation are respectively “is-a” and
“uses” types of relation.

Prototypes and classes are containers. As suggested by their names, proto-
types have a priori a unique occurrence in the model. It is however possible to
clone a prototype. Classes are on-the-shelf, reusable modeling elements. Strictly
speaking, they are not part of the models. Rather, they are instantiated into
models. Respective advantages and drawbacks of prototypes and classes are dis-
cussed in reference [2].

The S2ML+X paradigm consists in designing domain specific modeling lan-
guages as the combination of S2ML with a given underlying mathematical frame-
work (the X). We applied already this principle to design AltaRica 3.0, but also to
design languages for constraint solving and combinatorial optimization, Boolean
reliability models, hierarchical graph representations, hierarchical Markov chains
and process algebras (themselves used to describe business processes).

In the S2ML+X paradigm, models are seen as scripts. S2ML provides com-
mands to declare modeling elements. The actual model is obtained by executing
these commands. This process works in two steps:
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– First, the model is rewritten into a hierarchy of blocks. Each block of the hier-
archy may compose ports and connections. This step is called instantiation
in the S2ML jargon.

– Second, the hierarchy is removed to get a model made of only one block
composing ports and connections. This step is called flattening in the S2ML
jargon.

In the framework of model synchronization, the rewriting process is stopped
after instantiation, as we are interested in keeping hierarchical, i.e. structural,
information.

Note that the abstraction of original models into S2ML models can vary
significantly from one model to the other one. It depends on the objectives of
the synchronization as well as on the modeling formalism used to design the
source model.

4 Model Comparison

A key step of model synchronization consists in comparing the two instantiated
S2ML models.

4.1 Instantiated S2ML Models

S2ML models to be compared are instantiated, i.e. they are made of three types
of objects: ports, connections and blocks. Ports and blocks are uniquely identi-
fied by their name. Connections are structured terms involving constants, ports
and operators. They may also have some attributes. However, they are just con-
sidered as (anonymous) sets of ports in the comparison process. Finally, blocks
can compose ports, connections and other blocks. All objects may have some
attributes but we shall not consider them here. A model is just a block, possibly
rooting a hierarchy of blocks.

Formally, a model is thus a quintuple 〈P,C,B, �, r〉 where:

– P and B are two disjoint finite sets of symbols called respectively ports and
blocks.

– C is a multiset of connections, i.e. of subsets of P .
– � is a composition relation, i.e. a subset of B × (P ∪ C ∪ B) verifying:

– For each object o ∈ P ∪ C ∪ B, there exists at most one block b ∈ B such
that b�o. b is called the parent of o.

– r ∈ B is the unique block with no parent, moreover for all object o ∈
P ∪ C ∪ B, r�

�o, where �
� denotes the transitive closure of �.

We denote by M the set of instantiated S2ML models defined as above.



166 M. Batteux et al.

4.2 Matchings

We can now define mappings from models to models. For the sake of model
comparisons, we are especially interested in structure preserving mappings.

A mapping α from the model M : 〈PM , CM , BM , �M , rM 〉 to the model
N : 〈PN , CN , BN , �N , rN 〉 is structure preserving if the following conditions
hold.

– For any block b ∈ BM and any object o ∈ PM ∪ CM ∪ BM , b�Mo ⇒
α(b)�Nα(o).

– For any connection c = {p1, . . . , pk} ∈ CM , α(c) ⊇ {α(p1), . . . , α(pk)}, more-
over for all p ∈ PM , if p �∈ c then α(p) �∈ α(c).

A structure preserving mapping is injective if the following condition holds.

– For any two objects o, o′ ∈ PM ∪ CM ∪ BM , o �= o′ ⇒ α(o) �= α(o′).

Injective structure preserving mappings can be seen as projections.
Now, let M , N1 and N2 be three models. N1 and N2 are matched by M

if there exist two injective structure preserving mappings α1 : M → N1 and
α2 : M → N2. The model M catches the commonalities between N1 and N2.
Building such models M is the objective of the comparison process.

Note that instantiated S2ML models together with structure preserving map-
pings form a category, see e.g. [14] for an introduction. The notion of matching
defined here is inspired from the notion of pullback in category theory.

5 Experiments

5.1 SmartSync Platform

The SmartSync platform supports model synchronization. It is based on S2ML as
a pivot language for the abstraction. It works as illustrated Fig. 7. The objective
is to check the consistency of two models of the same system possibly written in
two different languages.

Fig. 7. Models synchronization process.
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This works in three phases.
The first phase consists in abstracting original models into S2ML. As of

today, this is done manually but this could be automated.
The next phase consists in comparing model abstractions. It involves design-

ers of both models. It aims at establishing a structure preserving matching
between the elements of the two abstract models This matching is concretely
encoded by means of a two columns table (one per model). In a first step, ele-
ments are automatically matched by traversing down the structure of each model
and according to identifiers. Elements that could not be matched are highlighted.
It is then possible to match elements “by hand”. It is also possible to indicate
that an element should not be matched because it is specific to its model. The
automatic matching process is then launch again. This process is iterated until
no progress can be done anymore.

At the end of the second phase, a (possibly empty) list of inconsistencies is
obtained. This list is the input for the third phase, which consists in doing some
“homework” on each original model so to solve the problems.

The whole process can be itself iterated.

5.2 Case Study: A Power Supply System

We apply our model synchronization framework to the case study presented
in Sect. 2. We present a collaborative design of the power supply system. The
collaboration is between two teams: system architecture and safety analyses.
Each team performs different activities.

The first activity is modeling which is performed independently by members
of both teams using different modeling languages and tools. System architecture
models designed with Capella and safety models written in AltaRica 3.0 are
given in Sect. 2.2.

The second activity is model synchronization, i.e. the verification of consis-
tency between models that ensures that both models are describing the same
system. This activity is performed by the members of both teams and involves
the SmartSync platform.

First, both models are abstracted, i.e. transformed into S2ML. For AltaR-
ica 3.0 the transformation is straightforward, as the language uses S2ML as
its structural paradigm. State and flow variables, events and parameters are
abstracted to S2ML ports; transitions and assertions are transformed into con-
nections; different structural constructs like inheritance, cloning, instantiation,
etc. are transformed into their equivalents in S2ML.

For Capella functional and physical architecture diagrams the transformation
is also quite simple: blocks are transformed into S2ML blocks, ports into S2ML
ports and connections between ports are transformed into S2ML connections
between corresponding S2ML ports. The allocation table (see Table 1) is trans-
formed as follows: each functional S2ML block aggregates (via the “embeds”
clause) the corresponding allocated physical S2ML blocks.

In the next step, the abstractions are compared and a report is generated.
This report is analyzed by members of both teams. All the differences are listed
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in the matching file, which makes it possible to establish the correspondence
between the two models. Table 2 shows the matching file of the first iteration. The
first column is the element type (port, block, aggregated block or connection).
The second column is the name of the element of the first model, the third
column is the name of the corresponding element in the second model. When
there is no correspondence, the keyword “forget” is used. It is possible to add
a fourth column with comments to justify matching decisions. The following
differences are detected:

Table 2. Power supply system architecture and safety models matching, iteration 1.

Type Model1 (Capella) Model2 (AltaRica 3.0)

block SystemArchitecture PowerSupplySystem

port forget LossOfBusbarPowerSupply

port forget LossOfIsolation

block FunctionalPart Functional

block OperationalPart.StateMachine Controller

block PhysicalPart Physical

– Different names of blocks (e.g. the block FunctionalPart in the Capella model
corresponds to the block Functional in the AltaRica 3.0);

– Elements of the safety model not represented in the system architecture (e.g.
observers LossOfBusbarPowerSupply and LossOfIsolation represent the fail-
ure conditions and do not have any equivalent in the Capella model).

The produced matching file is used to compare again the abstractions of the
system architecture and safety models. In the next iteration of the comparison,
new differences are detected. They are analyzed again and the matching file
is populated with new matching information summarized in Table 3. Other
differences are detected:

– Different names of ports (e.g. the port Busbar.input in the Capella model
corresponds to the port Busbar.vfInflow in the AltaRica 3.0 model);

– Elements of system architecture model not represented in the safety model
(e.g. the port PhysicalPart.input has no correspondence in the safety model);

– Different structural decomposition (e.g. in the Capella model the block Grid
belongs to the block PhysicalPart whilst in the AltaRica 3.0 it belongs to the
block PrimaryPowerSupply).

As we can see it is quite simple to establish the correspondence between
system physical architecture PhysicalPart and the block Physical of the safety
model: each Capella block has a corresponding block in the AltaRica 3.0 model,
almost each port of the Capella model has a corresponding port in the AltaRica
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Table 3. Power supply system architecture and safety models matching, iteration 2.

Type Model1 (Capella) Model2 (AltaRica 3.0)

block SystemArchitecture PowerSupplySystem

block FunctionalPart Functional

block SupplyElectricalPowerToBusbar SupplyElectricalPowerToBusbar

block GenerateBackupElectricalPower BackupSupply

block SupplyElectricalPowerFromGrid SupplyElectricalPowerByGrid

... ... ...

block PhysicalPart Physical

block Busbar Busbar

port input vfInflow

block Grid PrimaryPowerSupply.GR

port input forget

port output vfOutflow

block BackupPowerSupply BackupPowerSupply

port output vfOutflow

port forget vfFailed

block DieselGenerator DG

block CB CB

port input vfInflow

port output vfOutflow

port forget fail close

... ... ...

block PrimaryPowerSupply PrimaryPowerSupply

block Line1 Line1

port input vfInflow

port output vfOutflow

port forget vfFailed

block CBD CBOut

block CBU CBIn

... ... ...

3.0 model, there are ports in the AltaRica 3.0 model which do not have any
correspondence in the Capella model (state variables, events, some flow variables
representing failures). Obviously, it is possible in the abstraction step of the
safety model not to consider state variables and events as they represent the
internal behavior of components and are not expected to have any equivalence
in the architecture model.
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Concerning the operational part, it is not so obvious to establish the cor-
respondence between the state chart diagram given Fig. 4 on the left and the
AltaRica 3.0 model of the Controller sketched in the same figure on the right.

For the functional part, the correspondence is not so easy: the functional
decomposition of the architecture model is finer than that of the safety model.
However, the established correspondence is given in the following table.

Type Model1 (Capella) Model2 (AltaRica 3.0)

block SystemArchitecture PowerSupplySystem

block FunctionalPart Functional

block SupplyElectricalPowerToBusbar SupplyElectricalPowerToBusbar

block SupplyElectricalPowerFromGrid SupplyPowerByGrid

block ControlElectricalPowerDeliveredByGrid. Phase1 Phase1

block ControlElectricalPowerDeliveredToBusbar. Phase1 Phase1

block TransformElectricalVoltageDeliveredByGrid. Phase1 Phase1

... ... ...

Models are then compared again. When no more differences are detected, the
structural consistency between system architecture and safety models is verified.
The matching file establishes the correspondence between the two models. In case
of inconsistencies detection, the initial models need to be adjusted.

6 Conclusion

In this article, we presented model synchronization – a formal framework for
management of heterogeneous models. This framework is based on S2ML (Sys-
tem Structure Modeling Language). We showed that this framework can be used
to ensure the consistency of heterogeneous models, designed within different for-
malisms and different modeling environments.

To support model synchronization, we developed the SmartSync platform,
which relies on S2ML as a pivot language. With SmartSync, we studied the
electrical power supply system. We checked consistency between system archi-
tecture and safety models. The process of making models consistent is iterative
and involves representatives of the engineering disciplines at stake. The Smart-
Sync platform helps not only to check the consistency between models, but also
to detect inconsistencies within models and to support the dialog between stake-
holders.

Some questions about the comparison of heterogeneous models remain open.
As future works, we plan to improve the SmartSync platform, notably by devel-
oping new comparison algorithms and abstraction methods.
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Abstract. This paper proposes a novel model-based approach to combine the
quantitative dependability (safety, reliability, availability, maintainability and IT
security) analysis and trade-off analysis. The proposed approach is called DPN
(Dependability Priority Numbers) and allows the comparison of different actual
dependability characteristics of a systems with its target values and evaluates
them regarding trade-off analysis criteria. Therefore, the target values of system
dependability characteristics are taken as requirements, while the actual value of
a specific system design are provided by quantitative and qualitative depend-
ability analysis (FHA, FMEA, FMEDA, of CFT-based FTA). The DPN
approach evaluates the fulfillment of individual target requirements and perform
trade-offs between analysis objectives. We present the workflow and meta-
model of the DPN approach, and illustrate our approach using a case study on a
brake warning contact system. Hence, we demonstrate how the model-based
DPNs improve system dependability by selecting the project crucial dependable
design alternatives or measures.

Keywords: Dependability analysis � Safety � Reliability � Availability �
Maintainability � IT security � Trade-off analysis � Component Fault Tree
(CFT) � Functional Hazard Analysis � FMEDA

1 Introduction

Reference [9] defines dependability of a system is the ability to avoid service failures
that are more frequent and more severe than is acceptable and it contains the following
properties: safety, reliability, availability, integrity (security), and maintainability.
Dependability trade-off analysis is basically the analysis of dependencies and conflicts
between dependability properties according to the fulfillment of targets and to make
trade-offs among these properties [1, 2, 8, 11, 13]. Quantitative dependability analysis
deals with quantitative analysis of safety, reliability, availability, maintainability and
security properties of a system design. Examples are Failure mode Effect Diagnostic
Analysis (FMEDA), Fault Tree Analysis (FTA) etc. Currently the trade-off analysis of
the dependability properties assumes in many cases that the target values to be fulfilled
by the design alternatives, and actual values that the design alternatives hold, are given.
Based on these values, acceptable limits and evaluation criteria, trade-off analyses are
performed. However, the actual quantitative values of dependability properties of
design alternatives in many cases are not given and need to be obtained. The techniques
to perform (model-based) quantitative dependability analysis and to perform trade-off
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analysis are usually performed separately, or in other words, they are not combined
sufficiently for effective quantitative dependability trade-off analysis.

In this work we describe with Dependability Priority Numbers (DPN) an approach
to combine these two engineering fields and show how model-based quantitative
dependability analysis techniques such as Component Fault Trees [10] can help to
perform dependability trade-off analysis.

This paper is arranged in the following sections: Sect. 2 provides an overview of
related work, Sect. 3 illustrates an approach, which is named Dependability Priority
Number (DPN); Sect. 4 shows a case study on a brake warning contact system; Sect. 5
concludes this paper.

2 Related Work

Typically, the comparison of different design alternatives is the objective of depend-
ability trade-off analysis. The design alternative that fulfills more dependability prop-
erties will be normally chosen as the solution. Today, there are some approaches to
model the obtained dependability properties, e.g. through GSN [2], Modelica [6] etc.,
but the source of the quantitative value of the overall dependability is seldomly
handled.

Reference [1] uses vulnerability attack graph and goal graph to determine the
dependencies between the security goals and tasks. This method mentions the use of
trade-off analysis parameters such as risk acceptance criteria, standards, laws, regula-
tions, policies, stakeholder goals, budget, and time-to-market. Reference [2] utilizes
DDA (Dependability Deviation Analysis) and GSN (Goal Structuring Notation) to
perform trade-off analysis. This method uses GSN with acceptable limits to model the
fulfillment of the design alternatives under certain scenarios. Reference [3] emphasizes
the role of scenarios and upper and lower bounds of acceptable limits in the trade-off
analysis that is illustrated in [2]. Reference [4] proposes a quantitative estimation
method of the different dependability properties, in which expert estimations of the
fulfillment of dependability properties are used. Reference [5] uses an UML extension
to describes the dependability properties and uses Deterministic and Stochastic Petri
Net to perform dependability modelling. Reference [6] uses Modelica and Bayesian
Network simulation to identify the violence of the dependability requirements. Ref-
erence [7] presents a trade-off analysis procedure to prioritize the different depend-
ability requirements.

References [7, 11, 12] proposed formulas to calculate the utility or value function of
dependability of individual design alternatives. Reference [7] uses product of weight
and values function results to calculate the evaluation result of dependability properties
such as performance, security and fault tolerance. For the calculation they use the
following formulas:

evaluation result ¼ max 1
n

Pn
i¼1 vi

� �
with vi � vmin for without weight

max 1
n

Pn
i¼1 aivi

� �
with vi � vmin and

P
ai ¼ 1; ai [ 0 for with weight

ð1Þ
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Reference [11] defines the dependability properties evaluation results as xi and
takes the sum of value function of xi as the result of the overall dependability value. In
addition, they use the sum of the products of the weights of the individual properties
and their evaluation results of xi as the dependability value. The authors argue that the
sum of the weights of dependability properties shall be 1:

v x1; x2; . . .; xnð Þ ¼ v x1ð Þþ v x2ð Þþ . . .þ v xnð Þ ¼ Pn
i¼1 v xið Þ

or
v ¼ Pn

k¼1 wixi with wi � 0 and
P

wi ¼ 1
ð2Þ

The decision-making procedure according to this work includes the following
steps: identification of the subjective such as design alternatives; definition of the
analysis criteria; Performance of the evaluation; selection of the value function and
determination of combinable criteria. The precondition of the combining the criteria is
that the criteria are mutual independent, and it is possible to determine the final
equation for calculating the value of fulfillment of dependability properties. References
[1, 12] proposed the following essential definitions for dependability evaluation:
Preference function based on certainty (such as probability) is defined as value func-
tion, preference function based on risk (such as weights) is defined as a utility function.
In [12], weights of a criteria/properties w ið Þ and value of this criteria v ið Þ are used to
calculate utility of alternatives:

v ¼
X

i
w ið Þv ið Þ or v ¼

X
i
p ið Þv ið Þ where p denotes probability ð3Þ

Reference [8] illustrates an approach by use of GSN and its evaluation process to
perform the trade-off analysis of dependability properties. The following aspects are
essential to perform the trade-off analysis for this survey: goals of stakeholders;
function for scenarios; related dependability properties; target value of dependability
properties; traceability to the requirements; acceptance criteria; determination of
compromise region. According to their work, the scenarios (consist of stimuli,
responses) and target/limit are essential for performing trade-off analysis. However, in
this paper, the use of the dependability analyses is not illustrated in detail. Reference
[13] handles the trade-off analysis in a very thorough way. They proposed the fol-
lowing processes: identification of the concern of trade-analysis; definition of the
deviation and failures; derivation of dependability requirements; identification of goals,
target and limits; identification of alternatives; identification of trade-off argument
based on GSN; evaluation of alternatives and decision making. The evaluation of the
alternatives is done based on evaluation of the related criteria. The final value is
produced with consideration of the weight. Matrix calculation is used for this evalu-
ation process. The qualitative safety analysis techniques such as Hazard and Oper-
ability Analysis (HAZOP), Failure Mode and Effect Analysis (FMEA) are used for
identifying the failures and further the dependability requirements. However, such
analysis techniques are not reused to analyze the alternatives and the model-based
quantitative safety analysis is not used in their work. [14] proposes a method to address
the cost-benefit trade-off analysis. The following evaluation criteria are considered as
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essential: priorities; standards; laws; regulations; business goals; budget; policies.
Taking a retrospective look at the related works, we can draw the conclusion that the
dependability trade-off analysis were performed without integrating the model-based
quantitative dependability analysis techniques.

3 Dependability Priority Numbers

In this section, we present the concept of Dependability Priority Numbers (DPN). First,
the result of this approach and its formula are described. Afterwards the workflow of
DPN analyses is presented in detail. Moreover, the metamodel and its usage will be
depicted.

By introducing a Dependability Priority Number, analysis object is extended from
design alternatives to at least alternatives and the measures for mitigating hazard or risk
will be analyzed. They will be analyzed qualitatively and/or quantitatively towards an
overall result of the quality of the system in terms of dependability. The overall
fulfillment of the dependability properties is presented by comparing the actual and
expected DPN and also by comparison between the actual DPNs. The conflicts and
dependencies between the dependability properties will be identified or solved during
this process implicitly.

In this work, we use first the concept of weights to calculate the overall depend-
ability value. Therefore, the utility values will be calculated according to the definition
in [11]. However, the calculation of DPN can also be based on risk/probability. The
result of the calculation of the utilities/values of the alternatives is named the
Dependability Priority Number (DPN) (instead of using the rather general term, Utility
or Value.). Because the result deals in deed with the prioritization of the alternatives,
and this prioritization has certain similarity with the Risk Priority Number. Based on [7,
11, 12], the following formula is derived:

DPNj ¼
Xn

i¼1
Xij � Ki ð4Þ

Where

n: number of the dependability properties;
Xij: Evaluation result, correlates with acceptance level. If Xij: 0: totally unaccept-
able, 1: totally acceptable. “i” for the index of dependability properties, “j” for
alternatives/measures;
Ki: weight (or probability) coefficient of the individual dependability properties,
according to the importance of current dependability properties. Ri Ki not neces-
sarily equals to 1.

DPN uses a slightly changed formula of (1), (2) and (3) which are presented in
Sect. 2. The wi or ai is replaced by weight (or probability) coefficient Ki, basically they
are all the weights (except that ki can contain probability additionally). The difference
of Ki and wi or ai is that the sum of the weight coefficients Ki used for DPN is not
necessarily 1, this definition has the benefit for tracing back the causing property
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intuitionally in case of changing of overall DPNs. This means, that if the DPN is
changed for example from 109.11 to 111.11, (assume the utilized weights are 100, 10,
1, 0.1 and 0.01 for safety, reliability, availability etc.) we know therefore in this case
there is an improvement on the reliability (improvement on the second digit). The
weight Ki are generally determined by the domain expert according to the importance
of the dependability properties. The selection of weights follows additionally the rule of
distinguishing dependability properties big enough so that the weights of properties do
not counterweight in case value changes. The weights can also be derived based on
results of dependability analysis such as RPN out of FMEA or failure rates out of FTA.
The result of DPN as simple numbers offers an intuitive and direct way to represent the
overall fulfillment of the dependability goal and to compare variants.

In Fig. 1 the workflow for determining Dependability Priority Numbers is illus-
trated. This workflow contains:

1. Elicitation of the goals of the stakeholders. Here the typical goal graph methods,
such as GSN [2], i* [1] for Non-Functional Requirements etc. can be used. A coarse
trade-off analysis among the identified goals can be performed, in order to identify
the possible limits, dependencies and conflicts.

2. Based on the identified goals, the relevant scenarios with certain execution
sequences will be determined. An example of such scenarios is robot x shall be
stopped when safety bumper is engaged. Scenarios define the aims and scope of the
trade-off analysis.

Func onal 
requirement

Func onal FHA or FMEA

Trade-off 
analysis

alterna ve 
FMEA

Alterna ve 
FMEDA

Alterna ve 
(C)FT

Alterna ve SFF

Alterna ve , 
MTTF , A , MDT
etc.

Alterna ve , 
SIL

Alterna ve analysis

Measure(s)

Determina on of
Dependability Priority
Number =

Trade-off criteria

DPN, 
acceptance,  
decision,  
priori za on

Architecture

Design ar fact, 
failure rate etc.

Addi onal 
engineering 
phases…

Goal

Scenario

Maintenance

Fig. 1. Workflow to determine Dependability Priority Number
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3. Typically, the functional requirements will be elicited based on the identified sce-
narios. If there are no standardized requirements and their THR, the functional
requirements are to be elicited for the specific project.

4. Based on the identified functional requirements, the Functional Hazard Analysis
(FHA) or function-based Failure Mode and Effect Criticality Analysis (FMECA)
will be performed. The corresponding hazards, their Risk Priority Numbers (RPN),
their Safety Integrity Level (SIL), and available measures will be identified. For
fulfilling the predefined multiple quality goals (e.g. SIL) additional measures are to
be identified. Traditionally only one measure is identified for fulfilling the prede-
fined quality goal. By using DPN multiple measures will be identified by use of the
dependability analysis repeatedly.

5. Trade-off analysis will be performed among alternative measures. If there are no
further information about the system components and their failure rates, the qual-
itative FMEA or Functional Hazard Analysis (FHA) will be performed repeatedly,
where the improvements of the quality in SIL or RPN of the alternative could be
compared with the original (first) measure. The possible conflicts to other
dependability properties could be identified by observing the interchanging of
DPNs. In these steps of trade-off analysis, the expert estimation is required. The
following trade-off analysis is to be performed based on the trade-off criteria (based
on [2, 8, 11, 13, 14]):

• Determination of actual value of dependability properties va;
• Determination and comparison of target/expected value ve with va;
• Determination and comparing of acceptable upper/lower limit with va;
• Evaluation of the benefit of actual better value e.g. va � veð Þ/drawback of actual

worse value e.g. ðva\veÞ;
• Determination of the cost of improvement towards expected value e.g. ðva\veÞ;
• Determination of time-to-achievement of the improvement e.g. ðva\veÞ;
• Determination of overall acceptance Xij;
• Derivation of further action.

6. The actual value in the trade-off criteria could be obtained by FHA, Risk Priority
Number through FMECA qualitatively or quantitatively by the FMEDA, (Com-
ponent) Fault Tree Analysis (FTA) or Fault Tree Analysis (FT) or other quantitative
dependability techniques.

The results of such dependability assessments/analyses will be used for the rest of
quantitative dependability trade-off analysis: Failure rate k and SIL for the safety
property, Mean Time Between/To Failure (MTBF/MTTF) for the reliability property,
Availability value for the availability property, Mean Down Time for the maintain-
ability etc. After determining measures and alternatives, they are modelled by a model-
based (Component) Fault Tree. The results of these analyses are then compared
between each of the system design alternatives. For Safety the calculated failure rate k
and even qualitative RPN, SIL are used as “actual value”, “expected value” is typically
predefined either by the authorities or by the references systems.

By using FMEDA for determining Safe Failure Fraction (for estimation of the
Safety Integrity Level) and dangerous undetected failures, the FMEDA will be
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performed several times according to the number of alternatives. The calculated SFFs,
failure rates and the corresponding SILs will be then be used as actual value for the
trade-off analysis. In case the new measure neither leads to architecture changes, nor to
a structural update in the fault tree, the changed availability can still be captured by e.g.
the changed Mean Down Time. For example, if stopping the train in case of warning
contact “high” (warning contact is responsible for worn out status of the brake), affects
the availability too negatively (unacceptable) and the measure of “stop” has no
remarkable improvement of safety, in addition “low speed drive” is sufficient (re-
garding safety) to handle this warning contact. The “low speed” can then be used to
replace “stop” as measure in case of warning contact “high”. This change will obvi-
ously improve the availability of the train, and without compromise of the safety. This
change does not necessarily change the fault tree structure of the train. But down time
will be then reduced. The reduced down time will affect the calculation of availability
positively because of A ¼ MTBF

MTBFþMDT for repairable systems. Through this way the
availability comparison between the original solution “stop” and new solution “low
speed drive” can be done even without changing the structure of the fault tree.

In DPN the quantitative analysis techniques such as the FTA and FMEDA are
reused to calculate the influence of different alternatives on the overall system. Dif-
ferent system failure rates could be observed, because of different architectures or even
different value of the parameter. The comparison of alternatives is performed regarding
trade-off criteria.

Partially according to the industrial practice, there are for instance the following
categories for the subjective trade-off criteria to be used for evaluating the alternatives:

• Benefit of the actual better value: None; Better life time cause of better quality;
Better reliability or availability of the system; Potential reputation benefit; Even-
tually better sale price.

• Drawback of the actual worse value: None; No certificate; Financial disaster; Worse
availability; Damage of reputation; Postpone of the project finish time; Increased
purchase cost.

• Cost for improvement towards expected value: None; Ignorable; Proportional;
Quite high; Too high.

• Time for achieving the expected value: None; Ignorable; Proportional; Quite long;
Too long.

• Further action: None; Redundancy; Use of higher quality component; Development
of new component.

• Acceptance level: 0: totally unacceptable; 0.2: almost unacceptable; 0.4: predomi-
nantly unacceptable; 0.6: predominantly acceptable; 0.8: almost acceptable; 1:
totally acceptable.

The overall acceptance (between 0 and 1) is represented by the value of Xij,
together with estimated value Ki. Based on these values DPNs are be calculated (ac-
cording to (4)). Afterwards, the DPNs of different design alternatives are compared.
The higher value means basically the better dependability. And the detailed comparison
according to the single dependability properties can also be done. The comparison shall
not only be done based on the subjective evaluation value, but also on the objective
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calculated value. Based on the such comparisons, the acceptance of the alternative can
be determined. The mutual dependency, the conflicts are represented through the
interchanging of evaluation (or calculated) values. For example if DPN changes from
111.10 to 110.11 directly, we know that there is a conflict between availability and
security. Because increase of the security (from 0 to 1) causes decrease of the avail-
ability (from 1 to 0). DPN are calculated for instance in the following way: assume
safety has the weight of 100, reliability has the weight of 10 and so on. And the Xij all
have value “1” for totally acceptance. The expected Dependability Priority Number
would be DPNexpected ¼ 100 � 1þ 10 � 1þ . . . ¼ 111:11. This expected value is then
used to compare with the actual values.

As illustrated in the Fig. 2, goal, scenario, and functional requirements are the bases
of the trade-off analysis and define the subjects of the trade-off analysis. During the
model-based dependability analysis, the following data are identified step by step by
use of this meta model:

• Malfunction, hazards are identified by use of e.g. FHA based on the functional
requirement. The limit of goals can be used as limit of underlying requirements for
the further trade-off analysis;

• Based on the hazard incl. its risk value the multiple measures are identified;
• The trade-off analysis of alternative measures can be qualitative or quantitative.

Qualitative trade-off analysis can be the repeated model-based FHA or FMEA
analyses for determining the reduced RPN or SIL by use of different measures. Such
results are represented as RPNi and SILi. Where the i indicates the sequential
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artifacts

Trade-off 
analysis artifacts

FMEA artifacts

FMEDA artifacts
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Fig. 2. Metamodel of the Dependability Priority Number
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number representing each of the design variants. Quantitative trade-off analyses are
performed through repeated FMEDA or (C)FT for calculating the ,
MTTFi=MTBFi;Ai;MDTi. Through the comparison of the and the variant
which is better in terms of safety or reliability can be identified. Further the com-
parison of aforementioned other values could contribute to an overall evaluation
value of the dependability properties.

• The calculation of the expected and actual values are performed by the Eq. (4)
based on the evaluation of the trade-off criteria as mentioned in the workflow
section. The DPNextected and DPNactual are then used further to determine whether
the DPNactual �DPNextected . If this is the case, all the dependability properties are
fulfilled, otherwise a or some or even all the dependability properties are possibility
not fulfilled. The not fulfilled dependability properties need basically further mea-
sure until this is fulfilled. In the end all the dependability properties shall be in
general fulfilled. However, there can be conflicts by fulfilling the different prop-
erties, for example the fulfillment of safety properties means in certain circum-
stances the harm to the availability. This happens for example if a train is stopped
for certain safety reason, but this means immediately the reduction of the avail-
ability. Compromise has to be made in this case. DPN result is shown at the bottom-
right corner of Fig. 1. DPN approach consists of both the process of Fig. 1 and the
data set of Fig. 2.

• Not only the measures, the quality goals and the functional requirements are the
possible objects of the trade-off analysis but also the design artifacts and mainte-
nance artifacts are also potential objects. Design artifacts offer among others the
design alternative. Maintenance artifacts can be for instance the size of the main-
tenance team, possible maintenance strategy as conditions which also play roles in
determining the maintenance priority number (basically the calculable Mean Down
Time). By changes of dependa. goals, the DPN process shall be repeated totally or
partially, according to the result of the similarity analysis between the old and new
goals.

4 Case Study – Brake Warning Contact

This section presents a case study form the railway domain based on a brake warning
contact. The brake warning contact monitors the status of the brakes, if the thickness of
brakes is detected less than allowed, a warning message will be sent to the dashboard,
the train will be set to degraded mode. By using this example, the workflow of DPN is
explained in detail:

1. Performing FMECA:
The following functional requirement has been identified: If the warning contact is
high, the warning contact sensor shall send the warning signal to the dashboard and
set the train to degraded mode. Based on the identified function a FMECA is
performed and multiple measures (redundancy and monitoring are identified in
Table 1).
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2. Performing FMEDA:
The FMEDA identifies the dangerous undetected failure rates of redundancy (5 fit,
see Table 2). Moreover, the dangerous undetected failure rate of monitoring is 1,
under the assumption that the monitoring detects 90% dangerous failure.

3. Performing Component Fault Tree Analyses for the following design alternatives
(measures):

• Without measure: This fault tree contains only the components “power supply”
and “brake warning contact” combined using an OR-gate.

• With measure 1 of redundancy: The component “brake warning contact” is
doubled and because of the redundancy, the two instances are combined using
an AND-gate. This subtree with the AND-gate is then combined with the
“power supply” component using an OR-gate.

• With measure 2 of monitoring (3 variants with failure rate (FR) of 10000 fit,
10 fit, and 1 fit): As illustrated in Fig. 3, the use of the monitoring mechanism
introduces additional failure possibility, because the monitoring can also fail. In
this case, the brake warning contact fails if 1) the monitoring fails and the brake
warning contact (9 fit) dangerous detectable fails or 2) brake warning contact
dangerous undetected fails (1 fit). The failure rate of monitoring mechanism
plays here a significant role. 10,000 fit, 10 fit and 1 fit are selected to perform
this comparison in this case study. 8760 h (1 year) was used as mission time,
24 h were used as Mean Down Time of the basic events. Based on such data,
CFT-based dependability/Reliability Availability Maintenance Safety (RAMS)
properties are modelled and calculated. The modelling of the CFT is performed
using ComposR, a Siemens-internal model-based safety and reliability analysis
tool. The calculation is done using ZUSIM, a Siemens-internal safety and
reliability calculation engines that has been used since decades.

Table 1. FMECA inclusive multiple measures

Measure New
RPN

New
Probab.

New
Detect.

New
Sever.

Further
action

Measure 1: Redundant warning
contact sensor

56 1 7 8 No

Measure 2: Monitoring of
warning contact

16 1 2 8

Table 2. Results of FMEDA for multiple measures

Detection and
control measure

Detection
coverage (DC)

Failure rate of
dangerous undetected

Failure rate of
dangerous detected

Redundancy 50% 5 5
Monitoring 90% 1 9
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The goal of the quantitative analysis is to determine the measure which fulfills all
(or more) the target values. In the CFT as depicted in Fig. 3, four components (power
supply, brake warning contact dangerous undetected, brake warning contact dangerous
detected, monitoring) and two gates (one AND- and one OR-gates) are modeled. The
analysis results of all 5 design alternatives are summarized in Table 3. The individual
analysis results (such as failure rate) are used as actual failure rate which serve as basis
to be compared with the target/expected value. Other (reliability, availability etc.)
actual and target values are also compared in the same way. The following formulas are
used to calculate MDT by use of ZUSIM: for OR gate MDTOR ¼
MTBF1 �MDT2 þ MTBF2 �MDT11

MTBF1 þ MTBF2
and for AND gate MDTOR ¼ MDT1 �MDT12

MDT1 þ MDT2
.

Table 4 shows the comparison between the expected values and actual values of the
respective dependability properties. In this case study, the acceptable limit is set to the
expected value due to simplicity. Normally, the comparison is done between the
acceptable limit and the actual values. This comparison describes the fulfillment of the
dependability goals. The expected value of failure rate is set to 10 fit, this value is used
5 times for comparison (5 corresponds to the number of measures). Compared with this
value, the acceptance value of objective failure rates of different measures is obtained
(e.g. 2 fit < 10 fit in Table 4). Afterwards, the subject evaluations will be performed.
Such subjective evaluation offers additional but essential acceptance criterion. For
example, if reliability or availability target values cannot be totally fulfilled, it is
important to know what the drawbacks of non-fulfillment are and what would be the

Fig. 3. Component Fault Tree of the measure monitoring
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cost and time to achieve the target value. Based on the objective comparison and these
subjective comparisons of the measures regarding the aforementioned acceptance cri-
teria, the overall acceptance (e.g. 1: total acceptance in Table 4) will be subjectively
determined.

Finally, the DPN is calculated based on this acceptance value and the respective
weights of the properties according to

Pn
k¼i Xij � Ki. For instance, the fifth measure of

monitoring with failure rate of 1 fit fulfills the safety target value, but does not fulfill
availability expected value (0,2 as shown in Table 5. and Fig. 4). Table 5 shows the
results of Xij � Ki. Therefore, the actual DPNalternative1

Pn
k¼i Xi1 � K1 ¼ 100þ 10ð

þ 0:2þ 0:1þ 0:01Þ ¼ 110:31 with Ksafety ¼ 100, Kreliability ¼ 10, Kavailability ¼ 1 et:
The expected DPNalternative5 ¼

Pn
k¼i Xi1 � K1 = 100 * 1 + 10 * 1 + 1 * 1 + 0.1 * 1 +

0.01 * 1 = 111.11. These two values are visualized in Fig. 5 as the fifth points of each
of the lines. The expected values of the alternatives are plotted as brown points, while
the actual values the blue points. Obviously, this measure does not fulfill all the target
values. In contrary, the 2nd measure, redundancy measure fulfills all the dependability

Table 3. Summarized dependability calculation results of the measures by use of ZUSIM

Result Without measure With redundancy With
monitoring FR:
10000 fit

With
monitoring
FR: 10 fit

With
monitoring
FR: 1 fit

Availability 99,999980000000% 99,99999999999% 99,999995% 99,99999% 99,999995%

Unavailability 2,40E−07 1,15E−13 4,81E−06 4,80E−06 4,80E−06
MTBF (h) 1,00E+08 1,04E+14 4,98E+08 5,00E+08 5,00E+08
Failure rate
lambda (1/h)

1,00E−08 1,00E−14 2,01E−09 2,00E−09 2,00E−09

FIT 1,00E+01 9,60E−06 2,01E+00 2,00E+00 2,00E+00
MDT (h) 24 12 23.95 24 24
MTTF (h) 1,00E+08 1,00E+14 4,98E+08 5,00E+08 5,00E+08

Mission time
(h)

8760 8760 8760 8760 8760

Table 4. Objective and subjective evaluation of alternatives/measures (monitoring 1 fit)

Solution Measure monitoring 1 fit

Failure rate/Hazard rate
Actual value (fit) 2
Expected value (fit) 10
Acceptable upper limit (fit) 10
Acceptable lower limit (fit)
Evaluation of benefit of actual value Better reliability of availability of the system
Evaluation of drawback of actual value None
Cost of improvement towards expected value None
Time-to-achievement of the improvement
Overall acceptance 1: total acceptance
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Fig. 4. Evaluation results according to the objective and subjective evaluation criteria (Color
figure online)

Fig. 5. Comparison of the actual DPN and expected DPN of alternatives/measures (Color figure
online)

Table 5. Dependability Priority Number of measures/alternatives

Statistic Without measure Measure 1
(Redundancy)

Measure 2
(Monitoring: FR 1)

Safety 80 100 100
Reliability 8 10 10
Availability 0,8 1 0,2
Maintainability 0,1 0,1 0,1
Security 0,01 0,01 0,01
DPN 88.91 111.11 110.31
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targets. It has the highest actual DPN. The actual DPN of this measure is on the same
level as the expected DPN. The actual DPNs of other measures are lower than the
expected DPNs (shown as blue points under brown points). Figure 4 also shows the
comparison of changes of the dependability properties. By this for instance a conflict
between safety and availability is identified. By keeping the safety on the same high
value, the availability goes down by monitoring with 10000 fit (3rd measure) dramat-
ically. However, this conflict is not handled further, because the 2nd measure was
chosen as solution. Otherwise a trade-off must be found and according to the changed
DPNs the optimal alternative is selected. Basically the more important property wins.
Through this case study, the strength of the DPN is illustrated. Quantitative depend-
ability analysis (CFT) is thereby integrated into dependability trade-off analysis and vice
verse. This combination improves the dependability of the system and reduces the cost
of ignorable conflicts between the dependability goals.

5 Conclusion

This work illustrates how the concept of Dependability Priority Numbers (DPN) sup-
ports quantitatively trade-off analyses. DPN helps to select of the optimal system
design alternative or measure, in order to fulfill dependability goals. Dependencies and
conflicts can be identified and resolved inherently by using this approach. DPN brings
model-based dependability analysis and trade-off analysis together. An exemplary case
study illustrates the concept and benefits of DPN. Our approach supports not only the
quantitative trade-off analysis, but also extending model-based quantitative depend-
ability analysis towards trade-off analysis.

DPN will be further developed both conceptually and according to tool support.
More quantitative and detailed acceptance evaluation criteria, utilization of effective
pre-selection algorithm in case of handling of large number of alternatives, calculation
of object and subject acceptance values towards DPN in a more effective way will be
investigated in the future.

Acknowledgement. This work is supported by the Framework Programme for Research and
Innovation Horizon 2020 under grant agreement n. 732242 (DEIS).
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Abstract. The emergence of new electricity and energy systems opens
the way to novel reliability monitoring and maintenance planning strate-
gies. In smart grids, the increased connection between various power sys-
tems enables a resilient grid operation. Similarly, the proliferation of data
sources across the grid creates opportunities for a more accurate mainte-
nance planning with up-to-date information of degrading assets and oper-
ational information of system performance. In this context, this paper
presents a dependability and energy aware asset management framework
for an improved maintenance planning of power assets in smart grids
through dependability, energy, prognostics and forecasting models. The
benefits of the proposed approach are demonstrated with a case study
inspired from smart grids.

Keywords: Prognostics & health management · Maintenance
planning · Dependability · Reliability · Energy · Smart grids

1 Introduction

The smart grid is a system-of-systems with underlying power, energy, communi-
cation and digital infrastructure which adds more functionalities to the existing
power grid such as resilience, self-healing and improved asset utilization [16].
Condition monitoring and maintenance planning of smart grids is a complex
task due to the diverse dependencies between different systems [10]. At the same
time, the increased availability of diverse data sources across the grid opens
the way for up-to-date dependability and energy performance estimates, which
can assist the operators in designing effective maintenance planning strategies.
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Dependability is an umbrella term which encompasses reliability, availability,
maintenance and safety [5].

Prognostics and health management (PHM) is an expanding engineering field
which focuses on diagnostics, prognostics and maintenance planning activities
of systems and components [22]. PHM makes use of monitoring datasets and
physics-of-failure models to estimate the remaining useful life (RUL) of systems
and components. Accordingly, RUL estimates can be used to plan condition-
based maintenance (CBM) strategies and initiate maintenance actions in an
optimal time instant just before failure occurrence. There have been different
CBM solutions for maintenance planning of power assets based on PHM results,
e.g. wind turbines [17], gas turbines [15] or power transformers [2].

Most of the proposed maintenance strategies for the power grid have been
focused on reliability centered maintenance (RCM) solutions, e.g. [12,19,25].
RCM strategies evaluate the system failure probability and trigger mainte-
nance actions when the failure probability is above a threshold level. Intelli-
gent RCM-based strategies have been also proposed connecting prognostics pre-
diction results with dependability models for an up-to-date failure probability
estimation and group-based maintenance planning based on the criticality of
components [3].

RCM strategies define maintenance instants through the analysis of the evo-
lution of the system reliability. However, decision-making based on a single
parameter may not be efficient due to the complex interactions within the sys-
tem. Multi-criteria maintenance planning strategies have been focused on opti-
mization problems mainly centred on the trade-off between reliability and cost
[6,7,14]. Although these strategies achieve an optimal solution, generally they
have to limit the complexity of the problem for subsequent analytical treatment.

