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Introduction

Cancer is a complex, dynamic disease with underlying processes occurring over the
full range of biological scales from genetic, through proteomic, cellular, tissue,
organ, to organism and sometimes even the whole population level. The first
detectable (palpable) symptoms are almost always macroscopic, but mechanisms
are also present a priori at the cellular level and these in turn originate from changes/
mutations in the individual’s DNA. Perhaps one of the most difficult questions of
modern medicine is how to intervene and manipulate the complex system of the
patient’s body to affect changes in dynamics which can bring it back from a state of
disease to either full remission or stabilisation. Given the complexity of the system a
chance to answer that question should be sought by complementing the traditional
clinical methods with mathematical and computational modelling and simulations.
However, while developing predictive models one of the most important key aspect
of the disease to be considered, if not the key aspect, is its multi-scale character.

In one of the most influential cancer papers of the last two decades, Hanahan and
Weinberg [26] defined what they termed to be the six hallmarks of cancer:
(i) sustaining proliferative signalling; (ii) evading growth suppressors; (iii) activating
invasion and metastasis; (iv) enabling replicative immortality; (v) inducing angio-
genesis; (vi) resisting cell death. More recently the authors [27] updated this list to
also include two other emerging hallmarks: (i) deregulating cellular energetics;
(ii) avoiding immune destruction, and two enabling characteristics (i) genome insta-
bility and mutation; and (ii) tumour promoting inflammation. These hallmarks are
linked with phenotypic traits that give cancer cells an evolutionary advantage over
healthy cells. Furthermore, in [27] Hanahan andWeinberg described four main types
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of intracellular circuit (signal transduction pathway) regulating the operation of cells:
(i) proliferation circuits; (ii) viability circuits; (iii) motility circuits; and
(iv) cytostasis and differentiation circuits. The failure or dysregulation of these
four circuits jointly make up the characteristic phenotype of cancer cells,
corresponding directly with four of the hallmarks given above. In contrast to healthy
cells that carefully control the production of specific growth and proliferative
signals, cancer cells have an abnormal progression through the cell cycle and divide
rapidly. Equally they have much higher viability compared to normal cells; resisting
cell death, avoiding immune destruction, genome instability and mutation make
cancer cells somewhat “immortal”. The outcome is the formation of macroscopic
structures such as solid tumours that can be observed clinically. Despite enormous
progress full understanding of these processes is difficult because we are dealing
with a complex interplay between various subprocesses occurring with different
dynamics at different spatial scales.

One of the most dangerous properties of malignant tumours is their ability to
invade surrounding tissues and to metastasize. The invasion or infiltration of sur-
rounding tissue by cancer cells can impair the tissue or organ function. However, a
more dangerous aspect of invasion is the infiltration of blood and lymph vessels.
When cancer cells penetrate the vessel lumen they may migrate with blood or lymph
to distant sites in the body to form new tumours, i.e. metastases. It is worth
mentioning that angiogenesis also contributes; through the formation of new blood
vessels within the tumour it facilitates the migration of tumour cells. Metastasis of
cancer makes patient’s treatment very difficult. It prevents the effective resection of
the primary tumour, as new outbreaks cause recurrence of the disease. There are
many mechanisms that enable cancer cells invasion and metastasis, together making
the motility circuit. One can mention here the frequently occurring over-expression
of genes encoding extracellular matrix-degrading enzymes such as matrix
metalloproteinases (MMPs). However, perhaps the most characteristic change is
the loss of the functionality of the protein E-cadherin, which is the main molecule
responsible for binding between epithelial cells.

While it is clear that there are many different, inter-connected temporal and
spatial scales that are important during the development of any tumour, within
these there are three clearly demarcated “fundamental scales” linked to each other
which, when considered together, go to make up understanding the complex phe-
nomenon that is cancer: the intra-cellular scale, the cellular scale and the tissue scale.
At the level of intracellular processes we must include within the description
complicated but essential phenomena such as signal transduction cascades, gene
regulatory networks or cell cycle regulation. Doing so aids our understanding of the
differences at the intracellular level between normal and transformed cells and
therefore improves the efficiency of anti-cancer cell-cycle-dependent drugs. Another
challenge while modelling intracellular processes is to understand how the three-
dimensional structure of DNA and chromatin affects gene expression within signal-
ling pathways crucial for the disease development. Although it is known that cancer
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is most often caused by the accumulation of mutations in genes involved in cell cycle
regulation and apoptosis, another important issue is how the disease progression is
influenced by structural or epigenetic changes within the cell nucleus.

