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Introduction

Since the Enlightenment, the approach to physical, chemical, and biological pro-
cesses has involved the development of analytical methods that would use quanti-
tative data to build simple integrated models leading to prediction of drug action
[1]. This was a logical approach as it could capture a large quantity of data in a
manner that was easy to store and transmit from one individual to the another.
However, as scientific research has become increasingly prominent type of human
activity, there has been a dramatic growth of scientific publications reporting the
research outcomes in a form combining both textual description and numerical data
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[2]. Most scientists do spend a lot of time thinking about the best verbal ways of
describing and reasoning over their results and thus, a lot of useful information and
knowledge could be obtained by reading the scientific literature. As important as
reading is in the life of every scientist, the process of obtaining summative knowl-
edge compiled from many publications is a non-scalable effort [3].

Fortunately, the advent of computer technology enables storing and efficient
processing of large amounts of data, including textual sources. The analysis of this
complex data allows mechanistic inferences to be drawn that promote novel hypoth-
eses that illuminate fundamental natural phenomena. The importance of evolving
computational methods that allow consideration of a wide range of data and their
implications cannot be understated [4].

The current exponentially increasing cost and decades of inefficiency in drug
discovery and development have resulted in a problematic situation with respect to
pharmaceutical innovation and commercialization. The overwrought drug discovery
pipeline may take up 15 years to develop a successful drug (considering hit-to-lead
discovery/development, pre-clinical, and clinical studies), with an average cost
estimated to be from $800 million to $1.5 billion [5]. This process is deemed as
inadequate and unsustainable, especially as concerning its ability to provide a
therapy for diseases that affect people in poor parts of the world, such as tropical
diseases, as well as those affecting a limited number of patients, such as rare
diseases, due to the potential resulting low revenue [6, 7]. A disruptive approach is
required that can bring about revolutionary, not evolutionary, change equivalent to
the changes that have occurred in the communications, electronics and financial
industries over the last 25 years.

Rare diseases, which are defined as a condition that affects fewer than 200,000
people in the United States and 1 in 2000 people in the European Union, are
particularly in need of disruptive and revolutionary drug discovery paradigms.
Although, individually each rare disease affects a small portion of the total popula-
tion only, their collective effect on the human population is substantial as there are
over 7000 rare diseases that roughly affect 25–30 million people in the United States
[8]. Alarmingly, very few patients can be treated with an approved medicine. Taken
together, rare diseases represent a substantial burden on individuals, families, and
whole economies [9, 10].

Developing a drug for a rare disease, on average, is half the cost of common
diseases [11]. Still, considering the smaller amount of data and investment, any
innovative approaches to treat these diseases will likewise be of value for drug
discovery writ large. It is anticipated that once paradigms are developed for the rare
diseases drug discovery, which have less financial benefit than more prevalent
diseases, drug discovery efforts in general will become more efficient [12]. In
addition to financial concerns and a limited patient populations, rare disease drug
discovery also suffers from sparse and heterogeneous data [13], which hamper the
ability to draw novel insights and treatment hypotheses. However, a growing
number of rare diseases registries has been incorporate within in different databases
[14, 15], such as Pharos [16] (https://pharos.nih.gov/), ClinVar [17, 18] (https://
www.ncbi.nlm.nih.gov/clinvar/), the Online Mendelian Inheritance in Man (OMIM)
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(https://omim.org/), among others [7]. While efforts have been made to promote the
sharing of information between multi-disciplinary collaborations [19], there is still
need to curate and properly integrate all of this information [13, 20–22].

Computational approaches have emerged as a practical solution to accelerate drug
discovery efforts and reduce costs [23, 24]. One promising approach, named
Literature-Based-Discovery (LBD), seeks to unlock biological observations hidden
within informational sources, such as published texts and manuscripts [25]. Since
1988, when the relationship between magnesium and migraine was discovered in the
literature by Swanson [26], other treatment hypotheses have been generated for
many diseases, such as Parkinson’s disease [27], multiple sclerosis [28], and cancer
[29]. This approach has been also used to elucidate adverse drug effects [25, 30]. As
such, LBD is a powerful new technology in the drug discovery arsenal.