With the connection of diverse power systems within the smart grid such as
distributed generation sources, electric vehicles or microgrids, different opera-
tional datasets have been used for energy performance planning and forecasting,
e.g. meteorological data or user power consumption patterns. In this context,
there is room to enhance the decision-making process by combining RCM with
energy estimation models and continually updating them through predictive
model results. This approach obtains an enhanced view of the performance and
health of the system. Accordingly, the main contribution of this paper is the
proposal of a novel model-based maintenance decision-making framework which
takes into account up to date dependability and energy information for mainte-
nance planning.

Although there are some works that take into account the performance
and reliability of power assets for an improved maintenance planning, e.g.
[12,15,17,19,25], to the best of authors’ knowledge, this is the first approach
which combines dynamic failure probability estimates updated with prognos-
tics prediction results along with energy estimation models for a more effective
maintenance planning.
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The rest of this paper is organised as follows. Section 2 presents the
proposed approach for enhanced maintenance decision-making through depend-
ability, prognostics and energy estimation models. Section 3 implements the
approach in the smart grids case study. Finally Sect. 4 draws conclusions and
identifies future work.

2 Dependability and Energy Aware Asset Management
Framework

Figure 1 shows the proposed dependability and energy aware asset management
framework. The first step is the specification of the system design model which
defines the system components, their interactions and the functional operation
[21]. Monitoring strategies control the system operation through different param-
eters and models [24].

Fig. 1. Dependability and energy aware asset management framework.

In a second step, component failure causes and system failure consequences
are elicited so as to evaluate the dependability of the system under study. There
are different formalisms that can be used to perform the dependability analysis
[4]. Given the dynamic operation of smart grids, it is necessary to model time-
dependent failure conditions to obtain accurate probabilistic health indicators.
This paper focuses on the use of Dynamic Fault Tree (DFT) models so as to
specify the dynamic failure logic of the system [4,8]. Figure 2a shows the DFT
notation and Fig. 2b shows a DFT model example where the system failure
occurs if component E fails or A fails before B and both C and D fail.

Subsequently energy-related metrics are quantified. Energy estimation mod-
els are directly linked with dependability models because they influence each
other, e.g. when a component fails it will not produce energy or as a component
degrades the energy production will be affected.
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Fig. 2. (a) DFT notation; (b) DFT example.

With the increase of available data across the power grid, there are multiple
possibilities to update dependability and energy models with up-to-date predic-
tions. Component RUL predictions can be used to update dependability models
[1] and performance-related parameters can be used to update energy estimation
models, e.g. forecast traffic to estimate the battery consumption of an electric
car or forecast weather temperature to estimate the energy production of pho-
tovoltaic or wind energy systems.

This updated view on the health and operation conditions of the power grid
provides an up-to-date picture of the health and performance of the system and
it helps defining an effective preventive maintenance strategy. At this stage main-
tenance planning decisions are based on both failure probabilities elicited from
up-to-date dependability models and energy-related performance information
inferred from up-to-date energy models.

3 Case Study

The case study examined in this section is inspired from smart grids with the use
of photovoltaic (PV) systems and electric vehicles (EV) with dynamic charging
profiles [10,20]. Figure 3 shows the block diagram of the case study.

Fig. 3. Case study.

The main objective of the power grid is to avoid unexpected power outages
and component failures. In this paper this problem will be limited to keep the
power at the charging station at an acceptable level and the system failure
probability below a threshold value. The energy generated from the generation
and PV systems should be enough to supply the EV charging station. However,
if the deterioration of components in the generation and transmission grid or PV
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components is significant, it may threaten the energy requirements. Similarly, if
the failure probability of the power grid is high, but the energy requirements are
met, it may be possible to extend the operation of the system. In this context,
the influence of component failures along with energy levels open the way to a
multi-criteria maintenance decision-making process.

3.1 Implementation

Figure 4 shows the implementation of the case study. The failure models have
been specified with Stochastic Activity Network (SAN) models [23] using a DFT
to SAN transformation dictionary [1]. The energy models define the energy-
related operation of the smart grid using the SAN formalism.

Fig. 4. Implementation of the case study in Fig. 3.

In addition to the specification of failure and performance models, SAN
enables the implementation of dynamically updated transition rates which can be
used to specify dynamically updated events such as component failure rates [1].

Preliminaries on SAN. SAN extends stochastic Petri Nets generalizing the
stochastic relationships and adding mechanisms to construct hierarchical models
[18]. Figure 5 shows SAN modelling primitives [23].

Fig. 5. Notation of SAN elements.

Places represent the state of the modelled system. Each place contains tokens
defining the marking of the place. A standard place contains an integer number
of tokens, whereas extended places contain data types other than integers (e.g.,
floats, array). The marking function of the place x is denoted as m(x), e.g.,
m(x) = 1 means that the place x has a marking equal to 1.
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There are two types of activities: instantaneous which complete in negligible
amount of time, and timed whose duration has an effect on the system perfor-
mance and their completion time can be a constant or a random value. The
random value is ruled by a probability distribution function defining the time to
fire the activity.

Activities fire based on the conditions defined over the marking of the net and
their effect is to modify the marking of the places. The completion of an activity
of any kind is enabled by a particular marking of a set of places. The presence of
at least one token in each input place enables the firing of the activity removing
the token from its input place(s) and placing them in the output place(s).

Another way to enable a certain activity consists of input gates and output
gates. Input and output gates make the SAN formalism general and powerful
enough to model complex real situations. They determine the marking of the
net based on user-defined C++ rules.

Input Gates (IG) control the enabling of activities and define the marking
changes that will occur when an activity completes. A set of places is connected
to the input gate and the input gate is connected to an activity. A Boolean
condition (or guard) enables the activity connected to the gate and a function
determines the effect of the activity completion on the marking of the places
connected to the gate. Output Gates (OG) specify the effect of activity com-
pletion on the marking of the places connected to the output gate. An output
function defines the marking changes that occur when the activity completes.

The performance measurements are carried out through reward functions
defined over the designed model. Reward functions are evaluated as the expected
value of the reward variable and they are defined based on:

– the marking of the net (state reward function), e.g. quantification of the
probability for being in a specific place;

– completion of activities (impulse reward function), e.g. count the number of
times an activity triggers within a time interval.

Figure 6 shows a simple system example. In this case the SAN places are
initialized to working state <m(W),m(F)>=<1, 0>. The token will move from
W to the place F according to the cumulative distribution function (CDF) deter-
mined by the fault timed activity. The time to failure will be calculated with
the parameters of the fault activity and after the time to failure has elapsed
the system will move from working to the failed state <0, 1>.

Fig. 6. Non-repairable system example in SAN.
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This paper focuses on Monte Carlo simulations (MCS) for the quantification
of different probabilities. Reward functions indicated in Fig. 6 with F Rew and
W Rew reward variables can be used to evaluate the failure probability or availabil-
ity. These statements are evaluated for a large number of trials and the expected
value of these random variables evaluated at different time instants will give the
failure probability and availability indicators. Note that the required number of
iterations will depend on the required confidence level for the reward variables.

The inverse transform sampling method extracts the stochastic occurrence
times of timed activities using MCS. Let r be a random variable drawn from
the uniform distribution r ∼ U(0, 1), F (t) a CDF, e.g. exponential CDF F (t) =
1 − exp(λt), and TTF the time to fire the activity. Then, the inverse sampling
method applies the relation F−1(r) = TTF to draw the time to fire according
to the CDF [23]. SAN models have been simulated using the Möbious tool [11].

Generation and Transmission Grid. The power generated from the gener-
ation and transmitted through the transmission grid determines the incoming
power for the microgrid. The generation system is comprised of a two-out-of-
three generation system where there should be always two generators active and
one in standby operation. As soon as one of them fails, it is reconfigured through
the corresponding circuit breaker and transformer (cf. Fig. 3).

The failure condition of the generation and transmission grid is defined as
follows: (i) two transformers fail after the failure of the complementary circuit
breaker so that it is not possible to reconfigure the standby transformer (IE1, IE2,
IE3), (ii) all transformers fail simultaneously (spare), or (iii) the transmission
line or transformers Tr4 and Tr5 fail. Figure 7 shows the DFT model of the
generation and transmission grid defining the transmission and generation grid
failure condition.

Fig. 7. Generation and transmission grid failure condition.

The power that arrives to the microgrid has been assumed stable over time
only affected by the degradation of the generation and transmission grid:

PDel(t) = PGen(t) × RG&T (t) (1)
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where RG&T (t) is the reliability of the generation and transmission system,
PGen(t) is the generated power and PDel(t) is the delivered power to the
microgrid.

The DFT in Fig. 7 can be implemented through the model synthesis approach
based on SAN models [3]. However, for simplicity, the DFT model in Fig. 7 has
been approximated with a two-state system with working and failed states with
the transition rate modelled with the conditional Weibull CDF (cf. Fig. 6):

F (t|Tel) = 1 − e
−

{
(
(Tel+t)

H )β− Tel
H

β
}

(2)

where β and H are the shape and scale parameters of the Weibull distribution,
respectively, and Tel is the elapsed time of operation up to the start of the new
mission time at t.

The Weibull distribution can approximate different parametric distributions
[8] and the conditional Weibull CDF in Eq. (2) permits the update of the CDF
over time. This distribution can be used to update the component failure rates
with RUL estimations performed during the system operation given the assump-
tion RUL ≈ 1/λ [1]. That is, when β = 1, the Weibull distribution is equivalent
to the exponential distribution and accordingly the scale parameter becomes the
failure rate of the exponential distribution, i.e. H = λ.

Figure 8 shows the failure probability of the generation and transmission grid
FG&T (t) = 1 − RG&T (t). The vertical lines indicate the update instants of the
CDF with the failure rate values in Table 1, where λ0 denotes the initial failure
rate, λ1 denotes the failure rate at prediction instant 1 (assumed at 100 time
units) and λ1 denotes the failure rate at prediction instant 2 (assumed at 250
time units). It is assumed that the values in Table 1 have been obtained from
prognostics prediction results of the corresponding system.

Table 1. Failure rate predictions.

System PV system Transm. & Distr. Grid EV Station

Failure rates λ0 λ1 λ2 λ0 λ1 λ2 λ0 λ1 λ2

Values 600 400 200 1560 1800 1200 880 750 700

Figure 9 shows the delivered power with the failure rate parameters displayed
in Table 1. The degradation trend in Fig. 9 follows the degradation trend defined
by RG&T (t) shown in Fig. 8.

PV System. The PV system produces energy from the solar irradiation. The
energy production of the PV system can be affected by the sun irradiation or
degradation of its constituent components. Figure 10 shows the block diagram
of the PV system [9].

The PV string module converts the sun irradiation into DC power. It is
possible to have various PV strings to increase the generated DC power. The
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Fig. 8. Generation and transmission grid
failure probability FG&T (t).

Fig. 9. Delivered power to the micro-
grid PDel(t).

Fig. 10. PV system block diagram.

inverter converts the DC power into AC and the protection systems protect the
PV module against undesired events. This configuration can be repeated for a
certain amount of PV modules and these modules are connected to the grid.
Accordingly, the power generated by a PV module can be defined as:

PPV (t) = η(t) × Irrad(t) × sin(ω(t)) × S (3)

where η(t) is the efficiency of the PV module which is dependent on the degra-
dation of the module, Irrad(t) is the solar irradiation (W/m2) and ω(t) denotes
the angle of the sun with respect to the PV module and accordingly its efficiency
and S denotes the surface of the PV module (m2).

The FTA model shown in Fig. 11 defines the failure logic of the PV system
comprised of M modules and N PV strings. That is, the PV system fails if all
PV strings fail altogether or the DC protection fails or the AC protection fails
or the inverter fails [9].

As with the generation and transmission grid, the PV FTA model in Fig. 11
has been approximated with a two state model with the conditional distribution
in Eq. (2) and failure rate parameters displayed in Table 1. It has been assumed
that the efficiency η(t) in Eq. (3) is directly related with the reliability of the
PV module, i.e. RPV (t) = η(t) [9]. Figure 12 shows the PV failure probability,
FPV (t), and Fig. 13 shows the generated power, PPV (t).

It can be seen that periodically the PV module does not generate power
due to the lack of sunlight during the night time. Additionally, it can be seen
that the produced PV energy decays exponentially owing to the efficiency of the
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Fig. 11. FTA model of the PV system.

Fig. 12. PV system failure probability
FPV (t).

Fig. 13. PV system generated energy
PPV (t).

PV module. The predictions in Figs. 12 and 13 are constrained with the adopted
assumptions, for more advance forecasting estimations dynamic reliability meth-
ods can be used which can take into account various operation conditions, e.g.
see [9].

EV Charging Station. Electric vehicles pose new challenges to the power
grid such as the ability to withstand dynamic load requirements according to
user requests. One possibility to model user requests is to use traffic patterns
along with the capacity of batteries. Equation (4) describes the state-of-charge
equation of a electric car as a function of time and distance [13]:

SoCk(dist) = SoCk−1(dist)−Fd(dist); where Fd(dist) = 100×(dist/dR) (4)

where SoCk denotes the state-of-charge at the discrete time-step k, Fd denotes
the deterioration factor, defined as a function of the distance dist run in one day
(km) and the autonomy of the electric car dR (assumed 100 km).

Figure 14 shows the electric vehicle (EV) and EV station operation concepts.
A number of electric vehicles can be connected to the EV station at the same time
at the expense of more power consumption. For each car, the designed model
includes the state-of-charge Eq. (4) along with the stochastic failure model which
degrades the maximum charging capacity of the car. The stochastic model has
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been specified with the model in Fig. 6 with the dynamic failure rate parameters
specified in Table 1. See failure probability results, FEV (t), in Fig. 14.

Fig. 14. EV charging station operation and electric vehicle operation.

The EV charging station operates according to the finite state machine shown
in Fig. 14. Every time it passes through the charging state it will require power
from the grid. It has been assumed that the charging station charges all the
EV with a constant charging profile and the minimum state-of-charge level of
batteries have been defined at 20%.

Every time the station is used for charging the battery, the required power is
drawn from the grid. Figure 15 shows the changing state-of-charge (SoC) of the
electric vehicle and the required power from the grid. It has been assumed that
the car follows periodically the distance pattern shown in Fig. 14.

Fig. 15. (a) EV energy required; (b) EV state-of-charge.

For simplicity periodic usage and linear charging times have been assumed.
Generally the car usage and charging times will vary from car to car [13].

Grid Level Analysis. The grid level analysis enables the quantification of
a number of decision-making parameters including the failure probability and
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energy requirements. Figures 16 and 17 show the system failure logic and the
system failure probability respectively. Note that the failure probability for PV
and generation and transmission systems has been inferred from a two state
model for simplicity, but they can be replaced with their corresponding FTA
models specified in Figs. 7 and 11 respectively.

Fig. 16. FTA of the sys-
tem in Fig. 3.

Fig. 17. Failure probability of the system in Fig. 3.
(Color figure online)

The failure probability estimates in Fig. 17 show the results of two models.
One is the system failure probability estimate without updates, i.e. using static
failure rates (black line). The other is the system failure probability taking into
account updated failure rates from Table 1 (blue line).

If the maintenance planning is solely based on the failure probability con-
dition, i.e. traditional RCM strategy, the maintenance instant would be at 375
time units according to the prognostics updated approach and at 465 time units
according to the model without updates.

However, if the decision-making process also takes into account the energy
balance of the system, the evaluation of the maintenance action can be enhanced
through energy level indicators. In this case, the balance aims to compensate for
EV energy requests (Fig. 15a, PEV (t)) with generation and transmission power
(Fig. 9, PDel(t)) and PV generation (Fig. 13, PPV (t)). Figure 18 shows the energy
balance of the power grid, i.e. PBal(t) = PDel(t) + PPV (t) − PEV (t).

It is possible to set up a threshold to identify deviations from acceptable
system operation and control the time instant and the duration of when this
limit is exceeded. Formally, the energy level (EL) threshold can be defined as:

EL =
∫ Tm

0

Is(t)dt, where Is(t) =

{
1, if E(t) < Energythreshold

0, otherwise
(5)
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where Energythreshold is the cumulative energy threshold limit to trigger main-
tenance actions. If the energy level of the system is below Energythreshold it may
indicate performance problems. In this context, if the engineer sets up a limit
of Energythreshold ≥ 20, then the maintenance instant would be 340 time units.
Figure 19 shows the energy indicator and the corresponding threshold.

Fig. 18. Energy balance at the smart grid example in Fig. 3.

Fig. 19. Energy indicator inferred from Fig. 18 via Eq. (5).

The energy balance information generates an additional decision-making cri-
teria which can identify early abnormal operations. This enhanced view on the
health of the system provides a more complete picture of the system degradation
and performance.
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4 Conclusions

The connection of diverse power systems within the power grid improves the
resiliency of the of the power network, but it also introduces challenges for effec-
tive monitoring and maintenance planning due to the increased dependencies
and overall complexity.

This paper presents a multi-criteria maintenance decision-making framework
for smart grids considering reliability and energy attributes as reference mod-
els for maintenance decision-making. Maintenance-planning solutions based on
multiple attributes enable the adoption of trade-off maintenance decisions which
can lead to the adoption of efficient maintenance decisions.

In addition, the proposed solution enables the dynamic update of dependabil-
ity and energy estimation models from predictive model results such as failure
prognostics predictions or performance forecasting results. This up-to-date view
on the health and performance of the system enables the adoption of improved
maintenance decisions.

Future goals may focus on the implementation of the proposed framework for
an end-to-end detailed power systems case study with datasets collected from
the field.
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Abstract. Interlocking control prevents certain operations from occur-
ring, unless preceded by specific events. It is used in traffic network
control systems (e.g. railway interlocking control), piping and tunneling
control systems and in other applications like for example communication
network control. Interlocking systems have to comply with certain safety
properties and this fact elevates formal modeling as the most important
concern in their design. This paper introduces an interlocking control
algorithm based on the use of what we call Distributed Signal Boxes
(DSBs). Distributed control eliminates the intrinsic complexity of cen-
tralized interlocking control solutions, which are mainly developed in
the field of railway traffic control. Our algorithm uses types of network
control units, which do not store state information. Control units are
combined according to a limited number of patterns that in all cases
yield safe network topologies. Verification of safety takes place by model
checking a network that includes all possible interconnections between
neighbor nodes. Obtained results can be used to generalize correctness
by compositional reasoning for networks of arbitrary complexity that are
formed according to the verified interconnection cases.

1 Introduction

In the past, interlocking control was mainly developed and studied in the con-
text of railway signaling, where its task is to prevent trains from colliding and
derailing, while at the same time allowing their movements. Our view is that
interlocking control is a mean for synchronizing exclusive access to distributed
network resources (network segments) and its application extends beyond this of
railway signaling. Interlocking control is also used in piping and tunneling con-
trol systems and may be involved in other applications like for example network
management systems [2].

In this work, we introduce a distributed control algorithm with network con-
trol units that do not store information related to the algorithm’s state. This

c© Springer Nature Switzerland AG 2019
Y. Papadopoulos et al. (Eds.): IMBSA 2019, LNCS 11842, pp. 204–221, 2019.
https://doi.org/10.1007/978-3-030-32872-6_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32872-6_14&domain=pdf
https://doi.org/10.1007/978-3-030-32872-6_14


Formal Verification of Network Interlocking Control 205

option eliminates the intrinsic complexity of other solutions that are mainly cen-
tralized and the complexity of the few distributed approaches with control units
that maintain state. More precisely, as shown in [19], algorithmic verification
of interlocking safety properties is an extremely complex task, due to the state
space explosion involved. Typically, the internal state of the analyzed system has
2n possible configurations, where n is the number of components such as inter-
locking points, signals, etc. with which the system is built. Our contribution is
summarized in the following:

– The Distributed Signal Boxes (DSBs) algorithm is verified within the SPIN
model checker [14]. Interlocking safety is verified in a network formed by
combining all possible interconnections between neighbor nodes. The control
units of our algorithm can be composed only in the ways tested in this small
network.

– Interlocking logic of the control units is decoupled from the network topol-
ogy and this eliminates the need to locally store information related to the
algorithm’s state. Although network routing is not within the scope of our
algorithm, we assume non-deterministic routing as an abstract modeling app-
roach for verifying all routing possibilities in a network node [16]. Interlocking
safety is provided as a network service, irrespective of the operation control
commands.

For more complex networks, one can use the compositional verification tech-
nique for synchronous message passing [18] that decomposes the verification
problem into correctness properties for smaller networks. Thus, we avoid the
risk of interlocking schemes that cannot be fully analyzed, due to their large
state space.

A preliminary version of the algorithm was presented in [3], where it was
applied to a simple railway-interlocking problem, which did not include all the
cases of node interconnections that are covered in present article. Section 2
presents the considered network interconnection cases and their corresponding
DSBs connectivity. Section 3 introduces the algorithm and the obtained SPIN
model-checking results. Finally, in Sect. 4 we review the related works and we
compare them with the proposed approach. We conclude with comments on the
potential impact of the presented work.

2 Network Interlocking Nodes and Distributed Signal
Boxes

The messages for the control of a single node that connects multiple network
segments depend on the node’s interconnection with neighbor nodes. In this
section, we establish the terminology used to describe a general interlocking
problem and we introduce the different cases of nodes’ interconnection and the
corresponding DSBs topologies.
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Definition 1. Nodes define the ends of interconnected network segments, which
are distributed network resources. They cannot communicate with each other. A
node – depending on the number of interconnected segments – controls access
to at least one resource, i.e. access to the resource(s) is only possible through the
controlling node.

Figure 1 illustrates a simple network consisting of interconnected nodes X,
A, B, C, D and Y . Node A controls access to resource R(AB), but direct com-
munication with node B is not possible.

Definition 2. Each node is connected with a DSB and communicates with it
through a synchronous signal channel. The DSBs corresponding to a pair of con-
nected nodes communicate with each other. Since nodes cannot directly contact,
they manage the controlled resources only by messages to their corresponding
DSBs.

In Fig. 1, node A and DSBoxA are connected by the signal channel
NodeAtoDSBoxA. As a consequence of Definition 2, DSBoxA exchanges mes-
sages with DSBoxB.

Fig. 1. One-to-one node interconnection and the DSBs topology

Definition 3. When a moving entity requests access to a network resource, it
can be granted only by the controlling node of this resource. All entities that
request access move in a given direction.

Definition 4. Interlocking control synchronizes requests generated by entities,
for exclusive access to the controlled resource(s).
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Nodes are represented by control processes that accept as input an entity
arrival, exchange messages with their corresponding DSBs and subsequently
release the moving entity, when possible, thus granting access to the requested
resource. Entity arrivals trigger a message dispatch to the node’s DSB and upon
receipt of the reply the entity is released. Thus, control processes do not need to
store information for the algorithm’s state, since this state is communicated to
the network instantly. Within the SPIN model-checker, we assume synchronous
communication, which is modeled by rendezvous communication channels [15].
This specification assumption keeps our model computationally tractable, since
we avoid asynchronous communication that would increase interleaving between
the modeled processes. Applicable implementation alternatives include all mod-
ern time-triggered communication options, with safety critical features (e.g. the
TTP/C and the FlexRay protocols) that are often used in distributed embed-
ded systems. However, we do not address issues related to implementation details
like for example how to guarantee atomic message dispatch, since we are only
interested to verify the correctness of our algorithm.

We have identified three types of resource interconnection namely, the one-to-
one link, the one-to-many split link and the many-to-one join link. One-to-many
and many-to-one links require synchronization between the DSBs of the nodes
in the many side. Figure 1 introduced an example with one-to-one resource inter-
connections, where for some entity that occupies resource R(XA) node A grants
access to resource R(AB), if it is not occupied by another entity. The figure shows
the implied DSBs topology and represents a part of Athen’s underground metro
network, which was used in [3] for introducing a first version of our algorithm.

Fig. 2. (a) Many-to-one join node interconnection and (b) one-to-many split node
interconnection
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Figure 2a presents the many-to-one join node interconnection, where a num-
ber of network resources, say R(A1B), R(A2B), ..., R(AjB) is connected through
some node B to a single resource shown as R(Bx). Access to the controlled
network resource R(Bx) is performed by the synchronous exchange of control
messages transmitted between: (i) nodes A1, A2, . . . , Aj and their correspond-
ing DSBs, (ii) neighbor DSBs (e.g. the DSBs of nodes A1 and B), (iii) node
B and its corresponding DSB and (iv) for synchronizing the DSBs of nodes
A1, A2, . . . , Aj in the many side.

Figure 2b shows the one-to-many split node interconnection, where some
network resource, say R(xA) is connected to i network resources denoted by
R(AB1), R(AB2), . . . , R(ABi). We already pointed out that for verifying all
routing possibilities for a passing entity, we include all possible entity routing
decisions, i.e. a non-deterministic selection of the requested controlled resource
(symmetrically, in Fig. 2a we assume non-deterministic selection between the
entities waiting in the many side). Access to the requested resource is regu-
lated by the synchronous exchange of control messages transmitted between: (i)
nodes B1, B2, . . . , Bi and their corresponding DSBs, (ii) neighbor DSBs (e.g.
the DSBs of nodes A and B1), (iii) node A and its corresponding DSB and (iv)
for synchronizing the DSBs of nodes B1, B2, . . . , Bi.

For a two-to-two resource interconnection by a single node, a suitable solu-
tion can be developed by decomposing the problem into two distinct two-to-one
interconnection cases and by intermixing the algorithm’s logic accordingly. This
means that a synchronization message non-deterministically selects, which des-
tination resource from the two-to-one interconnection cases will be occupied.
A many-to-many resource interconnection is implemented as a complex with a
many-to-one join link attached to a one-to-many split link.

3 Network Interlocking Nodes and Distributed Signal
Boxes

Figure 3 shows the DSBs topology for a typical one-to-one resource intercon-
nection, as well as the exchanged messages guaranteeing exclusive access to the
controlled resources. Our algorithm encompasses:

Fig. 3. DSBs and message communications for an one-to-one resource interconnection
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– the control processes for the shown interlocking nodes (N),
– the resources (R), with each of them being controlled by some node (N),
– the DSBs control processes, where each DSB corresponds to some node (N),
– the moving entities (E) that request access to the available resources (R) and
– the messages between nodes and DSBs, and those exchanged between DSBs.

Resource allocation is established by using two message types, namely bit1
and bit2. These messages do not carry any information; they block or release
processes, but none is dedicated to a specific role throughout the whole algorithm
logic.

Fig. 4. The Node control process of the DSBs algorithm

The algorithm is introduced in PROMELA, the input language of SPIN. In
Fig. 3, let us assume that an entity E occupies Rm−1 and requests access to
Rm, which is controlled by Nm (line 7 of proctypeNode in Fig. 4 is enabled for
Nm). Nm then sends bit1 to its corresponding DSB (line 8) through the signal
channel inNodetoDSB that synchronizes the two processes. We distinguish two
different possibilities:

– Resource Rm is available, which means that the DSB of node Nm has already
sent message bit2 to its corresponding node (line 18 of proctypeDSBox in
Fig. 5 for the node Nm). Message bit2 is received by node Nm that sub-
sequently provides access to resource Rm (lines 9, 10 of proctypeNode for
Nm). The DSB of node Nm is then blocked waiting for message bit1 in the
communication channel outSignaltoDSB that synchronizes it with the DSB
of node Nm+1 (line 19 of proctypeDSBox for the node Nm).

– Resource Rm is currently occupied by another entity. In this case, there is no
message bit2 in the inNodetoDSB signal channel for node Nm and this blocks
the requesting entity from accessing Rm (line 9 of proctypeNode for Nm). The
DSB of Nm also waits for message bit1 (line 19 of proctypeDSBox for Nm).
The expected message will be received when the DSB of node Nm+1 control-
ling the requested resource Rm+1 will send bit1 (line 21 of proctypeDSBox
for Nm+1) thus indicating that Rm+1 can be used by the entity that cur-
rently occupies Rm. Upon receipt of bit1 by the DSB of Nm (line 19 of
proctypeDSBox) the message bit1 in the signal channel inNodetoDSB is
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consumed (line 20 of proctypeDSBox) and subsequently a bit1 message is
dispatched to the DSB of node Nm−1 (line 21 of proctypeDSBox for Nm).
Then, the DSB of node Nm sends bit2 to the signal channel inNodetoDSB
that synchronizes it with its corresponding node (line 18 of proctypeDSBox
for Nm) and this message releases the requested resource Rm (lines 9, 10 of
proctypeNode for Nm).

Fig. 5. The DSBox control process of the DSBs algorithm

Figure 6 shows the message communications for a network with a two-to-
one join node connected to a node one-to-two. The control processes for these
two nodes differ from the control process of a simple node (Fig. 3) in the use
of one more synchronous message exchange for every pair of adjacent resources
in the many side. This additional message is necessary, in order to synchronize
concurrent requests for access to the same resource coming from the many side
of the nodes.

The PROMELA code in Fig. 7 introduces the control process for the shown
two-to-one join node that connects the network resources specified by the inRes1
and inRes2 parameters to the network resource specified by the outRes param-
eter. For a single pair of adjacent resources in the many side, we need only one
synchronization channel named here synchronizerA and one additional message
that we call bit3i. Besides the use of the synchronizer, the algorithm’s logic is
essentially the same with the logic shown in Fig. 4, apart from the fact that
we use now two signal channels named inNode1toDSB and inNode2toDSB
that synchronize the two-to-one join node with its corresponding DSB. Finally,
the process logic for the two-to-one join node addresses the requirement for
non-deterministic selection between concurrent requests of controlled resources.
Figure 8 provides the process logic for the symmetric case of the one-to-two node
shown in Fig. 6.

The complete PROMELA code for the small network of Fig. 9 includes all
types of possible interconnections and at the same time gives us the opportu-
nity to verify safety and to study existing possibilities for deadlock, livelock or
other violations of progress. Resource Rsrc34 is connected to resource Rsrc41.
Node(1) represents a one-to-two split link to the resources Rsrc12 and Rsrc13
and Node(3) is a two-to-one join link to the resource Rsrc34.
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Fig. 6. DSBs and message exchanges for a two-to-one join node connected to a one-
to-two node

Fig. 7. Algorithm’s logic for two-to-one
resource interconnection

Fig. 8. Algorithm’s logic for one-to-two
resource interconnection
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Fig. 9. A network of resources and the associated DSBs topology

3.1 Safety Verification

The basic safety property for the DSBs interlocking control is expressed by the
monitor assertion of Fig. 10, which is used to check that “in all reachable states,
at most one entity occupies any resource”. We utilize the predefined boolean
function

nfull(q) = (len(q) < QSZ)

for testing that a network resource represented by channel q is occupied by a
number of entities (len(q)) less than the number QSZ that represents violation
of safety.

In order to detect violation of exclusive access to any resource, we set QSZ =
2. If it is possible to reach a state where for some resource, say Rsrc, holds
len(Rsrc) = QSZ, then the model checking output reports an error (assertion
violation).

For the network shown in Fig. 9, the initial conditions guaranteeing constant
protection involve the notion of what we call network section. A network section
is defined based on some basic graph-theoretic terms: the undirected graph rep-
resenting the resource network at hand is connected, if every pair of distinct
nodes in the graph can be connected through some path. A node cut set (also
known as vertex cut) of a connected network is a set of nodes, whose removal
renders the network disconnected.

Definition 5. A network section is defined over a node cut set with one-to-many
and/or many-to-one nodes. It is represented by a biconnected subnetwork, whose
nodes are given as the superset of the node cut set, i.e. a subnetwork that is not
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broken into disconnected networks by deleting any single node and its incident
resources.

Definition 6. A closed chain of occupied resources is given as a cycle of occu-
pied resources where all entities request some resource that is already occupied
by another entity in the same cycle. Such a chain may be extended into multiple
network sections. Every single network section is characterized by the minimum
required number of entities for a closed chain of occupied resources
in the overall resource network.

Fig. 10. Safety assertion for the DSBs interlocking control of the network of Fig. 9

Predicate 1. Under the following initial conditions, we verified that DSBs
interlocking control guarantees non-blocking execution and safety in all reach-
able states:

– At least one entity occupies a resource that is not in a separated network
section.

– For all possible cycles, there is at least one network section, where the initial
number of entities is less than the minimum required number of entities for a
closed chain of occupied resources.

If for example the network of Fig. 9 is initialized with two entities occupying
both Rsrc34 and Rsrc41 and another entity occupying some resource in the net-
work section that is highlighted in Fig. 11, then the second condition of Predicate
1 implies that the DSBs algorithm cannot guarantee non-blocking execution.
This configuration opens a possibility for a closed chain of occupied resources.

However, in networks where moving entities represent traffic (e.g. in railway)
the initial conditions of Predicate 1 represent a marginal restriction. Usually,
the number of moving entities within the individual network sections is very
small compared to the minimum required number of entities for a closed chain
of occupied resources.

In our case, non-blocking execution and safety with three entities is guaran-
teed only when at most one of the resources Rsrc34, Rsrc41 is initially occupied.
In total, we model checked 4 valid initial configurations with three entities in
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the resource network of Fig. 9 and 7 valid initial configurations with two entities.
When having four entities in the network, the initial conditions of Predicate 1
are not fulfilled.

Figure 12 provides representative model checking results for one of the valid
initial configurations with three entities. The model checking output reports no
assertion violation or invalid end states - deadlock - (errors: 0) in all reachable
states (1697 stored states, when applying partial order reduction for state space
pruning).

Fig. 11. Initial configuration that implies a closed chain of occupied resources

DSBs interlocking control is a compositional control algorithm. Control pro-
cesses for the interconnected nodes can be composed as shown in the discussed
resource network, such that the resulting communication by synchronous mes-
sage passing provides the safety guarantees of interest. Model checking of large-
scale networks with other topologies and node combinations fails to scale up
well, since the state space that has to be explored can grow exponentially in the
number of the implied control processes.

Compositional reasoning shifts the burden of verification from the network
level to the subnetwork level, so that a global safety property for the network is
established by composing together independently verified subnetwork properties
like the one proved in the examined network. The closest compositional reason-
ing approach in the related bibliography is the assumption– commitment (A-C)
method that was first proposed by [17] and that was subsequently developed
in [18] into a sound and semantically complete proof method. This method inte-
grates the use of inductive assertions and the proof method of [1] for verifying
synchronous distributed message passing systems.



Formal Verification of Network Interlocking Control 215

An A-C correctness formula has the form:

< A,C >: {φ}P{ψ}
where P denotes a (PROMELA) program and A,φ, ψ,C represent predicates.
We require that A and C predicates involve values that do not depend on the
values of any program variables. A valid A−C formula has the following meaning:

If φ holds in the initial state, in which P starts its execution, then

– C holds initially, and C holds after every communication provided A holds
after all preceding communications, and

– if P terminates and A holds after all communications then ψ holds in final
state.

3.2 Model Checking Resource Occupancy and Availability

Under the conditions of Predicate 1 for the network of Fig. 9 and for infinitely
many requests for any network resource, we verified that there is always some
entity that temporarily acquires and subsequently releases this resource.

Fig. 12. Model checking DSBs interlocking control safety for the network of Fig. 9

The aforementioned progress property guarantees availability of the net-
work’s resources for infinitely many uses and excludes the possibility for an
entity to hold the occupied resource forever. For model checking this property
we developed an appropriate formulation in the Linear Propositional Tempo-
ral Logic (LTL) of the SPIN model checker. The LTL operators used are the
following:
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<> x eventually
[]x = ¬ <> ¬x always
→ logical implication

The recurrence formula [](<> p) asserts that in an infinite sequence of states
the proposition p occurs infinitely many times [15]. For any network resource
Rsrcij we consider the propositions

#defineR f(len(Rsrcij) == 0)
#defineR o(len(Rsrcij) == 1)

corresponding to states of free or occupied resources. The checked correctness
property is then expressed as

[](<> R f)− > (<> R o)− > (<> R f)

where → is left associative with higher precedence than []. Thus, the formula is
interpreted as [](((<> R f)− > (<> R o))− > (<> R f)) and expresses the
property:

“In an infinite sequence of system states a temporarily occupied resource
becomes free infinitely often”.

For the network of Fig. 9 the discussed LTL formula was model checked in
the 4 valid initial configurations with 3 entities, as well as in the 7 valid initial
configurations with 2 entities. In these cases, SPIN generated the never claim
(automaton in Fig. 13) of the above formula and verified that the property holds
in all possible executions.

In SPIN, never claims specify either finite or infinite system behavior that
should never occur. When a never claim is generated from an LTL formula, all
its transitions are condition statements, formalizing atomic propositions on the
global system state. SPIN checks infinite executions for the specified behavior.
Execution of the claim starts at labeled statement T0 init, where the conditions
trigger transitions to the accept states, when the resource is occupied. Violation
is detected as an acceptance cycle, i.e. if the resource remains occupied forever.
If the resource is not occupied forever we do not have an acceptance cycle.
Figure 14 reports representative results for one of the valid initial configurations
with three entities, where we observe that SPIN performed a state space search
for acceptance cycles. The shown output reports no errors (errors: 0).
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Fig. 13. Never claim of LTL formula to model check that no entity occupies some
resource forever

Fig. 14. Model checking resource occupancy and availability for the network of Fig. 9

4 Related Work

Research on interlocking control has been mainly advanced in the area of railway
interlocking systems. Since the introduction of mechanical interlockings in late
1800’s the control has been progressively centralized with fewer control centers,
individually responsible for larger portions of networks. This trend continued
with the advent of computer controlled signaling to the railway networks. In
related works, the most widely studied railway signaling system is the Solid State
Interlocking (SSI) [6]. Many railway operators have adopted such geographic-
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data-driven solid-state control units in their interlockings. In [9], the author
proposes an approach to formalize the principles and the concepts of interlocking
systems in VDM.

The work reported in [20] introduces a model for the interlocking of the net-
work used by a local Australian railway operator. Interlocking control is encoded
in control tables and the described analysis aims to find erroneous or incom-
plete entries in these tables. Modeling and safety checking is performed with the
NuSMV model checker, but in earlier works the same group used a Communicat-
ing Sequential Processes (CSP) approach and the Failure Divergence Refinement
(FDR) model checker.

The work in [13] reports the safety checking of the Line Block interlock-
ing system that also adopts a centralized approach. The control strategy runs
on a Central Control Unit that communicates with Peripheral Control Units
(PCUs). PCUs are expected to drive particular interlocking system components
and detect external events.

In [10], the authors focus on a computer interlocking system, for the control
of railway stations. The system’s architecture is based on redundancy and is
composed of a central nucleus connected to peripheral posts for the control of
physical devices. A formal model of the system’s safety logic was developed in
Verus [4], a tool that combines symbolic model checking and quantitative timing
analysis. In [8], the authors present a model of the same system and validate
safety in the presence of Byzantine system components or of some hardware
temporary faults. The safety logic of the same system was also modeled in [5],
where the authors used the SPIN model checker to analyze all system’s functions
that may be requested by an external operator.

We already noted the fundamental differences of our algorithm compared to
the mentioned approaches. First, in DSBs interlocking control, safety is decou-
pled from entity routing and is an integrated network service that works inde-
pendently from operation control and geographic data for the network topology.
Second, we adopt a communication-based network control approach that makes
our solution similar to the following distributed interlocking control proposals
found in the related bibliography.

In [11], the authors note that today’s centralized interlocking systems are far
too expensive for small or possibly private networks. They propose to distribute
the tasks of train control, train protection and interlocking over a network of
cooperating components, using the standard communication facilities offered
by mobile telephone providers. Their approach uses the so-called switch boxes,
which locally control the point where they are allocated. Train engines are car-
riers of train control computers, which collect the local state information from
switch boxes along the track to derive the decision whether the train may enter
the next track segment. However, mobile communication requires security and
reliability provisions that in a large-scale network increase the cost, when com-
pared to solutions that transmit signals over wires.

EURIS [7] is a modular specification method used to formulate distributed
interlocking logics for railway yards. The EURIS architecture consists of a
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collection of generic blocks representing control units that communicate by
means of data structures called telegrams. EURIS uses the notion of routes,
i.e. sets of network segments for which a train is granted exclusive access to all
of them atomically. The building blocks maintain a state and can also exchange
telegrams with the logistic layer that incorporates the logic behind operation
control. Safety guarantees can be analyzed only through the available interac-
tive simulation facilities. Compared to EURIS, our approach intentionally avoids
application-domain-dependent concepts and system requirements, since we aim
in the development of a generic interlocking algorithm. In our case, control deci-
sions are taken on the basis of exchanged messages between the control units
that, as opposed to the EURIS building blocks, do not store state related to
the algorithm’s logic. Moreover, our solution is fully verified with respect to the
required safety guarantees.

5 Conclusions and Future Work

In the last years, with the ever-increasing computing power of small and inexpen-
sive computing devices, distributed interlocking control is a promising alternative
towards reducing the complexity involved in the systems’ design, and towards
reducing the costs for installation and maintenance of the needed equipment.
Most current interlocking control approaches are centralized and they are defined
on the basis of geographic data and commands of the networks’ operation con-
trol. Usually, interlocking safety of centralized solutions cannot be fully verified,
due to the state space explosion involved.

In response to these concerns, we introduced a distributed interlocking con-
trol algorithm, where control logic for guaranteeing safety is decoupled from
the network topology data and the used control units do not store information
related to the algorithm’s state. The basic control function is based on what
we call Distributed Signal Boxes that are attached to the network’s interlock-
ing nodes. The algorithm works on the basis of point-to-point communication
between control processes. We described the message communications between
nodes and DSBs and the message communications between neighbor DSBs, for
a series of node interconnection cases. The initial conditions of the verified prop-
erties guarantee safety and progress for the considered network that included all
described network interconnection cases.

Future research includes adaptation of appropriate architectural solutions
(e.g. [12]) for control processing redundancy and communication redundancy
towards implementing fail-safe DSBs control architectures. An important con-
cern is to demonstrate the applicability of the compositional verification tech-
nique of [18] for synchronous distributed message passing systems. This will
enable the verification of large-scale networks by decomposing the verification
problem into the model checking of properties for smaller networks, which will
be independently verified.
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Abstract. Growing individualization of products up to lot-size-1 and
high volatility of product mixes lead to new challenges in the manufac-
turing domain, including the need for frequent reconfiguration of the sys-
tem and reacting to changing orders. Thus, apart from functional aspects,
safety aspects of the production system as well as product quality assur-
ance aspects must be addressed for flexible and reconfigurable manufac-
turing systems at runtime. To cope with the mentioned challenges, we
present an integrated model-based approach SQUADfps (machine Safety
and product QUAlity for f lexible proDuction systems) to support the
automatic conduct of the risk assessment of flexible production scenar-
ios in terms of safety as well as the process-FMEA to ensure that the
requirements w.r.t. the quality of the production process and the result-
ing product are met. Our approach is based on a meta-model which
captures all information needed to conduct both risk assessment and
process-FMEA dynamically during the runtime, and thus enables flex-
ible manufacturing scenarios with frequent changes of the production
system and orders up to a lot-size of one while guaranteeing safety and
product quality requirements. The automatically generated results will
assist human in making further decisions. To demonstrate the feasibility
of our approach, we apply it to a case study.