At the level of cellular colonies and tissue there are two main approaches towards
modelling complex biological processes like cancer: continuum and discrete. Con-
tinuum methods, that are derived from principles of continuum mechanics, have
proved to be very useful in modelling phenomena at the tissue scale such as general
tumour growth. However, one of the main drawbacks of continuum modelling is the
difficulty in representing individual cell properties. Including these and intracellular
processes in multi-scale phenomena such as cancer is becoming more and more
important as experimental data across multiple scales becomes available. Alternative
approaches rely on an individual-based description of a single cell. The main
advantage of such methods is related to the relative simplicity of transmitting
detailed biological processes into dynamics and development of cell populations
and tissue. The main disadvantage is the computational cost which increases rapidly
with the number of simulated cells. However the problem of high computational
complexity can be addressed by selecting appropriate algorithms and by efficient
implementation on high performance computing (HPC) systems.

Further milestones related to cancer modelling will be adapting the models for
specific cancer types and specific patients. The latter means not only the acquisition
of biochemical parameters but also the acquisition of medical image data for
individual patients. This will be a definite step towards personalised medicine,
which has a chance to completely reform our approach to the patient and his
treatment. Already today imaging studies are of great importance in diagnosis and
planning surgical procedures. However, especially for treatment of non-resectable
tumours, such imaging studies could also be important in selecting the appropriate
treatment or monitoring the disease dynamics.

In this chapter we provide a brief overview of current cancer modelling (“multi-
scale mathematical oncology”) at the three different scales previously mentioned –

intra-cellular, cellular and tissue – drawing on recent work by Sturrock et al. [49, 50],
Szymańska et al. [51] and Domschke et al. [15]. In Sect. 2 we discuss the modelling
of intracellular dynamics, specifically gene regulatory networks (GRNs). In partic-
ular we focus on the canonical transcription factor – Hes1. In Sect. 3 we focus on the
cell scale, in particular investigating cell-cell/cell-matrix dynamics using an
individual-based (or agent based) force-based model. In Sect. 4 we model cancer
cell invasion at the tissue or macroscale using a system of nonlinear, nonlocal partial
differential equations. This system explicitly accounts for cell-cell adhesion and also
cell-matrix adhesion through a non-local term developed originally by Armstrong
et al. [7] and then originally applied to cancer invasion modelling by Gerisch and
Chaplain [19]. In the final Discussion Sect. 5, we provide directions for future
research by combining modelling at all scales and highlight recent work on model-
ling cancer treatment (chemotherapy and radiotherapy) and the metastatic spread of
cancer.
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The Microscale: Gene Regulatory Networks
and Transcription Factors

At the heart of cellular function and communication lies segments of DNA (genes)
and their associated gene regulatory networks (GRNs). A GRN can be defined as a
collection of genes in a cell which interact with each other indirectly through their
RNA and protein products. GRNs are vital to intracellular signal transduction and
indirectly control many important cellular functions such as cell division, apoptosis
and adhesion. One specific class of GRN involves proteins called transcription
factors, which alter the transcription rate of genes in response to intra- or extracel-
lular cues. Transcription factors may reduce or increase the transcription rate of a
given gene, respectively inhibiting or promoting its production. If the inhibition
(or promotion) is directed towards the transcription factor’s own gene, either directly
or indirectly, there is negative (or positive) feedback. Negative feedback loops are an
important component of many gene networks and are found within a wide range of
biological processes e.g. inflammation, meiosis, apoptosis and the heat shock
response [32]. Mechanically speaking, systems which contain negative feedback
should (and in fact are known to) exhibit oscillations in the levels of the molecules
involved. Furthermore, in many biological processes, it is the oscillatory expression
which is of particular importance.

Mathematical modelling of GRNs began some 50 years ago with the papers of
[21, 23], in which a negative feedback model for a simple, single mRNA-protein
feedback system was proposed. However, while GRNs are known to exhibit periodic
fluctuations in mRNA and protein concentrations (e.g. the results for the Hes1
system, cf. [29]), these early models, which were restricted to purely temporal
ODEs, could not produce oscillatory behaviour. Subsequently, discrete delay ODE
models were proposed, which although reproducing the oscillatory dynamics,
neglect the spatial structure of the cell (nucleus/cytoplasm). The first spatial models
(for theoretical intracellular systems) were proposed in the 1970s by Glass and
co-workers [20, 47] and similarly in the 1980s by Mahaffy and co-workers [8, 36,
37]. The inclusion of spatial terms (rather than, for example, a delay in a system of
ODEs) is capable of producing the experimentally observed oscillations [31, 33–35,
49, 50, 52]. Moreover, in addition to the computational results of the previous
papers, the work of Chaplain et al. [9] has rigorously proved, for the Hes1 system,
that molecular diffusion causes oscillations.