In this chapter, we aim to review the status of available biomedical data on
PubMed and describe how mining complex drug-target-disease relationships within
this database could contribute to finding new targets, new repurposed medications,
and novel drug candidates for rare diseases. The intent of the following discussion is
to focus on the impact of consideration of complexity in drug discovery and clinical
data to allow new therapies to emerge that can be rapidly screened and progressed to
clinical application. The overall approach described may likely be one component of
a strategy that will regenerate pharmaceutical development and promote a rational
approach to the pharmacological element of health care delivery.

Biomedical Knowledge Data in the Scientific Literature

Bioactivity data such as the outcome of in vivo and in vitro assays have been growing
extensively in publicly available repositories such as ChEMBL [31, 32] (https://
www.ebi.ac.uk/chembl/) and PubChem [33, 34] (http://pubchem.ncbi.nlm.nih.gov/).
Despite the growth of these databases, the scientific literature remains the largest
repository of untapped biomedical data [2]. The United States National Library of
Medicine (NLM) journal citation database (MEDLINE) is the preeminent source of
biomedical literature, with ~30 million citations [35]. This database can be accessed
through PubMed, a search engine maintained by NLM at the National Institutes of
Health (NIH). It is possible to retrieve reference for scientific articles stored in
MEDLINE by querying specific terms named Medical Subject Headings (MeSH)
[36], which are used to index and categorize publications stored in MEDLINE.
MeSH terms encompass most drugs, targets, and diseases present in scientific
publications and could potentially be used to accelerate drug discovery [37].

The major approach to manipulate knowledge stored in the literature is through
natural language processing, a subfield of artificial intelligence that allows com-
puters to understand, interpret, and manipulate human language [38]. For this
purpose, many dictionary-based systems that recognize passages in the literature
with ontological terms have been proposed and evaluated [39]. The SciLite Anno-
tations platform (https://europepmc.org/Annotations) provides means to link
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research articles with biological data through text mining [40]. In a 2016 study, text
mining on PubMed and social network analysis were integrated to analyze gene-
gene interactions in order to identify new potential biomarkers for breast cancer
[41]. More recently, text mining has been used to analyze gene-disease associations
present in PubMed by integrating MeSH terms and co-occurrence methods [42].

Drug Repurposing

As discussed in the introduction, it may take a drug up to 15 years to reach the
market [43]. This process usually includes discovery and development research,
preclinical studies (in vitro/in vivo evaluation),0020and clinical research, divided in
Phase I (safety and dose evaluation in healthy individuals), Phase II (efficacy and
safety in small number of patients), Phase III (efficacy and safety in large number of
patients), and Phase IV (post-market safety monitoring). During Phase II, approxi-
mately 90% of the compounds fail due to safety concerns and poor efficacy [44].

Drug repurposing, also known as repositioning or reprofiling, is a strategy to
identify novel uses for approved or investigational drugs that are outside of the
original therapeutic indication [45]. Recently, this approach has been a trending
topic among researchers [46] and has attracted attention of companies due to the
reduced cost associated with the low risk of failure, especially when safety evalua-
tion has already been completed in preclinical and clinical trials [47]. Because
repurposed drugs can skip safety evaluation during preclinical and Phase I studies,
it is estimated that developing a repurposed drugs costs on average only $300 million
over a 6.5 year period [48]. In addition to reduced cost and time, approximately 30%
of repurposed drugs are approved, which can be seen as a market-oriented incentive
to companies [45, 49]. For comparison, the typical approval rate for drugs entering
clinical trials is 9.6% [50].

Repurposing studies very often are initiated after unexpected drug effects are
observed during clinical trials or during pharmacovigilance upon their release on the
market [51]. Many of the current repurposing studies have been initiated thanks to a
serendipitous observation of unexpected drug effects upon clinical trials or following
their release on the market. Prime examples of such discoveries are the stories of
sildenafil (Viagra®) [52] and thalidomide [53, 54].

Recently, it has been shown in a bibliographic study [55] that more than 60% of
all approved drugs or drug candidates (�35,000) have been tried in more than one
disease, including 189 drugs that have been tried in >300 diseases each. Considering
only approved drugs, more than 30% have been tested during their lifetime for at
least one additional indication following their original approval [55]. Despite several
success cases, drug repurposing still faces lack of financial support due to potentially
low return, lower drug prices, and short patent duration [56, 57]. Nevertheless, this
approach is still considered promising, especially for rare diseases [58]. Small grant
programs to help develop drugs or treatments for rare diseases are usually available
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from rare disease foundations [59]. The National Organization for Rare Disorders
(NORD) (http://rarediseases.org/) provides recommendations to such organizations.