Keywords: Safety assessment · Flexible production · Model-based
safety · Process-FMEA · Risk analysis

1 Introduction

Major trends in the manufacturing sector are the growing individualization of
products and volatility of product mixes. If taken to extremes, this scenario
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also counts for products being produced only one time (lot-size-1) or only on
demand. In order to reach this goal, the concept of Flexible Manufacturing Sys-
tems (FMS), which can change their software during runtime [29], and Recon-
figurable Manufacturing Systems (RMS), which can adapt their software as well
as their hardware [20], play a vital role. Moreover, standalone systems from
different manufacturers are interconnected to accomplish a common production
goal and the production processes can be orchestrated automatically in so-called
Plug-and-Produce scenarios [2].

Due to frequent changes of the products being manufactured, the rapid
adjustment of a factory is a major challenge to implement application scenar-
ios of flexible production systems (often called Industry 4.0 or Cyber-Physical
Production Systems) successfully. Although the high flexibility of future flexible
production scenarios promises a faster market adaptation and responsiveness, it
raises at the same time dependability-related concerns due to unknown configu-
rations at runtime. Thus, apart from functional aspect (i.e. the check if a factory
is able to manufacture a specific product), safety aspects as well as product qual-
ity assurance aspects must be addressed.

Safety standards, such as ISO 13849 [17] or IEC 62061 [16] in context of indus-
trial production systems, provide guidelines to keep the residual risks in machine
operation within tolerable limits. For every production system, a comprehensive
risk assessment is performed, which includes risk reduction measures if required
(e.g. by introducing specific risk protective measures such as fences). The result-
ing safety documentation describes the assessment principles and the resulting
measures that are implemented to minimize hazards. This documentation lays
the foundation for the safe operation of a machine and it proves the compliance
with the Machinery Directive 2006/42/EC of the European Commission [10].
In flexible production scenarios, risk assessment must be conducted after each
reconfiguration of the production system. Since this is a prerequisite for oper-
ating the factory in the new configuration, a manual approach can no longer
effectively fulfill the objectives for assuring the safety in highly flexible manufac-
turing scenarios. Hence, the acquisition of safety-related information from each
individual production step and the analysis of possible emergent hazards must
be conducted in an automated way to quickly assess a new configuration of a
manufacturing plant.

To evaluate the quality of a product considering the production process,
a Process Failure Mode and Effects Analysis (process-FMEA) is typically per-
formed. During production, every process step can negatively influence the qual-
ity of the product depending on the negative outcome of the process step. This
is captured in a process-FMEA with the concept of failure modes of a process
step as well as the respective severity. It also defines measures to detect and
deal with unwanted effects on product quality. Such an analysis is important
to document the applied quality measures and to find out where drawbacks in
the production process are and how they can be addressed. Since the factory’s
configuration as well as its products constantly change in adaptable and flexible
factory scenarios, a process-FMEA must be performed dynamically during the
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production of each product based on the configuration used. This is necessary to
ensure that the products requirements w.r.t. quality will be met by the provided
production process.

In this paper, we present an approach for the model-based assessment of flexi-
ble and reconfigurable manufacturing systems based on a meta-model. This inte-
grated approach SQUADfps (machine Safety and product QUAlity for f lexible
proDuction systems) captures all information needed to conduct both risk
assessment and process-FMEA dynamically during the runtime of the manufac-
turing system in an automated way. In this way, the approach enables flexible
manufacturing scenarios with frequent changes of the production system up to a
lot-size of one. In order to provide a better understanding for our proposed app-
roach, we assume that the considered production systems are already installed
as intended and focus only on the reconfigurability in terms of equipment and
process changes.

The rest of the paper is organized as follows: In Sect. 2, an overview of related
work is given. Section 3 introduces a meta-model (Sect. 3.1) that enables an
automated hazard and risk assessment for the factory (Sect. 3.2) and a process-
FMEA for a product to be produced in a factory to ensure that the its quality
is on track (Sect. 3.3). Section 4 presents a case study to show how the model
can be applied. Section 5 summarizes the main results and provides an outlook
for further research topics.

2 Related Work

The usage of model-based approach to carry out safety analyses or safety assess-
ment aims to achieve compositional, reusable safety assessment and to improve
traceability of information provided from the system design phase [21]. The col-
lective term model-based safety assessment includes a wide range of techniques
proposed in the academia [18,21] that have already been applied extensively
nowadays in varying domains such as the automotive industry [23], IT security
[1,15], aviation sector [4], train protection system [28] and industrial automation
e.g. collaborative robots application [3]. In most of these applications, the safety
requirements of the designed systems are assessed based on the functional system
models created. Different tools and modeling techniques have also been devel-
oped since then to facilitate and maintain model-based safety engineering and
safety analysis [5,13,24]. However, most of the mentioned publications deal with
model-based applications during design and development phases instead of run-
time applications, which is one of the most important aspects for highly flexible
manufacturing scenarios. To facilitate flexible and reconfigurable manufacturing
systems in a practical way, as safety analyses nowadays are an inherently manual
tasks in which only very few steps are automated, it is necessary to support these
manual processes with automation as far as possible. Frequent system changes
needed for lot-size-1 scenarios require runtime safety assessment to be done in an
economically feasible manner [19]. In this paper, we propose a method to carry
out safety assessment automatically at runtime using a proposed meta-model,
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which can facilitate human during the decision-making to approve new system
configuration.

Failure mode and effects analysis (FMEA) has its origins in military applica-
tions [9] and was used in the same decade to analyze the influence of failures in
production processes [12]. Since it is an effective but costly analysis technique,
automating it has a long history in functional safety [6–8,22,27] and also for
analyzing machinery. In [26], it is mentioned that process-FMEA is part of an
integrated approach for safe products, but that classic process-FMEA does not
consider the manufacturability of a product influenced by quality problems. In
[14], the authors use FMEA among other techniques to assess the manufactura-
bility and estimating the cost of a conceptual design in early product design
phases. They introduce an approach to estimate costs of failures during manu-
facturing using an extended FMEA approach introduced in [25]. This is a man-
ual task that is used to prioritize different manufacturing options. Their work
can be used in combination with the approach presented here to include costs
of potential failures during manufacturing. In [11], product process resource-
based approach is presented that uses an ontology to model the manufacturing
capabilities and the required process steps to produce a product. Similar to the
approach presented here, the authors use a standardized language set in an ontol-
ogy to (semi-)automate the process of mapping production steps for a product
to machinery. Nevertheless, they do neither aim for quality aspects of the output
nor for rejected items in the mapping process.

3 Model-Based Safety and Quality Assessment
of Flexible, Adaptable Production Systems

3.1 Meta-model

Figure 1 shows the proposed meta-model of SQUADfps for a flexible and recon-
figurable production system. The meta-model is divided into four categories,
considering both machine safety and product quality aspects:

– Process Definition: In the product category, the elements address the order
and steps related to what has to be done to produce a product. This category
also addresses the required safety approval process before the production is
allowed to commence.

– Abstract Services: The model elements of the category abstract services
collect common specification of services and service parameters across all
factories. These elements enable the specification of a product indepen-
dently from a concrete production equipment. Besides, this category provides
abstract service to carry out safety assessment for any concrete production
equipment.

– Production Equipment: The elements of this category model a concrete
factory or production system along with its machinery equipment, describing
what it can do, what quality measures are available and what safety functions
are implemented.
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– Process Implementation: In the process implementation category, the ele-
ments address the concrete process used to produce a product. Here, the
process steps address concrete ordered actions that are executed to produce
a product. These steps provide a solution on how a product is produced.
Besides, concrete hazards associated to the process are identified.

Fig. 1. SQUADfps meta-model for process-FMEA and safety assessment supporting
automation

These categories allow users to map different activities, use cases and roles
in the domain of dynamic reconfigurable production scenarios to automatically
generate a process-FMEA (quality of the product) and a risk assessment result
(safety of the production system) for the production system under consideration.

In the process definition category, the product owner specifies which steps
are needed and in which order they need to be executed to produce a product
(recipe). The product owner addresses abstract services that can satisfy steps of
its recipe. Those abstract services provide a global library of all available services.
Each service declaration can have constraints and parameters that can be set for
a recipe step (service property). For example, the abstract service drill requires
the rotation speed of the drill and the size of the drill hole as parameters. When
the abstract service is instantiated in a recipe step, these parameters need to be
set.

Different failure modes can be stored (failure mode declarations) during
the abstract service declaration. Independent from the concrete equipment or
machinery (equipment), failure modes are known and defined in general. For
example, the service drill has the potential failure mode skew drill hole for all
concrete machinery implementing this service.

For each addressed service declaration in a recipe step, the failure mode
declarations are known to the product owner that defined the recipe. He now can
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specify how severe the different failure modes (using recipe step failure modes)
are for his product. Thus, the first step for the quality assessment using a process-
FMEA can be performed without knowledge of the concrete equipment that later
produces the product. This can be done for the combination of recipe steps and
failure modes rated with a severity value.

Independent from this specification scenario of a recipe, the owner of a fac-
tory can model the equipment (production equipment) with equipment services
and safety functions. Equipment services address the abstract service declara-
tions available in the global library. Equipment property constraints are used
to specify the possible operating parameters and limitations of service property
declarations, while equipment failure modes address the service failure modes of
the abstract service.

During declaration of production equipment, the factory owner can specify
the available machinery and the equipment service along with its parameter
limitations, which can be provided for a specific recipe. With this, the factory
owner gets a list of possible abstract failure modes and can specify how often the
abstract failure mode occurs for the concrete service (equipment failure mode).
This can be known either by previously collected data or data provided by
the manufacturer of the machinery. In this case, the factory owner can provide
information about the occurrence value of concrete failure modes while using the
equipment during the production.

In order to consider the safety of the production, the process will require
safety approval before operation (process approval) during process definition.
Process safety requirements specify the minimal safety requirements to be
achieved. For instance, the product owner can specify that only safety functions
with a certain minimal safety guarantee are allowed due to safety criticality of
the product or enforced safety guidelines. This process approval addresses the
relevant abstract service (safety assessment), which checks whether all expected
hazards are covered by the available safety functions considering the risk level.

Beside modeling the failure model for process-FMEA, the factory owner can
also model the safety functions provided by an equipment. For instance, an equip-
ment protective measure such as light curtain that is installed can protect the
personnel during interaction with the equipment, which provides safety guaran-
tee in term of performance level to describe the reliability of the safety device.
A safety function covers certain hazard types, which can be described through
predefined semantics. A light curtain can protect personnel against mechanical
hazards (crushing, shearing etc.), as long as the hazard source lies within the
allowed working area and occurs during certain interaction tasks (safety con-
straint).

During process implementation, the factory owner will get a list of possible
hazards in relation to the interaction tasks, in which the frequency of the task
can be defined. The risk parameter frequency describes the interaction of per-
sonnel with the production system. For a lot-size-1 scenario, the frequency can
still be defined as high if the responsible personnel needs to carry out manual
tasks for a foreseeable high amount of time. In combination with the concrete
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risk parameters (severity and possibility for avoidance) provided by the equip-
ment, an identified hazard with its evaluated risk level (hazard property) can
be checked against the safety function to ensure the production safety. Further
examples for hazard properties include runtime location of hazard source, mov-
ing speed of its equipment, relevant interaction tasks etc.

3.2 Model-Based Risk Assessment

As mentioned before, a production process might include some human interac-
tion tasks in different life cycle phases, such as setup of equipment, interactions
during the production or maintenance activities. These interactions are specific
to the concrete process and independent from the recipe, which describes the
product to be manufactured. Each interaction task can include one or more
hazards for the personnel involved, which have a certain level of severity. Each
hazard also possesses a possibility of avoidance, which determine how possible a
person can avoid the hazard during its occurrence. According to the risk graph
in the standard ISO 13849 [17], the risk level of a particular hazard can be eval-
uated using the severity of associated hazard (S), the frequency of tasks (F) and
the possibility of avoidance (P). This leads to a risk level described in term of
required performance level (PLr).

Safety functions are typically installed to protect humans against a certain
hazard and have a performance level (PL) value, which describes the overall
reliability of the safety device considering the components used. Having this
information provided by the machine vendors, the required performance level
gained from risk assessment (PLr) can be evaluated against the provided safety
function performance level (PL). In a conservative manner, the production pro-
cess can only be approved manually by the factory owner when all the identified
risks are covered successfully by the available safety functions considering PL
value.

3.3 Dynamic Process-FMEA

Since equipment is not only able to execute production steps in a recipe, but
is also able to execute quality measures, an equipment service can therefore
cover certain failure modes. These measures can be originating from the same
service, from a different service of the same equipment or from a service of a
different equipment. For example, a robot arm that can be used to perform pick
and place can also supervise its own actions using a camera. In this case, the
failure mode misplacement of the service pick and place can be covered by the
service camera supervision from the same equipment. Using this methodology,
the factory owner can specify which machinery can be used to increase the
quality of the production. Since quality measures decrease the occurrence of
certain failure modes, each covered failure mode stores a decreased occurrence
value.
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Using the severity of a failure mode from the product specification (recipe
failure mode) multiplied by the occurrence value of the equipment failure mode
or with the decreased occurrence value of a quality measure, a process-FMEA
can be conducted for a product produced by a certain process on a concrete set
of equipment.

This model-based approach ensures a structured and systematic analysis for
all known failure modes that are captured within the model. This is valuable,
as systematic and complete analysis is a requirement e.g. required by safety or
quality standards. If experience from production about failures that actually
were observed but not yet captured in the model is included, over time the anal-
ysis should become complete with regard to present knowledge. During the first
applications in real production there might be a need to at least verify complete-
ness by a manual inspection. A manual inspection and possibly extension of a
pre-generated pFMEA is much less effort than starting from scratch, so even at
the introductory phase there is already a reduction in effort to be expected.

4 Case Study

In this small case study, we want to demonstrate how to use the meta-model as
described in Sect. 3. The product that we investigate here is a small roll that con-
sist of a roll body, an axle and two metal discs as depicted in Figs. 2 and 3. The
entire material is delivered on a tray, see Fig. 4, and is set together by a robot
arm that also greases the contact area of the parts. After that, a visual inspection
detects insufficient products. To rate failure modes, we use an risk priority num-
ber (RPN) based approach for the parameters severity (sev), occurrence (occ)
and detection (det) with a range from one to five whereas one represents the low-
est severity, a negligible occurrence rate and a sure detection and five represents
a high severity, a high occurrence rate and an nearly impossible detection. For
the assessment of machine safety for the setup production system, performance
level (PL) is used in accordance with ISO 13849-1 [17]. Risk level of the iden-
tified hazards can be described through required performance level (PLr), with
the risk parameters severity, frequency and possibility of avoidance, whereas PL
a represents the lowest tolerable risk and PL e represents the highest risk.

Fig. 2. Roll with axle
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Fig. 3. Disc to be mounted and greased

Fig. 4. Tray with products

Dynamic Process-FMEA
The recipe steps for production are depicted on the left side in Table 1 for recipe
R = r1, . . . , r6. For the first process P = p1, . . . , p6a, the tray is delivered using
an abstract service convey which is implemented by the equipment belt conveyor.
The failure modes of this service are misplacement and shock rated by the design
team with a severity value of four and five respectively. The production equip-
ment produces failures with a occurrence of two and one. A visual inspection
can safely detect both failure modes (detection value Det is 1).

Table 1. Example product recipe and two processes using abstract services.

The next step is to mount the axle inside the roll. This step is fulfilled by
the service pick and place which is implemented by a robot arm. This service
can fail in two ways, the object can be misplaced but can also be crimped by
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the clutch. Crimping is not very severe to the axle since it is made from solid
metal. This cannot be detected by a visual inspection (detection value Det is 5).
Both discs need to be greased and there can be too much and too little grease.
Having too little grease is quite severe, and the worker can detect it. Having
too much grease is just a minor failure. Since the roll itself is made from plastic
material, crimping is severe since the roll can be damaged. This failure mode can
hardly be detected by the worker, since he is not doing a stress test (detection
value Det is 5). The elements of properties and constraints are not depicted in
the table for the reason of space limitations. Service properties of pick and place
would include, for example, start- and endpoint, trajectory and weight, whereas
an equipment implementing this service provides limitations of those parameters
and recipe steps requesting the service would provide the required information
to fulfill the step.

With the failure mode information provided by the service definition, the
design team can specify what failure mode is severe (requirement) and the vendor
can specify how often the failure mode appears on its machinery and how the
effect of the failure mode can be prevented in later products (implementation).
The process P generally is capable to implement the recipe R since the equipment
fulfills the required service of each recipe step and the relative order of the process
steps matches the order of the recipe steps with an additional step at the end of
the process: p6a.

Also depicted in Table 1 is an additional process P ′ = p′
1, . . . , p

′
6a that also

fulfills recipe R but with different equipment. A different robot arm is used,
that has a lower probability of crimping. Additionally, the visual inspection is
implemented by a more precise laser scanner that better detects crimping. With
these two adoptions in place, the highest risk priority number is lowered from
100 to 20.

This approach in its basic implementation is of a qualitative nature. It there-
fore enables comparing different production alternatives and facilitates the selec-
tion of a appropriate schedule selection for the production of a concrete prod-
uct. In a specific domain the quality criteria might be specified in a quantitative
manner, failure probabilities replacing occurence values and actual costs at risk
replacing severity values. If this is possible for a certain domain or use case then
for products and production quantitative goals can be specified and the selection
or ranking of different schedules with regard to fulfilling quality requirements of
a product can be done. A manual selection will probably still be necessary to
balance e.g. quality goals with other goals not captured within this model.

Model-Based Risk Assessment
Using the same production process described above, an example for the conduct
of safety assessment using an abstract service, as depicted in Fig. 1, can also be
shown. In this production process, the operator is required to load the product
parts (roll body with axle) in a frequent manner onto the belt conveyor. Besides,
the robot’s handling tool needs to be adjusted and maintained occasionally to
ensure its high precision. Hence, the task frequency of these two interaction tasks
can be described as F2 (high frequent) and F1 (low frequent) respectively. As
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the frequency is defined in relation to the overall process duration required, its
definition is hence independent from the product lot sizes.

The initial production system with Belt conveyor and Robot Arm in Table 2
introduces three different hazards for the described interaction tasks. During
the loading of production parts, the movement of robot arm can cause shearing
points with high severity (S2), which can hardly be avoided due to its high
movement speed (P2). On the other hand, the moving belt conveyor introduces
possible squeezing points to the operator with the risk parameters S1 and P1
thanks to its relatively well-considered inherent design. During the maintenance
of robot arm, the operator might still be bruised by the arm movement (S2)
although the movement speed is monitored by its safety control function (P1).
Here, only a light curtain is provided as a safety function with the performance
level PL d.

As shown in Table 2, the current setup does not fulfill all the safety require-
ments. Hazard h1 with a high level of risk PL e does not receive a suitable safety
function that fulfill the required performance level. In addition, there is no avail-
able safety function that can counter the hazard h3. Based on this result, the
responsible individual can decide whether to reduce the risks, to eliminate the
risks or to provide extra protective devices to the system. This involves creative
decision-making process and is not being considered in the proposed meta-model.
The generated risk assessment result can then provide instant updated informa-
tion after every system modification to assist the decision-making process.

It is assumed that the financial situation allows the factory owner to acquire
new equipment. In order to improve the safety of the production system, a
different robot arm (Robot Arm 2 ) that provides the same services is now used,
as depicted in Table 3. This robot arm is equipped with an integrated sensor skin
(safety sensitive cover) that can detect human approaches and turn off the robot
once the operator violates the safety distance. This sensor skin provides a safety
assurance of PL e. With this new robot arm, all previously unfulfilled safety
requirements are now satisfied by the provided safety functions. The abstract
service now confirms the results and awaits safety engineer to make the final
approval.

Table 2. Exemplary risk assessment for the provided product recipe using abstract
services (safety requirements are not completely fulfilled).

Process P Interaction

task T

F Hazard H S P PLr Safety

function

PL

Robot

Arm

Loading of roll

body wilh axle

F2 (high) h1 Shearing due to

robot movement

S2 (high) P2 (high) PL e Light

curtain

PL d

Bell

conveyor

Loading of roll

body wilh axle

F2 (high) h2 Squeezing due to

bell’s capturing

SI (low) P1(low) PL b Light

curtain

PL d

Robot

Arm

Maintenance of

robot’s

handling tool

F1 (low) h3 Bruising due to

robot movement

S2 (high) P1 (low) PL c none none
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Table 3. Risk assessment after implementing counter measures using a different robot
arm (safety requirements are now fulfilled).

Process

P′
Interaction

task T

F Hazard H S′ P′ PL′
r Safety

function

PL

Robot

Arm 2

Loading of roll

body wilh axle

F2 (high) h1 Shearing due to

robot movement

S2 (high) P2 (high) PL e Safety

sensitive

cover

PL e

Bell

conveyor

Loading of roll

body wilh axle

F2 (high) h2 Squeezing due to

bell’s capturing

SI (low) P1(low) PL b Light

curtain

PL d

Robot

Arm 2

Maintenance of

robot’s

handling tool

F1 (low) h3 Bruising due to

robot movement

SI (low) P1 (low) PL a Safety

sensitive

cover

PL e

This example shows how the usage of an abstract service allows the definition
of an abstract production recipe without addressing concrete production equip-
ment. The product design team uses abstract service declarations and properties
to formulate production requirements. It can be decided (semi-)automatically if
the production equipment can manufacture a product defined by a recipe. By
providing information about the severity of certain failure modes, those require-
ments are extended by quality requirements. In a second step, a factory can
map its production equipment to this abstract language and evaluate if it can
produce the recipe. By providing information about the occurrence of failure
modes of the existing production equipment, it can be evaluated using RPNs
if the required quality can be met or if additional quality measures need to be
implemented to increase the quality. By having a budget for a recipe, the ven-
dor of a product can evaluate the economic efficiency of its possible production
scenarios and decide to produce a product or to decline an offer. By comparing
the RPNs of prospective processes and their economic deficiencies, an optimal
process can be selected.

The same applies to the risk assessment procedure. By using abstract service
definitions, the integrated production equipment can be checked automatically
during runtime to guarantee the safety of operators while interacting with the
production system. The known interaction tasks are firstly associated with infor-
mation regarding possible involved hazards, whereas the severity and possibility
of avoidance are then described concretely by the integrated production equip-
ment. The frequency of interaction tasks can also be predefined in order to eval-
uate the required risk level using performance level PLr along with the other risk
parameters. Considering the available safety functions along with its constraints
at runtime, the production system can be assessed against the identified hazards,
emphasizing hence the critical points that require further safety considerations
and safety measures. This ensures a higher efficiency, quality and completeness
of the risk assessment result, which is usually done manually nowadays.

5 Conclusion and Future Work

In this publication, we presented an integrated model-based approach SQUADfps
that enables both the automated conduct of risk assessment and the dynamic
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creation of a process-FMEA for a flexible, adaptable or reconfigurable produc-
tion system. Our proposed meta-model provides the foundation to enable flexible
production scenarios in which individual and customer-specific productions can
be manufactured up to lot-size-1. The proposed model-based risk assessment
can ensure the safe operation of a new, previously unknown configuration of the
manufacturing system by conducting the required risk assessment in an auto-
mated way based on the information available in the meta-model. Moreover, the
evaluation on whether a specific product can be manufactured while meeting the
customer’s quality requirements by a specific configuration of the plant (as well
as a cost-efficient use of quality assurance mechanisms within the manufacturing
process) can be conducted by generating a process-FMEA in an automated man-
ner. By applying the proposed model-based approach, all information required
to perform these assessments can be provided automatically during runtime.
The currently manual and time-consuming tasks to conduct assessments can be
automated. This assists the decision-making process of human and thus, enables
the fast reconfiguration of production systems in flexible production scenarios.
In the future, this integrated model-based approach will be applied to further
use cases to improve the completeness and significance of the generated results.
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6. Cichocki, T., Górski, J.: Failure mode and effect analysis for safety-critical systems
with software components. In: Koornneef, F., van der Meulen, M. (eds.) SAFE-
COMP 2000. LNCS, vol. 1943, pp. 382–394. Springer, Heidelberg (2000). https://
doi.org/10.1007/3-540-40891-6 33
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Abstract. Wireless body area networks (WBANs) have become popular for
providing real-time healthcare monitoring services. WBANs are an important
subset of Cyber-physical systems (CPS). As the amount of sensing devices in
such healthcare applications is growing rapidly, security, scalability, availability
and privacy are a real challenge. Adoption of cloud computing is growing in the
healthcare sector because it can provide high scalability while ensuring avail-
ability and affordable healthcare monitoring services. Serverless computing
brings a new era to the design and deployment of event-driven applications in
cloud computing. Serverless computing also helps the developer to build a large
application using Function as a Service without thinking about the management
and scalability of the infrastructure. The goal of this paper is to propose a
dependable serverless architecture for WBAN applications. This architecture
will improve the dependability of WBAN applications through ensuring scala-
bility, availability, security and privacy by design, in addition to being cost-
effective. This paper presents a detailed price comparison between two leading
cloud service providers. Additionally, this paper reports on the findings from a
case study which evaluated security, scalability and availability of the proposed
architecture. This evaluation was conducted by load testing and rule-based
intrusion detection.

Keywords: Wireless body area network � Cloud computing � Serverless
architecture

1 Introduction

With the rapid growth of wireless communication and sensor technology, Wireless
body area network (WBAN) applications are an increasingly important technology in
providing healthcare services. WBAN applications can provide an affordable health-
care service with real-time monitoring [1]. A WBAN application can provide long-term
health monitoring of a patient’s physiological states including body temperature, blood
pressure and heart rate without constraining their normal activities. These sensor-based
applications can be used to monitor patients with different chronic diseases such as
diabetes, hypertension, and cardiovascular disease [2]. In [3], the authors proposed a
solar-powered sensor-based smartphone healthcare application to display data from
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multiple sensor nodes. Sensors and smartphones can be combined with cloud com-
puting to provide smart and affordable healthcare systems.

Cloud computing is a model which provides on-demand self-service for provi-
sioning resources and rapid elasticity with minimal management effort and service
provider interaction [4]. Software as a Service (SaaS), Platform as a Service (PaaS) and
Infrastructure as a Service (IaaS) are three types of service model available in cloud
computing. Currently, Amazon web services (AWS), Microsoft Azure, Google and
IBM are the leading cloud service providers. According to the Gartner magic quadrant
2018 report, AWS and Azure are recognised as leaders in IaaS.

In [5], the authors propose a remote healthcare application developed using a
combination of Android apps and cloud computing to provide medical services for
older adults. In a healthcare application, it is necessary to ensure minimal latency while
exchanging information between sensor devices and servers. This minimal latency will
increase the availability of patient health record for providing real-time healthcare
service. In [6], the authors presented a cloud-based smart healthcare monitoring system
using a docker container-based virtual environment to reduce latency and bandwidth.

As WBANs have limited memory, energy and computing power, a scalable high-
performance computing and storage infrastructure is required to provide real-time data
processing and storage. Serverless computing started a new era in the cloud computing
industry, allowing minimum maintenance and providing cost-effective infrastructure
for application development. Serverless computing is a cloud computing execution
model where a cloud provider will run the server and dynamically manage the resource
allocation. Serverless computing only charges for execution time, which helps in
developing a cost-effective service. The goal of this paper is to present a serverless
architecture for developing a dependable cloud-assisted WBAN application. By
dependable we mean the application will be secure, available, scalable and ensure
privacy.

The rest of the research paper is organised as follows; Sect. 2 briefly describes
current trends in cloud computing in WBAN. Section 3 details the proposed serverless
architecture, while Sect. 4 presents the implementation of the proposed architecture.
Load testing results and attack mitigations for the proposed architecture are presented
in Sect. 5. Finally, Sect. 6 concludes the paper by detailing future work.

2 Cloud Computing in WBAN

A fundamental issue in a WBAN healthcare application is the effective and efficient
management of a large amount of data generated from sensor nodes. Cloud infras-
tructure can provide scalability of data storage, perform data analysis and give access to
the user’s health records [7]. In [8], the authors proposed a SaaS approach called
BodyCloud. This SaaS approach supports the storage and management of sensor data
streams for sensor-based healthcare applications. It also provides offline and online
processing of stored data by using Google PaaS infrastructure, which allows for rapid
prototyping of applications, easy customisation of architectural components, and
scalability. In [9], the authors present cloudlet-based efficient WBAN healthcare
applications which provide reliable large-scale sensor data to the end user. The
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proposed prototype consists of a virtual machine which provides scalable data storage
and processing infrastructure for large-scale WBAN systems. Sensor nodes used in a
WBAN application can have different data transmission rates which require optimal
resources for computing to avoid performance degradation or data loss. In [10], the
authors proposed a cloud-based experimental framework named Cloud-WBAN, which
will automatically adjust computing resources based on data volume and application
type.

In [11], the authors proposed a green cloud-assisted WBAN based health moni-
toring service by adjusting the sleep time of sensor nodes for energy saving. The
authors proposed to use the cloud-based MapReduce algorithm to analyse sensing
frequency of decentralised data transmission between cloud and sensor nodes. In [12],
the authors proposed a virtual hospital architecture by integrating WBAN and software-
defined networking (SDN) in cloud computing to provide a better quality of service. As
cloud computing provides scalability, elasticity and cost efficiency, the SDN will add
further dimensions by providing adaptability and high bandwidth capability.

As sensor nodes of a WBAN application generate large amounts of data, cloud
computing can provide a scalable storage option in addition to assisting with pro-
cessing data in real-time. Cloud computing can also help with quick prototyping and
deployment of the application. Furthermore, easy customisation of cloud infrastructure
will help with feature enhancement of WBAN applications.

3 Proposed Serverless Architecture

Serverless computing is getting popular as a new and compelling paradigm for the
development of cloud-based applications, largely due to the recent migration of
enterprise applications to containers and microservices [13]. In the traditional cloud
computing scenario, the healthcare application provider will pay a fixed and recurring
cost, whether the application is used or not. In serverless computing, the user will only
pay per-execution, not for the idle time. Serverless computing helps the developer to
build a larger application using Function-as-a-Service (FaaS) platforms where each
component of the application can scale separately. It also gives the flexibility to
develop an application without thinking about managing infrastructure.

To develop system architecture, we first need to gather requirements and define the
use cases. In this research paper, we choose a fitness tracking application designed by a
mid-size enterprise, Company A, located in Ireland. This fitness tracking application
consists of a wearable device which sends sensor data to a mobile application. This
mobile application then transmits the data received from the sensors to a cloud-based
backend application for further analysis. The user can access previously uploaded
sensor data through the mobile application. Additionally, a user management process
needs to be in place to manage sign in, sign up, and profile updates. This section
presents an overview of the services required to develop the fitness tracking applica-
tion, along with the cost structure of providing these required services from two leading
cloud providers, that is AWS and Azure.
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3.1 Domain Name System Service

Amazon Route 53 is a highly available, scalable and cost-effective Domain Name
System (DNS) service for translating a domain name to an IP address. It can be used to
manage user traffic globally through a variety of routing types, including latency-based
routing or Geo DNS [14]. Additionally, it can also connect user requests to other AWS
services such as Elastic load balancer, Amazon S3, CloudFront and API Gateway. The
Azure DNS service also provides a similar service by using the Microsoft global
network of name servers along with anycast networking. To provide high availability
and faster performance, each DNS query is resolved by the closest available DNS
server [15]. AWS Route 53 and Azure DNS have a similar monthly charge which is
based on the number of hosted zones. AWS Route 53 ensures availability and traffic
management using latency-based and geoproximity based routing protocols.

3.2 User Management and Authentication Service

Amazon Cognito is an authentication, authorisation and user management service for
web and mobile applications. The user can sign up and sign in using their user name
and password, without building and managing a backend solution or any infrastructure
to handle identity management [16]. The Cognito service can save authentication
information locally inside the device, which will allow applications to work offline. In
the Azure cloud environment, Azure Active Directory (Azure AD) B2C is a business-
to-consumer identity management service [17]. This service helps to customise and
control how the user will communicate with the application. Azure AD B2C was
developed using OpenID connect and OAuth2.0 protocols to provide security tokens
and secure access to resources. This authentication and authorisation service will
ensure privacy by preventing unauthorised access of personally identifiable
information.

AWS Cognito charges are based on the number of monthly active users, while
Azure AD B2C charges for each authentication. Both services have additional charges
for enabling a multi-factor authentication service.

3.3 Content Delivery Service

A content delivery web service is used to deliver content to end users with low latency,
high data transfer speeds, and no minimum usage commitments. When a user places a
request for content, it will be automatically routed to the nearest edge location, so
content is delivered with the best possible performance. Both cloud providers have
content delivery services named AWS CloudFront and Azure CDN. Azure CDN serves
the content from 30 point of presence (PoP) server locations worldwide [18], while
AWS CloudFront serves content from 79 PoP server locations across 49 countries [19].
CloudFront supports dedicated custom SSL certificates and field level encryption.

AWS CloudFront provides content delivery from more PoP server locations
compared to Azure CDN. Both service providers have a different pricing model based
on the origin of the request, but in CloudFront there is no charge for the first 2,000,000
HTTP/HTTPS requests and 50 GB data transfer out per month for the first year.
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3.4 Serverless Computing Service

Developing applications using serverless architectures requires event-driven or micro
computing services to virtually run code for any application or backend service without
the need to provision or manage servers. This service also needs to provide high
scalability and availability with zero hardware and system administration.

AWS Lambda is an event-driven computing service which helps to build a
serverless backend system to handle requests from the web and mobile applications
using API Gateway [20]. The Lambda service helps to run and trigger code in parallel
processes and scales with the size of the workload. By integrating Cognito services,
Lambda can authenticate each request by using access tokens. Lambda supports several
programming languages, including Java, Go, PowerShell, Node.js, C#, Python, and
Ruby.

Azure Functions or Azure Service Fabric can be used to develop a serverless
application using event-driven or micro computing services [21]. Azure Functions can
directly integrate with mobile or web applications without attaching an application
gateway. Azure Functions support C#, JavaScript, F# and Python in preview mode
which is only available on request. Preview mode is excluded from the Microsoft
service level agreement and might not be brought forward into general release.

Azure Functions provide different pricing models such as per execution, resource
consumption and premium plan, whereas AWS Lambda only has a pay-as-you-go
pricing model. However, AWS Lambda supports more programming languages than
Azure Functions, which allows more flexibility during development of the application.

3.5 API Management Service

An API management service is required to publish APIs to integrate web or mobile
applications with serverless backend services. The Amazon API Gateway and
Azure API Management services are fully managed services which makes it easier for
developers to create, publish, maintain, monitor, and secure RESTful application
programming interfaces (APIs) at any scale and to expose backend and frontend
HTTPs endpoints [22]. The Amazon API Gateway uses the Amazon CloudFront edge
location service and can therefore provide lower latency responses when compared to
Azure. The Azure API management service has three different pricing plans whereas
the AWS API Gateway charges per request [23]. Additionally, the AWS API gateway
supports multiple stages for API development, which provides better API lifecycle
management when compared to Azure.

3.6 Database Service

In a serverless application, it is better to have a database with low latency that requires
zero maintenance. Amazon DynamoDB is a fully managed fast and flexible cloud
NoSQL database service. It is suitable for all applications which require single-digit
millisecond latency at any scale [24]. This database supports both document and key-
value data models. In DynamoDB, the user only needs to create a database table and set
throughput. The rest of the database management tasks such as hardware or software
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provisioning, autoscaling, and automatic partitioning will be handled by AWS. The
Azure Cosmos DB is a fully managed, globally distributed, multi-model database
service with high scalability and single-digit read-write latency with multiple NoSQL
supports such as document, graph database and key-value data models [25].

In DynamoDB the user is charged per read and write request, whereas Cosmos DB
charges for provisioned throughput and consumed storage by the hour. Furthermore,
the databases are distinguished by their backup processes, as Cosmos DB provides
automatic backup whereas it is a manual process with DynamoDB.

3.7 Web Application Firewall

Finally, a firewall service will be required to protect web and mobile applications from
common web exploits which could affect application availability, compromise security,
or consume excess resources. The AWS Web Application Firewall (WAF) provides
control over which traffic to allow or block to the web application by defining cus-
tomisable web security rules. WAF charges per rule [26]. By creating a custom rule, the
WAF can block common attack patterns, such as distributed denial-of-service (DDoS)
attack, SQL injection or cross-site scripting. The WAF can integrate with other services
such as CloudFront, Elastic load balancer and the API gateway. A lambda function can
be used to analyse the CloudFront access log and automatically update security rules in
the WAF.

In the Azure cloud platform, the WAF service can be enabled as part of the
Application Gateway [27]. This Application Gateway WAF service is based on the
Core Rule Set 3.0 provided by the Open Web Application Security Project (OWASP).
This WAF service does not provide any protection against DDoS attacks. To protect
the application from DDoS attacks in the Azure cloud platform, a separate service
named Azure DDoS Protection needs to be enabled. It comes with a fixed monthly
charge, whereas AWS WAF charges are based on the number of rules created.

3.8 SSL/TLS Certificate

SSL/TLS certificates are used to secure communication between two entities in the
system. AWS certificate manager (ACM) provides easy provisioning, management and
deployment of public or private SSL/TLS certificates. ACM also provides easy cer-
tificate integration with other AWS services such as elastic load balancer, CloudFront
and API Gateway. Azure only provides a public certificate for the Azure CDN and App
services. Both service providers provide public certificates free of charge. There is an
additional charge for private certificates.

3.9 Cost Comparison Between Azure and AWS

In this section, a cost comparison between the selected AWS and Azure services is
presented. This comparison is based on different parameters such as the number of
users, database size and read and write requests per second. During the cost calculation,
a pricing calculator provided by the respective cloud providers for the Ireland region
was used. As AWS and Azure use different pricing models, in some cases, an
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adjustment will be required for the selected parameters. For example, the AWS API
management charge is based on the number of requests per second, whereas the
Azure API management has four tiers including developer, basic, standard and plat-
inum. The basic tier was selected for Azure API management. AWS Cognito charges
for the number of active users in a month, whereas Azure AD B2C charges for the
number of authentication requests. Based on Company A’s business goal to have
50,000 monthly active users with an average of five authentication requests per user,
50,000 monthly active users for AWS Cognito and 250,000 authentication requests for
Azure are considered in the calculation. Additionally, one Web access control list
(WEB ACL) and 15 custom rules for AWS WAF, 10 TB data transfer for content
delivery and a database size of 50 GB was selected for the calculation. Table 1 outlines
the cost for individual services of Azure and AWS.

During the cost analysis, we notice a large difference in the API management and
WAF services. For API management, Azure requires the combination of Application
gateway and API management services which results in higher costs compared to
AWS API Gateway. AWS API Gateway charges are based on the number of requests,
whereas Azure charges are based on the tier subscription and the number of instances.
For WAF, Azure provide a package that secures web and infrastructure for a fixed
monthly price. For AWS, the user needs to configure web security rules which cost $1
per rule. To secure the infrastructure with AWS, the user can rely on AWS with zero
cost. For user management and authentication services, AWS Cognito charges are
based on monthly active users and no charge will be required with free tier support, but
Azure B2C will charge $560 for 250,000 authentications.

3.10 Summary of Comparison Between AWS and Azure

After reviewing the services from AWS and Azure, we notice some key differences in
terms of cost and features. AWS will provide more availability in terms of content
delivery due to having more PoP than Azure. AWS Lambda supports more

Table 1. Azure and AWS monthly cost comparison

Service name Azure AWS

Domain name system service $6.50 $6.50
User management and authentication service $560.00 $0
Content delivery service $828 $870
Serverless computing service $96.80 $2.30
API management service $250.62 $5.00
Database service $70.90 $56.89
Web application firewall $3456 $26.00
SSl/TLS certificate (public) $0 $0
Support plan $100 $100
Total $5368.82 $1,066.69
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programming language options than Azure Functions service. A summary of the
comparisons between AWS and Azure is presented in Table 2.

3.11 System Architecture

After reviewing the available features and cost comparison the AWS cloud platform
was selected to develop the serverless architecture as it will provide larger programing
language support, lower latency for content delivery, easy management of WAF, costs
less and the developer was more familiar with AWS. To develop the fitness tracking
application, the design of the core backend application system started by adding AWS
Cognito. Lambda and DynamoDB were selected to process user requests and store
data. To connect the backend application with mobile applications API gateway was
deployed and attached with CloudFront to ensure wider availability. Additionally, the
integration of Lambda functions allows for the analysis of CloudFront access logs
Finally, Route 53 with an SSL certificate issued from the Certificate manager will be
connected with CloudFront. The serverless architecture is illustrated in Fig. 1.

4 Implementation of the Proposed Architecture

This section describes the configuration process for the different AWS services con-
tained within the proposed architecture.

4.1 Configuration of AWS Services

An AWS Cognito user pool is created to manage all user accounts and configured to
handle end user sign in and sign up requests. The sign up process requires an email
address and username, along with other attributes related to the application such as
name, address, birthdate, gender and phone number. When a user successfully signs in,
Cognito will provide a JWT token with a one-hour expiration time limit. Therefore, the
mobile app will be configured to request a token refresh operation before the token
expiration time. Each table in DynamoDB is created by assigning a name and primary
key with partition and sort keys for better scalability and availability. To minimise the
database cost, each table was provisioned with a capacity of five reads and writes per
second. To ensure scalability, based on DynamoDB best practice guidelines, auto-
scaling was configured with a target utilisation of 70%. Finally, encryption at rest is set
up by assigning a key from the AWS Key Management Service (KMS).

The AWS Lambda platform supports several programming languages such as .
NET, Go, Java, Python, Node.js and Ruby to create functions. During this imple-
mentation, all functions were developed using Node.js 8.10. Based on application
benchmarking, functions to process and retrieve data were configured with 256 MB
memory and 10 s timeout. The rest of the functions related to other use cases such as
user profile creation, getting and updating endpoints and used a minimum of 128 MB
memory with a 5 s timeout. Each function is designed to be invoked by requests
coming from the API gateway. Additionally, a domain name is registered in AWS
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Table 2. Comparison summary between AWS and Azure

Service name AWS Azure

DNS service AWS Route53:
∙ Latency-based and geoproximity based
routing protocols
∙ Pricing model: cost per hosted zone and
number of requests

Azure DNS:
∙ DNS query resolved by the
closest available DNS server
∙ Pricing model: cost per hosted
zone and number of requests

User
management
and
authentication

AWS Cognito:
∙ Offline and online authentication support
∙ Pricing model: charge based on monthly
active users

Azure AD B2C:
∙ Only support online
authentication
∙ Pricing model: charge per
authentication

Content
delivery service

AWS CloudFront:
∙ 79 PoP server locations
∙ Pricing model: charge based on the origin
of the request and data transfer rate with
free-tier support for first year

Azure CDN:
∙ 30 PoP servers worldwide
∙ Pricing model: charge based on
the origin of the request and data
transfer rate with no free-tier
support

Serverless
compute
service

AWS Lambda:
∙ More supported languages and all
generally available for use
∙ Pricing model: pay per execution and
memory consumption

Azure function:
∙ Less supported language with
preview mode
∙ Pricing model: pay per
execution and memory
consumption or premium plan

API
management
service

AWS API gateway:
∙ Multiple API lifecycle stages support
∙ Better response time and lower latency
with CloudFront
∙ Pricing model: pay per request

Azure API management:
∙ No lifecycle stage support for
API
∙ Pricing model: three different
pricing plans: developer, standard
and premium

Database
service

AWS DynamoDB:
∙ Document and key-value data models
∙ Manual backup
∙ Pricing model: pay per read and write
request

Azure Cosmos DB:
∙ Document, graph database and
key-value data models
∙ Automatic backup
∙ Pricing model: pay per
provisioned throughput and
consumed storage

Web
application
firewall

AWS WAF:
∙ Customisable web security rules
∙ Standalone service can be integrated with
other AWS services
∙ Implement DDoS protection by analysing
CloudFront log
∙ Pricing model: pay per web security rule

Azure WAF:
∙ Web security rules not
customizable and managed by the
service provider
∙ Only available with the
Application gateway
∙ For DDoS protection require
Azure DDoS Protection service
∙ Pricing model: a fixed monthly
charge

(continued)
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Route 53 to route end-user requests using CloudFront. To enable HTTPS, a public
certificate was assigned from the ACM.

