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Chapter 1 )
Introduction Check or

George Vachtsevanos

Abstract This treatise is a comprehensive coverage of corrosion processes
addressing the spectrum from the electrochemical fundamentals of corrosion pro-
cesses to monitoring, sensing, prevention and protection of systems exposed to
corrosive processes, data/image mining methods to extract and select useful
information from raw data, early and accurate diagnosis of corrosion events, pre-
diction of their time evolution, culminating in maintenance practices of critical
assets. Numerous books were published over the last years exploring specific
aspects of corrosion processes, monitoring and sensing, prevention and protection
materials and processes, condition based maintenance practices, etc. A typical
sample of books on corrosion processes published over the recent past is shown
below.
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The challenge is to provide to the expanding corrosion community with a treatise
that succinctly and thoroughly covers the most relevant topics with sufficient case
studies and references. The book will be useful to the corrosion engineering
community, the practitioner, the student, industry and government personnel
involved in corrosion assessment and remediation.

Topics covered begin with a thorough introduction to corrosion processes, their
impact to sustainment of critical aerospace and industrial processes, typical
examples of major corrosion problem areas; the second chapter presents a thorough
review of fundamental corrosion processes highlighting the electrochemical nature
of these processes; we proceed next to discuss contributions in the corrosion sensor
and sensing strategies domain, the Achilles’ heel of corrosion assessment seeking
major advances in this area; corrosion prevention and protection have been targeted
over the past years as those technological advances that with the useful life of
important assets; diagnosis and prognosis of the corrosion initiation and evolution
are presented next and the book concludes with a treatment of maintenance prac-
tices for critical military and industrial systems/processes subjected to corrosion;
ROI issues are briefly debated.
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1.1 Introduction
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Corrosion, in its different forms, is a significant challenge affecting the operational
integrity of a vast variety of equipment and processes. Corrosion prevention costs
are amounting to billions of dollars each year. As complex equipment age, exposure
to corrosion processes is increasing at a substantial and alarming rate contributing to
equipment degradation leading to failure modes. Over the past years, it has usually
been the high fatality spectacular catastrophic accidents that have worked as the
catalyst for change. Historical evidence suggests that fatigue due to corrosion
cracking is a major contributor to aircraft accidents. Cracking of critical aircraft
structures may endanger severely the performance and life of the vehicle. Corrosion
damage can sometimes be greatly exaggerated by the circumstances. While many of
the accidents due to failed corroded components have gone non-public for reasons
of liability or simply because the evidence disappeared in the catastrophic event,
others have made the headlines. The structural failure on April 28, 1988 of a
19-year-old Boeing 737, operated by Aloha airlines, was a defining event in cre-
ating awareness of aging aircraft in both the public domain and in the aviation
community. Numerous other aircraft catastrophic events were attributed to corro-
sion accelerated fatigue as the failure mechanism. Figure 1.2 depicts pictures of
aircraft catastrophic events attributed to corrosion.

Recent events have demonstrated the importance of early and accurate detection
and prediction of the severity and impact of corrosion-induced cracking and the
need for immediate remediation/prevention to avoid catastrophic consequences or
increased financial burden. In the recent past, cracks on aircraft structures detected
during regular maintenance have necessitated urgent actions to be taken to improve
the design and installation of replacements for failing components. The pictures in
Fig. 1.1 shows the catastrophic effects of corrosion and cracking. Many of these
incidents were attributed to corrosion/cracking fatigue. Figure 1.2 is a picture taken
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Fig. 1.2 Picture of boiler explosion due probably to caustic cracking

decades ago depicting the aftermath of a boiler explosion, probably caused by
caustic cracking. Picture courtesy of IMechE.

Corrosion remediation begins with the ability to sense accurately and expedi-
tiously corrosion initiation and growth. Corrosion sensors must be capable of
monitoring global and localized corrosion events even in inaccessible regions of
aircraft and other systems. Early detection implies corrective actions that will
extend the useful life of components/systems exposed to environmental hazardous
conditions. A systematic, thorough and robust corrosion modeling effort, addressing
all corrosion stages for aluminum alloys or other metals, from micro to meso and
macro levels, combined with appropriate sensing, data mining and decision support
tools/methods (diagnostic and prognostic algorithms) may lead to substantially
improved structural component (materials, coatings, etc.) performance and reduced
exposure to detrimental consequences. Reliable, high-fidelity corrosion models
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form the foundation for accurate and robust corrosion detection and growth pre-
diction. A suitable modeling framework assists in the development, testing and
evaluation of detection and prediction algorithms. It may be employed to generate
data for data-driven methods to diagnostics/prognostics, test and validate routines
for data processing tool development, among others. The flexibility provided by a
simulation platform, housing appropriate detection and progression models, is a
unique attribute in the study of how corrosion processes are initiated, evolving and
may be, eventually, mitigated in physical systems.

Figure 1.3 depicts an integrated framework for corrosion sensing, diagnosis and
degradation prediction, impact of corrosion on system integrity and mitigation. We
detail the enabling technologies in this book. We highlight corrosion prevention and
protection technologies intended to safeguard the integrity of the targeted system by
limiting or eliminating surface exposure to corrosion inducing agents (humidity,
temperature, etc.). We define a severity index resulting from the application of
verifiable data mining, diagnostic/prognostic algorithms in real time on-platform
aimed to indicate when cracking must be attended to in order to extend the life of
critical components, reduce the cost of corrosion prevention and avoid detrimental
events. These developments are coupled with current research efforts aiming to
design and implement on-platform a “smart” sensing modality that will perform all
necessary functions from early detection to prognosis and estimation of the severity
of such events. We will rely on a reasoning paradigm built from past historical
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Fig. 1.3 An integrated framework for corrosion sensing, detection/prediction and mitigation
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Fig. 1.4 From pitting to cracking of corroding specimens (source Dr. Vinod Agarwala)

evidence, learning and adaptation capabilities to assess the severity of cracking and
assign an index to the current situation (Fig. 1.4).

Of particular interest to our theme is localized corrosion and cracking, i.e.
cracking initiating at points on the surface of a specimen (joints, fasteners, bolts,
etc.). A metal surface (aluminum alloy, etc.) exposed to a corrosive environment
may, under certain conditions experience attack at a number of isolated sites. If the
total area of these sites is much smaller than the surface area then the part is said to
be experiencing localized corrosion. The rate of dissolution in this situation is often
much greater than that associated with uniform corrosion and structural failure may
occur after a very short period. Several different modes of localized corrosion may
be identified. These are dependent on the type of specimen undergoing corrosion
and its environment at the time of attack. Most destructive forms are pitting cor-
rosion which is characterized by the presence of a number of small pits on the
exposed metal surface, crevice attack and cracking. The rapidity with which
localized corrosion can lead to the failure of a metal structure and the extreme
unpredictability of the time and place of attack, has led to a great deal of study of
this phenomenon. In this localized view, imaging studies are focusing on small
areas of the global image where corrosion initiation is suspected and may spread
more rapidly than other areas. We exploit novel image processing tools/methods, in
combination with other means (mass loss calculations) to identify features of
interest to be used in the modeling task, since imaging of corroding surfaces offers a
viable, robust and accurate means to assess the extent of localized corrosion. We
take advantage of first principle, semi-empirical and empirical approaches to
modeling of corrosion cracking processes that constitute the cornerstone for
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Fig. 1.5 Typical corrosion stages

accurate state assessment and eventual corrective action. It is important to highlight
the electrochemical basis for the models, their numerical implementation, and
experimental validation and how the corrosion rate of the metal components, at
various scales, is influenced by its material properties and the surface protection
methods. On the modeling front, a variety of methods has been investigated from
data-driven to model-based and empirical or semi-empirical approaches. We pre-
sent these in detail in the sequel. The evolution of corrosion processes is a crucial
step in the assessment process. Figure 1.5 is a pictorial representation of typical
corrosion stages.

Micrographs of pitting and cracking corrosion are shown in Fig. 1.6. We study
the progression of corrosion through its various stages and employ novel

104m Time (or Cycle)

Fig. 1.6 Micrographs of pitting and cracking corrosion; evolution of the corrosion processes [4]
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techniques, with performance guarantees, to detect corrosion initiation as early as
possible and predict its time evolution. We suggest methods for protection and
corrosion prevention. Methods for corrosion mitigation are discussed as they affect
important aspects of the overall corrosion assessment strategy.

Major efforts have been underway over the past years to develop and implement
corrosion prevention and protection materials/processes to extent the useful life of
critical equipment/facilities preventing rapid deterioration and disposal. Assessing
the potential impact of corrosion processes on the integrity of critical military and
civilian systems, aircraft, ships, industrial and manufacturing processes, trans-
portation systems, etc. requires new and innovative technologies that integrate
robust corrosion monitoring, data mining, corrosion detection and prediction of the
corrosion (pits, crevices, cracks) growth rate with intelligent reasoning paradigms
that capture historical data, expert opinions and adaptation strategies to associate
current evidence with past cases obtained fleet-wide for similar system components.
We take advantage of a holistic framework to assess the impact of
corrosion-induced processes, on typical aluminum alloy components that begins
with methods/tools for on-platform sensing, data processing, corrosion modeling of
all corrosion stages of particular interest in this study. These functions support
diagnostic and prognostic algorithms that are designed to meet customer
requirements/specifications for confidence/accuracy and false alarm rates while
managing effectively large-grain uncertainty prevalent in health management
studies of engineering systems. The hardware/software components of the sensing
and health management system form a “smart” sensor that monitors, processes data/
images and decides on-line in real time on the health status and future progression
of corrosion pitting/cracking. Corrosion monitoring, detection and prediction entail
a series of functions. Starting with the monitoring apparatus, data/image collection
and processing, corrosion modeling, detection and prediction and, finally, assess-
ment of the potential impact of corrosion on the operational integrity of an asset.
Figure 1.7 depicts the sensing configuration on an aircraft structure. This sequence
of corrosion stages is shown schematically in Fig. 1.8. Corrosion states take various
forms starting with microstructure corrosion and ending with stress induced
cracking.

Corrosion monitoring measures the corrosivity of process conditions by use of
appropriate sensors/probes inserted into the process stream exposed continuously to
process stream conditions. The nature of the sensors depends on the techniques
used for monitoring, accessibility to hidden surfaces, environmental conditions, etc.
Corrosion monitoring uses mechanical, electrical, electromechanical devices,
among others. They are used on-line in real time or off-line in a laboratory envi-
ronment. Direct techniques include corrosion coupons, electrical resistance,
inductive probes, linear polarization resistance, and impedance spectroscopy,
among others, detailed in a separate chapter of this book. The database for corrosion
studies consists of coupons, panels, and, sometimes, actual field studies. Figure 1.9
depicts a set of sampled panels, images of cracks and pits and sensing results. There
is a need for a considerable database of corrosion data/images to support modeling,
diagnostics, prognostics and decision support systems (Figs. 1.10 and 1.11).
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Fig. 1.7 Sensing on aircraft structure
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Fig. 1.8 Corrosion stages

The sensing/modeling and diagnostic/prognostic functions are coupled with a
novel reasoning paradigm, called Dynamic Case Based Reasoning (DCBR) that
houses a case library composed of past documented cases detailing the impact of
cracking on the integrity of platform components/systems. The DCBR is supported
by cognitive routines for learning and adaptation so that new evidence is compared
with stored cases and those occurring for the first time are “learned” by the rea-
soner. Figure 1.12 depicts the main modules of the framework. The schematic
represents a general architecture for an aircraft corrosion/crack monitoring, the
reasoning modules employed to detect and predict the extent of cracking/corrosion,
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*Images of coupons from submersion test
and Lap Joint Chamber tests
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literature

*Pictures from field inspection
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Fig. 1.9 Corrosion data, sample images and polarization resistance measurements, (Isao Shitanda,
Ayaka Okumura, Masayaki Itagaki, Kunihiro Watanabe, Yasufumi Asano, Scree-printing
atmospheric corrosion monitoring sensor based on electrochemical impedance spectroscopy,
https://doi.org/10.1016/snb.2009.03.027)

the life management component and the maintenance actions required. The
framework stems from current and past research in corrosion modeling and the
development/application of novel CBM+ practices introduced by this research team
for military assets. The architecture is set as a decision support system providing
advisories to the operator/maintainer as to the health status of critical aircraft
component subjected to corrosion and in need of corrective action.

1.1.1 Impact of Corrosion on Engineering System Integrity

It has been established that corrosion is one of the most important factors causing
deterioration, loss of metal, and ultimately decrease of nuclear waste management
facilities performance and reliability in such critical systems. Corrosion prevention/
protection for aging military assets accounts for billions of dollars each year. The
situation is similar for commercial enterprises. There is an obvious need to develop
and implement new technologies to address these vital issues. Corrosion monitor-
ing, data mining, accurate detection and quantification are recognized as key
enabling technologies to reduce the impact of corrosion on the integrity of these
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Fig. 1.10 Typical corrosion images from pitting and cracking

assets. Accurate and reliable detection of corrosion initiation and propagation with
specified false alarm rates requires novel tools and methods. Corrosion states take
various forms starting with microstructure corrosion and ending with stress-induced

cracking [1-5].
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Monitoring Reasoner
®  Process/reduce raw data Usage
; Monitoring
Reasoner

Fig. 1.11 A general architecture for an aircraft structural health management system
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Fig. 1.12 The modules of the dynamic case based reasoning paradigm
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Corrosion cracking (NUREG/CR-7116, SRNL-STI-2011-00005, “Materials
Aging Issues and Aging Management for Extended Storage and
Transportation of Spent Nuclear Fuel,” November 2011. (Available with NRC
Accession No. ML11321A182).

Figure 1.13 is a pictorial representation of the corrosion assessment methodol-
ogy starting with data/images of typical corroded samples and depicting in
sequence the sensing, feature or condition indicators extraction and selection,
corrosion modeling and knowledge base/classification algorithms.

v b

Fig. 1.13 The overall corrosion assessment methodology
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Fig. 1.14 The data/image processing and information extraction architecture

Figure 1.14 depicts the modules of a smart sensing and processing framework.
The enabling technologies include means to pre-process raw data/images to
improve the signal to noise ratio, feature or characteristic signature extraction and
selection to reduce the data dimensionality while preserving the useful information,
and classification methods aiming to derive detailed knowledge regarding the type
and extent of corrosion.

The framework begins with data/image acquisition and processing and includes
all aspects of corrosion detection, prediction, assessment of the impact of corrosion
on the integrity of the asset and, finally, corrective action.

Generally speaking, corrosion starts in the form of pitting, owing to some sur-
face chemical or physical heterogeneity, and then facilitated by the interaction of
the corrosive environment fatigue cracks initiate from corrosion pitted areas and
further grow into the scale that would lead to accelerated structure failure [6, 7]. In
order to effectively conduct structural corrosion health assessment, it is thus crucial
to understand how corrosion initiates from the microstructure to the component
level and how structure corrosion behaviors change as a result of varied environ-
mental stress factors. Many research efforts have been reported in the past
addressing this critical issue [8—11]. Traditionally, conventional ultrasonics and
eddy current techniques have been used to precisely measure the thickness
reduction in aircraft and other structures; there has been a number of undergoing
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research using guided wave tomography techniques to screen large areas of com-
plex structures for corrosion detection, localization [12] and defect depth mapping
[13]. However, due to the nature of ultrasonic guided wave, this technique is
vulnerable to environmental changes, especially to temperature variation and sur-
face wetness occurrence [14], and the precision of corrosion defect depth recon-
struction is restricted by sensor network layout, structure complexity, among others,
which limits the scope of the field application. Thus, undeniably, well-recognized
global corrosion measurements, such as material weight loss and wall thickness
reduction, cannot offer an appropriate and trustworthy way to interpret the pitting
corrosion due to its localized attack nature.

Besides, advanced corrosion health assessment systems require comprehensive
quantitative information, which can be categorized into a variety of feature groups,
such as corrosion morphology, texture, location, among others. It calls for the
exploration of both new testing methods and data fusion methods from multiple
testing techniques. Forsyth and Komorowski [15] discussed how data fusion could
combine the information from multiple NDE techniques into an integrated form for
structural modeling. Several other studies have looked into different sensing tech-
nologies for corrosion health monitoring, including using a micro-linear polariza-
tion resistance, pLPR sensor [16, 17], and fiber optic sensors [18]. However, the
existing research effort in a combination of surface metrology and image processing
is very limited. In parallel to the current corrosion sensing technology, there have
been a number of corrosion modeling studies trying to numerically capture the
processes of pitting corrosion initiation, pitting evolvement, pitting to cracking
transition, and crack growth to fracture at the molecular level. However, currently
there is no accepted quantitative model to take into consideration the effect of stress
factors (e.g., salinity, temperature, pressure), although the effects of the
above-mentioned stress factors have been widely discussed. Corrosion protection
has been attracting research over the past decades. Multidisciplinary efforts in
materials, processes, equipment and applications over the past decades have
resulted in significant advances. These efforts continue as aging aircraft are in need
of repair and maintenance to sustain their operational integrity. Figure 1.15 shows
methods, measures and procedures for corrosion protection (von Octeren,
Korrosionschutz-Fibel).

(W. von Baeckmann, W. Schwenk and W. Prinz, editors, Corrosion Protection,
Theory and Practice of Electrochemical Protection Processes, Third Edition, Gulf
Professional Publishing, 1997).

Surface Coating There are two main types of surface coating for corrosion pro-
tection: Metallic coating where the structure is coated with a layer of another metal
which may be more noble than the structure or less noble than it, for example, steel
structures can be coated with copper which is more noble than steel or zinc which is
less noble. Certain factors must be considered in selection of a coating metal, such
as resistance to direct attack of the environment of the coating metal, must be
non-porous and hard, etc. Figure 1.16 shows the main coating materials.
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Fig. 1.15 Methods, measures and procedures of corrosion protection (von Octoren,
Korrosionsschutz-Fibel)

Fig. 1.16 Coating materials
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Directives, laws and commands have been issued requiring measures to be taken
to reduce the impact of corrosion on critical systems/processes. As an example, the
following is directed to the military:

Public Law 107-314 s: 1067. Prevention and mitigation of corrosion of military
infrastructure and equipment requires that:

DoD designate a responsible official or organization.
DoD developed a long-term corrosion strategy to include.
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Expansion of emphasis on corrosion prevention and mitigation.

Uniform application of requirements and criteria for the testing and certification
of new corrosion prevention technologies within common materiel, infrastruc-
ture, or operational groupings.

Implementation of programs to collect and share information on corrosion
within the DoD.

Establishment of a coordinated R&D program with transition plans.

Strategy to include policy guidance and assessment of funding and personnel

resources required

Corrosion Policy in

— DoD 5000 Guidebook—part of systems engineering.

— Guidebook for designing and assessing supportability in DOD weapon
systems.

— CPC Requirements included in capabilities docs (ICD/CDD).

— DFARS—corrosion planning required for all programs requiring acquisition
plans.

— DoDI 5000.2.

CPC part of performance based acquisition and logistics.
CPC planning guidebook published—Spiral 2.

The Military point of view:
Margery Hoffman and Paul Hoffman, “Current and Future Life Prediction Methods
for Aircraft Structures”, Naval Research Reviews, vol. 50, No. 4, pp. 4-13, 1998.

Fatigue Life Expended (FLE):

— An index relative to test flight hours it takes to form 0.01 cracks. FLEs are
calculated at 5-9 locations for fighter/attack aircraft and at 20-30 locations
for patrol and support aircraft.

— FLEs are used to schedule routine maintenance and structural inspections,
life assessment prognosis, service life extension programs, and retirements of
aircraft from the active fleet.

Two Major AF Activities:

1. Analytically determine the service life of an aircraft structure and then val-
idate that life through a full-scale fatigue test.

2. Setup an individual fatigue-tracking program that collects aircraft usage data
and performs fatigue predictions quarterly for every fatigue critical
component.
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e The 4 Elements of the FLE Tracking Process:

— Data Collection.

— Data Reduction.

— Damage Calculation.

— Information Dissemination.

A symbolic representation of the “Total Life” concept, as applied to a fleet of
aircraft is shown in Fig. 1.17.
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Fig. 1.17 Two different models of “total life”
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1.2 Fatigue Corrosion: Example Cases in Aerospace
and Industrial Processes

Major industrial processes for corrosion detection include pipeline diagnostics
hardware and software methods/tools, as depicted in Fig. 1.18.

Nuclear waste stainless steel disposal facilities have been targeted for corrosion
assessment and remediation since they are typically exposed to corrosive envi-
ronments. EPRI, DoE and other government and industry organizations have been
actively seeking methods to monitor waste disposal canisters for corrosion, data
collection and analysis as well means to extend the canister’s useful life beyond
100 years. Figure 1.19 shows plausible canister degradation mechanisms and the
associated key parameters affecting these corrosion mechanisms.

Figure 1.20 is an illustration of ultrasonic sensing to detect standing water in
bottom of spent fuel storage containers.

Corrosion and corrosion related factors undermine the fatigue properties of
materials used in aircraft construction to a significant extent that service failures are
a serious concern. Corrosion in aging aircraft can aggravate metal fatigue to the
point where service life is reduced. The Department of Defense spends billions of
dollars each year for corrosion repairs and maintenance of 15,000 aircraft. Avoiding
corrosion fatigue is a formidable task especially in naval aviation because they
operate in the most severe environments. Research studies have been underway for
many years to understand and model the metallurgical, mechanical and electro-
chemical aspects of fatigue corrosion. Parallel efforts focus on the development of
appropriate corrosion prevention/protection materials and strategies. (Vinod S.

* |Issues
— Detect defects
— Polar environment
— Overlapping defects
— Continuous data stream

Fig. 1.18 Pipeline inspection processes
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Plausible Canister Key Parameters
Degrada
Mecha

CIscC Deposited chlorides (quantity and associated cation)

Presence of water (surface humidity above DRH, rain ingress, etc.)
Residual or applied stress

Surface temperature

Material condition (microstructure, sensitization, and fabrication defects)
Composition of surface deposits (e.g., presence of free iron, dust, etc.)
Cold work and surface condition (grinding, polishing, etc.)

Presence of crevices (macrocrevices and microcrevices due to grinding, etc.)
Pitting Corrosion Quantity and type of aggressive species (e.g., chlorides)

Presence of water (deliquescence above DRH, rain ingress, etc.)
Composition of surface deposits (e.g., presence of free iron, dust, etc.)
Surface temperature

Surface solution pH

Material condition (presence of inclusions, sensitization, fabrication defects)
Crevice Corrosion Occluded area (geometry or impermeable deposit)

Presence of water (surface humidity above DRH, rain ingress, etc.)
Quantity and type of aggressive species (e.g., chlorides, graphite)
Surface temperature

Crevice solution pH

Microbiologically Presence of water or very high relative humidity

Induced Corrosion Source of nutrients (CO2, dust, etc.)

Radiation resistant microbes

Deposition of bacterial colony

Low surface temperature

Intergranular Attack Presence of water (surface humidity above DRH, rain ingress, etc.)
Very low pH solution
Sensitized microstructure

Source: Failure Modes and Effects Analysis (FMEA) of Welded Stainless Steel Canisters for Dry Cask Storage Systems, 3002000815,
EPRI, Final Report, December 2013

Fig. 1.19 Nuclear waste canisters: degradation mechanisms and key parameters causing
degradation

Fig. 1.20 Illustration of

ultrasonic sensing to detect
standing water in bottom of
spent fuel storage container

5 UT sensor

Water \

% "'_Cas_kbéx Vi

I
1

Wedge

Agarwala, Fatigue and Corrosion: Aircraft Concerns, Naval Research Reviews,
Volume 50, November 4, 1998).

The fundamental constraint for Navy aircraft is that the broad theater of oper-
ations of aircraft carriers and the limited space on board for maintenance restrict
routine inspections for fatigue cracks. (Margery E. Hoffman and paul C. Hoffman,
Current and Future Fatigue Life Prediction Methods for Aircraft Structures, Naval
Research Reviews, Volume 50, November 4, 1998).
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1.3 Corrosion of Oil Platforms

Corrosion in steel oil platforms can lead to damage and failure of the structure
resulting in expensive repairs, loss of business and even on-site accidents.
Figure 1.21 is a picture of an oil rig while Fig. 1.22 depicts the corrosion process in
steel structures under seawater and Fig. 1.23 shows a protective mechanism for
undersea structures using a sacrificial anode method.

Fig. 1.21 An oil rig

Fig. 1.22 An outline of the
corrosion process for a steel
structure in seawater. Image
credit Naval Research
Laboratory (NRL)

Air

Na® Corrosion products Water
0, OH’ Passive
Cathodic / film

Grain
boundary

Stainless Steel
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Fig. 1.23 Sacrificial anodes (the white handle-shaped objects protect the oil platform from
corrosion. Image by Chetan, via Wikimedia Commons)

1.4 Pipeline Fatigue Corrosion

Tracking of corrosion fatigue in gas pipelines is a major challenge. Many approved
technologies are available for measuring corrosion, corrosion coupons, electrical
resistance probes, with most of these technologies measuring the corrosivity of the
gas rather than that the changes in the pipeline wall. Fiber optic devices, with
associated networked monitoring, overcome many shortcomings of conventional
Sensors.

1.5 Concrete Block Corrosion Sensing

Figure 1.24 shows a sensing configuration for a concrete block using a sacrificial
metal link strip and a corroded strip.

1.6 GE Corrosion Sensing and Monitoring Technologies

Figure 1.25 depicts apparatus and sensing results provided by GE.
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Fig. 1.24 A SWA corrosion sensor removed from a concrete block had an un-corroded sacrificial
metal link sensor strip (left) and a corroded strip (right) (photos courtesy of FDOT)

Fig. 1.25 GE apparatus for corrosion sensing and imaging results

1.7 Corrosion of Steel in Concrete Structures

Corrosion of steel in concrete structures is a reason for infrastructure failures. There
is a need for effective and robust sensing technologies to detect accurately and
expeditiously corrosion initiation and growth so that remedial action can be taken to
extent the integrity and life of infrastructure. Assessing the corrosion condition in
buried steel is a challenge. Fiber Bragg Grating (FGB) sensors and other sensing
modalities have been suggested to address this problem.
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Fig. 1.26 From the laboratory to on-platform realization of corrosion assessment technologies

1.8 Corrosion Assessment: From the Laboratory

to On-Board the Aircraft

Figure 1.26 is a depiction of those technologies that realize a monitoring, image
interpretation and detection/prediction that must be transitioned from the laboratory
environment to on-board the aircraft.
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Chapter 2 ®
Principles of Corrosion Processes sk

K. A. Natarajan

Abstract In this chapter, principles of corrosion processes are illustrated with
special emphasis on electrochemical aspects. Galvanic and electrolytic cells
implicated in various corrosion and protection processes are analyzed with exam-
ples. Concentration cells are outlined with reference to galvanic corrosion and
formation of differential aeration (oxygen) regions leading to pitting corrosion.
Electrochemical kinetics and mixed potential theory are discussed. Active-passive
transition in metals and alloys is brought out. Anodic and cathodic protection based
on electrochemical principles find technological applications in industrial corrosion
protection. Mechanisms involved in biofouling and microbially influenced corro-
sion are critically analyzed. Human body as a corrosion environment with reference
to implanted biomaterials is also brought out.

Corrosion is the deterioration or destruction of metals (and alloys) in the presence of
an environment brought about by chemical or electrochemical means.

Microbiologically-influenced corrosion (MIC) has now assumed great signifi-
cance and can be defined as deterioration or destruction of metals and alloys by
electrochemical or biological means in the presence of microorganisms [1-5].

Corrosion types can be classified into dry and wet in general, while the envi-
ronments can be liquid (aqueous), underground, atmospheric and high temperature.
Electrochemical principles come into play in all cases.

Different forms of corrosion can occur depending on wide range of possible
environments.

Common industrial classifications are as follows.

(a) Uniform corrosion

(b) Galvanic corrosion

(c) Localized corrosion such as Crevice corrosion, Pitting, Filiform corrosion
(d) Selective leaching as in alloys such as brass (Dezincification)

(e) Intergranular/Transgranular attack

K. A. Natarajan (>X)
Department of Materials of Engineering, Indian Institute of Science, Bangalore 560012, India
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(f) Erosion, Impingement and Cavitation corrosion

(g) Stress cracking and Stress corrosion cracking (Hydrogen embrittlement, Sulfide
stress cracking, Liquid metal embrittlement)

(h) Fretting corrosion, Corrosion fatigue

(i) High temperature oxidation.

Although biological or microbial corrosion cannot be classified under types of
corrosion, it has become an industrially relevant, widespread, catastrophic form of
corrosion.

Electrochemical and microbial corrosion reactions involve electrochemical cells
(corrosion cells) consisting of anode, cathode and an electrolyte and anodic (oxi-
dation) and cathodic (reduction) reactions. When the electrodes are interconnected,
a potential difference is developed (see Fig. 2.1).

Anode: Electrode where oxidation (corrosion) occurs

M=M*"+2 (2.1)

Cathode: Electrode where reduction (deposition) occurs

M*t* 4+2e=M (2.2)

For every oxidation reaction, there is a reduction reaction as well, and the net
reaction represents the total electrochemical process.

As an example, in the corrosion of zinc metal in an acid solution, the respective
reactions are

Fig. 2.1 Basic galvanic
corrosion cell

- Current

 ———

Anode Cathode
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Zn =Zn* "t +2e (Anode) (2.3)
2H" +2e =H, (Cathode) (2.4)
Zn + 2H" =7Zn" "+ H, (Net) (2.5)

Several types of electrodes such as

Metal-metal ion Fe/Fe**
Ion/Ion (redox) Pt/Fe™*", Fe*"
Gas Pt/H,, H*

Metal-insoluble salt come into play Hg/Hg,Cl,, KCI

Electrochemical cells can be divided into galvanic and electrolytic cells and
differentiated as follows [1-5].

Galvanic Electrolytic
* Chemical to electrical energy * Electrical to chemical energy
* Spontaneous/reversible » Non-spontaneous/Kinetic cell
reactions
» Cathode (+), Anode(—) » Cathode (—), Anode (+)
«AG% < 0, Edey > 0 «AG® >0, EQoy < 0
» Eg: Dry cell, Daniel Cell » Eg: Electroplating, Cathodic protection by impressed
current

Sign conventions are followed to denote half-cell electrode reactions.

European convention, American convention and International (IUPAC) con-
ventions are followed since long.

In this chapter, [IUPAC convention is followed, where the half-reaction is
expressed as a reduction reaction and ‘Plus Right Rule’ used to estimate total cell
EMF.

Free energy concepts as thermodynamic fundamentals are used to estimate
relationships between

e Free energy change and equilibrium constant
e Free energy change and cell EMF

And the Nernst expression derived as follows

[0x]
[Red)]

RT
E=E"+—1
+nFn



30 K. A. Natarajan

0.059  [0x]
E=E+ "1
+ n 8 [Red)]

(Simplified to room temperature conditions)

where

E = Half-cell potential
E° = Standard Electrode Potential

0.
—[EQ )j} = ratio of activities of oxidised | reduced species.
e

Daniel cell can be taken as a typical example to illustrate cell EMF calculation
and to establish criterion for spontaneity.

Daniel cell consists of zinc and copper electrodes in a diaphragm cell configu-
ration, immersed in 1M ZnSO,4 and 1M CuSO, respectively.

—7Zn Zn(lM) T ‘ ’C:l.l+ + (1M) Cu+

Zn=7n"" +2 E°=-0.76V (2.3)
Cut " 42e=Cu E’= +0.34V (2.7)
Zn+Cu'"=Zn""+Cu (2.8)

Ecen = Ei(Right) — Ey(Left)

0.059

Ey(Zn) = —0.76 + Tlog[ZnJr *] (2.9)
0.059

Ei(Cu) = +0.34 + Tlog[Cu+ *] (2.10)

Ecar = +0.34 —(—=0.76) = +1.10V

(The above cell is spontaneous).
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The driving force for the corrosion reaction is the potential difference (cell EMF)
between anode and cathode. In a corroding metal, several anodic and cathodic sites
exist.

Since absolute potential of a single electrode cannot be measured, all potential
measurements in electrochemical corrosion cells are made relative to a reference
electrode.

Basic electrochemical aspects of commonly used reference electrodes are
illustrated below.

2.1 Silver=Silver Chloride Reference Electrode

The redox reaction at the electrode is
AgCl+e=Ag+Cl” (2.11)

The electrode consists of a silver wire coated with silver chloride immersed in
chloride solution.

RT 1
E=E"+ —log—— 2.12
T oF ot er (2.12)
Variations in chloride ion concentrations influence the potential.
2.2 Saturated Calomel Electrode (SCE)
The redox reaction for the electrode is
Hg,Cl, +2e = 2Hg +2C1™ (2.13)
RT 1
E=E"+ —log—— 2.14
F g [Cl_}z ( )
0.059 1
E' 4+ —log— 2.15
7 %o (2.15)

2.3 The Hydrogen Electrode (NHE)

A platinum wire contacted with an acid solution of unit H" activity. Pure H, gas at
one atmosphere is bubbled into solution at room temperature.
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2H" +2e = H, (2.4)
0.059

E=E"+ Tlog[Hﬂ2 (2.16)

E = E’-0.059 pH (2.17)

The Standard Hydrogen Electrode (SHE) is also referred to as Normal Hydrogen
Electrode (NHE) with the standard potential, E® = 0.00 V.

2.4 Copper-Copper Sulfate Electrode

Very robust and stable reference electrode, often used in cathodic protection sys-
tems to measure pipe to soil potentials. Copper metal is placed in a solution of
copper sulfate (saturated)

Cutt +2=Cu (2.7)

0.059
Ecy++ jcu = 034+ —=—log[Cu™ 7] (2.10)

The standard potential for the electrode is +0.316 V
Standard potentials of different reference electrodes are summarized below:

System Electrolyte E°V
Calomel Sat’d KClI 0.241
2Hg + 2C1" = Hg,Cl, + 2e 1.0 N KC1 0.280

0.1 N KCl1 0.333
SilverSilver chloride Sat’d KClI 0.199
Ag+Cl" = AgCl +e 1.0 N KCl1 0.234

0.1 N KCl 0.288
Copper—Copper sulfate Sat’d CuSOy4 0.316
Cu™ +2e=Cu

Diagrammatic representations of various reference electrodes are given in
Figs. 2.2, 2.3, 2.4 and 2.5.
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Fig. 2.2 Silver-Silver
chloride electrode

Fig. 2.3 Saturated calomel
electrode (SCE)

Fig. 2.4 Standard (normal)
hydrogen electrode
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Fig. 2.5 Copper-copper
sulfate electrode
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2.5 Junction Potentials

A small potential difference that develops at the interface (junction) of two elec-
trodes arises due to different ionic compositions. Liquid junction corrections need to
be made to avoid interferences in measured electrode potentials.

2.6 Concentration Cells [1-5]

Besides dissimilar electrode cells (bimetallic), concentration cells can also be
considered galvanic corrosion cells. In concentration cells, the EMF arises due to
changes in concentrations of the electrolytes as well as reactants such as oxygen.
There is no net chemical reaction and the electrical energy arises from the transfer
of a reactant in varying concentrations from electrolytes.

For example:

e Differences in metal ion concentrations.
¢ Differences in oxygen partial pressures.

Example:

- Ag‘Ag(Cl) NO; ‘ ’Ag(cz> NO; (Ag +
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c¢; and c, are the Ag* concentrations in the anode and cathode compartments.

Ecen = E%( R) — El( 1)

2.18

B 005910gc} ~ [EO 005910gC1 (2.18)
0.059, Co

==l (2.19)

The EMF is developed due to transfer of metal ions from the area of higher
concentration to that of lower concentration. The silver electrode in contact with a
lower silver ion concentration serves as anode, the other being the cathode.

Differential aeration corrosion occurs when a metal surface is exposed to dif-
ferential air or oxygen concentrations. The part of the metal exposed to higher O,
concentration acts as cathode, while the part exposed to lower oxygen concentration
serve as anodic regions. Poorly oxygenated regions thus undergo corrosion and
oxygen-enriched areas are protected,

Anode =M =M" " +2¢(Low O,) (2.1)
Cathode = 1/2 0, +H,0 + 2e = 20H ™ (High O) (2.20)

Diagrammatic illustrations of the above concentration cells are given in Figs. 2.6
and 2.7.

Water line corrosion is a case of differential aeration corrosion which is prevalent
in sea going vessels, water storage tanks and submerged structures. Oxygen con-
centration cells are formed in this type of corrosion. The part of the metal below the
water line is exposed to lower oxygen levels while the part above the water is

Fig. 2.6 Metal-ion
concentration cell
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Fig. 2.7 Differential oxygen
(aeration) cell

Fig. 2.8 Water-line
corrosion (oxygen
concentration cell)
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exposed to higher oxygen partial pressures and consequently, the metal part below

water line acts as anode and undergo corrosion (see Fig. 2.8).

The Nernst relationship can be used to estimate the potential difference gener-
ated due to oxygen concentration cells. When two portions of the same metal are in
contact with a solution having differential oxygen concentration areas,

O, +2H,0 +4e = 40OH™

(2.21)
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Fig. 2.9 Rusting of iron through oxygen concentration cell formation

0.059 POy,
E, =B+ —1o 2.22
1 4 g [OH7]4 ( )
0.059. POy,
E, =E’+ ——"1lo 2.23
2 4 4 [OH,]4 ( )

PO5(,) and POy, are different oxygen partial pressures while pH being the same for
both half cells

0059 POy

E,— E, —
2T T T %P0,

(2.24)

If POz(a) < POz(b), then E, > E;

Electrode in contact with lower O, concentration is anode (corrosion) and the
one in contact with higher O, is cathode (protection)

A model for role of oxygen concentration cells (differential aeration) on rusting
of iron exposed to oxygen and moisture is illustrated in Fig. 2.9.

2.7 EMF Series [1-5]

The EMF series is an arrangement of various metals in order of their electro-
chemical activities based on their standard electrode potentials. It is a thermody-
namic series where the E° is calculated from free-energy data. The most active
metal in the series possesses the highest negative E° (anode) while the nobler metal
having less negative or more positive electrode potential (cathode)

There are exceptions to the thermodynamically predicted metal activities as
listed in Table 2.1.
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Table 2.1 EMF series

Reaction E’,V(SHE)
Au"+3e=Au +1.42 Noble
Pt + 2e = Pt +1.2 4
0,+ 4H'+ 4e = 2H,0 +1.23

Pd™ +2e=Pd +0.83

Ag +e=Ag +0.799

0; +2H,0 +4e =40H" +0.401

Cu"+2e =Cu +0.34
Sn""+2e=Sn" +0.154

2H +2e=H, 0.00 Reference
Pb""+2e=Pb —-0.126

Sn"" +2e=Sn -0.140

Ni™ +2e=Ni -0.23
Co™+2e=Co -0.27
Cd™+2e=0Cd —0.402

Fe'" +2e=Fe -0.44
Cr"+3e=Cr -0.71

Zn" +2e=127n -0.763

A" +3e=Al - 1.66

Mg +2e =Mg -2.38
Na'+e=Na -2.71 M

K'+e=K -2.92 Active




2 Principles of Corrosion Processes 39

Example: Aluminum, chromium and titanium though active in the EMF series
are practically highly corrosion resistant due to the presence of stable metal oxide
passive surface films.

2.8 Applications of EMF Series

(a) A more active metal would displace a nobler metal from its dissolved state in an
aqueous solution. For example, both iron and zinc (being placed lower to
copper in the EMF series) can displace cupric ions (reduce) from an acid

solution.
Zn + CuSO, = ZnSO, + Cu (2.25)
Fe 4+ CuSO4 = FeSO4 + Cu (2.26)
Oxidation Fe=Fet " +2e (2.27)
Zn=7n"" +2e (2.3)
Reduction Cu® ' +2e=Cu (2.7)

(b) Electrode potentials indicate tendency for corrosion and deposition. Metals
(ions) above hydrogen in the series are more readily reduced. Metals below
hydrogen exhibit higher oxidation tendency.

(c) Use of hydrogen as a reducing agent under different pressures as well as that of
oxygen (or other oxidants) under various partial pressures as an oxidizer for
different metal ions and metals can be predicted.

In a bimetal combination, the metal with the nobler potential will act as cathode
while the one with a relatively active potential will serve as anode. For example, in
Fe—Zn couple, Fe will be cathodic to anodic Zn.

2.9 Limitation of EMF Series

The series list only pure metals and not alloys and other composites.

Rather than the thermodynamic electrode potentials for the various metal/metal
ion concentrations, it is the corrosion potentials of metals and alloys in a defined
corrosive environment which is of practical use and interest.
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e EMF series predicts only the tendency for corrosion. There are metals in the
EMF series such as chromium, aluminum and titanium which are listed as very
active (negative potentials), but never the less do not corrode significantly due to
passive oxide surface films. EMF series are silent on effect of environment on
metal activity.

2.10 Galvanic Series [1-5]

Galvanic series overcome many of the drawbacks of the EMF series. Here the
actually measured corrosion (rest) potentials of metals and alloys are listed in the
order of their increasing—(or decreasing) activity in a defined environment (such as
sea water) as shown in Table 2.2. It is of great practical importance since corrosion
behavior of different alloys in combination can also be predicted.

Some alloys (such as 18-8 stainless steels) are shown as existing both in active
and passive states. This could be seen in the light of the nature of surface passive
films (whether stable or unstable (scratched surfaces).

The galvanic series would differ from environment to environment as well as to
whether the media. (sea water, for example) is static or turbulent.

2.11 Electrochemical Aspects of Bimetallic (Galvanic)
Corrosion [3, 6, 7]

Some basic conditions essential for bimetallic corrosion to occur are:

e Presence of continuous bridging between two metals (or alloys) through an
electrolyte.

e Presence of concentration cells.

e Proper electrical contact and large potential difference among contacted metals
(alloys).

e Sustained cathodic reaction at the nobler metal (alloys).

Major factors influencing galvanic corrosion in bimetallic couples include [6]

(a) Electrode potentials and electrode efficiency.

(b) Reactions such as metal dissolution, oxygen/hydrogen reduction.

(c) Metallurgical conditions such as composition, microstructure, alloy compo-
nents, types of heat-treatment and mechanical working.

(d) Surface conditions like treatment, corrosion products and passive layers

(e) Electrolytic properties such as presence of various types of ions, pH, temper-
ature, conductivity, aeration, flow rate and volume.
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Table 2.2 Galvanic series

Platinum

Gold

Graphite

Silver

Hastelloy C

18-8 stainless steel (passive)
Chromium steel> 11% Cr (passive)
Inconel (passive)

Nickel (passive)

Monel

Bronzes

Copper

Brasses

Inconel (active)

Nickel (active)

Tin

Lead

Lead-tin solder

18-8 Mo stainless steel (active)
18-8 stainless steel (active)
Ni-resist

Chromium steel <11% Cr (active)
Cast iron

Steel or iron

2024 aluminium

Cadmium

Commercially pure aluminium
Zinc

Magnesium and its alloys

Active

Noble
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(f) Environmental factors such as dry-wet cycles, water content, climatic and
seasonal conditions as well as solar radiation.

(g) Geometrical aspects such as distance, positions, surface area, shape and
orientations.

The compatibility of two different metals (or alloys) may be assessed through
what is referred to as ‘anodic index’ [8], which is a measure of the electrochemical
potential that is realized between the desirable metal and gold.

Typical anodic indices of some metals and alloys relative to most noble gold is
given in Table 2.3.

To estimate the relative potential of a pair of metals or alloys it is only essential
to subtract their anodic indices. For normal conditions, there should not be not more
than 0.25 V difference.

The extent of galvanic effect need not always be related to differences in the
electrode potentials as listed in the EMF series. The galvanic potentials measured in
a given environment could be a better guide for assessing effect of potential dif-
ferences on galvanic activity.

Titanium, aluminum and chromium possess highly active reversible potentials as
projected in the EMF series, but occupy relatively nobler positions in the galvanic
series. Galvanic corrosion of steel is higher when coupled to nickel and copper than
when contacted with 304 stainless steel and Ti-6Al-4 V alloy. Reaction kinetics as
well as nature of corrosion products may thus determine galvanic corrosion rates.
Smaller quantities of alloying additions to a metal would not result in any signif-
icant shift in reversible potential, even though it could significantly influence the
electrochemical kinetics. Multiphase microstructures can influence galvanic activ-
ity. Strange as it may seem, enhanced cathodic corrosion in a couple may happen as
in the case of Zn—Al couple in saline solutions prematurely due to increased
alkalinity near the electrode surface, when aluminum is not stable. Galvanic cor-
rosion can occur in metal as well as multi-metal combinations. Presence of ‘mixed
metals’ in piping is an example. In multi-contact situations, the most anodic metal
would remain active whatever may be position of other metals, while the noblest
metal would serve as cathode, irrespective of the different arrangements. However,
the dissolution behavior of metals (and alloys) exhibiting intermediate potentials,
depend on their relative positions in the multi-metal combination. Galvanic

Table 2.3 Anodic indices Gold 0.00
(V) I8] Silver, high Ni—Cu alloys 0.15
Nickel, Ti and alloys 0.30
Copper, Ni—Cr alloys 0.35
2000 series wrought Al 0.75
Plain C and low alloy steels 0.85
Zinc 1.25
Magnesium and its alloys 1.75
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corrosion can also occur in metal-nonmetallic material contacts such as
metal-reinforced polymer matrix composites and metal-graphite composites.
Corrosion currents can be generated due to several reasons in metals and alloys.

Presence of impurities.

Grain boundaries and orientation.

Differential temperatures/gradients.

Surface roughness, surface product layers.
Metallographic/micro-structural defects, inclusions, precipitates.
Alloying elements and different phases.

Differential stress/strain.

Bimetallic corrosion in the absence of physical contacts can also occur.
Localized corrosion [7] on a metal can lead to formation of soluble corrosion
products that can deposit through displacement reactions onto an active metal
surface exposed to similar environmental conditions and form local anodic and
cathodic cells. For example, in water heating systems, dissolved copper from the
pipes can deposit on steel radiators, generating anodic and cathodic areas.

Iron corrosion products from steel fittings can flow over aluminum and deposit
as cathodic magnetite.

Area, distance and geometric effects on bimetallic corrosion are very important
with respect to design and operation of different industrial components. Highest
galvanic corrosion rate in confined at the junction between two metals and severity
of corrosion decreases with increased length (distance) as illustrated in Figs. 2.10
and 2.11.

Geometry and design of components would influence galvanic corrosion.
Current does not flow around corners, as well.

When a current flows between anode and cathode in a corroding metal, the
current will be the same across, independent of surface areas of each region.
However, current density would differ depending on anodic and cathodic surface
area ratios. The larger the cathode, compared to the anode, higher oxygen reduction
(or similar cathodic reactions) can occur and hence the galvanic currents are
enhanced. The effect of the ratio of the anodic to cathodic areas thus becomes a

l l Severe Corrosion l l

\'4 \'4

—— —
Less Severe Less Severe

Fig. 2.10 Model showing severe galvanic corrosion at junctions-distance effect



44 K. A. Natarajan
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N 4
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—
Distance Distance

Fig. 2.11 Model showing distance effect in galvanic corrosion

significant factor controlling galvanic corrosion rates. A small anode area in contact
with larger cathodic area results in serious bimetallic anodic corrosion due to higher
anodic current densities on smaller anodes (see Fig. 2.12). As a general rule of
principle, anode area should be larger than that of the cathode to minimize galvanic
corrosion. For corrosion protection, the cathode regions in a component should be
painted (coated) based on area-effect, discussed above. If the paint is damaged, then
a smaller cathode in contact with relatively larger anode would be exposed, min-
imizing corrosion rates. On the other hand, if the anode is painted, paint damage
would result in the formation of a smaller anode in contact with larger cathode,
leading to enhanced corrosion rates. For example, in a carbon steel (anode) struc-
tural component in contact with stainless steel (cathode), surface coating of only the
carbon steel could lead to disastrous corrosion due to unfavorable area effect [2-5].

In this regard, superiority of galvanized steel components need to be stressed.
A uniformly zinc coated steel surface when exposed to a corrosive environment will
be protected under all conditions of coating damage. Even if large portions of zinc
coatings are abraded away, the base steel will still be protected due to favorable area
effect! (see Fig. 2.13).

Fig. 2.12 Variation of
corrosion rate with increasing
catholic area for a fixed small
anodic area

Corrosion rate

Cathode to anode ratio



2 Principles of Corrosion Processes 45

Zn'" Zntt
Zn Zn
\ ]
-\l / o
Fe

Fig. 2.13 Sacrificial zinc corrosion in contact with iron (Galvanic coating)

Fig. 2.14 Model showing (a)
area effect in galvanic ( N\
corrosion. a Iron rivets on ram 1
copper plates. b Copper rivets I o Fe
on iron sheets
\ —
®) / N\
Fe 1
I Fe Cu
\

Steel rivets on a copper bar exposed to sea water is yet another example to
unfavorable area effect compared to copper rivets on a steel bar (see Fig. 2.14).

Yet another significant observation is polarity reversal under certain environ-
mental conditions with time. Some examples are illustrated below [1-7].

Tinning is used to protect steel containers. Internally tin-coated steel cans are
used to preserve vegetable and many types of fruit juices, Tin in nobler to iron in the
EMF series. However, tin can dissolve to form Sn*" due to the presence of organic
acids from the stored vegetable and fruit juices. Stannous ions can form tin com-
plexes with organic acids, leading to reversal of polarity of the

Sn =Sn" " + 2ereaction (2.28)

-
Reversible Sn/Sn™™ potential could shift to more active values. {18-72—”} ratios

corresponding to onset of polarity reversal can be estimated from the reaction,

Fe'™ ™ +Sn =Fe+Sn" " whenEcei—o (2.29)

++
{IS:I;T} must be less than 5 x 10~ for tin to become more active than iron [5].
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Change of surface condition of at least one among the metallic couples can cause
polarity reversal. For the zinc—steel couple, the change in the zinc electrode
potential is mainly responsible for polarity reversal since the iron potential does not
significantly change with time in hot water. Passivation of the zinc surface in
presence of oxygen in water lead to cathodic depolarization.

Polarity reversal can occur in aluminum-steel couples as well (used in cathodic
protection). In presence of carbonate/bicarbonate ions, aluminum surface passiva-
tion may be promoted, shifting potential to nobler values. Polarity reversals as in
the zinc-steel and aluminum-steel couples result in loss of cathodic protection of the
steel component.

In the light of above bimetallic corrosion fundamentals, the following prevention
or control methods can be suggested [2—6]:

(a) Selection of metals or alloy combinations as close together as possible in the
galvanic series.

(b) Due importance to be given to surface area ratio effect and contacts to be
avoided where the area of the active metal (alloy) is smaller. In case of fas-
teners, always prefer nobler metal components. Design of anodic parts in an
assembly should take into consideration area and geometry.

(c) Wherever possible, dissimilar metal contacts need to be insulated from each
other.

(d) Coatings or painting need caution. Do not paint less noble contact portions
without also coating the nobler one. If only one contact surface need to be
coated, the nobler surface to be coated.

(e) Metals need to be kept as far as possible (distance effect).

(f) Inhibitors could reduce corrosiveness. Cathodic protection can be used wher-
ever suitable.

2.12 Potential-pH Diagrams [1-5]

Eh (Electrode potential with reference to standard hydrogen electrode) and pH
(—log ay,) are the major environmental parameters influencing aqueous corrosion
of metals. Electrochemical equilibrium diagrams can be constructed based on
thermodynamic principles to predict corrosion and protection of different metals in
an aqueous medium as a function of Eh and pH for different oxidation/reduction
reactions and pH levels. Basic Eh-pH diagram as a two dimensioned representation
in an aqueous phase consists of four coordinates representing oxidizing and
reducing regions across acidic and pH levels as illustrated in Fig. 2.15. Increasing
of Eh towards more positive values indicate enhanced oxidizing environments
compared to lower, less positive Eh values, which denote shift towards reducing
environment.

Upper and lower stability limits of water can be established for the Eh-pH
diagram based on the following redox reactions (Fig. 2.16):
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Oxidizing environment
+ at acidic levels

Eh

Oxidizing environment at
alkaline regions

Reducing environment at
acidic levels

Reducing environment at
alkaline regions

Fig. 2.15 Eh-pH basic coordinates

pH

7
pH

14

Fig. 2.16 Stability region for water in the Eh-pH diagram
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(a) 0,+4H" +4e =2H,0 E’= +1.23V (2.30)

Eh = 1.23 — 0.059 pH (at pO, = 1)

(b) 2H" 42e=H, E’=0.00V (2.4)

Eh =0 — 0.0539 pH (atpy, = 1)

The stability limits can shift depending on oxygen and hydrogen partial pres-
sures. For complete representation of the above water stability diagram, reactions
involving oxygen reduction to form H,O, which further reduces to H,O need to be
considered under neutral and alkaline conditions. Reactions such as

0, +2H,0 +4e = 40H™ (2.21)
2H,0 +2e = H, + 20H" (2.31)

are also likely. For various metal-water-oxygen systems, stability regions for oxi-
dized and reduced species fall within the above marked boundaries.