The Hes1 System

The Hes1 protein may be viewed as the simplest transcription factor i.e. the Hes1
protein downregulates its own hes1 mRNA production, making it the canonical
negative feedback system. This system (as well as the more complex p53-Mdmd2
system) was considered as a spatial problem in [49, 50]. Figure 1 shows a schematic
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diagram of the Hes1 system, with Hes1 protein being produced in the cytoplasm
(protein synthesis or translation), diffusing through the cytoplasm, across the nuclear
membrane and into the nucleus where it down-regulates hes1 mRNA production
(transcription). The hes1 mRNA itself can then diffuse to the nuclear membrane,
move across the membrane and into the cytoplasm where it diffuses and is translated
in to Hes1 protein in the ribosomes (translation).

These processes of molecular diffusion, protein production (translation) and
mRNA production (transcription), along with the downregulation of mRNA can
be modelled by the system of PDEs (where m(x, t), p(x, t) are the concentrations of
hes1 mRNA and Hes1 protein respectively, with subscript n denoting the nucleus,
and subscript c denoting the cytoplasm) as follows:

∂ mn½ �
∂t

¼ Dmn∇
2 mn½ � þ αm

1þ pn½ �=bpð Þh|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
transcription

� μm mn½ �, ð1Þ

∂ mc½ �
∂t

¼ Dmc∇
2 mc½ � � μm mc½ �, ð2Þ

Fig. 1 Schematic diagram showing the Hes1 gene regulatory network. Hes1 protein is produced in
the cytoplasm (translation), diffuses through the cytoplasm, across the nuclear membrane and into
the nucleus where it down-regulates hes1 mRNA. The hes1 mRNA is produced in the nucleus
(transcription), diffuses, crosses the nuclear membrane into the cytoplasm and is then translated into
Hes1 protein. The equations show the reaction-diffusion events for each molecule and the red
arrows denoted passage across the nuclear membrane
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∂ pc½ �
∂t

¼ Dpc∇
2 pc½ � þ αp mc½ �|fflffl{zfflffl}

synthesis

� μp pc½ �, ð3Þ

∂ pn½ �
∂t

¼ Dpn∇
2 pn½ � � μp pn½ �, ð4Þ

along with zero-flux boundary conditions at the cell membrane and continuity of flux
boundary conditions across the nuclear membrane (cf. Fig. 1). Appropriate initial
conditions for each molecular species closes the system mathematically. Full details
are provided in [49, 50]. Figure 2 shows the results of a computational simulation of
the above model in a domain similar to that shown schematically in Fig. 1. The
oscillations in both hes1 mRNA and Hes1 protein in both the nucleus and the
cytoplasm are clearly seen.

The computational results obtained in [49, 50] indicate that the molecular diffu-
sion plays a major role in generating and controlling the oscillations. This numerical
observation was complemented by a full analysis of a 1-dimensional caricature
model of the system in [9]. A (nondimensionalised) one dimensional gene regulatory
network model (i.e. a caricature of the Hes1 system) was considered on a
1-dimensional spatial domain shown in Fig. 3, with governing equations given by:

∂m
∂t

¼ D
∂2m
∂x2

þ αm f pð ÞδεxM xð Þ � μm in 0, Tð Þ � 0, 1ð Þ, ð5Þ

∂p
∂t

¼ D
∂2p
∂x2

þ αp g xð Þm� μp in 0, Tð Þ � 0, 1ð Þ, ð6Þ

with boundary and initial conditions:

∂m t, 0ð Þ
∂x

¼ ∂m t, 1ð Þ
∂x

¼ 0,
∂p t, 0ð Þ

∂x
¼ ∂p t, 1ð Þ

∂x
¼ 0 in 0, Tð Þ,

m 0, xð Þ ¼ m0 xð Þ, p 0, xð Þ ¼ p0 xð Þ in 0, 1ð Þ,

where D, αm, αp, μm and μp are positive constants (the diffusion coefficient, tran-
scription rate, translation rate and decay rates of hes1 mRNA and Hes1 protein
respectively). Full details can be found in the papers of Sturrock et al. [49, 50] and
[9]. Here l denotes the position of the nuclear membrane and therefore the domain is
partitioned into two distinct regions, (0, l ) the cell nucleus and (l, 1) the cell
cytoplasm, for some l 2 (0, 1). The point xM 2 (0, l ) is the position of the centre
of the gene site and by δεxM we denote the Dirac approximation of the δ-distribution
located at xM, with ε > 0 a small parameter and δεxM has compact support (cf. Fig. 3).
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Fig. 2 Plots showing the oscillations in both molecular species (hes1 mRNA, Hes1 protein) in both
the nucleus and the cytoplasm