4.2 Deploy RESTful API Using API Gateway

The API gateway exposes the AWS Lambda functions as a RESTful API. A new
REST API is created by assigning a name with edge optimised endpoint option to serve
from the end user’s nearest location. As the WAF service is not fully integrated with
the API gateway, the CloudFront access log will be used with the WAF service for
intrusion detection. To fulfil each end user request, the following steps are necessary to
create a RESTful API using the API gateway:

1. Create the API gateway resource with POST method and attach to associated
Lambda function;

2. Configure the API gateway to use Cognito user pool as an authoriser to validate
user requests using JWT tokens before invoking any Lambda function;

3. Deploy API gateway resources with a stage name called “Prod” and collect the
URL;

Table 2. (continued)

Service name AWS Azure

SSL/TLS
Certificate

AWS ACM:
∙ Central certificate management for other
AWS services
∙ Pricing model: no charge for the public
certificate. Additional charge for a private
certificate

∙ Certificates are managed
separately for Azure CDN and
App service
∙ Pricing model: no charge for the
public certificate. Additional
charge for a private certificate

Fig. 1. Proposed serverless architecture for WBAN applications
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4. Create a CloudFront web distribution with HTTPS;
a. Add alternate domain name and respective SSL certificate from the ACM list;
b. Create a root origin entry with default behaviours using the step 3 URL;
c. Assign an S3 bucket to store the access log and create distribution;

5. Finally, configure Route 53 entry with respective CloudFront distribution.

This proposed architecture uses the OWASP top 10 recommendations for intrusion
detection and prevention. An AWS CloudFormation template was used to deploy the
WEB ACL, condition types and rules. Additionally, a lambda function was used to
analyse the CloudFront access log to identify the source of DDoS attacks and auto-
matically update the security rules in the WAF.

5 Performance Analysis of Proposed Architecture

Performance of the proposed architecture was evaluated by load testing and carrying
out a vulnerability assessment. Load testing will evaluate the scalability and availability
of the system. A vulnerability assessment will help to identify the weaknesses, potential
areas of intrusion, and configuration issues in the system. It will also help to implement
proper countermeasures for identified vulnerabilities to ensure the availability and
security of the proposed architecture. To evaluate the system, load testing and vul-
nerability assessments were conducted in two phases: (1) In-house and (2) Penetration
testing service provider (PTSP). Due to having limited resources for creating real-world
scenarios for load testing and limited knowledge for conducting a vulnerability
assessment in-house, we consulted with several PTSPs. A PTSP was selected based on
budget and experience.

In the following sections, we first provide the load test results and then describe
how the proposed architecture is affected by common web exploits such as distributed
denial-of-service (DDoS) and SQL injection attacks.

5.1 Load Testing Results

A load test is used to evaluate how the application or REST API backend will perform
with hundreds or thousands of concurrent users requests, and respective data volumes
in a real-life scenario. Load testing was performed for two scenarios: (1) users will first
download the mobile app and sign up for an account; (2) a user signs in to the mobile
app and starts sending sensor data along with other profile metadata. Table 3 presents
the list of REST API endpoints used during the load test.

Table 3. List of rest API endpoints for load testing

Scenario 1 (Sign Up) Scenario 2 (Sensor data transmission)

∙ Cognito: SignUp endpoint
∙ Cognito: InitiateAuth endpoint
∙ API:/user/registration
∙ API:/user/profile

∙ Cognito: Sign In
∙ Cognito: InitiateAuth
∙ API:/user/profile
∙ API:/sensordata/upload
∙ API:/sensordata/get
∙ API:/user/profile/update
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In-House Load Testing: It is recommended to use a modern, powerful and easy to
use tool for load testing. A custom bash script with the help of AWS SDK (Command
line version) was designed to test the sign up and sign in processes. Additionally, the ab
benchmarking tool (Apache HTTP server benchmarking tool) was used to generate
adequate traffic for testing API endpoints. During the test process, 100 sample users
were created with randomly generated emails and passwords using a bash script. All
users were successfully created in the AWS Cognito User pool. No exceptions or time-
outs were noticed during this test. To assess the scalability and availability of the API,
the ab benchmarking tool was used with ten concurrent users, each generating 200 API
requests. The authentication tokens were used to verify each API request. During
testing, 15% of the requests for one of the API endpoints timed-out due to throughput
issues with the DynamoDB tables. Therefore, target utilisation was reduced to 60% for
DynamoDB tables related to this endpoint. After the reconfiguration of DynamoDB the
same test was run again and no timeout issues were noticed.

PTSP: To perform the load test, the PTSP used the Artillery tool with different
combinations of arrival rates and durations. Artillery is a modern, powerful and easy-
to-use distributed load testing toolkit. Distributed load testing will help to create real-
world scenarios by generating traffic from different locations worldwide. The arrival
rate is the number of incoming users per second. Generally, this is ramped up evenly
from a start point to an endpoint throughout the test period. During the load test three
rounds of tests were conducted with (1) arrival rate starting with 1 and ending with 5
for 300 s (henceforth known as Arrival rate A) (2) arrival rate starting with 5 and
ending with 10 for 900 s (henceforth known as Arrival rate B) (3) arrival rate starting
with 5 and ending with 10 for 1800 s (henceforth known as Arrival rate C). Table 4
illustrates the load test results for both scenarios for different arrival rates.

Table 4. Load test results for two scenarios by the PTSP

Scenario 1 (Sign Up) Scenario 2 (Sensor data transmission)

Arrival rate A:
Start: 01
End: 05
Duration: 300 s

No timed-out requests
Latency: <0.5 s

No timed-out requests
Latency: <1.0 s

Arrival rate B:
Start: 05
End: 10
Duration: 900 s

No timed-out requests
Latency: <0.5 s

*10% requests timed-out
Latency: >5.0 s (for *10% requests)
Test result after DynamoDB reconfiguration:
No Timed-out requests
Latency: <1.0 s

Arrival rate C:
Start: 05
End: 10
Duration: 1800 s

No timed-out requests
Latency: <0.5 s

*25% requests timed-out
Latency: >20.0 s (for *25% requests)
Test result after DynamoDB reconfiguration:
No timed-out requests
Latency: <1.0 s
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For scenario 1, a significant load was created with over 10,000 users signing up
over 30 min. No issues were encountered with either timed-out requests (HTTP 504) or
high latency. For scenario 2, no issues were encountered with either timed-out requests
or high latency for Arrival rate A, however, for Arrival rate B, 10 percent of requests
encountered a latency greater than 5 s and thus timed-out. For Arrival rate C more than
25% of requests encountered a latency greater than 20 s and thus timed-out. The key
finding is that the DynamoDB takes a little time to scale, and the sudden high-traffic
spikes caused the time-outs and throughput problems. To mitigate this issue, an
adjustment was made in DynamoDB. Using the auto-scaling configuration feature, the
minimum read and write capacity per second was increased to 10, and the target
utilisation was reduced to 55% for Arrival rate B. For Arrival rate C the minimum read
and write capacity per second was increased to 20 and the target utilisation was reduced
to 45%. After making these configuration changes a similar test was run again for
scenario 2 for both Arrival rates B and C, resulting in latency being reduced to <1.0 s
and no requests timed-out.

5.2 Vulnerability Assessment

In-House Assessment: A denial-of-service scenario was created using the ab bench-
marking tool which generated 400 requests from 30 concurrent users. Additionally, an
IP address-based security rule was configured in the AWS WAF to prevent more than
100 requests per minute from an address. Results indicate that the lambda function
automatically identified the IP address which generated more than 100 requests per
minute. Finally, this lambda function also updated the source IP address in the WAF
block list. The result shows that the proposed architecture assists to ensuring the
availability of the system by preventing more than 100 requests from the same source
over a short period.

Assessment by PTSP: The PTSP uses manual and automated methods to assess and
perform vulnerability testing to attempt to gain access or compromise the service. The
tools and methods used for exploitation during penetration testing are the same as those
commonly used by people trying to compromise systems with malicious intent. Before
testing begins, clear ground rules were established for stop points of the testing process,
which will help to prevent unexpected damage to systems. For instance, when testing
an API which contains an SQL injection flaw, it is enough to identify the compromise
without attempting to obtain further access to the database servers. Network requests
are relayed through several tools for manual and automated inspection, to allow lis-
tening and watching what the platform was doing. These data dumps are then taken
into different tools and tested for any injection points and manual investigation. Table 5
presents the list of tools used during the vulnerability assessment process:
Additionally, manual and scripted testing was used to examine the results found during
automated testing. Below are some of the major vulnerabilities found during the
assessment process along with possible solutions.

Potential Denial of Service Points: During testing, there were several potential DDoS
points found. These are requests that timeout within 10 s due to malformed data inside
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the payload. These can be run multiple times in multiple threads, driving up the usage
and putting stress and strain on the service.

Solution: Action was taken in the API endpoints backend lambda code to handle
potential malformed data gracefully by assessing each field from the payload. Addi-
tionally, a proper HTTP response was added to allows the user to retry a request later.

Security Misconfiguration – Stack Traces Enabled :During testing, it was discov-
ered that stack traces were enabled for some API endpoints.

Solution: Stack traces were turned off in the lambda code base, and logging was copied
to an encrypted AWS S3 bucket for future analysis from AWS CloudWatch.

After making the necessary changes in the lambda code and infrastructure to
address the issues found during the assessment process, we informed the PTSP. A re-
test of the updated system was unable to reproduce the vulnerabilities.

In summary, load testing and vulnerability assessments are required to evaluate
system availability, scalability and security. In-house testing helped to identify issues
and implement countermeasures in the early stages of the development lifecycle. The
DynamoDB throughput bottleneck issue was identified by both in-house and
PTSP. This issue required reconfiguration of the DynamoDB. Additionally, the PTSP
identified other issues which required code changes in the Lambda functions.

6 Conclusion

Cloud computing is becoming a popular way to develop WBAN based healthcare
applications which provide real-time monitoring. The recent introduction of serverless
computing in the cloud paradigm helps developers to build more dependable appli-
cations which are highly scalable, available and cost-effective. In this paper, we pre-
sented a serverless architecture using AWS serverless computing to develop a
dependable WBAN based healthcare application which is secure, highly scalable and

Table 5. List of tools used for vulnerability assessments

Name Description

OWASP ZAP The open web application security project - Zed Attack Proxy (ZAP) is a
penetration testing tool for finding vulnerabilities in applications

BURP SUITE Burp Suite is a platform for performing security testing of applications
NMAP Nmap (Network mapper) is a free and open source utility for network

exploration or security auditing
SSLSCAN SSLScan tests for different SSL exploits, such as heartbleed and the

POODLE vulnerability, it also tests the cipher suites and key exchanges
HYDRA brute
force

Hydra is a rapid dictionary attacker which can be configured against over
50 different protocols. It is most commonly used for brute forcing user
accounts to test for weak passwords

KALI LINUX Kali is a Debian-derived Linux distribution designed for digital forensics
and penetration testing installed with hundreds of different tools
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available. Serverless computing applications can be developed without thinking about
the maintenance of the infrastructure. Furthermore, as the cost model for serverless
computing is based on execution time, the cost of the core backend services will be
minimised. We also performed load testing and vulnerability assessment by in-house
and PTSP to test the security, scalability and availability of the proposed architecture.
Load tests indicated some initial latency and time-out problems which were resolved by
the reconfiguration of DynamoDB. Additionally, the mitigation of DDoS attacks using
the WAF was tested to verify the availability of the application. Future work will
involve extending the architecture by integrating AWS CloudTrail for privacy gover-
nance, AWS Kinesis Data Analytics and the AWS EMR service to perform big data
analysis.
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Abstract. As Cyber-Physical Systems (CPS) grow increasingly com-
plex and interact with external CPS, system security remains a non-
trivial challenge that continues to scale accordingly, with potentially dev-
astating consequences if left unchecked. While there is a significant body
of work on system security found in industry practice, manual diagno-
sis of security vulnerabilities is still widely applied. Such approaches are
typically resource-intensive, scale poorly and introduce additional risk
due to human error. In this paper, a model-based approach for Security
Attack Tree (SAT) analysis using the HiP-HOPS dependability analysis
tool is presented. The approach is demonstrated within the context of a
simple web-based medical application to automatically generate attack
trees, encapsulated as Digital Dependability Identities (DDIs), for offline
security analysis. The paper goes on to present how the produced DDIs
can be used to approach security maintenance, identifying security capa-
bilities and controls to counter diagnosed vulnerabilities.

Keywords: Attack trees · Digital dependability identities · HiP-HOPS

1 Introduction

Cyber-Physical Systems (CPS) enhance traditional physical engineering sys-
tems with computational, often networked, control. CPS applications of par-
ticular importance are those found in domains of critical societal impact such
as healthcare, transportation, energy, manufacturing and infrastructure control.
Such applications offer considerable benefits in terms of enabling new capabili-
ties, such as distributed control in traditionally centralized systems, e.g. power
grids. Another potential benefit is improved efficiency, as semi-automatic, auto-
matic and autonomous control can reduce human input and error and identify
resource-optimal system behavior. In this respect, examples include autonomous
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control of vehicles and smart structures. The European Commission’s Smart CPS
programme, part of the Horizon 2020, is indicative of their importance1. A more
in-depth discussion of CPS considerations, requirements and potential solutions
can be found in [14,19].

In the aforementioned domains, safety is a key concern, as the implication of
CPS failures could be catastrophic to the well-being of affected societies and the
environment. As CPS combine both physical and digital aspects, they inherit the
traditional concerns of reliability of their physical components impacting safety
due to mechanical and/or development failure. However, with the introduction
of digital control and network communication, CPS operation is also subject to
security risks. Such risks are not necessarily in themselves novel, as they orig-
inate from digital technologies and infrastructure subject to extensive use and
research. However, the complexity and novel internal and external interactions of
CPS, coupled with the typical safety concerns mentioned previously, aggravates
the impact of potential security attacks and necessitates rigorous treatment to
mitigate the associated risks [6,18].

Security concerns are addressed in highly variable methods in practice,
depending on the application domain. Methods of systematic analysis, valida-
tion and verification can be employed to produce guarantees of system robustness
against security attacks [4,7,20].

Tackling nominal system development alongside safety, reliability, security
and, more generally, dependability concerns requires alignment of requirements
elicitation and allocation, design and implementation activities with depend-
ability assessment and assurance activities. When the above activities are not
properly synchronized and dependent information is shared inaccurately or with
delay, the associated discrepancy can cause further modification of the developed
system later in the development life cycle, introducing much higher costs or even
failure to appropriately identify and address critical system risks. Model-based
dependability analysis is a paradigm that evolved from model-based design, cen-
tralizing both nominal and dependability-related development activities around
a common, shared system model. The common model enables efficient and fre-
quent synchronization across both tracks of development. As the models involved
are also typically digital, tool support can provide additional benefits to effi-
ciency, correctness and knowledge reuse, to name a few benefits [10].

As part of the Dependability Engineering Innovation for cyber-physical Sys-
tems (DEIS) research project2, the concept of the Digital Dependability Identity
(DDI) is being investigated [21]. DDIs are modular, composable and executable
dependability information models associated with a CPS or its constituent sub-
systems or components. DDIs can be used as a medium for model-based security
assessment and assurance, offering commensurate benefits to the development
of security-critical CPS. The approach presented here will be employed in the
context of a DDI.

1 https://ec.europa.eu/programmes/horizon2020/en/h2020-section/smart-cyber-
physical-systems.

2 http://www.deis-project.eu.

https://ec.europa.eu/programmes/horizon2020/en/h2020-section/smart-cyber-physical-systems
https://ec.europa.eu/programmes/horizon2020/en/h2020-section/smart-cyber-physical-systems
http://www.deis-project.eu
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In the following sections, a novel, model-based approach of systematically
analyzing systemic security risks, identifying both high and low-level vulnera-
bilities and assigning appropriate requirements and measures will be presented.
The approach will be demonstrated within the context of a CPS system for the
healthcare domain. In Sect. 2, previous work on security risk analysis will be
reviewed. In Sect. 3, our novel approach will be presented. Section 4 will describe
the use case the approach is evaluated upon. Section 5 concludes by presenting
the results, alongside further discussion of implications and future work.

2 Background

2.1 Security Threat and Risk Analysis

Due to the diverse applications for cyber-physical systems various industry-
specific standards or best practices are applied. Each standard approaches risk
differently depending on the factors deemed relevant to risk for the operating
context. For example within the medical domain there is the IEC/TR 80001-2-
1:2012, this is a technical report and guide on the application of risk management
of medical IT networks it describes a 10 step process that system creators and
maintainers can use in order to adhere to IEC 80001-1:2010 throughout a systems
life-cycle.

Confidentiality is often a key requirement of any software system especially
when dealing with sensitive personal data such as medical histories. In many
countries personal data is covered by law, such as General Data Protection Reg-
ulation (GDPR) in European countries. Infringing on GDPR within the Euro-
pean Union can result in large fines of 4% of international annual turnover or
e 20 million depending on which is the greater (GDPR, Article 83).

The growing need to ensure privacy of data and the ever increasing capa-
bilities and complexity of CPS has driven the development of frameworks and
methodologies for privacy risk assessments and analysis’s such as PRIAM (Pri-
vacy RIsk Analysis Methodology) which within the context of risk assessment
breaks a system into 7 components: the system itself including its logical bound-
aries, stake-holders, data, risk sources, privacy weaknesses, feared events and
privacy harm [8]. Each component is comprised of categories and attributes.
Categories describe the type of data of attribute for example this could be
health data, financial data, location data etc and categories can be linked to
other components. Attributes are used to identify the aspects of a component
which contribute to privacy risk. They can be qualitative (low, medium, high)
or quantitative such as “costs less than e 5000”. The application of PRIAM is
divided into two stages the information gathering stage where information on
the components, categories and attributes is collated, and the risk assessment
phase where risk levels (severity and likelihood) are calculated for each privacy
item.
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2.2 Security Attack Trees Analysis

Fault Tree Analysis (FTA) is an established practice in the domain of safety-
critical applications. [3] showed that FTA can be applied in the domain of
security-critical applications. SATs are similar to Fault Trees but specialised for
the security domain. SATs provide a formal, hierarchical, model-based descrip-
tion of a system’s security under a tree structure.

At the root of an SAT are outcomes which represent security-critical negative
events. Examples include maliciously gaining access to confidential information
or obtaining administrator privileges for a safety-critical system. From the root
node, intermediate nodes and logical gates link towards its leaf nodes. Interme-
diate nodes represent combined events that causally lead from their children to
the root node. Logical gates usually represent Boolean logic operators such as
AND and OR. A node’s children linked via an AND gate describe that all of the
events described in the children nodes are required for the parent node’s event
to occur. Accordingly, any event in a child’s node is sufficient to trigger a parent
node linked via an OR gate. Leaf nodes represent events which are out of scope
or cannot be further analysed within the given SAT. In the context of SATs,
base events typically include direct, singular actions that form part of an attack.

An example of an SAT can be seen in Fig. 1, where a simplistic attack to
gain administrator privileges on an abstract system is described. To achieve
their goal, the attacker must either trick the system into executing privileged
commands without authenticating as an administrator or successfully authen-
ticate as an administrator (and then presumably execute any commands they
wish). Each of these options are analyzed further; to execute commands without
administrator authentication, the attacker can use a vulnerable user command
and attach commands as the payload of a buffer overflow attack. Alternatively,
to authenticate as an administrator, the attacker can use a brute force technique
to discover the credentials or use a ‘phishing’ attack i.e. trick the administrator
into disclosing them.

Each component of a system often has its own SAT, these are combined to
create the overall SAT for a system. In this way, it is possible to reason about a
complex system’s security vulnerabilities in a modular fashion. This modularity
is useful when dealing with system boundaries at different levels of abstraction.

Binary properties are often assigned to each node of an SAT, such as Pos-
sible/Impossible, Expensive/Not Expensive, ‘Special Equipment Required’/‘No
Special Equipment Required’. Numeric properties such as financial cost are also
possible. Such properties can extend the SAT, enabling quantitative systems
security analysis. For example using the SAT shown in Fig. 2, system creators
can refine the SAT by using the following query “attacks with an accumulative
value of less than £5,000”. This means the only attack that meets this criteria
is threatening the legitimate administrator.

Such additional attributes can be described as ‘resistance’ attributes [22]. The
example SAT modified with such resistances can be seen in Fig. 2, where financial
costs have been assigned to each leaf node. The semantics of the resistance
attributes decide how they are combined as they move upwards through logic
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Fig. 1. Security attack tree example

gates. In the example, the AND gate combines financial costs, as both actions
must be undertaken, whereas the OR gate provides the attacker choice over the
options; under the assumption that all the options are known and available, the
attacker is also assumed to choose the most economic one available.

Buldas et al. presented a Multi-Parameter Attack Tree, in this type of SAT
the assumption that an adversary will act within rationally and will not persevere
with an attack if the cost outweighs the potential benefits [5]. This type of SAT
also means the relationship between attributes can be considered such as the
overall effort involved and the competency of the adversary.

In fact an entire family of closely related AND-0R tree structures exists,
which have been developed since SATs were first introduced, including, Attack-
Defence Trees [13] and Ordered Weighted Average (OWA) Trees [23].

2.3 Security Capabilities and Controls

Security Capabilities and Controls are designed to protect systems against
attacks on the confidentiality, integrity, and/or availability of a system’s infor-
mation. The USA’s National Institute of Standards and Technology (NIST),
defines a security control as ‘a safeguard or countermeasure prescribed for an
information system or an organization designed to protect the confidentiality,
integrity, and availability of its information and to meet a set of defined security
requirements’. Additionally, NIST defines a Security Capability as ‘a combina-
tion of mutually-reinforcing security controls (i.e., safeguards and countermea-
sures) implemented by technical means (i.e., functionality in hardware, software,
and firmware), physical means (i.e., physical devices and protective measures),
and procedural means (i.e., procedures performed by individuals)’ [9].
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Fig. 2. Attack tree with a cost resistance

There are a number of international standards and frameworks which pro-
mote good security practice in part by defining security capabilities and controls.
The key considerations in choosing a framework include: understanding what an
organisation needs to comply with from a contractual, statutory, and regula-
tory perspective; the comprehensiveness of the framework. Two of the most
well-known frameworks include NIST SP 800-53 and the ISO 27000 series of
standards which provide a framework for security management. While the fun-
damentals of both frameworks are largely the same, they differ in content and
layout. Figure 3 visualises the relationship between these two frameworks and
indicates that ISO 27002 is a subset of NIST 800-53, as ISO 27002 has 14 secu-
rity control categories which are encompassed by the 18 categories within NIST
800-53. Examples of such categories include: Incident Response; Access Control;
and Audit and Accountability. NIST 800-53 is considered best practice within
the US and vendors to the US government must meet its requirements. Outside
the US, the ISO 27002 is the de-facto security framework and is considered less
complex and easier to implement.

Another framework gaining in popularity is the NIST Cybersecurity Frame-
work. It is more high level and concise than other frameworks and references
NIST 800-53 and ISO 27002 for detail on how to implement specific controls
and processes. As the NIST Cybersecurity Framework is more lightweight than
the other existing frameworks, it may be more suitable for smaller organisations
and more readable for executives who do not have a technical background.

More specific to the healthcare domain, which is the domain of the Use Case
described in Sect. 4 of this paper, are the Health Information Trust Alliance
(HITRUST) Common Security Framework (CSF) and the IEC 80001 series
of technical reports. The HITRUST framework incorporates healthcare-specific
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Fig. 3. Relationship between NIST 800-53 and ISO 27002

security, privacy and other regulatory requirements from existing standards such
as ISO 27002 and is divided into 19 different domains or capabilities. The IEC
80001 series of technical reports provides guidance on the application of risk
management for IT-networks incorporating medical devices. IEC TR 80001-2-8
provides guidance for the establishment of each of the security capabilities pre-
sented in IEC TR 80001-2-2 by identifying security controls from key security
standards which aim to provide guidance to a responsible organisation when
adapting the framework outlined in IEC TR 80001-2-2. IEC TR 80001-2-2 con-
tains 19 security capabilities, with each capability having numerous security
controls extracted from the following standards: NIST SP-800-53, ISO 27002,
ISO/IEC 15408-2, ISO/IEC 15408-3, IEC 62443-3-3, ISO 27799. From these
standards ISO 27002 and ISO 27799 are fully aligned. ISO IEC 27002 specifies a
set of detailed controls for managing information security while ISO 27799 spec-
ifies additional guidance specifically for health information security and provides
health information security best practice guidelines.

In Table 1, a small sample of security capability to controls mapping can be
seen. Also included, are references to appropriate security standards, from where
guidance on the controls can be referenced in detail.

Table 1. Sample of security capability-control mapping

Security capability Security control Reference

Transmission integrity Access control for transmission medium SP 800-53

Network controls ISO IEC 27002

... ...

2.4 HiP-HOPS

Hierarchically Performed Hazard Origin and Propagation Studies (HiP-HOPS)
is a well established method and tool in the field of dependability analysis [16].
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HiP-HOPS has been successfully commercialised and adopted in industry3. It
originally stems from the amalgamation of several classical dependability analy-
sis techniques such as FTA and Failure Mode and Effects Analysis (FMEA). Its
core function is the automation of such techniques with a view to increasing the
quality (less mistakes) and the turn around time (efficiency) of dependability
analysis of a system across its development lifecycle.

Over the past two decades, work has continued on HiP-HOPS and it has
proven itself as a valuable lever for extending the corpus of research within
dependable systems. For example, recently Papadopoulos et al. showed that
dependable systems design and analysis does not have to rely solely on advances
in formal logic by using less conventional bio-inspired evolutionary techniques
by extending HiP-HOPS to include meta-heuristics [17] and Kabir et al. demon-
strated that HiP-HOPS can be extended to create and analyse temporal fault
trees using a systems architectural models [11] which can be used for construct-
ing safety arguments.

Although HiP-HOPS has contributed to a steady stream of research and
publications across the field of dependable systems analysis and design, the chief
focus has been safety as an attribute of dependability. In terms of dependability it
can be said the method presented here focuses on availability, confidentially and
integrity, which are the composite properties that define security as an attribute
of dependability [2].

Although alternative tooling for modelling SATs exists, such as SecurITree4

and AttackTree5, they do not provide the required functionality and integra-
tion to automatically generate Digital Dependability Identities. This concept is
explained in Sect. 2.5.

2.5 Digital Dependability Identity

The Digital Dependability Identity (DDI) [21] is a modular, composable and
executable dependability model that links system structure with dependability
information. The DDI offers numerous benefits. It enables convenient transla-
tion and exchange of heterogeneous dependability models across different tools
and techniques. It supports execution of model-agnostic evaluation on its mod-
els, which in turn enables automation of assessment and assurance activities
during design and monitoring and supervision during operation. As security is
an aspect of dependability, the DDI also aims to capture security risk, threats,
requirements, measures and other associated models. The Open Dependability
Exchange (ODE) metamodel6 is the DDI’s metamodel and includes specific pro-
visions for modeling security-related concepts. In particular, the ODE includes
a TARA package, whose definition can be seen in Fig. 4.

3 http://hip-hops.eu/.
4 https://www.amenaza.com/.
5 https://www.isograph.com/software/attacktree/.
6 https://github.com/DEIS-Project-EU/DDI-Scripting-Tools/tree/master/

ODE Metamodel.

http://hip-hops.eu/
https://www.amenaza.com/
https://www.isograph.com/software/attacktree/
https://github.com/DEIS-Project-EU/DDI-Scripting-Tools/tree/master/ODE_Metamodel
https://github.com/DEIS-Project-EU/DDI-Scripting-Tools/tree/master/ODE_Metamodel
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Fig. 4. ODE metamodel’s TARA package definition

The package was defined drawing inspiration from the work in [15], as well as
experience and deliberation across the DEIS project partners. The TARAPack-
age is the central containment unit, collecting security risks, measures, assets
and ‘Threat Agents’ i.e. attackers under it. Risks are associated with the success
of attacker goals, which are pursued via attacks, singular actions or payload exe-
cutions. Attacks often exploit specific vulnerabilities that lie within the system’s
elements. Security capabilities and controls aim to address said vulnerabilities
and safeguard the assets of a system.

Besides security aspects, the DDI can also encapsulate failure logic and repro-
duce fault trees, using an appropriate metamodel package. Analysis of DDI-
embedded fault trees and failure logic is supported by HiP-HOPS. More details
can be found via the DEIS project’s public deliverable D4.27.

3 Approach

We base our approach on a top-down life cycle development process, wherein sys-
tem concept informs functionality. Dependability requirements (including secu-
rity) are identified and allocated to functions. The above pattern repeats as
7 http://www.deis-project.eu/fileadmin/user upload/DEIS D4.2 Engineering Tools

for DDIs V1 PU.pdf.

http://www.deis-project.eu/fileadmin/user_upload/DEIS_D4.2_Engineering_Tools_for_DDIs_V1_PU.pdf
http://www.deis-project.eu/fileadmin/user_upload/DEIS_D4.2_Engineering_Tools_for_DDIs_V1_PU.pdf
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functions decompose into more refined systems until low-level software/hardware
components are specified. Following this lifecycle process, security capabilities
are initially mapped to high-level security requirements. As requirements mirror
the decomposition of systems to subsystems and components, low-level security
requirements are addressed by the selection and, eventually, implementation of
security controls.

To guide the choice of security capability and control selection, the TARA
or equivalent risk analysis process can be applied to evaluate sources of secu-
rity risk against the system. Threat agents, potential vulnerabilities, vulnerable
system elements and other factors can be accounted for as part of the TARA.
However, a TARA initially only addresses risk at a relatively high-level; further
detail necessary to address the inner workings and complex relationships within
the system architecture requires more refined techniques applicable both ver-
tically (from systems to components) as well as horizontally (across the entire
architecture). As per Sect. 2.2, SATs are one such technique.

Following the TARA adopted by our approach, to launch a specific security
attack, a threat agent must undertake a combination of actions or execution of
payloads. The strategy of the attack is that security vulnerabilities in constituent
system elements are exploited. The immediate effect of an action or payload
execution can be viewed as a low-level event impacting security, referred to as
a ‘security violation’. Two examples of such a violation would be a malicious
administrator introducing via portable storage and launching a malicious exe-
cutable within an internal network. The attack in the example consists of an
action - introduction of the executable by the malicious administrator - and a
payload execution, each representing a security violation. Each security viola-
tion of the example can itself propagate and trigger further events. If security
measures fail to address the chain of events, the attack is successful and the
attacker’s goal will eventually be reached, compromising one of the key assets
that should have been protected.

Using SATs, the propagation logic that forms cause-effect chains of security
violations to successful attacks can be described efficiently, with tool support pro-
viding all the benefits of model-based dependability analysis. What is required of
the users is an appropriate annotation of the system architecture with local (i.e.
per relevant system element) security violation propagation logic. Effectively, for
each element that can contribute or is affected by the propagation of security
violations, the user should assign appropriate Boolean logic linking combina-
tions of incoming or generated to outgoing security violations. Once this process
is complete, automated security attack tree analysis tools, such as HiP-HOPS,
can be used to perform qualitative analysis. The result of such an analysis is the
identification of the necessary and sufficient combinations of security violations
that can lead to attacks successfully compromising system assets.

Once the analysis results are available, the mapping provided in Sect. 2.3
can be used to plan appropriate security controls. For the scope of the work
presented here, the mapping process will be limited to a simple look-up and
selection from the list of available controls. In general, numerous criteria can be
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included in the decision process e.g. functional, design and financial constraints.
The decision process itself can apply optimization strategies, both manual and
semi-automatic, for further improvement.

4 ONCOAssist Use Case

ONCOAssist8 is a mobile platform (available on IOS, Android and in a web for-
mat) for oncology professionals. It gives them a number of clinical tools and val-
idated medical information that helps clinicians make a more informed decision
when treating patients with cancer. As a use case, a clinician uses ONCOassist
to calculate the body surface area and the drug dosage to be administered to
the patient. It has been created by Portable Medical Technology Ltd (PMT),
which are located in Ireland.

ONCOAssist interacts with private patient data and the users’ account data
as well. Since PMT is based in Ireland, they are subject to the GDPR as set
out by the EU. Failure to comply with GDPR could result in the penalties men-
tioned in Sect. 2.1. The penalties of violating GDPR regulation due to ineffective
security assessment, along with the expected security requirements healthcare
establishments would likely set on their own before using ONCOAssist, necessi-
tates that rigorous security assurances are provided.

Fig. 5. ONCOAssist authentication system model

For brevity, authentication will be the focus of the case study, as the process
can be illustrated using a relativity small system model. Before a user can per-
form any Create, Read, Update or Delete (CRUD) operations on the patient data
stored in an Electronic Health Register (EHR), they must authenticate. Various
open standards exist to be used as protocols for authentication. ONCOAssist
uses OAuth29 with OpenID10. Using open standards such as these is often con-
sidered a good practice, as they have maximum exposure to public, third-party
scrutiny [1].

1. Establish a system model. Following discussions with and using activity dia-
grams provided by PMT we were able to produce a simplified abstract system

8 https://oncoassist.com/about/.
9 https://oauth.net/2/.

10 https://openid.net/.

https://oncoassist.com/about/
https://oauth.net/2/
https://openid.net/
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model of ONCOAssist’s authentication process using MATLAB, shown in
Fig. 5. As seen in the figure, ONCOAssist can be accessed via a web applica-
tion, with access to local device storage, authenticates with an authentication
server, by requirement of the OAuth2 protocol, and finally retrieves patient
data from a resource server, which is an EHR.

2. Establish a suitable TARA. Once we have established the system model, we
can define feared events relevant to the system. In the case of ONCOAssist
the feared events are data that becomes totally or partially compromised i.e.
patient data that has been accessed to any extent by an unauthorised person.

3. Apply the TARA to the system model using HiP-HOPS. At this stage in the
process, the system model is annotated with information gathered during the
TARA using HiP-HOPS in conjunction with MATLAB’s Simulink.

4. Conduct qualitative analysis on the SAT produced by HiP-HOPS. Once the
model is annotated, HiP-HOPS can be used to produce the SATs shown in
Fig. 6.

Fig. 6. ONCOAssist SATs generated by HiP-HOPS

5. Refine the system model as necessary and repeat 1–4. If necessary, further
refinement can take place, depending on application, design and further con-
siderations. For brevity, we limit our illustration to one iteration.

6. Capture the TARA, SAT, HiP-HOPS results and system models within a DDI
using the ODE. As mentioned in Sect. 2.5, HiP-HOPS models can be exported
as DDIs. Available tools developed by DEIS can convert embedded HiP-
HOPS annotations into structures meaningful for DDIs such as the TARA
and FailureLogic metamodel packages. Development of these tools is ongoing;
an open-source version is available11.

7. Use the Security Capability-Control mapping to validate requirements and
identify controls for the DDI. Once the above information has been cap-
tured in a DDI, further tool support can be used to help requirements val-
idation and appropriate control selection. Tool support developed by DEIS
in this direction is provided in the form of executable scripts written in the
Epsilon language12. Through Epsilon scripts, semi-automatic functionality

11 https://github.com/DEIS-Project-EU/DDI-Scripting-Tools/tree/master/
ODE Tooladapter.

12 https://www.eclipse.org/epsilon/.

https://github.com/DEIS-Project-EU/DDI-Scripting-Tools/tree/master/ODE_Tooladapter
https://github.com/DEIS-Project-EU/DDI-Scripting-Tools/tree/master/ODE_Tooladapter
https://www.eclipse.org/epsilon/
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can be designed and executed for DDIs generically. For instance, the process
in Algorithm 1 described in pseudocode can be implemented in the Epsilon
Object Language (EOL) [12] for validating security capabilities and proposing
controls.

foreach AttackerGoal g in subjectDDI do
if g.addressedBy.size() = 0 then g is not addressed
else

foreach SecurityCapability sc in g.addressedBy do
if sc.category != g.category then sc inappropriate for g
else

if sc.implementedBy.size() = 0 then sc is not implemented
else

foreach SecurityControl c in sc.implementedBy do
if c.category != sc.category then c inappropriate for sc
else c implements sc

end

end

end

end

end

end
Algorithm 1. Security Capability Validation Diagnostic Example

5 Discussion and Future Work

Security analysis and development can be an expensive process; for example,
the development of the ONCOAssist authentication system discussed in Sect. 4
represents approximately 6 weeks of work-hours for their development team,
per PMT’s account. However, failure to complete adequate security analysis can
have catastrophic consequences. Therefore, efforts towards minimising this cost
without compromising the quality of analysis are worthwhile. Digital manage-
ment of SATs streamlines the process of security analysis by enabling automa-
tion (Security measures/controls and cost/benefit analysis can be derived semi-
automatically) and by reducing the risk of human error.

Our proposed approach does have some notable limitations. Using HiP-HOPS
for security analysis requires that system owners create and maintain an appro-
priately annotated system model. Thus, errors introduced in the model may
critically compromise the subsequent analysis. For instance, such errors may
occur due to lack of synchronization between the model and the implemented
software, obscuring potential vulnerabilities present in the implementation. A
further limitation of the process we have described is the lack of support for run
time preventative security actions to be taken.
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In summary, security and threat analysis is a complex process, often gov-
erned by regulation and frameworks have emerged to deal with this complexity.
SATs are a valuable tool for security analysis and have been extended to deal
with a wide variety of use cases. HiP-HOPS was originally created as a tool for
traditional safety analysis but can be used for security analysis as well. DDIs are
used to model a system’s dependability, encompassing security concerns such
as availability, confidentially and integrity. The approach described in Sect. 3
and demonstrated in Sect. 4 can be used for semi-automated security analysis.
Considering future work, we are focusing on addressing run time security con-
cerns. Specifically, appropriate methods for reasoning, negotiating and executing
dependability-critical services using DDIs are the subject of ongoing research,
as part of DEIS.

Acknowledgements. This work was supported by the DEIS H2020 Project under
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Abstract. Highly connected with the environment via various inter-
faces, cars have been the focus of malicious cyber attacks for years. These
attacks are becoming an increasing burden for a society with growing
vehicle autonomization: they are the sword of Damocles of future mobil-
ity. Therefore, research is particularly active in the area of vehicle IT
security, and in part also in the area of dependability, in order to develop
effective countermeasures and to maintain a minimum of one step ahead
of hackers. This paper examines the known state-of-the-art security and
dependability measures based on a detailed and systematic analysis of
published cyber attacks on automotive software systems. The sobering
result of the analysis of the cyber attacks with the model-based tech-
nique SAM (Security Abstraction Model) and a categorization of the
examined attacks in relation to the known security and dependability
measures is that most countermeasures against cyber attacks are hardly
effective. They either are not applicable to the underlying problem or
take effect too late; the intruder has already gained access to a substan-
tial part of the vehicle when the countermeasures apply. The paper is
thus contributing to an understanding of the gaps that exist today in
the area of vehicle security and dependability and concludes concrete
research challenges.

Keywords: Automotive security · Automotive system architecture ·
Dependability · Model-driven engineering methodologies

1 Introduction

The development of automobiles has ever been a subject to constant change.
None of these changes, however, were as striking as the incorporation of soft-
ware. Since the turn of the millennium, scientific contributions on software secu-
rity of cars have been published [5,13,37]. Earlier publications are practically
non-existent due to the scarcity of software in vehicles back then. One of the
first systematic analyses of attacks on automotive (software) security [38, p. 6f]
describes the prevailing attacks in the automotive sector as either theft or mod-
ification of critical components: for example, an attacker would like to achieve
c© Springer Nature Switzerland AG 2019
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financial gain by stealing the car or valuable components. Modification refers
to the car owner that would like to change components (tuning), for example
in order to increase the value of the car (reduced mileage) or decrease it for
taxation reasons (increased mileage). The analysis also mentions that attack-
ers want to steal competitors’ expertise and intellectual property. The cyber
attacks against vehicles presented in this paper show that the attack potential
has increased considerably in the last decade due to the interconnectivity and
architecture of modern vehicles. The described attack motivations and attacks
from the early days of the rise of software in vehicles make up only a small frac-
tion of today’s hackers’ motivations and attacks. In comparison to those of the
past, attacks on modern vehicles are particularly worrying because attackers can
take control of the entire vehicle. This often requires no or only short physical
access. Our society, which is on the threshold of autonomous mobility, takes this
challenge seriously. Therefore, research is very active in the field of vehicle IT
security and partly also in the field of functional safety (dependability) in order
to develop effective countermeasures. Cyber attack protection does not initially
imply dependability; this paper will argue, though, that at the interface between
dependability and security research, innovative protection mechanisms emerge
just as capable of providing protection against malicious attacks as established
security measures. The countermeasures published so far are manifold adapta-
tions of classical IT security approaches in the area of automotive security, for
example [3,4,7,15,18,19,23,26,30].

The remainder of this paper is structured as follows: Sect. 2 reviews the most
effective attacks on automotive software systems. In Sect. 3 we describe typical
automotive security and dependability mechanisms and analyse their protection
potential with respect to the published attacks described earlier. Section 4 gives
an overview of related work in this field. In our conclusion in Sect. 5, we provide
indications for future research challenges in the area of automotive security and
dependability.

2 Attacks on Automotive Software Systems

In this section we first present the Security Abstraction Model (SAM) [40]
and the Common Vulnerability Scoring System (CVSS) [20] for evaluating and
analysing attack vectors on automotive software systems. Afterwards, we give
an overview of today’s serious attacks on modern, highly connected vehicles.