Three types of equilibrium states can be realized based on the following types of
reactions:

(a) Depending only on Eh, but independent of pH (Horizontal line to the X-axis).
(b) Dependent only on pH, but independent of Eh (Vertical to the X-axis).
(c) Dependent on both Eh and pH (line with defined slope).

Various types of reactions are illustrated in Fig. 2.17.

Red = OX + e
o |,
=
2
»
o
Eh
2 increase
'g dissolution
s |- -— e
o 2 g id
increase precipitation
Acidic pH Alkaline

Fig. 2.17 Possible reactions in an Eh-pH diagram
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Eh-pH diagrams are drawn for specific ion activities and partial pressures of
gases at room temperature from thermodynamic data. For the Fe-H,O-O, system,
major thermodynamically feasible reactions are illustrated below, assuming Fe*™,
Fe™* activities at 1M and gaseous partial pressures as one at room temperature [1].

Fe=Fe® " +2¢ E’=-0.44V
1. . . (2.27)
(Reaction dependent only on Eh, independent of pH)

0.05
Eh = —0.44 + 79105;[1%+ *] (2.32)

Forapes . = 1,Eh = —0.44V (2.33)

Fe** +2H,0 = Fe(OH), +2H™*

2. . . (2.34)
(Reaction dependent only on pH, independent of Eh)
AF’ = —RT InK

(2.35)

= —1.364 logK
2pH + log[Fe ™ 7] = 13.28 (2.36)
Log[Fe™ *] = 13.28 — 2pH (2.37)
pH = 6.64 (2.38)

Fe't =Fe™ " +e E’= +0.771V
3. . (2.39)
(Eh dependent, but independent of pH)

Fe+ + +

Eh = 0.771V (2.41)

Fe* ** 4 3H,0 = Fe(OH), + 3H*

. (2.42)
(reaction dependent only on pH)

Log[Fe* * ] =4.81 — 3pH (2.43)

pH =16 (2.44)
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Fe +2H,0 = Fe(OH), +2H" +2e

5. (2.45)

(dependent both on Eh and pH)

2.19
o_ _ =7 _ _
B = — e — 005V (2.46)
0.055

Eh = —0.05 + T1og[H+]2 (2.47)
Eh = —0.05 — 0.059pH (2.48)
6. Fe(OH), + H,O = Fe(OH); + H* +e (2.49)
Eh = 0.27 — 0.059 pH (2.50)
7. Fe' " 4+3H,0 = Fe(OH); +3H" +e (2.51)
Eh = 1.057 — 0.177pH — 0.059 log[Fe * ] (2.52)

The above seven reactions are then drawn on an Eh-pH diagram. Stability
regions for Fe, Fe™, Fe*™*", Fe(OH), and Fe(OH); phases are marked as shown in
Fig. 2.18.

The corrosion diagram corresponding to the Fe-H,0-0, equilibrium is shown
in Fig. 2.19.

With changes in the ionic concentrations of dissolved iron and partial pressures
of oxygen and hydrogen, the phase boundaries would shift.

Regions of corrosion for iron (steels) are not only confined to the acidic region,
but also exist in the high alkaline region (beyond a pH of about 12) where disso-
lution of iron as HFeO,  species can occur. Regions of immunity (where metallic
iron is stable thermodynamically) and passivation (stability phases for iron oxides
which form a protective passive layer) are shown. From the diagram, suitable
Eh-pH regions for cathodic and anodic protection could be selected. Similar Eh-pH
and corrosion diagrams can be drawn for different metal—H,0-O, systems to
understand their corrosion behavior. Representative corrosion diagrams for alu-
minum, zinc, magnesium, nickel, copper and titanium are shown in Fig. 2.20.

There are some limitations to thermodynamically constructed Eh-pH diagrams.

e The diagrams are thermodynamically derived for room temperature conditions.
Corrosion behaviour at higher temperatures cannot be predicted using this
diagram.

e Only thermodynamic amenability to corrosion and protection are predicted.
Corrosion kinetics cannot be assessed.
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1.5
1.0
Fe(OH),
Eh +0.5
Fe* q\
o/
05| fe
-1.0
0 4 8 12

pH

Fig. 2.18 Eh-pH diagram for the Fe-H,0-0, system showing seven reaction boundaries

1.6
a PASSIVATION
0.8 8
et
(&)
h 8
E
=
0.8
IMMUNITY \conﬁosww
-1.6
0 4 8 12 16

PH
Fig. 2.19 Corrosion diagram for iron
e No consideration for added ions and effect of metal complexation is given.

e Only pure metals are considered. Effects of alloying and metallographic phases
and heterogeneities are not considered.
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Fig. 2.20 Corrosion diagrams of a Aluminum, b Copper, ¢ Magnesium, d Nickel, e Titanium,

f Zinc

Modified Eh-pH diagrams for various metals need to be prepared taking into
consideration the effect of alloying additions, presence of complexing agents and
higher temperatures. Combined diagrams taking into consideration two or more
metals simultaneously present would be more useful. For example, effect of
chromium addition to iron to increase corrosion resistance can be represented in a
combined Fe—Cr diagram. Similarly Cu—Zn, Cu—Sn and aluminum and magnesium
alloy diagrams can be constructed.
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Computer programs and soft-ware kits are now available to construct Eh-pH
diagrams for various metal systems under different environmental conditions.

2.13 Electrochemical Kinetics [1-5, 9]

When a metal is contacted with an electrolyte containing its ions, either oxidation
(loss of electrons) or reduction (gain of electrons) can occur. Equilibrium conditions
existing across the metal-solution interface will determine the nature of the reac-
tions. Electron transfer across interface will take place until thermodynamic equi-
librium is reached. At equilibrium, the net current is zero while the
oxidation-reduction rates are equal. The reversible electrode potential corresponds
to the potential at equilibrium while the net equivalent current across the interface
when there is no external current is supplied is referred to as the exchange current
(ip). When a metal is at its equilibrium potential in a solution, rates of oxidation and
reduction are equal (not zero)
ipa
rn =1 = WF (253)

where 1; and r, are rates of forward and reverse reactions and i, is the exchange
current density.

When a net current flows through a corrosion cell, the difference between the
measured potential and the reversible half-cell potential (AE = E — E.) is called
the over-potential which is a measure of the departure (or deviation) of the potential
from its equilibrium value. An electrode is not in equilibrium when a net current
flows from or to its surface and to enable the current flow, the electrode potential
should shift off its equilibrium value.

Polarization essentially results from a slow step in an electrode process.
Considering transport processes at a metal-solution interface, diffusion of electro-
active ions from the bulk to the interface and their subsequent interaction at the
electrode surface resulting in charge transfer can be considered to understand the
type of polarization.

A slow step in diffusion transport of reactants to and from the electrode interface
results in concentration polarization, while a slow step in the charge transfer step
results in activation polarization.

Ntotal = Wconcentration + Nactivation

Depending on as to whether the polarization is significantly at the anode or
cathode or at both anode and cathode, anodic, cathodic and mixed control electrode
processes can be realized. Anodic, cathodic and mixed controls are represented in
polarization diagrams shown in Fig. 2.21.

Exchange current densities can only be determined experimentally.
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Fig. 2.21 Anodic (a), Cathodic (b) and Mixed (c¢) Control

A Kkinetic expression for exchange current density can be derived as

io = NFAK,(Cox)' ™™ (Crea)™ (2.54)
where

K, is a rate constant.
A = surface area.
o = transfer coefficient.

Exchange current depends on the following

Nature of the redox reaction.
Electrode surface and composition.
Temperature.

Concentration of redox species.

Exchange current densities (amp/cm?) for various metals for the hydrogen
reduction reaction are given below [1-5]:
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Pb, Hg 102 to 107"

Zn 107 t0 1071
Ag, Cu 1077
Fe, Au 107°
Pd, Rh 107*
Pt 1072

It becomes 10'? times easier for hydrogen to evolve on a platinum cathode
compared to lead and mercury surfaces. Thus, the magnitude of exchange current
density indicates the reversibility or irreversibility of a redox reaction at an elec-
trode surface.

Electrochemical kinetics of corrosion can be derived in terms of activation and
concentration polarization for anodic and cathodic reactions.

From the rate theory equations, relationships between applied current density,
exchange current density and activation over potentials can be derived.

A general relationship for the polarization of an electrode for a specific redox
reaction is given by the Butler-Volmer equation [2].

o nFn

o = 1o 2.55
i i exp{ RT } ( )

. . —(1— x)nFn
c = lo s — 2.56
e =1 exp[ RT ( )

. x nF —(1— x)nF

Iapplied =1 [exp< RT "I) — exp (%)} (257)

where

Lippiieds = net reaction current
o = charge transfer or symmetry coefficient for the anodic/cathodic reaction

The factors oc and (1 — o) are the fractions of over- potential () taken by
discharge and ionization reactions (forward and backward)

n = number of electrons
F = Faraday constant
T = Absolute temperature.

For high over-potentials, the above equation can be simplified as the Tafel
equation

i,
Hact(anode) = @ + b, log r (258)
o



56 K. A. Natarajan

I
Nact(cathode) = & — b log 1_ (259)
o

Mot = £blog - (2.60)
1o

x = 0.5 for b, and b, of 0.12 V
Anodic and cathodic slopes can be estimated as

RT
b, = —2.303

— (2.61)

RT
—2303———— 2.62
by = 23035 % (2.62)

Tafel equation is applicable to each electrode half reaction separately.

At low over-potentials, the dependence of current on over-potential is linear and
the linear region is referred to as ‘polarization resistance’.

As per the Stern-Geary equation, applicable to the linear region at lower over
potentials,

B by.b.
icorr = — andB = ————— 2.63
{Corr =R, 2.3(b, + by) (2.63)
where R, = polarization resistance = %.

Tafel and stern-Geary equations are used to estimate corrosion currents (corro-
sion rates) by the Tafel plots and linear polarization methods.

Similarly, from Faraday’s laws and Fick’s laws of diffusion, a relationship for
concentration polarization with reference to limiting (diffusion) current and
cathodic current can be derived.

RT ic
=—In|l—-— 2.64
Ncone nF I]|: lL:| ( )

where iy = limiting (diffusion) current density.
Total cathode polarization consisting of activation and concentration
over-potentials can be written as

' RT e
Mot = —Blog < +23--log [1 - f—] (2.65)
io nF

179

Figure 2.22 illustrates corrosion of a metal where cathodic reaction is under
activation and concentration polarization.
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Fig. 2.22 Polarization diagram showing activation and concentration over-potentials [2, 4]

2.14 Theory of Mixed Potentials [1-5, 10]

Electrochemical fundamentals governing mixed potential theory are based on the
following concepts:

e Principle of charge conservation: There cannot be any net accumulation of
charge during an electrochemical reaction. Total rate of oxidation must be equal
to total rate of reduction. i.e. Sum of anodic oxidation currents must be equal to
sum of cathodic reduction currents.

e Any electrochemical reaction can be divided into two or more partial oxidation
and reduction reactions.

Consider a general anodic reaction,
M=M"" +2e (2.1)

Possible cathodic reactions depending on environment are:

(a) Hydrogen reduction from acid or neutral/alkaline solution.
2H" + 2e = Hj(acid) (2.4)

2H,0 + 2e = H, + 20H " (neutral or alkaline) (2.31)
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(b) Oxygen reduction in acid or neutral solution.
0, +4H™" + 4e = 2H,0(acid) (2.30)
0, +2H,0 + 4e = 40H ™ (neutral) (2.21)
(¢) Reduction of other added oxidizers such as ferric ions

Fet*t +e=Fet* (2.39)

As per the mixed potential theory using the zero current criterion, » i, = > i,

M iH(M) =+ i0 M) + i§e+ ++ M) (266)

a c c?2

At equilibrium, the total anodic oxidation rate is equal to total cathodic reduction
rate.
Assuming corrosion of an divalent metal, M in an acid solution,

M =M""* +2e(anodic reaction) (2.1)
2H" + 2e = H,(cathodic reaction) (2.4)
M +2H" =M™ + H; (net reaction) (2.67)

The metal M corrodes with the evolution of hydrogen. The two half-reactions as
indicated above cannot coexist as separate entities on the same metal surface. Each
reaction has its own half-cell electrode potential and exchange current density.

Due to polarization, potentials shift in anodic and cathodic directions to an
intermediate value (between the two half-cell potentials).

Since such a polarized potential is a combination of the two half-cell potentials,
it is referred to as MIXED POTENTIAL. The electrode potential at steady state for
a freely corroding metal is referred to as corrosion potential (Eco). See Fig. 2.23.

At E., rates of anodic and cathodic reactions are equal.

ic = iz = icom (at Ecorr) (2.68)

icorr 18 the corrosion rate of the metal and also the rate of hydrogen liberation at the
metal surface (H" oxidizes the metal).

Kinetic parameters such as the exchange current density for the redox reaction at
a metal surface need to be considered to understand the reversibility of a redox
reaction at metal surfaces.

For example, in dilute hydrochloric acid solutions, zinc dissolution is expected
to be higher than that of iron from a thermodynamic view point (EOE;/Z,, =-0.76 V
compared to E° for Fe|Fe++ = — 0.44 V). However, from a kinetic view point, the
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Fig. 2.23 Polarization of
anodic and cathodic reactions
resulting in a mixed potential

Potential

Current density

corrosion rate of iron will however be higher than that of pure zinc, due to dif-
ferences in their exchange current densities for hydrogen liberation reaction.
Exchange current density for hydrogen reduction on zinc is lower than that on iron.

Engineering systems are heterogeneous and complex. The zero current criterion
in such multi-electrode systems in a corrosive environment becomes all the more
relevant.

Consider two electrodes X and Y with one reduction reaction in an acid solution
[11].

XY = %) 4 i) (2.69)

Relative areas of the anode and cathode are important in the prediction of anodic
corrosion rates and current density (current/unit area) need to be considered.

The driving force for corrosion is enhanced on addition of a strong oxidizer such
as ferric ions to the acid solution. The corrosion potential E.,, is shifted to more
noble direction with increasing corrosion rate of the metal. Hydrogen reduction rate
is correspondingly decreased due to the added oxidizer. See Fig. 2.24.

L.orr(Corrosion rate on addition of ferric ion)
.Fe+ + + /F€+ +

=i + iéﬁ/Hz (at steady state) (2.70)

It may however be borne in mind that the above shown effect of an added
oxidizer will be significant only if the exchange current density for the added
oxidizer reduction is higher than that for hydrogen reduction. If the exchange
current for the added oxidizer reduction is lower, no increase in corrosion rate of
metal would be observed.
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Fig. 2.24 Mixed potential diagram illustrating effect of addition of ferric ions to acid solution on
the corrosion rate of a metal [9, 10]

Let us examine the corrosion behavior of active-noble metal couples under the
mixed potential theory.

2.15 Platinum-Iron Couple in Acid Solution [11]

ife = H(P) APr) + {HFe) (2.71)
A(Fe)

where i, and i, represent anodic and cathodic current densities and A is relative

surface area. Corrosion rate of platinum in the couple is negligible, while that of

iron is enhanced due to very high exchange current density for hydrogen reduction

on platinum. Surface area effect also needs to be considered. Platinum provides

additional cathode surface for efficient hydrogen reduction.

The corrosion rate of an active metal (Fe, Zn) depends on the nature of the
coupled noble metal in relation to the exchange current density for the reduction
reaction. pH of the medium and nature of the oxidizer will also influence rate of
anodic oxidation. If the Fe—Pt couple (having higher cathode to anode surface area
ratio) is exposed to neutral pH solution where oxygen reduction is the cathodic
reaction (instead of H,), the expected effect of noble metal (Pt) would be not so
significant since the exchange current densities for oxygen reduction on both the
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surfaces are nearly the same. Also, if lead metal is coupled with iron instead of
platinum in acid solution, the effect of coupling on anodic oxidation of iron would
be rather negligible, since the exchange current density for hydrogen reduction on
lead is very much lower than that on iron.

2.16 Iron-Zinc Couple [11]

Corrosion behavior of the iron-zinc couple can be examined with respect to role of
zinc as a sacrificial anode

jFe — ig(Zn)A(Zn) 4 jH(Fe) _ ,'Z“A(Zn) (2.72)
« — A(Fe) “ A(Fe)
AN (2.73)

Enhanced zinc oxidation rate would decrease the rate of iron oxidation and the

. . H(Zn) . . . .
effect zinc depends on the ratio of “— and iron will be protected as long as this ratio

is smaller.

The relative areas of the two metals in a couple influence its galvanic corrosion
rate. Increasing cathodic surface areas for a fixed anode area will increase the
anodic corrosion rate.

While E., can be directly measured, i.. need to be determined by polarizing
the electrode from the corrosion potential.

The entire corroding metal is made either anodic or cathodic in an electrolytic
cell through application of an external potential (or current) and steady state con-
ditions deduced from the polarized condition [2].

Naet = ba log "net_at higher anodic over-potentials (2.74)
lcorr
For cathodic reaction,
T]act = bC IOg -lnet (275)
LCorr
i = icor Wwhenn = O (2.76)

Anodic and cathodic Tafel lines can be extrapolated back to E.., to get
icorr(corrosion rate).

When the cathodic reaction is diffusion controlled as in the case with oxygen
reduction at neutral pH,
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0, +2H,0 + 4e = 40H™ (2.21)

solution velocity influences corrosion rate (unlike in activation control). Corrosion
rate of normal metals initially increases with solution velocity up to a certain value,
there after becoming independent of velocity.

2.17 Determination of Corrosion Rates [2]

Electrochemical reaction rate can be measured in terms of rate of electron transport
from or to the electrode interface.
As per Faraday’s law,

_ It.a

e (2.77)

where

M = mass reacted

a = atomic weight

I = current, in amperes

t = time

n = number of exchanged equivalents
F = Faraday constant

Proportionality between mass loss per unit area per time and current density can
be given as
Corrosion rate,

M  ia
=—=— 2.78
' At nF ( )
where
i t densit i
i = current density | —
v
Penetration rate = 0.129%in mpy (mils per year) (2.79)
n
where

d = density of metal/alloy in g/cm’
i = pA/em? and 0.129 is the proportionality constant
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For expressing penetration rate in other units such as mm/year or um/year
appropriate proportionality constants need to be used.

As an example, the relationship between penetration rate in mpy and current
density of 1pA/cm? for iron can be calculated as

55.8x1
7.9x2

0.129 { } ~ 0.5mpy = 1 pAlcm?

To determine the corrosion penetration rate for alloys, respective metallic
compositions need to be considered and the equivalent weight determined in terms
of sums of fractions of equivalents of all alloying elements.

Total equivalents N, = ZJL (2.80)
i
where
f, = mean fraction of the element in the alloy
n; = exchanged electrons
a; = respective atomic weights

From corrosion current densities derived from polarization plots, equivalent
penetration rates in mass loss per unit area per time can be estimated.

Typical Tafel extrapolation and linear polarization plots for determination of
corrosion currents and other electrochemical parameters are illustrated in Figs. 2.25
and 2.26.

Fig. 2.25 Estimation of
Tafel parameters

Potential

: ?B iCm-r
1

Log current density
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2.18 Electrochemical Aspects of Passivity [1-5, 11, 12]

In the Eh-pH diagrams, stability regions of immunity, corrosion and passivity are
indicated for various metals in aqueous solutions. Properties such as immunity and
passivity can be effectively used to protect metals form corrosion.
Electrochemical aspects of passivity and methods of corrosion protection uti-
lizing active- passive transition are illustrated below:
Passivity can be defined as follows [5]

(a) A metal active in the EMF series or an alloy constituted of such metals can be
defined as passive when its electrochemical behavior or activity becomes same
or similar to that of a less active (nobler) metal. Eg: Titanium, Chromium,
Stainless steel.

Passive metals such as titanium, chromium, aluminum and alloys such as
stainless steel are corrosion resistant due to the formation of very thin, adherent
and protective oxidized surface films in the corrosive environment.

(b) A passive metal or alloy effectively resists corrosion in an environment even if
there exists a negative free energy change for its conversion from a metallic
state to appropriate corrosion products.

Eg: Lead in sulfuric acid, Iron in inhibitor-containing pickling acid.

There are several theories put forward to explain passive behavior of metals and
alloys such as oxide film and adsorption theories and appropriate models proposed.

Schematic anodic polarization behavior of a metal exhibiting active-passive
transition is illustrated in Fig. 2.27 [1, 2].

Active, passive and transpassive regions are clearly shown. From the anodic
polarization curve, the following electrochemical parameters can be deduced.
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1.

TransTssive
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Fig. 2.27 Schematic anodic polarization curve illustrating active-passive transition [1-5]
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Critical anodic current density (minimum anodic current density essential to
initiate passivation-sudden decrease in corrosion rate from the initial active
region)

Primary passive potential (Above this potential, the passive film becomes
stable and corrosion rate decreases drastically to the lower value)

Flade potential (on interruption of anodic polarization, decay in passivity with
time occurs through potential changes in stages. The noble potential exhibited
just before rapid potential decay was found to be more noble, the more acid
the solution and referred to as Flade potential [5]. See Fig. 2.28.

Passive current density is the minimum current density required to maintain
stable passivity.

Pitting potential is the potential at which there is sudden increase in current
density due to breakdown of passive film. At higher potentials beyond the
stable passive region, the passive film is disturbed and breaks down, leading
to subsequent increase in anodic corrosion rate in the transpassive region

It is possible to determine, the passive corrosion rate, passive potential region,
relative stability of the passive state as well as the essential electrochemical con-
ditions necessary to achieve spontaneous passivity.

Enhancement of temperature and acidity tends to increase the critical anodic
current density for passivation. Presence of chlorides is detrimental to passivity.

Mixed potential behavior of active—passive metals and alloys can be understood
when cathodic reduction processes are superimposed on the anodic polarization
curve. As shown in Fig. 2.29, three different activation controlled reduction
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Fig. 2.28 Decay of passivity
on interruption of anodic
polarization indicating Flade
potential (Eg) [5]

t (Sec)

processes having varying exchange current densities are superimposed on the
anodic polarization curve [2, 12].

Three different conditions are possible, namely [12]

e Casel

Only one stable potential at C where the mixed potential theory is satisfied. The
metal corrodes having i and E.,, corresponding to point C
Eg: Fe in dilute H,SOy, Ti in dilute H,SO4/HCIL.

ioic1)  Hoca) io(ca)

iCnrr ! l l I

Logi

Fig. 2.29 Stability of passivity under different activation—controlled cathodic processes [12]
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e Case Il
Three points of intersection D, E and F where rate of oxidation is equal to rate of
reduction. Point E is not in stable state, while D is in active region (high
corrosion rate) and F in passive state (lowest corrosion rate). This system can
exist in active and passive stable states. (Borderline passivity)
Eg: Cr in dilute HCI1 or H,SO,, Stainless steel in H,SO,4 (containing oxidizers).
e (Case III
Spontaneous passivation with only stable potential at G in the passive region.
This case is the most desirable.
Eg: Cr—noble metal alloys in H,SO,4 or HCI.
Ti—noble metal alloys in dilute H,SOy,
18-8 stainless steel in acid (containing ferric ions).

Achievement of condition as in case III is essential for the development of
corrosion resistant alloys. Borderline passivity need to be avoided in which both
active and passive states remain stable. At higher oxidizing conditions, passive
films break down and transpassivity sets in, leading to initiation of localized cor-
rosion through pitting.

Total cathodic partial current density at E,, should be equal to or greater than i
to achieve spontaneous passivation.

The electrochemical criterion to achieve spontaneous passivation can be stated
as [12]:

ic(atEpp)

Lerit

Passivity Index (PI) = (2.81)

For PI > 1, Spontaneous passivation occurs and for PI < 1, no spontaneous
passivation occurs, even though as in case II, a stable passive region may exist
along with another corrosion region (Borderline passivity).

Spontaneous passivation depends on

(a) Passivation potential

(b) Reversible potential of the oxidant

(c) Passivation current density

(d) Cathodic partial current density of the oxidant at passivation potential.

To achieve stable spontaneous passivation, the following electrochemical con-
ditions need to be satisfied.

e Passive potential to be lower than reversible potential of the oxidant.
e Passive current density to be less than cathodic reduction current density.

The choice of a metal or alloy based on passive corrosion resistance depends on
the following factors [12]:

(a) To achieve passive behavior where cathodic reduction is activation controlled,
a metal or alloy with an active E;, is superior.
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(b) If the reduction process is diffusion controlled, a metal or alloy having a small
icrie Will passivate faster.

For development of corrosion-resistant alloys based on passivity criterion, two
approaches then become possible.

(a) Enhancing ease of passivation by reducing i or keeping Ep;, at more active
values.
Anodic dissolution behavior of the metal/alloy can be changed by appropriate
alloy addition in order to decrease i;.
Eg: Titanium, chromium
(alloying additions such as molybdenum, nickel, tantalum and columbium
beneficial)

(b) Increase cathodic reduction rates in order to achieve spontaneous passivation—
coupling/alloying with noble metals having high exchange current densities for
reduction processes.

For example metals with active Ep;, such as titanium and chromium and alloys
containing these metals which possess high exchange current densities for hydrogen
reduction can undergo spontaneous passivation.

Rather unusual effects are observed in galvanic contacts between active-passive
metals and noble metals such as platinum [4]. For example, titanium when coupled
to platinum in an acid solution in the absence of oxidizers exhibits spontaneous
passivation. Titanium can exist in passive condition at potentials more active than
the reversible hydrogen reduction potentials. The exchange current density for
hydrogen reduction on platinum is very high and the reduction current is larger than
the critical anodic current density for titanium passivation, under the above con-
ditions. On the other hand, if the passive range for the active-passive metal begins at
nobler potentials than the reversible hydrogen potential, the corrosion rate of ‘ac-
tive’ titanium will increase when coupled to ‘noble’ platinum.

Effect of addition of oxidizer (ferric, chromate) on the electrochemical behavior
of active-passive alloys can be compared with those of normal metals. Corrosion
rate of an active-passive alloy initially increases with oxidizer additions, while still
in active state. However, after passive state is reached, the corrosion rate steeply
decreases to a lower value and essentially remains at this low corrosion rate
thereafter. Corrosion rate however increases due to transpassive behavior on
increasing oxidizer levels to very high values [2].

It is interesting to note that, once the passive film has been formed, it can be
retained at oxidizer concentrations even lower than that needed for passive film
formation.

Oxidizer concentration necessary to maintain passivity should at least be the
same or higher than the required minimum to induce spontaneous passivation.
There is also a concern of borderline passivity when any surface disturbance
(scratching) will destabilize passivity, leading to increase in corrosion rate. The
following conditions need to be kept in mind regarding passive behavior of metals
and alloys [1, 2, 4]:
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e Corrosion rate is proportional to anodic current density in the active state irre-
spective of whether the metal or alloy exhibits passivity or not.
Rate of cathodic reduction must exceed i to achieve lower corrosion rates.
Borderline passivity to be avoided while spontaneous passivation is preferred.
e Breakdown of passive films in high oxidizing environments or noble potentials
due to transpassivity to be avoided.

2.19 Pitting Behavior of Passive Metals and Alloys

Chloride ions breakdown passivity or even at times prevent passivation of Fe, Cr,
Ni, Co and stainless steels, since they can penetrate oxide films through pores and
influence exchange current density. Breakdown of passivity by chloride ions is
localized leading to pitting corrosion.

Susceptibility for pitting corrosion can be monitored through cyclic anodic
polarization as shown in Fig. 2.30. Pitting potential can be experimentally deter-
mined. Initiation and propagation of pits occur between E,;, and E;.. The potential
where the loop closes during reverse scan is the protection potential (Ep.). New
pits are initiated above Epy. [1, 2, 4].

The following electrochemical aspects with respect to pitting initiation in
active-passive metals and alloys may be noted.

e When E,; and E are the same, little pitting tendency
e If E, is more positive than E;, there will be no pitting.
® Repassivation tendency increases with high E.

Pitting Potential, ' - =
EPit P < .
/ assive Region

Potential

Current Density

Fig. 2.30 Schematic cyclic anodic polarization of active-passive metal
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Pitting probability higher, if Ej, is more negative than Ep;.
When E,, is higher than E; spontaneous pitting occurs

e E,; lower, with higher concentration of aggressive anions like Cl, which
promote pitting.

e E,; increases to nobler values with chromium and molybdenum addition when
pitting corrosion is decreased.

e Pitting Resistance Equivalent Number (PREN) is used to measure relative pit-
ting resistance of stainless steels in chloride media. [PREN = % Cr + 3.3%
(Mo) + 16% (N)]

2.20 Anodic Protection [1, 2, 13]

Anodic protection through impressed anodic current can be applied to metals and
alloys that exhibit active-passive behavior. The interface potential of the protected
structure is increased to remain at the stable passive domain.

If an active-passive alloy such as stainless steel is maintained in the passive
region through an applied anodic potential (or current), its initial corrosion rate
(icorr) can be shifted to a low value at i, as shown in Fig. 2.31 [1, 2, 4].

Anodic protection unlike cathodic protection is ideally suited for protection of
active-passive metals and alloys in aggressive environments such as high acidity
and corrosive chemicals.

Typical anodic protection circuit is shown in Fig. 2.32 [2, 4, 13].

Anode is the container material itself (Eg: Stainless steel) Inert cathode materials
having large surface area preferred. Recommended cathode materials for acid and

Applied current

o
B

Logl
Log |

Fig. 2.31 Polarization curves illustrating anodic protection [2, 4]
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8
Anode (Tank)
e o ]
S “ I DC Power supply
Cathode REF
Acid containing stainless steel tank

Fig. 2.32 Schematic illustration of anodic protection of acid containing stainless steel tank

corrosive industrial liquids include platinum-clad brass, chromium-nickel steel,
silicon cast iron, copper, Hastelloy C and nickel-plated steel. Various types of
reference electrodes such as Calomel, Ag/AgCl, Hg/HgSO, and platinum are used
depending on the chemical environment.

Anodic protection can substantially reduce corrosion rate of active-passive
alloys in very aggressive environments. For example, anodic protection of 304
stainless steels exposed to aerated sulfuric acid (5 M) containing about 0.1 M
chlorides could reduce corrosion rate from an unprotected value of about 2000 pm/
year, to about 5 pm/year. It has been widely applied to protect chemical storage
tanks, reactors, heat exchangers and even transportation vessels.

A comparison between anodic and cathodic protection is given in Table 2.4.

Table 2.4 Comparison of anodic and cathodic protection methods [2-5]

Major factors Anodic protection Cathodic protection

Environmental For aggressive chemical Moderate corrosion environments only

conditions corrosives

Suitability Only for active-passive metals Applicable to all metals in general
and alloys

Operational Electrochemical estimation of Protective cathodic currents to be

features appropriate protection range established through initial design and
possible field trials

Cost aspects Higher investment, but low Low investment and higher operational
operational costs costs




72 K. A. Natarajan

2.21 Cathodic Protection [1-5, 14, 15]

From potential—pH diagrams for metal—H,O-O, equilibria, stability regions for
metal immunity (state where the metal remains in its thermodynamically neutral
form without oxidation) can be predicted. If the metal potential is maintained at its
reversible equilibrium value where its remains in its neutral metallic state, corrosion
can be eliminated.

Corrosion occurs due to differing potentials (anodic and cathodic areas) on a
metal surface. When the potential differences are narrowed down and eventually
eliminated with the entire surface converted to equipotential region (cathodic zone),
corrosion can be arrested. Cathodic protection is based on the principle of corrosion
control by making the metal surface cathodic (through cathodic polarization). This
can be achieved either by attaching to a sacrificial anode or by an impressed DC
current (potential). The entire corroding structure in forced to collect current
(electrons) from the environment. Cathodic protection is defined as elimination or
reduction of corrosion by making the entire metal a cathode by means of an
impressed current or attachment to a sacrificial (more anodic) electrode. Basic
electrochemical concepts involved in cathodic protection are illustrated in
Fig. 2.33.

If the cathode (E.unoqe) 1S polarized by an external current, the anodic reaction
would be retarded, while the catholic reduction is enhanced. At the region, where
the rates of cathodic and anodic reactions are equal, E.;, and I.., are indicated
defining the corrosion rate of the metal. If the corrosion potential is moved from
Ecorr (B) to a lower value E through an applied current (C-D), rate of corrosion
would decrease to (D-E) from Ic... If the applied current is further increased,
corrosion current further deceases, as the potential moves to more active values. At

ECathode

Potential

anode

Log |

Fig. 2.33 Electrochemical illustration of cathodic protection [5]
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an applied current equal to G-F, corrosion is nullified completely as the potential
coincides with E,,oq.. Still higher applied currents (H-I) do not help
(over-protection).

In natural aqueous environments at neutral pH as in sea water, reduction of
oxygen (O, + 2H,O + 4e = 40H ) is the cathodic reaction which is diffusion
controlled. Polarization diagram representing cathodic protection under the above
conditions is illustrated in Fig. 2.34. Corrosion rate under the conditions is dictated
by limiting (diffusion) current for oxygen reduction and therefore, the applied
cathodic current for corrosion protection is substantially lower.

The cathodic current density required to maintain the correct protection potential
will vary depending on environmental conditions. The protection potential which is
equal to the equilibrium potential for different metals can be calculated. For
example, for iron,

Fe =Fe™ ™ +2¢,E" = —0.44V (2.27)

Depending on the pH and from a knowledge of the solubility product (Ks,) of
the reaction product (Fe(OH), for example), concentration of Fe*™ can be estimated
and the corresponding equilibrium potential calculated. For neutral pH, the pro-
tective potential for iron works out to be about —0.62 V (NHE) or —0.85 to 0.90 V
(Cu—CuSO0y,).

Major applications of cathodic protection include external surfaces of pipelines,
ship hulls, storage tank, jetties and harbor structures, steel sheets and piles, off shore
platforms, floating subsea structures, reinforced concrete structures as well as water
storage and circulating systems. Generally, exterior of pipelines and other structures

<€— O,+2H,0 +4e =
40H-

Log |

Fig. 2.34 Cathodic protection for systems under cathodic diffusion control [2]
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Fig. 2.35 Sacrificial anode cathodic protection

are initially well coated and cathodic protection is applied only to coating defects/
holidays (5-10% of the damaged coatings).
Two methods of cathodic protection are:

(a) Sacrificial anode protection where the structure to be protected is connected
directly to a more active metal/alloy (Fig. 2.35).

(b) Impressed current method, where the protected structure is connected to an
auxiliary anode through a DC power supply (Fig. 2.36).

In sacrificial anode protection no external power source is used. More active
anodes such as magnesium, aluminum and zinc can be used to protect steel
structures which require only lower currents for protection in soils having low
resistivity.

The following factors need to be ascertained in the choice of an appropriate
galvanic anode.

(+)

DC Power Supply

(Rectifier)
b—
Pipe line — (Ground bed
in soil — anode)
(—

Fig. 2.36 Impressed current cathodic protection’
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(a) Electrical energy content or anode capacity which is a measure of electric
energy per weight provided by the sacrificial anode as dictated by Faraday’s
laws. Electrical energy content (EEC) for zinc anode is estimated to be 820 A
hours/Kg which means that if a zinc anode were to discharge one ampere
continuously, one Kg will be consumed in 820 h. The EEC output will be
proportional to the anode efficiency and practical energy output will be actually
dictated by the anode efficiency of the chosen galvanic anode.

(b) Solution potential

(c) Driving potential which is the difference between solution potential and the
potential of the polarized structure.

(d) Anode bed—number of anodes in the back-fill.

The following parameters need to be predetermined for the application of
impressed current protection.

(a) Source of DC Current.

(b) Estimation of current necessary for complete protection.
(c) Auxiliary anodes—choice, size, number, installation.
(d) Installation, design, erection and maintenance.

For large structures such as underground pipe lines, impressed current cathodic
protection is used, while for smaller structures such as house-hold water tanks,
ship’s hull etc., sacrificial anodes can be effectively used. Initial coating of steel
pipe lines and tubes can significantly reduce protection current requirements and
thus save cost.

Approximate current requirements for cathodic protection of steel pipes are
indicated below:

Uncoated structures in flowing sea water 10-15 mA/ft>
Well-coated pipes in water 0.01-0.003 mA/ft>
Excellently coated and exposed to water or under soil 0.0003 or less mA/ft>

Some anode materials that could be used as ground-beds in impressed current
cathodic protection are indicated in Table 2.5.

Design considerations for both impressed current and sacrificial anode systems
have some common steps such as.

Table 2.5 Anode materials

; . Anode material Average consumption, kg/A-year
for impressed current cathodic Cast i 58
protection ast tron -
Steel scrap 5-10
Aluminum 4-6
Graphite 0.5-1.0
Lead -
Platinum -
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(a) Exposed areas to be protected—exposed area at breaks and deteriorated coat-
ings in case of coated structures.

(b) Polarized potential—Current density.

(c) Current demand—depend on the environment and nature of surface coating.

(d) Anode consumption—Numbers and weights of anode materials required to be
determined from known consumption rates for the desired current demand.
Anode number and distribution can be thus estimated. Anode resistance and
design output current to be estimated.

Monitoring the effectiveness of cathodic protection of a structure is important.
Potential measurements of a cathodically polarized structure with reference to a
standard electrode can be periodically made. A potential of —0.85 V (Cu/CuSOy) is
sufficient for protection of steel in soil and natural water environments. The above
criterion is not optimum and situations may arise when more negative potentials (up
to —1.0 V) may be required for protection. Interference from IR components needs
to be taken into account. Close Interval Potential Survey (CIPS) is an intensive
monitoring technique. Direct Current Voltage Gradient (DCVG) method enables
evaluation of protection and defects in insulation. Corrosion coupons (probes) can
be used for monitoring of cathodic protection.

Controlled potential cathodic protection can be adapted to suit specific envi-
ronments. For example, in sea-going vessels, the hull is subjected to variations in
flow velocities which can alter limiting current density (for oxygen reduction),
influencing cathodic protection current requirements from time to time. In such
cases, controlling the potential (rather than current) would be more beneficial.
Controlled potential protection can be used incorporating auxiliary anode—ref-
erence electrode attachment along with automatically—controlled power supply
unit [2].

2.22 Stray Current Corrosion [1-5]

Stray-current corrosion is caused by several impressed current cathodic protection
systems. In industrial protected systems, such as oil production industries having
innumerable buried pipe lines, current leakage from impressed current anodes
installed with cathodic protection systems can unintentionally enter a near-by
unprotected structure (such as water pipelines) and leave from the surfaces creating
severe corrosion (see Fig. 2.37).

Other sources of stray currents include DC electric power rail traction, welding
units, electroplating cells and ground electric DC power.

Leaking stray currents from the above installations take a low resistance pathway
to enter nearby unprotected structures before returning to the source. Regions from
where current leaves are susceptible to stray-current corrosion, while areas
receiving currents are protected!.
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Fig. 2.37 Illustration of stray current corrosion [1]

Solutions to stray current corrosion include electrical bonding of the near-by
unprotected structure. Simultaneously, additional anodes and increasing DC power
capacity can accord full protection to all structures in the vicinity. Properly insu-
lated couplings can also help reduce the problem (see Fig. 2.38). When impressed
current protection systems are installed, anode ground beds should be so located to
ensure that stray currents cannot leak to enter into other near-by structures.

Lo DC Power @
- supply +

Al —s «— |A
N| —> <€« |N

3 Cathodically c é
o] protected structure

—.) (—

D D
E Insulated connection E

I Unprotected pipeline I

Fig. 2.38 Prevention of stray current corrosion by proper design
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Direct stray currents can be classified as anodic, cathodic or a combined inter-
ference. Anodic interference occurs in close proximity to a buried anode. On the
other hand, cathodic interference is encountered in close proximity to a polarized
cathode, the potential shifting in a positive direction where current leaves the
structure (causing corrosion damage). In combined interference, stray current
pick-up occurs close to anode and discharge closer to cathodically polarized areas.
The corrosion damage could be severe in this case since current pickup (overpro-
tection) and discharge (corrosion) are both detrimental.

2.23 Biofouling and Microbially Influenced Corrosion
[1, 16-22]

Biofouling and microbially influenced corrosion (MIC) brought about by various
microorganisms has assumed great industrial significance in recent years. While
biofouling involving attachment of microorganisms onto metals and alloys pro-
motes MIC, electrochemical principles govern biological catalysis of oxidation/
reduction reactions. The role of microorganisms in metallic corrosion can be seen as
a biological catalyst influencing anodic or cathodic reactions along with generation
of biogenic corrodants.

Various microorganisms as listed below are implicated in various MIC
processes.

Sulfur/sulfide oxidizing bacteria Acidithiobacillus thiooxidans
Acidithiobacillus ferrooxidans

Sulfate reducing bacteria (SRB) Desulfovibrio spp.
Desulfobacter spp.
Desulfotomaculum spp.

Iron/manganese oxidizing bacteria Gallionella
Crenothrix
Leptothrix

Metal-reducing bacteria Pseuclomonas spp.

Slime producing bacteria Bacillus spp.

Fungi such as Cladosporium resinae, Aspergillus niger

Microorganisms can promote corrosion through changes in electrochemical
conditions at the metal-solution interface which is modified and conditioned by
prior biofilm formation. Microbial adhesion to metal surfaces as well as interaction
with extracellular polymeric substances (EPS) promote MIC.

The sulfur-bacteria cycle in nature is closely linked to MIC. Sulfur- Sulfide-iron
oxidizing aerobic Acidithiobacillus bacteria bring about oxidation of sulfur, ferrous
ions and various sulfides to ferric-ion containing sulfuric acid, while anaerobic
sulfate-reducing bacteria such as Desulfovibrio sp. reduce sulfates to sulfides
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promoting formation of H,S and metallic sulfides. Fungi such as Aspergillus niger
and Cladosporium resinae produce organic acids such as citric acid which can
dissolve many ferrous and non ferrous metals and alloys. Potential-pH diagrams can
be used to demarcate stability and activity regions of various microorganisms as
well as to understand metal corrosion behavior induced by bacterial activity. While
anodic reaction is oxidation of the metal, the cathodic reactions could be reduction
of hydrogen or oxygen depending on pH of the environment.
Corrosion-promoting microbiological functions are listed below:

Production of organic and inorganic acids, sulfides, phosphides and ammonia.
Biodegradation of surface coatings, passive films and inhibitors.

e Formation of oxygen concentrations cells due to heterogeneous biofilm for-
mation, generating localized anodes and cathodes promoting pitting and crevice
corrosion.

e Direct participation in anodic and/or cathodic electrochemical reactions,
influencing corrosion kinetics.

Microorganisms thus do have both direct and indirect roles in causing metallic
corrosion.

MIC of various steels brought about by Sulfate Reducing Bacteria (SRB) such as
Desulfovibrio sulfuricans, Desulfovibrio vulgaris and Desulfotomaclum nigrificans
has been extensively studied. SRB are the most widely implicated anaerobe causing
corrosion in oil and gas, nuclear power, water treatment, mining and
chemical-based industries. Pipe line internal corrosion and corrosion of sea-going
vessels and marine installations are caused by the presence of these anaerobes.

There are several proposed mechanisms illustrating the role of SRB in steel
corrosion

The cathodic depolarization hypothesis proposed in 1934 [23] dealt with
bacterially-induced  depolarization of hydrogen reduction reaction by
hydrogenase-positive SRB as per the following reaction pathways.

Fe = Fe™ ™ + 2e(corrosion of iron) (2.27)

H,0=H" +0H" (2.82)

H" +e = Hys (2.83)

2H,4s = Hy = 2H™" + 2e (cathodic reaction) (2.84)

SO, +8H" +8e =S~ +4H,0 (Bacterial sulfate reduction) (2.85)
Fe™ " +S~~ = FeS (Biogenic reaction product) (2.86)

Iron hydroxide and iron sulfide precipitates coat the corroded steel surfaces.
The above hypothesis has since been questioned and many alternative mecha-
nisms proposed. The role FeS formed during MIC has been highlighted as a
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potential promoter of corrosion through galvanic interaction (Fe-FeS couple),
cathodic depolarization and stress initiation.

Corrosion fatigue and hydrogen embrittlement of steel could be caused by SRB
activity. HyS—produced by the bacteria can decrease pH at the metal-biofilm
interface (causing acidification) and promote hydrogen permeation into the metal.
Even anodic depolarization by iron-reducing and sulfate-reducing bacteria can be
caused in the MIC of steels Electrical Microbially influenced Corrosion (EMIC)
was proposed to substantiate metallic iron as an electron donor, while biogenic H,S
aggravates the corrosive effect [19]. Anodic iron oxidation can be enhanced by
electron consumption through bacterial sulfate reduction. Another deleterious role
of marine and soil sulfate reducing bacteria is their ability to destabilize passive
films present on active-passive alloys such as stainless steels. Corrosion behavior of
stainless steels is significantly influenced by biofilms. Ennoblement of stainless
steels has been reported in the presence of biofilms containing iron-and
manganese-oxidizing bacteria [1, 16-22].

Tubercle formation in oil and water pipelines is a serious problem, mainly
brought about by iron-oxidizing bacteria. Massive tubercles can seriously impede
mass and heat transfer in pipes and heat exchangers. In various fuel systems,
microbial growth can create problems such as clogging of valves, filters and pipes,
sludge accumulation, corrosion of storage tanks, biodegradation of hydrocarbon
oils and breakage of engine parts.

Microbial corrosion in aircraft components has now been well established.
Various bacterial and fungal species can grow and proliferate in fuel tanks. Bacteria
like Pseudomonas and fungi such as Cladosporium resinae have been isolated from
aircraft aluminum alloy fuel tanks.

Intergranular cracking and extensive pitting of aluminum alloys can occur due to
microbial activity.

Biofouling and microbial corrosion are extensively observed in reinforced
concrete structures and in human body implants. MIC of reinforced steels in con-
crete is a serious problem since integrity of bridges, buildings, terrestrial and marine
environment-structures could be compromised. Formation of biogenic corrosion
products inside concrete components induce internal stresses causing catastrophic
fracture.

Human body environment has been proved to be corrosive, especially with
respect to various implant biomaterials such as stainless steels and titanium alloys.
An oxygenated saline electrolyte at neutral pH containing water, chlorides, calcium,
phosphates, amino acids and various organic polymers present a corrosive envi-
ronment promoting anodic and cathodic electrochemical reactions. Various bacte-
rial species inhabiting human body organs and circulatory systems interact with
implanted metals and alloys. Corrosion forms such as pitting, crevice corrosion,
galvanic attack, stress corrosion and intergranular attack are known to be prevalent
in different locations of the human body. Some examples are given below:
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(a) Austenitic stainless steels used in cranial plates, orthopaedic and spinal
implants undergo pitting and crevice corrosion. Stress corrosion and corrosion
fatigue has been observed in orthopedic joint implants.

(b) Cobalt-chromium alloys used in dental implants, orthopaedic fracture plates
and joint replacements undergo dissolution in presence of serum proteins
causing metal toxicity.

(c) Titanium alloys used as cranial and orthopaedic fracture plates undergo
fracture.

2.24 Summary

Various corrosion processes can be explained with respect to electrochemical and
microbiological mechanisms. Thermodynamic and kinetic aspects of corrosion are
explained with reference to galvanic and concentration cells, electrochemical
polarization, electrode kinetics and mixed potential theory. Mass and electron
transport processes at a metal-solution interface can be understood in terms of
concentration and activation over-potentials and kinetic equations derived to esti-
mate corrosion rates. Cathodic protection, the extensively used protection method is
based on principles of immunity and cathodic polarization. Principles of passivity
find application in anodic protection of active-passive metals and alloys exposed to
aggressive acid environments. Corrosion processes are catalyzed by various soil
and marine microorganisms. Electrochemical mechanisms control microbially
influenced corrosion, promoted by formation of biofilms. Biomaterials used in
human body implants are exposed to corrosive environments prevailing in the
human body.

Most of the types of corrosion occurring in industrial environments can be
effectively explained in terms of electrochemical and microbiological principles.
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Chapter 3 M)
Corrosion Sensing ki

Jeff Demo and Ravi Rajamani

Abstract Sensing is a key part of diagnostics and prognostics of corrosion. In this
chapter we will outline the basic techniques used to detect corrosion; without going
into details of the analysis that would accompany these techniques. That is covered
elsewhere in this book; see Chap. 5 on Data Analytics for Corrosion Assessment.
Corrosion is an electrochemical reaction of the metal to the environment, so it can
be assessed either by directly detecting it on the material or by estimating its
likelihood of occurrence indirectly via measuring ambient conditions. Both will be
covered in this chapter. Lesser known phenomena involving corrosion from
microorganisms are dealt with in Chap. 2 on the Principles of Corrosion Process.

Keywords Corrosion sensing - Environmental monitoring - Electrochemical -
Free corrosion - Galvanic corrosion - Inspection - LPR - Radiography - Strain
measurement - Optical corrosion sensing

3.1 Introduction

Corrosion is the result of a metal’s reaction to environmental conditions and pro-
ducing structurally weaker oxides. It starts off as a local phenomenon on the surface
and spreads if unchecked. But it can also manifest itself internally along imperfec-
tions such as grain boundaries, or interfaces between metal layers (see Chap. 2).
Several broad changes take place that can be detected by appropriate sensors and
correlated to the presence of corrosion. Because this is an electromechanical phe-
nomenon, several techniques rely on the detection of the electric currents that are
generated by the reactions. Others rely on detecting chemical changes that indicate
the presence of the products of oxidation. And yet others directly detect corrosion
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visually by observing the images of metal surfaces and apply pattern recognition
techniques, or profiling the surface for imperfections engendered by corrosion. With
the growth of computational power, these techniques can be quite reliable. Chapter 5
discusses the analytical techniques used to detect and classify corrosion from images.

In the chapter we will categorize sensing broadly in terms of the changes to
physical parameters that corrosion affects. These modalities are electrochemical,
electrical, optical and visual, mechanical, chemical, and radiation.

Electromechanical methods are most direct because corrosion is fundamentally
an electrochemical process that acts on the micro scale where the metal comes in
contact with an oxidizing agent, which is typically the surrounding electrolytic
medium. Many techniques have been developed to measure the electrical properties
of the medium as well as the actual material to assess whether the chemical reac-
tions associated with corrosion are taking place, and possibly the magnitude of
these reactions.

Corrosion effects a physical change in dimensions of the metal, both in the
thickness and in the surface finish. These mechanical characteristics can form
another means of assessing corrosion’s initiation and growth. These can be actual
dimensional measurements as well as visual measurements.

In addition to direct measurements, indirect means provide a useful way to
estimate the presence and progression of corrosion and corrosive conditions. For
example, using a sacrificial coupon of the same material as the structure, exposed to
the same environment as the structure, is an oft-used method for corrosion
assessment. Another powerful way is to analytically assess the propensity of the
environment to initiate and encourage corrosion by analyzing its physical and
chemical properties and employing a model-based method for assessing corrosion.
In the following sections we will analyze each of these methods in more detail.
Some of these methods require considerably more analysis, and those details can be
found elsewhere in this work, such as in Chap. 5.

3.2 Electrochemical/Electrical Techniques

At a base level, corrosion is an electrochemical process, and as such, corrosion
monitoring and evaluation can be performed through a number of electrochemical
and electronic sensing techniques. These techniques can be used in both laboratory
and field environments, though some methods are better suited for one over the
other. Potential measurements, for example, are generally best suited for laboratory
settings where laboratory equipment and a well-controlled environment are avail-
able. Potential measurements, including both potentiostatic and potentiodynamic
techniques, provide insights into electrochemical conditions that result in metallic
corrosion. As corrosion requires the transfer of electrons and ions between sub-
strates and electrolytes, corrosion rates are equivalent to electrical currents. As such,
the rates of these corrosion processes are strongly dependent upon potential dif-
ferences between the metals and the surrounding electrolyte [1].
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3.2.1 Potentiostatic and Potentiodynamic Evaluation

Potentiostatic evaluation of metals is generally a lab-based corrosion evaluation
technique, often relying upon potentiostat equipment to accurately control the
potential of a Counter Electrode (CE) against a Working Electrode (WE). This
allows a well-defined measurement of the potential difference between the WE and
a Reference Electrode (RE). Similarly, galvanostatic testing is performed by con-
trolling the current flow between the WE and the CE. In both scenarios, the material
of interested acts as the WE, all electrodes are exposed to an electrolyte, and
corrosion potential (E.,) or corrosion current (i.o,) iS monitored.