Fig. 3 1-dimensional spatial domain for the caricature Hes1 model. The blue region denotes the
nucleus (0,l), while the green region denotes the cytoplasm (l,1). The location xM (red circle)
denotes the location of the gene site where the Hes1 protein binds and down-regulates hes1 mRNA
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The nonlinear reaction term f : ℝ ! ℝ is a Hill function f( p) ¼ 1/(1 + ph), with
h � 2, modelling the suppression of mRNA production by the protein (negative
feedback). The function g is a step function given by

g xð Þ ¼ 0, if x < l,

1, if x � l,

�
since the process of translation only occurs in the cytoplasm.

Chaplain et al. [9] proved rigorously that the diffusion coefficient of the mole-
cules acts as a Hopf bifurcation parameter, therefore showing that molecular move-
ment alone is sufficient to generate the (spatio-temporal) oscillations i.e. space
influences time. The two main theorems in the paper are as follows:

Theorem 1 There exist two critical values of the parameter D, i.e. Dc
1 and Dc

2 for
which a Hopf bifurcation occurs in the model (5), (6).

Theorem 2 At both critical values of the bifurcation parameter Dc
1 and D

c
2 a super-

critical Hopf bifurcation occurs in the system (5), (6) and the families of periodic
orbits bifurcating from the stationary solution at each Hopf bifurcation point are
stable.

Further investigation of the importance of spatial aspects in GRNs has examined
the Hes1 system both spatially and stochastically [48]. In this paper, a continuous-
time discrete-space Markov process approach is used to model the reaction-diffusion
kinetics. Since cell populations are naturally heterogenous, a stochastic description
with spatial aspects built in allows us to incorporate a variety of differences and to
look for emergent behaviour. The approach of [48] can be applied to model other
natural pathways or synthetic GRNs cf. the work of Macnamara et al. [33–35], in
particular key molecules known to play an important role in cell-cycle control and
apoptosis and the inflammatory response viz. p53-Mdm2 and NF-κB.

The Mesoscale: Force-Based Individual-Based Modelling
of Cell-Cell and Cell-Matrix Interactions

While the model of the previous section highlighted (stochastic) spatio-temporal
models of intracellular pathways, in this section, we will focus on a model of cancer
growth at the individual cell level developed by Szymańska et al. [51]. There are
now a number of different individual-based modelling approaches that one can adopt
cf. cellular automata, Cellular Potts Model, hybrid discrete-continuum [1, 5, 6,
14]. Here we adopt an individual-based, force-based model of cell growth which is
driven by forces acting upon the cell, and is based upon the model of [42]. More
recently this approach has been extended and implemented on a massively parallel
system (IBM Blue Gene/Q system) allowing hybrid high performance simulations to
describe, for example, tumour growth in its early clinical stage. Details of the
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implementation can be found in [11–13]. Adopting this approach, each cell is
modelled as an isotropic elastic object capable of migration and division and
parameterise it by cell-kinetic, biophysical and cell-biological parameters that can
be experimentally measured, from both in vitro and in vivo experiments [10, 24, 30,
39, 40, 43, 45, 46, 54]. We assume that an individual cell ci in isolation is spherical
and characterise the cell shape by its radius R. The position of the cell in 3D space is
described by the Cartesian coordinates (xci , yci , zci ) of its centre.

Regarding cell kinetics, we assume that the cell-cycle is divided into four phases,
i.e. mitosis – M-phase, followed by G1-, S-, and G2-phases, after which mitosis
occurs again. During a complete cell-cycle, the cell must accurately duplicate its
DNA once during S-phase and distribute an identical set of chromosomes equally to
two progeny cells during M-phase. M-phase consists of two major events: the
division of the nucleus called mitosis and subsequent cytoplasmic division called
cytokinesis. G1-phase is an interval between mitosis and the initiation of nuclear
DNA replication. It provides additional time for a cell to grow and to replicate its
cytoplasmic organelles. G2-phase is again an interval between the completion of
nuclear DNA replication and mitosis. Over the course of both the G1- and
G2-phases, the cell checks the internal and external environment to ensure that the
conditions are suitable and complete preparation for entry into either S-phase or
M-phase. When DNA is damaged cell cycle is arrested in G1 or G2 so that the cell
can repair DNA damages prior to its duplication or before cell division.