2.1 SAM and CVSS

In an earlier publication, we introduced SAM, a Security Abstraction Model for
automotive software systems. SAM allows for a security analysis of automotive
attack vectors. Systematic security analyses can be used to quantify the required
effort for a potential attack. The approach tightly couples security management
and model-based systems engineering by an abstract description of automotive
security modeling principles. The resulting SAM language specification is based
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on security requirements elicited from common industrial scenarios. It is a suit-
able solution for representing attack vectors on vehicles and provides a thorough
security modeling for the automotive industry. SAM has a close connection to the
architecture description via the coupling of Item from the architecture model.
SAM attack models express all important criteria of attack vectors—from an
adversary’s motivation up until a breach—to allow for system’s modeling in an
early software engineering phase. Besides attack motivations, SAM also describes
all intrinsic and temporal properties of an attack, e.g., impact on security goals
(confidentiality, availability, integrity, etc.), attack complexity, affected item and
the attackable property. SAM can be used with generic security scoring systems
for attack rating like, e.g., the Common Vulnerability Scoring System (CVSS).
The CVSS is an acclaimed industry standard for rating vulnerabilities in com-
puter systems and proposes three different metric groups for calculating the
vulnerability scores. The Base Metric Group reflects the intrinsic properties of
an attack: from SAM’s automotive-oriented perspective, this group therefore
indicates the characteristics that result when the attack in question is aimed
at the automotive domain in general. The Temporal Metric Group allows for
adjustment of the score after more information of the exploited vulnerability
is available. The CVSS provides an online calculator [1] where specific vulner-
abilities can be referenced with a unique CVSS vector string. We will provide
those vector strings below every SAM model of the respective attack. Readers
who are interested in the attack properties of specific attacks are able to check
them on the online calculator. The additional benefit of having SAM models
compared to directly giving the properties and a vulnerability score is that not
only the CVSS (or scoring systems in general) is used, but also the possibility
to construct attack trees via sub-attacks and follow-up attacks. SAM is also a
method for hierarchical processing of attack vectors. In terms of substance, this
goes beyond the classic attack rating. SAM makes the scoring system available
to the software architect or in other words: SAM’s strength lies in its ability
to integrate with existing automotive architectures. What is brought together
are architectural considerations with pure security considerations as regards the
attack itself (attack vectors that can be derived from it, motivations, target
areas) and all scoring systems that are known, which can derive all necessary
information from the properties.

2.2 Overview of the Attacks

Scientific contributions on software security in cars publish a large number of
attacks on automotive software systems. Table 1 gives an overview of the most
serious of the published attacks on modern, highly connected vehicles. The selec-
tion of the attacks was made strictly according to the following attack characteris-
tics: The selected attacks (1) are aiming at a broad range of security goals, ideally
all security goals, and (2) have high severity levels (CVSS Temporal Score greater
than 4.0). The CVSS Vector String is omitted in the table, but is shown below
each of the figures of the attack models later in this paper. For the purposes of
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this study, we differentiate between gateway attacks and follow-up attacks. Gate-
way attacks usually change the extent of a vulnerability and typically serve as
door openers, enabling the adversary to launch one or more follow-up attacks.
A typical follow-up attack would be to reverse Controller Area Network (CAN)
bus messages to learn how the vehicle’s Electrical Control Units (ECUs) commu-
nicate and injecting malicious messages into the system. Some follow-up attacks
are just as trivial as starting Denial-of-Service (DoS) attacks. Many follow-up
attacks are fairly high-level though, e.g., remotely driving/steering the car, dis-
turbing functions of the vehicle or disabling driver-assisting systems.

Table 1. The most serious attacks, sorted by CVSS [20] Temporal Score

Attack AttackableProperty Item Score

Tesla Remote Control Webkit Browser Autopilot ECU 8.0/7.2

SecurityAccess via UDS Substandard ciphers Body Control Module 7.1/6.7

CAN Message Injection (Multiple) Pow. Steer. Contr. Mod 7.0/6.5

BMW Remote Diagnostics NBT Backdoor Infotainment Domain 7.1/6.4

Control via OBD Injection Clear CAN traffic Diagnostics 7.7/6.3

Telematics Attack SSH, SMS Telematics Control Unit 6.4/6.1

Remote Keyless Entry Rolling Code Remote Keyless Entry 5.7/5.4

CAN DoS Attack CAN Protocol Any CAN bus 4.6/4.5

2.3 Tesla Remote Control Attack

One of the most serious attacks is the Tesla Remote Control Attack [24,25,35].
This gateway attack enables an adversary to break into the AutoPilot ECU
(APE) via the Webkit Browser of the infotainment unit. The researchers of Ten-
cent Keen Security Lab [35] have demonstrated how to remotely control and steer
the vehicle, disturbing the autowipers by confusing the machine learning (ML)
component with a technique called adversarial examples [11,29] and eliminating
the lane detection of the vehicle. The following is a brief explanation of the enti-
ties shown in Fig. 1: The adversary in this scenario is a remote attacker with
the attack motivation to harm car occupants by crashing the vehicle. The attack
is possible when the mode of the vehicle is “Slow or Standing”. The exploited
vehicle feature is Tesla’s Autopilot, specifically the item AutoPilot ECU (APE).
The exploited vulnerability is the Webkit browser framework of the infotainment
unit which offers the JSArray function. This function is the attackable property
the adversary is looking for, i.e., his anchor of the attack. After analysing with
the attack properties via the CVSS metrics, one can calculate the base score and
temporal score of the attack and derive the requirement: code signing protection
for over-the-air (OTA) updates.

For the remaining attacks in this paper, further textual explanation of the
models is omitted. Readers might refer to the explanation of the entities of this
attack or look at SAM/CVSS references.
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Fig. 1. SAM model of Tesla Remote Control Attack—CVSS v3.0 Vector String:
CVSS:3.0/AV:N/AC:H/PR:H/UI:N/S:C/C:H/I:H/A:H/E:P/RL:O/RC:C

2.4 Security Access via UDS Attack

Many security-sensitive preferences or functions of a vehicle are secured via the
Unified Diagnostic Service (UDS). Getting advanced security access to an ECU
makes it possible for an adversary to fully reprogram the respective ECU or
get confidential information out of the ECU’s secure memory, what makes this
attack a gateway attack. In contrast to the Tesla Remote Control attack, the
attack motivation is product modification. The Security Access via UDS Attack
as shown by den Herrewegen [12] is illustrated in the SAM model in Fig. 2.

2.5 CAN Message Injection Attack

Miller and Valasek’s [36] attack on an unaltered passenger vehicle [21] was widely
discussed in research and press. A CAN Message Injection Attack [22] is one of
the logical consequences after a successful gateway attack. After an adversary
has gained access to the powertrain, he can reverse engineer the messages com-
municated via the bus and inject his own malicious messages of choice. Once
an adversary has the ability to send arbitrary network messages (e.g., via CAN)
he is able to control the braking system, engine behaviours or the air vents,
(un-)lock the doors, etc. Therefore, there is a strong need to secure the vehicle
before the adversary can even gain access to the bus as then it is already too
late. Figure 3 illustrates the CAN message injection attack in SAM.
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Fig. 2. SAM model of Security Access via UDS Attack—CVSS v3.0 Vector String:
CVSS:3.0/AV:P/AC:H/PR:N/UI:N/S:C/C:H/I:H/A:H/E:P/RL:U/RC:C

Fig. 3. SAM model of CAN Message Injection Attack—CVSS v3.0 Vector String:
CVSS:3.0/AV:P/AC:H/PR:L/UI:N/S:C/C:H/I:H/A:H/E:F/RL:O/RC:C
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2.6 BMW Remote Diagnostics Attack

The BMW Remote Diagnostics Attack [34] is the second attack by Tencent Keen
Security Lab on our list. It is a hybrid of the Tesla Remote Control attack and
the UDS Security Access attack. The researchers were able to control a BMW
after exploiting a back door in the in-vehicle infotainment system (also known as
NBT Head Unit). This was possible because UDS was not locked at high speed.
This gateway attack is shown as a SAM model in Fig. 4.

Fig. 4. SAM model of BMW Remote Diagnostics Attack—CVSS v3.0 Vector String:
CVSS:3.0/AV:A/AC:H/PR:L/UI:N/S:C/C:L/I:L/A:H/E:P/RL:O/RC:C

2.7 OBD Injection Attack

On-board diagnostics (OBD) is a vehicle’s self-diagnostic and reporting capabil-
ity for vehicles. Over the OBD port, which is easily accessible inside the vehicle,
many simple attack vectors are possible, especially in older car models, where
OBD injection attacks [39] are astoundingly easy to perform gateway attacks.
The SAM model of such an attack is omitted here. CVSS v3.0 Vector String:
CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:H/E:U/RL:W/RC:U
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2.8 Telematics Attack

A large part of the remote attack surface of a modern vehicle is deter-
mined by telematics units. A potential adversary might use software
defined radios or similar tools for remote exploitation of said telemat-
ics to obtain access to a device connected to the CAN bus or similar
powertrain as a gateway attack. Foster [8] describes an example telemat-
ics attack. The SAM model is omitted here. CVSS v3.0 Vector String:
CVSS:3.0/AV:N/AC:H/PR:L/UI:N/S:U/C:H/I:L/A:L/E:P/RL:U

2.9 Remote Keyless Entry Attack

Almost every modern vehicle has the ability for “keyless entry” or “keyless start
engine”. Those convenience features raise security risks as they provoke a gate-
way attack as shown by Garcia et al. [9]. With common hardware and low-level
software skills, potential adversaries are able to unlock, open or start foreign
vehicles after capturing and decoding radio signals for a Remote Keyless Entry
Attack. The SAM model for this attack is omitted here as this particular attack
is extensively described in various literature. CVSS v3.0 Vector String:
CVSS:3.0/AV:A/AC:L/PR:N/UI:R/S:U/C:H/I:N/A:N/E:H/RL:W/RC:R

2.10 CAN DoS Attack

One of the simplest but highly safety-critical follow-up attack is a CAN DoS
Attack as described by Palanca et al. [28]. Due to the CAN protocol definition,
CAN bus messages are arbitrated by ID. Lower IDs, i.e., with more starting
zeros, have higher priority than higher IDs. In a simple sense, spamming the
bus with messages that have a lower ID leads to network constipation and is the
equivalent to a classic denial-of-service attack. The SAM model for this attack
is omitted here as well, as its vulnerability and attackable property are widely
known. CVSS v3.0 Vector String:
CVSS:3.0/AV:P/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H/E:H/RL:W/RC:C

3 Countermeasures and Analysis

In this section we describe typical automotive security and dependability mecha-
nisms and analyse their protection potential with respect to the published attacks
described in Sect. 2. The result of the analysis of the relationship between attacks
on vehicle security and the protection potential of countermeasures is presented
in Table 2. It shows that message cryptography, as a popular representative of
software security, is only effective for a small part of the attacks as a protection
measure. Lesser known representatives can partially compensate, but overall, it
can be stated that there are no adequate security protection mechanisms for
some serious and well-known attacks on automotive software.



278 M. Zoppelt and R. Tavakoli Kolagari

3.1 Message Cryptography (MC)

Message cryptography entails encryption, authentication and verification of mes-
sages communicated over the vehicle’s bus, e.g., CAN, LIN, Flexray, Automotive
Ethernet, etc. Message cryptography is an immensely large field of research and
a big amount of apparent solutions does exist [3,4,19,23,26,30]. Unfortunately,
reliable and adaptive key distribution in heterogeneous automotive bus networks
is a difficult challenge. Keys need to be distributed, updated and revoked in
case of some soft- or hardware-updates. For some attacks, even properly imple-
mented cryptography would offer just a partial protection, e.g., authenticity for
CAN messages but no confidentiality due to the network topology. If an attacker
gains access to an ECU, she might also retrieve the cryptographic keys. Cryp-
tographically verifying messages would pose an obstacle for connecting rogue
devices to the bus but would not mitigate remote attack scenarios.

3.2 ID Hopping (IDH)

ID Hopping is a technique to obfuscate network bindings or messages by chang-
ing (“hopping”) between arbitration IDs without changing the actual arbitra-
tion. Order preserving encryption (OPE) is also considered as ID Hopping. This
technique is also widely explored in the research field of automotive network
security [15,18,19] and hinders adversaries to easily reverse engineer network
messages.

3.3 Challenge and Response (CR)

Challenge and response is a common technique used widely in the security and
network domain, though it is disturbingly unpopular in the automotive domain.
Physical car keys (keyfobs) mostly still use a rolling code system when transmit-
ting, enabling adversaries with mediocre skills and a software defined radio to
perform replay or relay attacks. Those could easily be mitigated by using a chal-
lenge and response mechanism. Unfortunately, keyfobs are not equipped with
the necessary hardware components due to financial reasons in the automotive
industry.

3.4 ECU Hardening (ECUH)

ECU Hardening stops the adversary to change the state of the flashed software
in any way. A popular application of ECU hardening is “Autonomous Security”
and “Karamba Carwall” by Karamba Security [7] which hardens ECUs based
on factory settings, eliminating the risks of false positives, detection delays, and
performance drag issues. ECU hardening relies heavily on static analysis of the
factory settings and firmware. It seems that this security mechanism is not really
inquired by researchers but popular in the industry, as it is easy to implement
and does not require increased effort.
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3.5 Run Time Correctness (RTC)

Synergies between safety and security are exploited in the area of fault tolerance
and software protection by tamper-tolerant software [16]. Shared approaches are
developed to get programs run-time error free [10, p. 9ff]. While dependabil-
ity aims at protection against systematic errors and random errors caused by
malfunction or unintended interference, security additionally wants to protect
against targeted, intended and possibly malicious manipulation. According to
Kriha [17, p. 13f], security attacks are input or output related. This can be
made verifiable by, e.g., validation frameworks. It must be stated, though, that
the availability of complete frameworks for validation is generally rather defi-
cient. Today’s security vulnerabilities rarely lie in cryptographic algorithms or
protocols but are almost always implementation-related, e.g., wrongly chosen
(weak) ciphers or keys, memory safety, the inability to update software over-
the-air, wrongly configured network interfaces, and more. Lists like the “Recent
Vulnerability Notes” [2] demonstrate that vividly. Techniques like Voting could
mitigate attacks that happen at random or are bound by probability, e.g., botnet
attacks.

3.6 Integrity Protection (IP)

Dependability measures insist on maintaining integrity through redundancy
checks, i.e., repeatedly or concurrently sending messages on the bus, checking
ECU state, double computing, etc. Integrity checks for data through redundancy
requires an adversary to compromise more individual pinpoints in order to break
the security goal integrity.

3.7 Virtualisation (V)

Virtualisation as a dependability and security measure, e.g., running applications
of different automotive safety integrity levels (ASIL) on different virtual comput-
ers can be used to virtually draw a line between applications and networks to
seal off applications who are safety-critical from functionally unrelated applica-
tions. Glas et al. [10, p. 12f] show that virtualisation may serve as a measure for
both dependability and security. Rosenstatter [32, p.4] and Othmane [27] also
describe virtualisation and Virtual Local Area Networks (VLANs) as a possible
solution for access control. The biggest benefit of virtualisation is, that it limits
the scope of a vulnerability to U (unchanged), as it is isolated in the virtualised
sandbox. The scope of a vulnerability is changed, if an attack impacts more
than the vulnerable component. That means, that if the scope is unchanged, an
attacker is not able to start a successful follow-up attack. Furthermore, lean use
of virtualisation could obliterate lacking CAN authenticity, as standard CAN
messages alone have no assignable source identifier.
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3.8 Analysis and Mapping of Countermeasures on Attacks

The analysis of the respectively selected attacks (cf. Sect. 2.2) does not have to
be very detailed in order to reveal the obvious mismatch between largely pro-
posed countermeasures and their effective protection in practice. In this section
we describe this mentioned mismatch by mapping effective countermeasures pro-
posed by academic research to the selected attacks. This mapping shows that the
most researched countermeasure (MC) is only effective in less than half of the
attacks. The first discussed attack (Tesla Remote Control Attack) is analyzed
both in text and in an illustrating figure. Due to the strict space limits, illus-
trations for the other attacks are omitted, but the analyses are always textually
described.

The essential element of the Tesla Remote Attack is the access to the APE
via exploiting Webkit, which must be capable of being updated from offboard.
MC cannot help here, because it is about the exchange of an entire component.
ECUH could completely prevent this attack, but does not offer any flexibility
with regard to updates. V could at least limit the scope of the vulnerability from
an unacceptable C to a U (see CVSS), requiring much more attack effort.

Fig. 5. Adversary attacking an ECU by-passing countermeasures (a) via an unpro-
tected communication channel (b). ECUH (b’) would have prevented the attack

Although, some countermeasures prevent adversaries from accessing or suc-
cessfully attacking a system, some attacks, engineer the attack vector around
the countermeasure applied by targeting a sub-component of a system via unpro-
tected communication channels and systematically traverse the system from the
inside out. For example, in the Tesla remote attack, the adversaries could not
directly access the secret key embedded in the ECU via network (a) so they
first compromised the unprotected and vulnerable webkit framework (b) and
got access to the key by-passing other countermeasures. In the (b) scenario, MC
is used but does not stop the attacker because it is used as intended. IDH cannot
be used because the channel is not a bus. CR cannot be applied either. If ECUH
was in place for the (b) scenario then it would have prevented the attack (illus-
trated as (b’) in Fig. 5). The dependability measures are not depicted because
they are too complex to be captured in an illustrating figure.
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The SecurityAccess via UDS attack is possible because a weak cipher for
the security challenge was chosen. A strong cipher in the UDS protocol would
mitigate such an attack. In addition, IP could at least determine, that an ECU
has been tampered with as integrity checks fail.

CAN message injection is one of the most researched attacks because the
topology of the CAN bus allows rogue participants of the network to send arbi-
trary messages to the bus. Unfortunately, MC quickly reaches its limits due to
the complex network topology and then can only if at all be used for partial
encryption or authentication. V, however, could virtually separate critical appli-
cations, thereby mitigating cross-ECU message injection, maybe even offering
some authenticity on top of the CAN protocol. V can also help in the case of
the BMW Remote Diagnostics Attack for the same reason. Plus, ECUH would
prevent attackers from tampering with the ECU firmware through diagnostic
protocols. RTC can be used to limit the ability to corrupt software functions
over diagnostic protocols.

The Control via OBD Injection attack shows many parallels to the CAN
Message Injection attack, though it is in this case possible to prevent the attack
with IDH or IP. IDH makes it harder for the attacker to reverse-engineer and
send valid messages to the car, while IP would recognize that some injected
messages are outliers.

Telematics attacks are very similar to CAN Message Injection attacks, except
that their gateway attack vector, i.e., the actual telematics unit, can be secured
better with MC, because their protocols are not entirely automotive specific.
The Remote Keyless Entry attack is actually already a solved problem, using
CR. Unfortunately, industry (hardware) pricing policies prevent this solution
from being used. Coming up with a software-only solution is a much sought-
after research challenge.

CAN DoS attacks are possible because of CAN’s arbitration characteristic.
They cannot be stopped with MC or other security countermeasures. It is possi-
ble, though, to use RTC techniques, e.g., watchdogs to prevent such attacks.

Table 2 shows that MC—where the majority of research is conducted—does
not mitigate all of the top attacks. The attacks and countermeasures discussed in
up-to-date research papers are—while being interesting in academia—not feasi-
ble in industrial automotive software. The attacks most successful in practice are
usually not prevented by typical published security research results. Fortunately,
dependability measures (RTC, IP, V) would offer some remarkable protections
against the majority of our investigated attacks.

4 Related Work

Rosenstatter and Olovsson [32] provide a mapping between automotive security
mechanisms and security levels in great detail. Auernhammer et al. [6] use a
systematic mapping of published attacks on ML components on the security
goals violated in autonomous vehicles. Their research shows that accountability
(for ML) is not covered by literature as there have not yet been any attacks
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Table 2. Analysis of automotive security and dependability countermeasures with
respect to attacks against automotive software systems. We distinguish between secu-
rity (left) and dependability (right) countermeasures. The X indicates a feasible pro-
tection; (X) indicates a partial protection

Attack MC IDH CR ECUH RTC IP V

Tesla Remote Control [24,25,35] X X X X

SecurityAccess via UDS [12] X (X)

CAN Message Injection [21,22,36] (X) X

BMW Remote Diagnostics [34] X X X

Control via OBD Injection [39] X X X X

Telematics Attack [8] X X

Remote Keyless Entry [9] X

CAN DoS Attack [28] X

published, because accountability for ML is difficult to attack and the security
goal is, therefore, not compulsory. Moreover, the work of Ray [31] lists practice
and challenges in automotive security, discussing the need for extensibility and
the constraints and considerations involved in achieving it. Huber’s survey [14]
shows how organizations from the automotive industry in the Euroregion tackle
the challenge of integrating dependability and security aspects during system
development. Their conclusion is that the utilization of a conceptual model
unifying relevant documentation artifacts from requirements engineering, sys-
tem modeling, risk assessment and evidence documentation could address these
issues. We addressed this by using SAM as a modeling technique. Finally, the
six-step model for integrating autonomous vehicle safety and security analysis
by Sabaliauskaite [33] achieves and maintains integration and alignment among
safety and security artefacts throughout the entire AV life-cycle.

5 Conclusion

In this paper, we analyzed today’s serious attacks with the model-based tech-
nique SAM and ranked them with the CVSS. The result of our study shows
a revealing spectrum that research can actively take up and investigate. It is
interesting that the majority of today’s automotive security research is focused
on (message) cryptography, which does not mitigate an essential part of the top
attacks, although many other countermeasures offer advantages that should not
be neglected. A highly topical research challenge is flexible extensibility, which at
the same time provides protection against arbitrary manipulation (like ECUH)
and would generally be a helpful approach for OTA updates. Moreover, it turned
out that virtualisation is a promising countermeasure against attacks. A possible
research challenge is a lean system for (embedded) virtualisation, as it limits the
scope of the vulnerability and can obliterate some of the weaknesses in auto-
motive security, e.g., CAN authenticity. Future research challenges should also
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focus on a combination of security and dependability countermeasures to pro-
vide adequate and flexible protection against cyber attacks on cars, e.g., mixing
ECUH with extensibility or updatability enabled via cryptography. Autonomous
vehicles in the future will probably be more susceptible to attacks than today’s
cars already are. Our work aims to offer the necessary insights and fundamentals
to continue conducting relevant research in this domain.
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Abstract. Among the strong trends that are impacting society,
autonomous driving stands out clearly as one of the prime candidates
to cause disruptive changes in automotive industry. Fully automated
driving is identified as a major enabler for mastering the grand soci-
etal challenges of safe, clean, and efficient mobility. A major probation
for highly automated driving is the step change from partial to condi-
tional automation and above. At these high levels of automation, the
driver is unable to intervene in a timely and appropriate manner. Con-
sequently, the automation must be capable of independently handling
safety-critical situations. Fail-operational behavior is essential at all lay-
ers of automated driving. These layers include sensing, computation and
vehicle architecture. The PRYSTINE project targets realization of Fail-
operational Urban Surround perceptION (FUSION), based on robust
Radar and LiDAR sensor fusion, and control functions enabling safe
automated driving. PRYSTINE addresses development and validation of
new fail operational platforms, as well as high performing and depend-
able sensor fusion on different levels. In this paper, an overview of fail-
operational approaches on different layers (vehicle and sensor level) is
provided, together with a description of the interplay between safety
and security aspects. It is further enhanced with description of a fail-
operational sensor-fusion framework on component and system level.

Keywords: Safety · Security · Fail-operational · Sensor-fusion ·
Autonomous driving

1 Introduction

The automotive industry has been a synonym for innovative solutions and con-
cepts from its beginnings through to the present day. The European automotive
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sector currently secures 12.2 million jobs and is provides significant efforts and
finances for R&D activities [10]. Among all current development trends that
will affect society radically in the coming years, autonomous driving stands out
as having the potential to disruptively change the automotive industry as we
know it. Fully automated driving is identified as a major enabler for mastering
the grand societal challenges of safe, clean, and efficient mobility. This implies
that the automotive domain is undergoing dramatic changes, where complex
tasks that were traditionally performed by the human driver are gradually being
automated. In order to provide fault-free operation and to deal with rapidly rev-
olutionizing and unforeseen tasks and environments, these automation systems
need to continuously adapt, learn, and improve.

For user acceptance, the human users demand trustworthy, safe, and secure
– or for short: dependable – autonomous vehicles, one of the major challenges
for highly automated driving. At high levels of automation, the driver is unable
to intervene in a timely and appropriate manner. Consequently, the automa-
tion must be capable of independently handling safety-critical situations. Fail-
operational behavior is essential at all layers of automated driving.

State of the art autonomous driving functions sense their immediate environ-
ment and rely entirely on built-in sensors. These technologies lay the foundation
to enable the deployment of more advanced control strategies and are expected
to be the next evolutionary step to obtain a large scale view of the traffic situa-
tion. However, the common approaches for dependable system development now
need to be adjusted to consider additional constraints coming from highly auto-
mated and connected vehicle functionality. Understanding the design, structure
and integration of the necessary infrastructure and road user, information must
become an integral part of developing modern vehicles. Unfortunately, there is
a lack of available inter-domain experts and best practices which are geared
specifically for those novel concepts. The PRYSTINE project targets realization
of Fail-operational Urban Surround perceptION (FUSION), based on robust
Radar and LiDAR sensor fusion, and control functions enabling safe automated
driving. PRYSTINE addresses the development and validation of new fail oper-
ational platforms, as well as high performing and dependable sensor fusion on
different levels. In this paper, an overview of fail-operational FUSION approaches
on different layers (vehicle, controller and sensor level) is provided, together with
a description of the interplay between safety and security aspects on the indi-
vidual levels.

2 FUSION on Vehicle Level

Through development of high-performance fail-operational systems, PRYSTINE
is committed to increasing technological maturity at different levels of the auto-
motive supply chain. Such fail-operational systems, which are based on sen-
sor fusion, are also targeting deeper involvement of semiconductor manufac-
turing. The project contribution to innovations in automotive and semicon-
ductor fields is demonstrated through use cases contributing to the develop-
ment of autonomous driving in unstructured urban environments. Taking the
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diminishing role of drivers in such an application into consideration, a ratio-
nally hyped demand for high safety is requiring development of sophisticated
fail-operational systems. Hence, the proposed solutions must comply with the
challenging demands for an uninterrupted functional correctness even in the
presence of component failures. Potential answers are seen in redundancy and
technological diversity. Additional constraints for sensor fusion structures are
possible run-time reconfiguration in the events of failure, as proposed in [12].
We are proposing a generic fail-operational E/E system capable of managing
such events. The system development is supported by an integration platform,
which serves as the basis for enhancing and adapting architectures. It also sup-
ports functionality and control strategies. The overall aim is to enable an efficient
integration of various FUSION technologies with a strong focus on dependability,
testing and validation.

2.1 Fail-Operational E/E Architecture

The high-performance control units are a response to the increasing need for
integration of centralized adaptive control automotive systems. The localized
processing is also minimizing the security risks and potential negative impact of
latency related to cloud communication, but it must also eliminate safety risks.

The available heterogeneous solutions and the lack of standardization, are
also pushing towards usage of generic, technology agnostic platforms. Unique
solutions limit portability and are predestined for use by a small range of vehi-
cles only. The proposed concept of a generic fail-operational E/E architecture
(see Fig. 1) is offering a basis for integration of optimized sensors, electronic
components, embedded safety controllers, processing systems with dependable
vehicular electrical/electronic infrastructure and communication systems. The
architecture relies on semi-redundant control which enables fail-operational mon-
itoring, control and collection of vehicle data close to the physical world. In the
event of a computing failure, the module which normally monitors the opera-
tion, takes over the command of the architecture and has an option to continue
standard operation and issue a warning to the vehicle user.

An alternative option is to continue operation of safety-relevant functions
of the vehicle, but with reduced non-safety-relevant performance until adequate
technical attention is given to the system. This centralized high-performance
in-car computing unavoidably contributes towards distribution of intelligence
which in turn endorses reliable and robust operation.

It is the parallelism of the high-performance CPUs within the control unit
that solidifies the fail-operational performance. The safety approved controller
is also there to monitor the two high performance CPUs, but also to perform
safety relevant activities that require less computational power.

As efficient vehicle development calls for teamwork, the proposed E/E archi-
tecture enables integration of generic hardware components that satisfy a pre-
defined interfacing convention. Hence, it is possible for teams from different dis-
ciplines to bring together their independently developed hardware solutions in a
modular fashion and to create a complex system of systems, such as a vehicle.
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Fig. 1. Conceptual E/E architecture

Ideally, the hardware contributions should allow technology agnostic usage, to
ensure that common portability issues are avoided.

As the existing devices that provide vehicle connectivity offer limited possi-
bilities in terms of data exchange, there is an unsatisfied demand by a growing
number of services in terms of data throughput.

The high-computational nature of the presented solution and the need for its
safe operation are calling for new generations of sensors and integrated circuits.
The architecture offers a testing ground needed for definition of new requirements
for semiconductor manufacturing.

2.2 FUSION at E/E Architecture Level

Sensor fusion at low-level is a well known concept of turning a combination of
sensors to act as one unit. The potential benefits of fusion at E/E architecture
level, however, offer additional redundancy and resilience to the E/E architec-
ture. Each high level functionality integrated into autonomous vehicle relies on
multiple different sensor types and is executed on a specific control unit. How-
ever, in fail conditions, the redundancy of sensor signals can support resilience;
when considering fusion on E/E architecture level also the migration of complex
intelligent algorithms demanded by autonomous functions to other systems of
the E/E architecture is enabled. Such approaches of the E/E architecture can
exploit robust (high-level) fusion to retain a certain functionality level upon crit-
ical faults, sensor failures or cyber-attacks. The higher level sensor overview from
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the E/E architecture also can contribute to potential self-calibration or run time
reconfiguration as and when required.

2.3 Relation to Safety

The main challenge of autonomous driving applications related to standardiza-
tion activities is the current lack of consolidation in terms of autonomous driving
and especially run-time adaptations from the safety perspective. However, the
evolution of related technologies and maturing of the available solutions are pro-
viding a more fertile environment for contributions. The available gap in this field
is leaving a possibility for active involvements and greater impact for dynamic
applications and re-configurable or adaptive systems.

ISO 26262 [13] addresses possible hazards that originate from malfunctioning
behaviour of E/E safety-related systems, including their interactions. But nei-
ther the functional safety standard ISO 26262 nor Automotive SPICE [21] are
designed for dynamic applications and re-configurable or adaptive systems. The
current safety approaches provide means for risk identification and classification
and give guidance on how to reduce the risk involved to an acceptable level
at development time. These practices require the entire system and all system
contexts to be defined and known at design time.

Novel so-called Systems of Systems (SoS) approaches [7] are integrations of
heterogeneous systems delivering capabilities and services without exact knowl-
edge of the internals of an involved subsystem. A promising method for defini-
tion of SoS architectures lies in interface specification and a quasi contract-based
development, as proposed, among others, by [7,17]. Thus novel safety engineering
approaches are required for such systems. Promising approaches to tackle these
issues rely on a set of contracts to describe component attributes and evaluate
the robustness of the configuration at run-time.

Service-oriented Architecture (SOA) is known as one popular method for
creating dynamically changing, distributed applications. It basically consists of
encapsulating all functionalities into so-called services that can be reached via a
well-defined interface from anywhere in the network. Each service holds a con-
tract that describes the ways of accessing this functionality, and the different
services are composed by an orchestration algorithm. In [4] a combination of
this composable contract approach with an ontology-based run-time reconfigu-
ration (ORR) is proposed for the use in automotive applications. VerSaI (Vertical
Safety Interfaces) [24] is a contract-based modeling approach created to assist
the integrator of an integrated architecture in checking whether the application
software components are able to run safely on the execution platforms of the
system. VerSaI checks the safety compatibility between the application and the
platform through demands and guarantees (contract-based approach).
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2.4 Relation to Security

In the security context, the work of Iber et al. [11] presents a concept for modeling
contracts and a vision of a generic modeling language for specifying contracts
for extra-functional properties, such as safety and cyber-security.

Many cyber-security related approaches are concerned with investigation and
techniques that deal with non-intrusive runtime logging and event tracing of a
specific system. Importance is predominantly placed upon distributed mission
critical functions, which are shadowed by runtime models. The models aid detec-
tion of dependability incidences e.g. security attacks or safety relevant issues.
Such recognition is achieved through detection of misalignment between mod-
elled functionality and the sensed physical data. The detection calls for reaction
and adaptation at runtime. By this means the system can detect intentional
manipulations, based on misalignment between the anticipated and actual sig-
nals (cyber-security attack). This also facilitates the provision of adequate infor-
mation and algorithms for predictive maintenance.

SAE J3061 [23] and ISO 21434 [15] state cybersecurity engineering require-
ments and lifecycle processes, which shall ensure security-by-design approaches,
analogous to the process framework described in ISO 26262.

Apart from that, other standards, such as the IEC 62443 [1] or the ISO 27000
series [2] are not directly aimed at automotive systems. Nevertheless, they are
relevant for the production and backend systems of the automotive domain.
The aeronautics domain ARP4754 [19] provides guidance for system level devel-
opment and defines steps for the adequate refinement and implementation of
requirements. Security concerns in aeronautics industry are tackled by the Com-
mon Criteria [14,20] specification. An analysis done by SoQrates Security AK1

indicates that the available standards are frequently fragmented or incomplete,
and typically assume that their open issues are covered by other guidelines or
standards.

3 FUSION on System Level

PRYSTINE also aids development of FUSION on system level, where the main
objective is a highly efficient and safe modular autonomous driving platform.
The main research and development activities include design, development, and
demonstration of computing infrastructure, supporting fully/partially function-
ality in case of faults or impairing of environment perception. The targeted fail-
operational behaviour is tackled through essential implementation of redundan-
cies and diversity within the control and computational components. FUSION,
as a key feature on this level is ensuring fail-operational functionality. Only by
achieving fail-operational hardware/software architectures, can automated driv-
ing functions be continuously provided (with a reduced set of capabilities) even
if a fault is detected or environment perception is impaired. Therefore, redun-
dancy and diversity within the control elements of the architecture are essential
for guaranteeing fail-operational behavior.
1 http://soqrates.eurospi.net/.

http://soqrates.eurospi.net/
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The AUTOSAR Adaptive Platform [6] implements a run-time environment
for Adaptive Applications (ARA). The platform follows a Service-oriented Archi-
tecture (SOA) approach for future use of automated driving functionalities
(ADF) and advanced driver assistance systems (ADAS). In comparison the
AUTOSAR run-time environment (RTE) for the Adaptive Platform [5] dynam-
ically links services and clients during run-time.

The works of [3,4,11] focus on a safety certification solution for safety-critical,
open, and adaptive multi-core systems. This approach consists of modular and
composable contracts created during development time as part of a sound and
mostly traditional safety argumentation. The focus is set on ensuring safety
through the system lifecycle, even if parts of the system are replaced or updated
as part of maintenance or upgrades.

3.1 Software Architecture for FUSION on System Level

For highly automated or autonomous vehicles the on-board sensors, which are
implemented in the vehicle itself are the approaches predominantly relied on.
However, there is a tendency to work towards integration of environmental data
and off-board information. The detected surrounding objects are incorporated
into an environmental model, capturing all collected information about the phys-
ical environment and the vehicles motion and location. These values are obtained
from vehicle sensors and measurement units. Using this variety of information,
the environment model is able to perform situation analysis and the decision-
making algorithms are used to predict driving maneuvers in advance. The sit-
uation analysis algorithm exploits the environment model to identify the free
road space and hence forecast the most likely behaviour of other traffic partic-
ipants. Consequently, it is able to identify vehicle’s safe movement paths. As
the multitude of tasks and algorithms used in an automated vehicle have spe-
cific hardware requirements, there is a necessity for a wide range of computing
platforms. These vary in computational power, electrical interfaces and safety
concepts to ensure fail-operational behaviour. The software components, which
are mostly developed in modular App manner, provide necessary functionalities
for autonomous driving at the expense of being distributed over multiple com-
putation platforms. The applications that are executed on a single computation
platform, control non-related vehicle functions. An implication is that the sys-
tem platform needs to provide basic separation and fail-operational concepts as
depicted in Fig. 2.

A vital novelty within PRYSTINE is the development of new sensor fusion
algorithms. These are of two types: established classic control algorithms and
the ones that are based on AI. AI algorithms are currently deemed to be one of
the most promising contributors for development of highly automated driving,
as they have a strong potential to be trained for detecting objects in various sit-
uations and also for learning from previous events. They require data structures
representing objects and the object attributes (relative speed, trajectory, type
etc) as input. An unfortunate consequence for these systems is that such inputs
expose vulnerabilities to cyber-security attacks. On the other hand, provision of
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Fig. 2. FUSION System xCU Concept

a holistic AI algorithm that replaces the entire human decision making process
is unlikely in the near future, due to the need to ensure critical safety and due to
a lack of standardised certification methods. The dependability of highly auto-
mated driving functions (vehicle intelligence) is still considered as inadequate.
Their operation is thus monitored by a safety envelope concept (as depicted in
Fig. 3).

This conceptual approach is required due to the product liability require-
ments, which state that products be brought to the market must provide rea-
sonable and expected safety and they must have been developed in accordance
with the state-of-the-art. The state-of-the-art requirements are roughly defined
by the common methodologies employed at the time and are defined in national
and international standards, maintained by standardization bodies, such as the
International Standardization Organization (ISO) and/or national standardiza-
tion agencies. The main goal of this work is to provide comparable and uniform
means for analysis of results independently performed in different partner orga-
nizations. The international standards ISO 26262 [13], ISO PAS 21448 [16] and
ISO CD 21434 [15] are placed into a focal point when considering the develop-
ment of automated driving functions on a system level.
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Fig. 3. Depiction of the Safety Envelope Concept

3.2 Relation to Safety

The functional safety activities are supported by two international standards.
A safety study based on the latest ISO 26262(2018) is to be conducted for
the FUSION approaches. The second edition of the ISO 26262 was released
in December 2018 and it provides improvements in the clarity of the standards
as well as an awaited extension of its scope to trucks, buses and motorcycles.
One of the main goals behind the standardization related activities and work
products is to ensure that no fault within the system can cause a hazardous
situation and potentially harm individuals. The standard is thus geared, from
the PRYSTINE perspective, towards the development of systems that ensure
detection of software and hardware malfunctions and mitigation of their effects,
so that vehicle is continually operational in safe state.

ISO PAS 21448 [16] deals with safety of the intended functionality (SotIF)
and technical shortcomings if the system works according to its specification.
SotIF is gaining importance with increasing vehicle automation levels, because
such systems do not have the option of falling-back on the driver who could take
over the vehicle controls in an emergency. Safety measures for non-automated
driving and assisted only driving usually ensure fail-silent operation, which guar-
antees that the driver can control the vehicle until a defined safe state is reached.
However, fail-silent operation, which is a necessity for highly automated driv-
ing, is only achievable by using fail-operational systems. The development of
fail-silent systems is already established and is covered by the ISO 26262, where
faults within the system are analyzed and corresponding mitigation strategies
are defined. However, additional technical shortcomings, which are in the scope
of the ISO PAS 21448, must be addressed by the ISO 26262; especially for
upcoming fail-operational systems, The main challenge in the SotIF activities
is, that not all technical deficiencies are known during development stages, but
in the worst case scenario they have a potential to be revealed during operation,
after the vehicle has been brought onto the market. For this reason, the ISO
PAS 21448 – SotIF is complementary to the ISO 26262 and focuses on the pre-
vention of hazardous situations caused by technical shortcomings or misuse of
the system. The ISO PAS 21448 standard assumes that the system behaves as
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specified and no fault is present. Nevertheless, due to technological weaknesses,
certain effects (e.g. strong light source in the field of view of a camera, metal
objects in front of a RADAR sensor, or an optical illusion) might incorrectly be
identified as obstacles and could cause a hazardous situation. SotIF minimizes
and mitigates risks by describing the process of dealing with such scenarios that
include road conditions, surrounding landscape, object texture, weather.

Systems must be exposed to rigorous verification and testing to ensure that
known technical inadequacies do not result with potentially hazardous situations.
Consequently, a correct system verification procedure should mandate that all
known critical scenarios are tested under varying environment conditions to avoid
unknown unsafe scenarios during development (as depicted in Fig. 4).

Fig. 4. SotIF approach to minimize the number of unknown and unsafe scenarios [22].

3.3 Relation to Security

Automotive security standardization activities are comparable to the safety stan-
dardization that was initiated a decade ago. The CD draft ISO 21343 [15] has
been released recently and is based on SAE 3061(2016) [23]. This standard,
in combination with the guidebook mentioned, defines a security development
process for the complete product lifecycle. The described process starts with a
system analysis and its potential threats, as well as vulnerabilities that could
potentially allow the execution of the threats. The different and partly mutual
exclusive requirements for developing a safe and secure system requires a novel
co-engineering approach, where the differences and synergies are precisely under-
stood, and the applied analysis methods are most effectively used. Such a co-
engineering approach (described also in [18]) must consider all the relevant stan-
dards and shall be reflected in the organization’s internal development processes
to increase efficiency and minimize development cost.
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4 Fail Operational on Sensor Level

Fail-operational sensor components represent the fundamental building blocks
that contribute to an overall robust and fail-operational environment perception
system. The PRYSTINE project focuses on novel fail-operational concepts for
LiDAR and Radar sensors. These sensors, together with cameras, will be used
in virtually any perception system in the future.

PRYSTINE’s component-level safety concepts for sensors focus on two main
abstraction levels. On high abstraction level, each sensor type (LiDAR, Radar
and camera) carries inherent and very distinct benefits and drawbacks, such as:

– LiDAR sensors possess sound characteristics in terms of resolution (range,
angle, etc.), but are very poor in sensing colors or measuring speed.

– Radar is a speed measuring instrument, but has poor ability in terms of
resolution and color sensing.

– Cameras commonly exhibit good properties when sensing color, but are poor
speed measuring sensors and also have poor characteristics in situations with
changing light conditions.

It is the fusing (either on raw-data, point-cloud, or object-list level) of these three
sensor types that eliminates the negative effects of individual sensor drawbacks.
Simultaneously, the fusion aids a crucial creation of a robust and safe perception
system that is capable on drawing from strengths of each individual sensor type.
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Fig. 5. Fundamental automotive sensor architecture. While monitoring circuits regard
safe operation, security circuits regard integrity, authentication, and confidentiality.

4.1 Relation to Safety

On low abstraction level, each sensor implements in principle the same concept
as depicted in Fig. 5, which commences with a physical effect being sensed and
translated into an electrical signal. Signal processing is involved in manipulation
of digitized information (e.g., distance between sensor and object), which is then
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provided to a higher-level ECU (such as a dedicated sensor fusion ECU). On this
low, ASIC semiconductor-level, functional safety is achieved by monitoring the
integrated functions up to a certain coverage according to the ISO 26262 [13]
standard. These monitors continuously observe the operation of the sensor ASIC
and trigger an alarm or, depending on the severity of the fault, even a reset, in
case a fault was detected that impairs the sensor’s functionality. Such an alarm
or reset alerts the sensor fusion ECU to initiate appropriate countermeasure.
As depicted in Fig. 6, PRYSTINE drives innovation way beyond state-of-the-art
by introducing novel concepts that enable fail-operational environment sensing.
These concepts enable degraded sensing also in the case of detected faults. As
an example, Infineon’s LiDAR vision (cf. [9]) is based on an automotive qualified
oscillating 1D MEMS mirror that is controlled by a MEMS Driver ASIC. Both
MEMS mirror and MEMS Driver ASIC form the most crucial part of the LiDAR
system. The fundamental functional safety concept of the MEMS Driver ASIC,
which is based on a redundant and diverse sense and control strategy, clusters
faults of the MEMS mirror and the MEMS Driver ASIC into three severity
classes:

– Warnings are triggered in the case of faults that do not degrade the LiDAR’s
functionality in the short run, such as a detected over-voltage of the supply.

– Alarms are triggered in case of faults that impair the LiDAR functionality
but still allow a degraded operation, such as damaged mirror comp-drivers
that result in a reduced mechanical field-of-view.