Using a potentiostat, cathodic and anodic currents can be measured for the
corrosion cell by applying and holding electrical potentials on the cell. Plotting
these currents, along with the measured cell current at each potentiostatic step
provides an overall picture of the electrochemical processes associated with cor-
rosion under conditions present in the electrochemical test cell (Fig. 3.1). As shown
in the image, the vertical axis represents applied electrical potential, and the hori-
zontal axis represents the logarithm of absolute current for a generic material.
Straight lines labeled as Cathodic and Anodic currents represent the theoretical
currents for the material, and the curved line shows the total current, i.e. the sum of
anodic and cathodic currents. The value of either anodic of cathodic current at their
intersection is i, the corrosion current, a direct measurement of corrosion rate of
the material.

Potentiodynamic scans, wherein applied potentials are dynamically scanned
across the range of interest, provide the same information as a sequence of
potentiostatic measurements. The critical information collected from this testing are
the E..; and i.., values that can be converted to corrosion rates for the material
under test. Knowing the i.,, value, corrosion rate can be calculated using Faraday’s
law:
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0 = nFM (3.1)

where Q is the charge in coulombs resulting from the corrosion reaction, n is the
number of electrons transferred per molecule or atom of the material under test, F is
Faraday’s constant (96,485 coulombs/mole) and M is the number of moles of the
reacting material under test. An alternate configuration of Faraday’s law incorpo-
rates the concept of equivalent weight (EW), which is defined as

AW
B n

EW (3.2)

where AW is the atomic weight of the species. As M = m/AW, where m = the
mass of the test materials under reaction,

EW
m= ( )Q. (3.3)
F
In terms of corrosion rate (CR), this equation can be rewritten as
icomK x EW
CR=———— 34
T (3.4)

where i.,, 1S the measured corrosion current in amperes, K is a constant defining the
units for the corrosion rate (i..3272 mm/[A-cm-year], 1.288 X 10° milli-inches/
[A-cm-year]), EW is equivalent weight in grams/equivalent, d is material under test
density in g/cm®, and A is sample area in cm? [2].

3.2.2 Electrochemical Impedance Spectroscopy
and Polarization Resistance

While potentiostatic and potentiodynamic scans are generally suitable for labora-
tory material evaluations where potentiostat devices are available, they do not lend
themselves to field applications where more robust, lower power instrumentation
may be required. The same concepts as defined for laboratory techniques can,
however, be leveraged for field-level analysis of corrosion rates. Potentiostatic and
potentiodynamic scans offer a full picture of anodic and cathodic currents across a
wide range of electrochemical potentials, however, by focusing on a small potential
range surrounding the E.,, value, assumptions can be made to assess corrosion
potential in a means suitable for embedded corrosion monitoring systems.
Electrochemical impedance spectroscopy (EIS) uses an alternating current
(AC) signal applied across a set of electrodes fabricated out of the material of
interest to determine corrosion rate of the material under test at one or more
excitation frequencies. By exciting the electrodes around the E, value, and using
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Fig. 3.2 Determination of 2T
material Tafel constants E
(https://www.gscsg.com/tafel- o5
extrapolation.html)

E -

corr |

known Tafel constants (defined in the discussion related to Fig. 3.2) for a given
material of interest, corrosion rates can be calculated through restriction of potential
application to only a small range of applied potentials. By applying a known
excitation potential and measuring the resulting current, a polarization resistance
(R,) can be calculated as the slope of the current-versus-voltage curve, which
approximates a straight line across the small excitation range around E.,,. Linear
polarization resistance (LPR) sensors are a popular embodiment of these principles
for corrosion detection, especially for liquid environments.

Coupled with the R, values, specific material properties associated with the
material of interest must be known or estimated a priori for determination of cor-
rosion rates. Specifically, anodic and cathodic Tafel constants for the material of
interest must be used. Recalling the potentiostatic and potentiodynamic scan
techniques described, the Anodic Tafel constant (8,) and the Cathodic Tafel con-
stant (B.) are defined as the slopes of anodic and cathodic currents that pass through
the intersection of E ., and i.., during potentiodynamic scans (Fig. 3.2).

R, and .. are related as defined in Egs. 3.5 and 3.6, where B is the Stern-Geary
constant and f, and f5. are anodic and cathodic Tafel constants specific to the
electrochemical processes for corrosion of the alloy of interest. Once igo, 1S
determined, Eq. 3.4 can be used to determine corrosion rate for a specific sensor
configuration.

. B
R, =——; oOr lcop=— (3.5)
R,

_ ﬁaﬁc
B =230, + B (3:6)

As stated, specific electrical excitation requirements must be adhered to for
accurate corrosion current measurements using EIS and polarization resistance
techniques. Small variations of the applied potential around E_,, can be made with
sine wave excitations, triangle wave excitations, or potential step excitations.
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Fig. 3.3 Schematic isometric (left) and top (right) views of a laminated interdigitated
two-electrode sensor. The two electrodes are formed by electrically connecting every other digit
to form the interdigitated electrodes. Electrodes can be fabricated with a single materials for free
corrosion measurements or different materials for galvanic corrosion measurements

For sine wave excitation, voltages of not more than 30 mV amplitude around E_,,
applied at a frequency between 0.01 and 10 Hz are suitable. It is advisable to
average multiple sine wave cycles to increase confidence in the measurement.
Triangle wave excitations may be used as well, again at amplitudes not more than
30 mV around the E.,, value. Ramp rates of 0.045 mV/s to 10 mV/s are suitable
for triangle wave excitations. Potential step excitations may also be used, wherein
discrete potential steps both above and below E, are used. These steps should
remain within £30 mV of E,,, to obtain a linear fit of the current response. At each
step, the hold time at a given potential should be sufficient to obtain a steady state
measurement, ideally using the average of multiple measurements at each potential
hold [2, 3]. These excitations can be applied to a two-electrode sensor configuration
as shown in Fig. 3.3.

3.2.3 Galvanic Corrosion

Electrochemical techniques described above work well for determination of free
material corrosion, wherein a single alloy of interest is undergoing corrosion pro-
cesses. However, in practice, there are often multiple alloys in single electro-
chemical cells, resulting in galvanic corrosion processes. In these cases, two
dissimilar metals, one acting as an anode and the other acting as a cathode, form a
galvanic couple which drives corrosion. As with free corrosion processes, the
current flow between the two dissimilar metals defines the overall corrosion rate of
the cell. Galvanic corrosion sensors can be configured in the same manner as free
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corrosion sensors, with the difference of having alternating sensor digits fabricated
out of these dissimilar materials (Fig. 3.3). Corrosion current of the electrochemical
cell can be made using a number of methods, though the most straightforward
methods consist of the use of a zero resistance ammeter (ZRA) or a precision
resistor. Once galvanic currents are measured, current measurements can be con-
verted to mass loss via Faraday’s law.

A ZRA circuit will apply a current bias to control the potential difference
between the two dissimilar metal electrodes in a galvanic couple. As a galvanic
corrosion sensor may consist of two electrodes of dissimilar metals, the ZRA must
connect to each electrode and provide a positive current to the more negatively
charged electrode. The current required for the potential difference of the electro-
chemical cell to reach zero is the galvanic corrosion current of the electrochemical
cell.

An alternative to using a ZRA to measure galvanic corrosion current is to place a
precision resistor between the two electrodes of dissimilar metals. Using Ohm’s law
(V =1R) with a known resistance (R) and a measured voltage (V) the galvanic
current (I) can be measured. It is recommended that the value of the precision
resistor used in this circuit be selected to be as low a value as possible while still
allowing for a high precision voltage measurement to be obtained [4].

3.2.4 Electrochemical Noise

Electrochemical noise techniques are based on the current and potential fluctuations
that occur during corrosion processes. Random electrochemical processes occurring
on a corroding substrate will generate noise in the overall potential and current
signals. Specific types of corrosion, including general corrosion, pitting, crevice,
and stress corrosion cracking, will each have a characteristic noise signature that
can be monitored in situ. This signature can then be used to evaluate the types of
corrosion occurring on a substrate and the severity of the underlying corrosion
processes [5]. Electrochemical noise is the result of stochastic pulses of current
generated by sudden film rupture, crack propagation, discrete events involving
metal dissolution and hydrogen discharge with gas bubble formation and detach-
ment. The technique of measuring electrochemical noise uses no applied external
signal for the collection of experimental data.

As with potentiostatic and potentiodynamic test configurations, electrical noise
measurement setups generally require a set of three electrodes, with a mix of
reference, counter, and working electrodes (RE, CE, and WE, respectively). Data
acquisition systems for electrical noise evaluations must be configured for
micro-volts (uV) or lower level resolutions, as the signals of interest tend to be
relatively small. Data acquisition systems should also allow for simultaneous
measurements of voltages and currents within the three electrode system.

Analysis of electrochemical noise signals are generally performed as a statistical
analysis of both voltage (potential) and current measurements within a system.
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Table 3.1 Electrochemical noise measurement analysis to determine corrosion mechanisms [5]

Mechanism Potential Current

Skewness Kurtosis Skewness Kurtosis
General <£l <3 <£1 <3
Pitting <=2 >3 >+2 >3
Transgranular SCC +4 20 —4 20
Intergranular SCC #1 —6.6 18-114 1.5-3.2 6.4-15.6
Intergranular SCC #2 —2to —6 5-45 3-6 10-60

Statistical parameters such as the mean, variance, third and fourth moments (i.e.,
skewness, and kurtosis) of measurements are often used to evaluate collected
electrical noise data. For example, Reid and Eden [6] offer an analysis of potential
and current skewness and Kurtosis to determine the corrosion mechanisms based on
electrochemical noise (Table 3.1).

It is also possible to couple electrical noise measurements to other electro-
chemical monitoring techniques such as polarization resistance measurements. It
has been shown that the ratio of electrochemical current noise to general corrosion
current (icor) can be used as an improved indication of localized corrosion [5, 7].

3.2.5 Electrical Resistance

Electrical resistance (ER) corrosion sensors operate on the principle of measuring
the change in electrical resistance of a thin layer of metal or alloy over time as a
result of corrosion. When exposed to a corrosive environment, corrosion related
material loss will thin the alloy layer, resulting in an increase in electrical resistance.
As the resistivity of an alloy is dependent upon temperature, electrical resistance
sensors require a protected “reference” sensor exposed to the same thermal envi-
ronment, but physically shielded from the surrounding corrosive environment. The
reference sensor will remain pristine while the exposed element will be impacted by
corrosivity of the surrounding environment. By quantifying the change in resistance
relative to an initial pristine state or some prior reading, cumulative corrosion
measurements can be made, often using a sensor manufacturer-defined correlation
between changes in impedance and alloy mass loss. While free corrosion sensors
and galvanic corrosion sensors offer instantaneous corrosion rate measurements,
electrical resistance sensors provide cumulative corrosion measurements for a
defined time period. The average corrosion rate for a given time period can be
estimated by dividing cumulative corrosion by the time interval [8]. This is an
example of a sacrificial coupon sensor, more details are discussed below. Another
example of the use of this principle is described next with the inductive shift sensor.
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3.2.6 Inductive Shift

Similar to electrical resistance probes, inductive shift sensors allow for identifica-
tion of corrosion by monitoring the change in inductance of a coil coupled to a
sacrificial component. As with electrical resistance measurements, inductive shift
sensors are susceptible to environmental impacts such as temperature, and will
benefit from the use of a protected reference sensor for compensation. The reference
sensor must be physically isolated from corrosive conditions while remaining in the
same thermal environment as the sacrificial sensor. Inductive shift sensors tend to
be more sensitive to the initiation of corrosion processes than their electrical
resistance counterparts with similar total corrosion spans.

3.3 Environmental Sensing

The electrical and electrochemical sensing techniques discussed so far all either
measure actual material loss or electrical processes directly associated with the
processes of corrosion. However, it is also possible to monitor environmental
effects to make assumptions about the corrosivity of an environment, and thus, the
likelihood of corrosion to occur.

3.3.1 Relative Humidity and Temperature

Relative humidity sensors provide a measurement of the amount of water vapor in
air expressed as a percentage of the amount needed for saturation at the same
temperature. Relative humidity is a key driver of corrosion as it is a measure of the
availability of moisture that can generate thin films of electrolyte on material sur-
faces. Further impacting the formation of electrolyte layers on material surfaces is
temperature of both the ambient environment and the surface of interest.

Direct measurements of temperature are used to characterize the local environ-
ment and can be used in combination with other parameters to determine if cor-
rosion is expected. Temperature measurements may also be used for compensating
other sensing elements and interface electronics which can have temperature
dependence.

When combined with surface or air temperature readings, relative humidity
measurements provide dew point temperature. Dew point is a valuable parameter
due to the fact that it can indicate when a substrate is in a condensing environment
under which corrosion processes will occur.

Relative humidity (RH) data is used to calculate the ISO time of wetness by
summing the time RH is greater than 80% and temperature is above 0 °C, and
dividing by the total exposure time. Classification of the time of wetness category is
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Tablfe 3.2. EnvironmentalA Category Time of wetness (%)
classification for percent time = 01
of wetness according to ISO T =0
9223 T2 0l<t <3
T 3<t <30
T4 30<t < 60
Ts 60 <1t

defined by percent time of wetness over the full exposure period (Table 3.2).
Environmental severity is classified as “very low” under category t; though very
high under category Ts.

Relative humidity and temperature measurements can be made using a wide
array of commercially available sensors based on resistive, capacitive or alternate
methods of parameter detection [9, 10].

3.3.2 Environmental Contaminants

Evaluation of atmospheric contaminants can provide valuable information relating
to alloy corrosivity. Corrosion and environmental severity measurement systems
may include one or more of the following sensor modalities to supplement an
understanding of the local microclimate, to characterize environmental exposure
throughout a structure’s lifetime, and to identify specific geographical locations in
which accelerated corrosion may occur.

e Solution Conductance—Solution conductance (or surface conductance) mea-
surements can be used to measure moisture and contaminants, such as marine
salts or aerosols, that form electrolyte layers on the surface of a structure. The
hygroscopic properties of the contaminant deposits such as salts will impact the
moisture layer and therefore conductance measurements. Conductive measure-
ments are indicative of conditions that may promote corrosion and are obtained
using two-electrode sensors. Sensors consist of two interdigitated electrodes
fabricated of a single noble alloy such as gold, separated by an electrical
insulator (Fig. 3.4). The separation distance between electrodes should be uni-
form and should not exceed 300 um. Electrical measurements are taken with the
sensor by measuring current response of the sensor to a known applied sinu-
soidal excitation signal. The applied excitation signal should be a small signal
AC voltage, nominally around 30 mV in amplitude, and corresponding mea-
sured currents will be dependent upon the excitation voltage selected as well as
the surrounding environment. Excitation voltages should be applied at fre-
quencies between 0.1 and 1000 kHz. Conductance sensors can also be used to
evaluate the time of wetness (TOW) of a surface based on a wet/dry threshold
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Fig. 3.4 Schematic of a thin film interdigitated two-electrode sensor. The electrodes can be
fabricated using a noble material such as gold for use in a solution conductance sensor element

for conductance, above which a surface is considered “wet” and below which a
surface is considered “dry.” TOW can be used in a number of analysis and
modeling techniques for corrosion evaluations.

e Sulfur Dioxide (SO,)—Sulphur dioxide dissolves readily in water, resulting in a
weak, corrosive acid. The effects of atmospheric SO, exposure far exceed the
effects of other gaseous atmospheric contaminants and should be considered a
priority over other gas contaminant measurements.

e Nitrogen Dioxide (NO,)—As with SO,, atmospheric NO, combines with water
vapor to create a weak nitric acid. As NO, is a byproduct of many industrial
processes and a common pollutant, characterization of this contaminant can
provide insight into exposure resulting from environmental exposure and
operations in close proximity to a large contingency of industrial processes.

e Ozone (0O3)—O05 acts as a strong oxidizer that can lead to accelerated material
degradation at increased exposure levels. As ozone levels increase with altitude,
certain structures including aircraft, can be exposed to higher levels of ozone
than other ground-based structures and equipment.

e Hydrocarbons—Exposure to fluid leaks such as JP-8 fuel or hydraulic fluids can
degrade protective coatings and seals and drive corrosion. Identification of
aromatic hydrocarbons in a microclimate can provide indications of loss of
coating protective properties and corrosive conditions.

The above selection of chemical contaminant sensors is representative of the
types of additional sensors that can be included in a comprehensive corrosion
monitoring system. All sensor types are not required for the implementation of such
a system, but may add value based on the additional information they provide
regarding corrosivity within a structure [11].
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3.4 Mechanical Methods

These methods rely on measuring dimensional parameters and assessing the extent
of corrosion by the sensed changes; methods borrowed from the rich history of
non-destructive evaluation (NDE). The result of corrosion on external surfaces is
the oxidation of material by uniform corrosion across a large portion of the surface
area, or localized corrosion in spots or pits. Internal corrosion can occur in certain
metals buried in other material such as rebar in concrete, or at a microscopic level
within the metal, along grain boundaries, or at interfaces of certain dissimilar metals
or alloys. When certain dissimilar metals are joined, there is a higher tendency for
galvanic action to encourage corrosion at the boundary. When buried, the oxidation
of metal will not result in a loss, but instead in the change of volume of the
structure, or the increase in forces acting on the surrounding matrix. Measuring
these changes can be a proxy for measuring corrosion. Thickness and mass are most
readily measured parameters using any number of probes. Other methods such as
the direct observation of defects can be used as well to assess corrosion. Surface
defect measurements can be done in many ways: Ultrasonic, x-ray, thermography,
and white light interferometry.

3.4.1 Ultrasonic Probes

This is a common way of measuring thickness in metals. The accuracy, resolution,
and depth of measurements are governed by the strength and the frequency of the
acoustic signal as well as the coupling between the sensor and the metal, which is
typically oil or water.

Typically, the frequency of the ultrasound signal ranges from 500 to 25 MHz,
with the higher frequency signals able to detect smaller defects. These probes are
straightforward to describe, if not easy to employ everywhere. The sensing system
consists of a source of ultrasonic waves, typically made with piezoelectric elements,
excited by an AC signal generally shaped to form a pulse. The return signal is
sensed by the same probe (acting in a pulse-echo mode) or by a separate probe
(acting in a pitch-catch mode). The sensor head is held against the structure and
acoustically coupled to the surface with an appropriate coupling medium such as
water or oil. This is needed to ensure that the energy directed inside the metal is not
dissipated in air. Knowing the speed of sound inside the material and the time of
flight of the pulse makes it easy in principle to calculate the thickness. There are
frequency-based techniques as well, that depend on how easily continuous signals
of different frequencies propagate through metals of different thicknesses, but that is
not as common. In fact, the ISO standard on ultrasonic testing (UT) for thickness
measurements only lists the pulsed methods (both relying on wave reflection and
wave transmission [12].
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Fig. 3.5 Phased array ultrasonic inspection of pipes (GE inspection technologies)

While measurement systems that are portable are most common because of cost
and convenience (Fig. 3.5), permanently installed devices can provide more precise
long-term measurements that allow the trending of dimensional parameters over time
[13]. Of course, the disadvantage of a fixed probe is that the area being measured is
limited in extent [14]. UT systems can also be configured to have the source and the
sink on opposing surfaces of the structure, but that makes the system more cum-
bersome and not particularly suited for corrosion detection. Significant disadvantages
of UT are the time and effort it takes, and the need for experienced operators.

While these are standard techniques for using ultrasound to monitor corrosion,
other, innovative, methods for corrosion sensing have been proposed using this
principle as well. For example, some researchers have demonstrated that acoustic
waves generated and received by fiber optic means can be used in a detector for
monitoring corrosion in metal buried in concrete [15]. This device uses the fact that
acoustic waves are blocked by corrosion products and this change in incident
intensity across the rebar where fiber optic sensors have been embedded can be
detected. This is an interesting concept but probably not very practical because of
the need to bury sensors in the concrete. Another way to inspect metal buried in
concrete for corrosion is by using guided wave techniques wherein ultrasonic
energy is sent down the metal and mechanical defects detecting by electromagnetic
acoustic transducers [16].

3.4.2 Radiography

This is a common modality for measuring cross-sectional profile of metal objects,
such as sheet steel. Radiographic methods are used in inspecting pipes for their
thickness and corrosion and erosion related defects. Gamma rays and high energy
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X-rays are used to develop radiographs that can be used to determine wall thickness
in pipes. Common sources are cobalt (Co-60) and iridium (Ir-192). Traditionally,
film has been used to capture the image and post-process the information, but
digital imaging techniques are now coming on board, much like in the medical
sphere. Two techniques called tangential radiography and double wall radiography
are standard. Radiography is superior to UT for pipe inspection if there is insulation
around the pipe, which has to be removed for using ultrasonic techniques. The
transverse technique depends on precise positioning of the source.

Generally, this is done by measuring the intensity of x-ray transmitted through
the sample and thereby assessing the change in thickness. But there have been other
methods such as scattering to evaluate thickness [17]. However, these seem to be
more in the research realm.

3.4.3 Strain Measurements

Concrete, reinforced with pre-stressed iron bars (rebar), is the standard construction
material for most large structures such as bridges. These must be inspected regu-
larly for defects, one of which is the corrosion of buried rebar material. When
buried steel corrodes, its volume increases, and many techniques have been
developed for embedding strain gages in the hope of detecting this change in
volume and hence the corresponding growth of corrosion products. Normal strain
gauges or optical strain gauges can be used to accomplish this [18].

3.4.4 Acoustic Sensing

Acoustic emission corrosion measurements are based on measuring acoustic sound
waves that are emitted during the growth of microscopic defects, such as stress
corrosion cracks. The sensors can thus essentially be viewed as microphones, which
are strategically positioned on structures. The sound waves are generated from
mechanical stresses generated during pressure or temperature changes [19, 20].

3.4.5 Eddy Current

Eddy current techniques have long been used in NDT to measure defects and are
the basis for proximity and vibration measurements in industrial applications. When
applied to corrosion detection, they work on the principle of measuring skin
thickness. In aerospace applications with aluminum skins, eddy current probes are
used to measure thickness, much like ultrasonic probes. Eddy current probes do not
need to make contact with the metal to get a reading, so it can be used in
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applications where UT may not work. Unlike radiographic techniques, this method
of measuring thickness can be done from a single side.

The principle of this technique is to use a coil and an alternating current to
generate an electromagnetic field, which is allowed to interact with the metal. The
presence of the metal changes the effective impedance of the signal which can be
measured. Defects on the metal surface or close under the surface, change the
current flow, which has the same effect on the detected signal. The same principle
works to measure thickness, since the other side of the metal structure can be
considered to be a defect with infinite extent. Eddy current testing (ECT) can be
done with continuous or with pulsed eddy current (PEC) signals. Because the latter
essentially consists of multiple frequencies, more information can be garnered by
the measurement of other features like rise time and final amplitude [21].

3.5 Sacrificial Sensors

A popular way of measuring corrosion is to measure the condition of a sacrificial
sample of the same material as the structure, exposed to the same environment. The
loss of mass or thickness or any other property correlated with corrosion can be
used to indicate the presence of corrosion which could trigger a more thorough

Fig. 3.6 Corrosion test panels
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inspection of the actual structure. Some adjustments need to be made to the esti-
mates because the sample may not be loaded to the same extent as the actual
structure, though fixtures can be used to load samples for improved environmental
emulation and accelerated cracking. This can also be done within the detection
algorithms by adjusting the thresholds at which inspections are called for.

Historically, sensing was done using coupons installed at or near the location
where corrosion was being monitored. Periodically these calibrated coupons would
be retrieved and measured to determine changes in dimensions, weight, etc. This
would lead to an estimate of the corrosion rate at the given location. More locations
would provide a more holistic picture of corrosion.

Corrosion test panels can be used to visually estimate the progression of cor-
rosion over time. Or this can be assessed by weighing the samples to see the rate of
loss of material. In Fig. 3.6 we see a set of corrosion test panels that have been
exposed to the environment for different lengths of time, starting from the bottom
left to the top right. This type of sensing is manual and visual, but at the same time
cheap, effective, and commonplace.

3.6 Visual

Visual methods for estimating the extent of corrosion is quite common. Based on
such measurements, guidelines exist for evaluation of a system’s operational safety.

Visual Pit Counting

This is the most straightforward way of determining the number of corrosion pits on
the surface. It can be done visually or under low magnification (20x). As outlined
in an ASTM standard [22] this counting can be done unaided or with the help of a
movable plastic grid of 2 to 6-mm squares. This is done after thoroughly cleaning
the surface. A micrometer or a depth gage can be used to determine the depth of
accessible pits. With narrow pits, more sophisticated methods involving micro-
scopy may be employed. Penetrant die may also be used to evaluate surface cor-
rosion non-destructively, but this only gives an approximate measurement of the
extent of damage. To get a more accurate sense of the extent of corrosion, samples
of the metal need to be cut out and examined in the lab with more accurate
microscopic instruments. These are destructive tests for corrosion.

With pit counting, standard charts exist for categorizing the density (A), the
average size or extent (B), and the average depth or intensity (C) of the pits. The
example shown in the ASTM standard says that “a typical rating might be A-3, B-2,
C-3, representing a density of 5 x 10* pits/m?, an average pit opening of 2.0 mm?,
and an average pit depth of 1.6 mm.”

Other means of categorizing pitting intensity is to record the maximum pit depth
or the average of the depths of a certain number of pits. Calculating the pitting
factor, which is the ratio of the largest pit depth to the average depth, which works
well for reasonably sized corrosion, is also an option.
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Fig. 3.7 Calculating parameters for ASME B31G analysis

Because pipes that carry fluids under pressure are susceptible to corrosion and,
depending on the fluid, a disaster in the making if they leak or burst, standards have
been developed to determine what is a safe amount of corrosion that can be tol-
erated. The American Society of Mechanical Engineers (ASME) has published a
comprehensive guideline for determining how much surface corrosion can be tol-
erated before a pipe needs to be repaired [23]. This standard can be used by first
determining the maximum depth of the corroded surface and finding its ratio to the
nominal wall thickness. If this number is between 10 and 80% then the one is
directed to measure the average longitudinal extent of the corroded area (see
Fig. 3.7 for a cartoon version of this measurement).

The standard has tables that show the maximum value that this number can be to
withstand a given pressure.

Visual detection of corrosion can be enhanced using automated image analysis,
as, for example, described by Bonnin-Pascual and Ortiz [24]. The application they
are looking at is the inspection of large areas such as the hulls of ships—spanning
more 150 acres of metallic surfaces—where visual inspections are routinely con-
ducted at enormous cost. They describe techniques that use image processing at the
pixel level and using the hue and saturation values to distinguish corroded from
non-corroded areas. This is done by training the algorithms over many example
images. The authors also describe an Adaptive Boosting (AdaBoost) algorithm to
do the classification, and their proposal is to use these as a first pass at corrosion
sensing, before directing a more detailed visual inspection.
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3.7 Optical

There are several optical methods for assessing corrosion. Surface corrosion can be
sensed by profiling the surface using laser or other optical means, while more
sophisticated fiber optical methods can be used to measure symptomatic changes
due to corrosion such as reflectivity. Fiber optical cables afford the advantage of
being able to sense structures over large distances since multiple sensors can be
embedded on a single fiber.

3.7.1 Fiber Optic Methods

Fiber optic (FO) interrogation can be used to measure changes in the material
translated into its optical properties. This is the basis for structural health moni-
toring of structures and a review article by Ye et al., gives a good overview of the
techniques [25]. One way of monitoring reinforced concrete (RC) with embedded
steel rebars is to realize that corrosion products are less dense, and hence they will
expand during the oxidation process. This will apply pressure on the surrounding
structure that can be measured either using standard strain gauges or using fiber
optic sensors.

The most economical sensing systems are made by etching gratings at periodic
lengths along a fiber and interrogating it using a laser light. These are called Fiber
Bragg Gratings (FBG). If the fiber is attached securely to the material then any
strain will result in the space between the FBG lengthening which can be detected
by a change in the wavelength of the interference pattern made with the incident
and the reflected light. This can be converted to intensity and calibrated to get a
very accurate measurement of the strain; with a higher resolution than standard
strain gauges. But this is not the only way FOs can be used in corrosion sensing.

One innovative sensor consists of an optical fiber that is mounted along a length
of pipe, say underground where visual inspections are nearly impossible. The fiber
can be many miles in length. At intervals along the fiber, 3—-10% of the laser signal
is split up into a branch fibers that are much shorter and have coatings at the end
made of the same material as is being monitored. The number and length of the
fiber and the side branches are limited only by the strength of the laser that can be
employed economically and safely. The measurement is based on measuring the
intensity of the return signal and the location is estimated by optical time domain
reflectometry (OTDR). As the coating oxidizes due to the surrounding atmosphere,
the intensity of the return signal drops so that the rate of corrosion can be measured.
This is due to the fact that there is a gradual change in the optical reflectivity of the
very thin coating material at the ends of the fibers. While innovative, it is not clear
to what extent this has been commercialized [26].
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Fig. 3.8 Pit found and measured by laser profiling

3.7.2 Laser Profilometry

Laser profilometry is an optoelectronic technique to detect surface variations on a
component or structure. By applying a laser light to the surface and collecting light
reflected off of the surface, a laser triangulation technique can be sued to determine the
distance from the laser to the surface based on the angle and amplitude at which the
reflected light is received. By using this technique, surface defects caused by general
corrosion and corrosion pitting can be detected and quantified (Fig. 3.8). Post-processing
of images obtained with laser profilometry techniques can be used to determine material
loss due to corrosion and can also support automated pit counting evaluations.

Generally used in non-destructive evaluation processes, laser profilometry can
also be automated through the use of a scanning systems with built in two- or
three-dimensional rastering systems. The outputs of laser profilometry systems can
then be used to develop highly accurate measurements of surface profile and may be
used to generate 3D models of a surface for comparisons before and after under-
going corrosion processes [27]. In the chapter on the use of analytics for detecting
corrosion (Chap. 5), more details are provided on the use of advanced data analytic
techniques to recognize and characterize corrosion from images.

3.7.3 White Light Interferometry

White light interferometry (also called coherence scanning interferometry for
topographic measurements) is an optical means of measuring the surface
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imperfections such as those engendered by corrosion. Sub nano-meter resolutions
can be achieved so that pit depths can be measured precisely. It is similar to pro-
filometry but works on creating interference between split beams of white light and
comparing reflected light from the surface to light reflected from a reference flat
surface [28].

3.8 Other Sensing Modalities

While many corrosion sensing methodologies have been outlined in this chapter,
additional mature and developmental techniques exist for the detection of corrosion
and corrosive conditions. As corrosion sensing is an active field in the research and
development community, many additional innovative methods have been created
that have not yet been established and may not have sufficient in-field testing to
prove out the technique just yet. Still others have shown promise in the laboratory,
but do not rise to the level of active use in the field to date.

Proven measurement modalities including chemical sensing and physical
parameter measurements can provide insights into the environmental conditions
that will drive corrosion in a given scenario. Depending on the application, flow
rate, pressure, and temperature can all play critical roles in corrosion processes. By
monitoring these conditions, along with chemical analyses including pH, dissolved
gas content (O,, CO,, H,S, etc.), metal ion content, and microbial contaminants, it
may be possible to quantify the corrosivity of an environment and infer corrosion
rates for given materials. This indirect measurement technique can be particularly
useful in submerged, flow loop, or pipeline applications.

Innovative solutions including multi-electrode arrays provide additional methods
for detecting corrosion. As opposed to the double or triple electrode configuration
standard for polarization resistance and potentiodynamic measurements,
multi-electrode sensors leverage an array of metallic electrodes each electrically
insulated from one another. By measuring current flow between each set of elec-
trodes, corrosion rates can be determined. The multi-electrode configuration pro-
vides the advantage of improved simulations of bulk material corrosion over other
sensing modalities, however additional instrumentation may be required for the
multi-channel voltammetry measurements necessary for the technique [29].
Cathodic protection is a popular method for preventing, or minimizing, corrosion in
structures (see details in Chap. 2). The multi-electrode corrosion sensor can be used
to monitory the effectiveness of protection [30].

Other well-established damage detection and non-destructive evaluation
(NDE) techniques have found new applications in corrosion monitoring. Direct
current (DC) potential drop detection has a rich history in crack detection, partic-
ularly in laboratory applications. The technique has been modified using a
four-point measurement probe to apply a DC potential to a surface, measure the
resulting impedance, and track changes in that impedance as they relate to material
corrosion. This measurement, of course, provides highly localized evaluations of
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corrosion as opposed to alternate “global’ sensing approaches [31]. The LPR sensor
has been mentioned above. Innovations in this technique include miniaturizing it
and applying it to a wide variety of corrosion sensing domains [32].

As the corrosion sensing area continues to evolve, development of a truly
comprehensive description of all available corrosion sensing techniques will be
challenging. New techniques and analysis methods are becoming available on a
regular basis and the field will likely continue to grow as technologies advance in
the future.

3.9 Epilogue

Corrosion sensing plays a critical role in diagnostics and prognostics for materials
degradation. Numerous techniques and technologies have been developed to enable
detection and quantification of corrosion both in the laboratory and in the field. By
analyzing data collected via electrochemical, environmental, or observational
means, corrosion damage can be measured both directly and indirectly, resulting in
actionable data for building and implementing diagnostic and prognostic tools for
corrosion assessment.
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Chapter 4 )
Corrosion Prevention Check for

Michael Casey Jones

Abstract Corrosion is a natural process, and thus, preservation of a material’s
properties by preventing interaction of that material with its environment is an
essential component of any engineering design consideration. This chapter will
demonstrate how the three primary protective coatings, organic, inorganic, and
metallic coatings, are used within industry to prevent initiation of corrosion and
slow the progression of corrosion upon its commencement. Corrosion is a con-
tinuous process, and thus engineers must use discretion in selecting proper coatings
based on the environment that a material and its coatings will endure throughout the
system’s expected life cycle. Engineers must also use also understand the impor-
tance of design in preventing and controlling corrosion. Since corrosion is analo-
gous to cancer throughout the manufacturing industry, the importance of preventing
corrosion through proper coating and material selection is strongly emphasized over
controlling corrosion once it’s surfaced.

4.1 Introduction to Corrosion Prevention

The concept of corrosion maintenance is typically broken down into two areas:
corrosion prevention and corrosion control. The latter concerns the process of
minimizing corrosion once it has initiated via chemical reaction on a substrate with
its environment. This chapter deals with the former, corrosion prevention, and thus
will go into detail of the various mechanisms by which corrosion is prevented.
Corrosion prevention nearly always involves protecting a substrate via isolation
from its environment and/or protecting the substrate by using compounds that are
less noble, i.e., more anodic, than the substrate being protected. A common
example of this that combines both of these protective measures would be the use of
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a Zn-rich primer on a steel substrate and overcoating with a polyurethane topcoat.
The polyurethane topcoat serves as a barrier against the environment with tight
crosslinks in the chemistry of the coating. Eventually, due to normal wear and tear
via scratching, or degradation due to environmental factors, such as thermal shock,
UV exposure, etc., the barrier properties of the topcoat will fail. Much work is being
funded in the area of determining breakdown mechanisms of topcoats and primers
via the Strategic Environmental Research and Development Program (SERDP) and
Environmental Security and Technology Certification Program (ESTCP) [1, 2].

Once the topcoat has been compromised, the zinc in the epoxy primer reacts
with an electrolyte, most commonly water via surface humidity, to sacrificially
corrode so that the steel substrate is protected. The reaction of the zinc in the epoxy
primer with its environment follows the mechanisms in Eqgs. 4.1 and 4.2:

2H,0 — 20H™ +H, (4.1)
Zn** +2¢” +20H" — Zn(OH), +2¢~ (4.2)

Because the zinc is much more stable in its ionized state when in contact with
iron, it more readily donates electrons in an electrolyte. The now positively charged
zinc ion is thus going to react with the negatively charged hydroxide ions to reach
its more stable, corroded state. Depending on the composition of the electrolyte,
other corroded zinc products can be formed. These different electrolytes would also
drive different reaction kinetics, as is commonly seen in industrial areas due to the
reaction of sulfur dioxide (SO,) with water to form sulfuric acid (acid rain), as well
as highly salt-laden environments where sodium chloride (NaCl) readily dissociates
into its ionized components of Na* and ClI". This form of corrosion prevention
would be readily active on galvanized materials, a form of metallic coating which
will be discussed later, such as hot-dipped galvanized nails.

While the aforementioned example is a common mechanism of corrosion pre-
vention, there are other forms of corrosion prevention that we will explore in this
chapter. Several forms of corrosion prevention involve the use of compounds that
are considered toxic, such as cadmium and hexavalent chromium. While these
compounds are known carcinogens, research in the area of replacing these has
proven difficult because they prevent corrosion very well, thus making it difficult to
find an equivalent replacement. Other forms of corrosion prevention, such as
engineering design considerations, corrosion sensing, and corrosion preventative
compound (CPC) will be explored later throughout this chapter.

Since a corroded state is a lower energy, equilibrium state relative to the orig-
inally manufactured form, corrosion is inevitable. Figure 4.1 shows a theoretical
representation of why this is the case from a thermodynamic perspective. Energy is
input into the process to manufacture a given alloy. The required energy input to
achieve this state is represented by E,,, the activation energy. Because the Gibbs free
energy, 4G, required to go from the optimized alloyed stated to its corroded state is
negative, the corroded state is an equilibrium state that the alloy will assume
without corrosion preventative measures in place.
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Fig. 4.1 Depiction of thermodynamically stable corroded state

However, robust corrosion prevention practices, especially in harsh environ-
ments, are almost always going to be more cost effective than corrective mainte-
nance actions. While some forms of corrosion prevention may costly upfront,
dismantling equipment to replace severely corroded parts will be time consuming
and labor intensive, and thus more expensive than an active corrosion prevention
program. In the following section, we will explore the many different coating
options available for prevention of corrosion.

4.2 Coatings for Corrosion Prevention

Coatings for corrosion prevention can be summarized into three basic forms:
organic coatings, inorganic coatings, and metallic coatings. Organic coatings for
corrosion prevention are most commonly paints; however, other similar coatings,
such as powder coatings, stains, varnishes, lacquers, and resins would also be
considered organic coatings. Inorganic coatings are more commonly used in the
pretreatment of materials, and examples of inorganic coatings would be anodiza-
tion, conversion coatings, enamels, and ceramics. Metallic coatings are also com-
monly used as a form of corrosion prevention and control. Examples of metallic
coatings would be cladding, electroplating, and thermal coatings.

In some cases, all three types of coatings may be used to prevent corrosion. For
example, in the aerospace industry, typical aluminum alloy panels, such as 2024-T3
or 7075-T6 are coated clad with a thin layer of pure aluminum after manufacture.
After this, the panels may then be anodized using chromic acid or thin film sulfuric
acid anodization processes. Next, an adhesion promoter or chemical conversion
coating (CCC) may be used to pretreat the substrate for organic coatings. After
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pretreatment has taken place, a metal rich epoxy primer would be applied, which
may contain hexavalent chromium, lithium, magnesium, or some other inhibitor
that protects against corrosion. Finally, a polyurethane topcoat is placed on top of
the primer where it provides a barrier between the environment and the afore-
mentioned corrosion prevention mechanisms. Despite all of these efforts, corrosion
remains a multibillion dollar cost to industry and governments. The next section of
this chapter will go into more detail on the various forms of coatings that can be
used to prevent corrosion from occurring on a substrate intended to be protected
from its environment.

4.3 Organic Coatings

Paints are the most common form of corrosion prevention. Coating substrates with
paint is relatively cheap, and if the proper coating is selected for an asset’s envi-
ronmental exposure and usage conditions, it can also be very effective. Many
different chemistries of paints are manufactured by major coating manufacturers.
Some paint chemistries are known for better environmental protection, such as
polyurethanes, which makes this a common selection as a topcoat. Other paint
chemistries, such as epoxies, are better known for their adhesion properties, which
make this a more common selection for a primer. Some of the more common
coatings available are alkyds, epoxies, vinyls, rust converters, polyureas, and
polyurethanes [3]. While all of these paints have different chemistries, paints
generally have the same basic three components: solvents, binders (or resins), and
pigments [4]. The solvent can be waterborne or solvent-borne (oil-based). The
binder is the crosslinking chemistry that holds everything together, commonly
consisting of materials in the isocyanate functional group as shown in Fig. 4.2.

Finally, the pigments are the additives, such as the colors, UV and corrosion
inhibitors, biocides to prevent microbial growth, and so on.

When applying paints, common terminologies used in their application in
manufacturers’ technical data sheets (TDS) are wet film thickness (WFT) and dry
film thickness (DFT). Common applications of paint include spraying, rolling,
brushing, or immersion in a tank. Immediately after the coating has been applied,
the WFT is the amount of coating that is on the surface, typically measure in mils or
thousandths of an inch. As the paint goes through its curing process, the solvents in
the paint will evaporate and the solids of the paint, the pigment and the resin, will
remain behind to form the DFT. A manufacturer’s TDS will dictate the proper DFT

Fig. 4.2 Isocyanate N

functional group
R/ \c
N
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to be applied. Measuring DFT using a WFT gauge can easily be accomplished by
simply multiplying the WFT by the % solids content of the paint to give DFT.
Average DFT can be calculated as shown below in Eq. 4.3

DET (mils) 125 x Volume of coating applied(in®) x % solids
mils) =
surface area covered (ft*) x 18

It’s critical when considering paint application as a form of corrosion prevention
to apply the in accordance with the manufacturers” TDS. Common considerations
of paint application include, but are not limited to, temperature, relative humidity,
cleanliness of the substrate, use of conversion coatings or adhesion promoters for
surface preparation, time to mix the coating (induction time), thickness of the
coating, time to apply the coating after mixing (pot life), and time between coating
applications. Failure to follow these requirements in the TDS will invariably result
in inferior performance of the paint.

While all efforts can be made to prevent coating failures from occurring, there
are a multitude of various issues that a technician may experience while applying a
coating. Table 4.1 shows a list of some of the most common coatings failures when
applying paints [5].

Table 4.1 Common coating defects with causes alongside prevention and correction
methodologies

Description Causes Remedies

Runs/sags: Characterized
by an excess flow of paint

Spray gun too close, too
much solvent/thinner,
application of excess paint

Brush out excess paint before
paint cure; if after paint cure,
sand and reapply paint

Paint is too viscous, air
pressure in spray gun too
low, solvent evaporation too
fast

Application over dirty
surface or incompatible
surface. Applying outside of
appropriate temperature
range

Orange peel: Small
indentures resembling the
peel of an orange

Brush out excess paint before
paint cure; if after paint cure,
sand and reapply paint

Fish eyes: Separation or
pulling apart wet film to
expose undercoat or
substrate

Clean surface by abrasive
blasting or sanding and apply a
fresh coat

Lapping: Appearance of
streaks from application
of same coat

Coating drying too fast via
fast-evaporating solvent or
surface too hot

Change solvent for slower
evaporation. Apply coating on
top of itself prior to cure by
applying in smaller areas

Pinholes/holidays:
Appearance of missing
coating

Not applying enough paint

Apply coating in slower passes
to achieve a full coating; sand
and repaint if cured

Blistering: Appearance of
paint lifting off of the
surface

Applying to an unclean or
too hot of a surface

Remove paint via sanding,
clean surface, and reapply at
appropriate temperature range
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These issues can happen due to defects within the paint, improper storage of the
paint, use beyond the shelf life specified within the TDS, inexperienced technicians
applying the coatings, and applying outside of the recommended environmental
conditions specified in the TDS.

Another common form of organic coatings is powder coatings. Powder coats are
unique in that they are applied electrostatically, where the powder is charged
oppositely relative to the part that is being coated, thus causing the powder to stick
to the substrate. After applying the powder to the surface, the powder is then cured
in an oven at different temperatures and for different times in accordance with the
manufacturer’s TDS. As part of the alloying process, multiple different tempering
schemes can be used to heat treat the material to alter the structural properties.
Because of this, it’s common to see multiple different curing schemes that offer
lower temperatures for longer durations to prevent changing the temper of the
material. Low temperature powder coatings (LTPC) are becoming increasingly
popular because they cure around 300°F or less, and thus concern over altering the
temper is minimal.

Powder coatings are classified in one of two categories: thermoset or thermo-
plastic. Thermosets are far more common than thermoplastics, and as a result, are
generally less expensive. The primary difference between thermosets and thermo-
plastics are the mechanism of cure. Thermosets undergo an irreversible, chemical
change during their cure process, whereas thermoplastics undergo a physical
change and the powders are essentially melted together. A compromised thermoset
powder coating is commonly touched up using typical organic coatings, such as a
polyurethane topcoat. A thermoplastic, however, because it’s undergone a physical
change, can simply be heated with a heat gun and melted back together. This makes
thermoplastics more maintainer friendly despite the higher upfront cost.
Thermoplastics are also form very strong adhesive bonds with the substrate, but
neither thermoplastics nor thermosets typically have any corrosion inhibitor. While
powder coatings may have good adhesion, developments are still being made to
increase the ultraviolet (UV) resistance via solar exposure.

4.4 Inorganic Coatings

Inorganic coatings fall more within the area of modification of the metallic surface
chemistry than what is typically thought of as a coating. By modifying the surface
chemistry, the substrate may become more corrosion resistant and/or provide a
better surface for coating adhesion. Common examples of inorganic coatings
include anodization, conversion coatings, and phosphatizing. Anodization and
conversion coatings are commonly used on aluminums, whereas phosphatizing is
used on steel.

Anodization is more commonly performed on aluminum and aluminum alloys
than other substrates. Materials in their passive form are more corrosion resistant
than in their active form, and anodization involves intentional passivation of the
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surface of the substrate because it’s naturally more resistant. The anodization
process is a multistep, electrolytic process that involves running direct current
through acidic solutions and immersing the metals in the solution. Although an old
standard that hasn’t been updated in over two decades, MIL-A-8625 serves as the
industry standard for anodization of aluminum alloys. Multiple types of acids are
found at the beginning of MIL-A-8625, including chromic and sulfuric acids. Other
types of acid, however, such as boric sulfuric, phosphoric, or oxalic acids can be
used. Multiple variables can be altered, such as acid concentration, dwell time,
voltage, and temperature to produce different depths of acid etch, offering different
levels of corrosion protection, hardness, and other properties of the metal. Thinner
metals generally require the use of chromic acid or thin film sulfuric acid, especially
if the metal is under any fatigue loading. The reason is that these types produce
lower etching depths and result in less of a fatigue knockdown as opposed to
standard sulfuric acid. However, sulfuric acid is the most commonly used acid
because it’s much cheaper than chromic and some of the other acids mentioned.

While different parameters can be used to achieve different results, anodizing
typically involves the followings processes: pretreatment, rinsing, etching,
anodizing, and sealing. Pretreatment involves a cleaning process used to remove
contaminants in a heated, alkaline solution. Rinsing in deionized water follows each
of the steps to remove excess solution prior to going to the next step. After rinsing
the pretreatment off, the substrate is dipped in a sodium hydroxide solution to etch
the surface and prepare it for anodization. This etch increases the surface area,
allowing more area for reaction of the acidic solution used in the anodization
process to form passivated oxides. The etched metal is then rinsed and dipped in the
anodization tank, where the substrate being dipped is negatively charged, hence the
name anodization, relative to the acidic solution in the tank. This process generally
produces an oxide layer 2-25 um in thickness. Finally, the substrate is sealed using
boiling water or a chemical, such as nickel acetate. This process is critical to prevent
electrolytic intrusion, and therefore corrosion resistance [6].

Chemical conversion coatings are commonly used in industries to convert the
surface from an active to a more passive state. Aluminum and magnesium are
commonly conversion coated with chromate conversion coating. Since hexavalent
chromium is highly toxic, non-hexavalent formations, such as trivalent chromium
compounds, are being substituted in many chromate conversion coating processes.
Not only do conversion coatings offer additional corrosion protection to the sub-
strate, but they also modify the substrate to promote adhesion of subsequent
coatings. MIL-DTL-5541 is the most commonly referred to material specification
for chemical conversion coatings, with MIL-DTL-81706 being the closely associ-
ated process specification used for application of MIL-DTL-5541 conversion
coatings. Upon looking at these specifications, one will notice there are multiple
formulations and application methods that can be used for application of chemical
conversion coatings.
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4.5 Metallic Coatings

Use of a metallic coating is often part of the overall coating stackup for various
applications. A metallic coating, as the name would indicate, is the use of a metal
without any organic binders or resins. Metallic coatings typically take advantage of
galvanic potential differences to offer protection to the underlying substrates.
Application of the metallic coating can take place in one of multiple ways,
including using electroplating, cladding, metallization/thermal spray, or dipping the
substrate in molten material.

Electroplating is commonly used to create a barrier between the substrate and its
environment through the use of a more noble and abrasion resistant coating. The
coating can be created by immersing a cathodically charged substrate into a solution
of anodically charged metallic particles. This process creates an electrical gradient
by which the metallic particles are deposited on the substrate through electrical
affinity. Various properties of the coating can be achieved by changing voltage,
temperature, and dwell time in the tank. One of the most common examples of this
include the use of zinc plate onto steel fasteners and brackets. This is a common
treatment on ferrous substrates that is moderately effective if placed in a fairly mild
environment. Another common example is the use of cadmium in the aerospace
industry. While cadmium is considered highly toxic, it’s also been shown to be
highly effective for steel substrates. Some work has been focused in the area of the
use of low hydrogen embrittlement zinc-nickel (LHE Zn-Ni) coatings as a
replacement to cadmium. These can be applied through immersion, as previously
discussed, or barrel plating. Barrel plating involves rotating parts in a barrel con-
taining an electrolytic solution of metallic ions. Just as with immersion coating,
charge differences drive the zinc-nickel particles to adhere to the substrate.
Hydrogen embrittlement, which is classified as its own form of corrosion, is a
common cause of failure of electroplated coatings. Aqueous solutions are com-
monly used for the electrolytic bath, and the presence of hydrogen gas in the
solution can drive hydrogen gas into the substrate. This a common problem with
high strength steels. A final method of electroplating, brush plating, is used by
cathodically charging the substrate and brushing on the oppositely charged solution.
This is more commonly used as a touchup process rather than a full coating. Many
other metals can be applied via electroplating, such as copper, chromium, nickel,
and so on.

Immersion in molten material is another common form of metallic coating. The
most common form of this would be hot dip galvanizing. Hot dip galvanization is
most commonly applied to steels to offer cathodic protection. The thickness of the
coating obtained via hot dip galvanization is much thicker than would be achieved
by zinc plating, and thus, offers superior corrosion protection. Thicker layers of zinc
offer larger amounts of the anodically charged zinc relative to steel. Because this
form of protection is fairly cheap and easy to apply, it’s very commonly used as a
protective coating on substrates.
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Fig. 4.3 US coin clad with
copper and nickel

Cladding is another metallic coating that can offer corrosion protection. Many of
the coins used today, such as a U.S. dime or quarter, are examples of cladded
materials. This can easily be observed by looking at the side of a coin, such as
shown in Fig. 4.3.

Cladding can be accomplished via various mechanisms, such as rolling, extru-
sion, or welding. The basic principle remains that same, and heat and pressure are
used to join the two metals. Manufacturers of aircraft commonly apply pure alu-
minum to 2024-T3 or 7075-T6 aluminum alloys to offer another layer of barrier
protection. The impurities found in these aluminum alloys, such as copper and zinc,
are added to increase structural properties, but often times serve as a location for pit
formation due to highly localized galvanic corrosion. Pure aluminum doesn’t
readily corrode, hence its frequent use in canning in the food and beverage industry.
Thus, applying a layer of pure aluminum to the surface provides an additional layer
of corrosion protection.