Cell cycle events must occur in a precise order, which should be maintained, even
when one of the steps takes longer than usual. For instance, this means that cell
division cannot start before DNA replication is complete. Similarly, when DNA is
damaged the cell cycle is arrested so that the cell can repair the damage. This is
possible because the cell is equipped with molecular mechanisms that can stop the
cycle at various checkpoints. Two main checkpoints are located within the G1- and
G2-phases. The G1 checkpoint allows the cell to check whether its environment is
conducive to divisions and whether its DNA is damaged. If environmental condi-
tions make cell division impossible, instead of entering S-phase a cell can enter a
resting state – G0-phase, where it remains until conditions improve and it continues
the cell cycle. The G2 checkpoint ensures that the cell has no DNA damage, and
DNA replication will be completed before the beginning of mitosis [2].

Interactions between cells are modelled by taking into account the repulsive and
attractive forces between cells. Upon compression, i.e. with decreasing distance dcicj
between the centres of two adjacent cells, ci and cj, of radii, rci and rcj , both their
surface contact area and the number of adhesive contacts increase, resulting in an
attractive interaction. We assume that adhesive forces are proportional to ρm, which
is the density of the surface adhesion molecules in the contact zone (which we
assume is given for particular cell type), kB, which is the Boltzmann constant, T,
which denotes temperature and Dcicj , which measures the contact between cells ci
and cj and is calculated as the volume of the common area of intersecting spheres
representing those cells. Experiments suggest that cells only have a small
compressibility – the Poisson numbers are close to 0.5, [3, 38]. In this instance,
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both the limited deformability and the limited compressibility give rise to a repulsive
interaction. Repulsive forces are inversely proportional to the term Eci ,cj , which is
calculated form Young moduli, Eci and Ecj , and Poisson ratios, vci and vcj . The
precise formula is given by:

Eci,cj ¼ 3
4

1� v2ci
Eci

þ
1� v2cj
Ecj

 !
: ð7Þ

Wemodel the combination of the repulsive and attractive energy contributions by
a modified Hertz-model [18, 44] which has the advantage that both the interaction
energy and the force can be represented as an analytical expression [16]. Inertia
terms are neglected due to the high friction of cells with their environment, and we
also do not consider the existence of any memory term as in [18].

Vcicj ¼ rci þ rcj � dcicj
� �5

2 1
5Ecicj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rci rcj

rci þ rcj

r
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

repulsive interactions

þ ρmDcicj25kBT|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
adhesion

: ð8Þ

Cells require access to oxygen from the circulatory system in order to grow and
survive. It is well known that cancer cells grow preferentially around blood vessels.
Those tumour cells that are located more than about 0.2 mm away from blood
vessels were found to be quiescent, while others even farther away were found to
be necrotic. This threshold of approximately 0.2 mm represents the distance that
oxygen can effectively diffuse through living tissue [53]. Because of the low redox
potential and high activation energy that occurs in living organisms, reactions
involving molecular oxygen occur only in mitochondria. Therefore, we assume
that the loss of oxygen in the tissue takes place only due to its consumption by the
cells. The general equation governing the external oxygen concentration Q(x, t) in
the cells’ environment may be written:

∂
∂t

Q x, tð Þ ¼ DQ∇2Q x, tð Þ � G x, tð Þ þ H x, tð Þ, ð9Þ

where DQ, is the oxygen diffusion coefficient. The function G(x, t) models the
oxygen uptake by cells and the function H(x, t) models the production of oxygen
by vessels. Both of these functions are computed in each time step of the simulation
from the current spatial organisation of cells and vessels through interpolation. The
force associated with a given cell, ci, is then given by the expression:

Fci ¼ ∇Vci|ffl{zffl}
inter‐cellular interactions

þ λ∇Q x, tð Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
chemotaxis

ð10Þ
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where λ is a measure of a cell’s chemotactic sensitivity to the oxygen concentration
and Vci is given by

Vci ¼
X
cj2BEci

Vcicj ð11Þ

with B2ci
cið Þ a sphere (i.e. a ball in ℝ3) centred on (xci , yci , zci), radius 2ci , denoting

the maximum inter-cellular interaction region.
Summing all the forces between the cells and assuming a frictional force/drag

force proportional to a cell’s velocity and then applying Newton’s Second Law of
motion allows us to integrate a Langevin-type equation to give the spatial location of
the cells over time. The direct use of equations of motion for the cells permits one to
include more easily the limiting case of very small (or no) noise and is more intuitive.
In this approach cells move under the influence of forces and a random contribution
to the locomotion which results from the local exploration of space.