– A Reset of the MEMS Driver ASIC is initiated in cases when the severity of
the detected fault prohibits a degraded operation at all, such as a detected
under-voltage of the supply that leads to a malfunction of the digital core.

Once the sensor fusion ECU recognizes a warning, alarm, or reset event, it may
read out further status information and then has a possibility to decide whether,
or not, a degraded operation can be accepted given the current application con-
text.

4.2 Relation to Security

While monitoring the function of the sensor ASIC’s is of paramount importance
in terms of achieving safe environment perception, the security aspect may not be
disregarded. The more complex the sensor function (such as support for firmware
updates or re-configurability during operation), the higher is the functional safety
impact in the event of a malicious security breach. As an example, a short-
range LiDAR may be configured for a 120◦ field-of-view. Due to a given security
breach, this field-of-view is then maliciously re-configured to 60◦. On the one
hand, without security measures, the LiDAR sensor assumes that the sensor
fusion ECU initiated a valid and trustworthy re-configuration. On the other
hand, the sensor fusion ECU still assumes a 120◦ field-of-view and is not aware
of the actual reduced sensing area, which may result in a fatal accident due
to undetected obstacles. Therefore, on lowest sensor ASIC abstraction layer,
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Fig. 6. PRYSTINE: from fail-safe to fail-operational, obtained with changes from [8].

the following security measures must be considered in order to support safe
operation:

– The sensor shall check the integrity and authenticity of configuration data
including firmware updates. As a consequence, malicious configuration of the
sensor is prohibited.

– The sensor’s output data stream shall be protected by means of integrity and
authenticity. As a consequence, the sensor fusion ECU can trust the sensor
data.

– In case no other entity is to be able to either read or interpret any kind of
data transaction, data communication shall be protected via state-of-the-art
encryption methods.

– The authenticity of the whole sensor box shall be verifiable in order to prevent
counterfeiting of spare parts.

In summary, semiconductor companies must take full account of both func-
tional safety according to the ISO 26262 [13] and security according to the ISO
21434 [15], in order to achieve a safe and robust sensor system that is used in
the context of highly-automated driving and connected cars.

5 Conclusion

Connected and automated vehicles belong to the main research trends of the
radically changing automotive industry. Autonomous cars are characterized by
a high level of dynamics at multiple layers: learning and adapting systems that
continuously evolve and do so to such an extent that guarantees about their
dependability are extremely difficult to provide. At the same time, the cus-
tomer demands for dependability (trustworthiness, reliability, safety, and secu-
rity) within these highly dynamic systems is and will be intrinsic. Ensuring the



Safety and Security Aspects of FUSION 299

dependability of these complex systems is thus a precondition for lowering the
resistance against their acceptance in general and consequently for the public to
be trusting and accepting towards them.

To that aim, we provided a brief overview of state-of-the-art safety and secu-
rity standards that need to be considered for a Fail-operational Urban Surround
perceptION (FUSION) approach. The realization of this FUSION approach is
targeted by the PRYSTINE project on different layers of the vehicle architecture
(E/E architecture, control system, and sensor level).

Acknowledgment. This project has received funding from the Electronic Compo-
nent Systems for European Leadership Joint Undertaking (ECSEL-JU) under grant
agreement No 783190 (PRYSTINE Project).
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Abstract. The increasing complexity of Advanced Driver Assistance Systems
(ADAS) presents a challenging task to validate safe and reliable performance of
these systems under varied conditions. The test and validation of ADAS/AD
with real test drives, although important, involves huge costs and time. Simu-
lation tools provide an alternative with the added advantage of reproducibility
but often use ideal sensors, which do not reflect real sensor output accurately.
This paper presents a new validation methodology using fault injection, as
recommended by the ISO 26262 standard, to test software and system robust-
ness. In our work, we investigated and developed a tool capable of inserting
faults at different software and system levels to verify its robustness. The scope
of this paper is to cover the fault injection test for the Visteon’s DriveCore™
system, a centralized domain controller for Autonomous driving which is sensor
agnostic and SoC agnostic. With this new approach, the validation of safety
monitoring functionality and its behavior can be tested using real-world data
instead of synthetic data from simulation tools resulting in having better con-
fidence in system performance before proceeding with in-vehicle testing.

Keywords: Advanced driver assistance systems (ADAS/AD) � ISO 26262 �
Safety-critical systems validation � Safety of the intended functionality (SOTIF)

1 Introduction

The advancement of technology in the field of driver assist systems and automated
driving features are becoming a norm. These systems provide safety and comfort
features to the driver and passengers but their reliability and safety are still question-
able. Testing and validation of such systems involves significant effort and demands
new approaches to cover a multitude of test scenarios. Conventional software-in-the-
loop (SIL), hardware-in-the-loop (HIL) as well as vehicle-in-the-loop (VIL) test
methods are used extensively but covering edge cases and testing for the safety
functionalities to gain confidence before series deployment still needs research. Many
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studies have aimed at developing validation strategies to test new sensor setups used in
ADAS/AD for evaluating the dependability. In our study, we have attempted to
develop another validation approach, which aims at testing the components of an
ADAS/AD system at various levels and validate the robustness of an autonomous
software stack at system level.

This paper is organized as follows: Sect. 2 presents an overview of related work
and relevant background. Section 3 describes the adopted methodology. Section 4
discusses the evaluation of our approach with the use case of an object detection
algorithm and the results obtained are described. Finally, Sect. 5 presents conclusions
with a short overview of possible future work.

2 Related Work and Background

The first subsection presents related work with respect to the application of fault
injection methods in the field of automotive systems verification and validation. The
second subsection lists challenges about the validation of advanced driver assistance
systems.

2.1 Fault Injection – State of the Art in ADAS/AD

Since many years, conventional in-the-loop techniques such as software-in-the-loop
(SIL) as well as hardware-in-the-loop (HIL) have been used for testing the function-
alities of an automotive Electronic Control Unit (ECU). The number of ECU’s in a
modern day car has multiplied in recent years. The onset of infotainment systems as
well as driver assistance systems has increased the complexity of ECU validation at the
functional and system level. Fault injection methods, as described in [1], have been
commonly employed in automotive testing for the past few decades. However, these
methods prove to be insufficient with the advancement of automotive electronics
resulting in complex ECUs depending on multiple new sensors such as cameras, radars
LIDAR, as well as the increasing complexity of the vehicle network.

Many studies have been conducted using fault injection for testing of ADAS/AD
systems. In [2], the authors presented a test method for vision-based algorithms of an
ADAS/AD considering an automotive camera-in-the-loop. The method used a real
camera in front of a monitor screen to feed synthetic data of various scenarios to
observe the impact on the performance of vision algorithms. This is a commonly used
approach for testing input from mono cameras.

In another study [3], a safety assessment of automated vehicle functions was
conducted and the authors focused on determining critical parameters of fault detection
interval for permanent faults. As per ISO 26262 standards [4], fault injection is highly
recommended as one of the methods to derive the Automotive Safety Integrity Level
(ASIL) of an ECU component. In [5], the authors presented the application of fault
injection as per ISO 26262 with the use case of an Electronic Steering Control Lock
(ESLC) system.
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2.2 Challenges of ADAS/AD Validation

Modern day cars equipped with ADAS/AD have a suite of sensors, which have given
rise to complex system architectures. With every passing day, functionalities being
offered as part of ADAS/AD or partially automated driving solutions are increasing.
The sheer complexity of such systems makes testing and validating such systems
before deployment in series vehicles challenging. Of the many common problems
faced, one of the most important is the verification and validation of ADAS/AD.

Unlike traditional methods, validating an ADAS/AD/AD system requires extensive
test coverage to prove safe and dependable operation. Vehicle testing needs evidence
from millions of kilometers, which is costly and not feasible. ADAS/AD relies on
technologies such as machine learning that is difficult and expensive to test. Therefore
employing simulation tools is useful to test corner cases as well as have reproducible
cases. With simulation, the scenarios can be varied for different environmental con-
ditions, but the degree of reality from these tools is limited. Recorded data from vehicle
tests can be utilized to bridge the gap of simulation tools. However, it is critical to test
these systems at multiple levels of abstraction such as software, software integrated
with hardware and at the system level.

Fault injection can play a useful role as part of a validation strategy that also
includes traditional testing and non-test-based validation [6]. This is especially true if
fault injection is applied at multiple levels of abstraction rather than just at the level of
stuck-at electrical connectors [6].

Most of the research in this field has positively contributed in defining new ways to
adapt with the evolving systems in automotive domain to handle the testing and val-
idation of ADAS/AD ECU’s. However, a majority of studies focus on functional
validation or sensor specific validation. As outlined in the challenges of ADAS/AD,
achieving the desired ratings to certify an ECU for a specific ASIL level still needs to
investigate new methods to validate functional as well as safety modules. This paper
focuses on investigating a validation approach, which can handle the validation of these
systems at multiple different levels.

3 Methodology

In our approach, we aimed at developing a tool which can aid in creating validation
data sets from recorded vehicle data. The tool is aimed at testing ADAS/AD functions
or the entire system using fault injection methods. As the recorded data from vehicle
consists of raw sensor data involving the vehicle network data as well, this can be
helpful in having more reliability in terms of richness of information in comparison
with scenario-based testing using simulation tools.

Figure 1 shows a simplified block diagram of the framework under development.
Our motivation stems from the fact that it is necessary to find out vulnerabilities at
different levels of automated systems. As shown in the figure, we are developing a
flexible framework which can inject faults at each level such as sensing layer, per-
ception layer, decision layer or control layer. These faults can be inserted and system
behavior can be observed inside SIL as well as HIL environments.
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The architecture of an ADAS/AD/AD ECU consists of multiple domains. The
functions offered by an ADAS/AD system can be broadly classified into safety func-
tions and comfort functions. The functionalities are split between Quality Management
(QM) domain and ASIL domains. Based on the safety criticality of the functions either
of the domains is responsible for its functioning. Safety functions such as an Auton-
omous Emergency Braking System (AEBS) have strict requirements and fall under the
ASIL domain. These functions have stringent timing requirements and failure of
function or delayed response can lead to severe hazards. In case of failure to react to
danger in the stipulated time, there must be redundancies or safety monitoring func-
tionalities (SMF), which should take action and act in a safe manner to have the least
damage in case of danger. In normal conditions, these redundancies or SMF are not
checked and fault injection is used to check these.

With the developed tool as shown in Fig. 2, one of the primary objectives is to
inject faults in the sensor as well as communication lines to verify the behavior of SMF.
This is for the Visteon’s DriveCore™ system which is taking input from 13 cameras, 8
radars, 4 Lidars and 12 ultrasonic sensors As per recommendations of ISO 26262 and
SOTIF [7], we have focused on injecting timing based faults, sensor data corruption,
and signal level faults. In case of timing faults, we play the sensor data ahead of the
original timestamp or delay the message. As sensor fusion algorithms fuse data from
multiple sensors to check the integrity of information for further decisions, timing
faults can expose the system and can help in checking the system reaction in the
presence of such faults.

With sensor corruption, there are multiple failures possible for each sensor such as
camera, LiDAR, and radar. When the sensor information is noisy or corrupt, then the
information cannot be trusted for further control actions. These faults can be inserted

Fig. 1. Simplified block diagram of the fault injection framework with different layers of an
autonomous system stack.
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and check whether the safety monitoring functions take action or still the normal
operating software output is utilized for decision making even though the confidence
level is low. This can be dangerous and not safe for the driver as well as for the
passengers. In the given example, we focused on setting up the pipeline using one
camera sensor and implemented sensor impurity faults. After inserting the fault, the
output can be checked at the output of individual algorithms, at the end of the per-
ception stack or at the end of the control layer. This flexibility can help check fault
penetration and the impact at each level in SIL and HIL environments. In the following
section, we have elaborated the types of faults for a camera that can be injected to test
software and system robustness.

Fault Injection in Cameras. Many perception tasks such as object detection, lane
detection, traffic sign and light recognition rely on input from cameras. The camera
amongst other ADAS/AD sensors provides rich information about the environment but
is prone to degraded output due to several reasons such as poor illumination, adverse
weather conditions, sensor faults, etc. Corrupt or poor camera output can have a drastic
impact on the output of vision algorithms. Although data augmentation techniques [8]
are being used to improve the reliability of a neural network output, they still cannot
assure robust performance from a validation point of view.

In our approach, we used fault injection methods for camera sensors as recom-
mended by ISO/PAS 21448:2019 [7]. The types of faults that can be injected using our
tool are summarized in Table 1.

DriveCore™ Compute is the autonomous driving platform of Visteon, which is
sensor and SoC (System on a chip) agnostic. The input received from the sensors are
important as the platform relies mostly on sensor output fed into the hardware. As a

Fig. 2. Screenshot of the graphical user interface of the fault injection tool
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part of the system engineering activity of identifying all the possible inputs, outputs and
other influencing parameters, a P-Diagram (Parameter Diagram) approach, as shown in
Fig. 3, is used initially to list all noise sources. From this analysis, different noise
factors, which the system might experience from the sensor, are identified through
brain storming sessions and by technical analysis.

A tree diagram approach was used, as shown in Fig. 4, for decomposing the feature
to its sub sections and the influencing parameters in terms of environment, other
systems etc. were identified.

Table 1. Camera fault types

Sensor Timing faults Sensor impurity

Camera Play messages in advance than the original timestamp
Play messages delayed than the original timestamp

Salt & pepper noise
Gaussian noise
Bright image
Dark image
Translated image
Rotated image
Flipped image

Fig. 3. Parameter Diagram describing the influencing parameters for an object detection feature
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After identifying the influencing parameters and the possible noise factors, a pri-
oritization was created based on the analysis of impact of each parameter for a par-
ticular ADAS/AD feature under test. In the case of object detection feature, the risk
associated with the noise factor over the communication channel (Salt and Pepper
Noise) was found to be having higher precedence and weightage over other noise
factors. This was decided considering frequency of occurrence, detectability and
severity of the influencing factor for a particular ADAS/AD feature based on the
FMEA (Failure Mode and Effect Analysis) done.

Amongst the faults described in Table 1, salt and pepper noise as sensor data
impurity was studied in particular to evaluate the developed framework. Salt and
pepper noise refers to a wide variety of processes that result in the same basic image
degradation: only a few pixels are noisy, but they are very noisy. The effect is similar to
sprinkling white and black dots—salt and pepper—on the image [9]. The cause of this
fault type can be due to camera sensor, software failure or hardware failure during
imaging capturing or transmission. In the evaluation section, the application of this
fault type on a video stream is discussed and the observed results have been presented.

Fig. 4. Classification tree diagram for factors affecting object detection
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4 Evaluation

The first subsection presents a small introduction to the task of object detection and its
criticality for an autonomous vehicle. An example of the impact of faults in cameras
was studied with object detection as a use case. The second subsection describes the
evaluation metrics used and discusses the results obtained.

4.1 Use Case: Object Detection Algorithm

A critical task for an autonomous vehicle is to identify and classify various actors
(static and dynamic) around itself to have correct information about its environment.
Object detection is, therefore, an extremely important aspect in perceiving the ego
environment. An object detection algorithm accepts input images from a camera,
processes the image and provides an output in the form of a bounding box around the
detected object along with its predicted class. For instance, in a traffic situation, in a
single image, there can be multiple objects belonging to different classes such as
pedestrians, cars, static objects, traffic signs, etc. The algorithm should detect and
classify the objects correctly; failure to do so accurately might result in misrepresen-
tation of ego surroundings and can lead to wrong control actions resulting in a fatality.
Figure 5 shows the output of an object detection algorithm when provided with an
input image.

In our approach, we use real recorded vehicle data in the form of Robot Operating
System (ROS) bags and introduce the faults in these ROS bag files. We added salt and
pepper noise to the input image stream for an initial evaluation. Pepper noise, salt
noise, and a combination of salt and pepper noise together were added to the original
image. Figure 6 shows the result of adding variations of salt and pepper noise to the
original image.

Fig. 5. Original input image (left), output of object detection algorithm with a marked bounding
box along with the probability of prediction (right)
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4.2 Evaluation Metrics and Results

There are several methods available to evaluate the object detection task. In our work,
we used the evaluation protocol developed by the KITTI vision benchmark suite [10]
The performance of a classification model often uses evaluation metrics such as pre-
cision, recall and mean-average-precision (mAP). The calculation of precision and
recall values are done based on a confusion matrix [11]. Figure 7 shows a confusion
matrix, which summarizes the conditions for these values.

Fig. 6. Images added with noise – Original image (top left), pepper noise 5% (top right), salt
noise 5% (bottom left), salt and pepper noise 5% (bottom right)

Fig. 7. Confusion matrix
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From the confusion matrix, precision is defined as the ratio of true positives to the
total predicted positive values as stated in Eq. 1.

Precision ¼ True Positive
True PositiveþFalse Positive

ð1Þ

From the confusion matrix, recall is defined as the ratio of true positives to the actual
positive values as stated in Eq. 2.

Recall ¼ True Positive
True PositiveþFalse Negative

ð2Þ

Intersection over Union (IOU), also known as the Jaccard coefficient, is a measure of
the percentage of overlap between sets defined as [12]:

IoU ¼ A\Bj j
A[Bj j ð3Þ

where A and B are the sets of predicted data and ground truth data respectively.
The IOU can be a value between 0 and 1, with 0 indicating no overlap and 1

complete overlap between the sets [12]. An observation is classified as true positive
when the IOU value is above a certain threshold else it is classified as false positive. In
the KITTI benchmark suite, the evaluation of the object detection performance is done
using the PASCAL criteria [10]. For cars, an IOU of 70% is required, while for
pedestrians and cyclists an IOU of 50% is required. The average precision is computed
as the area under the Precision-Recall (PR) curve. The average precision (AP) score of
the PR curve is used to indicate the overall performance, i.e., the larger AP score
indicates the better performance of the object detection algorithm [13].

Figure 8 shows a block diagram of the above approach used to evaluate the impact
of noise addition to an image on the output of the object detection algorithm.

Fig. 8. Block diagram of the evaluation method of the object detection
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The images from a camera stream of recorded ROS bag were extracted and the
objects present in the images were marked with bounding boxes and the associated
class. The ground truth data was generated and stored in a text file format as required
by the KITTI evaluation script. The corrupted images after adding salt and pepper noise
were provided as an input to the object detection algorithm. The algorithm detected and
classified objects giving the output in the form of bounding box dimensions and a
confidence value (probability) for the predicted class.

The input images were added with salt and pepper noise individually and in
combination. The evaluation was carried out for different percentages of noise and the
PR curves were plotted for each of the variations. Figure 9 shows the impact of adding
pepper noise to the input image stream. From the plots, it can be seen that the system is
robust enough to handle noisy images with up to 10% pepper noise with a drop in mean
AP score from 89 to 80%. The performance drops sharply after adding 20% pepper
noise which is not reliable anymore.

Figure 10 shows the impact of adding salt noise to the input image stream. From
the plots, it can be seen that the system is vulnerable to salt noise as the mean AP score
drops to 36% at 2.5% noise. With an increase in the noise percent, the performance gets
worse and mean AP drops to zero at 10% noise. The performance drop is drastic in
contrast with the same amount of pepper noise, hence the system output cannot be
considered reliable in the presence of salt noise.

Figure 11 shows the impact of adding a 50:50 combination of salt and pepper noise
to the input image stream. In comparison with salt noise alone at 2.5%, the system
performance is still acceptable with a mean AP score of 80%.

From these PR curves it can be seen that object recognition suffers drastically in the
presence of granular noise in the image source. In particular, salt noise has a greater
impact than pepper noise.

Fig. 9. Precision-Recall curves for different amounts of pepper noise on input images

An Approach for Validating Safety of Perception Software 313



This could be primarily due to how the object detection algorithms are designed.
These algorithms use CNNs to detect and classify the objects in an image. The training
of a neural network is done on a large dataset of images containing different objects and
the neural network learns feature extraction to identify the class of an object. The
performance of a neural network largely depends on the dataset used to train them.

The neural network used in this evaluation was trained on an image dataset without
noise. This is one of the reasons why the performance suffers in presence of noise.
Another reason of this behavior is because the color images are converted to grayscale
before being processed for detection and classification. As salt and pepper noise are

Fig. 10. Precision-Recall curves for different amounts of salt noise on input images

Fig. 11. Precision-Recall curves for different amounts of salt and pepper noise on images
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randomly distributed white and black pixels spread on the image, they can introduce
discontinuities in the feature of an object which can make it difficult for the network to
identify the object. If pepper noise is added, as they are black pixels they can be
assumed as parts of the road surface by the network and therefore in case of pepper
noise the performance drop was not drastic. On the other hand, salt noise which are
white pixels can break the feature patterns of the object thus making it difficult for the
networks to detect and classify.

5 Conclusion and Future Work

The deployment of partially automated cars or cars with advanced driver assistance
systems functioning safely without harm can only be achieved by exhaustive testing of
such systems in all possible conditions to prove their safe behavior. The need for robust
and dependable performance of such systems is vital for safe co-existence of such cars
along with human drivers. The currently developed tool can help in expanding the
existing validation toolchain alongside traditional verification and testing methods.
Along with conventional SIL and HIL testing using simulated environments, we
advocate that the use of fault injection using real data can prove to be a valuable
validation approach resulting in having better confidence in system performance and
realize the system boundaries effectively. With this approach, we were able to introduce
various faults as recommended by the automotive safety standards and determine the
impact of such faults on the performance of a component of an autonomous system. As
expected, we observed that the performance drops in the presence of faulty sensor data
and were able to quantify the drop so that the system robustness can be estimated.

This was the initial step of this work, and it can still be improved to accommodate
faults for other sensor inputs for an ADAS/AD/AD platform. Along with sensor faults,
in the future, the tool can be extended to introduce communication faults as well, which
can assist in simulating network related errors too. In multi-domain controllers, as in
the case of an ADAS/AD/AD electronic control unit, the behavior of safety monitoring
functionality can also be realized.
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Abstract. Autonomous vehicles perceive the environment with different
kinds of sensors (camera, radar, lidar...). They must evolve in an unpre-
dictable environment and a wide context of dynamic execution, with
strong interactions. Therefore, ensuring the functionality and safety of
the autonomous driving system has become one of the focuses of research
in the field. In order to guarantee the safety of the autonomous vehicle, its
occupants and the others road users, it is necessary to validate the deci-
sions of the algorithms for all the situations that will be met by the vehi-
cle. These situations are described and generated as different scenarios.
The main objective of this work is to generate all these scenarios and find
out the critical ones. Therefore, we use a scenario-generation methodol-
ogy which uses the Performance Evaluation Process Algebra (PEPA) for
modelling the transitions between the driving scenes. To apply our app-
roach, we consider a running example about a riding autonomous vehicle
in the context of a three-lane highway.

Keywords: Autonomous vehicle · Critical scenarios · Formal
method · PEPA

1 Introduction

Autonomous vehicles combine a variety of sensors to perceive their surroundings,
such as cameras, radars and lidars. Based on the data provided by the sensors,
perception algorithms provide observations on the environmental elements, while
decision algorithms generate the actions to be implemented by these vehicles.
Therefore, it is necessary to specify, validate and secure the dependability of
the architecture and the behavioural logic of the Advanced Driver-Assistance
Systems (ADAS) running on the vehicle for all the situations that will be met
by the vehicle to guarantee the safety of the autonomous vehicle.

These situations are described and generated as different test cases of
autonomous vehicles. Our objective is modelling these test cases for testing
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Fig. 1. Scene, Scenario and Test Case.

ADAS. We should first define the terms of test case and what it includes. We
define the test case as the description of one or several scenarios applied to
some ranges and behaviours to simulate the ADAS (Fig. 1) (Chen and Kloul
2019). A scenario describes the temporal development between several scenes in
a sequence of scenes (Fig. 2) (Chen and Kloul 2018). These scenes are developed
by the actions made by autonomous vehicle Ego or the events occurring due to
the actions made by other vehicles, and this from the point of view of Ego. A
scene is described as a snapshot of the vehicle environment including the static
and mobile elements, and the relationships among those elements.

Fig. 2. A scenario (dashed line) made by actions/events (edges) and scenes (nodes)

We have presented an ADAS test cases generation methodology based on
highway traffic situation description ontologies in (Chen and Kloul 2018). We
focused on highway infrastructure because compared to other types of roads,
there are uniform specifications (Ministère de l’écologie 1988; Ministère de
l’équipement 2000) for highways. We built three ontologies for the conceptu-
alization and characterization of the components of test cases: a highway ontol-
ogy and a weather ontology to specify the environment in which evolves the
autonomous vehicle, and a vehicle ontology which consists of the vehicle devices
and the control actions. Relationships and rules, such as traffic regulation, are
expressed using a first-order logic. Our methodology is composed of a hierar-
chy of three layers: basic layer, interaction layer and generation layer (Fig. 3). A
scene can be defined using the concepts in the basic layer and the relationships
in the interaction layer. But these scenes are static like snapshots, not enough
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to be the test cases for the simulation and validation of ADAS. Thus we are
interested in the PEPA modelling technique to generate the scenarios accord-
ing to the state-change elements of the system. In (Chen and Kloul 2019), we
model a sample scenario using Performance Evaluation Process Algebra (PEPA)
(Hillston 1994).

In this paper, we also focus on the generation layer for modelling the dynamic
transitions between the driving scenes to generate scenarios. We consider a more
general situation “Riding autonomous vehicle in the context of a three-lane high-
way” as an example to describe more specifically how to build the corresponding
PEPA model, and how to generate all scenarios, specially the critical ones.

Structure of the paper: Sect. 2 is dedicated to Related Works. An overview of
our methodology of test cases generation is presented in Sect. 3. An introduction
of the stochastic formal modelling language PEPA is given in Sect. 4. We use a
case study in Sect. 5 to show the construction of corresponding PEPA model,
the generation of all scenarios, specially the critical ones. Finally, we conclude
our work in Sect. 6.

2 Related Works

Several researchers have used ontologies for the conceptualization of the ADAS
or the control of the autonomous vehicle.

An ontology of recognition for ADAS system is presented in (Armand et al.
2014). The authors define an ontology composed of concepts and their instances.
This ontology includes contextual concepts and context parameters. It is able
to process human-like reasoning on global road contexts. Another ontology is
proposed by Pollard et al. (2013) for situation assessment for automated ground
vehicles. It includes the sensors/actuators state, environmental conditions and
driver’s state. However, as the classes of both ontologies are highly generalized,
they are not enough to describe test cases allowing to simulate and validate
ADAS.

To build a knowledge base for smart vehicles and implement different types
of ADAS, (Zhao et al. 2015) proposed three ontologies: map ontology, control
ontology and car ontology. They focus on algorithms for rapid decision mak-
ing for autonomous vehicle systems. They provide an ontology-based knowledge
base and decision-making system that can make safe decisions about uncon-
trolled intersections and narrow roads. However, the authors did not consider
the equipment of the road infrastructure in their map ontology, for example the
traffic signs which are an important part for test cases construction.

Morignot and Nashashibi (2012) propose an ontology to relax traffic regula-
tion in unusual but practical situations, in order to assist drivers. Their ontology
represents the vehicles, the infrastructure and the traffic regulation for the gen-
eral road. It is based on the experience of the members of the lab with driving
license, not based on a texts corpus. That may be useful for modelling the
concepts involved in traffic regulation relaxation, but we need more rigorous
ontologies for modelling the concepts involved in general situations.
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In (Bagschik et al. 2017), the authors propose, using ontology, to create sce-
narios for development of automated driving functions. They propose a process
for an ontology based scene creation and a model for knowledge representation
with 5 layers: road-level, traffic infrastructure, temporary manipulation of the
first two levels, objects and environment. A scene is created from first layer to
fifth layer. This ontology has modelled German motorways with 284 classes, 762
logical axioms and 75 semantic web rules. A number of scenes could be auto-
matically generated in natural language. However, the natural language is not a
machine-understandable knowledge and the transformation of natural language
based scenes to simulation data formats with such a huge ontology is a tremen-
dous work.

In (Hülsen et al. 2011) and in (Hummel et al. 2008) the authors use a
description logic to describe the scenes. The first work provides a generic descrip-
tion of road intersections using the concepts Car, Crossing, RoadConnection
and SignAtCrossing. They use description logic to reason about the relations
between cars and describe how a traffic intersection situation is set up in this
ontology and define its semantics. The results are presented for an intersection
with 5 roads, 11 lanes and 6 cars driving towards the intersection. Hummel et al.
(2008) also propose an ontology to understand road infrastructures at intersec-
tions. This methodology focuses on the geometrical details related to the multi-
level topological information. It presents scene comprehension frameworks based
on the description logic, which can identify unreasonable sensor data by checking
for consistency. All these ontologies are limited to the situation of intersection
which is not enough to simulate an environment and validate the ADAS.

In (Furda and Vlacic 2009, 2011), the authors deal with the high-level vehicle
control tasks and address the topic of real-time decision making for autonomous
vehicles. There is a large number of factors to be considered in the decision
making unit for the selection of feasible driving manoeuvres. Petri nets are used
to model this decision stage.

The authors of (Lee et al. 2009) introduced a complete parking mechanism for
autonomous car-like vehicles to solve the parallel parking problem. The Petri net
is used to recognize suitable parking regions and plan alternative parking routes
especially in global space. This method provides an effective parking path and
strategy, it also extends the case of single parking space to the case of multiple
parking spaces.

A process algebra based on basic operators of classical process algebras (CCS,
CSP, ACP) is used in (Varricchio et al. 2014) as a formal specification language to
express complex tasks for autonomous electric vehicles in a mobility-on-demand
scenario. The authors proposed an algorithm whose solution converges to the
optimal continuous-time trajectory that satisfies the task specification.

A formalisation of the Comhordú model has been achieved in (Bhandal
et al. 2011). Comhordú is a coordination model for reasoning about some of
autonomous mobile systems that communicate over a wireless network. This
model incorporates a collection of entities some of which are mobile vehicles.
Every entity has a type which determines the behaviour of an entity. The state
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of an entity contains its location and activity information. A mode is an abstrac-
tion of a state. This model is formalised by the language TCBS’ which is based
on the Timed Calculus of Broadcasting Systems (TCBS) (Prasad 1996). This
formalism eliminates the ambiguity and provides a basis for future verification
work.

In the context of formal modelling techniques for concurrent systems, the
authors in (Cerone and Zhao 2013) use the Markovian process algebra PEPA
(Hillston 1994) to describe quantitative aspects of driver behaviour to under-
stand the relation between driver behaviour and transport systems. A three-way
junction consisting of a two-way main road with a diverging one-way road is
used as an example to illustrate their approach. They are interested in the prob-
ability of possible collisions, the average waiting time in a queue from arrival at
the junction to finally passing the junction and the average number of cars wait-
ing in a queue. They have modelled the effects of driver’s experience in terms
of state transitions associated with a finite number of pre-defined probability
factors. The results show a trade-off between junction performance (reflected in
number of cars in a queue and waiting time) and safety (reflected in probability
of possible collision) under certain conditions on driver behaviour.

In this paper, we use the PEPA for modelling the transitions between the
driving scenes.

3 Overview of the Methodology

In order to generate scenarios, we have defined a three-layers methodology
(Fig. 3). Our methodology is based on ontologies we have defined in (Chen and
Kloul 2018). We define three ontologies: highway ontology and weather ontology
to specify the environment in which evolves the autonomous vehicle, and the
vehicle ontology which consists of the vehicle devices and control actions. Our
methodology consists of the following three layers: basic layer, interaction layer
and generation layer.

Basic Layer. It includes all static and mobile elements for the scenarios. We
represent them with ontologies as a structural framework. Ontology is often
conceived as a set of concepts with their definitions and relationships (Uschold
and Gruninger 1996). This layer includes the static concepts and the mobile
concepts of the highway, the weather and the vehicle ontologies (Chen and Kloul
2018).

The highway infrastructure ontology consists of the physical components of
highway system providing facilities essential to allow the vehicle driving on the
highway. We have defined fifty-four (54) concepts for highway ontology. The
weather ontology describes the state of the atmosphere at a particular place and
time. Some phenomena influence the visibility of captors on the autonomous
vehicle. We have defined twelve (12) concepts for the weather ontology. Vehicle
ontology describes the performance of a vehicle with nine (9) properties. We
have defined twenty-six (26) concepts for vehicle ontology (see (Chen and Kloul
2019) for more details).
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Fig. 3. Scenarios generation methodology.

Interaction Layer. This layer describes the interaction relationships between,
on the one hand, the static entities, and on the other hands the mobile entities.
Moreover this layer describes the relationships between static and mobile entities.

In order to represent the complex and intricate relationships between the enti-
ties, we consider three kinds of relationships (Fig. 4): the relationships between
the highway entities, the relationships between the vehicle entities, and the rela-
tionships between the entities of highway and vehicle. Moreover, the traffic regu-
lation and the interactions between the concepts are written as rules to simulate

Fig. 4. Relationships (solid lines) and effects (dashed lines).
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the environment of autonomous vehicle. We use first-order logic to represent
these relationships and rules.

Generation Layer. The task of the generation layer is to build test cases which
include one or several scenarios. The scenario is defined as a sequence of scenes,
assailed with goals, values and actions of Ego, values and events from the other
actors, and values of the static concepts. A scene can be defined using the con-
cepts in the basic layer and the relationships in the interaction layer (Fig. 3). In
the following sections, we focus on this layer for modelling the dynamic transi-
tions between the driving scenes to generate scenarios using Performance Eval-
uation Process Algebra (PEPA).

4 Performance Evaluation Process Algebra (PEPA)

Performance Evaluation Process Algebra (PEPA) is a stochastic process algebra
designed for modelling computer and communication systems and introduced by
Jane Hillston in the 1990s (Hillston 1994). PEPA is a simple language with a
small set of operators. It is easy to reason about the language as it provides a
great deal of flexibility to the modeller (Hillston 1994).

A PEPA model is constructed by identifying components performing activi-
ties. The operators and their syntax are defined as follows:

S
def= (α, r).P | P + Q | P ��

L
Q | P/L | A

Prefix: S
def
= (α, r).P , component S carries out activity (α, r) which has action

type α and a duration which is exponentially distributed
with parameter r before behaving as P

Choice: S
def
= P + Q, S may behave either as component P or as component Q

Cooperation: S
def
= P ��

L
Q, S is the result of the cooperation or synchronisation

between components P and Q. Shared activities in the
cooperation set L determine the interaction between com-
ponents P and Q, replacing the individual activities of the
individual components P and Q with a rate reflecting the
rate of the slower participant.

Hiding: S
def
= P/L, the system behaves as component P except that any

activity of a type within the set L is hidden. Its type is not
witnessed upon completion. It appears as the unknown
type τ and can be regarded as an internal delay by the
component

Constant: S
def
= A it assigns S the behaviour of component A. In general, it

assigns names to components
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PEPA abstracts activities performed by components into a continuous-time
Markov process. The generation of this underlying Markov process is based on
the derivation graph of the model. The derivation graph is a directed multi-
graph whose nodes are the reachable states of model and whose arcs represent
the possible transitions between them. These edges are labelled only by the
rates of activities which become the corresponding entries in the infinitesimal
generator matrix (Kloul 2006).

5 Case Study

We consider the situation “Riding autonomous vehicle in the context of a three-
lane highway” as an example to show how to build the corresponding PEPA
model, and how to generate all scenarios, specially the critical ones.

Fig. 5. Scenography of the example Fig. 6. The initial scene. (Color figure
online)

The highway is separated into two carriageways by median. In the scenog-
raphy of this running example (Fig. 5), a portion of one carriageway is selected.
This carriageway has three main lanes: the right lane–Lane1, the center lane–
Lane2 and the left lane–Lane3. The left hard shoulder is located on the imme-
diate outside of the median. The edge of the left hard shoulder is marked by two
single solid white lines and the right soft shoulder is located on the immediate
outside of the right hard shoulder. The dashed lines are of type T1 which defini-
tion is provided in the official French document for road symbols (Ministère de
l’écologie 1988).

We consider the example of the scene in Fig. 6, where the autonomous vehicle
Ego (blue vehicle) rolls on the center lane of a separated lane road. On this lane,
one (1) vehicle rolls in front of Ego and two (2) vehicles behind Ego. There are two
(2) vehicles rolling on the left lane and three (3) vehicles rolling on the right lane.

Fig. 7. Critical zone of example scene.
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Depending on the speed of Ego and the speed of the vehicle following Ego,
we can define a critical zone in the center lane considering the minimum safety
distance that must separate Ego from other vehicles (Fig. 7). Therefore, we sep-
arate the portion of carriageway into six (6) zones as shown in Fig. 8.

Fig. 8. Zones of the scene. Fig. 9. Zones’ numbers in the scene.

We number these zones from one to six (Fig. 9). Zone 1 indicates the left lane.
Zone 2 and Zone 5 indicate the uncritical zones in front and behind Ego. Zone 3
indicates the critical zone in front of Ego while Zone 4 indicates the critical one
behind it. Zone 6 indicates the right lane. Both Zone 1 and Zone 6 are uncritical
zones for Ego.

In our PEPA model, there are 3 components: Ego, V A1 and Scene1. These
model the behaviour of the Ego car, any vehicle, say V A, in the scene and the
scene itself, respectively. Suppose Ego is always in the center lane with no lane
change actions. The PEPA equation of the sequential component Ego is the
following:

Ego = (runEgo, e1).Ego + (accelerateEgo, e2).Ego + (decelerateEgo, e3).Ego;

The action runEgo means that Ego rolls on the lane without changing its
direction or its speed. The actions accelerateEgo and decelerateEgo, respec-
tively, indicate that Ego accelerates and decelerates. Ego always stays in the
initial state after these actions. e1, e2 and e3 are the rates of the corresponding
actions.

Now consider that a car V A is rolling on a portion of carriageway and its
initial state, noted V A1, is on the left lane. The PEPA equations of the sequential
component V A1 are the following:

V A1 = (accelerateV A1, a1).V A1 + (decelerateV A1, a2).V A1 + (goRightV A1, p1 ∗ a3).V A2

+ (goRightV A1, p2 ∗ a3).V A3 + (goRightV A1, p3 ∗ a3).V A4

+ (goRightV A1, (1 − p1 − p2 − p3) ∗ a3).V A5;

V A2 = (goLeftV A2, a6).V A1 + (goRightV A2, a7).V A6 + (accelerateV A2, a4).V A2

+ (decelerateV A2, p4 ∗ a5).V A2 + (decelerateV A2, (1 − p4) ∗ a5).V A3;

V A3 = (goLeftV A2, a6).V A1 + (goRightV A2, a7).V A6 + (accelerateV A2, (1 − p5) ∗ a4).V A2

+ (accelerateV A2, p5 ∗ a5).V A3 + (decelerateV A2, a5).V A3;

V A4 = (goLeftV A2, a6).V A1 + (goRightV A2, a7).V A6 + (accelerateV A2, a4).V A4

+ (decelerateV A2, p4 ∗ a5).V A4 + (decelerateV A2, (1 − p6) ∗ a5).V A5;
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V A5 = (goLeftV A2, a6).V A1 + (goRightV A2, a7).V A6 + (accelerateV A2, (1 − p7) ∗ a4).V A4

+ (accelerateV A2, p7 ∗ a5).V A5 + (decelerateV A2, a5).V A5;

V A6 = (accelerateV A3, a8).V A6 + (decelerateV A3, a9).V A6 + (goLeftV A3, p8 ∗ a10).V A2

+ (goLeftV A3, p9 ∗ a10).V A3 + (goLeftV A3, p10 ∗ a10).V A4

+ (goLeftV A3, (1 − p8 − p9 − p10) ∗ a10).V A5;

In state V A1, goRightV A1 is the action modelling the displacement of V A
from its current lane to the right immediate lane. This action may lead to 4
different cases. V A may arrive at Zone 2 (state V A2), Zone 3 (state V A3), Zone
4 (state V A4) or Zone 5 (state V A5). State V A2 models the behaviour of the car
when being in Zone 2. In this case, action decelerateV A2 may lead to 2 different
cases: V A stays in state V A2 when it slowly decelerates and it will go to state
V A3 if it drastically decelerates. State V A3 models the behaviour of the car
when being in Zone 3. In this case, action accelerateV A2 may lead to 2 different
cases: V A stays in state V A3 when it slowly accelerates and it will go to state
V A2 when it drastically accelerates. State V A4 models the behaviour of the car
when being in Zone 4. In this case, action decelerateV A2 may lead to 2 different
cases: V A stays in state V A4 when it slowly decelerates and it will go to state
V A5 when it drastically decelerates. State V A5 models the behaviour of the car
when being in Zone 5. In this case, action accelerateV A2 may lead to 2 different
cases: V A stays in V A5 when it slowly accelerates and it will go to state V A4

when it drastically accelerates. In state V A6, goLeftV A3 is the action modelling
the displacement of V A from its current lane to the left immediate lane. This
action may lead to 4 different cases: V A may arrive at Zone 2 (state V A2), Zone
3 (state V A3), Zone 4 (state V A4) or Zone 5 (state V A5).

ai, 1 ≤ i ≤ 10 are the rates of the corresponding actions and pi, 1 ≤ i ≤ 10,
in the equations is the probability of the corresponding action occurrence. For
example, when V A rolls on Zone 1 and it does action goRightV A1, it may arrive
at Zone 2, Zone 3, Zone 4 or Zone 5. The corresponding probabilities are p1, p2,
p3 and (1 − p1 − p2 − p3) respectively.

The initial scene Scene1 indicates that Ego is rolling on the center lane and
vehicle V A on the left lane. The PEPA equations of the sequential component
Scene1 are:

Scene1 = (accelerateV A1,�).Scene1 + (decelerateV A1,�).Scene1 + (goRightV A1,�).Scene2

+ (goRightV A1,�).Scene3 + (goRightV A1,�).Scene4 + (goRightV A1,�).Scene5;

Scene2 = (acceleraeV A2,�).Scene2+(decelerateV A2,�).Scene2+(decelerateV A2,�).Scene3

+ (goLeftV A2,�).Scene1 + (goRightV A2,�).Scene6;

Scene3 = (accelerateV A2,�).Scene2+(accelerateV A2,�).Scene3+(decelerateV A2,�).Scene3

+ (goLeftV A2,�).Scene1 + (goRightV A2,�).Scene6;

Scene4 = (accelerateV A2,�).Scene4+(decelerateV A2,�).Scene4+(decelerateV A2,�).Scene5

+ (goLeftV A2,�).Scene1 + (goRightV A2,�).Scene6;
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Scene5 = (accelerateV A2,�).Scene4+(accelerateV A2,�).Scene5+(decelerateV A2,�).Scene5

+ (goLeftV A2,�).Scene1 + (goRightV A2,�).Scene6;

Scene6 = (accelerateV A3,�).Scene6 + (decelerateV A3,�).Scene6 + (goLeftV A3,�).Scene2

+ (goLeftV A3,�).Scene3 + (goLeftV A3,�).Scene4 + (goLeftV A3,�).Scene5;

In each state of scene Scenei, there is an action which leads to the transition
to another state. Zone 3 and Zone 4 being the critical zones, states Scene3
and Scene4 indicate the critical scenes when V A rolls on Zone 3 and Zone 4,
respectively. All the scenarios which include state Scene3 or Scene4 are critical
scenarios which may lead to accidents.