Metallization, commonly referred to as thermal spray, is another metallic coating
commonly used for corrosion protection. This form of protection can be cost
prohibitive in some industries, however, it’s been shown to exhibit exceptional
corrosion protection in severely corrosive environments. The metal spray can be
applying in multiple ways, by heating the material to be applied above its melting
point and pneumatically spraying the molten material on. A common form of
application is metal wire arc spray. In this form of metallization, two wires of
opposite charge contact one another. Upon contact, an arc and melting of the wires
occurs, and a high pressure air supply blows the molten material onto the substrate.
Many different metals can be used as the spray, or even different combinations of
alloys can be used. The United States Air Force authorizes the use of 85% zinc and
15% aluminum wire for protection of steel substrates. One very important con-
sideration for the use of thermal spray is the temper of the substrate, and deter-
mining whether it will be impacted by applying hot, molten material. Of utmost
importance is achieving a proper surface profile for the material to adhere properly.
Various blast medias often need to be used to achieve a 2—4 mil angular surface
profile in order for the thermal spray to adhere effectively.
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4.6 Engineering Design Considerations and Coating
Selection

The most effective way to prevent corrosion is through proper design. While nearly
all materials are going to exhibit an adverse reaction with their environment, proper
design can prevent corrosion from occurring. There are many considerations when
purchasing new equipment, such as physical properties, appearance, cost, and so
on, so corrosion can often be overlooked in the design phase. This is unfortunate
and results in many unnecessary costs over the life cycle of an asset that could have
been avoided with proper design. Corrosion should be considered as a cancer; thus,
it’s best to avoid it than to control it after it’s started. Furthermore, preventative
maintenance and measures, such as proper material and geometry selections or
coating application, is almost always cheaper than corrective maintenance.
Preventative maintenance involves the prevention of corrosion, whereas corrective
maintenance often involves structural replacement or total condemnation of the
asset. This section will consider the considerations that should be accounted for
during the design of an asset.

Corrosion cannot occur without an electrolyte. Understanding this fundamental
principle of corrosion science can’t be understated. An electrolyte can present itself
in the form of any liquid that’s capable of transmitting electrons; thus, water would
be the most common electrolyte that lends itself to corrosion. It’s therefore critical
that an asset be designed to minimize or eliminate fluid entrapment. This removes
electrolyte necessary for corrosion to occur. Proper sealing, drain paths, and
geometry are all essential considerations when designing an asset to prevent fluid
entrapment. Flat surfaces should be minimized, but if necessary, should have
adequate drainage to minimize the presence of the electrolyte.

Operating environment must always be considered during design of an asset.
Important questions to ask include, what is the proximity to the coast, what is the
climate, will the asset be in contact with corrosive chemicals (battery acid, deicing
fluids, salt on streets, etc.), will the asset be near industrial pollutants, does the asset
operate in extremely hot or cold temperatures, will the asset be primarily indoors or
outdoors, and so on. These considerations, and an understanding of how they
influence corrosion, will play an important role in material and coating selection.
When designing an asset, the first consideration is usually the structural properties
the material must possess to adequately serve its purpose. Typically, a multitude of
materials can work; however, cost, appearance, weight, and corrosion resistance
will inevitably be used to down select a product. For assets commonly used indoors
that aren’t exposed to abrasive conditions, cost and appearance will bias the
decision. For assets used outdoors in inland conditions, organic coatings consisting
of a pretreatment, epoxy primer, and polyurethane topcoat will typically suffice, but
now corrosion resistance has some consideration. For assets that are going to be
used in severe conditions, such as a marine environment or near industrial facilities,
much more robust protection is needed and now corrosion resistance becomes
crucial.
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Highly corrosive environments commonly warrant the use of inorganic or
metallic coatings in conjunction with organic coatings. Harsh environments are
more typically corrosive because they have much longer times of wetness due to
prolonged exposure to moisture. Thus, the electrolytic presence necessary for
corrosion to occur is introduced. Furthermore, severely corrosive environments
commonly have electrolytes will lower resistances, or in other words, increase
conductivities. Higher conductivities lend themselves to more rapid rates of cor-
rosion. Various factors can increase conductivity, such as presence of salts, acids, or
other pollutants. Highly industrial areas have many sulfur dioxide (SO,) emissions
and thus react readily with moisture in the air (H,O) to form sulfuric acid via the
mechanisms in Eqgs. 4.3 and 4.4.

250, + 0Oy — 2803 (4.3)
2505 +2H,O — 2H,;S0q4 (44)

Furthermore, nitric acid can be formed via reactions of nitrogen dioxide (NO,)
with water via the mechanisms in Eq. 4.5.

4NO; + Oy +2H,0 — 2HNO; (4.5)

Since sulfuric and nitric acids can be readily and reversibly dissociate into ionic
compounds, they are both good electrolytes and thus promote corrosion. This can
be seen in Egs. 4.6 and 4.7.

2HNO; < NO;” +NOj +H,0 (4.7)

Another consideration for design is galvanic corrosion through interaction of
dissimilar metals. This form of corrosion can easily be induced by changing the
current flow properties of a metal via contact with another, more noble metal.
Table 4.2 [7] is a common listing of corrosion propensities of various metals in sea
water based on their electrical potentials. During design, the general rule is that the
greater the potential differences between two metals in contact with one another in
the presence of an electrolyte, the greater the rate of galvanic corrosion of the
anode. This is not, however, always the case as the current flow is the dominating
factor that influences corrosion. For example, quicker rates of galvanic corrosion of
aluminum alloys are observed when coupled with stainless steel than when coupled
with titanium, albeit Table 4.2 indicates greater galvanic corrosion rates of alu-
minum alloys would occur when coupled with titanium. MIL-STD-889, one of the
governing documents of galvanic corrosion due to dissimilar metal contact, is
undergoing revision because of differences in galvanic corrosion rates than
potentials would suggest.
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Table 4.2 Galvanic series of metals in sea water

ANODIC (High Corrosion Potential)

Lithium
Magnesium Alloys
Zinc (plate)
Beryllium
Cadmium (plate)
Uranium (depleted)
Aluminum Alloys
Indium
Tin (plate)
Stainless Steel 430 (active)
Lead
1010 Steel
Cast Iron
Stainless Steel 410 (active)
Copper (plate)
Nickel (plate)
AM 350 (active)}
Chromium (plate)
Stainless Steels 350, 310, 301, 304 (active)
Stainless Steels 430,410 (passive)
Stainless Steel 13-8, 17-7PH (active)
Brass, yellow, Naval
Stainless Steel 316L (active)
Bronze 220
Copper 110
Stainless Steel 347 (active)
Copper-Nickel 715
Stainless Steel 202 (active)
Monel 400
Stainless Steel 201 (active)
Stainless Steels 321, 316 (active)
Stainless Steels 309 13-8 17-7 PH (passive)
Stainless Steels 304, 301, 321 (passive)
Stainless Steels 201, 31, 6L (passive)
Stainless Steel 286 (active)
AM355 (active)
Stainless Steel 202 (passive)
Carpenter 20 (passive)
AM355 (passive)
Titanium Alloys
AM350 (passive)
Silver
Palladium
Gold
Rhodium
Platinum

Carbon/Graphite

CATHODIC (Low corrosion potential)

Prevention of galvanic corrosion is most easily performed by designing this out
and not using dissimilar metals. If it’s mandatory that a galvanic couple be used for
other design reasons, it’s essential that the two metals be insulated from one another
using a neutral material, such as a sealant, rubber gasket, plastic insert, etc.
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4.7 Conclusion

Corrosion, despite simply being defined as degradation of a material through
chemical interaction with its environment to revert to its natural state, is a very
complicated issue. This complication arises from the different environments that
materials can be exposed to. Because environments can be localized, and as small
as a battery compartment area, or more broadly defined, such as warm, coastal
environments, it’s very difficult to capture all necessary design, coating, and
material selection considerations. To further complicate matters, a material’s
environment is constantly changing through diurnal cycles, seasonal changes,
presence of chemicals, and movement from one environment to another. For these
reasons, corrosion will always be an enemy of materials, and thus, the need for
corrosion prevention through protective coatings and design considerations will
serve an important role in maximizing a system’s life cycle while minimizing
routine maintenance costs.
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Chapter 5 ®
Data Analytics for Corrosion sk
Assessment
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Abstract Accurate corrosion detection and prediction requires novel tools for
processing surfaces/panels exposed to corrosive environments in order to detect
early corrosion initiation. Data analytics offers a rich array of methods execute a
sequence of tasks starting with pre-processing of raw images to improve the image to
noise ratio, extracting features or useful information from pre-processed images,
selecting the “best” features that are characteristic of corrosion evidence, and clas-
sifying the features for further processing. We take advantage of classical techniques
for data mining but we introduce also new tools based on Deep Learning.
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5.1 Introduction

It has been established that corrosion is one of the most important factors causing
deterioration, loss of metal, and ultimately decrease of system performance and
reliability in critical aerospace, industrial, manufacturing and transportation sys-
tems. Corrosion monitoring, data mining, accurate detection and quantification are
recognized as key enabling technologies to reduce the impact of corrosion on the
integrity of these assets. Accurate and reliable detection of corrosion initiation and
propagation with specified false alarm rates requires novel tools and methods.
Corrosion states take various forms starting with microstructure corrosion and
ending with stress-induced cracking [1-3] (Fig. 5.1).

Generally speaking, corrosion starts in the form of pitting, owing to some sur-
face chemical or physical heterogeneity, and then facilitated by the interaction of
the corrosive environment fatigue cracks initiate from corrosion pitted areas and
further grow into the scale that would lead to accelerated structure failure [4]. In
order to effectively conduct structural corrosion health assessment, it is thus crucial
to understand how corrosion initiates from the microstructure to the component
level and how structure corrosion behaviors change as a result of varied environ-
mental stress factors. Many research efforts have been reported in the past
addressing this critical issue [5—8]. Traditionally, conventional ultrasonic and eddy
current techniques have been used to precisely measure the thickness reduction in
aircraft and other structures; there has been a number of undergoing research efforts
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Image showing intergranular corrosion

Fig. 5.1 Microstructure corrosion
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using guided wave tomography techniques to screen large areas of complex
structures for corrosion detection, localization [9] and defect depth mapping [10].
However, due to the nature of ultrasonic guided waves, this technique is vulnerable
to environmental changes, especially to temperature variation and surface wetness
occurrence [11], and the precision of corrosion defect depth reconstruction is
restricted by sensor network layout, structure complexity, among others, which
limits the scope of the field application. Thus, undeniably, well-recognized global
corrosion measurements, such as material weight loss and wall thickness reduction,
cannot offer an appropriate and trustworthy way to interpret the pitting corrosion
due to its localized attack nature.

Figure 5.2 is a pictorial representation of the corrosion assessment technologies
from corrosion monitoring to data mining, detection/prediction and assessment.

Besides, advanced corrosion health assessment systems require comprehensive
quantitative information, which can be categorized into a variety of feature groups,
such as corrosion morphology, texture, location, among others. It calls for the
exploration of both new testing and data fusion methods from multiple testing
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techniques. Forsyth and Komorowski [12] discussed how data fusion could com-
bine the information from multiple NDE techniques into an integrated form for
structural modeling. Several other studies have looked into different sensing tech-
nologies for corrosion health monitoring, including using a micro-linear polariza-
tion resistance, WLPR sensor [13, 14], and fiber optic sensors [15]. However, the
existing research effort in combination with surface metrology and image pro-
cessing is very limited. In parallel to the current corrosion sensing technology, there
have been a number of corrosion modeling studies trying to numerically capture the
processes of pitting corrosion initiation, pitting evolvement, pitting to cracking
transition, and crack growth to fracture at the molecular level. However, currently
there is no accepted quantitative model to take into consideration the effect of stress
factors (e.g., salinity, temperature, humidity, pressure), although the effects of the
above-mentioned stress factors have been widely discussed.

We address in this chapter analytical tools and methods to extract useful
information from corroding surfaces that will be exploited eventually to assess the
health state of critical aircraft, ships, and transportation systems, among others [16].
The architecture is set as a decision support system providing advisories to the
operator/maintainer as to the health status of such assets subjected to corrosion and
in need of corrective action.

5.2 Corrosion Data Mining-Feature Extraction
and Selection

An important and essential component of the corrosion detection and interpretation
architecture involves image/characterization data pre-processing and data mining
aimed to extract useful and relevant information from raw data. Figure 5.3 depicts
the architectural components of the pre-processing, feature extraction, selection and
classification steps. The latter is detailed in the sequel.

Features are the foundation for the degradation/corrosion detection and inter-
pretation scheme. Feature extraction and selection processes are optimized to
extract only the information that is maximally correlated with the actual corrosion
state. Appropriate performance metrics, such as correlation coefficients, Fisher’s
Discriminant Ratio (FDR), etc. are utilized to assist in the selection and validation
processes. Figure 5.4 shows the overall data mining scheme. Image pre-processing,
feature extraction and selection are highlighted leading to their utility in pitting
corrosion detection, localization, quantification, and eventually prediction of cor-
rosion states.
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5.3 Image Pre-processing

Image/data pre-processing involves filtering and preparing the data for further
processing. Figure 5.5 shows a typical sequence of pre-processing steps of corro-
sion images from surface metrology testing. In the first step, de-noising, discrete
stationary wavelet transform (SWT) is applied, and then histogram equalization is
performed for contrast enhancement followed by applying a threshold to identify
the regions of interest in the image. In this framework, image processing techniques
are utilized to pre-process the global test panel images as well as the local pitting
area images, in preparation for the feature extraction step. First, globally, for each
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Contrast
using Discrete SWT Enhancement

Fig. 5.5 Corrosion image pre-processing

Fig. 5.6 Local pit identification via image processing. Left: Original localized pit image; Right:
Pit identified from the background with the pit edge (in blue) identified by image processing
algorithm

test panel used to demonstrate the algorithmic developments, successive 2D
microscopic images were taken and stitched together to obtain the entire panel
image. In the whole panel image pre-processing, the rivet-hole areas and artifacts
(e.g., stencil-stamp marked numbers) were manually whitened so they would not be
confused with corroded regions. In order to identify the pitting corrosion attacked
areas, a 2D median filter was applied followed by thresholding (with a threshold of
0.2) to obtain at a binary image. Second, locally, each suspected pitting area is
identified from the whole panel image, and a closer microscopy examination was
conducted. An example of a local pit identification process is shown in Fig. 5.6. To
identify the pit(s) from the background, the area of each object (i.e., black region
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representing corroded region) in the binary image was calculated. The sum of
objects with the area larger than 50 pixels was defined as the total area of the pitting
corroded regions. Note that the identification threshold of 50 pixels was set to avoid
mistaking dark regions caused by the grain boundaries as pits.

5.4 Data Mining/Image Processing

An important and essential component of the corrosion detection architecture
involves data/image pre-processing and data mining aimed to extract useful and
relevant information from raw data. In the proposed architecture, the most impor-
tant components supporting the implementation of the algorithm are feature
extraction and diagnosis/prognosis models. Features are the foundation for “good”
fault/corrosion detection algorithms. Feature extraction and selection processes are
optimized to extract only information that is maximally correlated with the actual
corrosion state. Appropriate performance metrics are defined to assist in the
selection and validation processes. Image/data preprocessing involves filtering and
preparing the data for further processing. Figure 5.7 shows a typical sequence of
preprocessing steps for corrosion images.

Of particular interest to our theme is localized pitting and cracking, i.e. cracking
initiating at points on the surface of a specimen (joints, fasteners, bolts, etc.).
A metal surface (aluminum alloy, etc.) exposed to a corrosive environment may,
under certain conditions experience attack at a number of isolated sites. If the total
area of these sites is much smaller than the surface area then the part is said to be
experiencing localized corrosion in Fig. 5.8. We exploit novel image processing
tools/methods, in combination with other means (mass loss calculations) to identify

i -
De-noise Image using SWT (Discrete Contrast Enhancement Threshold
stationary wavelet transform)

Fig. 5.7 Image preprocessing
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Fig. 5.9 a Whole plate imaging of AA 7075-T6 panel (150.63 x 73.87 mm, 108x). b Area the
profilometer covers for the 3D map scan

features of interest to be used in the modeling task, since imaging of corroding
surfaces offers a viable, robust and accurate means to assess the extent of localized
corrosion (Fig. 5.6).

We use novel microscopy and profilometry image processing equipment in order
to obtain images of corroded surfaces and extract from such images relevant
information that assists in corrosion modeling, diagnostics and prognostics. In our
testing, we are using a laser microscope and a stylus-based profilometer, as shown
in Fig. 5.9.

The LEXT OLS4000 3D Laser Measuring Microscope is designed for
nanometer level imaging, 3D surface characterization and roughness measurement.
Magnification ranges from 108x to 17,280x. Typical 2D and 3D images are
shown in Figs. 5.9a and 5.10, respectively.
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Fig. 5.10 Pitted panel area
(1278 x 2561 um, 216x) 3D
imaging and corresponding
profile info (in um) on
uncoated AA 7075-T6 panel
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The Bruker’s Dektak® Stylus Profiler is a traditional 2D contact profilometer.
However, with the programmable map scan capability and the post-processing
software, it allows for large area 3D topography coverage. The combination of the
two imaging tools facilitates both the localized and global characterization of a
corroded panel at various resolution scales. In summary:

1. Global characterization:

e The laser microscope can provide large area 2D microscopy imaging as
shown in Fig. 5.9a.

e The stylus profilometer can provide large area 3D map scan imaging.
A schematic of the area the profilometer covers for the 3D map scan for a
typical panel is shown in Fig. 5.9b.
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2. Local characterization:

o After the detection and localization, the laser microscope can provide a close
look at the 3D topography of the analyzed surface. An example of pit profile
measurement is shown in Fig. 5.6.

5.5 Feature Extraction and Selection

The images obtained through conventional NDI methods are not directly suitable
for identification and quantification of damaged regions. Such images therefore
need to be enhanced and segmented appropriately for further image analysis.
Segmentation has been achieved using de-noising, contrast enhancement, and
threshold techniques. Transform based features such as wavelet coefficients also can
be used to quantify the extent of corrosion in the image. Neural networks were
applied in the process of segmentation and quantification of damaged regions.
Segmentation results show a good correspondence between the extracted regions
and the actual damage on sample panels.

Several features may be extracted from corrosion images such as statistical
features, transform based features (wavelet), texture features and morphological
features. These features are outlined in Tables 5.1, 5.2, 5.3 and 5.4.

Figure 5.11 shows a set of example corrosion images that were taken with the
LEXT OLS laser measuring microscope. The images were taken of an AA 7075-T6

Table 5.1 Statistical features

Feature Symbol Formula Comments

name

Mean X M SN I(m,n)

pixel

value

Standard std 1 M N —\2

i Vit S S U nm) =)

of pixel

values

ith m; ﬁzj,‘:: . 22’: (I(m,n) — X)i For i = 2 this is .eq.uivalent to

moment the standard deviation squared

Entropy e _ Zfi p(i)log, (p(i)) A scalar value'repre'sent'ing the
Where p(i) is the probability of | entropy of an intensity image.
a pixel in the image having a Entropy is a statistical measure
value of i. This is calculated of the randomness that can be
from the histogram of the image | used to characterize the texture
I of the input image
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Table 5.2 Wavelet features

Feature Symbol | Formula
name
i M N pi 2
Total Ey By = 515 Zomet 2onm1 D, m)
energy where k = H, V or D (corresponding to horizontal, vertical or
diagonal subimage) and i is the level of the wavelet decomposition
Anisotropy | Orian’ Orian' = 31 M SN Orian(m, n)
where
Orian(m, n) ) \/ +(Di, — Di))* + (D, — D)’
rotal
i 2
Ettoml(mvn) - (DlH(mvn)) + (DlB(mvn)) + (Dl[)(man))

Table 5.3 Texture features from gray level co-occurrence matrix (GLCM)

Feature name | Symbol | Formula Comments
Contrast c Zi,/"i _ j|2p(i, ) Returns a measure of the intensity
where p(i, j) is the coptrast between a pixel e.lnd its
normalized gray level neighbor over the whole image.
co-occurrence matrix Contrast is O for a constant image
Correlation correl > (i—1) (=1 ) (i) Returns a measure of how correlated
i _0i%) a pixel is to its neighbor over the
where p(i, j) is the whole image. Range = [—1 1]
normalized gray level
co-occurrence matrix
Energy E Zi,/‘ pi, j)2 Returns the sum of the squared
where p(i, j) is the elements in‘the GLCM. Rangg =[0
normalized gray level 1]. Energy is 1 for a constant image
co-occurrence matrix
Homogeneity |H . lP(i~_J'>_ Returns a value that measures the
whl;reﬂl(? ! i) is the closeness of the distribution of
e o bray lovel | clements in the GLCM to the GLCM
co-occurrence matrix diagonal. Range = [0 1].
Homogeneity is 1 for a diagonal
GLCM

panel that has an exposure time of 286 h in a cyclic corrosion chamber running the
ASTM GB85-AS5 test. In order to distinguish between images of different levels of
corrosion a number of features can be extracted from the images. These features fall
under the main categories of statistical features, transform based features (wavelet),
texture features and morphological features. The statistical features are summarized
in Table 5.1. The mean pixel value, standard deviation and entropy of the example
corrosion images in Fig. 5.11 are plotted in Fig. 5.12.
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Table 5.4 Morphological features

G. Vachtsevanos

Feature Symbol Formula Comments

name

Roundness r r= “pLzA If the region is a circle then r = 1.
where A is the area of the | Lhis is a good feature to distinguish
region and p is the between cracks and pits if
perimeter of the region segmentation is done correctly

Solidity s S = % Scalar specifying the proportion of

the pixels in the convex hull that are
also in the region

Eccentricity | ecc

ecc = /1 — f;—i for ellipse
defined by:

2
s+t

Scalar that specifies the eccentricity
of the ellipse that has the same
second-moments as the region. An
ellipse with ecc = 0 is a circle and
an ellipse with ecc = 1 is a line
segment

Major axis Lygjor Lygjor = max(2a, 2b) for Scalar that specifies the major axis

length an ellipse defined by: length of the ellipse that has the
24 ¥ same second-moments as the region
a> b

Minor axis Lyinor Litinor = min(2a, 2b) for Scalar that specifies the minor axis

length an ellipse defined by: length of the ellipse that has the
240 same second-moments as the region
a> b’

Area A A = # pixels in the region Area of the region

Mean MI MI = % ST I(m,n) Mean intensity of the region of

intensity of (mn)er interest in the image

the region where R is the region of

interest

Fig. 5.11 Example corrosion images. Top row: low corrosion. Bottom row: high corrosion

Wavelet based features are widely used in the literature for Image processing/
data mining applications. The wavelet domain takes advantage of the wavelet
capability to resolve images in the spatial and frequency domains. The 2D wavet
decomposition pursues the following steps:
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Fig. 5.12 Statistical features of example images shown in Fig. 5.1

Appromation  Merizontal Deted 3

Horizontal Detail 1

Vertical Detail 1 Diagonal Detail 1

e A wavelet transform of a 2D image, I, can be performed by applying a set of
band and low pass filters H and L along the rows (x) and columns (y) of the
image. The sub-images of the 2D wavelet transform are given by the following
equations:
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Wavelet Decomposition of Pitted Image. Level = 2. wavelet = db3

100 200 300 400 500

Fig. 5.13 2 level 2D wavelet decomposition

—— Low Corrosion Images
—— High Corrosion Images

Energy of Wavelet Subimage

D1 H1 V1 D2 H2 V2 D3 H3 V3 D4 H4 V4 D5 H5 V5
Wavelet Sublmage

Fig. 5.14 Wavelet features of example corrosion images shown in Fig. 5.1

where * denotes convolution, A is the approximation image, Dy is the horizontal
detail, Dy is the vertical detail, and D, is the diagonal detail

e After the band and low pass filters are applied the 4 resulting sub-images are
down sampled.
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Fig. 5.16 Images from submersion test used to test wavelet feature extraction method.
a Corresponds to “baseline” and b corresponds to “pitted”

e The sub-images at the next level of thwavelet transform are computed using the
same operations on the approximation sub-image from the previous level.

Figure 5.13 shows an example of a 2-level wavelet decomposition of a corrosion
image using a Daubechies wavelet (db3). Table 5.2 shows the wavelet features that
are extracted at each wavelet decomposition level as outlined by Livens. At each
level, k, a total energy feature, EX, ,, was calculated using the horizontal, vertical
and diagonal sub-images at level k (D%, D%, and D% respectively). Additionally the
anisotropy of the energy (how much the energy differs with direction) was calcu-
lated. Figure 5.14 shows the wavelet energy features of the example corrosion
images shown in Fig. 5.11. From the graph it is evident that the low corrosion
images seem to have higher energy feature values at each level than the high
corrosion images.

Wavelet Feature Extraction and Classification example:

e Step 1: For each 512 x 512 block perform 2D wavelet decomposition as shown
in Fig. 5.13. 512 x 512 blocks were taken from images shown in Fig. 5.15.
Figure 5.16 shows the processing steps.

e Step 2: Extract energy and Orian features from wavelet coefficients:
E! Etzoml, Orian', Orian®  E, (see Table 5.2).

total»
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Fig. 5.18 Confusion matrix. Confusion Matrix

Class 1 corresponds to pitted
images and Class 2
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e Step 3: Train Learning Vector Quantization (LVQ) Neural Network (shown in
Fig. 5.17) with 30 random samples.

e Step 4: Test LVQ with entire set of samples (results shown in Fig. 5.18). Only
three pitted images were misclassified as a baseline image (Fig. 5.19).

Texture features such as contrast, correlation, energy and homogeneity can be
calculated using the gray level co-occurrence matrix (GLCM) of an image (see
Table 5.3). The (i, j) value of the GLCM of an image I has the value of how often a
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Fig. 5.19 GLCM calculation from image
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Metrics closer to 1 indicate that the object is approximately round

Fig. 5.21 Image on the right shows all the objects identified in the image ‘Pit3’ with the
roundness metric in pink near the object

pixel value i occurs horizontally adjacent to a pixel with value j in the image L.
Figure 5.19 shows a depiction of how to calculate the GLCM matrix from an image
I. Example values of the GLCM features calculated using the low and high cor-
rosion images (as shown in Fig. 5.11) are shown in Fig. 5.20. Note that the high
corrosion images tend to have higher homogeneity, correlation and energy. This
could be due to the large black areas that characterize the high corrosion images.

Table 5.4 displays a number of morphological features that can be extracted
from a segmented image. Morphological features give information on the type of
shapes in the images. Pits tend to be round objects while cracks are longer and tend
to have an eccentricity close to 1. An example of Fig. 5.21 shows an example of the
roundness feature calculated for an image of pits. These morphological features can
be used to characterize the types of different corrosion states in one image (for
example identifying a crack or pit in an image) (Fig. 5.22).

The area feature is used to calculate the percentage of corrosion on an entire
panel. Figure 5.22 shows a panel from the March 12 2014 lap joint chamber test.
The top image is the uncoated 7075-T6 aluminum panel that had an exposure time
of 286 h. The bottom image is the binary image of the top image after applying a
median filter. From the binary image the percent area of corrosion on the panel can
be calculated.

Figure 5.23 shows the progression of corrosion during the March 12 2014 lap
joint chamber test through the three images on the left and the graph of their
corresponding percent area of corrosion on the right. One of the main disadvantages
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Fig. 5.22 Top: Original image with rivets and number removed. Bottom: Binary image after
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Fig. 5.23 Percent area of corrosion calculated for 7075-T6 aluminum panels with different
exposure times
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Fig. 5.24 Surface roughness features
Table 5.5 Surface roughness features
Name Symbol Equation Figure
Maximum height Sz Sz =Sp+Sy 5.24a
Maximum peak height Sp S, = max(Z(x,y)) 5.24b
Maximum valley depth S, Sy = min(Z(x,y)) 5.24¢
Arithmetic mean height Sq Sa =% [[|Z(x,y)|dxdy 5.24d
Root mean squared height Sq S, = /%I\Z (x,y) |2dxdy 5.24e
Skewness Ssk S = s_lgx jz x,y) dxdy
Kurtosis St Sk = Sl:/%“ﬂz(x,y” dxdy

of using morphological features is that they are very sensitive to the segmentation
algorithm that is used (Fig. 5.24).

In addition to features that can be extracted from the 2D corrosion images the
LEXT OLS4000 3D Laser Measuring Microscope and Veeco Dektak 150 surface
profilometer can measure a number of surface roughness and volume features. The
surface roughness features are listed in Table 5.5. Note that Z(x, y) is the height of
the panel measured over an area, A, of about 39.32 mm x 114 mm using the
Veeco Dektak 150 surface profilometer.

Parameters related to the volume of the void portion and the material portion are
defined as shown in the diagram in Fig. 5.25. 10 and 80% are default values of the
heights for the boundaries among the valley section, core section, and peak section.
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Fig. 5.25 Material ratio curve

Fig. 5.26 Two 1.0” x 1.0” AA 2024-T3 and AA 7074-T6 panels prepared for microscopic
analysis

e V,,: The void volume of the valley section, as calculated from the material ratio
curve

e V... The void volume of the core section, as calculated from the material ratio
curve

e V,,: The material volume of the peak section, as calculated from the material
ratio curve

o V... The material volume of the core section, as calculated from the material
ratio curve.
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Fig. 5.27 Corrosion panel #1 of AA2024-T3. a Uncoated side and b coated side

Table 5.6 Summary of surface profile measurement of Panel #1, AA2024-T3 (““x” represents the
measurement is close to a random rivet hole, while the blank represents being away to any rivet
holes)

No. 1 2 3 4 5 6 7 8 9 10
Uncoated X
Coated X X X

Surface roughness and volume features measured using the LEXT OLS4000 3D
Laser Measuring Microscope are shown in Figs. 5.28, 5.29 and 5.30. The features
were measured from the following panels:

1. Baseline sample of AA 2024-T3: Surface profiles are measured including the
2D and 3D profile images and basic profile information, and surface roughness
is calculated. Panel shown in Fig. 5.26.

2. Corrosion Panel #1 of AA 2024-T3 from 2013 — jan 16 BAA-RIF lapjoint
cct—10 test: 10 measurement areas of 642 x 644 pm® were randomly selected
(close/away from rivet holes) from both coated and uncoated sides for profile the
measurement, and 3D surface roughness is calculated for each measurement.
This panel is shown in Fig. 5.27; (Table 5.6).
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Fig. 5.28 Surface 2D measurement of the AA 2024-T3 baseline sample. a Laser intensity image.
b Color image. ¢ Height intensity image. d A cross-section profile

(c)

Fig. 5.29 Surface 2D measurement from panel #1 uncoated side, close to a rivet hole, AA
2024-T3. a Laser intensity image. b Color image. ¢ Height intensity image

5.6 Baseline Profile Measuring Results
5.6.1 2D Profile Information

Corrosion Panel #1 Profile Measuring Results (Figs. 5.28 and 5.29)



142 G. Vachtsevanos

Fig. 5.30 A pit profile from Panel #1, uncoated side, away from rivet holes, AA 2024-T3

Table 5.7 Typical pit profile information from Panel #1, coated, AA 2024-T3

No. Width [um] Height [um] No. Width [um] Height [um]
1 38.469 13.38 17 112.063 15.244
2 98.682 10.035 18 85.302 15.746
3 72.757 9.098 19 86.974 16.249
4 146.351 11.239 20 63.558 15.411
5 133.807 18.316 21 54.359 20.772
6 72.757 14.515 22 134.643 17.756
7 99.519 14.86 23 113.736 13.736
8 40.978 9.389 24 217.408 11.341
9 38.469 9.389 25 217.436 21.657
10 26.761 7.861 26 224.962 15.08
11 45.996 7.861 27 45.996 10.909
12 114.572 9.215 28 117.917 16.346
13 68.576 14.525 29 66.067 12.615
14 50.177 9.996 30 168.095 16.168
15 71.085 13.588 31 83.629 20.255
16 66.903 13.276

5.6.2 2D Profile Information

Pit Profile Information:
In Fig. 5.30, the cross-sectional (CS) area of the highlighted pit profile is
240.43 pm?.

In Table 5.7, the average pit width is 96.06 um and the average pit height is
13.74 pm.

In Table 5.8, the average CS area is 354.435 um?.
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5.6.3 3D Profile Information

1. 3D Images.
2. 3D Surface Roughness Measurement.

5.7 Cut-off Wavelength A, Selection

During an area surface roughness calculation with a profile measurement gauge,
irregularities of the surface profile are filtered by introducing an appropriate limiting
filter cut-off wavelength 4., as indicated in Fig. 5.36. In order to select 1., we need
to find out defects of interest to us (e.g. pits) size irregularities by analyzing the
surface profiles (Figs. 5.31, 5.32 and 5.33).

The surface irregularities in this application are some manual scratches on the
panels as shown below. The defects’ range is over 700 um, the profile is as shown
in Fig. 5.34, and the defect profile information is compared to a typical pit in the
same panel side as shown in Fig. 5.35.

After analyzing a number of corrosion pit profiles and comparing with surface
defects (e.g. manual scratches), we chose the cutoff wavelength . of 500 pm for
the area surface roughness calculation.

From Fig. 5.36 it is obvious that when A, of 500 um is applied, the majority of
the interest surface features are captured by the filtered surface roughness image,
instead of the waviness image.

5.8 Deep Learned Features (DLF)

The widely variable states of corrosion are notoriously difficult to measure and
detect, especially at early stages when an insidious problem does not surface until
catastrophe strikes. Fast, accurate, automated expert assessment of corrosion can
help minimize damage by guiding the condition-based maintenance of structures, as
well as the design and use of sensors, from development in the lab to field
deployment on aircraft, bridges, etc. A required essential capability in such expert
systems is the extraction of features (patterns) from measurements.

Traditionally, feature formulas are hand-engineered by domain experts. For
example, in a black-and-white image of pitting formations, a measure of roundness
of the contours of pits can be devised. But this assumes that we can automatically
delineate the contours of each pit to begin with—useful at later stages of processing
but circular logic at the beginning. The issue in this example is that roundness is a
feature of the objects of interest (pits), not a feature of a whole image. It is important
to be able to examine both local features (e.g., to detect potentially costly small
cracks) and global features such as texture-based averages (e.g., if condition is
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Fig. 5.32 Software interface for area surface roughness calculation

uniform corrosion then situation is relatively benign). An even better approach
would be to augment this capability with features that are hierarchically represented
(covering a spectrum from local to global) and automatically learned, as happens in
natural biological vision systems [LeCun cat’s visual cortex].

Recent breakthroughs in machine learning have enabled unsupervised (i.e., from
input data only, without notion of desired outputs) feature learning and massively
larger neural networks to be built from training data than was originally possible
(e.g., with billions of parameters), in a branch of Al loosely termed Deep Learning
[Hinton 2006, DL papers, ...]. Our goal is to develop a Deep-Learned Features
(DLF) framework that automatically learns neural features from data, to enhance
the engineered local/global feature library for corrosion. Advantages of this
approach include: (1) ability to learn from data even if a large fraction is unlabeled
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Fig. 5.33 Range of surface profile components with standard separation of waviness and
roughness according to filtration of irregularities by cut-off wavelengths

Fig. 5.34 Surface defects in the corroded panel 1 of AA 2024-T3

(no ground-truth labels/classes of corrosion available); (2) ability to use the whole
grayscale or color space without necessarily relying on black-and-white binariza-
tion (on which morphological filters work best); (3) scalability to very large
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No. Result Width[pm] Height[pm] Length[pm]

1l 172.979 27.238 175.111
2 56.459 15.967 58.674
3 133.580 19.489 134.995

Fig. 5.35 Profile size comparison (No. 1, 3 corresponding to the manual scratch, and
No. 2 corresponding to a typical corrosion pit)

(b)

Fig. 5.36 2D height intensity images for area surface roughness calculation when A. of 500 pm
applied. a Surface roughness image. b Waviness image
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problems (e.g., 1000-class recognition, using GPUs if needed); (4) hierarchical
representations in which some neurons may respond selectively to particular
localized corrosion problems, as well as more global, protodetector types of features
to include in our library. A disadvantage is that the method tends to require many
examples (order to thousands) before generalizing (i.e., able to also work on unseen
data) features can be distilled.

Similar technology is being researched and commercially developed by several
companies. For example, forms of deep learning networks were used in Google
Brain to automatically learn neurons that respond to cats from YouTube video
thumbnails, in Google + Photo Search to detect over 1000 objects of scenes
without metadata, in Android speech recognition, in parts of IBM Watson, and in a
Microsoft real-time English-to-Mandarin translation demonstration. Facebook,
Yahoo, and others have expressed interest at NIPS conferences. Additionally,
several image classification public competitions have been won by groups using
ensembles of deep networks [refs].

5.9 Methods

Our description is geared towards image data, however, similar principles are
applicable to other forms of raw input data, such as time-series measurements
obtained from pPLPR or other sensors.

A classic solution to classification, regression, or PDF estimation problems using
artificial neural networks (NNs) involved the 2- or 3-layer multilayer perceptron
architecture, a training dataset of M examples with input vectors x € R" and
desired outputs y € R”, {(x, )Y, (x, y)(z), ooy (%, Y)™Y (the fact that us teachers
present desired outputs is what makes this problem “supervised learning”), trained
using backpropagation to simultaneously adjust the weight matrices W; and bias
vectors b; of each layer so as to minimize mean squared error E { y— 512} between
inputs and outputs, possibly regularized to encourage generalization over as yet
unseen input data. A two-layered network computes the function
y6(Woo(Wix+b;) +b,), where [](z) = 1/(1 + exp(-z)) is the logistic sigmoid
function.

We can think of an input image as a long column vector x containing the pixel
intensities (for RGB color, triple the length). Each the K rows of W, can be seen as
the coefficients of a linear filter with which the dot product between image and filter
is computed. The output o € [0,1] of the sigmoid activation function, after passing
thru it the dot product plus bias, can be interpreted in our framework as a neural
feature. Our DLF framework shares commonalities with the traditional NN setup,
but tends to differ in emphasis (harvesting of the neural features inside NN, instead
of the NN outputs), supervision levels required for learning (staged between
unsupervised and supervised), objective functions being optimized (e.g., addition of
sparsity term), use on nontrainable sublayers (e.g., convolution, subsampling, local
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contrast normalization, etc.), and scalability to more and bigger layers working
around the issue of vanishing or exploding gradients that plagued traditional NNs.

Our DLF approach includes the following basic strategies:

Obtain very large number of possibly unlabeled (i.e., without known/
ground-truth output) images, and some labeled images (i.e., with desired out-
put classes y™, such as [0 0 1 0]7 indicating the 3rd class in a 4-class problem).
Preprocess input images to have zero mean, and decorrelated and equally scaled
dimensions. This is known as zero-phase component analysis (ZCA) whitening,
a type of sphering.

Unsupervised-learning stage:

1. From unlabeled data, learn neural features via sparse autoencoder (AE) using
backpropagation.

2. If necessary, greedily train more AEs in a stack (i.e., pretrain each AE
independently of rest of the network, as opposed to all layers jointly).

Supervised-learning stage: From labeled data, train a classification layer and/or
tune whole network using backpropagation.

Scale up to big images (probably anything above 64 x 64) by randomly sam-
pling small patches (e.g., 16 x 16) and inserting convolution and pooling
operations between layers.

We provide more details of these strategies next.
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5.10 Codebase Validation

Starting from the stanford_dl_ex MATLAB stubs [Ng refs], we derived all the
equations and generated and unit-tested all the code for sparsity-based MSE and
cross-entropy cost functions, efficient backpropagation-based gradients, stacked
AEs, convolutional and pooling layers, mini-batch stochastic gradient descent,
required for the DLF framework. We validated the codebase with several experi-
ments using known real-world big data sets including CIFAR-10, MNIST, and
STL-10, achieving expected accuracies from ~ 81 to 98% when tested over thou-
sands of independent examples unseen during training. We have tens of images of
corrosion states which is not yet enough to extract generalizing features. Until
thousands of images can be obtained, we also verified the applicability of the method
to corrosion using simulated sticks versus circles as proxies for cracks and pits.

Synthetic Images Verification for Corrosion—the following figures illustrate the
procedural steps for corrosion image verification.
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5.11 Conclusion

Extending this work to thousands of corrosion images (from confocal microscopy
in the lab plus photorealistic simulation), our DLF framework is poised to add
powerful, deep-learned feature vectors (e.g., the 9-dimensional pooled features in
figure above) to the engineered feature library. Future investigations should
examine other hybrid architectures in which, for example, DLF serves as lst-pass
processor to guide the segmentation of regions of interest in corrosion images, a
pre-requisite for the engineered local features to work well.

5.12 Feature Selection

Feature selection methods fall under three main categories: wrapper methods,
embedded methods, and filter methods.

Wrapper methods assign value to as set of features by the performance of the
data mining algorithm. Figure 5.37 shows a schematic of a generic wrapper
method. The value of the subset of extracted features in this case is the accuracy of
the data mining task using the subset of features from the training set. D. Garrett
et al. implemented this approach for a classification task by using a genetic algo-
rithm to search through the extracted feature space and a support vector machine to
perform the classification [4]. Other popular search strategies in the literature
include: best-first, branch-and-bound, and simulated annealing [S]. In addition,
decision trees, naive Bayes, and least-square linear predictors are popular data
mining algorithms used for performance evaluation [5]. Table 5.5 lists various data
mining algorithms that can be used to assess the performance of a set of features.

Feature Selection

v

Search f Feature Value(f)
F ——> Algorithm —> Value

f*

Where F is the set of extracted features, fC F, and f* is the
subset of F with the highest value

Fig. 5.37 Schematic of general wrapper feature selection method
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One of the main disadvantages of wrapper methods is that they can be computa-
tionally intensive.

In embedded methods the search for the optimal subset of extracted features is
built into the classifier construction. Therefore, the search is in the combined space
of feature subsets and hypotheses for the classification.

Filter methods assign value to features only by looking at intrinsic properties of
the data and are independent of the chosen data mining algorithm. Feature ranking
is a filter method for feature selection. Consider a supervised learning problem
where there is a set of m observations {fl_,k,...,fmbyk} (k = 1,..., m). Where
{fi,....fn} is the set of n extracted features and y is the desired output. The value of
f; is computed using a scoring function which compares f; to y. For example, for
linear regression the squared value of the estimate of the Pearson Correlation
Coefficient is used as the scoring function. The estimate of the Pearson Correlation
Coefficient is given as:

N ercnzl(ﬁ,k_fi)(yk—y)
R(i) = = -
Vi k=7 S =)

where the bar notation stands for an average over the index k. R(i)2 is used as a
scoring function since it represents the fraction of total variance around the mean
value y that is explained by the linear relation between f; and y [5]. Table 5.9 lists
several data mining methods. Table 5.10 lists advantages, disadvantages and
examples as pointed out by Y. Saeys et al. in their review of feature selection
techniques.

5.13 Classification Techniques

e Decision Trees [2]
Let S be a set of cases. Each case consists of a fixed set of attributes (features)
and belongs to one of a small number of classes. Given a new case the decision
tree will classify the new case based on the known set S.
Algorithm for Decision Tree:

e If all the cases in S belong to the same class or S is small, the tree is a leaf
labeled with the most frequent class in S.

e Otherwise, choose a test based on a single attribute with two or more out-
comes. Make this test the root of the tree with one branch for each outcome if
the test, partition S into corresponding subsets S;, S,,... according to the
outcome for each case, and apply the same procedure recursively to each
subset.
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Table 5.9 Data mining methods

155

Method

Description

Techniques/algorithms

Classification
[1, 2]

Learn a function that maps (classifies) a data
item into one of several predefined classes

* Decision trees

* Rule set classifiers

* Support vector
machines (SVM)

* Nearest neighbor

* Case based reasoning

* Neural networks

» AdaBoost

» Naive Bayes

Regression [1]

Learn a function that maps a data item to a
real-valued prediction variable

* Linear regression

— Least squares
* Non-linear regression

— Feed-forward neural
networks

— Adaptive spline
methods

— Projection pursuit
regression

Clustering [,
2]

Identify a finite set of categories or clusters to
describe the data

* K Means

» Expectation
maximization
algorithm (EM)

Summarization Involves methods for finding a compact * Calculated mean and
[1] description for a subset of data. For example standard deviation of
tabulating the mean and standard deviation all fields
for all fields * Multivariate
visualization
techniques
Dependency Find a model that describes the significant * Probabilistic

modeling [1]

dependencies between variables

dependency networks

e Ruleset classifiers [2]

e Consists of a list of rules of the form “if A and B and C ... then class X”,
where rules for each class are grouped together. A case is classified by
finding the first rule whose conditions are satisfied by the case; if no rule is
satisfied, the case is assigned to a default class.

e Rulesets are formed from the initial (unpruned) decision tree. Each path from
the root of three to a leaf becomes a prototype rule whose conditions are the
outcomes along the path and whose class is the label of the leaf. This rule is
then simplified by determining the effect of discarding each condition in turn.

e A subset of simplified rules is selected for each class in turn.

e Principal disadvantage is the amount of CPU time and memory required.
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Table 5.10 Advantages, disadvantages and examples of feature selection methods [6]
Method Advantages Disadvantages | Examples
Filter Univariate
* Fast « Ignores feature dependencies o 72
* Scalable * Ignores interaction with the classifier |+ Euclidean distance
* Independent of o I-test
classifier * Information gain,
Gain ratio
Multivariate
* Models feature « Slower than univariate techniques « Correlation-based
dependencies * Less scalable than univariate feature selection
* Independent of the techniques * Markov blanket
classifier « Ignores interaction with the classifier filter
* Better computational « Fast
complexity than correlation-based
wrapper methods feature selection
Wrapper Deterministic
* Simple * Risk of over fitting * Sequential forward
* Interacts with the * More prone than randomized selection (SFS)
classifier algorithms to getting stuck in a local | Sequential
* Models feature optimum (greedy search) backward
dependencies * Classifier dependent selection elimination (SBE)
* Less computationally * Plus q take-away r
intensive than * Beam search
randomized methods
Randomized
* Less prone to local » Computationally intensive * Simulated
optima * Classifier dependent selection annealing
* Interacts with the * Higher risk of overfitting than * Randomized hill
classifier deterministic algorithms climbing
* Models feature * Genetic algorithms
dependencies « Estimation of
distribution
algorithms
Embedded | * Interacts with the * Classifier dependent selection * Decision trees

classifier

* Better computational
complexity than
wrapper methods

* Models feature
dependencies

* Weighted Naive
Bayes

« Feature selection
using the weight
vector of SVM

e Support vector machines (SVM) [2]

e In a two-class learning task, the aim of SVM is to find the best classification
function to distinguish between members of the two classes in the training
data.

e For a linearly separable dataset, a linear classification function corresponds
to a separating hyper-plane f(x) that passes through the middle of the two
classes, separating the two.
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e SVM finds the best function that maximizes the margin between the two
classes.
e An SVM classifier attempts to maximize the following function with respect

towandb : L, :%HQH - >0 O‘iyi(w 'fi'i‘b) + D

where t is the number of training samples, and o;, i = 1,...,t are non-negative
numbers such that the derivatives of L, with respect to o; are zero.
Clustering Techniques:

e K-means algorithm [2]
The algorithm operated on a set of d-dimensional vectors,
D= {xli=1,...,N}, where x; € R? denotes the ith data point.

e The algorithm is initialized by picking k points in RY as the initial k cluster
representatives or “centroids”.
e The algorithm then iterated between two steps until convergence:

— Step 1: Data Assignment. Each data point is assigned to its closest
centroid, with ties broken arbitrarily. This results in a partitioning of the
data.

— Step 2: Relocation of the “means”. Each cluster representative is relo-
cated to the center (mean) of all the data points assigned to it.

¢ Disadvantages of the algorithm:

— Sensitive to initial centroids
— Fill falter when the data if not well described by reasonably separated
spherical balls

Sensitive to outliers.

5.14 Sensor Data Fusion

Although significant achievements have been reported in the recent past, the pro-
cessing of sensor data intelligently still requires the development, testing, and
validation of new techniques to manage and interpret the increasing volume of data
and to combine them as they become available from multiple and diverse sources.
Sensor data fusion is a promising technology that can contribute significantly
towards a better understanding and a more efficient utility of raw data by reducing it
to useful information [17]. We are introducing in this proposal new and innovative
fusion techniques that build upon current data management practices but also
advance the state of the art through a systems engineering process that is rigorous
and verifiable. We define the fusion problem in a generic framework.
A methodology is sought using intelligent decision making tools through which
data collected from a variety of sensors under various testing, modeling or field
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conditions can be aggregated in a meaningful and systematic way to provide
information to the decision makers at the operational task level. We synthesize the
information to higher informational levels. A typical sensor data fusion paradigm
incorporates several levels of abstraction: fusion at the data level, the feature
(characteristic signature of the fault or failure data) level, the sensor level and the
knowledge level. At the data level, a variety of filtering, data compression and data
validation algorithms are employed to improve such indicators as signal to noise
ratio, among others. The enabling technologies at the feature level borrow from
Dempster-Shafer theory, soft computing and Bayesian estimation to fuse feature
while meeting specified performance metrics [18]. At the sensor level, we rely upon
concepts from information theory while multiple sensors are gated and coordinated
spatially and temporally to minimize their number while maximizing the probability
of detection. Significant reduction of the computational burden is always a desired
objective. The top level of the fusion hierarchy, i.e. the knowledge fusion module is
designed to reason about the evidence provided by the lower echelons, aggregate
the available information in an intelligent manner, resolve conflicts and report to the
end-use the findings of the fusion architecture. Artificial Intelligences (Al) tools and
methods from Dempster-Shafer theory, Bayesian estimation techniques and soft
computing may find utility as the reasoning enablers at this level.

5.14.1 Fusion at the Feature Level

Feature fusion has attracted the attention of the research community in recent years,
as data and data acquisition/processing strategies proliferate, in order to maximize
the value of information extracted from raw data while improving the algorithms’
computational efficiency [19-22]. Fused features (meta-features, synthetic features,
as sometimes called) improve the performance of diagnostic and prognostic algo-
rithms by increasing the correlation of the constituent features with respect to
ground truth fault data. The feature level offers the most advantageous and bene-
ficial opportunity for the application of novel fusion techniques. It is common
practice to employ high-bandwidth dynamic sensing modalities (vibration, dynamic
pressure, etc.) in order to monitor key attributes of fault/failure modes for critical
components/subsystems.

The fundamental principle of fusion algorithms is rather simple: maximize a
utility or objective/fitness function that conveys the relationship between the fused
features and the actual fault dimension. A number of fusion algorithms, fitness
functions and optimization solvers have been proposed over the past years. The
challenge stems primarily from the need to define an optimum feature vector and to
select the most appropriate fitness function for the problem at hand. The fitness
function generally attempts to capture the “similarity” between the fused features
and ground truth.
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Typical features or Cls in the time domain may include peak values, RMS,
energy, kurtosis, etc. in the frequency domain, we focus primarily on features for
rotating equipment that exhibit a marked difference between baseline or no-fault
and faulty data [23]. For example, we seek in this category a comparison (ampli-
tude, energy, etc.) of certain sidebands to dominant frequencies, when the sensor
signals are transformed via an FFT routine to the frequency domain®’. Other
possible features are extracted through coherence and correlation calculations.
When the information is shared between the time and frequency domain, it might be
advantageous to extract features in the wavelet domain offering an appropriate
tradeoff between the two domains. When multiple features are extracted for a
particular fault mode, it is desirable to combine or fuse uncorrelated features to
enhance the fault detectability.

Consider the objective or fitness function:

f = |correlation(x,w)| x FDR(x,w)

where x and w could represent two features.

Other suitable fitness functions may be defined depending on the problem at
hand. The choice of the “best” fitness function is a challenging task and the most
significant step in the optimization process. Once the fitness function and appro-
priate initial conditions in the search space are given, the algorithm (PSO, GP, etc.)
is allowed to run until specified termination conditions are satisfied.

Well established tools like Principal Component Analysis (PCA) and methods
based on the degree of overlap between the probability density functions of features
are employed first to screen features, prioritize and rank them for further processing.
Thus, we face eventually only a subset of the “best” features extracted from raw
data.

It is preferable to view features and their corresponding fused versions in a
probabilistic or statistical setting. Bayesian estimation methods, Kalman filtering,
particle filtering, etc., allow for information from multiple measurement sources to
be fused in a principled manner. Typically, multiple snapshots or windowed data
are used to extract a feature. A histogram is built next from the feature sequence
approximating a Probability Density Function (PDF). Similar constructs are
determined from other features from baseline and fault data. Since fusion,
regardless of the method employed, is viewed as an optimization problem, an
appropriate fitness or objective function must be defined to evaluate each feature. In
our brain research work, we defined and employed successfully the following
fitness function [24]:

fitness =

Vot +a3 < 1 >
X
|:ul - :u2‘ - PDFoverlap

where 1, 1, are the means and o, 0, the standard deviations of two features.

The PDF overlap is the common area between the given feature PDF and one
obtained from data under no fault conditions. Here, we are attempting to
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discriminate or distinguish between features belonging to the two classes only: One
class representing baseline or no fault conditions and the second representing a
faulty stat. Thus, the fitness function is composed of the inverse square root of the
Fisher Discriminant Ratio (FDR) divided by one minus the PDF overlap [25].