Using Chemotext to Infer Novel Therapies and Targets

Biological insights about the etiology of diseases, such as causative protein muta-
tions or aberrant pathway signaling, and the potential drug treatments of these
diseases are stored primarily in the biomedical literature [2]. As such, there exists
biomedically relevant relationships between drugs, biological targets, and diseases,
which we call DTD triangles, that lie latent within published texts [3, 60]. Using text-
mining approaches, therefore, these DTD triangles can be identified and extracted
from the published biomedical literature [61].

Text-mining capabilities in conjunction with the wealth of text-based data stored
within PubMed considerations led to the development of Chemotext [62], a compu-
tational algorithm which extracts MeSH terms describing “drugs”, “targets”, and
“diseases” and generates DTD triangles. Chemotext is based on the frequency with
which MeSH terms of interest co-occur in abstracts of papers annotated in PubMed.
Chemotext is thus an extension of Swanson’s ABC paradigm wherein “A” terms are
drug (chemical) MeSH terms, “B” terms are target-associated MeSH terms, i.e.,
proteins and pathways, and “C” terms are disease MeSH terms (Fig. 1).

The underlying DTD triangle generation starts with the observation that the
MeSH term of drug “A” co-occurs in the same articles as the MeSH term of target
“B” while the MeSH term of disease “C” co-occurs in the same or additional articles
with the same target B. Thus, if drug A and disease C have not been mentioned
together in the same article, an “A–C” connection mediated though target B can be
inferred, completing a DTD triangle. This analysis, enabled by the Chemotext
approach, leads to the identification of a new possible therapeutic use of drug “A”.

Fig. 1 Swanson’s ABC
paradigm incorporated in
Chemotext. Chemical A is
proposed to affect disease C
since both terms are
associated with target
B. Solid lines (edges)
indicate an actual text-based
relationship, while dashed
lines (edges) indicate
proposed connections
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The power and efficacy of Chemotext is demonstrated by elucidation of the
antineoplastic agent imatinib as a potential drug repurposing candidate for the
treatment of severe refractory asthma. Imatinib is an FDA-approved tyrosine kinase
inhibitor that is used in the treatment chronic myeloid leukemia (CML). Imatinib
inhibits the activity of KIT, which reduces bone marrow mast-cell numbers in
patients with CML [63]. KIT is also present in lung mast cells and was hypothesized
as a basis of the pathobiology of severe refractory asthma [64], which is character-
ized by an adverse response to traditional glucocorticoid asthma treatment [65]. Fig-
ure 2 shows how Chemotext can be used to link Imatinib (A), Proto-Oncogene
Proteins c-kit (B), and asthma (C).

In 2017, a proof-of-principle trial demonstrated that imatinib reduced airway
hyperresponsiveness, a physiological marker of severe asthma, as well as on airway
mast-cell numbers and activation in patients with severe asthma. Since this publica-
tion had not yet been entered into the.

MEDLINE database, it was used a validation test of the Chemotext algorithm.
Through co-occurrences of these MeSH terms in previously published studies,
Chemotext was used to draw the interference between imatinib, KIT, and asthma,
which constitutes a DTD triangle (Fig. 2). This case study demonstrates that
Chemotext can identify drug repurposing candidates and targets through text-
based inferences alone.

Mining Other Sources of Biomedical Data for Drug
Repurposing

Mining literature data can afford rapid identification of all published studies that
could confirm connections between drugs, their targets, underlying biological path-
ways, and diseases, including enabling new inferences of such connections
[3, 60]. The elucidation of the mechanistic relationships between these connections
is at the core of modern drug discovery research [61]. Currently, there are several
databases with valuable information for drug discovery that could be connected to
complete a DTD triangle. ChEMBL [31, 32] (https://www.ebi.ac.uk/chembl/) and
PubChem [33, 34] (http://pubchem.ncbi.nlm.nih.gov/) contain many chemical–tar-
get (“A–B”) and chemical–disease (“A– C”) relationships. Other databases contain
target–disease (“B–C”) associations, such as ClinVar [17, 18] (https://www.ncbi.
nlm.nih.gov/clinvar/), the Online Mendelian Inheritance in Man (OMIM) (https://
omim.org/). Pharos [16] (https://pharos.nih.gov/), specifically, contains data on the
whole DTD triangle for many diseases. Several databases are available containing
parts of the triangle available for rare diseases, such as Malacards [66] (http://www.
malacards.org/ the National Organization for Rare Disorders (NORD) [67] (https://
rarediseases.org/), the Genetic and Rare Diseases Information Center (GARD) [68]
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(https://rarediseases.info.nih.gov/), and the Infohub for Rare Diseases (https://
rarediseases.oscar.ncsu.edu/).