The complete PEPA model equation is as the following:

Scenario
def= (V A1 ��

L
Scene1) || Ego

where L is the actions set on which components V A1 and Scene1 must synchro-
nise. It is defined as:

L = {accelerateV A1, decelerateV A1, goRightV A1, accelerateV A2, decelerateV A2,

goLeftV A2, goRightV A2, accelerateV A3, decelerateV A3, goLeftV A3}.

5.1 The Model Parameters

In order to test our model, we define a set of values for the rates of actions and
their probabilities. At present, we can calculate the rates of some actions such
as accelerate and decelerate.

For example, the rates of action accelerateV A2 can be calculated using V A’s
initial speed v1, final speed v2 and the distance d between the initial state and
the final state of V A. The initial speed, is the speed of V A before the action
accelerateV A2, which is 100 km/h. The final speed, is the speed of V A after the
action accelerateV A2, which is 110 km/h and the distance is 0.1 km. We can get
the rate a4 of this action using standard kinetic:

a4 =
v2
2 − v2

1

2dΔv
=

1102 − 1002

2 × 0.1 × 10
= 1050

Unlike the values of actions accelerate and decelerate rate, the values of the other
actions rates are set arbitrary. Tables 1 and 2 present the values parameters for
the activities of components Ego and V A1, respectively.
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Table 1. Activites of Ego

Action Rate

runEgo e1 500

accelerateEgo e2 950

decelerateEgo e2 1900

Table 2. Activites of V A

Action Rate Action Rate

accelerateV A1 a1 850 goLeftV A2 a6 600

decelerateV A1 a2 1700 goRightV A2 a7 600

goRightV A1 a3 500 accelerateV A3 a8 950

accelerateV A2 a4 1050 decelerateV A3 a9 1900

decelerateV A2 a5 2100 goLeftV A3 a10 500

The values of the probabilities for this example are given randomly and they
are shown in Table 3.

Table 3. Probabilities of rates

Probability Probability

p1 0.3 p6 0.5

p2 0.2 p7 0.6

p3 0.1 p8 0.1

p4 0.7 p9 0.2

p5 0.2 p10 0.3

5.2 Numerical Results

PEPA abstracts the activities performed by components into a continuous-
time Markov process. We can get the steady-state probability distribution (see
Table 4) using Eclipse PEPA (Hillston and Gilmore 2014). This PEPA model
has 18 states, and the probability of being in each state is provided. We find
that there are high possibilities to pass the state 1 and the state 18, whose prob-
abilities are nearly one-third. state 1 and 18 represent the states where V A is in
Zone 1 and Zone 6, respectively. V A rolls on the center lane in all other states
which share the remaining probabilities.

Table 4. State space of model PEPA

State VA Scene Ego Probability State VA Scene Ego Probability

1 V A1 Scene1 Ego 0.352941176470588 10 V A4 Scene2 Ego 0.0151257114470111

2 V A2 Scene2 Ego 0.015952714555464 11 V A4 Scene3 Ego 0.0119727683943635

3 V A2 Scene3 Ego 0.0157723350149253 12 V A4 Scene4 Ego 0.0151257114470111

4 V A2 Scene4 Ego 0.0159527145554646 13 V A4 Scene5 Ego 0.0119727683943635

5 V A2 Scene5 Ego 0.0157723350149253 14 V A5 Scene2 Ego 0.024773123985088

6 V A3 Scene2 Ego 0.0085948014167240 15 V A5 Scene3 Ego 0.0363636902911840

7 V A3 Scene3 Ego 0.018503678424650 16 V A5 Scene4 Ego 0.0247731239850882

8 V A3 Scene4 Ego 0.0085948014167240 17 V A5 Scene5 Ego 0.0363636902911840

9 V A3 Scene5 Ego 0.0185036784246506 18 V A6 Scene6 Ego 0.352941176470588
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We can generate all possible scenarios and identify critical scenarios from the
transition graph of the whole model. One scenario includes one or several states
in transition graph which are connected. Each state of the system is a node of
transition graph, and the activities are the labels on the transitions between the
initial states and final states. The scenarios are considered as the paths in the
transition graph which include at least one state. Critical scenarios are those
which include critical states. In this example, critical states are those referring
to critical scenes Scene3 and Scene4 (Table 4).

We choose a path with four (4) states to form an example of critical scenario
to show how the method works. These states are state 1, state 2, state 7 and
state 18. In Fig. 10, the red vehicle rolls on left lane (Lane3) represents the initial
state (state 1). The action goRightV A is performed by V A in state V A1 with
the rate p1 × a3 and it goes to state 2. Then, V A in the state V A2 does the
action decelerateV A2 with a rate (1 − p4) × a5 and it goes to state 7. Next,
V A in the state V A3 continue to change lane using action goRightV A3 with a
rate a7 and it goes to state state 18. In this path, state 7 is the critical state as
it includes the state Scene3 (Table 4). Therefore, this scenario, which includes
state 7, is a critical scenario.

Fig. 10. Critical scenario include critical state (red word). (Color figure online)

We can calculate the probability of a scenario occurrence by multiplying
the probabilities of all passed states. The probability of the occurrence of this
scenario is:

PScenario = P1 × P2 × P7 × P18

= 0.35294117647058826 × 0.01595271455546461
× 0.01850367842465067 × 0.3529411764705882

= 0.00003677031

where Pi is the probability to be in state i, i = 1, 2, 7, 18.
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6 Conclusions

In this article, we showed how to use the stochastic formal modelling language
PEPA to model the dynamic transitions between the driving scenes to generate
scenarios. This formal modelling method is an important part of our ADAS test
cases generation methodology which is composed of a hierarchy of three layers:
basic layer, interaction layer and generation layer. In the future, we plan to
extend our work to include the highway infrastructure and weather impact.
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Décret n◦ 2000-1355 du 30/12/2000 paru au JORF n◦ 0303 du 31 décembre 2000
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Abstract. In the automotive industry, modern cyber-physical systems
feature cooperation and autonomy. Such systems share information to
enable collaborative functions, allowing dynamic component integration
and architecture reconfiguration. Given the safety-critical nature of the
applications involved, an approach for addressing safety in the context
of reconfiguration impacting functional and non-functional properties at
runtime is needed. In this paper, we introduce a concept for runtime
safety analysis and decision input for open adaptive systems. We combine
static safety analysis and evidence collected during operation to analyse,
reason and provide online recommendations to minimize deviation from
a system’s safe states. We illustrate our concept via an abstract vehicle
platooning system use case.

Keywords: Platooning · Bayesian networks · Model-based
dependability analysis · Runtime assurance

1 Introduction

Autonomous driving has gained significant financial and public interest in recent
years. The idea of reducing or even removing the human control factor from
driving is inherently quite exciting and promises many direct benefits to drivers,
such as increased safety, comfort, improved fuel efficiency and flexible parking
in cities [7]. With regards to financial potential, a widely cited market fore-
cast for the UK’s government’s Centre for Connected and Autonomous Vehicles
(CAVs) estimates the market for CAVs to be worth “£28bn in 2035, capturing

c© Springer Nature Switzerland AG 2019
Y. Papadopoulos et al. (Eds.): IMBSA 2019, LNCS 11842, pp. 332–346, 2019.
https://doi.org/10.1007/978-3-030-32872-6_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32872-6_22&domain=pdf
https://doi.org/10.1007/978-3-030-32872-6_22


A Runtime Safety Analysis Concept for Open Adaptive Systems 333

3% of the £907bn global market” [4, pg. 3]. The topic also presents a significant
research challenge, incorporating multi-disciplinary issues from domains such as
artificial intelligence, cyber-security, sensor fusion, safety and more. A defining
characteristic of autonomous driving are the highly dynamic and rapidly chang-
ing conditions experienced by CAVs during operation. CAVs must continuously
adapt to varying road layouts, infrastructure, neighbouring vehicle composition
and driving behaviors. These considerations compound existing dynamics expe-
rienced in non-autonomous vehicles such as variable weather conditions and road
conditions. In particular, the issue of safety presents a significant concern. Tradi-
tional safety assurance is defined as activities performed during development to
support the overall claim that the system will be safe to operate. These activities
are typically bound to the development, not the runtime phase of the system life-
cycle. In safety standards like ISO26262 [10] and IEC 61508 [9], safety analysis
activities are expected to only be performed during design and not during opera-
tion. However, the dynamism that CAVs feature, renders traditional, exhaustive
approaches of safety assurance intractable against the potentially infinite combi-
nations of factors and scenarios to consider. To reap the full potential offered by
CAVs, assurance must adapt to their open and collaborative nature. Previous
work in [14] investigated the use of their proposed Dynamic Safety Contracts
(DSCs) and earlier Conditional Safety Certificates (ConSerts) [19] to address the
issue of safety assurance for CAVs. The authors describe how evidence collected
at runtime from various sources can be processed by predefined DCSs and Con-
Serts to provide runtime safety guarantees, enabling collaborative services to be
negotiated dynamically. However, we note some limitations with regards to this
previous work; both DSCs and ConSerts rely on the use of binary conditional
variables to evaluate guarantees.

In this paper, we expand upon previous contract-oriented approaches in the
following ways:

– We introduce the use of Bayesian Networks (BNs) as an alternate inference
mechanism for probabilistic reasoning of guarantees. BNs provide means of
expressing uncertainty and accounting for uncertainty in the assurance pro-
cess.

– Beyond inference, our expanded framework also proposes recommended
actions to be applied to minimize system risk during operation; these actions
are predefined and linked to a state machine. This element allows the sys-
tem to address partially unanticipated scenarios by re-evaluating previous
assumptions about the state of the system and responding appropriately.

To illustrate our methodology, we apply it towards an abstract vehicle platoon-
ing system use case. Notably, we believe the approach is flexible and could be
transferred to other domains. The use case discussed is largely based on the
ongoing research contributed by AVL/TR1 and earlier research by Fraunhofer
IESE2, partners of the Dependability Engineering Innovation for cyber-physical

1 https://www.avl.com/-/avl-turkey.
2 https://www.iese.fraunhofer.de/en.html.

https://www.avl.com/-/avl-turkey
https://www.iese.fraunhofer.de/en.html
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Systems (DEIS) research project3. The remainder of the paper is structured as
follows; in Sect. 2, an overview of previous research and associated literature is
reviewed. In Sect. 3, our proposed framework is presented in detail. Section 4
discusses the application of the framework on the vehicle platoon case study
mentioned earlier.

2 Brief Background and Literature

2.1 Runtime Assurance for Vehicle Platooning

Integration of automated control in vehicles is not a recently proposed idea;
for instance, the PATH project4, as early as 1986, begun pursuing the topic of
Intelligent Transportation Systems (ITS). As vehicles are safety-critical systems,
providing equal or even more robust guarantees for safety, security and other
dependability characteristics is paramount for the successful adoption of ITS.
Vehicle platooning systems are an application of ITS also explored in PATH,
and in other research projects such as KONVOI, SARTRE and more [2,23], [17,
p. 19].

Vehicle platooning also falls under the definition of self-adaptive systems. In
[5], an overview of the topic of assurance using models at runtime for self-adaptive
software systems (SASSs) is provided. Platoons are SASSs in the sense that
they are formed, modified and dissolved dynamically at runtime. The authors
view SASSs as compositions of steady-state programs, managed by controllers
or autonomic managers. SASSs require assurance to be performed at runtime
as well, as part of their functionality is conditional on their adaptation. Thus,
dependability-critical properties of SASSs must be assured before, during and
on completion of each adaptation over the course of operation.

Earlier, in [18], the idea of using monitoring for adaptive system runtime
verification is explored. The author notes that adaptive systems may feature
unanticipated interactions at runtime. Rushby proposes a framework based on
assurance cases and monitors generated from runtime verification languages to
oversee whether assumptions and other safety properties of the case are not
violated during operation. In cases where violations are detected, fault diagnosis
can be applied, to trace indirect violations back to their source and identify
appropriate options for recovering from failure or mitigating risk e.g. switching
to backup systems or degrading services.

In [14], the issue of safety assurance for emergent collaboration of open dis-
tributed systems is explored. The authors note, like others have e.g. [18, p.
1–2, 5–6], [5, p. 1], [17, p. 2], that established practice restricts validation and
verification processes to be performed exclusively during development. System
behavior is decided and assured before operation, severely restricting the poten-
tial of runtime collaborative operations. The established view is rejected by the
authors, who claim that available information on the operational context can

3 http://www.deis-project.eu/.
4 https://path.berkeley.edu/home.

http://www.deis-project.eu/
https://path.berkeley.edu/home
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be exploited to inform and assure collaborative functions at runtime. Their pro-
posed approach is to predefine certain collaboration options during development.
As the options are predefined, a priori analysis can determine what should the
appropriate reaction be to specific conditions during operation. The reaction
would ideally reduce or eliminate the risk of collaborative services during opera-
tion, such that it is acceptable for the services to be performed. The decision of
the appropriate reaction during operation relies on the systems’ capacity to mon-
itor the condition of dependability properties. A notable concept that support
this view are Conditional Safety Certificates (ConSerts) [19]. ConSerts extend
the notion of a modular assurance case with conditional dependability guaran-
tees. Guarantees are provided using user-defined Boolean logic gates (AND, OR)
to combine demands imposed on further ConSerts or runtime evidence that will
be collected during operation. Further ConSerts satisfy imposed demands by
evaluating their own guarantees and so on. The authors of [14] note that their
proposed scheme can be expanded to identify potential collaborative services at
runtime and negotiate their assurance via ConSerts.

In their current state, ConSerts use binary variables to provide/request guar-
antees/demands. ConSerts Trees (CSTs) are formed to represent connectivity
and hierarchical relationships between multiple ConSerts. To evaluate CSTs dur-
ing operation, each CST is converted to a Binary Decision Diagram (BDD) [19,
p. 13]. In [15], the authors note that ConSerts does not address uncertainty and
propose an additional safety manager to be added to the AUTOSAR standard.
The introduced manager actively manages policy, not only monitoring safety
rules, but also enforcing them via the existing AUTOSAR mode manager. The
proposed manager addresses uncertainty by monitoring the data quality and
integrity of safety-critical information stored in safety contracts, the latter being
a comparable concept to ConSerts. Alternative approaches for addressing uncer-
tainty in CAV platoons include using formal methods [6], Hidden Markov Models
[21] and a requirements language [24].

2.2 State Machines and Bayesian Networks

State machines (SMs) are a high-level modelling formalism used to explicitly
express the behaviour of systems. In its basic form, a SM could be defined as:

SM = (S,Σ, δ, s0) (1)

where S is the set of all possible states in the SM, Σ is the set of all possible
events, δ is the transition function δ : S×Σ → S and s0 is the initial state. From
a system behaviour modelling point of view, at the beginning of operational time,
the system is in state s0. When an event occurs, a state transition defined by the
transition function can happen to take the system to another state. As SMs can
readily model the effects of different events on different states of a system, they
are well-suited for capturing the effects of failure and faults on the behaviour of
a system. As a result, SMs have been utilised in a number of model-based safety
analysis paradigms such as AADL [8], Altarica [1], xSAP [3], HiP-HOPS [12,16],
etc.
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Bayesian networks (BNs) as a probabilistic graphical model have flexible
architecture, which can make decisions under uncertainty and can provide a
global assessment about different dependability properties such as reliability and
availability by combining local level information from different sources. Graph-
ically, BNs represent the relationships between a set of random variables in
the form of a directed acyclic graph. These relationships can be interpreted as
parent-child relations. In a BN, if an arc originates from a node X and termi-
nates at another node Y , then X is the parent node and Y is the child node. A
parent has direct effect on its child nodes. Such effects can be either be deter-
ministic (in the sense they are guaranteed to occur) or probabilistic [13]. The
probability distribution of a node Xi conditioned on its parents can be expressed
as Pr{Xi|Parents(Xi)}. A node without a parent and one without children are
known as root and leaf nodes, respectively. Using the BNs, the joint probability
distribution of a set of random variables {V1, V2, V3, . . . Vn−1, Vn} can be obtained
by a chain rule as:

Pr{V1, V2, V3, . . . Vn−1, Vn} =
n∏

i=1

Pr{Vi| Parent(Vi)} (2)

where Pr{x} is the probability of x and Pr{x|y} is the conditional probability
of x given y.

In recent years, BNs have gained popularity in the dependability engineering
area and an overview of widespread applications of BNs in safety and reliablity
analysis can be found in [11].

Fig. 1. Framework of the proposed approach
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3 Proposed Framework

Our proposed framework relies on certain assumptions, described here. As men-
tioned earlier, during operation, self-adaptive systems can react to different unex-
pected and/or expected events and reconfigure themselves to continue providing
services. That means such systems can operate in different mode of operations
and each mode can be considered as a distinct system state. In this paper, we
assume that during design stage, it is possible to foresee all the different possible
states a system can be in during operation. The only a priori unknown is the
actual state of the system at a given point during operation.

Figure 1 shows the proposed framework for runtime safety assurance of self-
adaptive systems. Note that, we assume that the user of this framework have the
safety goal(s) defined for the subject system. As seen in the figure, the framework
contains six different steps. The first three of these steps are performed during
design time and the rest of the steps are performed repeatedly during runtime.
The framework steps are performed as follows:

1. In light of assumptions made previously, as the first step of the framework,
the behavioural model of the system is developed as a state machine. To do so,
analysts require knowledge of the architecture and both nominal and failure
behaviour of the studied system. Digital Dependability Identities (DDIs) [20]
can be used to encapsulate this behavior into a machine-readable format.

2. Once the state machine is formed, per the second step of Fig. 1, analysts must
identify the safety status of the system in each of the previously identified
states with respect to the safety goal(s) defined earlier. Based on the state
machine, per-state actions are defined to assure safety of the overall system
operation. In other words, as a particular state depicts a distinct operational
context for the system, actions are defined to reduce or eliminate unacceptable
i.e. unsafe risk of operation under that context. How such actions should be
processed in general depends on the specific application. For instance, some
actions may be provided as recommendations to human operators, others
may be input for automated controls.

3. The third step involves developing an executable model used at runtime to
estimate the operational state of the system. To develop such an executable
model, the first task is to identify necessary conditions that must be verified
at runtime to ascertain the system state. Once such conditions are known,
these conditions must be formulated in a verifiable format using parameters
known at design time and parameters that can be monitored during system
operation. The monitoring data based on these parameters includes internal
system data, external data received from other collaborating systems, and
environmental conditions. In this paper, we utilise the modelling capability
of Bayesian Networks (BNs) to formulate such an executable model. In the
BN model, leaf nodes are variables representing different parameters neces-
sary to learn about the state of the system. The root node evaluates the
current state of the system based on the leaf nodes. Note that, if multiple
states could be evaluated from one BN, then multiple root nodes can be
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included. Alternatively, it is also possible to separate the executable model
into several BNs when different state evaluations are needed. In this paper,
we assume that each of the smaller participating subsystems to the larger
system operate based on the principle of self-safety with group-awareness.
This means that each subsystem aims to ensure its own safety in the con-
text of the whole system’s operation, based on the subsystem’s own data
and data received from others. For this reason, each such subsystem contains
executable model(s) (i.e. BN model(s)) to evaluate its own state.

4. During operation, each subsystem monitors its own data and data collected
from other systems, and provides runtime input to the BN model(s). In the
context of a BN model, this involves setting evidence on the leaf nodes of the
appropriate BNs.

5. In the next step of Fig. 1, whenever new evidence is provided to the BN, the
model is executed automatically to update the knowledge about the current
state of the system’s operation.

6. Once the current system state is known, appropriate actions can be selected
for the current state from the predefined set of actions. As actions are prede-
fined to assure system safety, proper execution of the actions should guaran-
tee the safe operation of the system from any state, providing development
assumptions hold. However, even if recommended actions are not executed
properly, the executable model can revise the earlier recommendation by
accounting for the new situation. In the worst case scenario, if the subsys-
tem’s safe operation cannot be guaranteed in the context of the larger system,
then the operation can be suspended.

4 Illustrative Example

In this section, we use an abstract vehicle platooning system (see Fig. 2) example
to demonstrate the proposed approach. For illustration, an already formed, sta-
ble platoon scenario with two vehicles, a leader and a follower, is assumed. Each
vehicle is equipped with sensors and other components to detect frontal obstacles
and communicate with other vehicles and roadside infrastructure. For brevity,
we consider all communication channels adequately secure, hence, security issues

Fig. 2. Platoon with two vehicles
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are not considered in this use case. Moreover, we consider that both vehicles can
operate in either Cooperative or Adaptive Cruise Control (CACC/ACC) mode.
In CACC mode, each vehicle collaborates with other vehicles to provide safety
guarantees. In the absence of collaboration (ACC mode), vehicles rely only on
their own components to drive safely.

In our illustration, we assume that two vehicles are driving in CACC mode.
For effective platooning, the follower vehicle always attempts to maintain the
minimum distance from the leader such that inter-vehicle distances should not
increase downstream from leader to followers. This concept is also known as
‘string stability’, [22]. Driving in close proximity to the leader leads offers
improved fuel efficiency, at the cost of increased risk of frontal collision. The
aim of this use case is to show that the follower vehicle can ensure, through the
proposed approach, that the risk of frontal collision with the leader in any of
its operational modes is minimal. Towards this end, the follower vehicle must
verify specific safety properties during runtime. Similar to the example provided
in [14], we consider that to ensure safe and lawful driving the follower vehicle
has to ensure the following conditions:

– Condition 1: d ≥ ds, where d is the distance from the front vehicle and ds is
the minimum safety distance.

– Condition 2: Speedvehicle ≤ Speedlimit, where Speedvehicle is the current
speed of the vehicle and Speedlimit is the speed limit of the road.

Therefore, the safety goal considered is “avoid violation of the safe dis-
tance and legal speed limit”. For the purposes of the study presented here,
only a few factors are considered for the determination of dmin. In practice, there
is a plethora of additional dynamic factors that affect this limit and will need to
be accounted for. A more detailed analysis of the involved factors can be found
in [17, p. 45].

Across all scenarios, if the above conditions cannot be satisfied, then the
follower vehicle will take appropriate action based to achieve safety by satisfying
the conditions. However, if any of the above conditions are not verifiable at
runtime, then the proposed approach will recommend the vehicle switch to ACC
mode until verification can be performed. Potential reasons for non-verifiability
include the unavailability of one or more parameters required for verification or
poor parameter detection quality by the vehicles.

Figure 3 presents the block diagram showing how safety is assured during run-
time, from the follower vehicle’s perspective. In the figure, the follower vehicle
collects external runtime evidence from the leader and the roadside infrastruc-
ture via its communication interface. This evidence, coupled with the follower’s
internal parameters, are fed to its calculation unit. Within the calculation unit,
the safety distance is calculated by accounting for different factors that may
affect the vehicle’s reaction capability. The specifics of the calculation are out-
side the scope of this paper. We consider the outcome of the calculation block
available to the executable models created as part of the proposed framework.

The state machine of the behaviour of the follower vehicle in the context of
the whole platoon is shown in Fig. 4. The state machine accounts for the differ-
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Fig. 3. Runtime safety assurance concept for the following vehicle

ent operational system contexts, with the follower vehicle being in six possible
operational states. To guarantee safety in each state, Table 1 shows the required
action in each state. That means a distinct safety guarantee is associated with
each state. In state S0, both conditions (distance and legal speed limit) are sat-

Fig. 4. State machine of the platoon system
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Table 1. State with their description and associated actions

State Description Actions

S0 The safety constraint is fulfilled and the vehicle
is driving within the speed limit of the road

The state is safe, therefore
continue driving

S1 The safety constraint is fulfilled but the vehicle
is driving outside the speed limit of the road

Decelerate to fall within the speed
limit

S2 The safety constraint is not fulfilled and the
vehicle is driving within the speed limit of the
road

Decelerate to increase distance
with the front vehicle until safety
constraint is fulfilled

S3 The safety constraint is not fulfilled and the
vehicle is driving outside the speed limit of the
road

Decelerate to achieve safety
distance and fall within speed limit

S4 The safety constraint is not fulfilled, the
vehicle is driving outside the speed limit of the
road, and it is driving too closely

Brake to stop driving

S5 Safety constraint and/or speed limit cannot be
verified

Switch to ACC mode

Fig. 5. BN model for deterministic estimation of system state

isfied, therefore no special action is needed in this state. However, in S2, the first
condition is not satisfied, therefore the follower should decelerate to increase dis-
tance from the leader. We should note that the state machine’s role is advisory
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rather than prescriptive or descriptive. This means that it is used as a guide for
identifying recommended actions to transition to safe/safer states, rather than
being actively executed.

To identify the current operational situation for the follower vehicle, we con-
sider internal safety-related data from the vehicle itself and external data from
the leader and the environment together in a unified BN model as shown in
Fig. 5. Note that this model is defined at design time and evaluated at runtime.
In this model, we combine both quantitative and qualitative safety parameters
for runtime inference about system state. For instance, Speed, SpeedLimit, Dis-
tance@Follower, SafetyDistance etc. are quantitative parameters. On the other
hand, DetectedbyFollower, DetectedbyLeader, ‘ValidSpeedLimit?’ are qualita-
tive binary parameters. In the model, different nodes are responsible for guaran-
teeing different conditions. For instance, the SpeedCheck node guarantees com-
pliance of the vehicle’s speed with the legal speed limit. The SpeedCheck node
receives input from two child nodes. The child node ‘ValidSpeedLimit?’ repre-
sents a certificate about the validity of the speed limit, which is shared either by
other vehicles or by roadside infrastructure. As vehicles may drive very closely
in a platoon, street signs could be missed due to the view being obstructed by
nearby vehicles. Moreover, the speed limit varies based on location, therefore it
is also necessary to have a guarantee about the liveness of the monitored speed
limit. Another child node, SpeedWithinLimit, monitors the legality of the vehi-
cle’s current speed by comparing with the current speed limit. In the absence of
a certificate on the validity of the speed limit, no guarantee is provided regard-
ing legality. However, if the speed limit is validated, the internal safety property
SpeedOK is guaranteed if the current speed is within the speed limit. If the
speed limit is valid and is exceeded, the safety property LimitSpeed is set; this
is equivalent to Speed �= OK in Fig. 4. Similarly, the node ‘IsItSafe?’ provides a
guarantee about whether the vehicle is maintaining safe distance from the leader.
The DetectionQuality provides a guarantee about the detection capacity of the
two vehicles. A guarantee about the detection quality is provided if the follower
and leader vehicle detect each other and the distances measured by them do not
deviate by a value larger than a predefined threshold.

In order to test whether the approach can detect different scenarios based
on the runtime inputs, provide appropriate level of safety guarantees and rec-
ommend proper actions for ensuring safety, we randomly generated several test
cases and tested the executable model of Fig. 5. Out of these test cases, Table 2
shows 6 different test cases (C1 to C6) which lead the executable model to pro-
vide six different guarantees, i.e., the follower vehicle was detected to be in six
different states. Figure 6, shows the first test case where the system was detected
to be in S0, meaning a guarantee is provided about ‘complete’ safety i.e. safe
distance and legal speed. On the other hand, in case C2, the system state is
estimated as S2, meaning the system is violating the first safety constraint, thus
LimitSpeed guarantee is provided in this case.

Note that, in the above test cases it was assumed that the values of the
parameters are deterministic and their values are known with certainty, as a
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Table 2. Results of runtime verification of safety guarantees

Parameters C1 C2 C3 C4 C5 C6

Distance@Follower (m) 6.0 4.0 6.0 1.8 4.2 5.5

Distance@Leader (m) 6.2 3.9 5.9 1.9 4.4 6.2

Safe distance (m) 5.0 5.0 5.0 5.0 5.0 5.0

Too close distance (m) 2.0 2.0 2.0 2.0 2.0 2.0

Allowed error in distances (m) 0.5 0.5 0.5 0.5 0.5 0.5

Speed (miles/h) 48 47 37 37 77 48

Speed limit (miles/h) 50 50 30 30 70 50

Validity of speed limit Yes Yes Yes Yes Yes No

Leader detected by follower Yes Yes Yes Yes Yes Yes

Follower detected by leader Yes Yes Yes Yes Yes Yes

State estimated S0 S2 S1 S4 S3 S5

Fig. 6. Case 1 (C1) as shown in Table 2

result, using the model in Fig. 5, the system states were estimated deterministi-
cally. However, in practice, we may be uncertain about the parameter values. In
such cases, to address parameter uncertainty, we propose to use a probabilistic
version of the executable model. As an example, we present a probabilistic ver-
sion of system estimation in Fig. 7. In this example, the inputs to the BN model
are probabilities instead of deterministic binary values. For instance, the node
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SpeedWithinLimit represents that there is an 80% chance that the speed of the
vehicle is within limit and 20% of chance of exceeding it. Similarly, all other root
nodes of the BN model represent probabilistic values for different parameters.
As a result of using such probabilistic values for the inference process, unlike the
deterministic model, the system states are estimated with probabilistic rather
than absolute guarantees. For instance, in the case of Fig. 7, the system was
estimated to be in states S0 to S5 with 53%, 13%, 6%, 1%, 0%, and 26% proba-
bility, respectively. As S0 state has the highest probability, it could be said that
the system is most likely in state S0. Thereby, a (probabilistic) safety guarantee
for this state can be provided and actions for this state can be executed. The
simplistic rule applied is that the state with the highest probability is selected.
However, there may be cases where two states both have (approximately) the
highest probability. To resolve such cases, predefined rules can be applied for
choosing state. For instance, the more safety-critical state can be chosen in the
case of ties.

Fig. 7. An example of probabilistic system state estimation

5 Conclusion

In this paper, we present a conceptual framework for addressing the issue of
safety under uncertainty in open adaptive systems. Our approach builds upon
previous work on runtime certification, through the use of design-time depend-
ability artifacts such as safety contracts, state machines and Bayesian Networks.
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Artifacts are deployed at runtime alongside a monitoring framework for observ-
ing system and environmental state. Thus, runtime knowledge is utilised to main-
tain safety properties or recover from unsafe situations.

The work presented here is part of a larger effort, the DEIS research project.
As part of our ongoing research, we aim to integrate our proposed framework
with the concept of the DDI. DDIs aim to support modularity, composition,
seamless exchange and evaluation of the associated dependability artifacts at
runtime. DDI integration offers an avenue for implementing the approach in a
larger systematic, top-down, traceable development framework. Such a frame-
work provides justified confidence in the assurance of dependability-critical prop-
erties of CPS. Further avenues of investigation include linking the proposed app-
roach with ConSerts. By combining modular and conditional certification with
probabilistic reasoning and runtime monitoring, a larger section of the develop-
ment lifecycle could be supported via relevant model-based techniques. Further,
an assumption of our current approach is that the actions for mitigating safety
risk defined from each system state have deterministic outcomes. A more robust
framework would ideally be capable of deciding on actions with uncertain effects
as well.

Acknowledgements. This work was supported by the DEIS H2020 Project under
Grant 732242.
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15. Östberg, K., Bengtsson, M.: Run time safety analysis for automotive systems in
an open and adaptive environment. In: SAFECOMP 2013-Workshop ASCoMS
(Architecting Safety in Collaborative Mobile Systems) of the 32nd International
Conference on Computer Safety, Reliability and Security, p. NA (2013)

16. Papadopoulos, Y., et al.: A synthesis of logic and bio-inspired techniques in the
design of dependable systems. Annu. Rev. Control 41, 170–182 (2016)

17. Reich, J.: Systematic engineering of safe open adaptive systems shown for truck
platooning. M.Sc. thesis, Technical University of Kaiserslautern, Kaiserslautern,
Germany (2016). https://doi.org/10.13140/RG.2.2.27809.61283

18. Rushby, J.: Runtime certification. In: Leucker, M. (ed.) RV 2008. LNCS, vol. 5289,
pp. 21–35. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89247-
2 2

19. Schneider, D., Trapp, M.: Conditional safety certification of open adaptive systems.
ACM Trans. Auton. Adapt. Syst. (TAAS) 8(2), 1–20 (2013)

20. Schneider, D., Trapp, M., Papadopoulos, Y., Armengaud, E., Zeller, M., Höfig, K.:
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Abstract. Vessels are getting more and more equipped with highly-automated
assistant systems that benefit from the use of machine learning. Such trained
safety-critical systems demand for new means of Verification and Validation (V
+V). Their complex decision making process is hidden and traditional system
analysis and functional testing is no longer possible as the testing space becomes
too large to test. Scenario-based V+V performed in a simulation environment is
a promising approach to tackle these challenges, triggering potential system
malfunctions and covering as much as possible of the problem space.
The authors propose a data-driven method to identify relevant sceneries,

which describe states of a system in a scenario by a set of parameters. These
states are derived from accident reports, summarizing the most critical situations
a vessel and its automated assistant systems might be confronted with. By a
chain of several methods, such as Principal Component Analysis and K-Mean
Clustering the authors show that the value space of scenery parameters to be
tested can be reduced and clusters can be identified that define equivalence
classes of accidents. These clusters can then be partitioned depending on their
probability distributions and open up a (reduced) space for random sampling of
testing sceneries.
The authors tested the method focusing on a weather-related parameter set of

1700 accidents in 2016 and 2017 that were retrieved from three different
sources. Results show, that the first three principal components of the envi-
ronmental parameters explain over 90% of the original variance and can be
divided into 13 clusters. The authors then manually identified those accidents of
a different data pool from 2013–2015 for that weather conditions were reported
as the main cause of the accident and found the majority of them (61%) within
the clusters and further 23% already in close distance. The more accidents are
considered as input for the method the better would be the cluster fitting.

Keywords: Scenario-based testing � Principal component analysis �
K-Mean Clustering � Latin Hypercube � Ship accidents

© Springer Nature Switzerland AG 2019
Y. Papadopoulos et al. (Eds.): IMBSA 2019, LNCS 11842, pp. 349–362, 2019.
https://doi.org/10.1007/978-3-030-32872-6_23

http://orcid.org/0000-0001-9037-7829
http://orcid.org/0000-0002-3460-086X
http://orcid.org/0000-0003-2240-5351
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32872-6_23&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32872-6_23&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32872-6_23&amp;domain=pdf
https://doi.org/10.1007/978-3-030-32872-6_23


1 Introduction

New assistance systems that incorporate machine learning algorithms and thus trained
data are being developed to support the crew on board. The Verification and Validation
(V+V) of these new kinds of systems is a challenge. Traditional approaches such as
functional testing are not capable of inspecting the behavior of a system that hides its
complex decision making processes within its trained structures [1]. Scenario-based V
+V has been proposed, e.g. in the automotive sector, to tackle this new challenge [2].
There, scenarios are used to test a system within a simulative environment. But a
challenge remains: How to identify those scenarios that represent an entire bunch of
critical situations and therefore cover broad parts of the enormous space to test?

One current approach is to involve experts to identify testing scenario catalogues
that represent and cover to the best of their knowledge the most critical situations a
vessel can be imagined in [3].

To extend these scenarios the authors propose a data-driven approach based on
automatically deriving information from investigation reports and structured databases.
In order to reduce the complexity of our approach for this contribution, the authors
decided to exclude the consideration of the evolution of an accident over time and
instead focus on data that the authors assume remains stable over the evolution of an
accident. Such data is for instance data that is related to environment, such as wind,
wave period, and current for instance. Environmental effects are also one of the four
most common contributing factors that lead to accidents, according to the “Annual
Overview of Maritime Casualties and Incidents 2018” from EMSA. In the final outlook
the authors present how other factors, such as machine defects or misunderstandings in
communication can be addressed by this method as well, but for the sake of brevity
they are out of scope for a detailed discussion in this work.

The paper is structured as followed: First, an introduction to scenario based V+V is
given and the used terms are introduced in Sect. 1.1, which is followed by an overview
of relevant work in Sect. 1.2. Section 2 presents the main contribution of this work,
which is the method for the generation of sceneries, a concrete value setting for relevant
scenario parameters. Afterwards, in Sect. 3, this method is applied and evaluated in a
use case that focuses on environmental parameters corresponding to historical acci-
dents. Finally, the results are discussed in Sect. 4.

1.1 Scenario-Based Verification and Validation (V+V)

Scenario-based V+V defines a type of test procedures aiming at testing new systems or
systems of systems within a simulative environment. Ulbrich et al. [4] proposed a
definition of the term “scenario” (c.f. figure 1): “A scenario describes the evolution
over time of elements of scenes within a sequence of scenes, starting with an initial
scene.” Hence, an integral part of scenarios are scenes. These scenes are composed of
“dynamic elements”, “scenery” and “self-representations of actors and observers”.
According to Ulbrich et al. [4], the scenery describes, amongst others, environmental
conditions and static objects. This definition forms the basis for this use case and is also
adopted in the maritime domain, where e.g. Shahir et al. [5] used vignette generators in
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order to describe time varying traffic conditions as a composition of different basic
traffic situations.

This contribution focuses on the efficient identifications of relevant sceneries to be
used within a scenario-based V+V approach. The current state of the method does not
consider the evolution of time and space, which is also essential but out of scope for
this work. Nevertheless, the authors briefly discuss at the end how we think that
“dynamic objects” and the changes of environmental conditions (“sequence of scenes”)
can be covered by the presented method.

1.2 Related Work

First attempts in scenario-based testing were made by Schuldt et al. [6], using com-
binatory procedures for systematic test case generation in a simulative environment.
The approaches for scenario-based testing that the authors are aware of, typically
depend on a database that aggregates historical information about relevant scenarios to
test. These relevant scenarios can consist of critical situations like near collisions [7] or
even accidents [8]. Youssef and Paik [9] also use historical grounding accidents as a
database to examine grounding parameters. In addition, they applied Latin Hypercube
Sampling in order to conduct a qualitative risk assessment of these accidents, but in
contrast to the study presented here, they focused on hazard identification without the
use in scenario based V+V. Esnaf et al. [10] analyzed the spatial distribution of ship
accidents in the Bosporus by the use of two different (fuzzy) clustering algorithms,
revealing the key factors and locations, where accidents and incidents mostly occur,
which can be seen as a possible preliminary work in order to identify relevant
parameters for the presented work

Lema et al. [11] analyzed the circumstances during ship accidents using K-Mean-
Clustering and Elbow Method with a result of 15 different clusters of typical situations,
also using investigation reports like the authors do here as the foundation for their
study. They found that human errors leading to accidents are often coexisting with
specific ship conditions or adverse environment conditions, which is within the line of
the presented work in the way, that even accidents caused by humans should be
included in the data basis, since these mistakes often are triggered by other parameters.

In the maritime domain the environmental impact on ship safety is one of the most
common contributing accident factor according to the “Annual Overview of Maritime
Casualties and Incidents 2018” from EMSA and intensively discussed: Zhang and Li
[12] give an overview of wave related accident causes. High waves [13], the presence
of swell [14] to enhance parametric rolling [15], wind [16, 17], currents [18] and
dangerous shoals [19] are often discussed accident causes. Erol et al. [20] stated that
poor weather conditions can increase the severity of accidents.

Accident analysis is also being performed in other safety-critical domains. Caliendo
and Parisi [21] applied a principal component analysis (PCA) on road and environment
related variables in order to remove redundant variables within car accident data
resulting in an explanation of about 90% of the variance by the use of six principal
components from originally eight variables. Golob and Recker [22] also applied a PCA
to identify independent variables within car accident data. These approaches motivated
us to integrate their approach in our method and to also apply a PCA for dimension
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reduction, which has so far to the best of our knowledge not being applied in the
maritime domain to process accidents.

In the following section the authors propose a method for data-driven scenery
generation followed by a use case (Sect. 3) that applies the method for generating
maritime environmental sceneries to be used within a scenario-based V+V process.

2 A Method for Data-Driven Scenery Generation

As shown in Fig. 1, the method is organized into the following subsequent steps:
(1) Data Preparation, to identify for each accident of a given accident database the
concrete values of a pre-set set of relevant parameters; (2) Dimension reduction, to
reduce the dimensionality of the parameters without losing significant variance;
(3) Clustering, to obtain equivalence classes of accidents and finally (4) Sampling, to
choose the most relevant sceneries for testing with the highest probability first. In the
following, each step and its corresponding sub-sets are presented in detail.

Data Preparation. The present process is based on historical accident report data for
that SuT relevant parameters are identified. Concrete data like e.g. detailed weather or
current information needs to be retrieved from further databases based on the exact
location and time of the accident. Since the resolution in terms of time and space of
these annotated data is often different interpolation techniques like e.g. “Nearest-
Neighbor” or ”Linear Interpolation” are applied. If an accident location or time is not
covered by any of the parameters, this accident is excluded from the further procedure.

Dimension Reduction. At this step, for each accident, multiple parameters are
available. Each parameter represents one dimension of the data. Since the parameters
differ in coverage of range and units, a normalization must be carried out. Besides that,
the following clustering uses Euclidean Distance as the metric for the separation of
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Fig. 1. Schematic process diagram of the proposed method for the generation of sceneries for a
specific system under test (SuT)
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clusters, which should not be affected by each parameter’s range. The normalization of
an arbitrary parameter v is done using following formula:

vnorm ¼ v�min vð Þ
max vð Þ �min vð Þ ð1Þ

where min(v) represents the minimum value of v and max(v) the maximum, respec-
tively. After normalization, the problem remains, that data with multiple dimensions is
difficult to cluster [23]. Therefore, it is necessary to find a small number of parameters,
which represent the characteristics of the data best and use these parameters for the
subsequent clustering. In addition, correlation between parameters can be exploited to
reduce the number of dimensions. This can be done by a Principle Component Analysis
(PCA) [24]. In general, PCA is a coordinate transformation, where each dimension
consists of a linear combination of all original parameters. These new dimensions are
called “principal components” (PC) and correspond to the eigenvectors of the data’s
covariance matrix. By selecting a smaller number of PCs than the number of original
parameters, a dimension reduction is achieved. In order to find the right number of PCs
to cover most of the variable space, the explained variance of each PC is calculated by
dividing the variance of the ith PC Vi from the total variance of the data Vtot. If the
explained variance of a reduced number of PCs is over 90%, remaining PCs are
excluded from the process.

The result of the PCA is a reduced dimensionality of the data, where each dimension
is represented by one PC. Each PC in turn, is a linear combination of all parameters,
consequently not the amount of parameters, but the variance of some parameters is
reduced by a small quantity. The extracted PCs are the ideal metric for clustering, since
these cover the largest percentage of characteristics of the original data.

Clustering. Often, the SuT requirement specification enables to further reduce the
sampling space of sceneries. Restrictions of the SuT, such as for instance a requirement
that restricts a docking pilot assistant system to perform reliable only in port areas with
a maximum wave height of 0.5 m, further limits the sample space, since stormy
conditions don’t need to be included in the sceneries for conforming to this require-
ment. Clustering partitions data while respecting given limits.

For determining the optimum number of clusters, ko, the elbow method [25] is used.
The elbow method internally iteratively applies K-Mean Clustering [26] that requires a
predefined number of clusters for clustering. If the number of clusters is too small, the
exclusion of a cluster might result in uncovered parameter spaces. Therefore, a mini-
mum number of four clusters and a maximum of 50 is used. Within each iterative usage
of K-Means, the sum of squared errors (SSE) between each data point and the corre-
sponding cluster centroid is calculated. The elbow identifies then ko for that an increase
in the amount of clusters does not longer significantly decrease the SSE. Afterwards K-
Mean Clustering is performed using ko as the amount of clusters.