FDR measures the distance between two classes of features. Sometimes seem-
ingly good FDR values still produce features with large overlaps in the feature
histograms for the two classes. This fitness function penalizes features with large
class overlaps by increasing the fitness score in proportion to the amount of
overlap. The overlap values range from O for no overlap to 1 for total overlap. The
feature with the lowest fitness score is selected as the best.

5.15 Epilogue

This chapter describes rigorous tools/methods for processing corrosion imaging
data. An array of approaches to data mining, feature extraction and selection and
classification are presented with extensive examples illustrating the efficacy of these
methods. The enabling technologies cover a wide spectrum of innovative legacy
and new advances like Deep Learned Features borrowed from the Deep Learning
domain. The contents of this chapter set the stage for accurate corrosion detection
and prediction algorithms.
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Abstract This chapter introduces fundamental concepts, methods and techniques
for modeling of corrosion processes. Modeling and simulation platforms constitute
the cornerstone for corrosion prevention, remediation and diagnosis/prognosis of
corrosion initiation and propagation in critical metal structures. We address meth-
ods that cover first principle models, semi-empirical and empirical models for
corrosion processes. We begin with the electrochemical nature of corrosion as the
basis for microscale modeling efforts and proceed to describe mesoscale and
macroscale modeling techniques. The absence of real long-time corrosion data
derived from field testing, laboratory experiments and high-confidence models
(mostly absent in the current literature) necessitates the development and applica-
tion of mostly empirical approaches. The modeling approaches reported in the
literature are reviewed and summarized.
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6.1 The Need

Reliable, high-fidelity corrosion models form the foundation for accurate and robust
corrosion detection and growth prediction. A suitable modeling framework assists
in the development, testing and evaluation of detection and prediction algorithms. It
may be employed to generate data for data-driven methods to diagnostics/
prognostics, test and validate routines for data processing tool development, among
others. The flexibility provided by a simulation platform, housing appropriate
detection and progression models, is a unique attribute in the study of how cor-
rosion processes are initiated, evolving and may be, eventually, mitigated in
physical systems. There is evidence to support that aircraft, ships, transportation
systems and industrial processes are subjected to severe corrosion that is costing
billions of dollars to prevent and/or remedy.
The pictures below show aircraft failures attributed to corrosion.

\

ik

(media photos)

6.2 The Objective

The objective of the corrosion modeling effort is to assess the current state of the art
and develop, test and evaluate novel corrosion detection and progression models
that will assist in the design and implementation of “smart” sensors and sensing
modalities for a variety of application domains. We will capitalize on novel
modeling activities to assure that we arrive at an intelligent sensing framework for
corrosion detection and growth. Our ultimate objective is to assist in development
of an integrated “smart” sensing strategy that will be capable of detecting accurately
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corrosion initiation and will be capable of predicting on-line the corrosion growth
rate. On the imaging side, in addition to corrosion modeling based on classical EO
images, we will be exploring other means for assembling “images” via a network of
multiple sensors. Bring-to-market a corrosion monitoring system that is,

e Capable of detection and prediction of pit/ crevice initiation.
e Suitable for installation on multiple platforms: low power, long lifetime, small
size, low weight, wireless, low EMI susceptibility.

The figure below depicts basic corrosion processes (Fig. 6.1; Table 6.1).

Fig. 6.1 Basic corrosion Mean Potential
process
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6.3 Corrosion Books

p | -

o~ . UHLIG'S 0 N
YRROSIOM (CORROSION|
ORROSION . R SITeeIN -

ENGINEERIN( |
: el | DEOOK

A number of books addressing topics from corrosion principles to corrosion sci-
ence, corrosion data and reference treatises have been published over the past years.
Most of them address specific topics in corrosion science and engineering while
others focus on corrosion data or target a more general audience as reference books.

Corrosion Monitoring is addressed in another chapter. A typical setup for
corrosion monitoring on an aircraft structure is shown below.

=
A

6.4 The Data Base

A suitable and statistically sufficient database of corroding devices/structures/panels
constitutes the necessary foundation for corrosion modeling. Data derived from
testing of corroding specimens or field data, if available, and imaging tools form the
foundational basis for corrosion modeling. We list below a sample of corrosion data
assembled from a variety of sources.

e Factors:

— Temperature.
— Relative humidity.

e pH is assumed to be known a priori:

— pH: 7—Distilled water.
— pH: 7—Salt water (5% NaCl).

e By definition, time of wetness is the amount of time an environment exceeds
80% of Relative Humidity (RH).
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e Corrosion rate (CR) varies directly with temperature and RH and indirectly with
pH (more acetic yields more corrosion).
Corrosion is measured in mass loss per surface area (grams/cmZ).
Pit depth is computed from mass loss surface density and geometry of the
anticipated pit.

6.5 Imaging Data

It is evident that imaging of corroding surfaces offers a viable, robust and accurate
means to assess the extent of localized corrosion [2]. Modeling, in combination
with sensor measurements, promises to assist in the timely and accurate corrosion
prevention, detection and prediction.

Corrosion fatigue is recognized as one of the degradation mechanisms that affect
the structural integrity of aging aircraft structures [3]. Several nondestructive
inspection (NDI) systems (eddy current, ultrasound and others) have been used to
obtain the images of damaged regions. There is a growing demand for improving
existing NDI techniques to achieve maximum confidence and reliable results with
minimum damage components. There is always a constant outlook for methods that
identify the damaged regions on the image and also that gives a quick estimate of
the extent of the damage.

The images obtained through conventional NDI methods are not directly suitable
for identification and quantification of damaged regions. Such images therefore need
to be enhanced and segmented appropriately for further image analysis.
Segmentation has been achieved using wavelet decomposition (see chapter on Data
Analytics). The wavelet coefficients also can be used to quantify the extent of
corrosion. Neural networks were applied in the process of segmentation and quan-
tification of damaged regions. Segmentation results show a good correspondence
between the extracted regions and the actual damaged on sample panels. We show
below (Figs. 6.2, 6.3 and 6.4) samples of structural specimens imaged via con-
ventional tools. Simple image processing tools/results are also included in Fig. 6.4.

Fig. 6.2 Samples of
structural specimens. Source
Danny Parker AVNIK/US
Army
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Fig. 6.3 Samples of
structural specimens. Source
Danny Parker AVNIK/US
Army

Fig. 6.4 Cropped image

6.6 Salt Fog Images

This section illustrates initial image processing/analysis methods/results.
Figures 6.5, 6.6 and 6.7 show material from an aerospace wing attachment fitting
that was subjected to 69 h of salt fog. In order to enhance the contrast of corrosion
images a histogram equalization was applied to the images. The results of histogram
equalization are shown in Fig. 6.5. In order to distinguish areas on the panel of
different levels of corrosion thresholds were applied to the corrosion images. The
results of applying thresholds to the images are shown in Figs. 6.5, 6.6, 6.7 and 6.8.

Figures 6.9, 6.10 and 6.11 illustrate initial image processing/analysis methods/
results on bearing images.

The threshold techniques discussed so far characterize the level of corrosion
based primarily on the pixel intensity of the image. However, since the level of
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Histogram of
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Fig. 6.5 Histogram equalization

s
Histogram after
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Fig. 6.6 Image thresholding
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Fig. 6.8 Otsu method for thresholding of corrosion image

corrosion will depend on the texture and not just the pixel value of the image, it is
important to consider many features to determine the level of corrosion in different
regions of the image. Such features could include texture analysis, two dimensional
Fourier transform coefficients, discrete cosine transform coefficients, homogeneity,
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Fig. 6.9 Histogram equalization of corroding bearing image

Fig. 6.10 Bearing image 3 Density Layers
threshold

5 Density Layers
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entropy, contrast, range filtering etc. Figure 6.12 demonstrates the usefulness of
using two-dimensional Fourier transform coefficients to distinguish between a
non-corroded image (baseline) and a corrosion image. Note that the zero frequency
components are in the center of the images.
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Fig. 6.11 Histogram equalization and threshold on left and right bearing images
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6.7 Fundamental Corrosion Processes

Thermodynamic principles for corrosion attempt to explain why corrosion occurs.
Aluminum alloy chemistry and the formation of Grain Boundaries (GBs) in such
alloys address fundamental issues/concepts of how alloying elements
(micro-constituents) add to strengthening and corrosion resistance. GBs contribute
initially to structure defects and the formation of corrosion products at the micro-
scale level. Chemical reactions at the GB contribute to pit growth.

The anisotropic grain structure in an alloy-short transverse grain topology at the
grain boundaries leads to significant susceptibility to intergranular corrosion and
constitutes the initial phase of corrosion initiation and growth.

Initial pitting occurs at this stage that may be detectable via mass loss mea-
surements or imaging techniques [1]. The pit depth at this initial stage is minimal.
For modeling purposes, we may assign the designation “corrosion” in order to
differentiate this phase from actual/measurable pitting and cracking which signifi-
cantly affect the state of corrosion and may lead to severe material loss/deformation
requiring maintenance action. Thus, a continuous active corrosion path exists at the
grain boundaries. Figure 6.13 illustrates the typical corrosion cycle while Fig. 6.14
shows a pictorial representation of grain boundaries. Figure 6.15 depicts pitting
corrosion images.

Crevice corrosion (initiation and sequence) is addressed and included in the
modeling effort when testing and data become available for alloy structures that
exhibit the presence of fasteners, joints, bolts, etc. Moreover, stress corrosion
cracking mechanisms (vibration-induced or via other means) will be considered
when test panels and lap joints provide appropriate data.

THE CORROSION CYCLE

COKE + LIMESTONE

IRON DRE
Hematite
(Fe,0,)
‘ e i
RUST STEEL
(Fe,0,-3H,0)

Fig. 6.13 Schematic of the corrosion cycle (Source Dr. Vinod Agarwala)
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Fig. 6.14 Idealized pictorial of grain boundary precipitation in an aluminum-copper alloy (Source
Dr. Vinod Agarwala)

Fig. 6.15 Pitting images (Source Dr. Vinod Agarwala)

6.8 Corrosion Modeling: Background/State of the Art

Corrosion modeling has been an active area of research over the recent past.
A variety of models have been proposed depending on the material processes, the
application domain, etc. We review briefly major advances in this area. The
research literature in this area is extensive and our intent is to summarize some
important contributions only.

Corrosion modeling has been addressed via a number of methods ranging from
empirical, semi-empirical and firs principle approaches. Most efforts focused on
empirical techniques with first principle models exploring the electro-chemical
nature of corrosion processes.
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The US Air Force has undertaken a massive role on aircraft corrosion processes
[4]. Of particular interest to this document is the corrosion modeling section
detailed in this lengthy paper. The section summarizes the results of the modeling
effort to date. An Eddy current technique is commonly used as an NDI (Non
Destructive Inspection) for detection of hidden cracks and corrosion in commercial
aircraft structures. This technique detects variations in the specimen’s ability to
generate eddy current in the presence of the time varying magnetic field.

The model integrates the results of environmental modeling, susceptibility
modeling, condition modeling, corrosion growth rate modeling, and structural
effects modeling. All have been completed and integrated. A combining model has
been developed that results in a corrosion prediction that permits determination of
present corrosion damage and predicts the effects of future corrosion damage.

An economic effect model has been integrated into the structural model per-
mitting the examination of cost effectiveness of various maintenance actions.
Figure 6.16 suggests a basic corrosion mechanism.

It has been shown that corrosion is electrochemical in nature with Fig. 6.16
showing the basic reactions. As a result, research activity in the electro-chemistry
community has produced a multiplicity of modeling tools/methods to describe
corrosion processes. Our interest is on those practical issues of corrosion modeling
that affect the initiation, propagation and prediction of corrosion in engineering
systems/processes. It is well established that corrosion is electrochemical in nature.
The anodic and cathodic reactions are shown in Fig. 6.17.

Corrosion Mechanism & Cracking

Al —+ AP F 38
Reaction with water AI'*+3H,0 — AL(OH), l+ 3H"
Reaction with CI Al 4+ 3Cr * AlCl,

Pitting process AICl, +3H,0 — Al(OH); +3HCl chemical reaction
Need H20 + CI l Al +3HCI — AICL + 3H' +3e
Hydrogen Embrittlement 2H"+2e- — 2H | ,mim—" H,
Corrosion Product H 4 LL Il_‘ldm““d
H. E. H [Blistering]

Fig. 6.16 Basic corrosion mechanisms (Source Dr. Vinod Agarwala)
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CORROSION IS ELECTROCHEMICAL IN NATURE
General anodic reaction: M. — M™ +ne’
General cathodic reactions:

(acid solutions) O, +4H" +4e" - 2H,0
Hydrogen evolution: 2H' +2¢ » H_,L
(neutral or basic solufions) O, +2H,0 —4e — 40H"

Fig. 6.17 Fundamental anodic and cathodic reactions (Source Dr. Vinod Agarwala)

6.9 Introduction to the Modeling Framework

We exploit novel image processing tools/methods to identify features of interest to

be used in the modeling task, since imaging of corroding surfaces offers a viable,

robust and accurate means to assess the extent of global or localized corrosion.
The corrosion models address:

pitting and intergranular corrosion (microscale) of Al alloys and other metals.
crevice corrosion in occluded areas, such as joints (mesoscale).

galvanic corrosion of aircraft structural elements (macroscale).

the effect of surface protection methods (anodization, corrosion inhibitor release,
clad layer, etc.).

A systematic, thorough and robust corrosion modeling effort, addressing all
corrosion stages for steel, aluminum alloys or other metals, from micro to meso and
macro levels, combined with appropriate sensing, data mining and decision support
tools/methods (diagnostic and prognostic algorithms) may lead to substantially
improved structural component (materials, coatings, etc.) performance and reduced
exposure to detrimental consequences [5]. Reliable, high-fidelity corrosion models
form the foundation for accurate and robust corrosion detection and growth pre-
diction. A suitable modeling framework assists in the development, testing and
evaluation of detection and prediction algorithms. It may be employed to generate
data for data-driven methods to diagnostics/prognostics, test and validate routines
for data processing tool development, among others. The flexibility provided by a
simulation platform, housing appropriate detection and progression models, is a
unique attribute in the study of how corrosion processes are initiated, evolving and
may be, eventually, mitigated in physical systems.

6.10 Basic Modules of the Smart Sensing Modality
and Corrosion Modeling

Generally speaking, corrosion starts in the form of pitting, owing to surface chemical
or physical heterogeneity, and then facilitated by the interaction of the corrosive
environment fatigue cracks initiate from corrosion pitted areas and further grow into
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the scale that would lead to accelerated structure failure [6, 7]. In order to effectively
conduct structural corrosion health assessment, it is thus crucial to understand how
corrosion initiates from the microstructure to the component level and how structure
corrosion behaviors change because of varied environmental stress factors. Many
research efforts have been reported in the past addressing this critical issue [4, 8—10].
Traditionally, conventional ultrasonics and eddy current techniques have been used
to precisely measure the thickness reduction in aircraft and other structures.

Besides, advanced corrosion health assessment systems require comprehensive
quantitative information, which can be categorized into a variety of feature groups,
such as corrosion morphology, texture, location, among others. It calls for the
exploration of both new testing methods and data fusion methods from multiple
testing techniques. Forsyth and Komorowski [11] discussed how data fusion could
combine the information from multiple NDE techniques into an integrated form for
structural modeling. Several other studies have looked into different sensing tech-
nologies for corrosion health monitoring, including using a micro-linear polarization
resistance, PLPR sensor [12, 13], and fiber optic sensors [5]. However, the existing
research effort in a combination of surface metrology and image processing is very
limited. In parallel to the current corrosion sensing technology, there have been a
number of corrosion modeling studies trying to numerically capture the processes of
pitting corrosion initiation, pitting evolvement, pitting to cracking transition, and
crack growth to fracture at the molecular level. However, currently there is no
accepted quantitative model to take into consideration the effect of stress factors
(e.g., salinity, temperature, pressure), although the effects of the above-mentioned
stress factors have been widely discussed. Pit depth models of the form:

D(t) = a(t — ty;) or Dx/dt = g(x) = Bo'/Px"=1/P) (pit growth rate)

have been proposed in the literature.
Researchers proceed to describe then the transition from pit to crack (Kondo)
and then the crack growth rate:

Dx _ v
o Colx
where G is applied stress and C, p, and q are experimentally determined constants.
Our modeling methods are reasonable and compatible with our objectives, the
data availability and the problem at hand. We would like to use Bayesian regression
analysis to estimate the model parameters (stresses).The Bayesian technique can be
combined with Markov chains-Monte Carlo sampling algorithms to arrive at the
expression for each stress profile that will be included in the state model. Starting
with 0 = {p1,p2,...} and Data = {Dy,D,, ...} the probability of the parameter
vector 0 given the Data can be expressed as (Bayes’ theorem):
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_ L(Data|0)m(0)
n(0|Data) = [ L(Datal0)mo(0)d0

where L is the likelihood function. We can assume initially that L is normally
distributed.

Then the open source software WinBUGS can be used to give us the proba-
bilistic profiles for the stresses. The data will be called upon to set the probability
distributions initially.

For stress crack corrosion, the important stress factor is the Stress Intensity
Factor (AK) Stress parameters will need to be normalized.

A metal surface (aluminum alloy, etc.) exposed to a corrosive environment may,
under certain conditions experience attack at a number of isolated sites. The rate of
dissolution in this situation is often much greater than that associated with uniform
corrosion and structural failure may occur after a very short period. Several different
modes of localized corrosion may be identified.

Corrosion modeling has been an active area of research over the recent past.
A variety of models has been proposed depending on the material processes, the
application domain, etc.

We address in this chapter analytical tools and methods to model accurately
corrosion processes that are exploited eventually to design diagnostic and prog-
nostic algorithms and assess the health state of critical nuclear waste storage
facilities. The architecture is set as a decision support system providing advisories
to the operator/maintainer as to the health status of such assets subjected to cor-
rosion and in need of corrective action.

Of particular interest to our theme is localized corrosion and cracking, i.e.
cracking initiating at points on the surface of a specimen (joints, fasteners, bolts,
etc.). A metal surface (aluminum alloy, etc.) exposed to a corrosive environment
may, under certain conditions, experience attack at a number of isolated sites. If the
total area of these sites is much smaller than the surface area then the part is said to
be experiencing localized corrosion. The rate of dissolution in this situation is often
much greater than that associated with uniform corrosion and structural failure may
occur after a very short period. Several different modes of localized corrosion may
be identified. These are dependent on the type of specimen undergoing corrosion
and its environment at the time of attack. Most destructive forms are pitting cor-
rosion which is characterized by the presence of a number of small pits on the
exposed metal surface, crevice attack and cracking. The rapidity with which
localized corrosion can lead to the failure of a metal structure and the extreme
unpredictability of the time and place of attack, has led to a great deal of study of
this phenomenon. In this localized view, imaging studies are focusing on small
areas of the global image where corrosion initiation is suspected and may spread
more rapidly than other areas. We exploit novel image processing tools/methods, in
combination with other means (mass loss calculations) to identify features of
interest to be used in the modeling task, since imaging of corroding surfaces offers a
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viable, robust and accurate means to assess the extent of localized corrosion (see
detailed treatment in the Data Analytics chapter).
We take advantage of first principle, semi-empirical and empirical approaches.
Most empirical/semi-empirical methods for corrosion fatigue modeling start with
Paris’ Law:

da/dN = CAK"

where da/dN is the rate of crack growth per cycle (m/cycle), C and n are empirical
parameters, and AK is the stress intensity range. Micrographs of pitting and
cracking corrosion are shown in Fig. 6.18.

Y. Kondo’s corrosion modeling contributions are often quoted and employed by
various investigators. In his original work, Kawai and Kasai [14] considered a
three-stage corrosion process for industrial machines, i.e. pit growth, and crack
formation from pit and fatigue crack propagation. He stipulated that pit volume for
a hemispherical pit increases proportionally to time (t).

Although Kondo did not address directly aluminum alloy corrosion for aircraft
structures, his work provided an empirical methodology to stipulate a modeling
approach for crack formation from pit and to estimate a residual life for fatigue
crack initiation based on inspection data.

Kawai and Kasai [14] investigated the fatigue crack initiation behavior of
low-alloy steel in 90 °C de-ionized water. From this study, it was observed that the
corrosion fatigue process is composed of three stages, namely, pit growth, crack
formation from the pit, and corrosion fatigue crack propagation. The graph shown
in Fig. 6.19 represents stages of the corrosion fatigue process highlighting crack
growth rates. It was observed that the pit size increased with time (t) following the
relation: pit size o< t'*. The crack formation from the pit was determined from the
stress intensity factor (linear elastic fracture mechanics parameter), which was
calculated by assuming that the pit was a sharp crack.

The final model for the specimen under study by Kawai and Kasai [14] is of the
form:

Pit Critical  Crack
growth  pit size  growth
— T S
Critical pit size
E 10#m Time (or Cycle)

Fig. 6.18 Micrographs of pitting and cracking corrosion; evolution of the corrosion processes
[14]
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Fig. 6.19 Crack growth rate measurements
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Pit depth models of the form:
p(t) = a(t — ty)” or Dx/dt = g(x) = Bo'/Px"1=1/P) (pit growth rate)

have been proposed in the literature.
Researchers proceed to describe then the transition from pit to crack (Kondo)
and then the crack growth rate:

Dx
o= CoPx1

where o is applied stress and C, p, and q are experimentally determined constants.

6.11 From Microscale to Mesoscale and Macroscale
Models

Microscale Models At the atomic scale and based on the constituent materials’
electrochemistry. Thermodynamic principles for corrosion attempt to explain why
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corrosion occurs. Aluminum alloy chemistry and the formation of Grain Boundaries
(GBs) in such alloys address fundamental issues/concepts of how alloying elements
(micro-constituents) add to strengthening and corrosion resistance. GBs contribute
initially to structure defects and the formation of corrosion products at the micro-
scale level. Chemical reactions at the GB contribute to pit growth.

Mesoscale Models At the mesoscale, measurements of mass loss and imaging
results will be considered for modeling purposes when pitting becomes significant.

Macroscale Models Cracking is the basic corrosion mechanism at this stage where
further action might be required when detected and its extent is estimated via
prognostic methods.

Global Versus Local Corrosion Models It must be pointed out that initial mod-
eling efforts, in conformance with current testing procedures and acquired data, will
focus on global approaches, i.e. the whole panel area is viewed as the target for data
collection and analysis. In contrast with a localized view where imaging studies, for
example, are focusing on small areas of the global image where corrosion initiation
is suspected and may spread more rapidly than other areas. This study will require
novel image processing tools/methods to identify features of interest.

6.12 Corrosion Modeling Methods

Several recent books and reports address issues of corrosion modeling and describe
thorough studies on all aspects of corrosion staging for aluminum alloy structures.
Most notably, the book on Aluminum Alloy Corrosion of Aircraft Structures, edited
by Derose and Suter [10] presents the results of work performed for the Simulation
Based Corrosion Management (SICOM) project. The project was conducted under
the auspices of the European Sixth Framework Program and aimed to develop a
multi-scale corrosion modeling concept with a wide range of potential applications
in research, development, and industry. The book defines the parameters and
describes techniques needed for modeling and simulation of aluminum alloy cor-
rosion in aircraft environments at the microscopic, mesoscopic, and macroscopic
scales. The corrosion models address pitting and intergranular corrosion (mi-
croscale) of Al alloys, crevice corrosion in occluded areas, such as joints (me-
soscale), galvanic corrosion of aircraft structural elements (macroscale), as well as,
the effect of surface protection methods (anodization, corrosion inhibitor release,
clad layer, etc.). The book describes the electrochemical basis for the models, their
numerical implementation, and experimental validation and how the corrosion rate
of the Al alloys at the various scales is influenced by its material properties and the
surface protection methods. It will be of interest to scientists and engineers inter-
ested in corrosion modeling, aircraft corrosion, corrosion of other types of vehicle
structures such as automobiles and ground vehicles, electrochemistry of corrosion,
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galvanic corrosion, crevice corrosion, and intergranular corrosion. Figure 6.20
depicts a general corrosion modeling approach.

Model validation is a necessary requirement in the corrosion assessment process.
Software routines must be verified and the integrated model validated in order to be

useful with high confidence. Figure 6.21 shows a path to model verification and
validation.
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6.13 Data-Driven Models

Data driven corrosion models typically take advantage of constructs such as
Artificial Neural Networks (ANNs), fuzzy and neuro-fuzzy systems and regression
tools.

Investigators describe a computational approach using Wavelet transforms and
artificial neural networks to analyze and quantify the extent of corrosion damage
from NDI images. The Wavelet parameters obtained from the images were first
used to classify between corroded and un-corroded regions using a clustering
algorithm. The corroded regions were further analyzed to obtain the material loss
due to corrosion using an artificial neural network model.

A cellular automaton (CA) modeling approach has been employed as the
modeling medium to represent transitioning dynamics and to assist in the devel-
opment of models for the corrosion stages.

Other approaches focus on the development and experimental validation of
computational models for simulating galvanic corrosion in specific application case
scenarios appearing in an aircraft environment. The numerical approach is based on
solving the electro-neutrality equation with a three dimensional Boundary/Finite
Element Method. Amongst the inputs of the problem are: geometrical description
and physical properties of the electrolyte, as well as macroscopic polarization
curves of the active electrodes. The main outcomes of the model are electric current
density and potential distribution on the surface.

6.14 Model-Based Approaches

These approaches take advantage of first principle, semi-empirical and empirical
modeling approaches to describe the initiation and evolution of corrosion processes.
Several investigators describe the electrochemical basis for the models, their
numerical implementation, and experimental validation and how the corrosion rate
of the Al alloys at the various scales is influenced by its material properties and the
surface protection methods. The corrosion models address pitting and intergran-
ular corrosion (microscale) of Al alloys, crevice corrosion in occluded areas, such
as joints (mesoscale), galvanic corrosion of aircraft structural elements (macro-
scale), as well as, the effect of surface protection methods (anodization, corrosion
inhibitor release, clad layer, etc.).
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6.15 Stochastic/Probabilistic Methods

The stochastic nature of pitting corrosion of metallic structures has been widely
recognized. It is assumed that this kind of deterioration retains no memory of the
past, so only the current state of the damage influences its future development. This
characteristic allows pitting corrosion to be categorized as a Markov process.
Localized corrosion, specifically pitting corrosion of metals and alloys, constitutes
one of the main failure mechanisms of corroding structures such as aircraft com-
ponents. Localized corrosion cannot be explained without assuming stochastic
points of view due to the large scatter in the measurable parameters such as cor-
rosion rate, maximum pit depth, and time to perforation [15]. Many variables of the
metal-environment system such as alloy composition and microstructure, and
composition of the surrounding media and temperature, are all involved in the
pitting process [14]. Such complexity imposes the development of theoretical
models and simulation tools for a better understanding of the outcome of the pitting
corrosion process. These tools help predict more accurately the time evolution of pit
depth in corroding structures as the key factor in structural reliability assessment.
Another important characteristic of the pitting corrosion process that is worth noting
is the time and pit-depth dependence of the corrosion rate [6, 7]. It has been
established that, for a given pit, the growth rate decreases with time, while for pits
with equal lifetimes, the corrosion rate is larger for deeper ones. Provan and
Rodriguez [16] are amongst the first authors to use a nonhomogenous Markov
process to model pit depth growth. In their model, the authors divided the space of
possible pit depths into discrete, non-overlapping states and numerically solved the
system of Kolmogorov’s forward equations for the transition probabilities between
damage states.

In recent years, modeling of pitting corrosion with Markov chains has shown
new advances. For example, Bolzoni et al. [17] have modeled the first stages of
localized corrosion using a continuous-time, three-state Markov process. The
Markov states of the metal surface are passivity, meta-stability, and stable pit
growth. On the other hand, Timashev et al. [18] formulated a model based on the
use of a continuous-time, discrete-state pure birth homogenous Markov process for
stochastically describing the growth of corrosion-caused metal loss. In their model,
the intensities of the process were calculated by iteratively solving the proposed
system of Kolmogorov’s forward equations.

The stochastic nature of pitting corrosion of metallic structures has been widely
recognized. It is assumed that this kind of deterioration retains no memory of the
past, so only the current state of the damage influences its future development. This
characteristic allows pitting corrosion to be categorized as a Markov process. In this
paper, two different models of pitting corrosion, developed using Markov chains,
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are presented. Firstly, a continuous-time, nonhomogeneous linear growth (pure
birth) Markov process is used to model external pitting corrosion in underground
pipelines. A closed-form solution of the system of Kolmogorov’s forward equations
is used to describe the transition probability function in a discrete pit depth space.
The transition probability function is identified by correlating the stochastic pit
depth mean with the empirical deterministic mean. In the second model, the dis-
tribution of maximum pit depths in a pitting experiment is successfully modeled
after the combination of two stochastic processes: pit initiation and pit growth. Pit
generation is modeled as a nonhomogeneous Poisson process, in which induction
time is simulated as the realization of a Weibull process. Pit growth is simulated
using a nonhomogeneous Markov process. An analytical solution of Kolmogorov’s
system of equations is also found for the transition probabilities from the first
Markov state. Extreme value statistics is employed to find the distribution of
maximum pit depths.

Lopez De La Cruz et al. [19] proposed a stochastic analysis method of spatial
point patterns as effect of localized pitting corrosion. A test of randomness is
performed by means of the inter-event distance method. The robustness of the
method is tested with two artificially generated samples. The method is applied to
published empirical data. The results complied when spatial regularity of pits was
found and showed discrepancy when pit interaction was observed.

Probabilistic modeling includes all significant uncertainties that affect aircraft
component reliability, such as flight conditions, operational loading and environ-
mental severity, manufacturing deviations, material properties and maintenance
inspection activities. Advanced response surface modeling tools based on stochastic
field approximation models are employed for computing the local bivariate
stochastic stresses (mean stress and stress range are the two correlated stress
components). The ProCORFA software developed by GP Technologies in collab-
oration with STI Technologies for USAF was employed in several such studies.

A three-level hierarchical, multi-scale, stochastic FE analysis approach was
proposed and employed for computing stochastic local stresses. The employed
three-level hierarchical stochastic FE analysis is capable of computing accurately
the stochastic stress variations near rivets that are caused by loading, material,
geometric configuration uncertainties, including deviations from the baseline
geometry of the lap joint due to manufacturing process.

At the top level, a global airframe FE model with a relative coarse mesh was
used. At an intermediate level, a local FE model of the lapjoint was used. The
computed displacement response of the global FE model was considered to be the
input boundary conditions for the local FE analysis of the lap joint. This local FE
model included the joint rivets and splices, plus the contact surface conditions
between the joint components. At the bottom level, a local axisymmetric FE model
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of a single rivet was employed. This detailed single rivet FE model has a very
refined mesh that was required for incorporating accurately material plasticity
effects on the local contact stresses around the rivet.

Other investigators suggested a finite element method (FEM)-based corrosion
model, specifically tailored for localized pitting corrosion of aluminum alloys. The
model distinguishes itself from existing ones by its strong predictive power and
high generality. By resorting to this methodology, not only corrosion rate but also
pit stability can be quantitatively evaluated for a wide range of systems involving
heterogeneous alloy microstructure, complex pit morphology, and versatile solution
chemistry.

The stochastic theory of pitting corrosion has been successfully used to analyze
the statistical nature of pitting. A Monte Carlo model has been proposed to predict
the extent of damage accumulation in aluminum alloys. This model uses experi-
mental parameters obtained by electrochemical noise measurements on electrode
arrays. The algorithm is based on the random occurrence of the metastable pit birth/
death or the stable pit growth. Simulated pit depth distributions are compared to
experimental data obtained by Optical Profilometry (OP), leading to an improve-
ment of the model and challenging the existence of a metastable/stable transition in
free corrosion conditions. The evolution of metastable pit birth rate with time shows
an initial linear increase and an exponential decay. Monte Carlo modeling can
successfully reproduce experimental pit depth distributions in aluminum alloys.

A probability approach for life prediction is developed and illustrated in the
work of Harlow and Wei [20] through a simplified model for the pitting corrosion
and corrosion fatigue crack growth in aluminum alloys in aqueous environments.
A method for estimation of the cumulative distribution function (CDF) for the
lifetime is demonstrated by using an assumed CDF for each key random variable
(RV). The basic aim of this approach is to make predictions for the lifetime,
reliability, and durability beyond the range of typical data by integrating the CDFs
of the individual RVs into a mechanistically based model. The contribution of each
key RV is considered, and its significance is assessed. Thus, the usefulness of
probability-based modeling is demonstrated. It is noted that physically realistic
parameters were assumed for the illustrations. As such, the results from analysis of
the model qualitatively agree quite well with experimental observations. However,
these results should not be construed to represent behavior in actual systems.
Because of these assumptions, confidence levels for the predictions are not
addressed.

6.16 Corrosion Modeling Approaches

Corrosion in metal structures typically proceeds from pitting to cracking, as shown
schematically in Fig. 6.22. Characteristic corrosion stages are shown in Fig. 6.23.
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The tables below are a small sample of studies reported over the past years on
corrosion fatigue mechanisms, pitting and cracking issues and modeling approaches

(Table 6.2 and 6.3).
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Table 6.3 Corrosion modeling approaches

Corrosion modeling approaches in tile literature

Paris’ Law j—;\‘, = CAKM
Kotzalas and FAz — mdnn(1=)"
Harris 60D
Choi and Liu o= C-f(AK)"
Kondo 2caC, A

Harlow and Wei | The number of cathodic particles in a cluster is a random variable with
discrete Pareto distribution

pr=P(N.=k)=0.725 k24 k>1

The pit grows at a constant volumetric rate according to Faraday’s Law:

dv _ Mip _ Mly(k) (7A7H)

dr — nFp — aFp SXP\T T

6.17 Global Versus Local Corrosion Models

A metal surface (aluminum alloy, etc.) that is exposed to environmental stresses
may experience a corrosive attack at a number of isolated sites. A part is experi-
encing localized corrosion if the total area of these sites is much smaller than the
total surface area [22]. Several different modes of localized corrosion may occur
such as pitting and crevice attack. Pitting corrosion is characterized by the presence
of a number of small pits on the exposed metal surface. The geometries of the pits
depend on many factors such as the metal composition and the surface orientation
[22]. Crevice attack occurs in situations where two or more surfaces in close
proximity lead to the creation of a locally occluded region in which enhanced
dissolution may occur. Figure 6.24 is an illustration of main corrosion forms.

Detection, localization and sizing of corrosion in complex structures over large,
partially accessible areas are of growing interest in the aerospace industries.
Traditionally, conventional ultrasonic thickness gauging and eddy current tech-
niques have been used to precisely measure the thickness in structures. However,
the scanning may become impossible when the area of inspection is inaccessible.
Upon this need, there has been a number of undergoing research using guided wave
tomography techniques to screen large areas of complex structure for corrosion
detection, localization [7] and defect depth mapping [8]. However, due to the nature
of ultrasonic guided wave, this technique is vulnerable to environmental changes,
especially to temperature variation and surface wetness, and the precision of cor-
rosion defect thickness reconstruction is restricted by sensor network layout,
structure complexity and other factors, which limits the scope of the field
application.

It must be pointed out that initial modeling efforts, in conformance with current
testing procedures and acquired data, focus on global approaches, i.e. the whole
panel area is viewed as the target for data collection and analysis. In contrast with a
localized view where imaging studies, for example, are focusing on small areas of
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Fig. 6.24 Main forms of corrosion regrouped by their ease of recognition [6]

the global image where corrosion initiation is suspected and may spread more
rapidly than other areas. This study requires novel image processing tools/methods
to identify features of interest.

It is evident that imaging of corroding surfaces offers a viable, robust and
accurate means to assess the extent of localized corrosion. Modeling, in combi-
nation with sensor measurements, promises to assist in the timely and accurate
corrosion detection and prediction.

Preliminary results from a global perspective derived from current analysis
efforts are listed in the sequel.

6.18 A Novel Modeling Approach

It is obvious from the discussion above that the fundamental corrosion mechanisms
of initial corrosion, pitting and cracking involve electrochemical and physical
processes that require a separate modeling perspective for each, as reflected also on
the testing, data collection and analysis procedures. As an example of the suggested
modeling framework, we present briefly a modeling study conducted by Georgia
Tech under sponsorship by the US Army for corrosion detection and prediction of
rolling element bearings. Figure 6.25 depicts the scheme and modeling results
computed for corrosion detection and prediction of rolling element bearings.
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The corrosion mechanism here, characteristic of a rolling element bearing under
dynamic loading are corrosion, spalling and cracking. It is suggested only as an
example of the intended modeling framework.

It is evident that the three corrosion mechanisms considered in this study pro-
gress at different rates and, therefore, require separate modeling approaches. The
fault progression is often nonlinear and, consequently, the model should be non-
linear. From a nonlinear Bayesian state estimation standpoint, diagnosis and
prognosis may be accomplished by the use of a Particle Filter-based module. An
essential element of this module is a nonlinear state model describing the propa-
gation of the fault.

From the above descriptions, it is clear that there are usually more than one fault
modes present in a corroding specimen/panel. Although a corrosion model can
describe the propagation of corrosion, a pitting model can describe the propagation
of pitting, and a cracking model can describe the propagation of cracking, an
extended model to describe a “combined” or “fused” health condition is desired.
Since these different fault modes work together we can write

d

d—; = f[bywi(corrosion) + byw, (pitting) + bsws(cracking)]
where w;, w,, W3 (W + Wy + w3 = 1) are weighting factors for different fault
modes, by, b,, bs are time varying parameters indicating that corrosion, pitting, and
cracking are detected and their respective prognostic module is activated, respec-
tively. The crack progression model can be written in the form:
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Fig. 6.26 Basic modules of the corrosion modeling architecture: from measurements to corrosion
detection and prediction

D([ + 1) = D([) + CD(D(t))l‘l(WhhiJrWtfi+Wlli+ngi)

where the term C captures the parameters influencing the crack growth progression
and may be time-varying.

We introduce a combined model-based and data-driven methodology that takes
advantage of experimental data, corrosion progression models and an estimation
method called particle filtering. It is accompanied by appropriate performance
metrics while meeting customer specified requirements for detection confidence and
false alarm rates, and prediction accuracy/precision. Figure 6.26 shows the basic
modules of the corrosion modeling framework.

6.19 A General Framework to Corrosion Modeling

L(k+ 1) = L(k) + Co(k){AK"} + v, (k)
7

Stress intensity factor range
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or
L(k+1) = L(k) + Ca(k){AK" +p(k)} + v1(k)
a(k+1) = a(k) +va(k)

T
Un-modeled

AK (k) = f(load, L(k))

p(k) = pi(k),pa(k),p3(k),pa(k)... = Salinity, RH,pH, Time of wetness etc.
Feature(k) = L(k) +n(k)
or
Feature(k) = h(L(k)) 4+ n(k)

where v, vo, n are noise profiles, C is a parameter of the material.

6.20 Other Failure Prediction Models

Alternative model structures are available and may be appropriate under particular
fault model conditions. The corrosion community has used Kondo’s model, shown
in Fig. 6.27, extensively.

Kondo’s model:

Time (or Cycle)

Fig. 6.27 Kondo’s model
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Pit depth:

d(r) = (M;Ts;(t)f

A modeling framework has been proposed for pitting of stainless steel canisters
by the following formulation:

k—1 k
sk, 4, 0) =§( ;0) exp(—x;0>

where x is the pit depth, lambda is the average pit diameter, and k characterizes the
spread of average pit diameters.
Pit size distribution changes as functions of time:

x = ot

Alpha and beta are determined experimentally.
Pit growth rate:

d
£ = g(x) = fo!/Px1-1/D)

6.21 Stochastic Dynamical Model of Corrosion States
from Pitting to Cracking Under Loading
and Environmental Stress

For the past decades, pitting corrosion and cracking can lead to great mass loss and
result in decreased product performance. Thus, it is essential to come up with a
methodology to assess and predict corrosion status. Here modeling is the founda-
tion of giving an assessment of status and prediction. However, currently there is
not a widely accepted model, which can take the effect of the stress factors (e.g.
salinity, temperature, pressure, etc.) into consideration. The effects of these stress
factors have been discussed but literature is scarce as to what exactly those func-
tions might be. We discuss in this section the effect of the environmental stress
factors on the corrosion rate.
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6.22 Pitting Corrosion

A conceptual model of corrosion growth could track the depths [mm] from uniform
corrosion (surface loss) in addition to localized corrosion (e.g., pitting and crevices)

d(xv t) = duniform([) + dlocalized (X, t)

as presented by Straub [18], however, no practicable framework currently exists for
detailed spatial information x (in 1-, 2-, or 3D). Thus, the focus turns to the
maximum depth dp,y(f) over a region (e.g., deepest pit in a whole pipe or panel),
whose statistics can be treated with Gumbel or Weibull extreme value distributions.

Data from atmospheric uniform corrosion support use of a power growth over
time:

d(t) = at®

where a, b parameters are functions of temperature, relative humidity (RH), time of
wetness (ToW), salinity, SO,, etc., and values can vary significantly only meters
apart due to different microenvironments. The same power form applies to localized
corrosion, however because anodes (pits) are smaller than the surrounding cathodic
areas, pitting damage can grow considerably faster than uniform damage.

From Kondo’s experiments, pit volume (or material loss [mg]) tends to increase
linearly, so pit depth grows with ¢'/3. That 1/3 is our a priori b. Furthermore,
depth-to-radius ratio tends to stay constant around 0.7, so radius R(f) or area A
(7) features measured at time ¢ can map to a hidden depth state assuming a hemi-
spherical or semi-ellipsoidal pit. For our model, we will be interested in the inverse
relation

Ameasured(t) = 77:(143 : d(t))z + noise

where we took the observed radius of an equivalent circle (top view of a pit) to be
0.7 R(?).

With uncertainty around the mean also expected to grow at this same power of ¢,
the time-varying Gumbel pdf for dp. () is

| d=n0)
_|dutn [P0

1 B(t)

p(d,l) :me

where u = at” (mean parameter) and 8 = fB,t® (scale parameter). We note that there
would be a problem drawing from this distribution over time at the same location:
maximum pit depth cannot go backwards (smaller). Therefore, this distribution is
better suited to representing samples of dp.x Over a partitioned space as suggested
by [18], with respect to pits further apart than a correlation length, and still
behaving as #'/3 over time.
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6.23 Paris’ Law Revisited

The classic Paris fatigue crack growth rate for metals is a power law

dL
<= CAK"
dN

where L = crack size (length or depth), N = number of cycles (like a usage-based
time variable), AK = Kyax — Kmin | Pay/m = Nm’%} is stress intensity factor range,

and C, m are empirical parameters associated to a material. This relation looks like a
straight line in log-log scales, with slope m and intercept C. Stress intensity factor
K measures how “concentrated” stresses are around the crack tip. K is proportional
to stress load amplitude, VL (or its reciprocal), and a dimensionless correction for
geometry Y(L) (e.g., boundaries). For example, a typical situation is a center crack
with remote stress applied uniformly:

AK = ASVrL - Y(L)

where AS = Siax — Smin Over one cycle. AK may also have a correction for crack
closure effect (retarding growth).What Paris says is that for a midrange of AK
values, valid only during the crack propagation phase, between crack initiation and
fracture, a crack will grow at the rate predicted by the straight line. (Growth is still
very slow, le-4 to le-2 mm/cy, and striations may be seen in this phase.) The
higher the applied maximum stress, the faster the path to failure, and bigger crack
size can beget even faster rate (or can slow down if stress is wedged from the inside
so that crack tip gets farther away from the stress as it grows.) Regardless of how
fast or slow, the positive value of rate says that the specimen will eventually fail,
especially since its physical dimensions are finite.

For metals, m tends to be between 2 and 4 (e.g., 3.4 steel, 2.85 aluminum alloy),
though range is wider. Literature and published data support interdependence

InC = —15.84 —3.34m

which is expected since the smaller (flatter) the positive slope, the higher the
intercept will be in log-log scales.

The parameters C, m depends on material, environmental conditions (e.g.,
temperature), and to some extend stress ratio (% = %) a bad proxy for mean
stress over one cycle). Figure 6.28 shows the dependence of the C parameter on m.
Growth rate curve can also change with frequency of cycles and even the ordering
of stresses if loading profile varies. In summary, Paris’ law captures a big kernel of
truth about crack growth; while myriad other factors such as mean stress and the
environment act as modulators or corrections to this basic law. The latter concept is
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Fig. 6.28 The parameter C « 10! Relation Between Paris Parameters
as a function of m L8 ' Y ’

particularly important in corrosion modeling because, as we will see, catastrophic
failure is predicted to occur much earlier if these modulating factors are taken into
account.

6.24 Transition from Pitting to Cracking

“Nanocracks” (below fracture mechanics law) cannot be practicably inspected, but
do happen prior to visible macrocracks. Phillips and Newman found that a dK
analysis extending to the left of AKth would typically look convex (concave-up),
but noted that attempting to model this subthreshold phenomenon with crack sizes
starting below 0.3 mm does not make a difference. Thus, in our model we simply
assume that an initial value of visible crack size suddenly appears at some elapsed
cycle Ny, . In one interpretation of our corrosion model, the sudden appearance of a
crack happens during pitting growth and under cyclic loading. A threshold is
eventually surpassed where stresses at tip(s) of the largest corrosion defect are
concentrated enough for crack(s) to begin propagation along the plane (or thru
wall). From that time on, the relevant maximum defect size becomes crack length
(or depth) as opposed to pit depth, and is dominated by our complete sigmoidal
dynamic law until eventual fracture. This motivates an integrated measure of
multimodal fault as a weighted sum or norm of pit depth and crack length. In the
present work we use infinity norm of equally-weighted faults as the Combined
Degradation Index:

Id(t) = H [dpiz§ Lcrack] Hoo: max (dpih Lcrack)
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6.25 Environmental Stressors

As mentioned before, several degradation parameters are functions of the envi-
ronment, however, literature is scarce as to what exactly those functions might be.
Empirical curves may be available for a few stresses or a couple of temperatures,
but we seek relations partly based on the underlying materials science to have a
better chance at generalizability.

The deWaards-Milliams model of carbonic acid (water + CO,) corrosion in steel
pipes is too crude for spatiotemporal prediction, however that is the “state of the
art” and does capture a static relation between corrosion rate and the environmental
stressors temperature, pressure, and fraction of acid in gas form

;= 105.87LT1[’+0.6710gf’f — P . 10P(0:0031-1.4/T)

where r is for the maximum thru-wall depth of damage (though unknown where in
the pipe) [mm/yr], T = temperature [K], P = pressure [bar], n = fraction in gas.
After algebra and changing Kelvin to degrees Celsius, the whole expression reduces
to

- (nP)°'67><105‘8 T Tl 4 0.0021P

Expected working ranges are T ~ 20 — 80° C (e.g., 30), P ~ 50-200 bars
(e.g., 100), n =0.01. It is conjectured that such an expression, with tunable
parameters, has better extrapolation prospects than purely black-box models when
applied to other metals and situations.

The plot in Fig. 6.29 shows the dependence of corrosion rate on pressure and
temperature.

Fig. 6.29 Dependence of (.01 p)0-87 105:8-1710/(T+273.15)-0.93 P/(T+273.15)+.0021 P
corrosion on pressure and ;
temperature
Y
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Temperature at the waste package (°C)

Time (years)

Fig. 6.30 Temperature at the waste package as a function of time
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Fig. 6.31 Hoop stress as a function of depth into canister wall from outer surface

Figure 6.30 depicts the temperature profiles of the waste package as a function
of time.

Figure 6.31 shows the hoop stress as a function of depth into the canister wall.

6.26 Symbolic Regression Modeling Framework

We exploit a novel modeling framework to represent stress and/or corrosion evo-
lution in corroding structures. This modeling approach allows for inclusion of
impact or stress factors while accounting for uncertainty.
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Symbolic Regression is a type of regression analysis that searches the space of
mathematical expressions to find the model that best fits a given dataset, both in
terms of accuracy and simplicity. No particular model is provided as a starting point
to the algorithm. Instead, initial expressions are formed by randomly combining
mathematical building blocks such as mathematical operators, analytic functions,
constants, and state variables. (Usually, the person operating it will specify a subset
of these primitives, but that is not a requirement of the technique.) New equations
are then formed by recombining previous equations, using genetic programming.

By not requiring a specific model to be specified, symbolic regression isn’t
affected by human bias, or unknown gaps in domain knowledge. It attempts to
uncover the intrinsic relationships of the dataset, by letting the patterns in the data
itself reveal the appropriate models, rather than imposing a model structure that is
deemed mathematically tractable from a human perspective. The fitness function
that drives the evolution of the models takes into account not only error metrics (to
ensure the models accurately predict the data), but also special complexity mea-
sures, thus ensuring that the resulting models reveal the data’s underlying structure
in a way that’s understandable from a human perspective. This facilitates reasoning
and favors the odds of getting insights about the data-generating system (abstracted
from Wikipedia).

e Quick Recall: regression is aiming to minimize the distance between the esti-
mated value and measured value:
. 2
arg min(y — £(x))

Trying to find the best g(t).

Regression for PDFs

5

al i

3 - .
© f(x,t)
s 2| 1
% 1B X=a() .
§ '[—

D 3 -

1k .

-2

o) 1 2 3 4

time Index
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Objective Function:

For each ¢, the distance (error) can be represented as:

+ o0

= [ () -0y =12

X=—00

Therefore, the objective function is the sum of E;:

N + 00
1 — P . — 2 .
arg mglnE = Z:E, = ,Z: / (g(t;) — x)°f (x,8,)dx

T x=—

6.27 Discrete Form

e We can generate samples using Monte Carlo Methods and change the distri-
butions to samples.

e First, we assume for each time instant, #;, the numbers of sample are the same.

e We want to generate the corresponding discrete form, which can fit our coding
easier.

argm;nE:ZE ZZ Xk — g(1))

Here M is the number of sample for each dlstnbutlon.
When the number of samples for each distribution is not the same, we can use
the histogram to approximate the distributions.

e The objective function is changed to the following form:

N M;
argmmE ZE ZZk 1 Xrl, ZZ Xrl,\/lvg

M; is the number of samples for the distribution at time ¢;.
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6.28 Useful Tools

e Eureka® is a useful tool to finish the Symbolic Regression:

@tonian
Eurega Desktop

gh technology that

relationships hidden

W
400 —Panel 1
—Panel 2
—Panel 3
=00 / Panel 4
200

Corrosion [mg]

100 /

y

0 100 200 300
Time [hr]

Pull)
o
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Sample generating code:

1- cle

2 - clear all

3- load('C_data.mat’)

4

5 - N=15; & sample for each fitted

6 - Eureqadata=[];

7

8 - 2 for i=1:360:length(time)

9 - if time(i)<133

10 - pd=fitdist(Corrosion(i,:)"', 'normal');
11 - elseif time(i)<209

12 pd=fitdist(Corrosion(i,2:4)", 'normal’);
13 - else

14 - pd=fitdist(Corrosion(i,3:4)', 'normal’);
15 - end

16 - Euregadata=[Bureqadata;time(i)*ones(N,1),normrnd(pd.mu,pd.sigma,[1 N])'];
17

18 - end

19 - figure

20 - hold on

21 - for i=l:length(time)/360*N

22 = scatter (Eureqadata(i,l),Eureqadata(i,2));
23 - end

24

25 - save Euregadata

26

Generated sample plot:
500

400 |

Corrosion [mg]

0 100 200 300
Time [hr]

Fitting result:

e Find best solution.
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Best Solutions of Different Sizes

Size Fit Solution o

0108 | x=0.152 + 03087+ 0.0114F + 6.72¢-9¢ — 1.12-11¢ — L11e-67"

41 LH x=201+0.02287 +3.21e-97 - 6.96e-12¢° - 0.0001647

RN =286+ 0.0211F + 1.87e-9¢ — 1.05¢-14¢ —0.0001417

T x=0.376¢+0.00892F +3.42e-5¢ +7.41e-9¢ = 0252 = 1.2e-11 £ = 1.33¢-67"
L x = 002387 +3.38¢-9¢ — 7.34e-12¢° - 0.000173 ¢ =
w7 LA x=002777 +9.08e.77 - 2.84e-124° - 0000275

35 [LRLN x=002947 +141e-67 - 202¢-9¢ - 0000326

27 RN x=029¢+ 12957 +0.0007637 expl-002797)

2 [0 x=0611+0274r +132¢-57 +0.0007767 exp(-0.02787)
25

23

20 =538+ 1.67e.57 +0.0009097 expl-0.0259)
20 x= 16957 +0.000997 expl-0.02591)
x=t+685¢-81 ~ 686 145¢-5¢

x = 182exp(0.00673 1) - 191 - 0.00806 1"
x=142¢+233-5¢ - 129~-0.00673F

15 [ x=0.852¢+ 1.43e-117" - 276

£

-
o

e We can choose Fit or Solution to minimize the error, or introduce a tradeoff
between size and error.
e We carry out the performance analysis with the following function:

f1(t) = 0.152+0.308 ¥ 1 +0.0114 % 2 +6.72¢ — 9% £ — 1.12¢ — 11 +£* — 1.11le — 6 % ¢*
F£2(1) =2.01 4+0.0228 % 2 +3.21e — 9 % £ — 6.96¢ — 12 % £* — 0.000164  *

f3(t) =2.8640.0211 % 2+ 1.87¢ — 9 % £ — 1.05¢ — 14 %17 — 0.000141 * 1>

F4(t) = 182 % 20073 _ 191 — 0.00806 * 12

e We test these curves with our testing data:

Fitted curve Error
F1(t) 1.0881
F2(t) 1.0710
F3(t) 1.1029
F4(t) 1.1482
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6.29 An Example

This example exploits a set of pressure data:
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6.30 An Extended Corrosion Model

There usually more than one fault modes present in a corroding panel. Although a
corrosion model can describe the propagation of corrosion, a pitting model can
describe the propagation of pitting, and a cracking model can describe the propa-
gation of cracking, an extended model to describe a “combined” or “fused” health
condition is desired. Since these different fault modes work together in a coupled
fashion, this “combined” or “fused” health condition could provide a more precise
and accurate evaluation of the health of the panel.