Recently, NIH has launched the Biomedical Data Translator program (https://
ncats.nih.gov/translator), which has integrated many data sources with multiple

Fig. 2 Example showing how Chemotext connects Imatinib and Asthma with shared terms. In this
example, query terms “Imatinib” and “Asthma” were searched in the Find Shared Terms module.
The list of full associations was filtered by Proteins-Pathways-Intermediaries-Other. The MeSH
term “Proto- Oncogene Proteins c-kit” was the fourth highest ranked shared term (two shared
articles) selected as the potential biological target in the clinical outcome pathway
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types of content, such as diseases, patient-reported outcomes, electronic health
records, microbiome, proteins, genes, chemicals, among others. This massive project
attempts to integrate currently available medical research data towards accelerated
development of new treatments. The major challenge to establish valuable connec-
tions, as in any data science project, is proper curation of the data [13, 20–22]. To
establish useful relationships between these sources of data, knowledge graphs have
emerged as a practical solution. A knowledge graph is a network of entities that
acquires and integrates information into an ontology and applies a reasoner to derive
new knowledge [68]. A 2016 study has applied network-based modeling within to
identify promising multi-target drugs for triple negative breast cancer [11]. More
recently, a study has applied knowledge graphs to integrate different data sources on
diseases and drugs to suggest the repurposing of 21 drugs for Autosomal Dominant
Polycystic Kidney Disease (ADPKD) [68].

There has also been a growing interest in using social media to supplement
established approaches for pharmacovigilance [69, 70]. The use of social media,
also called “social listening”, therefore, is a potential resource for repurposing.
Social media has been recently used in public health to estimate trends of cholera
outbreak in the after math of the 2010 earthquake in Haiti [71], seasonal influenza
surveillance [72], and onset of mental illness [73]. As previously discussed, many
repurposed drugs have been discovered through adverse side effects observed during
clinical trials or pharmacovigilance. Many people have used social media to report
adverse effects of their medications. Several studies analyzing adverse reactions on
social media have been published recently [30, 74, 75], which makes social media a
potential source of adverse effect data to be mined for repurposing.

Drug Repurposing and Bibliometric Analysis on Rare
Diseases

Several repurposing stories for rare diseases have been reported in the recent years.
For instance, metformin has been studied to treat idiopathic pulmonary fibrosis
[76]. A recent study suggests that inhibitors of p110β, a catalytic subunit of the
phosphoinositide 3-kinase (PI3K) gene family, commonly associated with cancer,
might prevent cognitive and behavioral defects and become a promising disease-
modifying strategy for fragile X syndrome and other brain disorders [77]. Fenflur-
amine, initially proposed as a an appetite suppressant and withdrawn from the
market, has been submitted to the FDA for the treatment of Dravet syndrome [78].

Many computational approaches historically applied for drug discovery, such as
quantitative structure-activity relationships (QSAR) modeling, similarity search,
molecular docking, etc., have been successfully applied for drug repurposing as
well [79]. Computational drug repurposing approaches have been widely applied to
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neglected tropical diseases [80–84], and, more recently, to rare diseases [58, 83]. The
eMatchSite, a platform for compare drug-binding sites have been applied to propose
the possibility to repurpose a steroidal aromatase inhibitor to treat Niemann-Pick
disease type C [85]. A structure-based virtual screening approach has been applied to
screen FDA approved drugs on ENGase, a potential target for the treatment of
N-Glycanase (NGLY1) deficiency. The authors experimentally confirmed the activ-
ity of rabeprazole (IC50 ¼ 4.4. μM) on ENGase as a promising treatment to patients
suffering from NGLY1 deficiency [69].

Mining literature data allows the exploitation of opportunities to reposition
known drugs interacting with proteins associated with diseases [3, 60]. The integra-
tion of data on drug-target-disease to form networks has become a valuable approach
for computational drug repositioning research [86]. Recently, a study has used
bioinformatics methods and bibliographic research to propose the repositioning of
some drugs as potential competitors against idiopathic pulmonary fibrosis [87].