It’s important to understand that the PC data is used for the generation of clusters.
Each cluster therefore represents a specific condition, which is characterized by a
combination of the original parameters. Thus, the clustered data is still in form of PCs,
in order to limit the dimension of clusters not only for visualization purposes, but also
to restrict the space for sampling.
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Sampling. Clusters define not only the limits of the entire sampling space, but also for
each condition class. A naïve sampling approach would be random parameter sam-
pling. If one takes instead the distribution of the accident data within each cluster into
account, those sceneries which occur more frequently than others would be the most
probable scenery samples.

In order to consider the probability of accidents, Latin-Hypercube-Sampling
(LHS) [27] is used. During LHS, the probability density function (PDF) of the speci-
fied number of PCs within each cluster is generated. Then, the number n of intervals of
each PC needs to be set at one’s own discretion. The PDF is now divided into n intervals,
where each interval spans over a probability interval of 1/n. The advantage of LHS is,
that the slope of the PDF is higher at regions with more data points. In combination with
the equal distribution of the PDF based on probability p, the probability intervals cor-
respond to smaller data ranges where the number of data points is high. The partition into
n probability dependent intervals is performed for each of the PCs, which cumulative
explain 90% of Vtot, resulting in an irregular grid with n intervals in each dimension.
Subsequently within each grid cell one combination of scenery parameter is selected
randomly. Since this parameter combination, is a point in principal component space, a
retransformation into the original data space is achieved by the following equation:

vd ¼ lþ vpca � h ð2Þ

with vd being the parameters in original data space, µ its mean, vpca the parameters in
principal component space and the PCA coefficients h. In addition, the normalization
made before the PCA (see Eq. 1) needs to be reversed as well.

The partition into intervals by the use of LHS is performed for each PC and rep-
resents the main result of this use case. The random generation of concrete sceneries
within each interval is trivial and therefore not elaborated here.

3 Generating Maritime Environmental Sceneries

The presented approach is used to generate scenery sampling spaces for a maritime
assistance system, affected by environmental conditions. First, insights into the data
basis are given, followed by the results for each step shown in Fig. 1.

3.1 Data

Several sources for maritime accidents are available. Here, the authors use longitude,
latitude and time information of three accident databases: HELCOM1 for the Baltic
Sea, MARSIS2 for coastal regions close to Canada and GISIS3 covering inter alia
global open ocean accidents. In order to gain knowledge about the environmental
conditions, data was acquired from the ERA5 Reanalysis [28], ETOPO1 [29] and

1 helcom.fi, last checked 5/15/19.
2 bst-tsb.gc.ca, last checked 5/15/19.
3 gisis.imo.org, last checked 5/15/19.
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CFSv2 [30]. Detailed information about the environmental datasets are listed in
Table 1.

3.2 Results

First, environmental data was assigned to the accidents by using a nearest neighbor
method in space and time. From originally 2600 Accidents in the time between 2016
and 2017, approximately 1700 Accidents were remaining after data cleansing. A major
amount of accidents was excluded due to missing values of oceanographic parameters
near the coast, caused by the low resolution of the CFSv2 and ERA5 data sources. The
data was then used to perform a PCA. By analyzing the explained variance of each PC,
a dimension reduction from originally six parameters to three PCs could be achieved.
These three PCs jointly explain 90% of the variance of the initial data. Afterwards the
Elbow method provided the o-ptimum number of clusters ko. By analyzing the SSE of
the clustered data as described above, a ko was determined visually (see Fig. 2). In
order to confirm this rather subjective approach, the Calinski-Harabasz index [31] was
applied as well. Both methods lead to ko = 13.

The determined ko was used subsequently to cluster the data in principal component
space by applying K-Mean Clustering. The results of this method are shown in Fig. 3.

Table 1. Information about environmental datasets, including spatial (Dx) and temporal (Dt)
resolution

Data source Type Dx Dt Variables

ERA5 Reanalysis 0.5° � 0.5° 1 h Wind speed uw
Wave height hs
Period of swell Ts
Period of wind waves Tw

CFSv2 Forecast System 0.5° � 0.5° 6 h Current speed uc
ETOPO1 Global Relief Model 0.17° � 0.17° – Bathymetry d

Fig. 2. SSE of different amount of clusters k. Optimum number of clusters ko is found at
ko = 13, since a further increase of k doesn’t decrease the SSE sufficiently.
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The distribution of accidents ranges from 25 accidents in cluster C10 to 231
accidents in cluster C5, with a median of 126 accidents per cluster. Clusters represent
different equivalence classes, e.g. C10 incorporates heavy sea states with significant
wave heights of more than 8 m and wind speeds of more than 20 m/s.

Another cluster of heavy sea state is given by C9. As seen in Fig. 5, C9 is asso-
ciated with e.g. significant wave heights from 3 to 4 m and a wind speed up to 16 m/s.
Like in C10, the period of swell is higher than in the remaining data. In order to get a
better understanding of the cluster’s data ranges in the original data space, a trans-
formation using Eq. 2 from the principal component space into original data space was
performed (see Fig. 4). For this transformation, only the first three PCs were used,
losing approximately 10% of the original variance of the data, but keeping a small
amount of dimensions within the principal component space.

The last step within our concept is the sampling using LHS. LHS is performed on
every cluster within the principal component space of the first three PCs. This approach
allows a sampling of six different parameters by effectively sampling only three PCs.
For each of the three PCs the cumulative probability density distribution was generated,
and their respective intervals determined. For each cluster, this procedure results in an
irregular gridded space, where each grid cell will be sampled by one random PC value.
The underlying density distribution ensures that grid cells with higher probabilities are
of smaller size and therefore these data ranges are sampled more. In order to get an idea
of how these cluster dependent grids are arranged, Fig. 5 represents the grid generated
by LHS of cluster C5, prescribing a partition into ten intervals.

Fig. 3. Results from cluster analyzes. Big dots represent the cluster centroids of the respective
cluster indicated by the white text within. Data is shown in principal component space consisting
of three PCs.
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Fig. 4. Transformation results from principal component space into original data space using
only three PCs. Different clusters are represented by different colors and marker shapes.
Bathymetry d (bottom left) is shown on a logarithmic grid.

Fig. 5. Grid generated by the use of LHS for cluster C5. Each grid cell will provide one random
PC combination as a V+V scenery. At the top, the whole three dimensional sampling space is
shown. The bottom represents views from different angle, indicated by arrows. Left: View on
PC3/PC2 plane. Middle: View on PC3/PC1 plane. Right: View on PC2/PC1 plane
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After the generation of the irregular grid, each grid cell can be sampled randomly.
Afterwards, the sample consisting of three PC values is transformed into the original
data space and serve in the form of sceneries as the basis for scenario based V+V.

3.3 Evaluation

In order to make statements about the validity of the obtained clusters, investigation
reports from the Transportation Safety Board of Canada were analyzed. The aim was to
find accidents, which were affected by environmental conditions. To ensure, that these
accidents were not part of the procedure, which created these clusters, only accidents
from 2012 to 2015 were analyzed, resulting in 22 different accidents. Location and time
of the accidents was obtained from the investigation reports, environmental data was
gathered from the same sources as described in Sect. 3.1. After data cleansing and
removing those for which no environmental conditions could be gathered, 13 accidents
remained for the analysis. For each accident, the Euclidean Distance to all cluster
centroids was calculated. The centroid closest to the accidents defines the most similar
cluster. Afterwards, the Minimum Bounding Box (MBB) for the respective cluster was
built, and it was analyzed, if this accident is located within the MBB. The MBB defines
the data range in each dimension of the cluster, thus, this corresponds to the space
covered by the respective LHS.

As a result of this evaluation, 8 of 13 accidents were located within a MBB, the
remaining 5 accidents all were located very close to the borders of the MBB. In order to
express this closeness, the nearest point of the cluster was found and the distance to the
respective centroid was calculated. The proportional distance Dprop was built by
dividing the distance from the accident outside the MBB to the centroid and the
distance from the closest point to this accident to the centroid. Results, including
accident ID and environmental conditions are listed in Table 2.

Table 2. Results of the evaluation

Accident Cluster MBB Dratio Conditions

M15P0347 7 – 12% Breaking Waves
M15C0006 9 – 33% Wind, cross current
M15A0045 9 ✓ Wave
M14P0014 4 ✓ Visibility
M14C0219 12 ✓ Tide, Darkness
M14C0193 9 ✓ Ebb Tide Current
M14A0051 9 ✓ Ice, Wind
M13N0014 13 ✓ Wind, Visibility, Swell
M13N0001 9 – 24% Wind, Wave
M13M0102 9 – 41% Cross Tides, Wind, Wave
M13L0185 3 ✓ Wind, Wave, Visibility
M12W0062 9 ✓ Swell, Wind
M12W0054 1 – 17% Cross Tides, Swell
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More than 60% of the environment related accidents used for evaluation can be
found within a respective cluster (C3, C4, C9 and C13). Another 23% (M15P0347,
M13N0001 and M12W0054) are located close to the existing clusters C1, C7 and C9.

4 Discussion

The authors propose a data-driven method based on historic data for deriving sceneries
that capture the constant part of a scenario within a scenario-based V+V to evaluate the
performance of new safety critical systems like assistance systems. In a use case the
method was applied to generate a sample space for environmental conditions based on
maritime accident reports from multiple sources, which identify critical situations.

The extent of these clusters defines the value space of parameters for the scenery
and therefore minimized the computing effort of simulations. Since clustering of
multidimensional data is difficult caused by the sparseness of the data, a principal
component analysis was applied for dimension reduction. The PCA transformed the
original data in a smaller amount of PCs, but reduced the variance of the original
parameters value spaces by less than 10 and without losing parameters. After the
transformation, LHS has been used to generate partitions within each of the cluster in
the principal component space for the subsequent random generation of parameter
configurations. These then can be transformed back to the original data space for
scenario based V+V consisting of all original parameters and covering all historical
accidental conditions.

The use case applied the proposed method to generate sceneries representing
environmental conditions during ship accidents and can be improved in several aspects.
A data driven-method depends on the availability of data. According to the “Annual
Overview of Maritime Casualties and Incidents 2018” from EMSA over 45% of the
maritime accidents happen in port areas. Close to the coast, the resolution of the
available data is coarse and the oceanographic grid assumes land cells instead of ocean
cells. The same problem was observed for bathymetry, resulting in negative values
close to the coast, indicating land values. A finer resolution of oceanographic data by
dedicated wave and current simulations could solve this problem.

Another aspect regarding bathymetry is that depths of up to 6000 m do not have an
impact on the ship’s maneuverability. According to Reynolds [32] the impact of the
ground is negligible, if the water depth is greater than five times the draught of the
ship. Assuming that the largest class of ships is the Suezmax with a draught of 20.1 m,
this corresponds to a maximum water depth to be considered of approx. 100 m. On the
other hand, deep sea scenery could be of interest, when testing e.g. Autonomous
Underwater Vehicle (AUV) instead of assistance systems for ships. In this case, deep
sea sceneries might be important for the AUV’s resilience against high pressure. This
example shows the advantage of our approach. In the case of testing an assistance
system for ships, deep sea clusters can be excluded from the scenery generation process
as shown in the “Sampling” block of Fig. 1. This also reveals that the selection of
parameters for scenery generation highly depends on the SuT. Since for this use case
the focus was put on efficiently sampling based on a given parameter set it was
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assumed that input parameters for the scenario based V+V are pre-defined. The
parameter selection is SuT dependent and its selection out of scope of this contribution.

For the evaluation purposes only a small amount of environment affected accidents
were available, since only those for that the environment was clearly stated as the
accident cause were selected. Nevertheless over 60% of these selected accidents were
covered by the clusters that were generated by a different accident report data set. Even
the accidents not covered were close to the existing clusters as seen by Dprop in
Table 2. However, cross currents are not represented well. Hence, more accidents
caused by cross currents should be included in the historical data and the direction of
currents in different depths, as well as information about the direction of swell and
wind waves might be crucial for safety at sea, but must be proven in future studies.

The environment affected accidents are represented by clusters: C3, C4, C9, C12
and C13 (and additionally almost by C1 and C7). This indicates that these clusters
define environment related accident sceneries, but due to the small amount of accidents
available for evaluation, this statement must be treated with caution. The remaining
clusters might represent different accident causes, but this must be proven in future
studies as well. Another important aspect is the dimension reduction by the percentage
of explained variance criterion. According to Hair [33], the necessary amount of
explained variance varies among the fields of science from 60% in social science to
95% in nature science. Jolliffe and Cadima [34] stated that 70% of explained variance
is a common although subjective cut-off point and in addition, the number of principal
components is often cut-off after two components due to the better possibility of
visualization. Here, we are able to represent over 90% of variance using three PCs.
Depending on the possible test effort, which is limited by time and compute power, the
explained variance can be increased by adding the remaining principal components
resulting in a potential increase of the search space. This raises the question of whether
the remaining 10% of variance represent critical situations considered important for the
subsequent V+V procedure. Additionally, more variables like wavelength, relation of
wave period and natural frequency of the ship and the wave spectrum should be
included as well. This will increase the dimensionality of the sceneries and potentially
confirm the benefits of the dimension reduction.

As mentioned before, the proposed method has the potential to cover traffic
sceneries and even dynamic aspects of V+V scenarios as well. This can be achieved by
expressing traffic sceneries by a new type of parameter set, including e.g. distance
between participating ships, relative bearing between them and others. Parameters
describing the ship condition (e.g. failure rates of machines and sensors) can also be
associated to the accidents. Dynamic aspects of e.g. environmental conditions can be
simplified by analytical functions, whose parameters can be included in this method,
too. Especially for the last aspect further research is needed and can be the focus for
future studies.
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Abstract. Increased openness and interconnectedness of safety-critical
control systems calls for techniques enabling an integrated analysis of
safety and security requirements. Often safety and security requirements
have intricate interdependencies that should be uncovered and analysed
in a structured and rigorous way. In this paper, we propose an approach
that facilitates a systematic derivation and formalisation of safety and
security requirements. We propose the specification and refinement pat-
terns in Event-B that allow us to specify and verify system behaviour and
properties in the presence of both accidental faults and security attacks
and analyse interdependencies between safety and security requirements.

1 Introduction

Modern industrial control systems are rapidly becoming increasingly open and
interconnected. Reliance on networking technologies offers a number of business
benefits – flexibility, possibility to integrate new components and subsystems,
remote control and diagnostics – just to name a few. However, the networked
control systems are also becoming vulnerable to security threats. Security vul-
nerabilities can be exploited to undermine safety, e.g., by tampering with sensor
data or hijacking the controlling functions.

Traditionally safety and security engineering have been considered to be two
separate disciplines with different sets of methods and tools. Security analysis
is typically data-centric, i.e., it focuses on determining the impact of security
attacks on the system data flow. In contrast, safety analysis is concerned with
defining the impact of failures on system functioning. Moreover, safety and secu-
rity goals might result in the orthogonal functional requirements that are hard to
resolve at the implementation level. Hence, there is a clear need for the modelling
techniques that enable a formal reasoning about safety and security interdepen-
dencies at the early stages of the system development. In this work, we present
a formal approach that allows the designers to uncover the implicit security
requirements that are implied by the explicit system-level safety goals.
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To analyse the intricate interdependencies between the requirements, we rely
on formal modelling in Event-B [1]. Event-B is a rigorous approach to correct-
by-construction system development by refinement. System development usu-
ally starts from an abstract specification that models the most essential system
functionality. In the refinement process, the abstract model is transformed into
a detailed specification. While refining the system model, we can explicitly rep-
resent both nominal and failure behaviour of the system components as well as
define the mechanisms for error detection and recovery. We can also explicitly
represent the effect of security vulnerabilities such as tampering, spoofing and
denial-of-service attacks and analyse their impact on system safety.

In our previous works [17,18], we investigated the possibility to combine
a traditional safety analysis approach and data flow analysis, while in [19] we
studied application of Event-B and its refinement technique to uncover the inter-
dependencies between safety and security. In the current paper, we extend and
generalise our approach. We propose specification and refinement modelling pat-
terns in Event-B to analyse security and safety requirements of control systems.
These patterns capture the dynamic nature of safety and security interplay, i.e.,
they allow the designer to analyse the impact of deploying the security mecha-
nisms on safety assurance and vice versa. An illustration of the proposed patterns
is described in the formal development of a water treatment control system.

2 Safety and Security Interplay in Control Systems

In this section we discuss a generic architecture of a networked control sys-
tem. We use the four-variable model of software-controlled systems proposed by
Parnas [8]. This model (shown in Fig. 1) defines the dependencies between the
controlled physical process, input and output devices, and controller. The sys-
tem goal is to maintain a physical process within the predefined safety bounds.
The input device (sensor) measures the value of the controlled parameter that
characterises the physical process. Then the controller reads this measurement
as an input and computes the output – the state of the actuator. According to
this state, the actuator affects the behaviour of the controlled physical process.

By applying the four-variable model, we derive two main types of require-
ments that should be implemented to guarantee system safety. The first type is
the fault tolerance requirements. Since both sensors and actuators can be unreli-
able, to cope with their failures, either the system should contain redundancy or
the controller should be able to put the system in a failsafe state. Moreover, the
controller should consider the sensor imprecision. The second type of the require-
ments is correctness. We should guarantee that the controller output preserves
the safety boundaries of the monitored physical process.

To address a connectivity of modern control systems, the four-variable model
can be extended to take into account the impact of malicious attacks on the com-
munication channels. Figure 2 presents our proposal to extend the four-variable
model to define a generic architecture of a networked control system.
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Fig. 1. The four-variable model

Fig. 2. Architecture of a control system and involved data control cycle

Let us discuss the behaviour of a networked control system and its compo-
nents as well as a flow of the involved data. The controlled parameter, charac-
terising the physical process, is denoted by p real. The sensor senses the value of
p real and produces p sen. Since, the sensor has a certain imprecision, i.e., the
reading p sen does not exactly match p real. The measured value p sen then is
transmitted over the network to the the controller. In general, the transmission
channel between the sensor and the controller S-C-channel might be untrusted,
i.e., it might be a subject of security attack. Then the value that is received by
the controller p in might be different from p sen.

The controller checks the reasonableness of the received p in. It decides to use
it as the current estimate of p real or ignore it. The value p that the controller
adopts as its current estimate of the process state should pass the feasibility
check, i.e., should coincide with the predicted value and the freshness check, i.e.,
should be ignored if the transmission channel is blocked due to a DOS attack.
If the controller ignores the received value p in, it uses the last good value and
the maximal variation of the process dynamics to compute p.

The value of p is then used to calculate the next state of the actuator that
affects the controlled process. The command from the controller to the actuator
is transmitted over a network. In the similar way, the transmission channel C-
A-channel might be attacked. Hence, the command cmd trans received by the
actuator might be different from the command cmd send by the controller. Upon
receiving the command cmd trans the actuator applies it, which should result
in the desirable change of the process state.

For our generic control system, we can define the main safety requirement as
the following predicate: Safety = p real ≤ safe threshold ∨ stop = TRUE . It
means that the controlled process shall be kept within the safety bounds while
the system is operational; otherwise, a safe shutdown should be executed. While
designing a networked control system, our goal is to proof its Safety.
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Traditionally, the design of a safety-critical software-intensive control system
relies on specific assumptions and properties of the domain as well as properties
of the controlling software [19]. During the design of such a system we should
prove the following judgement:

(ASM, DOM, SW ) � Safety,

Here ASM, DOM and SW stand for assumptions, domain and controlling
software properties, respectively. Next we will discuss these three types of prop-
erties that suffice to proof Safety for our generic control system.

– ASM – assumptions:
A1. p sen = p real ± Δ1

A2. p = p sen + Δ2 ∧ Δ2 = kΔ3

A3. (stop = FALSE ∧ cmd trans = cmd) ∨ stop = TRUE

The assumption A1 means that the sensor measurements are sufficiently
precise and unprecision is bounded, where Δ1 is its maximal imprecision value.
The assumption A2 states that the controller always adopts a measurement of
the value of the process parameter that either coincides with p sen, i.e., k = 0,
or is calculated on the basis of the last good value and Δ3 – the maximal possi-
ble increase of the value p real per cycle (Δ2 = kΔ3, where k is the number of
cycles). This assumption implies both safety and security requirements. Firstly,
we should guarantee that the channel S-C-channel is tamper resistant and the
sensor is spoofing resistant. Secondly, we should ensure that the controlling soft-
ware checks the validity of the input parameter and ignores it, if the check fails.
The assumption A2 also implies that, in case of an attack on the channel S-C-
channel, the system continues to function for some time by relying of the last
good value. The assumption A3 means that if a failure or an attack on the
channel C-A-channel is detected then the system is shut down. It means that
the system should have some (possibly non-programmable) way to execute a
shutdown in case the channel C-A-channel becomes unreliable.

– DOM – domain properties:
D1. cmd = INCR ⇒ p realc+1 ≥ p realc (for any system cycles c and c + 1),

while system is operational.
D2. cmd = DECR ⇒ p realc+1 < p realc, while system is operational
D3. max|(p realc+1 − p realc)| = Δ3

D4. failsafe=TRUE ⇒ p realc+1 ≤ p realc, while system is shut down.

The property D1 states that an execution of the command incr results in
the increase of the value p real. The property D2 is similar to D1 . The property
D3 states that the maximal possible increase of p real per cycle is known and
bounded. D4 stipulates that when the system is put in the failsafe state, the
value of the physical parameter does not increase.

– SW – controlling software property
S1. p est + Σ3

i=1Δi ≥ safe threshold ∧ stop=FALSE ⇒ cmd = DECR
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Here, the software property S1 corresponds to the safety invariant that controller
should maintain: the controller issues the command decr to the actuator if at
the next cycle the safe threshold can be exceeded.

Straightforward logical calculations allow us to prove

(A1, A2, A3, D1, D2, D3, D4, S1 ) � Safety.

Our system level analysis has demonstrated that both safety and security
aspects are critical for fulfilling the system-level goal of ensuring safety. Hence,
both these aspects should be explicitly addressed during the system development.
It is easy to observe, that we had to define a large number of requirements even
for a generic high-level system architecture. To facilitate a systematic require-
ments derivation, we propose to employ formal development framework Event-B.

3 Modelling and Refinement in Event-B

Event-B [1] is a state-based framework that promotes the correct-by-construction
approach to system development and formal verification by theorem proving.
In Event-B, a system model is specified using the notion of an abstract state
machine. It encapsulates the model state, represented as a collection of variables,
and defines operations on the state, i.e., it describes the dynamic behaviour of
a modelled system. A machine has an accompanying component, called context,
which includes user-defined sets, constants and their properties given as axioms.

The dynamic behaviour of the system is defined by a set of atomic events.
Generally, an event has the following form:

e =̂ any awhereGe thenRe end,

where e is the event’s name, a is the list of local variables, Ge is the event guard,
and Re is the event action. The guard is a predicate over the local variables of
the event and the state variables of the system. The guard defines the conditions
under which the event is enabled. If several events are enabled at the same time,
any of them can be chosen for execution nondeterministically.

In general, the action of an event is a parallel composition of deterministic
or non-deterministic assignments. A deterministic assignment, x := E(x, y), has
the standard syntax and meaning. A non-deterministic assignment is denoted
either as x :∈ S, where S is a set of values, or x : |P (x, y, x′), where P is a
predicate relating initial values of x, y to some final value of x′. As a result of
such an assignment, x can get any value belonging to S or according to P .

Event-B employs a top-down refinement-based approach to system develop-
ment. Development typically starts from an abstract specification that nondeter-
ministically models the most essential functional requirements. In a sequence of
refinement steps, we gradually reduce nondeterminism and introduce detailed
design decisions. In particular, we can add new events, split events as well
as replace abstract variables by their concrete counterparts, i.e., perform data
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refinement. When data refinement is performed, we should define gluing invari-
ants as a part of the invariants of the refined machine. They define the relation-
ship between the abstract and concrete variables.

The consistency of Event-B models, i.e., verification of well-formedness,
invariant preservation and correctness of refinement steps, is demonstrated by
discharging a number of verification conditions – proof obligations. The Rodin
platform [2] provides an automated support for formal modelling and verifica-
tion in Event-B. It automatically generates the required proof obligations and
attempts to discharge (prove) them automatically.

4 Pattern-Based Development of a Control System in
Event-B

In this section, we present a generic methodology for the refinement-based devel-
opment of control systems that facilitates identifying implicit security require-
ments that should be fulfilled to satisfy system safety. To support such devel-
opment of a control system in Event-B, we define a set of Event-B specification
and refinement patterns that reflect the main concepts of the safety-security co-
engineering discussed in the previous section. Such patterns represent generic
modelling solutions that can be reused in similar developments.

4.1 Specification and Refinement Patterns

Control Cycle Modelling Pattern. This pattern corresponds to the initial
Event-B specification. To formulate this pattern, we introduce an abstract type
PHASES= {PROC, SEN, TO CONTR, CONTR, TO ACTUA, ACTUA} defin-
ing all stages of a control cycle. Moreover, a variable phase ∈ PHASES abstractly
models a current stage of a control cycle.

The abstract model (given in Fig. 3) represents the overall behaviour of the
control system by a set of events modelling the phases of a control cycle. In
the initial model, we also abstractly specify an occurrence of faults. The event
FailureDetection non-deterministically models the outcome of the error detec-
tion. A reaction on errors is abstractly modelled by the event FailSafe.

Physical Process Modelling Pattern. The objective of this modelling pat-
tern is to explicitly introduce the behaviour of the environment – introduce
dynamics of the controlled process. While defining this pattern, we should ensure
that the domain properties DOM , discussed in the Sect. 2, are formalised.

We define the behaviour of the physical process characterised by the vari-
able p real. We also model the dependencies between the actuator state and the
expected range of p real value. The abstract function process fnc (formulated in
the model context) is used to specify our knowledge about the process:

process fnc ∈ N × ACTUATOR STATES → N.
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Fig. 3. Events of the Control Cycle Modelling Pattern

This function takes as an input the previous value of the process as well as the
actuator state and returns a next predicted value of the process. We also formu-
late the properties of the process dynamic depending on the actuator state:

∀n·n ∈ N ⇒ process fnc(n �→ ON) ≥ n, ∀n·n ∈ N ⇒ process fnc(n �→ OFF) ≤ n.

When the actuator state is ON, the value of p real should increase. Correspond-
ingly, while the actuator state is OFF, the value of p real should decrease. We
formulate these properties in the model context. Thereby we formalize the prop-
erties D1 and D2 discussed in Sect. 2. Moreover, the following constraint in the
context formalises the property D3 :

∀ n · n ∈ 0 .. p max + delta3 ⇒ process fnc(n �→ ON) ≤ safe threshold

It requires that, if the process state is currently in the safe range [0..p max +
delta3], it cannot exceed the critical range within the next cycle, i.e., the safety
gap between p max and safe threshold is sufficiently large.

We then refine the abstract event Process and model the changes of the
physical process:

Process refines Process =̂
when phase=PROC ∧ stop=FALSE
then phase:=SEN

p real:=process fnc(p real �→ act state)
end

Sensor Behaviour Modelling Pattern. In this pattern we specify normal
and faulty sensor behaviour as well as a detection of a sensor failure. In the
refined machine, we introduce a variable p sen to model the value of the physical
variable measured by the sensor. It can be affected by the sensor imprecision or
failures, thus our goal is also to specify the assumption A1 .
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The event Sensor Normal models the behaviour of the sensor by assigning to
the variable p sen any value from the range [p real – delta1 ... p real + delta1].
Here delta1 is the maximal imprecision value for the sensor introduced as a
model constant. The event Sensor Failure models the sensor failure. In case of
a failure, the sensor produces the reading that is out of the expected range.

Sensor Normal refines Sensor =̂
when phase=SEN ∧ failure=FALSE ∧ stop=FALSE
then phase:=TO CONTR

p sen :∈ p real − delta1 ... p real + delta1
end

Sensor Failure refines Sensor =̂
when phase=SEN ∧ failure=FALSE ∧ stop=FALSE
then phase:=TO CONTR

p sen : | p sen′ ∈ N ∧ p sen′ /∈ p real − delta1 ... p real + delta1
end

Sensor’s Data Transmission Modelling Pattern. This pattern aims at
modelling sensor reading communication to the controller. We introduce the
variable p in denoting the value of the sensor measurement received by the con-
troller as an input. It might differ from the p sen value due to possible security
attack on the channel S C Channel. We then refine the abstract event S C Chan
by two more concrete events, modelling the normal and abnormal cases of data
transmission, where we assign to p in different outcomes.

S C Chan Normal refines S C Chan =̂

when phase=TO CONTR ∧ failure=FALSE ∧ attack s c=FALSE
then phase:=CONTR

p in := p sen
end

S C Chan Failure refines S C Chan =̂

when phase=TO CONTR ∧ failure=FALSE ∧ attack s c=TRUE
then phase:=CONTR

p in : | (p in′ ∈ N∧p in′ �= p sen∧p in′ /∈ p real−delta1 ... p real+delta1)
end

Moreover, to abstractly model a possible attack on the channel S-C-channel,
we define a variable attack s c ∈ BOOL indicating whether the system is under
attack. The attack can happen anytime while transmitting the sensed data to the
controller and is modelled by the event Attack S C Chan. We use this abstrac-
tion to represent the results of the security monitoring.

At this refinement step, we prove the property that describes the effect of
the attack on S C Channel : attack s c=FALSE ∧ phase=CONTR ⇒ p in=p sen.

Controller Behaviour Modelling Pattern. The goal of this pattern is to
uncover a detailed specification of the controller behaviour (and also specify SW
assumption). In this refinement step, we refine the abstract event Controller to
represent different alternatives that depend on the received sensor reading.

We model the procedure of computing the current estimate p. The controller
either accepts the current input or relies on the last good value, or calculates a
new value p on the basis of the last good value and the maximal possible increase
per cycle. The computed value of p is used to calculate the output – the next
state of the actuator, i.e., update the variable cmd.
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The output of the controller – the next state of the actuator – depends on
the value of p adopted by the controller as the current estimate of the process
state. Upon receiving the input p in the controller checks its reasonableness.
If the check is successful then p obtains the value of p in. Then the controller
proceeds by checks whether p exceeds p max or is in the safe range [0..p max].
These alternatives are modelled by the events Controller normal DECR and
Controller normal, correspondingly.

If the input does not pass the reasonableness check, the controller calculates
the value of the process parameter using the last good input value and the max-
imal possible increase of the value p real per cycle delta3. Then, the controller
checks whether p exceeds p max and computes the output. These alternatives
are covered by the events Controller retry DECR and Controller retry, corre-
spondingly. Here the variable retry is introduced to model the number of retries
before the failure is considered to be a permanent and system is shut down. The
behaviour of the controller preserves the following invariants:

phase = TO ACTUA ∧ p > p max ⇒ cmd=DECR,

phase = TO ACTUA ∧ p ∈ 0..p max ⇒ cmd=INCR ∨ cmd=DECR.

They postulate that the controller issues the command DECR if the parameter
p is approaching the critically high value. If the controlled parameter is within
the safety region then the controller output might be either DECR or INCR.

Controller normal DECR refines Controller =̂
when phase=CONTR ∧ failure=FALSE ∧ stop=FALSE ∧

p in = process fnc(p �→ act state) ∧ p in > p max
then phase:=TO ACTUA

p := p in
cmd := DECR
retry := 0

end

Controller retry DECR refines Controller =̂
any p new, delta3
where phase=CONTR ∧ failure=FALSE ∧ stop=FALSE ∧

p in �= process fnc(p �→ act state) ∧ retry ≤ 2 ∧ delta2=(retry+1)*delta3 ∧
p new ∈ p-delta3 ... p+delta3 ∧ p in > p max

then phase:=TO ACTUA
p := p new
cmd := DECR
retry := retry + 1

end

Controller’s Command Transmission Modelling Pattern. The goal of
this modelling pattern is to introduce into the Event-B model a transmission of
the command issued by the controller to the actuator as well as introduce an
abstract representation of the attacks and the system reaction on them.

We construct this pattern similarly to Sensor’s Data Transmission Modelling
Pattern. We add several new variables and events into the refined system spec-
ification, (e.g., attack c a, the events Attack C A Chan, C A Chan Normal,
C A Chan Failure). According to the assumption A3 , if an attack on the chan-
nel C-A-channel has occurred then the controller output would differ from the
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command received by the actuator. Safety cannot be ensured if an attack on the
channel C-A-channel is detected and hence the system should be shut down.

We formulate and prove the following property, that describes the effect of
the attacks on the controller output: attack c a=FALSE ∧ phase=ACTUA ⇒
cmd=cmd trans.

Actuator Behaviour Modelling Pattern. Our last refinement pattern
focuses on modelling the behaviour of the actuator. We assume that the actu-
ator can fail during performing its function. Then the impact produced by the
actuator on the process might also deviate from the one associated with the
command cmd. We define by the variable cmd imp the state of the actuator
produced on the process and assign to it different outcomes depending on the
actuator behavior. We refine our abstract event Actuator and model different
alternatives.

As a result of this refinement step, we arrive at a sufficiently detailed
specification to define and prove the following safety invariant: p real ∈
0..safe threshold.

Actuator Normal refines Actuator =̂
when phase=ACTUA ∧ failure=FALSE ∧ stop=FALSE ∧ attack c a=FALSE
then phase:=PROC

cmd imp := cmd
end

Actuator Failure refines Actuator =̂
when phase=ACTUA ∧ failure=FALSE ∧ stop=FALSE ∧ attack c a=TRUE
then phase:=PROC

cmd imp :∈ CMD \ {cmd}
end

Fig. 4. Decomposition of top-level safety goal

4.2 Construction of Evidences for Safety Case

Safety-critical systems should be developed in such a way that their safety is also
demonstrable, i.e., it can be convincingly argued that the system is acceptable
safe. The safety argument – a safety case explicitly defines the safety require-
ments and justifies why the design adequately implements them. Goal Struc-
turing Notation [5] has became a popular form of representing a safety case.
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It explicitly describes how the safety goals are decomposed into subgoals until
claims can be supported by the direct evidences.

During our formal modelling we derive and verify safety and safety-related
security requirements, then the artifacts collected during the development can
be used in the safety case construction. Next we briefly demonstrate how to con-
struct the evidence justifying the safety goal associated with a control system
using different specifications and proofs constructed during the system develop-
ment. The detailed guidelines for constructing the safety cases from the formal
specification in Event-B are described in our previous work [12].

Figure 4 depicts a part of the resulting safety case for our generic networked
control system. Rectangles contain definitions of goals, parallelograms show the
definitions of the strategies, while circles represent solutions. Lets consider the
goal G4 (Fig. 5): “The controller logic is correct”. It is considered in the context
of formal modelling in Event-B with Rodin platform tool (C1). To support that
claim G4 holds, we state a strategy S4 to be used in solution of a goal. Namely,
we need to define constrains over constants as axioms. Moreover, we have to
model the controller actions as well as define the safety invariant and prove it
preservation during system execution. Consequently, we further decompose the
goal G4 into three subgoals and define the solutions that support the claims.

Next we will demonstrate how the proposed pattern-based refinement process
can be applied to development of a water treatment control system [13].

5 Case Study: Water Treatment Control System

In this section, we overview a water control system [13] and briefly discuss how
to develop an Event-B specification of this system and uncover the mutual inter-
dependencies between safety and security requirements. While our modelling, we
will rely on the generic development patterns presented in Sect. 4.

Fig. 5. Decomposition of G4 safety goal
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5.1 Case Study Description

We consider a minimal set up in Modern Industrial Control System – a water
treatment system [13]. The water treatment system (WTS) is a control system
that adjusts the quantity of water in the tank to maintain it within the predefined
safety bounds. The system consists of the following main components (depicted
in Fig. 6): motorized inflow valve, a tank, a pump, a sensor to measure the
quantity of water in the tank, Programmable Logic Controller (PLC) and a
central supervisory control system (SCADA).

The system performs the following global scenario. An inflow valve let passage
of water into a tank through a pipe. A tank is equipped with a sensor which
measures the level of the water inside the tank. Then the sensor communicates
its reading to PLC. When the level of the water reaches a certain upper (lower)
threshold, PLC communicates to the motorized inflow valve to close (open) and
to the pump to start (stop). The sensor and actuators (pump, valve) operate by
receiving and sending analog signals. PLC converts the analog signals into digital
signals. The digital signals are then exchanged between PLCs and SCADA.

The main hazard of the system is associated with overflow of water in the
tank. The main safety goal of WTS is then to keep the level of the water WL real
inside the tank within the predefined boundaries: 0 ≤ WL real ≤ WL max crit.

Fig. 6. Water treatment system

Since WTS is an example of the networked system then it could threaten to
increase vulnerability to malicious attacks. In general case, we assume that the
attacker’s goal is to cause a water burst in the tank. Therefore, while reasoning
about the behaviour of such a system, we should also reason about the impact
of security threats on its safety. The analysis presented in Sect. 2 shows that
safety cannot be guaranteed when the controller-actuator channel is attacked.
Then WTS should include an additional component – a manual valve – that
should be placed in the systems architecture. The behavior of the manual valve
is the same as the inflow valve. The only difference is that the manual valve can
only be manually operated, i.e., cannot be operated using network messages.
Such a non-programmable component can put the system in the failsafe state to
guarantee safety. Next we present an abstract Event-B specification of WTS.
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5.2 Event-B Development of the Water Treatment System

We design the Event-B specification of WTS incrementally, i.e., by gradually
unfolding system functionality and architecture. Our development relies on the
generic development presented in Sect. 4. Due to space limits, we only highlight
the most important modelling solutions of the development.

Initial Specification. We start with an initial model of WTS where we define
its cyclic behaviour. By following the guidelines defined in Sect. 4, we introduce
an abstract representation of the control cycle and the corresponding phases.

The event WaterTank models the changes of the water level parameter wl real
while charging. WLSensor event models the estimation of this parameter (that is
defined by wl variable). The event PLC specifies the PLC actions (i.e., sending the
command to open or close valve and to stop pump). The events TransmReadings
and TransmCommands model transmission of the corresponding sensor readings
and controller commands, correspondingly. Finally, Actions event models the
required actions upon receiving the commands from PLC.

First Refinement. At this step we elaborate on the dynamics of the controlled
process, i.e., define the changes in the water level wl real.

Second Refinement. Here we model the behaviour of the sensor and unfold
the value of the physical variable wl sen measured by the sensor. Since this value
can be affected by the sensor imprecision or failures, we address it in our model.

Third Refinement. We model the transmission of the sensor reading to PLC.

Fourth Refinement. This step aims at introducing a detailed specification of
the PLC logic. We define the control algorithm, i.e., model the behavior of the
controller. The controller calculates the commands to be send to the valve and
pump using the current estimate of the water level.

At each control cycle, the PLC controller receives the current estimate of
the water level from the sensor. The controller checks whether the water level
is still in safe range and sends commands continue to open valve or close valve
and stop the pump. The decision to continue water supply can be made only if
the controller verifies that the water level at the end of the next cycle will still
be in the safe range [0 ... wl max crit].

We refine the abstract events of the previous refinement step to represent dif-
ferent alternatives of PCL behaviour. At this stage we can formulate correctness
of the WTS logic by the following invariants:

phase = TRANSM ∧ wl ≥ wl max ⇒ signal=STOP,

phase = TRANSM ∧ wl < wl max ⇒ signal=CONT.

The invariants postulate that the WTS issues the signal to stop when the param-
eter wl is approaching the critically high value (wl max crit), and vice versa. To
give the system a time to react, WTS sends the stopping command to the actu-
ators whenever the value wl breaches the predefined value wl max.



376 I. Vistbakka and E. Troubitsyna

Fifth Refinement. We model signal transmission issued by PCL to the valve
and the pump. Here we model different cases of the nominal and abnormal signal
transmission (including DOS attack, security failure, etc.). We incorporate into
the model architecture a certain mechanism that would allow the system to
transmit the signal in a secure way. In particular, we add a new component –
security gateway – between the WTS and the external actuators. It could control
the network access according to predefined security policies and can also inspect
the packet content to detect intruder attacks and anomalies.

Sixth Refinement. Finally, we elaborate on the behaviour of the actuators.
Upon receiving the command from PCL, the valve closes and the pump starts
or valve opens. As a result of the last refinement step, we arrive at a sufficiently
detailed formal specification to define and prove the desired system level prop-
erty: wl real ∈ 0 .. wl max crit.

6 Related Work and Conclusions

In recent years, co-engineering of security and safety requirements has received
increasing attention by researchers [10,16,20]. The possible integration of safety
and security techniques has been addressed by adaptation conventional tech-
niques for analysing safety risks to perform a security-informed safety analy-
sis [4,14]. Proposed techniques provide the engineers with a structured way to
discover and analyse security vulnerabilities that have implications on system
safety.

Formal analysis of safety and security requirements interactions has been
addressed in works [6,11]. However, most of the works focus on finding and
demonstrating conflicts between safety and security. In contrast, in our work,
we treat the problem of safety-security interplay at a more detailed level. We
analyse the system architecture, investigate the impact of security failures on
system functioning and system safety. Such an approach allows us to study the
dynamic nature of safety-security interactions. Ponsard et al. [11] study how
Goal-Oriented Requirements Engineering can support co-engineering to address
the safety and security dimensions in cyber-physical systems.

In the work [3] distributed MILS approach is presented to support a powerful
analysis of the properties of the data flow using model checking and facilitates
derivation of security contracts. Since our approach enables incremental con-
struction of complex distributed architectures, it would be interesting to combine
these techniques to support an integrated safety-security analysis throughout the
entire formal model-based system development.

The four-variable model proposed by Parnas has also been adopted in work
[9]. The authors show application of this model in the development of safety-
critical systems in industry. They show how this model helps to define the
behaviours of, and the boundaries between, the environment, sensors, actua-
tors, and controlled software. Similarly, in our work four-variable model allows
us to derive the behaviour of controller that is acceptable from the safety point
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of view. However, we also employ formal modelling technique to uncover mutual
interdependencies between safety and security.

Similar to our work, a model-based approach for the formalization of sys-
tem requirements, and their early validation with respect to system design has
been proposed in [15]. This work introduces a bottom-up design approach as
opposed to the top-down approach that used in Event-B. The emphasis is on
property preservation through gradual composition of models derived from pat-
terns (architectures) rather than on refinement and generation of model invari-
ants and constraints such as in the Event-B.

The approach to integrate the modelling with UML, formal methods and the
actual implementation for developing security-critical applications is discussed in
[7]. However, the authors do not consider safety aspect of the modelled system.

In this work, we have proposed a formal approach enabling derivation and
formalising safety and security requirements using correct-by-construction devel-
opment paradigm. Our proposed approach allows us in a systematic manner to
derive the constraints that should be imposed on the system to guarantee its
safety even in presence of the security attacks. Our approach has relied on mod-
elling and refinement in Event-B.

The approach presented in this work generalises the results of our experience
with formal refinement-based development in the Event-B conducted in the con-
text of verification of safety-critical control system [17–19]. The results have
demonstrated that the formal development significantly facilitates derivation of
safety and security requirements. We have also observed that the integrated
safety-security modelling in Event-B could be facilitated by the use of external
tools supporting constraint solving and continuous behaviour simulation. Such
an integration would be interesting to investigate in our future work.
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