To this end, a generalized degradation (fault) variable is defined as g. Then, the
propagation of this generalized degradation variable can be described as

d
ﬁ = f[bywi (corrosion) + byw, (spalling) + bsws(cracking)) (6.1)

where wi, Wy, w3 (W; + Wy + w3 = 1) are weighting factors for different fault
modes, by, b,, bs are time varying parameters indicating that corrosion, pitting, and
cracking are detected and their respective prognostic module is activated,
respectively.

To use this model in diagnosis and prognosis, we must consider the fault features
and ground truth data. In Eq. (6.1), the different fault modes are weighted and
summed. However, the features cannot be added directly. To solve this problem, the
feature vectors for different fault modes can be fused by some intelligent methods,
such as genetic algorithm, genetic programming, Dempster-Shafer theory, neural
networks, fuzzy logic, Kalman filtering, etc.

6.30.1 Sensor Modeling Parameters

The corrosion rate (CR) is computed using the following formula,
CR = Bcorr/Rp

where R, is the measured polarization resistance and B, is a constant of pro-
portionality made up of several physical parameters, physical constants and elec-
trochemical properties of the LLPR sensor. A description of how B,,,, is computed
is provided in Fig. 6.32.

The Tafel coefficients, B, and B,, were acquired using a potentiostat (Gamry
Reference 600). The PLPR was placed flush against a graphite counter electrode
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% LPR properties %
Aeff = 0.04233: % effect ive area of sensor [em™2]
%% Tafel constants %
beta_a = 0.35: wdic tafel constant [V/dec]
beta_c = 0.15: athodic tafel constant [V/dec]
% Material properties for ALT075-T3 %
AW = (5,8+65,38+2.3+24 3050+, . . % Atomic weigh [g/mol]
1.4+63.546+90.5+26. 9815386)/100: %
z =3 % Electron loss per atom [-]
EW = Ai/z: % equivalent weight [g/mol ]
rho = 2.810: % density [e/cm™3]
%
% Other constants %
F = 9,6485e4; araday's constant [C/mol]
% Coupon Geometry %
| =7.8: % Coupon length [cm]
W =1.0: % Coupon witdh [cm]
SA = 2¢(|*w); % Coupon surface area [em™2]
%% Computation of Corrosion Rate %
B = (beta_a*beta_c)/. .. % Proportional ity constant [V/dec]
(2.303*(beta_atbeta_c)):
Boorr = EW*B/(F*Aeff): % Corrosion rate coefficient [Ohm*(g/cm”™2)/s]

Fig. 6.32 Sensor modeling parameters (Note The effective area of the sensor, Aeff, was found
empirically. Based on the experimental results, the area parallel to the electrode pair (and not the
top area of the sensor) was determined to be the effective area. Using the geometry of the sensor,
Aeff was computed to be 0.04233 cm?, which agreed with the experimental results)

separated by a scrim cloth made from Teflon with a thickness of 4um. One of the
HLPR electrodes was used as the working electrode while the other was used as the
reference electrode. A semi-log plot of the applied electric potential versus the
applied current is shown in Fig. 6.33. Superimposed on the plot are linear fits at the
anode and cathode regions. The slopes of these lines were used to compute B, and
Bc as approximately 150 mV/dec and 350 mV/dec, respectively.

6.31 Results

The steps outlined in the procedure were repeated four times to arrive at four sets of
mass loss measurements. A plot of the estimated and measured mass loss density
versus time for each of the eight sensors and eight coupons is provided in Fig. 6.34.
A scatter plot showing the comparison of the average measured mass loss versus the
average estimated mass loss is given in Fig. 6.35. Towards the end of the experi-
ment, sensors #3, #4 and #5 began to deviate from the average measured mass loss.
This is also apparent from the time series plot of estimated corrosion rate for each of
the eight pLPR sensors shown in Fig. 6.36. According to the plot, the corrosion
rates for sensor #4 began to decrease, followed by sensor #5 and then sensors #3
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Fig. 6.33 Tafel plots for the pLPR sensor in a B117 solution (pH of 5.5)

and #6. Since each of the eight nLPR sensors are placed next to each other in
ascending order, it is believed sensors #3—-6 suffered from a localized disturbance in
the flow of solution.

6.32 Model On-Line Update [24]

Important elements in the corrosion modeling include a time-varying parameter f3
and noises w and v. The parameter f§ describes the fault growth according to system
operating conditions while noises w and v, to a certain extent, describe the confi-
dence on the model. If a good model is developed, they can be selected each as a
very small value. On the other hand, if a very rough model is used, they need to be
selected as a large value. The trade-off is that when a large noise model is used, the
estimated results tend to be noisy too. We will exploit uncertainty management
tools developed at Georgia Tech to address this problem. We focus on the devel-
opment of the model, or . Noise models w and v are determined via data.

The parameter f§ depends on current environmental conditions affecting corro-
sion growth, i.e. relative humidity, wetness, pH, etc. the loading profile that is being
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Fig. 6.34 Plot of estimated and measured mass loss density versus time for each of the eight
sensors and eight coupons, respectively

applied to the component of interest. In prediction models, a population equation,
like Paris’ law, is adopted.

When the fault mode is corrosion, the fault dimension is often measured by the
area of corrosion. Paris’ Law as shown in (AS5) characterizes the corrosion growth.

. dD
D=—"=Cp(D)" 6.2
= Co(D) (62)
Here, Cp and n are determined by an online adaptation routine. Based on
Equation (AS), a defect or corrosion growth model can be written as

D(t+ At) = D(t) + AiCp(D(1))" (6.3)

To achieve the goal of parameter adjustment, an adaptive prediction scheme for
the corroding panel is given in Fig. 6.37.

In this model, feature F(¢) is extracted from the collected mass loss or imaging
time varying data x(7). This information, combined with ground truth data about the
defect area, is used to build a nonlinear mapping between the defect area and the
feature. From this nonlinear mapping, the defect area at current time instant, D(z),
can be estimated. Additionally, the estimated defect area D(z) is traced back to time
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Fig. 6.35 Plot of measured mass loss versus estimated mass loss with 95% confidence boundaries

instant ¢ — A, resulting in D(t — A). This defect area D(t — A) and the operating
conditions serve as the input to the prognostic model to predict the defect area at
time instant ¢, denoted as D,(¢). Then, D(¢) and D,() are compared to compute an
error e(t). Optimization methods can be introduced to adjust the parameters of the
model to minimize e(). Note that in this method, there are two preconditions:
ground truth data are available to build a nonlinear mapping between feature and
defect area and an optimization routine.

Note that the propagation of the defect area under tightly controlled conditions
could show significantly different behaviors. Therefore, the previous deterministic
model must be modified to take into consideration this situation. Theoretically, the
uncertainty is due to the stochastic characteristics of the progression equation and,
therefore, it is reasonable to add a random variable into this formulation. In practice,
adding a random variable is the same as adding a random variable into its
parameters and we arrive at:

D(t+ Ar) = D(t) + AtCp(D(1))"
Cp =Cp+w, (64)

n=n+w,
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Fig. 6.36 Plot of estimated mass loss versus time using the pPLPR measurements (During the
hours 24 and 28 the pH of the solution was changed to 4. The polarization resistance reduced to
near 2000 Q. Since the lower limit of the AN110 hardware is 1000 Q, the pH was returned to a 5),
(Approximately every 48 h the sensors were removed and the coupons were cleaned. Initially and
upon re-entering the solution, a spike in the corrosion rate was observed. This is visible in hours 0,
45, 92 and 136)

where Cp and n can be regarded as states associated with the model, w. and w,, are
zero mean random noise.
With unit step size, Eq. (6.4) can be modified as

D(t+1) = D(z) +P1(t)CD(D(t))P2(’)"
Cp = Cp+w (6.5)

n=n-+w,

Thus, two parameters p;(7) and p,(¢) are introduced to facilitate the online
parameter adaptation scheme.

To determine the parameters, a recursive least square algorithm with a forgetting
factor is employed since it is generally fast in its convergence. The algorithm is
implemented as follows:
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Fig. 6.37 The on-line prognostic adaptation model
Step 1: define a cost function as:

J(0) = %ET: i [p) - b (b6 - )]’ (6.6)

t=1

where / is the forgetting factor, which is usually given in the range of 0 <1 < 1, and
0 = [p1(t)p2(1)]" is the parameter vector to be determined.

Step 2: Calculate the derivatives with respect to parameters ©:

o) = 220 67)

Step 3: The parameter update is given by:

0(r) = 0(r — 1) + P(1) p(¢) [D(t) - D(é(t - 1))} (6.8)
and P(r) is updated as
_Pe=1[ ¢ ()Pt —1)
=" e et (©9)
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Fig. 6.38 Flow chart of the model on-line update

The recursive least square with a forgetting factor actually applies an exponential
weighting to the past data. In the cost function (6.6), the influence of past data
reduces gradually as new data become available. This algorithm can be easily
applied on-line.

To implement the algorithm, a set of initial parameters must be given. Parameter
0(0) is given according to our prior knowledge of the system while P(0) is given as
a large number times an identity matrix.

A flow chart of this on-line adaptation algorithm is given in Fig. 6.38. The first
step is to initialize the parameters used in the model. Currently, the initial value is
obtained via a priori knowledge of the system. With more experimental data, some
learning algorithms, such as neural networks, can be implemented to train the
model so that its initial value is close to the actual one. The on-line adaptation
routine will be more efficient with good initial parameters.

Note that the previous parameter adaptation is realized by a recursive least
square method. Some other methods, such as an extended Kalman filter or a neural
network, etc., can be used as well.

6.33 Consideration of Operating Conditions

In the previous model, the operating conditions such as ambient temperature,
humidity, pH, etc., are not taken into consideration. The influence of the operating
and environmental conditions is reflected by the on-line parameter tuning.
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Moreover, stress conditions must be accounted for when appropriate. If the oper-
ating conditions can be compensated, a precise fault propagation model can be
derived.

Let us consider the corrosion fault mode. It is known that humidity is a leading
contributing factor of corrosion. Therefore, the environmental humidity should be
incorporated in the corrosion propagation model. Suppose that the nominal
humidity (could be normal room humidity) is denoted by H,. The environmental
humidity is measured as H.. The normalized humidity condition then can be
described as a humidity index h; which is given as h; = H/H,. Clearly, large
humidity values result in larger h;, while small humidity values result in smaller h;.

If we know that the humidity influences linearly the corrosion propagation, the
previous Eq. (6.5) can be further re-written as Eq. (6.10) to include the humidity
factor.

. dD
D =— = hCp(D)" (6.10)
dt
If, however, we know that humidity influences exponentially the corrosion
propagation, Eq. (6.5) can be re-written as:

. D :
D= ”;—t = Cp(D)™ (6.11)

Accordingly, the discrete time form model should be modified as:
D(t+1) = D(t) + hCp(D(r))" (6.12)
and
D(t+1) = D(t) + Cp(D(1))"™, (6.13)

respectively.

Relative humidity may also be included as a time-varying parameter in the
model, just as other model parameters. When other operating conditions are
included, such as nominal temperature T, (normal operating temperature under
healthy conditions), can be defined as well. Then, a temperature index t; is assigned
to represent this condition. Multiple ways are available to combine them into a
single model.

Suppose these factors influence linearly the fault propagation, a possible alter-
native is to write the model as either

D(t+1) = D(t) + hit:Cp(D(1))" (6.14)
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or
D(t+1) = D(t) + (wyhi +wt;) Co(D(2))" (6.15)

where wy, and w, are weighting factors and wy, + w, = 1.
The model can be written as either

D(t+1) = D(t) + Cp(D(1))""" (6.16)
or
D(t+4 1) = D(t) + Cp(D(z))""" ) (6.17)
when the factors are exhibiting an exponential dependence.
It is possible that the influence of some factors is exhibiting a linear behavior,

while that of others is exponential. In this case, suppose the linear factors are f; ; and
Ji2 and the exponential factors are f,; and f.,. Then, the model can be written as

D(t+1) = D(t) + fi1fiaCp(D(r) )2 (6.18)

or

D(t+1) = D(t) + (Wi fi1 4+ winfia) Cp(D(£))"eiter +vede2) (6.19)

where w1, w2, We 1, W are weighting factors and wy; +w;p =1 and w,; +
We2 = 1.

6.34 Other Failure Prediction Models

Alternative model structures are available and may be appropriate under particular
fault model conditions. Typical examples in this category include:
Kotzalas and Harris [25] suggested the following model:

da
— =C(W,)"
oy = CWa)

where W, = (Omax + Tavg) V7@ With Gy being the maximum stress and Tavg the
average shear stress. Writing this in discrete form, we have

k1 = a+ C(ar)"

Zhang et al. [26] suggested that, for a given bearing, the impulse magnitude is
proportional to the bearing rotational speed and the spall size
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mad,n(1 —y)?
FAt = —M———
60D

where F is the mean impact force (N), At the impact duration (sec), D the roller
diameter (mm), m mass of the roller (kg), d,, the pitch diameter of the bearing
(mm), n shaft rotating speed (rpm), vy the ratio between D and d,,,, and x the spall
size (mm).

Choi and Liu [27] provide the following crack propagation model based on
Paris’ law:

da H, n
—=c-“2(AK
dN < Hl( )

where Hy, and H; are the Knoop hardness number at the bulk material sand local
Knoop hardness number, respectively. The reason to include hardness in the model
is because it affects the crack propagation and is shown experimentally that the
crack propagates relatively faster as the local hardness is low if the stress field is
identical [28].

Since the stress field over a whole crack is variable, AK in Paris’ law is not a
constant and should be compensated. To this end, the range of AK is calculated as

AK = Kmax - Kmin

with K.x and K;;, the maximum and minimum stress at the leading tip, respec-
tively. To determine K,.x and K,;,, the following equation is used:

/2 / a— "
Ka - \/;/Tc(xa _C>{ C } dC
0

where a is the crack length, t. is the net shear stress, and X, is the position of the
leading tip.

Ioannides and Harris [29] include the effect of fatigue limit stress in the life
prediction

1 (61 — 3, AV
ln< A)ocN—(G' ha”) Vi

g

where

S; = probability of survival of AV;
N = number of stress cycles endured
Z = distance below surface to AV;
e = Weibull slope or shape parameter
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¢ = stress exponent parameter to AV;

o; = stress at AV; (sigma subi)

o, = fatigue limit stress (sigma subu)

h = experimentally determined parameter.

Qiu et al. [30] considered the bearing system as a single degree of freedom
vibration system. The natural frequency and its amplitude at the natural frequency
are related to the system stiffness. Since the relationship between failure lifetime,
running time and stiffness can be established from the damage mechanics, the
natural frequency and the acceleration amplitude of a bearing system can be related
to its failure time.

The relationship is given as

()= ()

where Sy and S4 denote the amplitude of natural frequency under initial conditions
and damage conditions, respectively. y = 2, g, n, are coefficients depending on the
operating conditions, materials and structure of the system, N is running cycles and
Ng. is the estimated failure lifetime. The estimated lifetime in the model, and
parameters like # can be determined via estimation algorithms. He and Bechhoefer
[31] extended this model by using condition indicators rather than the amplitude of

the natural frequency.
Cly\’ N\
Cl, Np,

where Cl, and Cly denote the condition indicators under normal and damage
conditions, respectively.

6.35 A Corrosion Modeling Framework for Steel
Structures

A Failure Modes and Effects Analysis (FMEA) was performed for stainless steel
parts to identify credible degradation mechanisms that may be active during the
lifespan of the steel components.

Pitting occurs at locations where the passive surface film breaks down and
allows the dissolution of the underlying metal. Despite the often-slow rate of pit
penetration, pits can serve as initiation sites for through wall cracking, which
progresses much more rapidly.
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Corrosion cracking (NUREG/CR-7116, SRNL-STI-2011-00005, “Materials
Aging Issues and Aging Management for Extended Storage and Transportation of
Spent Nuclear Fuel,” November 2011. (Available with NRC Accession
No. ML11321A182).

The environmental factors that increase the cracking susceptibility include
higher temperatures, increased chloride content, lower pH, and higher levels of
tensile stress. Temperature is an important variable.

6.36 Modeling of Nuclear Waste Storage Facilities

It has been established that corrosion is one of the most important factors causing
deterioration, loss of metal, and ultimately decrease of nuclear waste management
facilities performance and reliability in such critical systems. Corrosion monitoring,
data mining, accurate detection and quantification are recognized as key enabling
technologies to reduce the impact of corrosion on the integrity of these assets.
Accurate and reliable detection of corrosion initiation and propagation with spec-
ified false alarm rates requires novel tools and methods. Corrosion states take
various forms starting with microstructure corrosion and ending with stress induced
cracking [32-36].
Figure 6.39 depicts a typical view of canister where waste fuel is stored.
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Fig. 6.39 Typical canister SHIELD BLOCK
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6.37 State of the Art in Corrosion Modeling for Nuclear
Storage Facilities

Figure 6.40 shows a framework for nuclear waste storage sensing, monitoring and
modeling. A number of studies have been carried out by government, national
laboratories and industry to characterize the corrosion processes in nuclear waste
fuel canisters [37—42]. We summarize a few findings.

DOE performed polarization-resistance measurements at 60, 80, and 100 °C in
solutions made by dissolving various amounts of sodium chloride and potassium
nitrate to obtain solutions ranging between 1 and 6 molal chloride and 0.05 and 3.0
molal nitrate. A total of 360 polarization-resistance measurements were made, and
corrosion rates were calculated from the measurements [24].

The corrosion rates then were fit to an Arrhenius-type relationship,

RT = A exp(Ea/RT)



6 Corrosion Modeling 223

Lap Joint
Lab Experiment
(Demonstrate TRL7)

Environmental Data § Preprocessing
* Temp LPR Data Mass Loss s
* RH Measurements §
* Tow ' & . r . racti
i i = Corrosion type
* pH Preprocessin "
- E s i & * Pit/crevice size
2 : = ;
l =2 i £ * Pit/crevice
1 -1
l Preprocessing l Mass Loss ued to = Geome.lry
train wr?mri?rodﬁ’ e . '
SeSsm < A %
ty

Fig. 6.40 Framework for nuclear waste storage facilities modeling

where

RT is the generalized corrosion rate, nm/yr,
A is the pre-exponential factor, nm/yr,

Ea is the apparent activation energy, J/mol,
R is the gas constant, 8.314 J/mol K, and
T is temperature, K.

The resultant fit yielded an apparent activation energy of 40.78 kJ/mol with a
standard deviation of £11.75 kJ/mol.

6.38 Localized Corrosion

For predicting the postclosure performance of the Alloy 22 outer barrier of the
waste package with regard to localized corrosion, DOE divides localized corrosion
into two parts: localized corrosion caused by seepage of water onto the waste
package surface, and localized corrosion due to deliquescence of hydroscopic salts
in dust deposited on the waste package by ventilation in the 50-100 year (or longer)
period before closure of the repository.

To determine Ecorr, DOE has measured open-circuit potentials versus time for
various Alloy 22 samples in model aqueous solutions over a temperature range of
25-90 °C for periods of up to 3 years. DOE then uses multiple linear regression on
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the data to fit a model for Ecorr as a function of nitrate concentration, chloride
concentration, temperature, and pH, i.e.:

Ecorr = f([NO;], [Cl], T, pH)

where

Ecorr is corrosion potential in mV versus a saturated silver chloride electrode,
[NOs] is the nitrate ion concentration, molal

[CI] is the chloride ion concentration, molal,

T is temperature, °C, and

pH is the negative logarithm of the hydrogen ion concentration.

To determine Ecrit, DOE uses the ASTM G61-86 cyclic potentiodynamic
polarization (CPP) technique to determine the repassivation potentials [17] for a
number of Alloy 22 samples in a variety of aqueous solutions. The crossover point,
ER, is where the forward scan intersects the reverse scan. The resultant data were fit
to express critical potential as a function of nitrate concentration, chloride con-
centration, and temperature, i.e.:

Ecrit = g([NOs], [CI], T)

where Ecrit is critical potential in mV versus a saturated silver chloride electrode,
and [NOs], [Cl], and T are as defined above.
More information about the data and the function, g, may be found in Ref. [43].

Comments DOE assumes that localized corrosion of Alloy 22 will initiate if Ecorr,
as represented by function f, is greater than Ecrit, as represented by function g. The
data on which function f is based are long-term data—up to 3 years in many cases
but at least 8 months in all cases. On the other hand, the data on which function g is
based are short-term data—a matter of a few days. The question of whether mixing
short-term data and long-term data to form the basis for predicting localized cor-
rosion initiation is appropriate then must be asked. If so, is doing so likely to
overpredict the occurrence of localized corrosion or under predict it? In addition,
despite the long-term nature of the corrosion potential experiments, it is not clear
that all the experiments had reached a stable value by the end of the tests, and some
of the test results were noisy at the end of the tests, also making the stability of the
test results questionable.

A problem with interpreting some of the data is that DOE’s tests of long-term
corrosion, many with crevice formers and others boldly exposed, apparently do not
corroborate the model that DOE has developed by fitting Ecorr and Ecrit equations
to the electrochemical data. For example, according to the localized corrosion
model, some of the tests used to develop the generalized corrosion model discussed
above should have shown localized corrosion. However, none of them did.
Similarly, many other long-term corrosion tests that the model indicates should
have developed localized corrosion did not. With a single exception, the only tests
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where the model predicted localized corrosion and localized corrosion occurred
were in highly concentrated solutions of calcium chloride with minor amounts (or
none) of calcium nitrate. Such solutions are not very likely to exist in the repository.
In summary, the model used to predict localized corrosion under seepage conditions
appears to be overly conservative in that it predicts that localized corrosion will
occur in many instances where experimental data indicate that it will not occur—at
least not in the time frame of the experiments.

Propagation Once localized corrosion initiates, the assumption is that it will
propagate at a constant rate, ranging from 12.7 to 1270 um/yr. Apparently, these
values were selected from Alloy-22 uniform corrosion rates in highly aggressive
solutions extracted from the product literature of one of the manufacturers of Alloy
22. Such data should be used only to compare the relative corrosion resistance of
different alloys, and localized corrosion rates, in general, are much higher than
uniform corrosion rates. However, using the highest published corrosion rates
above results in penetration of the waste packages, once localized corrosion has
been initiated, in a matter of 20 years, which, for a million-year (or longer) period
of concern, is essentially instantaneously.

It is not clear from currently available documentation how DOE models what
happens after the waste package is penetrated by localized corrosion, i.e., what the
area, morphology, and geometry of the penetration(s) are. One approach could be to
assume that the entire area contacted by seepage disappears when penetration
occurs. This would be an extremely conservative view and inconsistent with the
very nature of localized corrosion. Even more extreme would be to assume that the
entire waste package disappears at the time of penetration. In either case, the
corrosion resistance of the container alloys essentially becomes irrelevant, and the
containment of dangerous radionuclides becomes the responsibility of the waste
form and natural barriers.

6.39 Localized Corrosion Due to Deliquescence

Brines can form on waste package surfaces at temperatures of up to 210 °C because
of deliquescence, so the possibility of localized corrosion during the thermal pulse
period (Essentially the ~100- to 1000-year period immediately after repository
closure, during which the waste package surfaces are above boiling) is a concern.
Localized (crevice) corrosion has been observed in autoclave (pressurized) exper-
iments performed on Alloy 22 in aqueous solutions of 2.5 m and 6.4 m Cl™ with
[NO; J/[Cl ] ratios of 0.5 or 7.4 at temperatures of 160 and 220 °C. 6 Localized
corrosion was observed in all cases but was not anticipated in the solutions with
nitrate-to-chloride ratios of 7.4. The test solutions were made by dissolving sodium
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chloride, sodium nitrate, and potassium nitrate. Brines containing sodium, potas-
sium, chloride, and nitrate cannot form at atmospheric pressure in the higher end of
the temperature range of interest unless the nitrate-to-chloride ratio of the brine is
well above 1. However, if the nitrate concentrations are lower than anticipated or if
the nitrate is removed by physical or biological processes, whether the stable brine
would decrease in amount, form a metastable brine, or solidify (thus being rendered
innocuous) has not been determined. In addition, whether other brines could form at
high temperatures from other mixtures of salts that may exist at Yucca Mountain
has not been explored systematically. In other words, the possibility of other
high-temperature corrosive environments has not been ruled out. The test solutions
were made by dissolving sodium chloride, sodium nitrate, and potassium nitrate.
Brines containing sodium, potassium, chloride, and nitrate cannot form at atmo-
spheric pressure in the higher end of the temperature range of interest unless the
nitrate-to-chloride ratio of the brine is well above 1. However, if the nitrate con-
centrations are lower than anticipated or if the nitrate is removed by physical or
biological processes, whether the stable brine would decrease in amount, form a
metastable brine, or solidify (thus being rendered innocuous) has not been deter-
mined. In addition, whether other brines could form at high temperatures from other
mixtures of salts that may exist at Yucca Mountain has not been explored sys-
tematically. In other words, the possibility of other high-temperature corrosive
environments has not been ruled out.

The Board sponsored a workshop on localized corrosion in September 2006 to
discuss deliquescence-based corrosion of Alloy 22 in repository-relevant environ-
ments. At that meeting, DOE presented a strong case suggesting that the
nitrate-to-chloride ratios in the repository were sufficiently high that localized
corrosion could not occur. In addition, several workshop participants suggested that
the propagation of localized corrosion would effectively be stifled because (a) mi-
gration rates for nitrate into occluded regions are higher than chloride migration
rates and repassivation would occur within the occluded regions and/or (b) the
amount of water and/or aggressive species is so low that the occluded regions
would effectively be “starved” as the damage propagated and localized corrosion
would essentially halt. The Board made two recommendations to DOE as a result of
the workshop: (1) determine the level of nitrate needed to inhibit localized corrosion
over the entire temperature range (i.e., up to 210 °C), and (2) determine the relative
migration rates for the migration of nitrate and chloride ions into crevices. At this
time, neither of these recommendations appears to have been implemented, and
thus the possibility of localized corrosion due to deliquescence at high temperatures
remains uncertain.

At lower temperatures, i.e., waste package surface temperatures of 100 °C and
below, many pure salts and salt mixtures will persist on waste package surfaces that
can deliquesce in the near-100% relative humidity environment that will exist in the
repository after the thermal pulse. Some of these salts can form corrosive brines,
according to the Ecorr, Ecrit localized corrosion model discussed above.
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6.40 Epilogue

A large variety of corrosion modeling tools/methods have been introduced over the
past decades addressing multiple corrosion stages and processes. We addressed in
this chapter the fundamental concepts and the modeling methods for corrosion
initiation as an electrochemical process to analytical, mostly semi-empirical, tools
that represent a large variety materials and processes affected by corrosion. They
constitute the cornerstone for accurate diagnosis and prognosis. They may be used
for data generation and verification/validation of corrosion remediation strategies. It
is obvious that the lack of “good” data relating to corrosion processes is hindering
the development and utility of modeling techniques. Such models to be useful in
more general terms, the data employed for their development and validation must
be correlated to actual environmental conditions, time-stamped over a long-time
interval and statistically sufficient. This need is well understood by government and
industry and means/programs are being instituted to address this crucial issue.
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Chapter 7 ®
Corrosion Diagnostic and Prognostic sk
Technologies

George Vachtsevanos

Abstract This chapter addresses the development and utility of fundamental
diagnostic and prognostic algorithms to assist in early detection of corrosion ini-
tiation and progression so that immediate remediation can be taken to avoid further
structural deterioration while limiting significantly repair and replacement costs.
Corrosion, in its different stages, is a significant challenge affecting the operational
integrity of a vast variety of equipment and processes. Corrosion prevention costs
are amounting to billions of dollars each year. As complex equipment age, exposure
to corrosion processes is increasing at a substantial and alarming rate contributing to
equipment degradation and leading to failure modes. Major efforts have been
underway over the past years to develop and implement corrosion prevention and
protection materials/processes to extent the useful life of critical equipment/
facilities preventing rapid deterioration and retirement. Early corrosion detection is
urgently required to warn the operator/maintainer of impending detrimental events
that endanger the integrity and life of critical aerospace and industrial processes
exposed to corrosive environments. Accurate prediction of the growth of corrosion
states is an essential component of the architecture aiming to provide estimates of
the time remaining for remediation while the system/process is required to complete
a current task or mission. The enabling technologies build upon the sensing
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modalities, corrosion modeling tools and methods detailed in previous chapters.
Corrosion modeling has been addressed over the past years from multiple inves-
tigators on behalf of government agencies and industry (see Chapter on Corrosion
Modeling). We take advantage of these efforts to formulate the corrosion diagnostic
and prognostic algorithms. We use case studies and examples illustrating the the-
oretical developments.

Keywords Corrosion detection - Corrosion prediction - Corrosion assessment -+
Diagnostics performance metrics « Prognostics performance metrics

7.1 The Corrosion Detection and Prediction Architecture

Assessing the potential impact of corrosion processes on the integrity of critical
military and industrial systems, aircraft, transportation and industrial processes,
requires new and innovative technologies that integrate robust corrosion monitor-
ing, data mining, corrosion detection and prediction of the corrosion (pits, crevices,
cracks) growth rate with intelligent reasoning paradigms that capture historical data,
expert opinions and adaptation strategies to associate current evidence with past
cases obtained fleet-wide for similar system components. Figure 7.1 depicts the
modules of the overall framework from sensing to data mining, corrosion modeling,
diagnostic and prognostic strategies to means for corrosion mitigation. We are
proposing a holistic framework to assess the impact of corrosion-induced processes,
on typical aluminum alloy components and other metals that begins with methods/
tools for on-platform sensing, data processing, corrosion modeling of all corrosion
stages of particular interest in this study. These functions support diagnostic and
prognostic algorithms that are designed to meet customer requirements/
specifications for confidence/accuracy and false alarm rates while managing
effectively large-grain uncertainty prevalent in health management studies of
engineering systems. The hardware/software components of the sensing and health
management system form a “smart” sensor that monitors, processes data/images
and decides on-line in real time on the health status and future progression of
corrosion pitting/cracking. Corrosion monitoring, detection and prediction entail a
series of functions. Starting with the monitoring apparatus, data/image collection
and processing, corrosion modeling, detection and prediction and, finally, assess-
ment of the potential impact of corrosion on the operational integrity of an asset.
This sequence of events is shown schematically in Fig. 7.1. Corrosion states take
various forms starting with microstructure corrosion and ending with stress induced
cracking, as outlined in Fig. 7.2.

The sensing, modeling and diagnostic/prognostic functions are coupled with a
novel reasoning paradigm, called Dynamic Case Based Reasoning (DCBR) that
houses a case library composed of past documented cases detailing the impact of
cracking on the integrity of platform components/systems. The DCBR is supported
by cognitive routines for learning and adaptation so that new evidence is compared
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Fig. 7.1 A conceptual representation of the enabling technologies for corrosion assessment
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Fig. 7.2 A general architecture for an aircraft structural health management system
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with stored cases and those occurring for the first time are “learned” by the rea-
soner. Figure 7.2 depicts the main modules of the proposed framework. The
schematic represents a general architecture for an aircraft corrosion/crack moni-
toring, the reasoning modules employed to detect and predict the extent of cracking/
corrosion, the life management component and the maintenance actions required.
The framework stems from current and past research in corrosion modeling and the
development/application of novel CBM+ practices introduced by this research team
for military assets. The architecture is set as a decision support system providing
advisories to the operator/maintainer as to the health status of critical aircraft
component subjected to corrosion and in need of corrective action.

7.2 The Impact of Corrosion on the Integrity
of Critical Assets

Over the past years, it has usually been the high fatality spectacular catastrophic
accidents that have worked as the catalyst for change. Historical evidence suggests
that fatigue due to corrosion cracking is a major contributor to aircraft accidents.
Cracking of critical aircraft structures may endanger severely the performance and
life of the vehicle. Corrosion damage can sometimes be greatly exaggerated by the
circumstances. While many of the accidents due to failed corroded components
have gone non-public for reasons of liability or simply because the evidence dis-
appeared in the catastrophic event, others have made the headlines. The structural
failure on April 28, 1988 of a 19-year-old Boeing 737, operated by Aloha airlines,
was a defining event in creating awareness of aging aircraft in both the public
domain and in the aviation community. Numerous other aircraft catastrophic events
were attributed to corrosion accelerated fatigue as the failure mechanism.

Recent events have demonstrated the importance of early and accurate detection
and prediction of the severity and impact of such corrosion-induced cracking and
the need for immediate remediation/prevention to avoid catastrophic consequences
or increased financial burden. In the recent past, cracks on a/c structures detected
during regular maintenance have necessitated urgent actions to be taken to improve
the design and installation of failing components. The pictures in Fig. 7.3 show the
catastrophic effects of corrosion and cracking. Many of these incidents were
attributed to corrosion/cracking fatigue. A systematic, thorough and robust corro-
sion modeling effort, addressing all corrosion stages for aluminum alloys or other
metals, from micro to meso and macro levels, combined with appropriate sensing,
data mining and decision support tools/methods (diagnostic and prognostic algo-
rithms) may lead to substantially improved structural component (materials, coat-
ings, etc.) performance and reduced exposure to detrimental consequences.
Reliable, high-fidelity corrosion models form the foundation for accurate and robust
corrosion detection and growth prediction. A suitable modeling framework assists
in the development, testing and evaluation of detection and prediction algorithms.
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Fig. 7.3 Catastrophic effects of corrosion and cracking

It may be employed to generate data for data-driven methods to diagnostics/
prognostics, test and validate routines for data processing tool development, among
others. The flexibility provided by a simulation platform, housing appropriate
detection and progression models, is a unique attribute in the study of how cor-
rosion processes are initiated, evolving and may be, eventually, mitigated in
physical systems.

We define a severity index resulting from the application of verifiable data
mining, diagnostic/prognostic algorithms in real time on-platform aimed to indicate
when cracking must be attended to in order to extend the life of critical components,
reduce the cost of corrosion prevention and avoid detrimental events. These
developments are coupled with current research efforts aiming to design and
implement on-platform a “smart” sensing modality that will perform all necessary
functions from early detection to prognosis and estimation of the severity of such
events. We will rely on a reasoning paradigm built from past historical evidence,
learning and adaptation capabilities to assess the severity of cracking and assign an
index to the current situation.

7.3 Corrosion Processes

Of particular interest to our theme is localized corrosion and cracking, i.e. cracking
initiating at points on the surface of a specimen (joints, fasteners, bolts, etc.).
A metal surface (aluminum alloy, etc.) exposed to a corrosive environment may,
under certain conditions experience attack at a number of isolated sites. If the total
area of these sites is much smaller than the surface area then the part is said to be
experiencing localized corrosion. Figure 7.4 shows schematically the progression
from pitting to cracking of corroding specimens. The rate of dissolution in this
situation is often much greater than that associated with uniform corrosion and
structural failure may occur after a very short period. Several different modes of
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Fig. 7.4 From pitting to cracking of corroding specimens (source Dr. Vinod Agarwala)

localized corrosion may be identified. These are dependent on the type of specimen
undergoing corrosion and its environment at the time of attack. Most destructive
forms are pitting corrosion which is characterized by the presence of a number of
small pits on the exposed metal surface, crevice attack and cracking. The rapidity
with which localized corrosion can lead to the failure of a metal structure and the
extreme unpredictability of the time and place of attack, has led to a great deal of
study of this phenomenon. In this localized view, imaging studies are focusing on
small areas of the global image where corrosion initiation is suspected and may
spread more rapidly than other areas. We will exploit novel image processing tools/
methods, in combination with other means (mass loss calculations) to identify
features of interest to be used in the modeling task, since imaging of corroding
surfaces offers a viable, robust and accurate means to assess the extent of localized
corrosion.

Figure 7.5 shows a conceptual schematic of the major modules of the corrosion
processing and detection/prediction architecture. The architecture combines a
model-based and data-driven methodology taking advantage of experimental data,
corrosion progression models, and an estimation method called particle filtering in
order to detect the early initiation of corrosion. It is accompanied by performance
metrics for detection confidence, false alarm rate, and prediction accuracy/precision
[1]. In this architecture, the most important components supporting the imple-
mentation of the algorithms are feature extraction, fault/degradation diagnosis, and
failure prognosis.
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7.4 Data and Corrosion Modeling Requirements

Advanced corrosion health assessment systems require comprehensive quantitative
information, which can be categorized into a variety of feature groups, such as
corrosion morphology, texture, and location. Implementation of advanced health
assessment systems will require the exploration of new testing methods and data
fusion methods from multiple testing techniques. Forsyth and Komorowski [2]
discussed data fusion techniques to combine the information from multiple NDE
techniques into an integrated form for structural modeling. Several other studies
have looked into different sensing technologies for corrosion health monitoring,
including the use of a micro-linear polarization resistance (LLPR) sensor [3, 4] and
fiber optic sensors [5]. The existing research focused on a combination of surface
metrology and image processing is very limited. In parallel to the current corrosion
sensing technology, there have been a number of corrosion modeling studies
attempting to numerically capture the processes of pitting corrosion initiation,
pitting evolvement, pitting to cracking transition, and crack growth to fracture at the
molecular level. Currently there is not a widely accepted quantitative model to take
into consideration of the effect of stress factors (e.g. salinity, temperature, pressure),
although the effects of the above-mentioned stress factors have been widely
discussed.
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Degradation detection and prediction require an appropriate estimation tech-
nique, in addition to data and a model. Estimation methods have been developed
over the past years such as Kalman filtering, regression tools, etc. to address the
prognosis problem. We take advantage of a novel estimation method called particle
filtering that has been shown to outperform other known methods while dealing
with difficult nonlinear and/or non-Gaussian problems [6]. The underlying principle
of the methodology is the approximation of relevant distributions with particles
(samples from the space of the unknowns) and their associated weights [6, 7].
Figure 7.6 depicts the health management scheme. Particle Filtering is an emerging
and powerful methodology for sequential signal processing based on the concepts
of Bayesian theory and Sequential Importance Sampling (SIS). Particle Filtering is
very suitable for nonlinear systems or in the presence of non-Gaussian process/
observation noise. For this approach, both diagnosis and prognosis rely upon
estimating the current value of a fault/degradation dimension, as well as other
important parameters, and use a set of observations (or measurements) for this
purpose. This methodology involves two steps that consider the best elements of
two worlds: a prediction step, based on the process model (model-based approa-
ches) and an update step, which incorporates the new measurement into the a priori
state estimate (data driven techniques).
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Fig. 7.6 The overall data processing, diagnostic and prognostic architecture
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7.5 The Corrosion Diagnostic and Prognostic Algorithms

Figure 7.7 depicts the overall architecture for aircraft structure corrosion detection,
prediction and condition based maintenance practices to intervene expeditiously
and mitigate the impact of corrosion fatigue on the structural integrity of the asset.

Degradation detection and prediction require an appropriate estimation tech-
nique, in addition to data and a model, as pointed out above. Estimation methods
have been developed over the past years such as Kalman filtering, regression tools,
etc. to address the prognosis problem. We take advantage in this study of a novel
estimation method called particle filtering that has been shown to outperform other
known methods while dealing with difficult nonlinear and/or non-Gaussian prob-
lems (3). The underlying principle of the methodology is the approximation of
relevant distributions with particles (samples from the space of the unknowns) and
their associated weights. This is of particular benefit in diagnosis and prognosis of
complex systems, because of the nonlinear behavior when operating under fault or
degradation conditions.

A fault or parameter degradation diagnosis procedure involves the tasks of
degradation detection, isolation and identification (assessment of the severity of the
degradation). At any given instant of time, this detection framework provides a
probabilistic estimate of the fault or degradation mode. Once this information is
available, it is processed to generate proper fault alarms and to inform about the
statistical confidence of the detection routine. Furthermore, estimates for the system
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Fig. 7.7 Schematic representation of the major modules of the corrosion detection, prediction and
mitigation strategies
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continuous-valued states (computed at the moment of degradation detection) may
be used as initial conditions in prognostic routines. Customer specifications are
translated into acceptable margins for the type I and/or II errors, i.e. the false alarm
and confidence or accuracy of detection.

We introduce a combined model-based and data-driven methodology that takes
advantage of experimental data, corrosion progression models and an estimation
method called particle filtering. It is accompanied by appropriate performance
metrics while meeting customer specified requirements for detection confidence and
false alarm rates, and prediction accuracy/precision.

Figure 7.8 depicts the proposed degradation diagnosis and prognosis architec-
ture for a single mode (corrosion or no corrosion). In this architecture, real-time
measurements and operating conditions are provided in real time. Data are
pre-processed before computing the features that will assist to efficiently monitor
the behavior of the targeted panel/coupon. With the features and a model describing
the degrading state of the system, a fault detection algorithm based on particle
filtering can be applied. Statistical analysis is implemented to arrive at the proba-
bility of a certain fault. When the fault is detected with a given confidence level, a
failure prognostic algorithm is activated to predict the Remaining Useful Life
(RUL) of the component. In our case we will be seeking to identify as accurately as
possible when the corrosion level reaches specified thresholds where action
might be required. This architecture provides not only a convenient compromise
between data-driven and model-based techniques, but also the means to discuss its
performance in terms of statistical performance indices. Moreover, a particle
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Fig. 7.8 Proposed architecture for a corrosion detector/data analysis/detection/prognosis
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filtering-based algorithm enables us to efficiently deal with nonlinear systems and
no-Gaussian noise-a typical situation encountered in corrosion studies.

In this architecture, the most important components supporting the implemen-
tation of the algorithm are feature extraction and diagnosis/prognosis models.
Features are the foundation for “good” fault/corrosion initiation detection algo-
rithms. Our focus is on the diagnosis and prognosis models. It is desirable to extend
the architecture shown in Fig. 7.8, so that it can be used to detect and predict more
than one corrosion degradation mode. There is evidence to support the contention
that corrosion undergoes a series of modes before final cracking and a catastrophic
failure of critical parts. For these different fault modes, as corrosion, pitting and
cracking of aircraft aluminum alloy panels/structures, the former one usually leads
to the next one. The term corrosion is used in this document to designate the initial
corrosion stage resulting from slight pitting at the grain boundaries. The attempt is
to differentiate this first observable stage from pitting where pitting corrosion is
measurable at the mesoscale level.

When N degradation modes/stages are considered, due to the different degra-
dation mechanisms, we also need N models for diagnosis and prognosis purposes.
The proposed scheme is described as follows:

1. Build three models for degradation progression of corrosion, pitting and
cracking. At this stage, from theoretical analysis and the literature, model
structures are built and parameters are initialized for further improvement, as
detailed in the chapter on corrosion modeling.

2. When new measurements (i.e. features for corrosion, pitting and cracking)
become available, the parameter sets for these different models are tuned
on-line.

3. Three on-line diagnosis algorithms to detect corrosion, pitting and cracking are
implemented in parallel. Since detection routine carries only a very light com-
putational burden, this will not cause real-time problems.

4. When a degradation mode is detected, the prognosis routine of this mode is
activated to predict its growth as a function of time. Under the current situation,
this detected mode is denoted as the “dominant” one. The prognostic routine
predicts the remaining useful life of the component/part or the time to reach a
predefined threshold level.

5. During the prognosis of this degradation mode, when the next t mode is
detected, the dominant fault mode changes to the newly detected degradation
mode. In this case, the prognosis of a newly detected mode is activated.

This way, the component/part of interest has gone through a complete diagnosis
and prognosis cycle. The benefit is a more accurate and precise prediction of the
component’s life. In addition, the progression of corrosion stages and remaining
useful life are given in an understandable way to help maintenance personnel in
making correct maintenance decisions.
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The fault progression is often nonlinear and, consequently, the model should be
nonlinear. From a nonlinear Bayesian state estimation standpoint, diagnosis and
prognosis are accomplished by the use of a Particle Filter-based module. An
essential element of this module is a nonlinear state model describing the propa-
gation of the degradation.

7.6 Corrosion Modeling Framework: Symbolic
Regression

We exploit a novel modeling framework to represent stress and/or corrosion evo-
lution in structural health management. This modeling approach allows for inclu-
sion of impact or stress factors while accounting for uncertainty. A generic
approach that can be employed to model a large variety of processes where data are
available and first principle models are not feasible. The same framework is used
for representing the fault evolution of critical components/systems.

Symbolic regression is a type of regression analysis that searches the space of
mathematical expressions to find the model that best fits a given dataset, both in
terms of accuracy and simplicity. No particular model is provided as a starting point
to the algorithm. Instead, initial expressions are formed by randomly combining
mathematical building blocks such as mathematical operators, analytic functions,
constants, and state variables. (Usually, a subset of these primitives will be specified
by the person operating it, but that’s not a requirement of the technique.) New
equations are then formed by recombining previous equations, using genetic
programming.

By not requiring a specific model to be specified, symbolic regression isn’t
affected by human bias, or unknown gaps in domain knowledge. It attempts to
uncover the intrinsic relationships of the dataset, by letting the patterns in the data
itself reveal the appropriate models, rather than imposing a model structure that is
deemed mathematically tractable from a human perspective. The fitness func-
tion that drives the evolution of the models takes into account not only error
metrics (to ensure the models accurately predict the data), but also special com-
plexity measures, thus ensuring that the resulting models reveal the data’s under-
lying structure in a way that’s understandable from a human perspective. This
facilitates reasoning and favors the odds of getting insights about the
data-generating system (From Wikipedia).

e Quick Recall: regression is aiming to minimize the distance between the esti-
mated value and measured value:

arg H}in(y —f(x))?
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7.7 Objective Function

For each ¢, the distance (error) can be represented as follows:
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Therefore, the objective function is the sum of E;:
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7.8 Discrete Form

We can generate samples using Monte Carlo Methods and change the distri-
butions to samples.

First, we assume for each time instant, #;, the numbers of sample are the same.
We want to generate the corresponding discrete form, which can fit our coding
easier.

N M
argmin E=3 Er=3_ % (X4~ ()’
i i=1 k=1
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Here the M is the number of samples for each distribution.

e When the number of samples for each distribution is not the same, we can use
the histogram to approximate the distributions.
e The objective function is changed to the following form:

Ml

arg mmE ZE ZZ" 1 Xt’ — XN: X,” _

i=1 k=1 M’

Here the M; is the number of samples for the distribution at time ¢,.

7.9 Useful Tools

e Eureka® is a useful tool to finish the Symbolic Regression
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Sample Generating code

1- cle
2 - clear all
3- load('C_data.mat')
4
5 - N=15; % sample for each fitted
6 - Eureqadata=[];
7
8= for i=1:360:length(time)
9 - if time(i)<l133
10 - pd=fitdist(Corrosion(i,:)’', 'normal’);
11 - elseif time(i)<209
12 - pd=fitdist(Corrosion(i,2:4)', 'normal’});
13 - else
14 - pd=fitdist(Corrosion(i,3:4)"', 'normal’);
15 - end
16 - Euregadata=[Eureqadata;time(i)*ones(N,1l),normrnd(pd.mu,pd.sigma,[1l N])'];
17
18 - end
19 - figure
20 - hold on
21 - for i=l:length(time)/360*N
22 - scatter (Eureqgadata(i,l),Bureqadata(i,2));
23 - end
24
25 - save Euregadata
26

Generated Sample Plot:
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Fitting Result
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e We can choose Fit or Solution to minimize the error, or make a tradeoff between
size and error.
e We do the performance analysis with the following function:

f1(t) = 0.152+0.308 ¥ 1 +0.0114 % 2 +6.72¢ — 9% — 1.12¢ — 11 +* — 1.11le — 6 % ¢*
F2(1) =2.01 40228 % 2 +3.2le — 9 % £ — 6.96¢ — 12 % 1 — 0.000164 * *

f3(t) =2.8640.0211 % 2 +1.87¢ — 9 % £ — 1.05¢ — 14 %17 — 0.000141 * 1>

F4(t) = 182 % 000731 _ 191 — 0.00806 12

e We test these curves with our testing data:

Fitted curve Error

F1(t) 1.0881
F2(t) 1.0710
F3(t) 1.1029
F4(t) 1.1482
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* Plot of Pressure Data.

Fig. 7.9 Pressure data

What do we need?

247

e Area percentage feature or some other global feature act as the ground truth.
e After we have the relationship between corrosion and time, we will eliminate t

to get corrosion versus feature (Figs. 7.9 and 7.10).

u

Fig. 7.10 Model prediction and smoothing




248 G. Vachtsevanos

o 100 200 3 o0 30

Model: DI-.J .;4%-:-:"—2—.--:—.!"-.-:’

Model: = 0910 + 22224 14410 - 0er? — 808 34610 - Sur - 30340 — 44011

7.10 Symbolic Regression Result
b 2 d 10
Model:DT—lza—i—;—i—c*t _[_z_e*t_f*t

3.711 ,  926.162

Model: :0'910+T +1.441e — 9 xt* — 2 —3.461le — 5

x 1 — 3.1342¢ — 44 % 110

An Integrating End-to-End Architecture for Corrosion Diagnosis and Prognosis

We introduce a rigorous and verifiable framework for diagnosis and prognosis,
developed, tested and applied to various laboratory, military and commercial sys-
tems that builds upon a systems engineering process as the driving philosophy for
health management [6]. The online modules (see Fig. 7.6) perform raw data
pre-processing, feature extraction, fault diagnosis and failure prognosis that exploit
available ground truth fault data, noise models, experimental data, system models
and other tools offline to tune and adapt online parameters and estimate suitable
mappings.

Physics of Failure Mechanisms

The foundation for the development and application of PHM technologies is a
thorough understanding of the physics of failure mechanisms as critical systems are
subjected to stress conditions. From the physical components/systems themselves to
a good understanding of how such systems fail and under what conditions leads to
optimum Condition Indicator (CI) extraction and selection and, eventually, to
accurate diagnostics and prognostics.
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Fig. 7.11 Image processing and histogram generation

Failure Modes and Effects Criticality Analysis (FMECA)

The starting point for “good” diagnostics/prognostics is a thorough FMECA. It
describes the failure modes, sensor suite, condition indicators, possible diagnostics
and prognostic algorithms. It forms the first essential step in the systems engi-
neering process for health management of critical aircraft components/systems
(Fig. 7.11).

Sensors and Sensing Strategies

Sensors and sensing strategies constitute the essential requirements for fault diag-
nosis and failure prognosis of failing components/systems. The type, location and
characteristic properties of PHM sensors, i.e. sensors that are specifically designed
to monitor corrosion degradation signatures, present major challenges to the system
designer. Figure shows typical sensor results with devices embedded to monitor
corrosion processes. We introduce an approach to determine the type, number and
location of sensing modalities that maximize the fault signal to noise ratio
(Fig. 7.12).

Data Pre-processing

Raw sensor data (primarily images of corroding surfaces, temperature, humidity,
etc.) must be pre-processed in order to reduce the data dimensionality and improve
the (degradation) Signal to Noise Ratio (SNR). Typical pre-processing routines
include data compression and filtering, Time Synchronous Averaging (TSA) of
time series data, FFTs, wavelet decomposition techniques, among others.
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Fig. 7.12 Temperature and moisture sensing using embedded sensors

Data Mining

Data mining is “the non-trivial extraction of implicit, previously unknown, and
potentially useful information from data”. Data mining tools typically perform an
exploratory data analysis on large data sets; they focus on understandability rather
than accuracy or predictability, and they are pattern focused rather model-focused.
We propose a data mining process that involves the following steps: Learning the
application domain, data cleaning and preprocessing, data reduction (PCA and
other tools will be called upon to reduce the data dimensionality and identify
possible data redundancies). We propose a systems engineering process to analyze
the targeted data set, to reduce the data dimensionality and identify meaningful data
clusters that will facilitate the task of meta-data design, i.e. to determine appropriate
work tasks, evaluate these tasks and, ultimately, decide upon potential benefits.
Data mining tools include Bayesian-based approaches, Inductive Decision Trees,
tools from the computational intelligence domain, such as fuzzy logic or
neuro-fuzzy constructs, neural networks, among others, Principal Component
Analysis (PCA).