As of June of 2019, there are 244,911 references with the term “rare disease”
through the text and 17,134 references with the term “rare disease” in the title or
abstract. Here, we performed a brief bibliometric analysis on drug repurposing for
rare diseases, similar to the one that was recently published by Baker et al. [55]. We
mined PubMed using earlier text-mining work [37] to identify articles in PubMed
where a chemical entity was described in terms of its therapeutic association with a
rare disease. We determined this relationship by examining the MeSH annotations in
a stepwise manner (described in the supplementary material online). All drug–
disease combinations were extracted, along with the year the article was published,
into a separate dataset. This set included citations with no abstract and those in
languages other than English, as long as they were annotated, and the annotations
met the criteria.

In our analysis, we found that only 1267 out of more than 7000 rare diseases have
been studied in association with a chemical entity. It was known that only a small
fraction of rare diseases has associated treatments, but our findings reveal there is
still a major gap in research for rare diseases, since many of them have not been
associated with any chemical entity as a potential treatment. These findings reinforce
the need to expand research on the development of novel therapies for rare diseases.
As one can see in Fig. 3, 6570 out of 12,376 chemicals (53%) have been associated
with only one rare disease, while 4796 (38%) have been associated with two to ten
diseases, 984 (7.0%) have been associated with eleven to 100 diseases, and
26 (0.20%) chemicals with more than 100 diseases.

We show in Table 1 the top 30 drugs that were tested for rare diseases. Sixteen out
of 30 were among the top drugs most tested in the previous study [55]. As one can
see, most of these drugs are used to suppress the immune system and/or to decrease
inflammation, such as glucocorticoid medications (prednisone, prednisolone, dexa-
methasone, methylprednisolone, hydrocortisone, and cortisone), cancer chemother-
apy agents (cyclophosphamide, bevacizumab, methotrexate), and medications used
to prevent transplant rejections (sirolimus, rituximab, cyclosporine). The rare
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diseases with most publications and chemicals tested are presented in Table 2. Most
of these diseases are rare forms of cancer, such as sarcoma, and neoplasm, and
multiple forms of carcinoma, which explains why most of the most studied drugs
present in Table 1 are suppressant of immune system, anti-inflammatory, and anti-
cancer drugs. Surprisingly, none of the most studied drugs were used in some of the
most studied diseases, such as malaria, tuberculosis, and Alzheimer.

Final Remarks

There is an urgent need for the development of treatments or cures for rare diseases.
The complex biological systems and nature of drug discovery make iterative mech-
anistic strategies costly and inefficient. Current developments in database develop-
ment, text mining, and machine learning tools allows efficient and inexpensive
navigation through inferences to the identification of novel or repurposed drug
candidates. The same principles can be employed to the traverse the complexity of
drug delivery systems and biopharmaceutical principles that result in optimal drug
disposition to achieve the desired therapeutic effect. In this manner, the development

Fig. 3 Distribution of chemicals tested in rare diseases mined from PubMed
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of novel pharmaceutical treatment options can focus on the generation of data suited
to regulatory scrutiny and positive clinical outcomes without investment in the
tangential iterative data generation that has historically been required to support
statistical validation of the action, process, or clinical observations that surround the
optimal approach.

Table 1 Top 30 drugs most tested in rare diseases with publications count

Chemicals Rare diseases count Publications count

Prednisolone 272 1627

Prednisone 233 1857

Dexamethasone 229 1598

Methylprednisolone 221 1162

Cyclophosphamide 199 2309

Cyclosporine 187 1376

Rituximab 174 2123

Methotrexate 170 1790

Interferon-alpha 167 3316

Immunoglobulin G 156 782

Sirolimus 149 802

Ascorbic Acid 148 504

Vitamin E 131 635

Infliximab 119 2467

Adrenocorticotropic Hormone 118 969

Tretinoin 112 776

Tacrolimus 112 416

Thalidomide 111 1320

Hydrocortisone 111 345

Aspirin 110 693

Heparin 106 396

Indomethacin 105 941

Curcumin 102 590

Bevacizumab 101 1271

Granulocyte Colony-Stimulating Factor 101 1253

Interferon-gamma 101 723

Cortisone 100 723

Acetylcysteine 100 315

Pentoxifylline 100 262
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