Solving the oxygen concentration (which is a global field) together with the
individual-based particle system of up to 109 cells is a challenging task in the context
of parallel processing. First of all, it requires the use of appropriate data structures to
optimize the computations of interactions between lattice-free cells. In our approach,
the main data structure that stores information about cells is an octal tree. We assume
that the domain of simulation is a 3D cube. The cells are arranged in a tree based on
the position of their centers. The tree is built recursively starting from the whole
domain of simulation, which corresponds to the root of the tree. Subsequently, the
cubes are divided recursively into 8 equal cubes with edges reduced by a factor of a
half. This procedure is repeated until in the cube under consideration there is only
one cell centre. Full details are provided in [51].

Model Application

Figures 4 and 5 show the results of applying the individual-based model to the
scenario of a solid tumour (a tumour cord) growing around a central blood vessel

Fig. 4 Plot showing the growing tumour cord around a central blood vessel at times 300, 400,
700 and 1300 h. As the tumour cord grows, cells further away from the vessel become necrotic
(black). At the final time of 1300 h, there is a total of around 10,000 cells
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which supplies oxygen to the surrounding tissue and cancer cells. The figures show
the development of the tumour cord over time and the formation of necrotic (dead)
cells towards the outer boundary of the cord, since these are furthest from the blood
vessel and the source of oxygen. More detailed simulations can be found in [51],
while applications of the approach to avascular solid tumours can be found in
Cytowski and Szymańska [11–13].

The Macroscale: Cancer Invasion and Metastasis

This section considers a macroscale model of cancer invasion based focusing on the
role of cancer cell adhesion – both cell-cell and cell-matrix. The underlying basis for
the model was developed by Armstrong et al. [7] who considered a model for cell
sorting, and then developed by Gerisch and Chaplain in [19] as a model for cancer
invasion. This approach was further developed more recently by Domschke et al [15]
and it is this model that we present here. The variables in the model are cancer cells
(density c(t, x)), extracellular matrix, ECM, (density v(t, x)) and matrix degrading

Fig. 5 Plot showing cross-sections of the growing tumour cord around a central blood vessel at
times 300, 400, 700 and 1300 h. As the tumour cord grows, cells further away from the vessel
become necrotic (black). At the final time of 1300 h, there is a total of around 10,000 cells
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enzymes, MDE, (concentration m(t, x)). The model considers several populations of
cancer cells c1(t, x), c2(t, x) . . . cn(t, x) which are written c ¼ (c1, c2, . . . cn)

T.
The evolution of the cancer cell sub-population densities is driven by cell random

motility, cell-cell and cell-matrix adhesion-mediated directed migration, prolifera-
tion, and mutations between the cancer cell sub-populations. This can be expressed
as

∂c
∂t

¼ ∇ � D∇c� diag cð ÞA t, x,u t, �ð Þð Þ½ � þ P t,uð ÞcþM uð Þc: ð12Þ

Here, the diagonal matrix D ¼ diag(D1,1,. . ., D1,n) 2 ℝn,n contains the random
motility coefficients D1,i > 0 of the cancer cell sub-populations. In this work we
assume that those are constants.

Adhesion-mediated directed cancer cell migration is represented using the
non-local operator

A t, x,u t, �ð Þð Þ≔

A1 t, x,u t, �ð Þð Þ⊤
A2 t, x,u t, �ð Þð Þ⊤

⋮
An t, x,u t, �ð Þð Þ⊤

26664
37775 2 ℝn,p

which maps (t, x) together with the space-dependent function u(t, �), that is c(t, �) and
v(t, �), to an n � p matrix depending on (t, x). Row i in that matrix,
i.e. A i t, x, u t, �ð Þð ÞT , represents the velocity of directed cancer cell migration of
sub-population i which is induced by cell-cell and cell-matrix adhesion properties of
cancer cells and ECM. Here cell-cell adhesion refers to adhesion between cells of
sub-population i itself, self-adhesion, as well as between cells of sub-population
i and sub-population j 6¼ i, cross-adhesion. The velocity for sub-population i is
defined by the following vector-valued integral, cf. [7] or [19],