Metadata Design The metadata design effort aims to consolidate the data mining
results and assist in determining appropriate design actions (as dictated from the
modeling and optimization functions), evaluate these actions and, ultimately, decide
upon potential benefits. Towards this effort, we call upon dynamic reasoning tools
from the Machine Learning domain. These techniques are based on well-known
numerical algorithms that have found numerous applications in signal processing
and data mining, among others [8, 9]. We will introduce and demonstrate an
adaptive form of these algorithms that updates the solution as new data become
available. Missing value estimation techniques will be employed to handle the cases
when not all of the data are available. Imaging data constitute the basic sensing
output exploited for corrosion detection and prediction. Figure 7.13 shows the
imaging steps from pre-processing to feature extraction and classification.
Statistical and morphological features are extracted using the wavelet decomposi-
tion technique.
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Fig. 7.13 The data imaging, feature extraction and classification framework

7.11 Health Indexes

We define and use in the development of the health management architecture
Health Indexes (HIs), concepts that are useful to assess the current and future health
status of corroding surfaces. The HI definition begins with a generalized equation
for wear/fault growth/degradation of the form:

w = APl

Which retains the macro-level degradation characteristics. Next, we assume an
upper wear threshold 72(w) that denotes an operational limit beyond which the
component/subsystem cannot be used. The generalized wear equation can be
rewritten as a time varying health index, h(¢), by subtracting wear from the upper
wear threshold and normalizing it with respect to the upper wear threshold as

AeBO)
 th(w)

h(t) =1
This equation can be rewritten as
h(r) =1 — "

by recasting the parameters. Generally, the system will be observed with some
initial degradation, d, which is modeled as an additive term resulting in
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h(t)=1—d— e

The health index can be used to model different phenomena within a subsystem
—the identified components in our case. In this case, the system HI can be
described as the minimum of all operative margins written as

gle(®),f(2),1(2),...) = min(my,my, ms, . ..)
The margins m;, mj,, etc. are functions of the specific fault modes considered.

Condition Indicator Extraction and Selection

Condition Indicator (CI) selection and extraction constitute the cornerstone for
accurate and reliable corrosion degradation diagnosis. The objective is to transform
high dimensional raw data into tractable low dimensional form (information)
without loss of useful information. The objective is to develop and employ novel
feature extraction and selection methodologies that establish the foundational ele-
ments for accurate fault diagnosis while processing large volumes of raw data to
arrive at useful information. For this purpose, we explore the utility of appropriate
metrics in on-line and real-time feature extraction algorithms. Over the past several
years researchers at Georgia Tech have investigated multiple feature extraction and
selection algorithms and defined suitable performance metrics, such as z-score and
correlation coefficient [10, 11]. Building on this experience, we develop a sound
theoretical foundation based on the data mining notions suggested in Chapter. Of
special interest are novel feature extraction tools based on Deep Learning (Deep
Learned Features) and smart control algorithms for selection and classification
purposes.

Degradation/Fault diagnosis depends mainly on extracting a set of features from
sensor data that can distinguish between corrosion classes/stages of interest, detect
and isolate a particular degradation mode at its early initiation stages. In selecting
an “optimum” feature set, we are seeking to address such questions as: Where is the
information? How do degradation (failure) mechanisms relate to the fundamental
“physics” of complex systems? Fault/Degradation modes may induce changes in
the energy, entropy, power spectrum, signal magnitude, etc. [10]. We propose to
pursue a data mining formalism in order to determine the “best” features that are
descriptive of the faulty behavior of critical components/subsystems. Kolmogorov
Complexity is viewed by the data mining community as the foundation for algo-
rithms that aim to process large volumes of data (data, images, observations), i.e.
perform such functions as data compression, clustering, classification, anomaly
detection, forecasting, etc. Feature extraction and selection is indeed at the heart of
the data mining problem. Borrowing concepts from this area will help to formalize
an approach that has relied thus far on heuristics, intuition and the best judgment of
experts.
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For purposes of computing features and selecting the optimum feature vector for
diagnosis and prognosis we define the Compression-Based Dissimilarity Measure
as:

C(x)+C(y)

where, in the feature extraction algorithm C(x) is the size of the compressed x, and
C(x]y) is the compression achieved by first training the compression on y (ground
truth data), and then compressing x. Typical compressors are based on textual
substitution methods, among others. The CDM dissimilarity is close to one when
x and y are not related, and smaller than one if x and y are related. The smaller the
CDM(x, y), the more closely related x and y are.

The objective is to develop and employ novel feature extraction and selection
methodologies that establish the foundational elements for accurate fault diagnosis
while processing large volumes of raw data to arrive at useful information. For this
purpose, we explore the utility of appropriate metrics in on-line and real-time
feature extraction algorithms. Over the past several years researchers at Georgia
Tech have investigated multiple feature extraction and selection algorithms and
defined suitable performance metrics, such as z-score and correlation coefficient
[10, 11]. Building on this experience, we develop a sound theoretical foundation
based on the data mining notions suggested in Chapter. Of special interest are novel
feature extraction tools based on Deep Learning (Deep Learned Features) and smart
control algorithms for selection and classification purposes.

7.12 Development of Fault Diagnosis and Failure
Prognosis Algorithms

The objective is to develop a sequence of methods and tools that establish the
mathematical rigor, effectiveness and desired performance of the new and enhanced
diagnostic and prognostic algorithms. The fault/degradation progression is often
nonlinear and, consequently, the model should be nonlinear. From a nonlinear
Bayesian state estimation standpoint, diagnosis and prognosis may be accomplished
by the use of a Particle Filter-based module. An essential element of this module is
a nonlinear state model describing the propagation of the degradation.

It is structured in terms of a number of subtasks, each with a dedicated function
and goal, used as building blocks (pieces) in the overall diagnostic/prognostic/
reconfigurable control mosaic. We propose to address the development, design,
testing and implementation of new model-based and data-driven diagnostic and
prognostic algorithms. Bayesian estimation methods, and particularly particle fil-
tering, are the underpinnings of robust and accurate diagnosis and prognosis. The
task here is to suggest enhancements to algorithms that have shown already to
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outperform existing or state-of-the-art routines and introduce new model-based and
data-driven methods that improve further the effectiveness of these tools. Figure 7.8
shows the particle filtering formulation for degradation detection and prediction.
This framework has been implemented in real time on critical aerospace systems
exhibiting verifiable response characteristics. Its generic aspects are applicable to
on-line corrosion detection and prediction.

The proposed corrosion diagnosis and prognosis framework builds upon
mathematically rigorous concepts from estimation theory—an emerging and
powerful methodology in Bayesian theory called Particle Filtering that is particu-
larly useful in dealing with difficult non-linear and/or non-Gaussian problems.
Particle filtering facilitates the estimation of the state (fault) model over consecutive
time instants as measurements become available. The particle filtering routines for
diagnosis and prognosis are implemented and executed in near real-time and
constitute an integrated framework where the results of diagnosis serve as the initial
conditions for prognosis in a transparent and efficient manner.

Particle filtering is an emerging and powerful methodology for sequential signal
processing based on the concepts of Bayesian theory and Sequential Importance
Sampling. The underlying principle of the methodology is the approximation of
relevant distributions with particles (samples from the space of the unknowns) and
their associated weights. Compared to classical Monte Carlo methods, sequential
importance sampling enables particle filtering to reduce the number of samples
required to approximate the distributions with necessary precision, and makes it a
faster and more computationally efficient approach than Monte Carlo simulation. It
is very suitable for nonlinear systems and/or in the presence of non-Gaussian
process/observation noise. One particular advantage of the proposed particle fil-
tering approach is the ability to characterize the evolution in time of the nonlinear
fault (state) model through modification of the probability masses associated with
each particle, as new CI or feature information is received.

The Georgia Tech research team has pioneered the introduction of particle fil-
tering techniques into fault diagnosis and failure prognosis [12, 6]. The success of
this novel approach has been demonstrated in a number of diverse application
domains from rotorcraft critical components to electrical systems, environmental
control systems and high power amplifiers [13, 14]. We will introduce a new
approach to particle filtering as a model-based technique in combination with a
data-driven mapping for improved prediction accuracy and precision. This is of
particular benefit in diagnosis and prognosis of complex dynamic systems, such as
gearboxes, drive systems/components, etc. Moreover, particle filtering allows for
information from multiple measurement sources to be fused in a principled manner.

From a particle filtering perspective, real-time fault/degradation diagnosis and
prognosis is aiming to estimate recursively the current/long-term corrosion states by
taking into account available measurements, while both diagnosis and prognosis
contain two key steps: prediction and update. The prediction is intended to estimate
the prior pdf of the states by using the nonlinear system (fault) model, while the
update step involves modifying the prior density to gain the posterior density
through the use of an appropriate measurement model. Long-term prediction of the
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Fig. 7.14 Proposed architecture for the fault (anomaly) detector

fault evolution will be based on an estimate of the current state and a model
describing the fault progression, more specifically the fault-growth model.
Uncertainty associated with long-term predictions is managed by using the current
state pdf estimate, process noise model, and a record of corrections made to pre-
viously computed predictions.

In prognosis, defining an initial estimate of the fault pdf is a crucial step since the
long-term prediction accuracy and precision are strongly dependent on this initial
estimate and tend to deteriorate rapidly with inaccurate initial conditions. In the
proposed scheme, the initial pdf is defined automatically by the final diagnostic
outcome, assuring a satisfactory degree of accuracy/precision, avoiding an ad hoc
choice for this estimate and preserving a transparent continuity between fault
diagnosis and failure prognosis resulting in improved algorithm effectiveness. We
will introduce appropriate performance metrics to assess the effectiveness of the
diagnostic/prognostic routines and to assist in their optimum design.

7.13 Corrosion Degradation Detection—The Particle
Filtering Approach to Degradation Detection

Fault or degradation Diagnosis—Detection, isolation and identification of an
impending or incipient failure condition—the affected component (subsystem,
system) is still operational even though at a degraded mode.

Figure 7.14 depicts the major modules of the proposed architecture for a fault
detector.

Figure 7.15a shows a Simulink implementation of the modules depicted in
Fig. 7.14. Features or Condition Indicators are extracted in the frequency domain
and a neural network based classifier, as shown in Fig. 7.15b, maps the selected/
extracted features into a fault dimension.



256

(a) =] Simailink_Anom_Det
File Edit View Simulstion Format Tools Help

G. Vachtsevanos

Raw Data Preprocessing Feature Feature
Extraction Classification

(100kHz) (5kHz)
(6Hz)

(b)
Features

S =Wanell, —

(Related to Speed)

S2 = Masell

(Related to Load)

fézzlabc \__J

v

abc

1

abc

Where:

Ve = [Vab v, Vm] Neural Network — 20 Nodes

Ly =l 1, 1]

Particle
Filtering

— [, - Mapped Feature

Fig. 7.15 a Simulink implementation of anomaly detection routine. b Feature classification

The NN is trained and a typical residual distribution is shown in Fig. 7.16. The
particle filter Simulink implementation block is shown in Fig. 7.17. Results under
no-fault and fault conditions for a typical motor winding degradation test are shown
in the watershed schematics of Fig. 7.18. These results are encouraging and suggest
that potential risks associated with the proposed algorithms are mitigated

successfully.
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7.14 Diagnosis of Corrosion Degradation

The corrosion detection and identification procedure may be interpreted as the
fusion and utilization of the information present in a feature vector (observations)
with the objective of determining the operational condition (state) of a system and
the causes for deviations from particularly desired behavioral patterns [5].

A diagnosis procedure for early corrosion detection involves the tasks of
detection and identification (assessment of the severity of the corrosion). In this
sense, the proposed particle-filter-based diagnostic framework aims to accomplish
these tasks, under general assumptions of non-Gaussian noise structures in the
measurements and corrosion process, nonlinearities in process dynamic models,
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using a reduced particle population to represent the state probability density
function (PDF) [15]. The particle filter-based module builds on the nonlinear
dynamic state model (corrosion growth),

xa(t+1) = fo(x4(2), n(2))
xe(t+1) = filxa(t), xe(2), w(1)) (7.1)
Tp(t) = hi(xa(t), x(1),v(1))

where f}, f; and h, are non-linear mappings, x,(¢) is a collection of Boolean states
associated with the presence of a particular operating condition in the system
(normal operation, fault type #1, #2, etc.), x.(¢) is a set of continuous-valued states
that describe the evolution of the system given those operating conditions, f,(z) is a
feature measurement, w(¢) and v(¢) are non-Gaussian distributions that characterize
the process and feature noise signals respectively. At any given instant in time, this
framework provides an estimate of the probability masses associated with each fault
mode, as well as a PDF estimate for meaningful physical variables in the system.
The FDI module generates proper fault alarms and as well as the statistical confi-
dence of the detection routine. Performance metrics are translated into acceptable
margins for the type I (false positives) errors and type II errors (false negatives) in
the detection routine. The algorithm itself will indicate when the type II error has
decreased to the desired level. Figure 7.19 shows an application of diagnostic tools
to pipeline corrosion monitoring.
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The particle-filter-based diagnosis framework aims to accomplish the tasks of
fault detection and identification using a reduced particle population to represent the
state probability density function (pdf). This framework provides an estimate of the
probability masses associated with each fault mode, as well as a pdf estimate for
meaningful physical variables in the system. Once this information is available
within the diagnostic module, it is conveniently processed to generate proper fault
alarms and to inform about the statistical confidence of the detection routine.
Customer specifications are translated into acceptable margins for the type I and II
errors in the detection routine. The algorithm itself will indicate when the type II
error (false negatives) has decreased to the desired level.

7.15 Corrosion Diagnosis—Implementation Issues

Particle filtering is used in diagnosis routines to detect with a specified level of
confidence the initiation of corrosion. The corrosion detection method using particle
filtering is outlined below:

Step 1: Initialize particle filter

e Generate probability density function (PDF) from baseline data.
e From baseline data generate initial values of particles.

Step 2: Run particle filter

e Update particles using model.
e Update weights for each particle.
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Get current PDF of the fault dimension from particles and weights.

Determine detection confidence based on current PDF, baseline PDF and given
false alarm rate. Figure 7.15 demonstrates how to compute the detection con-
fidence. The false alarm rate determines which point on the x-axis to start
integrating the current PDF to compute the detection confidence.

The Fault/Degradation Detection and Identification (FDI) procedure may be
interpreted as the fusion and utilization of the information present in a feature vector
(observations) with the objective of determining the operational condition (state) of
a system and the causes for deviations from particularly desired or normal
behavioral patterns.

For an actual system, the model can be written in the following form:

xa1(t+1) xa1(1)
Ld,z(H' 1)} _ﬁjqxd,z(f)} +n(l)>
X (t+1) = [(14 B)xc(0)]xaa(t) +w(t)
y(t) = xc(t) +v(1)
= { O A=<l
[01],else
[%4.1(0)x42(0)x:(0)] = [100]

In this model, f; is a non-linear mapping, x; and x4, are Boolean states that
indicate normal and faulty conditions, respectively, y(¢) is the noise-contaminated
fault dimension, and f is a time-varying model parameter that describes the
propagation of the fault dimension under current operating conditions. Figure 7.20
is a schematic representation of the detection scheme.

Figure 7.21 details the definition of the false alarm rate and detection confidence
or accuracy. Typically the false alarm rate is specified a priory, i.e. 5% or 2%, and
the confidence is estimated from the overlap region between the baseline pdf and
the one computed during the current analysis procedure.

The degradation detection and identification procedure may be interpreted as the
fusion and utilization of the information present in a feature vector (observations)
with the objective of determining the operational condition (state) of a system and
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Fig. 7.20 Particle filtering—a fault/degradation detection method
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the causes for deviations from particularly desired behavioral patterns. A model for
diagnosis is given Eq. (7.1). Model-based techniques for fault/degradation diag-
nosis are capable of addressing unanticipated degradation conditions if an accurate
corrosion process is available. Data-driven routines are employed to address
anticipate faults, if a statistically sufficient data base is available. Hybrid configu-
rations using both data-driven and model-based tools/methods have been reported
in the literature that aim to improve the diagnosis and prognosis results taking
advantage of both techniques. Figure 7.22 illustrates the two approaches.

The particle-filter-based diagnosis framework aims to accomplish the tasks of
degradation detection and identification using a reduced particle population to
represent the state probability density function (pdf). This framework provides an
estimate of the probability masses associated with each fault mode, as well as a pdf
estimate for meaningful physical variables in the system. Once this information is
available within the diagnostic module, it is conveniently processed to generate
proper fault alarms and to inform about the statistical confidence of the detection
routine. Customer specifications are translated into acceptable margins for the type I
and II errors in the detection routine. The algorithm itself will indicate when the
type II error (false negatives) has decreased to the desired level. Figure 7.23 shows
the anomaly detection results based on an RMS feature. The first plot depicts the
progression of the feature as a function of time while the second is the probability of
failure; the last one shows the baseline and fault pdfs at 5% false alarm rate.
The Type II error is 1.1117% at that specific instant of time. Another performance
metric is the Fisher Discriminant Ratio shown at the bottom of Fig. 7.23.
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Corrosion Detection and Quantification Using Image Processing for Aging
Aircraft

Localized corrosion is recognized as one of the degradation mechanisms that affect
the structural integrity of aging aircraft structures. Several nondestructive inspection
(NDI) systems (eddy current, ultrasound and others) have been used to obtain the
images of damaged regions. There is a growing demand for improving existing NDI
techniques to achieve maximum confidence and reliable results with minimum
damage components. There is always a constant outlook for methods that identify
the damaged regions on the image and also that gives a quick estimate of the extent
of the damage.

The images obtained through conventional NDI methods are not directly suitable
for identification and quantification of damaged regions. Such images therefore
need to be enhanced and segmented appropriately for further image analysis. In this
paper, segmentation has been achieved using wavelet decomposition. The wavelet
coefficients also can be used to quantify the extent of corrosion. Neural networks
were applied in the process of segmentation and quantification of damaged regions.
Segmentation results show a good correspondence between the extracted regions
and the actual damage on sample panels. A good accuracy was obtained in dis-
tinguishing the corroded segments from the non-corroded ones. An accuracy of
about 75% was achieved in the quantification of the corroded panels.

Corrosion Detection and Quantification using Image Processing for Aging
Aircraft

Localized corrosion is recognized as one of the degradation mechanisms that affect
the structural integrity of aging aircraft structures. Several nondestructive inspection
(NDI) systems (eddy current, ultrasound and others) have been used to obtain the
images of damaged regions. There is a growing demand for improving existing NDI
techniques to achieve maximum confidence and reliable results with minimum
damage components. There is always a constant outlook for methods that identify
the damaged regions on the image and also that gives a quick estimate of the extent
of the damage.

The images obtained through conventional NDI methods are not directly suitable
for identification and quantification of damaged regions. Such images therefore
need to be enhanced and segmented appropriately for further image analysis. In this
paper, segmentation has been achieved using wavelet decomposition. The wavelet
coefficients also can be used to quantify the extent of corrosion. Neural networks
were applied in the process of segmentation and quantification of damaged regions.
Segmentation results show a good correspondence between the extracted regions
and the actual damage on sample panels. A good accuracy was obtained in dis-
tinguishing the corroded segments from the non-corroded ones. An accuracy of
about 75% was achieved in the quantification of the corroded panels.
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Intelligent Computational Methods for Corrosion Damage Assessment

Corrosion is one of the major damage mechanisms affecting the structural integrity
of aging aircraft structures. Various nondestructive inspection (NDI) techniques are
being used to obtain images of corroded regions on structures. This paper describes
a computational approach using Wavelet transforms and artificial neural networks
to analyze and quantify the extent of corrosion damage from the NDI images. The
Wavelet parameters obtained from the images were first used to classify between
corroded and un-corroded regions using a clustering algorithm. The corroded
regions were further analyzed to obtain the material loss due to corrosion using
artificial neural network model. Experiments were carried out to investigate the
developed methods for aircraft panels with engineered corrosion obtained from the
FAA Validation Center in Albuquerque. The results presented indicate that the
computational methods developed for corrosion analysis seem to provide reason-
able results for estimating material loss due to corrosion damage.

Use of Computational Intelligence for Corrosion Damage Assessment of Aircraft
Panels

Localized corrosion is recognized as one of the degradation mechanisms that affect
the structural integrity of aging aircraft structures. Several nondestructive inspection
(NDI) systems (eddy current, ultrasound and others) have been used to obtain the
images of damage regions. There is a growing demand for improving existing NDI
techniques to achieve maximum confidence and reliable results with minimum
damage components. There is always a constant outlook for methods that identify
the damaged regions on the image and also that gives a quick estimate of the extent
of the damage.

The images obtained through conventional NDI methods are not directly suitable
for identification and quantification of damaged regions. Such images therefore
need to be enhanced and segmented appropriately for further image analysis. In this
paper, segmentation has been achieved using wavelet decomposition. The wavelet
coefficients also can be used to quantify the extent of corrosion. Neural networks
were applied in the process of segmentation and quantification of damaged regions.
Segmentation results show a good correspondence between the extracted regions
and the actual damage on sample panels. A good accuracy was obtained in dis-
tinguishing the corroded segments from the non-corroded ones. An accuracy of
about 75% was achieved in the quantification of the corroded panels.

7.16 Beyond Diagnosis Towards Prognosis

The proposed segment-by-segment approach provides ample observations for the
propagation of local anomaly in the time domain. This feature can be exploited to
enable data-driven prognostic analysis beyond diagnostic anomaly detection.
A fundamental challenge in prognosis stems from the “large-grain” uncertainty
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inherent in the prediction task. Long-term prediction of the NAS degradation
evolution, to the point that may result in a failure or detrimental event requires
means to represent and manage the inherent uncertainty. Data uncertainty, process
(system) uncertainty, environmental uncertainty, measurement and modeling
uncertainties are potential contributors to prognostic uncertainty in aircraft systems.
The prognosis scheme should consider critical state variables (such as degradation
indicators) as random processes in such a way that, once their probability distri-
butions are estimated, other important attributes (such as confidence intervals) may
be computed.

An important distinction must be drawn between two major categories of
prognostic algorithms: Health-Based versus Usage-Based prognostics. The former
refers to prognostic approaches developed and applied on-line in real time as the
system (NAS) at hand is monitored and data are streaming into a processor for
degradation detection and failure prognosis. In this case, an incipient failure is
detected first with specified confidence and then the prognostic algorithm is initi-
ated to predict the time evolution. The final degradation state acts as the initial
condition for prognosis. In contrast, usage-based prognosis considers the past,
current and assumed future usage or stress patterns of the NAS system to estimate
the system’s remaining useful life. Such prognostic methods do not presuppose the
existence of incipient failure modes in deference to health based prognostics. The
remaining useful life may be estimated at any time in the system’s operating history
in the absence of a degradation condition. The prediction may be continuously
updated as new evidence accumulates. Life cycle management tools for critical
NAS systems take advantage of usage-based prognostic routines to arrive at times
needed for corrective actions. The enabling technologies include neuro-fuzzy sys-
tems, response surface methodologies, similarity based methods and regression
analysis techniques, among others.

7.17 Degradation Prognosis

Prognosis is the ability to predict accurately and precisely the remaining useful life
(RUL) or time for remediation of a degrading structure/part.

Prognosis is the Achilles’ heel of degradation diagnosis and failure prognosis
systems. Prognosis can be understood as the generation of long-term predictions
describing the evolution in time of a particular signal of interest or fault/degradation
indicator. Since prognosis projects the current condition of the indicator in the
absence of future measurements, it necessarily entails large-grain uncertainty. This
suggests a prognosis scheme based on recursive Bayesian estimation techniques,
combining both the information from fault growth models and on-line data obtained
from sensors monitoring key degradation parameters (observation or features).
Proposed is a prognostic framework that takes advantage of a nonlinear process
(fault/degradation) model, a Bayesian estimation method using particle filtering and
real-time measurements.
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Prognosis is achieved by performing two sequential steps, prediction and fil-
tering. Prediction uses both the knowledge of the previous state estimate and the
process model to generate the a priori state pdf estimate for the next time instant, It
may be understood as the result of the procedure where long-term (multi-step)
predictions—describing the evolution in time of a parameter or degradation indi-
cator—are generated with the purpose of estimating the Remaining Useful Life
(RUL) or time to take appropriate action. The same patrticle filtering framework and
nonlinear state model suggested above will be used to estimate the RUL [16, 17].
The state estimation is achieved recursively in two steps: prediction and update. The
prediction step is intended to obtain the prior probability density function of the
state for the next time instant.

The detailed algorithm steps for condition prognosis may be stated as:

Step 1: The Symbolic Regression model is trained with available condition data to
model the degradation propagation process.

Step 2: The degradation growth model is employed in the particle filtering for-
mulation to draw a set of particles. According to the values of the particles and
current weights, condition prediction is carried out next.

When a new measurement becomes available, the weights of the particles or
samples are calculated.

Step 3: Update the process noise and model parameters.

Step 4: Repeat Step 2 and Step 3 until prognosis is complete.

Elements for Prognostics

There are some basic ingredients that are common to all prognostic approaches.
These are: a model that describes both the system under investigation and damage
propagation, a quantification of the damage threshold, an algorithm that handles the
propagation of the damage/degradation into the future, and a mechanism to deal
with uncertainty.

The system model describes the characteristics of the system under nominal
conditions. Ideally, such a model should be able to factor in the effects of opera-
tional and environmental conditions as well as any other conditions that cause
different system response under nominal conditions. The system model could
integrate domain expertise and be implemented using rules, a physical description
of the system under investigation or it could learn system behavior from examples,
for instance using machine learning techniques.

A damage/degradation propagation model describes how the degradation is
expected to grow in the future. It should, similar to the system model, account for
operational and environmental conditions as well as any other conditions that have
an impact on the damage. While one often thinks of damage as a monotonically
increasing phenomenon, it is possible for the domain in which damage is evaluated
to have non-monotonic attributes. The prognostic algorithm applies the damage
propagation model into the future. The damage propagation algorithm needs to
ensure that it properly considers the effects of environmental and operational
conditions.
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The damage threshold needs to be established since one needs to know what
condition should terminate the end-of-life prediction. A requirement for an
end-of-life threshold in prognostics is a measurable condition. This is not always
the same conditions as a catastrophic event. Often, these are performance specifi-
cations that constrain the operation of the component. It is possible that the system
may continue to operate beyond the limits of the end-of-life conditions (but outside
of the specifications).

Prognostics is not really useful unless the uncertainties in the predictions are
accounted for. Uncertainty management tools seek to improve the signal (degra-
dation) to noise (uncertainty) ratio. They begin by determining the uncertainty
sources in terms of an uncertainty tree and then exploit filtering or kernel-based
methods for uncertainty management [18]. A remaining life estimate that has no
quantification of the certainty bounds leaves the user with little practical informa-
tion. Accounting for the various sources of uncertainty and rigorously combining
them will allow decision makers to justify the action taken. Uncertainties need to be
managed carefully because a haphazard stacking of the various uncertainties may
lead to wide bounds that wipe out the benefits of estimating remaining life. Sources
of uncertainty can come from the models (both their structure as well as their
parameters), the current state estimate, the future NAS state and environmental
conditions.

Prognostic Algorithm Approaches for Corrosion Prediction

In the engineering disciplines, failure prognosis has been approached via a variety
of techniques ranging from Bayesian estimation and other probabilistic/statistical
methods to artificial intelligence tools and methodologies based on notions from the
computational intelligence arena [19]. Specific enabling technologies include
multi-step adaptive Kalman filtering [20], auto-regressive moving average models,
stochastic auto-regressive integrated moving average models [21], Weibull models
[22], forecasting by pattern and cluster search [23], parameter estimation methods
[24], and particle filter methods [16]. From the artificial intelligence domain,
case-based reasoning [25], intelligent decision-based models and min-max graphs
have been considered as potential candidates from prognostic algorithms. Other
methodologies, such as Petri nets, neural networks, fuzzy systems and neuro-fuzzy
systems [26] have found ample utility as prognostic tools as well. A comprehensive
review of computational intelligence methods for prognostics is given in
Schwabacher and Goebel [27]. Physics-based fatigue models [28, 29] have been
extensively employed to represent the initiation and propagation of structural
anomalies.

Failure Prognosis Algorithms The role of the prognostic algorithm is projecting
the damage propagation model into the future [19]. The algorithm needs to ensure
that it properly considers the effects of environmental and operational conditions. It
is a stochastic model with variables and parameters expressed as Probability
Density Functions (PDFs). We have developed and applied to various engineering
systems a variety of prognostic algorithms [6]. Results from these studies were
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compared with our preferred method—particle filtering, developed by this research
team for failure prognosis purposes. In all cases, particle filtering, as a Bayesian
estimation method outperformed other approaches. We will rely initially on particle
filtering for prognostic purposes.

Damage Threshold Damage thresholds define the end-of-life, or failure condition.
An end-of-life threshold in prognostics must be a measurable condition, although it
should be noted that this condition is not always the complete destruction of a
component. In fact, to be effective there should always be some margin between
this threshold and complete destruction and the system may continue to operate
beyond the end-of-life threshold conditions The damage threshold is also desig-
nated as the “hazard zone”; it represents the anticipated end of life as a PDF.
Various hazard zones or threshold levels may be allocated to suggest degrees of
confidence in the end of life estimates. Specifying such hazard zones requires actual
component failure data—missing in most cases—presenting an additional challenge
to the designer.

Next, we provide a brief overview of a representative sample of the multitude of
enabling technologies. Prognostic technologies typically utilize measured or
inferred features, as well as data-driven and/or physics-based models, in conjunc-
tion with an estimation method, to predict the condition of the system at some
future time. Inherently probabilistic or uncertain in nature, prognostics can be
applied to failure modes governed by material conditions or by functional loss.
Prognostic algorithms can be generic in design but are typically rather specific
when used in the context of a particular application. Prognostic system developers
have implemented various approaches and associated algorithmic libraries for
customizing applications that range in fidelity from simple historical/usage models
to approaches that utilize advanced feature analysis or physics-of-failure models.

Various approaches are needed to develop and to implement the desired prog-
nostic approach depending on (besides resource availability) the criticality of the
Least Replaceable Unit (LRU) or subsystem being monitored but also on the
availability of data, models, and historical information. Figure 7.24 summarizes the
range of possible prognostic approaches as a function of the applicability to various
systems and their relative implementation cost. The pyramid starts at the base with
generic, statistical life usage and experience-based prognostic models, migrates to
data-driven techniques employing evolutionary or trending models while
physics-based models employed for prognostic purposes occupy the top of the
pyramid. Prognosis technologies typically use measured or inferred features, as well
as data-driven and/or physics-based models, to predict the condition of system at
some future time [16, 19]. Model-based prognostics, at the top of the pyramid,
should guide the future development of reliable and verifiable prognostic algo-
rithms for complex systems such as the NAS.
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Fig. 7.24 A taxonomy of prognostic approaches

7.18 A Taxonomy of Prognostic Approaches

The pyramid in Figure describes a taxonomy of prognostic approaches starting with
generic, statistical life usage algorithms at the base and moving up to classification
methods borrowing from the Neural Net, fuzzy logic and state estimation tech-
niques; physical models and model-based prognostic routines occupy the top of the
pyramid.

The book “System of Health Management: with Aerospace Applications” [30]
reviews the variety of approaches of fault prognosis in the engineering discipline.
Techniques ranging from Bayesian estimation and other probabilistic/statistical
methods to artificial intelligence tools have been applied. Table 7.1 summarizes the
various approaches to fault prognosis in the literature.

Eventually, the model is allowed to perform long-term prognosis of the
remaining useful life of the failing component/system with confidence bounds. The
fault model PDF is convolved with the hazard zone PDF when the former reaches
the threshold bounds and the resultant PDF is projected along the time axis (which
is usually measured in “cycles” of operation) depicting the system’s remaining life
statistics.

Implementing physics-based models can provide a means to calculate the
damage to critical components as a function of operating conditions and assess the
cumulative effects in terms of component life usage. By integrating physical and
stochastic modeling techniques, the model can be used to evaluate the distribution
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Table 7.1 Approaches to fault prognosis in the engineering discipline

Source Fault prognosis technique

Lewis [20] Multistep adaptive Kalman filtering

Pham and Yang [31] Auto-regressive moving-average models

Jardim-Gongalves et al. Stochastic autoregressive integrated-moving—average models

[21]

Groer [22] Weibull models

Frelicot [23] Forecasting by pattern and cluster search

Ljung [24] Parameter estimation methods

Aha [25] Case-based reasoning

Studer and Masulli [26] Petri nets, neural networks, fuzzy systems, and neuro-fuzzy
systems

Tangirala [32] Physics-based fatigue models

Sources found in Johnson [30]

of remaining useful life as a function of uncertainties in component strength/stress
properties and loading conditions for a particular fault [33].

Bayesian estimation techniques can satisfy these requirements. In particular,
particle filtering and learning strategies can be used for accurate and precise pre-
diction of a failing component. This approach employs a state dynamic model and a
measurement model to predict the posterior probability density function of the state
to predict the time evolution of a fault or fatigue damage [6]. Unlike Kalman
filtering particle filters allow a non-linear state dynamic model and non-Gaussian
noise. Particle filters provide a robust framework for long-term prognosis while
accounting effectively for uncertainties. Learning strategies can be applied to
estimate correction terms to improve the accuracy and precision of the particle
filtering algorithm for long-term prediction.

Particle filtering methods assume that the state equations that represent the
evolution of the fault mode in time can be modeled as a first order Markov process
with additive noise and conditionally independent outputs [6].

Let

X = fio1 (Xe—1) + 0r (7.2)
2 = h(xx) + v (7.3)

where the state vector x; includes a set of parameters that characterizes the evo-
lution in time of the fault condition; the process noise wy_; represents the model
uncertainty; z; is the observation (measurement); and v is the measurement noise
(uncertainty associated to sensors specifications and feature computation
processes).

While there are several flavors of particle filters, the focus here is on algorithms
based on the concept of Sampling Importance Resampling (SIR), in which the
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posterior filtering distribution denoted as 7(x) = p(xx|z) is approximated by a set
of N weighted particles {<x§<, w2>; i=1,..,N } sampled from an arbitrarily pro-
posed distribution g(x) that intends to be “similar” to n(x) (i.e., n(x) >0 =
q(x) > 0 for all x € R™), The importance weights w' are proportional to the
likelihood p(z|xi) associated to the sample xi, and normalized as in Eq. A25:

o _m)/at)
() fa()

(7.4)

such that ZJN:1 wi = 1, and the posterior distribution (a.k.a the farget distribution)
can be approximated as

=

p(xe|zk) = Zw};é(xk —x) (7.5)

i=1

Thus, as in any Bayesian processor, the filtering stage is implemented in two
steps: the computation of the a priori state density estimate (prediction step), and the
update of the estimate according to the information presented by new measure-
ments. Using the model in Eq. (7.3), the prediction step becomes

N
p(xelze—1) ~ Z Wi fio1 (%) (7.6)
i=1

The update step, on the other hand, modifies the particle weights according to the
relation

_i ip(zk|xf;)p(x};|x};71)

wy = S (7.7)
‘ S TCARNEY
i M
Wi =N g (7.8)
Zj:l Wi

It is possible that all but a few of the importance weights degenerate such that
they are close to zero. In that case, one has a very poor representation of the system
state (and wastes computing resources on unimportant calculations). To address
that, resampling of the weights can be used [34]. The basic logical flowchart is
shown in Fig. 7.25.

By using the state equation to represent the evolution of the fault dimension in
time, it is possible to generate a long-term prediction for the state pdf, in the
absence of new measurements, in a recursive manner using the current pdf estimate
for the state,
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Fig. 7.25 The prognostic architecture using particle filtering

N t+p
Piplyie) = Y palyia) [ pOsby-1)dxrsp1, (7.9)
i=1 j=t 1

which can be approximated as,

t+p

p xt+p|)’1t sz / /P Xt + Lt +p— 1 H p x]|xj l)dxt+1z+p 1 (7.10)
Jj=t+2

The probability of failure at any future time instant is estimated by combining
both the weights wf?rk of predicted trajectories and specifications for the hazard
zone through the application of the Law of Total Probabilities. The resulting RUL
pdf, where fgy, refers to RUL, provides the basis for the generation of confidence

intervals and expectations for prognosis,

N
Do = Zp(Failure|X = )%,(;)UL,H”,,HMP) -wl(g]L. (7.11)
=1

Figure 7.25 depicts the particle filtering module including the essential steps of
degradation modeling, resampling, auto-tuning and state update.

Figure 7.26 illustrates the predicted fault growth of a system where a fault is
detected at time f4er; and a prediction of the RUL is made at time #,,ognosis- The
probability of failure occurs outside the hazard-zone boundaries and is defined as
the false-alarm rate o.. The time corresponding to each predicted fault trajectory in
the hazard-zone is represented as a distribution on the time-axis.. The maximum
and minimum RUL values that encompass a confidence interval of value f§ are
represented as 75;;, and tg;;, accordingly.
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Fig. 7.26 Illustration of long-term prediction

The Georgia Tech research team pioneered the development and application of
particle filtering methods to fault diagnosis and failure prognosis problems [6, 16,
35]. The prognostic framework is shown in Fig. 7.11. The fault is detected at t = 0.
During the period from t = O to t = 1, data is streaming in and a feedback correction
mechanism is used to update model parameters, thus reducing the inherent uncer-
tainty. From t =17y on the model predicts the failing component’s RUL. The
threshold or hazard zone is empirically specified as a PDF. Model PDFs, at each
step of the prognostic routine, are convolved with the hazard PDF and projected
along the time axis to exhibit the statistics of the component’s RUL.

These novel diagnostic and prognostic technologies have been applied to a
variety of systems ranging from ground vehicles to rotorcraft, UAVs, and other
industrial/military application domains. Of special note is the DARPA Prognosis
program (Dr. George Vachtsevanos, PI) where this research team developed novel
feature or condition indicator methods and diagnostic/prognostic algorithms. An
experimental facility at Pax River was set up with a main transmission gearbox
instrumented appropriately and installed on a NAVAIR rotorcraft. Tests were
conducted (ground-air-ground) where a small initial carrier plate crack was allowed
under nominal load conditions to grow up to a total plate failure. Blind tests carried
out at Georgia Tech, as actual data were streaming in, demonstrated the efficacy of
the prognostic approach. Predicted and actual crack growth data agreed well.
Figure 7.27 shows the blind test results.

Figure 7.28 shows a GUI adopted for implementation, testing and demonstration
of the overall health management framework.

Figure 7.29 is a flow chart for the particle filtering routine while Fig. 7.30 shows
a flow chart for the prognostic algorithm.
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+ Prognosis Case Study: Crack in Planetary Carrier Plate
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Fig. 7.28 The graphical user interface for the integrated health management framework

Prognosis, and thus the generation of long-term predictions, is a problem that
goes beyond the scope of filtering applications because it involves future time
horizons. Hence, a particle-filtering-based prognosis approach requires proposing a
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procedure to project the current estimate of the state probability density function
(PDF) in time. The simplest implementation that can be used to solve this problem
uses Eq. (7.1) recursively to propagate the posterior PDF estimate defined by

{Jc;',7 wii=1,..,N } in time, until x/, fails to meet the system specifications at

time 7, . The RUL PDF—i.e., the distribution p(t;,, —t,)—is given by the dis-
tribution of w;. Figure 7.26 shows the flow diagram of the prediction process.
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7.19 Data-Driven Prognostic Techniques

In some cases involving complex systems, it may be difficult or impossible to
derive dynamic models based on all the physical processes involved. In such cases,
it is possible to assume a certain form for the dynamic model and then use observed
inputs and outputs of the system to determine the model parameters needed so that
the model indeed serves as an accurate surrogate for the system. This is known as
model identification.

For fault diagnosis and failure prognosis, a variety of input-output mappings
have been employed as surrogate system models. Specifically, one may have his-
torical fault/failure data in terms of time plots of various signals leading up to
failure, or statistical data sets. In such cases, it is very difficult to determine any sort
of model for prediction purposes. In such situations, one may use nonlinear network
approximations that can be tuned using well-established formal algorithms to
provide desired outputs directly in terms of the data. They provide structured
nonlinear function mappings with very desirable properties between available data
and desired outputs.

The book Applications of Intelligent Control to Engineering Systems [36] pre-
sents alternative tools for both forecasting researchers and practitioners. Namely,
these tools include artificial neural networks (ANNSs), fuzzy systems, and other
computational intelligence methods based on the linguistic and reasoning abilities
of humans. It has been reported that ANNs trained with the backpropagation
algorithm outperform traditional statistical methods such as regression and
Box-Jenkins approaches [36]. ANNs are data-driven, self-adaptive, and they make
very few assumptions about the models for problems under study. The aim of
ANN:Gs is to learn subtle functional relationships among the data from example data.
Thus, ANNs are well suited for practical problems, where there is an abundance of
data and a lack of knowledge of the underlying system’s fault behavior. ANNs can
be viewed as one of many multivariate nonlinear and nonparametric statistical
methods [36]. Data-driven approaches to failure prognosis also take advantage of
recurrent neural networks, dynamic wavelet neural networks, neuro-fuzzy systems,
and a variety of statistical tools. For training and validation, they use the current and
past history of input data and feedback outputs via unit delay lines. The main
problem of ANNS is that their decisions are not always evident and they can be
over-trained. Nevertheless, it has been shown that ANNS provide a feasible tool for
practical prediction problems [36].

Model-Based Prognostic Techniques

Model-based prognostic schemes include those that employ a dynamic model of the
process being predicted. These can include physics-based models, autoregressive
moving-average (ARMA) techniques, Bayesian filtering algorithms, and
empirical-based methods. Model-based methods provide a technically compre-
hensive approach that has been used traditionally to understand component failure
mode progression.
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Figure 7.31 depicts a model-based prognostic scheme. Input from the diagnostic
block is combined with stress profiles and feeds into the fault growth model. An
estimation method (in this case particle filtering) is called upon to propagate the
fault model initially one step at a time while model parameters are updated on-line
in real-time as new sensor data become available.

Eventually, the model is allowed to perform long-term prognosis of the
remaining useful life of the failing component with confidence bounds. The fault
model PDF is convolved with the hazard zone PDF when the former reaches the
threshold bounds and the resultant PDF is projected along the time axis depicting
the component’s remaining life statistics.

The designer of a comprehensive and verifiable prognostics architecture is faced
with significant challenges: data availability (baseline and fault data that is corre-
lated and time stamped, sampled at appropriate rates) is always a concern; uncer-
tainty representation, propagation and management, inherent in prognosis; high
fidelity modeling of critical components/systems is lacking; data mining tools for
feature extraction and selection are hand-engineered; finally, diagnostic and prog-
nostic algorithms must address accurately the designer’s specifications. There is a
need to differentiate between prognosis and trending, i.e. the practice of regressing
linearly a system variable (temperature, for example) until it reaches a specified
threshold. Another differentiating characteristic relates to health-based vs
usage-based prognostics with the former predicting the RUL of failing components
on-line in real time as data is streaming in after a fault or incipient failure has been
detected and identified. The latter refers to long-term prediction of the RUL
exploited for reliability and life cycle management studies. We address both
prognostic notions in this paper and view each one within the overall context and
scope of the health-based vs usage-based framework. The theoretical underpinnings
borrow from the emerging fields of Prognostics and Health Management (PHM),
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Condition Based Maintenance (CBM+) and novel data mining, reasoning, and work
package optimization to expedite maintenance actions at the depot level. The
enabling technologies build on mathematically rigorous concepts from Bayesian
estimation theory—an emerging and powerful methodology called Particle Filtering
(PF) that is particularly useful in dealing with difficult non-linear and/or
non-Gaussian problems; high fidelity modeling of critical components/systems
and novel data mining tools augmented with Deep Learning methods for optimum
feature selection and extraction; a reasoning paradigm, called Dynamic Case Based
Reasoning (DCBR), is exploited as the dynamic knowledge base entailing attributes
of learning and adaptation; optimized maintenance planning and scheduling aimed
to expedite the interface between on-platform events (faults/failures) and depot
maintenance practices. All algorithmic developments are accompanied by appro-
priate performance and effectiveness metrics to support development and validation
tasks. Moreover, the enabling technologies take advantage of Model Predictive
Control and fault adaptive control methods to execute control reconfiguration,
redistribution and mission adaptation in order to safeguard the integrity of the
vehicle for the duration of an emergency. We introduce novel tools/methods to
represent and manage uncertainty, inherent in prognostics.

Prognosis is activated when a corrosion degradation/fault is detected. For the
same degradation mode, the propagation of the fault follows the same physical law.
Therefore, in the prognosis model, the Boolean state can be removed from the
model (1) and we get a model for prognosis as follows:

X (14 1) = fi(xc(1), (1))
{ Features(r) = h;(x.(t), v(r)) (7.12)

The definitions of symbols are the same as in (1). Again, we will only focus on
the equation mainly describes the progression of the fault. It is given as:

x(t41) = (14 B(t) + o(1) (7.13)

Note that Eq. (7.3) is a special case of the second equation in model (7.2). In the
second equation in model (7.2), x;, = 1 for a faulty condition while x;, = 0 for a
healthy condition. When a fault is detected, x;, = 1 and, therefore, they are exactly
the same for a faulty condition.

7.20 Model On-Line Update

Figure 7.32 is a schematic representation of the model parameter update
framework.

The propagation of the corrosion state under tightly controlled conditions could
show significantly different behaviors. Therefore, the deterministic model must be
modified to take into consideration the uncertainty due to the stochastic
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Fig. 7.32 A schematic representation of the model parameter update configuration

characteristics of the degradation model by adding a random variable. In practice,
adding a random variable into the growth law is the same as adding a random
variable into its parameters, and we arrive at

L(t+ At) = L(t) + AtCp(L(1)"
Co=Crt o, (7.14)

m=m-+ w,

where C;, and m can be regarded as states associated with the model, w¢, and w,,
are zero mean random noise.
With unit step size, it can be modified as

L(t+1) = L(t) + p1 (1) C(L(r) )"
CL=CL+ac (7.15)

m=m-+ w,

Thus, two parameters p,(f) and p,(¢) are introduced to facilitate the online
parameter adaptation scheme.

To determine the parameters, a recursive least squares algorithm with a for-
getting factor is employed since it is generally fast in its convergence.

Thus, two parameters p;(7) and p,(¢) are introduced to facilitate the online
parameter adaptation scheme.
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To determine the parameters, a recursive least square algorithm with a forgetting
factor is employed since it is generally fast in its convergence. The algorithm is
implemented as follows:

Step 1: define a cost function as:

J(0) = %E_T;;,T—f [D(z) —D(@(r— 1))}2 (7.16)

where / is the forgetting factor, which is usually given in the range of 0 <1 < 1, and

0 = [p1(1)p2(2)]" is the parameter vector to be determined.
Step 2: Calculate the derivatives with respect to parameters ©:

$(1) = (7.17)
Step 3: The parameter update is given by:
0(1) = b = 1)+ P)d(1) D)) — D (0 = 1)) (7.18)
and P(¢) is updated as

P(r) = P(t—1) [1 9P ()P 1) }
J A4 ¢T ()Pt —1)¢(r)

(7.19)

The recursive least square with a forgetting factor actually applies an exponential
weighting to the past data. In the cost function (A9), the influence of past data
reduces gradually as new data become available. This algorithm can be easily
applied on-line.

To implement the algorithm, a set of initial parameters must be given. Parameter
0(0) is given according to our prior knowledge of the system while P(0) is given as
a large number times an identity matrix.

A flow chart of this on-line adaptation algorithm is given in Fig. 7.33. The first
step is to initialize the parameters used in the model. Currently, the initial value is
obtained via a priori knowledge of the system. With more experimental data,
learning algorithms, such as neural networks, can be implemented to train the
model so that its initial value is close to the actual one. The on-line adaptation
routine will be more efficient with good initial parameters.

Note that the parameter adaptation is realized by a recursive least square method.
Other methods, such as an extended Kalman filter or a neural network, etc., can be
used as well.
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Fig. 7.33 Flow chart of the model on-line update

7.21 Consideration of Operating Conditions

In the previous model, the operating conditions such as ambient temperature,
humidity, PH, etc., are not taken into consideration. The influence of the operating
and environmental conditions is reflected by the on-line parameter tuning.
Moreover, stress conditions must be accounted for when appropriate. If the oper-
ating conditions can be compensated, a precise fault propagation model can be
derived.

Let us consider the corrosion fault mode. It is known that humidity is a leading
contributing factor of corrosion. Therefore, the environmental humidity should be
incorporated in the corrosion propagation model. Suppose that the nominal
humidity (could be normal room humidity) is denoted by H,. The environmental
humidity is measured as H.. The normalized humidity condition then can be
described as a humidity index h; which is given as h; = H/H,. Clearly, large
humidity values result in larger h;, while small humidity values result in smaller h;.

If we know that the humidity influences linearly the corrosion propagation, the
previous modified equation for the degradation rate can be further re-written as
(7.20) to include the humidity factor.

. dD
b === hCp(D)' (7.20)

If, however, we know that humidity influences exponentially the corrosion
propagation, (7.20) can be re-written as:
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dD

D =""=Cp(D)"" 7.21
= Cp(D) (7.21)

Accordingly, the discrete time form model should be modified as:
D(t+1) = D(¢) + h;Cp(D(2))", (7.22)
and
D(t+1) = D(t) + Cp(D(1))"™", (7.23)

respectively.

Relative humidity may also be included as a time-varying parameter in the
model, just as other model parameters. When other operating conditions are
included, such as nominal temperature T, (normal operating temperature under
healthy conditions), can be defined as well. Then, a temperature index t; is assigned
to represent this condition. Multiple ways are available to combine them into a
single model.

Suppose these factors influence linearly the fault propagation, a possible alter-
native is to write the model as either

D(l + 1) = D(l) + h,‘l‘,’l,’g,'CD(DO‘))n, (724)
or
D(t+1) = D(1) + (wphi + wit; + wili + weg:) Cp(D(1))", (7.25)

where wy, w, Wi, w, are weighting factors and wy, + w + w; + wg = 1.
The model can be written as either

D(t+1) = D(1) + Cp(D(z))""" "¢ (7.26)
or
D(t+1) = D(t) + Cp(D(z))"(rshic+ s ol + i) (7.27)
when the factors are exhibiting an exponential dependence.
It is possible that the influence of some factors is exhibiting a linear behavior,
while that of others is exponential. In this case, suppose the linear factors are fj

and f;_, and the exponential factors are f. ; and f. ,. Then, the model can be written
as

D(t+1) = D(t) +fi.1fi2Cp(D(t)) %2, (7.28)
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or

D(t+1) = D(t) + (wifus +wiafiz) Co(D(p))" (etfer +veakia) (7.29)

where w1, Wi, Wei, Wep are weighting factors and w;; + wi, =1 and
We 1 + Weo = 1.

7.22 Statistical Techniques

For situations in which sophisticated prognostic models are not or cannot be utilized
(perhaps due to disadvantageous ROI, low failure-criticality rates, or where there is
an insufficient sensor network to assess condition), a statistical reliability or
usage-based prognostic approach may be the only alternative. This form of prog-
nostic algorithm is the least complex and requires that a history of component
failure or operational usage profile data is available. One typical approach would be
to fit a Weibull distribution (or other statistical failure distribution) to such failure or
inspection data [22, 37]. Despite the obvious loss of information (compared to
condition-based approaches), a statistical reliability-based prognostic distribution
can still be used to drive interval-based maintenance practices which can then be
potentially revised by the information obtained from maintenance. The benefit of a
regularly updated maintenance database is critical for this approach.