A i t, x, u t, �ð Þð Þ ¼ 1
R

Z
B 0,Rð Þ

n yð Þ �Ωi yk k2
� � � gi t,u t, xþ yð Þð Þdy: ð13aÞ

Here, R > 0 is the sensing radius, B(0, R) ⊂ ℝp is the ball of radius R centred at
zero, and for x 2 d the set x + B(0, R) is the sensing region at x. Note that for points
x 2 d, which are so close to the boundary of d such that x + B (0,R) \ d ) 6� d, the
integral in Eq. (13a) is not yet well-defined; we resolve this issue when discussing
the boundary conditions for our model in the end of this section. For y 2 B(0, R), the
unit vector pointing from x to x + y, is denoted by n(y), i.e.

n yð Þ≔ y= yk k2 if y 6¼ 0

0 2 ℝp otherwise
:

�
ð13bÞ
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Furthermore, Ωi(r), with r ¼ kyk2, is the radial dependency function for
sub-population i. It characterizes the relative importance of points at distance
r from x for adhesion-mediated cell migration. This function is non-negative and
normalised such that

1 ¼
Z
B 0,Rð Þ

Ωi yk k2
� �

dy: ð13cÞ

Finally, the function gi(t, u) is the i-th component of

g t, uð Þ � g t, c, vð Þ ¼ Scc tð Þcþ Scv tð Þ1v½ � � 1� ρ uð Þð Þþ: ð13dÞ

In the above, 1 2 ℝn is the all-one vector, Scv(t) 2 ℝn,n is the diagonal matrix
containing the non-negative cell-matrix adhesion coefficients of all cancer cell
sub-populations with the ECM, and Scc(t) 2 ℝn,n represents the matrix containing
the non-negative cell-cell adhesion coefficients. Note that these matrices may have
coefficients depending explicitly on time. We introduce the additional notation that
Scicj : ¼ (Scc)i, j is the self-adhesion coefficient of sub-population i if i ¼ j and the
cross-adhesion coefficient between sub-populations i and j if j 6¼ i. Furthermore
(Scv)i,i¼: Sci ,v. In the usual notation, the positive part of an expression is denoted by
(�)+ :¼ max{0, �} and the factor (1� ρ(u))+ models an inhibition of migration due to
volume filling effects, see e.g. [28].

Cancer cells mutate and thus change membership from one cancer cell
sub-population to another one. This gives rise to the structured-population model
with n cancer cell sub-populations as considered here. The matrixM(u(t, x)) 2 ℝn,n,
multiplied by c, represents the effect of mutations in (12). As in the case of the
proliferation term, the factor c makes explicit that cells of sub-population i may
mutate only if they already exist. Since mutations of cells of sub-population
i correspond to a loss of cells in that sub-population and mutations of cells into
cells of sub-population i correspond to a gain of cells in that sub-population, the
diagonal elements of M must be non-positive and the off-diagonal elements of
M must be non-negative. Furthermore, in order to ensure conservation of cell
mass, we require that the column sums of M equal zero, i.e.

Xn
i¼1

Mij ¼ 0, for j ¼ 1, 2, . . . , n: ð14Þ

Different additional structural conditions may apply to the matrix M. For
instance, if we assume that the cancer cell sub-populations are ordered such that
mutations occur only towards sub-populations with a larger index, then matrixM is a
lower triangular matrix, or, if we even assume that mutations occur only towards the
sub-population with the next larger index, thenM is even a lower bidiagonal matrix.

162 M. A. J. Chaplain



The evolution of the ECM density is governed by MDE-mediated matrix degra-
dation as well as ECM remodelling. This is expressed as

∂v
∂t

¼ �γmvþ ψ t,uð Þ, ð15Þ

where ψ(t, u) represents the ECM remodelling law, and γ is the rate constant of
ECM degradation due to the presence of MDEs. We require that v ¼ 0 implies that
ψ(t, u) � 0 as this will ensure the non-negativity of the ECM density.

Finally, the evolution of the MDE concentration is determined by molecular
diffusion of the enzymes, by natural decay, and by the release of MDEs by the
cancer cell sub-populations into the tumour microenvironment. Hence we obtain

∂m
∂t

¼ ∇ � D3∇m½ � þ α⊤c� λm: ð16Þ

In the above equation, D3 is the positive MDE diffusion constant, α 2 ℝn is the
non-negative vector of MDE release rates of the cancer cell sub-populations, and λ is
the non-negative decay constant.

Model Application

Using the general formulation (12), (13a), (13b), (13c), (13d), (14), (15), and (16),
we apply this framework to model the scenario of two cancer cell populations
(phenotypes), c1 and c2, one of which may mutate into the other. We envisage a
scenario where, as time develops, some of the cancer cells of type c1 mutate to a
more aggressive population c2, leading to an increase of tumour malignancy [15]. In
a different investigation, focused on the uPA system, [4] considered two cancer cells
sub-populations within the context of a local-haptotaxis tumour cell movement
model. The model for the two cancer cell populations, including mutation from
one to the other, secretion of MDEs and interaction with the ECM is as follows:

∂c1
∂t

¼ ∇ � D11∇c1 � A1 u t, �ð Þð Þc1½ � þ μ11c1 1� c1 � c2 � vð Þ � δc1F t, vð Þ,
∂c2
∂t

¼ ∇ � D12∇c2 � A2 u t, �ð Þð Þc2½ � þ μ12c2 1� c1 � c2 � vð Þ � δc1F t, vð Þ,
∂v
∂t

¼ �γmvþ μ2 1� c1 � c2 � vð Þþ,
∂m
∂t

¼ ∇ � D3∇m½ � þ α1c1 þ α2c2 � λm,

ð17Þ
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with the conversion or mutation function

F t, vð Þ ¼ H t � t12ð Þ � H v� vminð Þ:

Here, H denotes the Heaviside function, t12 the time when the conversion from
population 1 to population 2 starts and vmin is the minimal ECM density that is
needed for a conversion to take place [4]. We assume that matrix remodelling
process takes place while the locally available volume is not entirely occupied,
i.e., as long as 1� c1 � c2 – v > 0. Full details can be found in Domschke et al. [15].

Figure 6 shows the result of a simulation with the following parameter values
(cf. [15, 19]). The cell-cell and cell-matrix adhesion parameters of both cancer cell
sub-populations are kept constant and, from (13d), these are defined as

Scc ¼
0:5 0

0 0:3

� �
Scv ¼

0:3 0

0 0:5

� �
:

The remaining parameter values are as follows:

γ ¼ 10 μ2 ¼ 0:05 D3 ¼ 10�3

λ ¼ 0:5 R ¼ 0:1

along with

c1 : D11 ¼ 10�4 μ11 ¼ 0:1 α1 ¼ 0:1

c2 : D12 ¼ 10�4 μ12 ¼ 0:25 α2 ¼ 0:1

Fig. 6 Plots showing the cancer cell densities in the top row (black: c1, red: c2), ECM density v in
the centre row, and the MDE concentration m in the bottom row at t ¼ 0 (IC) and t ¼ 10, 20,. . .,
60 obtained from a simulation of model (17) with ECM reproduction rate μ2 ¼ 0.05
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and

δ ¼ 0:3 t12 ¼ 10 vmin ¼ 0:3:

From the plots in Fig. 6, we see that after time t12 ¼ 10, the second population c2
begins to emerges in the overall tumour cell density profile. Since the cell-cell cross-
adhesion parameter Sc1c2 is zero, the two sub-populations do not mix. However, even
though we have constant adhesive properties, the two cancer cell sub-populations
form together with the (continuously remodelling) ECM a strongly heterogeneous
pattern, reminiscent of invasion patterns observed clinically in lung and oesophageal
cancers. A range of rich, heterogeneous spatio-temporal dynamics can be obtained
by varying key parameters of the model such as the cell-cell and cell-matrix adhesive
strengths in the matrices Scc and Scv. Full details can be found in [15].

Discussion and Future Directions

In this chapter we have presented an overview of cancer modelling at various
different important scales (intracellular, cellular and tissue) and focussing on key
aspects (cf. hallmarks) of cancer – control of proliferation and differentiation, growth
around blood vessels, local spread and invasion. While the modelling of GRNs
(transcription factors) and cancer invasion was focussed on the relevant single scale
(intracellular and tissue), the individual-based modelling in Sect. 3, with its inclusion
of a basic cell-cycle in each cancer cell and an external oxygen field was genuinely
multiscale in structure.

It is such multiscale modelling that holds out the best possibility for the devel-
opment of optimal, individualised patient-based therapy in the future. Such a
multiscale approach for modelling potential optimal treatment strategies (chemo-
therapy and radiotherapy) has already been explored by Powathil and co-workers
[25, 41], while the very recent work of Franssen et al. [17] has, for the first time,
developed a framework to model the metastatic spread of cancer from the primary
tumour to secondary sites in the body. Since it is metastatic spread which is
responsible for around 90% of deaths from cancer [22, 26], developing and clinically
implementing predictive multiscale mathematical and computational models may
well become an important part of cancer treatment in the years to come.
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