7.23 Particle Filtering as an Uncertainty Representation
and Management Technique for Failure Prognosis

Uncertainty in prognosis is probably the most significant challenge facing the
PHM system designer. Uncertainty management tools seek to improve the fault
signal to noise (uncertainty) ratio. They begin by determining the uncertainty
sources in terms of an uncertainty tree and then exploit filtering or kernel-based
methods for uncertainty management [18, 38]. We use particle filtering, as a
nonlinear filtering method employing noisy observation data to estimate at least the
first two moments of a state vector governed by a dynamic nonlinear, non-Gaussian
state-space model. From a Bayesian standpoint, a nonlinear filtering procedure
intends to generate an estimate of the posterior probability density function
p(x;|y1.,) for the state, based on the set of received measurements. Particle Filtering
intends to solve this estimation problem by efficiently selecting a set of N particles

{x<i)}i: 1.y and weights {w,(i)}i:]mN, such that the state pdf may be approximated
by
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Zw, —x, )

The evolution in time of the fault dimension is expressed through the nonlinear
state equation:

{x1(l+ 1) =x1(t) +x2(2) - F(x(2),1,U) + w4 (2)
)Q(l‘—f—l) Z)Cz(l)—f—a)z(l) ’

where x,(7) is a state representing the fault dimension under analysis, x,(7) is a state
associated with an unknown model parameter, U are external inputs to the system
(load profile, etc.), F(x(z),t,U) is a general time-varying nonlinear function, and
1 (1), m(t) are white noises (not necessarily Gaussian). The nonlinear function
F(x(1),t,U) may represent a model based on first principles, a neural network, or
even a fuzzy system.

Consider a discrete approximation for the predicted state pdf:

N
P k|Xrigr1) = ngk,l K<xt+k - E{x,(llkm(llk,l})
i=1

where K(-) is a kernel density function, which may correspond to the process noise
pdf, a Gaussian kernel or a rescaled version of the Epanechnikov kernel:

Ny 2 .
Ko () = {22 (1= 1) i <1
0

otherwise

where ¢, is the volume of the unit sphere. Furthermore, if the density is Gaussian
with unit covariance matrix, the optimal bandwidth is given by

hopt = A - N~ w3

A= (86" (n+4)- (2f)"~)"”“

The Epanechnikov kernel is well suited for uncertainty representation in
long-term prediction. Given {xﬁl)}i:IH_N and {w,(l)}i:L_,N as initial conditions, it is
possible to represent the uncertainty inherent to the predicted state pdf by per-
forming an inverse transform resampling procedure for the particle population [12].
This method obtains a fixed number of samples for each future time instant,
avoiding problems of excessive computational effort. In fact, after the resampling

scheme is performed, the weights may be expressed as: {wf'j_ ey =N7L
Furthermore, if only Epanechnikov kernels are used, it is ensured that the
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Fig. 7.34 Particle Particle Filters: Uncertainty Representation in Long-term Predictions
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representation of the uncertainty will be bounded. These bounds intrinsically
incorporate, measure, and represent model uncertainty (through the estimation of
unknown parameters) and measurement noise (since the initial condition for
long-term predictions corresponds to the output of the particle filtering procedure).

For the test case of a fatigue failure in a critical aircraft component, the uncer-
tainty representation results are shown in Fig. 7.34.

7.24 Uncertainty Management in Long-Term Predictions

The issue of uncertainty management, in a Particle Filtering-based prognosis
framework, is related to a set of techniques aimed to improve the estimate at the
current time instant, since both the expectation of the predicted trajectories for
particles and bandwidth of Epanechnikov kernels depend on that pdf estimate.

In this sense, it is important to distinguish between two main types of adjust-
ments that may be implemented to improve the current representation of uncertainty
for future time instants:

e Adjustments in unknown parameters in the state equation.
e Adjustments in the parameters that define the noise pdf embedded in the state
equation, known as “hyper-parameters”.

Outer correction loops may be also implemented using neural networks, fuzzy
expert systems, PID controllers, among others. Additional correction loops include
the modification of the number of particles used for 1-step or long-term prediction
purposes.
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7.25 Measuring Prognostics Performance

A number of measures that can be used to evaluate prognostic performance have
been proposed in the recent past. Some metrics of particular interest are listed
below.

7.26 Prognostic Horizon

Prognostic Horizon (PH) fulfills two roles: first, it identifies whether an algorithm
predicts within a specified error margin (specified by o, a statistical confidence
parameter) around the actual End-of-Life (EOL, the time index for actual end of life,
according to the defined failure threshold); and, second, it indicates how much time the
algorithm provides for any corrective action to be taken. In other words, it assesses
whether an algorithm yields a sufficient prognostic horizon; if it does not, it may not be
useful or meaningful to compute other metrics. PH is defined as the difference between
the EoP (End-of-Prediction) and the current time index i, utilizing data accumulated up
to the time index i and provided the prediction meets desired specifications. This
specification may be defined in terms of an allowable error bound (x) around true
EOL. It is expected that PHs are determined for an algorithm-application pair offline
during the validation phase. These numbers can then be used as guidelines when the
algorithm is deployed in test applications when the actual EOL is not known in
advance. While comparing algorithms, an algorithm with a longer prediction
horizon H would be preferred. The prediction horizon is computed as H = EoP — i,
where i = min{j|(j € I) A (r.(1 — o) <r'(j) <r.(1+a))}, r (i) is the true RUL at
time i given that data is available up to time i for the Ith UUT (unit under test), and
r'(i) is the RUL estimate for the Ith UUT at time i as determined from measurement
and analysis.

For instance, a PH with error bound of o = 0.05 identifies when a given algo-
rithm starts predicting estimates that are within 5% of the actual EOL. Other
specifications may be used to derive PH as desired.

7.27 a-h Performance

o-/ performance identifies whether the algorithm performs within desired error
margins (specified by the parameter «) of the actual RUL at any given time instant
(specified by the parameter A) that may be of interest to a particular application.
This presents a more stringent requirement of staying within a converging cone of
error margin as a system nears EOL. The time instances may be specified as
percentage of total remaining life from the point the first prediction is made or a
given absolute time interval before EOL is reached. For instance, we define o-A
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accuracy as the prediction accuracy to be within o - 100% of the actual RUL at
specific time instance ¢, expressed as a fraction of time between the point when an
algorithm starts predicting and the actual failure. For example, this metric deter-
mines whether a prediction falls within 20% accuracy (i.e., o = 0.2) halfway to
failure from the time the first prediction is made (i.e., A = 0.5). The metric is
visualized in Fig. 7.35. An extension of this metric based on other performance
measures is straightforward:

[1—o]r. () <r(t;) <1+ o]r.(r) (A30)

where o is the accuracy modifier, A4 is the time window modifier,
t, = P+ A(EOL — P), and P is the time index at which the first prediction is made
by the prognostic system.

Note that o-A Performance and Prognostic Horizon can also be computed as
precision metrics.

7.28 Prognostic Dynamic Standard Deviation (DSTD)

Other performance measures intend to quantify the volatility of generated predic-
tions, something that can be achieved by computing the standard deviation of the
expected EOL over a sliding window:

DSTD = ¢ <\/Var(E{EOL|y l:j})/:kpred*Aikprrd) Vkprea€[1,EOL] (7:30)

where k., is the cycle in which the prognostic algorithm is executed, A is the
number of samples considered in the sliding window, ¢ is the logistic function that
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aims to scale the results in the range [0,1]. For this measure, the better DSTD, the
closer to zero is the measure (DSTD = 0 indicates perfect null volatility and the fact
that new measurements do not alter the output of the prognostic algorithm).

7.29 Critical-a Index

Decision-making support-systems cannot depend solely on information about the
expectation of random variables, because the tails of PDFs contain critical infor-
mation about the risk that is associated to process operation. The critical-o index is
a measure based on the concept of the JITP (Just in Time Point) that helps to
quantify this point. The critical-o index is a measure of risk aversion (a significant
factor to be considered when using implementations that overestimate the
remaining useful life of a system) and is defined as the maximum o € [0,100] that
guarantees that the JITP(k,,.4) value is smaller than the ground truth value of the
EOL time instant, for all k,,.; € [1, EOL]:

Oleriy = arg max{JITP“% (kprea) < EOL}Vk (7.31)

ea€[1,EOL]

Decision-making support systems that consider prognostic algorithms with lar-
ger critical-« values in their design are capable of implementing strategies that are
more aggressive. This is because these prognostic routines are conservative; thus, it
is possible to accept the risk of accumulating larger failure probability mass before
recommending a corrective action. However, a large critical-o. value is also an
indicator that the variance of the predicted EOL PDF is large (i.e., less precise
estimates of the EOL). For this reason, a good design should try to lessen this
problem by selecting prognostic algorithms that allow not only the use of large
critical-ot values, but also minimize—over time—the difference between the ground
truth EOL and the JITP values computed for the corresponding o.,;,%.

Performance and Effectiveness Metrics Performance and effectiveness metrics
are the absolute pre-requisites for defining and specifying requirements in the
development of diagnostic and prognostic algorithms. They drive the derivation of
accurate and reliable requirements and specifications in the systems engineering
process. Fault diagnosis metrics, such as confidence (accuracy) and false alarm rates
can be defined and determined numerically or in statistical/probabilistic terms.
Accuracy and precision cannot be determined while we are predicting the time to
failure or remaining useful life of a failing component since, for causal systems, we
do not know the true failure time a priori. We can only observe the trending of the
fault evolution in real time and infer appropriate metrics from these observations.

Diagnostics Performance Metrics Confidence (accuracy), False Alarm Rate
(False Positives/False Negatives), Response to Uncertainty/Noise, Computational
Complexity, Time to detection from the inception of a fault—important for timely
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prognosis (or Time delay—time span between the initiation and the detection/
isolation/identification of a fault/failure event), Ability to perform on-line in
real-time, a host of other metrics for fault diagnosis relate to coverage (how many
critical faults can be detected), isolability (ability to isolate down to the LRU level),
detectability (ability to distinguish between multiple fault modes), etc.

Prognostics Performance Metrics [39, 40] We list four metrics that can be used
to evaluate prognostic performance. These four metrics follow a systematic pro-
gression in terms of the information they seek. The first metric called Prognostic
Horizon (PH) identifies whether an algorithm predicts within a specified error
margin around the actual EoL and if it does how much time it allows for any
corrective action to be taken. If an algorithm passes the PH test, the next metric
called -4 which identify whether the algorithm performs within desired error
margins (specified by the parameter «) of the actual RUL at any given time instant
(specified by the parameter A). If this criterion is also met, the next step is to
quantify the accuracy levels relative to actual RUL. This is accomplished by the
metrics called Relative Accuracy (RA) and Cumulative Relative Accuracy (CRA).
These notions assume that prognostics performance improves as more information
becomes available with time and hence by design an algorithm will satisfy these
metrics criteria if it converges to true RULs. Therefore, the fourth metric
Convergence quantifies how fast the algorithm converges if it does satisfy all the
previous metrics. These metrics can be considered as a hierarchical test that pro-
vides several levels of comparison among different algorithms in addition to the
specific information the metrics individually provide regarding algorithm perfor-
mance (Figs. 7.36, 7.37 and 7.38).

f\/ Logistics
Lead Time

RUL

Time Index (i) ‘.

Fig. 7.36 An illustration depicting some important prognostic time definitions and concepts
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7.30 Corrosion Diagnostic and Prognostic Results

The diagnostic and prognostic technologies suggested above were applied, in
simulation, to the test panel corrosion surfaces. The simulation, conducted in
Simulink, utilizes the pitting model in Eq. (7.6) and the cracking progression model
(Paris’ Law) in Eq. (7.9). Figure 7.39 shows the results of the particle filtering
diagnostic routine on the pit depth calculated from pLPR data (Table 7.2).

The top graph shows the calculated pit depth (green) and the particle filter based
estimate of the pit depth (black). The bottom graph shows the detection confidence
at each time step. The blue histogram is the baseline distribution and the red one is
the current distribution. The black line is the threshold which set the Type I error as
5%. From the figures, it is shown that from time 18 h, when enough data is
collected for generating baseline distribution, to time 36 h, Type II error is reduced
from 78 to 2%, which means the confidence of abnormal is increased from 22 to
98%. So, at time 36 h, abnormal is declared.

After the diagnostic routine detects corrosion to a specified confidence level, the
prognosis routine is run, as shown in Fig. 7.40. The dashed blue line is the measured
data of the fault level up to the time of detection. Once corrosion is detected the
particles are allowed to progress using the non-linear state model. The failure threshold
is user specified and is given as a PDF. The particles progression and the failure
threshold PDF is used to calculate the time to failure PDF. The empirical model from
Eq. (7.6) can be employed where b = 1.54. The following figure is the result of
model tuning and prediction. Time is divided into three sections, which are

Fault Level Estimate
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Fig. 7.39 Pit depth from u LPR data using the particle filtering methodology
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separated by two dashed lines at time 36 h and 270 h, respectively. Initially, the
model parameters are tuned on the basis of available data, as described above. The
blue line and green line are upper bound and lower bound of pit depth, respectively.
The red dots are the measured pit depth. After the model is tuned, the prediction
routine is initiated using only the model. Threshold is shown as the red line, which
is 10 pm. In this case, the predicted remaining useful life is shown in Fig. 7.41 as a
histogram or approximate PDF. The prognostic results are matching well-
anticipated corrosion predictions in real on-board aircraft applications. The Air
Force project reported in this paper has not proceeded to its final stage of on-aircraft
testing, data collection, testing and evaluation of diagnostic and prognostic algo-
rithms. Simulation studies and results show the efficacy of the integrated approach
to testing, data mining, corrosion initiation and prediction of global and localized
corrosion processes.

Table 7.2 FDR values of

. Features | Contrast | Correlation |Energy | Homogeneity
image features

FDR 0.9604 2.2084 95.1962 | 27.3738

Fig. 7.40 Pit depth 14
prediction scheme
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Fig. 7.41 The remaining at 270 hours
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Fig. 7.42 Typical degradation detection results

The baseline (no degradation) result is generated from the first three data points.
We use this to fit a normal distribution and then derive samples from this
distribution.

A typical detection result is shown in Fig. 7.42. Step 2, i.e. prediction, is trig-
gered after the detection step is completed before the dashed line. Prognosis is
triggered after 90 h.

7.31 Testing of Data-Mining Techniques on pLPR Sensor
Data

Kolmogorov Complexity (KC) is a measure of randomness of data based on their
information content. The KC anomaly detection algorithm utilizes the
Compression-based Dissimilarity Measure (CDM) to recursively determine which
half of the data is more complex. The CDM is given by the following equation:

CDM(x,y) = % where C(x) approximates the Kolmogorov Complexity of x.

The bottom graph in Fig. 7.1 shows the CDM of the LPR data (top Fig. 7.43) and
the baseline data (LLPR data expected when there is zero corrosion) as function of
time.
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Fig. 7.43 CDM of LPR Data

Imaging Techniques for Corrosion Extent Determination

High-resolution images of coupons are used as a reference measure of corrosion for
LLPR experiments. The imaging technique consists of the following steps:

1. Threshold.

(a) Threshold image into regions of varying levels of corrosion. For example
threshold image into regions of High corrosion, Medium corrosion and No
corrosion.

(b) Figures 7.44 and 7.45 show an example of using a 5 layer density threshold.
Figure 7.44 shows the original image and Fig. 7.45 shows the threshold
image. The threshold levels were determined using minimum a variance
quantization method.

Fig. 7.44 Original image
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Fig. 7.45 Threshold image

2. Corrosion extent determination.
a. Determine the degree of corrosion of the threshold levels.
e This can be based on color, pixel range, smoothness, contrast etc.

b. The extent of corrosion can be determined by measuring the threshold area
against the full image size.

e Particle Filtering

Figure 7.46 shows the particle filter estimate and detection confidence generated by
using the particle filtering routine on synthetic data. The particle filtering diagnostic
method is outlined below:

1. Initialize particle filter

e Generate probability density function (PDF) from baseline data
e From baseline data generate initial particles

2. Run particle filter

Update particles

Update weights

Get current PDF from particles and weights
Determine detection confidence

The Association Strategy—Relating Sensor Outputs (Features) to Control
Decisions

Various algorithms are available to carry out efficiently and effectively the classi-
fication task. We will explore an “intelligent” method to map sensor outputs in the
form of features to action decisions. The proposed approach will rely on a Dynamic
Bayesian Network (DBN) as the association paradigm. Dynamic Bayesian
Networks (DBNs) are developed for explicating the dynamic cause-effect rela-
tionships with the strength of the causal connection amongst the problem situations.
DBNs are inference networks that use cyclic, directed graphs representing the
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causal relationships between concepts. DBNs can easily represent structured
knowledge, especially for those containing causal relationships compared with
neural networks. Each DBN represents the knowledge of an expert. Several DBNs
can be combined into one by merging their adjacency matrices with different,
weighted coefficients that usually represent beliefs of different human experts.
The key to stochastic modeling is to process data/information that is directly

relevant to the goals at hand.

e Perception. This is the most primitive level of situational awareness. Providing
more data of better accuracy in shortened times can improve level 1 situational

awareness.

e Comprehension. In level 2 situation awareness, a decision maker integrates a
variety of data with the goals and constraints they are operating under to develop

an assessment of the situation.

e Projection. This highest level of situation awareness determines the best or most
appropriate response by predicting the resulting courses of actions.
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7.32 Performance Evaluation

We will establish and exercise appropriate performance metrics at each level of the
proposed learning and decision support hierarchy.
The DCBR performance will be evaluated on the basis of the following criteria:

e Total solution search time—total time to search and rank matching cases.

e Quality of solution—relevance of retrieved cases; success and failure record;
success of the top ranked case; overall success if several iterations are required.

e Comparison to legacy systems.

With regard to the incremental learning process, the emphasis, from a perfor-
mance evaluation perspective, is on correctness. We will define appropriate cor-
rectness, precision and recall metrics for this purpose.

7.33 Performance Metrics/Specifications/Constraints

We will be defining generic performance metrics and specifications such as:

e Computational Speed—Data processing and image analysis algorithms must be
executed in an expedient manner. It is crucial that performance metrics be
defined and requirements specified on computational speed. Such metrics will
dictate necessary tradeoffs between accuracy and algorithm sophistication and
execution time.

e Accuracy—Accuracy metrics are defined relating to data mining, corrosion
detection and prediction.

e Precision—The ability to pinpoint and resolve the existence of degrading
conditions.

Impact of Corrosion Induced Fatigue on the Integrity of Critical Assets

The potential impact of corrosion on the asset’s integrity may be assessed now
providing accurate and timely information to the maintainer when remedial action
must be taken. The key “smart” sensor ingredients are in place:

Damage detection provides a trigger for maintenance action.
Knowledge of damage and corrosion tolerance of the structure in adverse
environments.

e Parametric modeling allows for inclusion of stress crack profiles.

e Low resistance and spikes in the LPR measurements are indicative of pitting
corrosion.

Figure 7.47 depicts the overall architecture for corrosion assessment.
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Fig. 7.47 A framework to assess the impact of corrosion on the integrity of the asset

Corrosion Prediction in Aging Aircraft Materials Using Neural Networks

Two artificial neural network models are developed to predict the effect of corrosion
behavior of different series of aluminum alloys when exposed to two corrosive
environments. Given the corrosion environment and time of exposure the first
neural network predicts the ASTM G34 corrosion rating and the resulting material
loss. The trained and limited test results predicted from this network are in good
comparison to the experimental data. The effects of corrosion environment and
material type from neural network simulation are presented to illustrate the trends.
The second network predicts the cycles for final fatigue failure and the residual
static strength of a particular type of material, given the amount of material loss due
to corrosion. Based on the preliminary results, the neural network approach to
corrosion and fatigue predictions is encouraging and can be used for a variety of
materials and environments if more data is available. It is intended that the approach
developed here will assist in the structural integrity evaluation of corrosion in aging
aircraft.

7.34 Propagation from Corrosion to Structural Fatigue

The growth of general or surface corrosion is not well characterized in literature,
and as such, the effects are modeled for a scenario as described using Fig. 7.48. The
series of snapshots in time pictorially describes degradations and crack extensions
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Fig. 7.48 Corrosion
scenarios in lap splices e )

(a) Pristine Condition with IDS

T

(b) Pitting Attacks IDS Condition, possible cyclic fatigue

) )

& T

Cyclic Fatigue Striations
(c) General Corrosion Begins to Form, cyclic fatigue
may be evident

Active Fatigue Cracks

(d) Corrosion Topographies Amplify Cyclic Crack Growth

Active Fatigue Cracks Begin to Link Up

(e) Corrosion By-products Produce Sustained Stresses

caused by time aging and cyclic loading. Figure 7.48a represents the section of a
skin with an initial collection of material discontinuities scattered through the
thickness, as received from the manufacturing floor. Figure 7.48b represents a point
in time when the environment produces a chemical reaction at some of the near
surface discontinuities, Initial Discontinuity State (IDS) sites, forming pits, which
grow due to corrosion. Assuming low operational stresses, crack extension due to
cyclic fatigue may or may not occur to any measurable amount. Figure 7.48c shows
the general surface corrosion with slight material loss and a topography generated
by accelerated discontinuity growths due to corrosion decay, and potentially, the
early stages of cyclic fatigue. Figure 7.48d shows the topography roughness pro-
duces local micro stress amplifications that increase the effective crack stress
intensities to result in crack extensions due to cyclic fatigue that otherwise could not
be measured. The last lap in Fig. 7.48e illustrates the by-products produced by the
corrosion begin to interject sustained stresses that can then produce sustained stress
cracking extensions due to time and also aggravate the cyclic fatigue crack
extensions [41].
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The final combined result is an unanticipated cracking, multi-site scenario,
which occurs significantly earlier in the service life of the structure than would have
been determined without considering age degradation. The effects of corrosion are
not well known, but typically have not been associated in the past with structural
damage when corrosion alone acts. However, with the recognition that corrosion
alone may account for the presence of small widespread or multi-site flaws, the
chance that corrosion acting alone will not affect the structural integrity is slight.
Therefore, we acknowledge that corrosion acts independently of fatigue, but also
that corrosion and fatigue are interacting interdependently. These effects can be
characterized by their impacts to the crack tip stress intensities. This allows
introduction of families of f§ factors that capture not only finite width and depth
effects but also local stress field changes such as topography, local effective geo-
metric changes such as area loss, and induced sustained bending and tension
stresses caused by time-dependent phenomena such as corrosion pillowing [42].

7.35 Direct Tension Stress-Corrosion Testing

Axially loaded tension specimens provide one of the most versatile methods of
performing a stress-corrosion test because of the flexibility permitted in the choice
of type and size of test specimen, stressing procedures, and range of stress levels
[4]. The uniaxial stress system is simple; hence, this test method is often used for
studies of stress-corrosion mechanisms. This type of test is amenable to the
simultaneous exposure of unstressed specimens (no applied load) with stressed
specimens and subsequent tension testing to distinguish between the effects of true
stress corrosion and mechanical overload [43].

7.36 Considerations

There are several factors that may introduce bending moments on specimens, such
as a longitudinal curvature, misalignment of threads on threaded-end round spec-
imens, and the corners of sheet-type specimens. The significance of these factors is
greater for specimens with smaller cross sections. Even though eccentricity in
loading can be minimized to equal the same standards accepted for tension testing
machines, inevitably, there is some variation in the tensile stress around the cir-
cumference of the test specimen which can be of such magnitude that it will
introduce considerable error in the desired stress. Tests should be made on speci-
mens with strain gages affixed to the specimen surface (around the circumference in
90° or 120° intervals) to verify strain and stress uniformity and determine if
machining practices and stressing jigs are of adequate tolerance and quality.



7 Corrosion Diagnostic and Prognostic Technologies 301

Fig. 7.49 Spring-loaded
stressing frame

L

In actual testing with various types of stressing frames, such as the one shown in
Fig. 7.49, the increase in net section stress will be somewhere in between. When the
net section stress becomes greater than the nominal gross section stress and
increases to the point of fracture, either of two events can occur: (1) fracture by
mechanical overload of a material that is not susceptible to stress-corrosion
cracking, or (2) stress corrosion cracking of a material at an unknown stress higher
than the intended nominal test stress. The occurrence of either of these phenomena
would interfere with a valid evaluation of materials with a relatively high resistance
to stress corrosion. These considerations must be taken into account in experiments
undertaken to determine “threshold” stresses.

7.37 Evaluation/Inspection

When stress-corrosion cracking occurs, it generally results in complete fracture of
the specimen, which is easy to detect. However, when there is some uncertainty as
to the presence of cracks due, for example, to the presence of corrosion products on
the specimen surface, it may be necessary, at the conclusion of the test, to chem-
ically clean the specimen to facilitate adequate inspection. It must be emphasized
that fracture of the test specimen does not necessarily signify that stress-corrosion
cracking has occurred. With specimens stressed by constant load, severe localized
or generalized corrosion can lead to mechanical fracture by simple reduction of the
cross-section area. While this can also happen with constant strain loaded speci-
mens as a result of severe localized pitting corrosion, it is not likely to happen as a
result of severe uniform corrosion. Also, constant-strain loaded specimens not
having fractured may contain stress-corrosion cracks. Numerous small cracks
developing in close proximity may cause relaxation of the stress. In such cases,
metallographic examination can be used to establish whether or not there is
stress-corrosion cracking present.

Tension tests of replicate specimens exposed with no applied stress, in con-
junction with stressed specimens, can provide useful assistance in evaluating
stress-corrosion effects, especially when stressed specimens do not fracture. In
continuously increasing strain tests, the ultimate tensile strength, elongation, or
reduction of area, or all three, should be measured. In addition, because complete
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fracture occurs with or without stress-corrosion cracking, a metallographic exam-
ination or other test should be performed to establish whether there is
stress-corrosion cracking.

Performance and effectiveness metrics We define and use performance metrics for
all major modules of the corrosion data analysis, detection and prediction archi-
tecture. Correlation metrics are defined for the optimum selection and extraction of
CIs; confidence and false alarm rates are exploited to ascertain that fault/
degradation detection results meet customer specifications; several metrics are
defined for prognostic routines including Prognostic Horizon (PH) which identifies
whether an algorithm predicts within a specified error margin; a metric called o-A
performance goes further to identify whether the algorithm performs within desired
error margins; Relative Accuracy (RA) and Cumulative Relative Accuracy
(CRA) that assume that prognostics performance improves as more information
becomes available (Figs. 7.50, 7.51, 7.52, 7.53 and 7.54).

7.38 The Reasoning Paradigm: Dynamic Case Based
Reasoning—The “Smart” Knowledge Base

A reasoning paradigm called Dynamic Case Based Reasoning (DCBR) that stores
cases, matches new cases with stored ones and exhibits attributes of learning and
adaptation will be used as the “smart” knowledge base to support learning and
adaptation while providing the operator/maintainer the ability to interpret auto-
mated system outputs correctly and to effectively control the decision making

New Case
(Problem) I

Learned
case
RETAIN
Proposed
solution
Contimmd '_ASE

solution

REUSE

Fig. 7.50 The case based reasoning as a cognitive processing unit
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Fig. 7.51 The DCBR framework

process. We view this dynamic and generic knowledgebase and associated
exploitation and control tools as an essential, novel, and effective way to link and
exploit the human-machine information sources maximally while it serves as the
“smart” strategy for accurate and robust degradation detection, prediction and
fault-tolerance. We pioneered the development and implementation of DCBR in
fault detection and isolation of critical aircraft components.

The DCBR interprets from sensor data not only static features but also dynamic
and composite ones. The system module of the framework contains analytical
models and algorithms that may be employed for dynamic and composite feature
interpretation. Instead of one indexing path, the DCBR applies two—the abnormal
symptom (AS) path, i.e. problem situation detected, and the problem description
(PD) one. Furthermore, it entails functions to support case similarity evaluation and
situational prediction through temporal reasoning and time tagged indexes. The
remembrance calculation module updates the remembrance factors of existing
cases.

The DCBR scheme offers significant advantages over conventional CBR sys-
tems such as:

e Combines the conventional case base techniques with the accumulated experi-
ence from the past maintain currency and efficiency.
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Fig. 7.52 Case library
format
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e Instead of learning from a problem situation over a long period of time, learning
from multiple situations can be achieved in shorter time, serving several systems
simultaneously.

e Suggests appropriate solution scheme, based on past successes, rather than just
storing a new case.

Figure a typical case in the case library.
The cases in the case library according to following scheme:

e If ten predicted condition has an erre larger than 20%, it will be added to the
case library.
e C =j, which satisfies Pj > 0.5

Case;
E ieq; i.ow

e Update cw for each case: cw = card(G)

Which represents the mean value of the weight in the set.

e If there is some case k such that d;y = 0. Then the measured features are exactly
the same with one case form the library. Thus we can directly use the condition
indicated by case k.
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Fig. 7.53 A case in the case library

Test Case 14 Case lib #17 (New) {\ Case library

El_Out 120.86 El Out 120.86 e
01 _Out 0.2629 | mmmmly | O Out 0.2629 =1 I
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The Old Case #17 is deleted from the case library and the

new case is updated as the new case #17 EA S0
Condition 1
Weight 1.27

Fig. 7.54 Case update example
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Step 1: Evaluate the weight of different features

As some of the data are more related to the output and some others have a
smaller correlation, we first do the correlation analysis and get the

following weight: .
w,=R(f,C) fori=1,..5

Thus larger values are assigned to the parameters that are more likely
related to the output.
Step 2: Measure the distance between a new measurement of features f1,...,f5
denoted as measure.fifori=1....5 and the features in each case in the

Knowledge Base. 4= Z measure. feature; — case;. feature; .
e e measure. feature;

Jesy

2
+ z w; * case;. feature;
Jesy

S; = [j|measure. feature; = 0}
S, = [j|measure. feature; = 0}
$, U S,={1,2, N}

Fig. 7.55 DCBR—distance metric for case adaptation

e If there is no case k such that dy = 0 then determine the probablity of the
measured features belonging to each condition:

P; = chj x pj, fori=0,1
JEGi

G; = {k|casey.condition = i}

pi:N—v fori€{1,2,~~-N}
= (3)

7.39 Incremental Learning-The Reinforcement
Learning Tool

Incremental learning will be pursued using Q-Learning, a popular reinforcement
learning scheme for agents learning to behave in a game-like environment.
Q-Learning is highly adaptive for on-line learning since it can easily incorporate
new data as part of its stored database. An attractive feature in a game-like situation
is that the player is learning to choose the best action for each particular game
setting. In this framework, the expected reward or “cost-to-go” is stated as we also
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explore the utility of neuro-dynamic programming —another reinforcement learn-
ing tool—that employs a neural network to approximate the “cost-to-go” function;
this technique addresses efficiently computational complexity issues.Incremental
learning occurs whenever a new case is processed and its results are identified.
Thus, the memory keeps track of each of its experiences, whether success or failure,
in a declarative way; it is then ready to take advantage of future experiences.
Figure shows a typical example of a case updating scheme.

Immediate reward

Expected reward: Learning rate Discount factor
“cost-to<go” function \ /
O(s,a) « Q(s,a)+a[r+ymax Q(s',a") — 0(s,a)]

Current action Next action
Current state Next state

7.40 The Association Strategy—Relating Sensor Outputs
(Features) to Control Decisions

Various algorithms are available to carry out efficiently and effectively the classi-
fication task. We will explore an “intelligent” method to map sensor outputs in the
form of features to action decisions. The proposed approach will rely on a Dynamic
Bayesian Network (DBN) as the association paradigm. Dynamic Bayesian
Networks (DBNs) are developed for explicating the dynamic cause-effect rela-
tionships with the strength of the causal connection amongst the problem situations.
DBNs are inference networks that use cyclic, directed graphs representing the
causal relationships between concepts. DBNs can easily represent structured
knowledge, especially for those containing causal relationships compared with
neural networks. Each DBN represents the knowledge of an expert. Several DBNs
can be combined into one by merging their adjacency matrices with different,
weighted coefficients that usually represent beliefs of different human experts.

The key to stochastic modeling is to process data/information that is directly
relevant to the goals at hand.

e Perception. This is the most primitive level of situational awareness. Providing
more data of better accuracy in shortened times can improve level 1 situational
awareness.

e Comprehension. In level 2 situation awareness, a decision maker integrates a
variety of data with the goals and constraints they are operating under to develop
an assessment of the situation.
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e Projection. This highest level of situation awareness determines the best or most
appropriate response by predicting the resulting courses of actions.

7.41 Performance Evaluation

We will establish and exercise appropriate performance metrics at each level of the
proposed learning and decision support hierarchy.
The DCBR performance will be evaluated on the basis of the following criteria:

e Total solution search time—total time to search and rank matching cases.

e Quality of solution—relevance of retrieved cases; success and failure record;
success of the top ranked case; overall success if several iterations are required.

e Comparison to legacy systems.

With regard to the incremental learning process, the emphasis, from a perfor-
mance evaluation perspective, is on correctness. We will define appropriate cor-
rectness, precision and recall metrics for this purpose.

7.42 Performance Metrics/Specifications/Constraints

We will be defining generic performance metrics and specifications such as:

e Computational Speed—Data processing and image analysis algorithms must be
executed in an expedient manner. It is crucial that performance metrics be
defined and requirements specified on computational speed. Such metrics will
dictate necessary tradeoffs between accuracy and algorithm sophistication and
execution time.

e Accuracy—Accuracy metrics are defined relating to data mining, corrosion
detection and prediction.

e Precision—The ability to pinpoint and resolve the existence of degrading
conditions.

7.43 Epilogue

This chapter introduces a novel and comprehensive framework for corrosion health
assessment, integrating robust corrosion testing and monitoring, data mining, cor-
rosion detection, and prediction of corrosion damage growth, with intelligent rea-
soning paradigms. It is well documented that aircraft corrosion is a major concern
that accounts for billions of dollars each year in efforts to detect, quantify, and
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prevent damage due to corrosion. Although significant advances have been reported
over the recent past, there is still an urgent need for new technologies for sensing,
data processing, and diagnostic/prognostic algorithm development aimed to provide
crucial information to the aerospace and industrial process communities of
impending structural failures and a means to mitigate them. The chapter addresses
the introduction of new methods and tools essential for testing and data processing
of corroding panels/parts; such tools become inputs to corrosion diagnostic and
prognostic routines. A multitude of challenges remain to be addressed, major
among them being the need for accurate and reliable sensing modalities, high
fidelity corrosion models and integration architectures for better corrosion detec-
tion, prediction and prevention with an ultimate objective to reduce costs and
improve the performance of aerospace and industrial assets.
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Chapter 8 )
Assessing the Value of Corrosion pas
Mitigation in Electronic Systems Using
Cost-Based FMEA—Tin Whisker

Mitigation
R. Bakhshi, P. Sandborn and E. Lillie

Abstract Pure-tin platings, which have become prevalent in electronics that uses
lead-free solders, result in the spontaneous growth of conductive tin whiskers. If the
tin whiskers bridge the gap between conductors, they can cause short circuit failures
in systems. In this chapter we use cost-based FMEA to determine the projected cost
of failure consequence for corrosion mitigation for the assembly of electronic
systems. A case study of the lead-free implementation of a power supply demon-
strates the return on investment of the control plan for the same product under
various risk scenarios.

Keywords Electronic systems « Cost + Tin whiskers + FMEA—failure mode and
effects analysis - Failure severity modelling

8.1 Introduction

Reliability is the ability of a system to perform its desired tasks within defined
specifications for a specific period of time. A failure is the occurrence of an event
that prevents the system from performing as it is intended to. Failures can be
associated with a likelihood of occurrence and the consequences associated with
them. Reducing the likelihood of the failure avoids the life-cycle costs of resolving
those failures. Depending on the product and its support agreements, these are costs
avoided by the system’s owner, manufacturer or warranty service providers.
However, reducing the likelihood of failure also costs money and a cost-benefit
analysis is needed to investigate whether the investment in mitigation methods that
improve the reliability have a financial benefit.

The goal of this chapter is to develop and analyze the cost trade-offs of
implementing methods that mitigate tin whiskers, a corrosion-related failure
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mechanism. The objective is to understand whether the mitigation methods will
improve the reliability and subsequently lower the risk and if so, are the mitigation
methods cost effective? Alternatively, if the adoption of the mitigation methods are
mandated by the system’s customer, will they improve the cost of ownership for the
product throughout its useful life or not? We would also like to understand how the
cost ramifications for the adoption of the mitigation methods change when the
application of the product changes, in other words, how does the business case
change when the risk environment changes.

Section 8.2 discusses corrosion mechanisms relevant to electronics focusing on
tin whiskers and describes a model for whisker growth. In Sect. 8.3 we provide
details of the risk model used in this chapter. Section 8.4 provides a case study of a
printed circuit board used in a desktop PC and an avionics application for two
different conformal coatings—Silicone and Parylene-C.

8.2 Tin Whiskers

There are several corrosion-related failure mechanisms that are relevant to elec-
tronic systems, these include surface contamination, electrochemical migration, and
corrosion of metallization. The particular corrosion-related failure mechanism that
we will focus on in this chapter is the growth of tin whiskers. Pure tin plating can
result in spontaneous growth of conductive needle like structures that can be several
millimeters long. Tin whiskers can create unintended bridges between conductive
elements of electronics such as the leads on surface mount electronic components.
They can also break and fall onto the printed circuit board surface and create an
electrical connection between traces. The failures due to tin whiskers are hard to
detect and sometimes result in very expensive failures in mission critical applica-
tions [1]. For example, a tin whisker can form and create a short circuit but the high
current that passes through it vaporizes the whisker and the system can return to
normal operation. These types of failures are intermittent failures, which are harder
to detect than permanent failures [2]. Figure 8.1 shows tin whiskers that grew on
leads of a surface mount component after exposure to a corrosive environment
during an environmental test.

There is no conclusive explanation on why tin whiskers form. According to
researchers in NASA [3], some theories believe that tin whiskers are formed due to
stress relief in the component’s tin plating while other theories believe that tin
whiskers are due to changes in the grain structure of tin as a result of the plating
process. Regardless of the root cause, tin whiskers pose risks to the reliable oper-
ation of electronic systems.
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Fig. 8.1 Growth of tin
whiskers under corrosive
environment [11]. © 2012
Springer. Reprinted, with
permission

8.2.1 Tin Whisker Mitigation

Historically, solder was composed of tin and lead, the addition of the lead stopped
the growth of tin whiskers. As a result of environmental legislation in the early 2000s
[4], lead was removed from solder (creating lead-free solders), and thus tin whiskers
became a problem. There are several studies that have focused on tin whiskers, Han
et al. [5] used breakdown voltage measurements to study the electrical short
propensity caused by tin whiskers. Ashworth and Dunn [6] studied whisker growth
phenomena in a series of experiments that lasted for 32 years. In another study, Han
et al. [7] investigated the possibility of formation of metal vapor arcing due to tin
whiskers. Their work showed that the electrical resistance of tin whiskers is a major
factor in the formation of metal vapor arcs and proposed a metric to characterize the
potential for vapor arc formation. Panashchenko and Osterman [8] investigated the
use of a nickel under layer between copper and tin as a mitigation method to affect
the whisker growth. Their efforts show that the environmental condition, mainly the
corrosive environment has a larger impact on whisker growth than the nickel under
layer. Mathew et al. [9] reviewed some of the mitigation methods to manage the
growth of tin whiskers. They looked into conformal coating, plating techniques, the
addition of under-layer material and annealing as four possible mitigation methods.
In a later more comprehensive study, Zhang et al. [10] reviewed the concept of
whisker growth, and discussed models that predict the growth mechanisms of
whiskers. Their study covered several mitigation methods mentioned in the litera-
ture. These mitigation methods include:

e Avoiding pure tin plating: adding silver in the plating can reduce the propensity
of tin whiskers.

e Solder dipping: although efficient, has side effects such as package cracking,
loss of hermiticity and popcorning effects.
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e Matte finish instead of bright tin: larger grain size and different carbon content
of matte tin plating helps with reducing tin whisker growth.

e Extra under layer finish: having a thin layer of nickel underneath the tin plating
decreases the compressive stresses that is believed to be the source of whisker
growth by some researchers.

e Increase the thickness of the tin finish: there are mixed results as to whether thin
or thick plating are better for reducing whisker growth. Overall, thin plating is
not a common practice by industry due to its poor resistance to corrosion.

e Reducing compressive loads: some studies believe compressive loads are the
reason behind the whisker growth, therefore reducing these loads by avoiding
some loadings such as mechanical bending will mitigate the growth of whiskers.

e Heat treatment: processes such as reflowing, fusing and annealing tend to relieve
stress and increase the grain size and subsequently reduce the growth of
whiskers.

e Conformal coating: coatings can delay the growth of whiskers but will not
eliminate them. Coatings can confine the majority of whiskers within the coating
and prevent circuit shorts due to whisker growth.

Han et al. [11] conducted a series of experiments to investigate the growth of
whiskers in corrosive environments for test specimens with several different con-
formal coatings (and without coatings as a benchmark). The results show that the
corrosive environment will increase the whisker growth, i.e., both the density of
whiskers and the average length of whiskers. The result of conformal coating was
mixed. Some types of conformal coating showed whisker lengths longer than cases
where no conformal coating was applied. However, two types of conformal coating
showed promising results in terms of mitigating whiskers. Silicone conformal
coating resulted in shorter whiskers. Parylene-C coating showed no whisker growth
and completely eliminated the whisker formation. The results of this study will be
the basis of our analysis on whisker growth in corrosive environments and we will
consider Silicone and Parylene-C coatings as two effective mitigation methods to
affect the growth of tin whiskers on electronic components.

8.2.2 Whisker Growth Modeling

Osterman et al. [12] provided a risk assessment methodology for tin whiskers by
creating a stochastic tin whisker growth model. The risk associated with tin
whiskers is the probability of a conductive whisker growing across the gap between
two adjacent conductors that should be electrically isolated. The risk analysis
developed in [12] is based on the growth characteristics of whiskers, the geometry
of the product (the adjacent conductors) at risk, and time. The parameters that
characterize whisker growth are the whisker density, whisker length, and the
whisker growth angle. The whisker growth angle (Fig. 8.2) is the angle between a
whisker and the surface from which the whisker grows [13]. All of the growth
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Fig. 8.2 Tin whisker
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parameters are modeled as time-dependent probability distributions [14] that are
determined from experimental data. The relevant product geometry includes the
spacing between two adjacent conductors and available conductor surface area from
which whiskers can initiate.

The spacing between two adjacent conductors is bridged (causing an electrical
short circuit and thus a failure) if one whisker spans the gap (s) between the
conductors. If [ is the whisker length, the gap is spanned when,

Isin(0) > s (8.1)

where 0 is the whisker’s growth angle. The criteria for bridging the gap between the
adjacent conductors can, in general, be applied to any surface shape.

The algorithm (described in detail in [12]) for determining conductor bridging
risk is to sample a whisker density distribution to determine the number of whiskers
that will initiate in a given cross-sectional area (conductor surface area) and then
sample each whisker’s angle (©)—these quantities are assumed to be independent
of time. For a particular time (duration), the whisker’s length (/) can be sampled and
used to determine if the whisker bridges the conductor spacing, i.e., the number that
satisfy Eq. (8.1). If N is the sample size for Monte Carlo simulation, the risk of
failure due to tin whiskers for part i, P;, is defined as the ratio of the number of times
the population of whiskers has at least one whisker that spans the gap (f) to the
number of potential failure opportunities at a particular time. The final risk at a
particular time is:

Pi(t) =—+ (8.2)

If there are multiple instances of a particular part in a product, the risk for that
part is estimated by

Prg=1—(1—P)" (8.3)

where i is the part, n; is the number of instances of the part, P; is the risk for one
part; and P%, , is the total risk for all the instances of the part. For m unique parts in
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a product, assuming no redundancy, the total risk from tin whiskers for the
product is:

Pprogues = 1 — H(l - Pljg,'sk) (84)
=1

8.3 Failure Severity Modelling

A model previously developed in [15] for the assessment of lead-free solder control
plans has been adapted for the assessment of tin whisker mitigation approaches.
This model is described in Sects. 8.3.2-8.3.5.

8.3.1 Cost of Reliability Models

Barringer [16] defines the cost of reliability as those costs that are used to keep the
system free from failure. Models that estimate the cost of reliability based on
Barringer’s definition include [17, 18]. Models based on the risk of failure where
failures are ranked based on severity and likelihood of occurrence have also been
developed. Hauge and Johnston [19] define risk as “the product of the severity of a
failure and the probability of that failure’s occurrence”. In [19], the severity and
occurrence ratings are multiplied together to give a total magnitude of the risk due
to the failure. Perera and Holsomback [20] describe a NASA risk management
approach, which prioritizes risks based on likelihood and severity, with equal
weight given to both factors. Perera and Holsomback identified risks from “fault
tree analysis results, failure modes and effects analysis (FMEA) results, test data,
expert opinion, brainstorming, hazard analysis, lessons learned from other project/
programs, technical analysis or trade studies and other resources”. Sun et al. [21]
describe a software cost of reliability model that incorporates the severity level of
failures. They claim that the risk from a defect in software depends on both the
failure rate of the defect and the severity level of the defect. According to Sun et al.,
the risk of a defect is defined as “the expected loss if [the defect] remains in the
released software”. Another concept introduced in the literature is the cost of risk.
Liu and Boggs [22], in their paper on cable life, define the cost of risk as “the cost to
a [electric] utility associated with early cable failure” and the cost of failure as “the
cost to replace the cable”. Liu and Boggs define the cost of risk as the cost of
failures that occur before the end of the service life of the product.

Rhee and Ishii [23] introduced a cost-based failure modes and effects (FMEA)
approach to measure the cost of risk and apply it to the selection of design alter-
natives. Kmenta and Ishii [24] use scenario-based FMEA to evaluate risk using
probability and cost. Scenario-based FMEA uses predicted failure costs to make
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decisions about investments in reliability improvement versus maintenance. Taubel
[25] implements a similar approach for the calculation of a total “mishap cost” by
relating the known costs associated with mishaps to the probability of mishap for
different severities of mishap. In Taubel’s model, the definition of mishap derives
from the Department of Defense’s Military Standard 882C [26]: “an unplanned
event or series of events resulting in death, injury, occupational illness, or damage
to or loss of equipment or property, or damage to the environment”.

The models developed in [23-25] form the basis for the model used in this
chapter, which is described in the next section. We have extended these models so
there is uncertainty in the life-cycle cost of the system and effectiveness of the
technologies in reducing failures. The model in this chapter also replaces the FMEA
probability of occurrence with discrete-event simulation based reliability sampling.

8.3.2 Failure Severity Model

In order to assess the cost of risk associated with whisker growth mitigation, we
will determine the difference in failure consequence costs between the system with
and without the mitigation. Note that the method described in this section does not
calculate the actual life-cycle cost of the system, but rather the cost difference
between the resolution and consequences of failure for the two cases while
assuming that all other life-cycle cost contributions are a “wash”. This is referred to
as a “relative accuracy” cost model in [27].

Systems can fail in different ways, and all failures do not necessarily have the
same financial consequences. A system failure that requires maintenance (repair)
might cost less than a failure that requires the system owner to replace the system.
Ideally the system owner needs to predict the cost of all the failure events that are
expected to occur over the life of the population of systems, considering that those
systems can fail multiple times, in multiple ways, and with different financial
consequences of failure depending how the systems fail.

Taubel [25] calculates a total mishap cost by plotting the known costs associated
with mishaps versus the probability of mishap for different severities of mishap
(e.g., Figure 8.3). In the model, each severity level has a distinct cost and an
associated probability of occurrence. The area under the curve is the expected total
mishap cost.

A mitigation activity is a process that may reduce the overall expected number of
mishaps at specific severity levels. Each mitigation activity is assumed to affect a
specified set of severity levels and does not change the probability of a failure for
the other severity levels.

The model described in this section determines the expected number of failures
at each severity level rather than calculating the probability of failure at each
severity level. This is done because some failures may occur more than once during
the life of the product, hence the cost of (multiple) failures is accounted for.
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Fig. 8.3 Multiple severity model (after [25])

Fig. 8.4 Modeling steps 1. Determine all relevant failure modes
[15]. © 2015 Elsevier. ‘
Reprinted, with permission

2. Determine the expected number of
occurrences and costs per occurrence for each
failure mode

2

3. Determine the total cost of failure
4. Select a set of mitigatingactivities

5. Determine the cost of performing the
mitigatingactivates and repeat steps 2 and
3 with the mitigation activities used

6. Determine the ROI of performing the activities

We refer to this as the Projected Cost of Failure Consequences (PCFC) for the
population (e.g., fleet) of products.' An overview of the steps in the model is shown
in Fig. 8.4.

'To clarify, the models used in [25] and in this chapter (although not exactly the same—see
Sect. 8.3.3) are continuous risk models, i.e., they assume that probabilities are continuous,
therefore the PCFC is defined as the area under the curve. However, some risk models assume the
probabilities are discrete, in which case the cost of failure would be calculated as the sum of the
probability of failure at each discrete severity level multiplied by the cost of failure resolution at
the corresponding severity level. Both approaches are valid, continuous risk is assumed in this
chapter.
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The first step in the model is to identify and describe each relevant failure by
determining the part affected by the failure, and the failure mode, cause, and
mechanism associated with an occurrence of that failure. Additionally, each failure
is defined by an application-specific severity level. The severity level determines
the cost associated with an occurrence of the failure.

Next, the number of failures expected to occur over the service life of the product
at each severity level are determined. The collective expected number of failures for
each severity level is called the severity level profile. The calculation of the
expected number of failures per product per unit lifetime for each distinct severity
level is given by:

=Y f (8.5)
j=1

where f; is the expected number of failures of severity i per product per unit lifetime;
and 7 is the number of ways a product can experience failure at severity level i.

8.3.3 Determining the Initial PCFC

Assuming a repairable system, each failure experienced by the system is described
by two characteristics: the severity of failure and the frequency of occurrence of that
failure. Severity correlates to the cost of the actions that the system or product
owner will have to take to correct or compensate for the effects of a failure after it
has occurred. One possible source of data for determining a PCFC is a Failure
Modes, Mechanisms, and Effects Analysis (FMMEA) report (e.g. [28]).2

Most FMMEAs qualitatively describe severity and frequency of failure, whereas
to be used in this model each failure’s severity and frequency must be quantitatively
defined. Each failure’s severity and frequency will be used to determine: (1) the
expected cost that the system owner will incur for every instance of the occurrence
of that failure, and (2) the number of times the failure is expected to occur over the
service life of the system.

For example, in the FMMEA used for the case study in this chapter, severity of
failure is rated on a scale of 1-5, with a severity 5 failure defined as a minor

2A FMMEA categorizes failure events and assigns each event a rating for its severity and like-
lihood of occurrence. Alternatively, a Failure Modes and Effects Analysis (FMEA) or a Failure
Modes Effects and Criticality Analysis (FMECA) could also be used as a source of data for the
severities and frequencies of the ways a system could fail. A FMEA is very similar to a FMMEA,
except that a FMEA does not analyze the mechanisms associated with each failure. Additionally, a
FMECA is an extension of a FMMEA that includes a criticality analysis. Criticality analysis is a
method of prioritizing failures after each failure is assigned a severity and occurrence rating, where
the highest priority failures (those to be dealt with first), are those with the highest aggregate
severity and occurrence ratings.
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Fig. 8.5 Expected number of failures versus cost per failure [15]. © 2015 Elsevier. Reprinted,
with permission

nuisance and a severity 1 failure defined as a catastrophic failure. Each of these
severities must be assigned an expected cost associated with the consequences of
the occurrence of a failure of that severity.’

The transformation of FMMEA ratings to numerical values of cost and expected
number of failures is application specific. The cost associated with a specific
severity of failure and expected number of failures for a given frequency rating
could vary based on several factors including: operating conditions, the context the
system is being used in, and the length of the service life.

Using an expected number of occurrences for each failure severity, and a cost
associated with each occurrence of every failure, the PCFC for the system can be
determined. Figure 8.5 shows a plot of the expected number of failures and cost
associated with each failure for five severity levels. The vertical axis is the number
of failures expected to occur per product per service life. The service life is the
required life the system, expressed in years or temperature cycles. The horizontal
axis is the cost per failure event.*

31t should be noted that FEMMEAs also describe the frequency of failure on a qualitative scale (this
is usually called the “probability of occurrence”). Kmenta and Ishii [24] use the probability of
occurrence; however, in the model presented in this chapter, the expected number of failures per
product per service life are determined from reliability distributions, not generated from the
FMMEA.

“The model described in this chapter assumes that the cost of failure decreases linearly between
severity levels. The assumed linear decrease appears as shown in Figs. 8.5 and 8.6 when graphed
on a log-log plot. For the plots in the case study, the lines between severity levels are represented
by straight lines (on the log-log plots) for graphical convenience.
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The cost and number of failures for each severity level are connected and form a
curve as shown in Fig. 8.5. The area under this curve is the PCFC for the system.

E,
PCFC,',,”m[ = / C(x)dx (86)

E,

where E; is the expected number of severity level 1 failures (E, is the expected
number of severity level m failures); u is the number of severity levels under
consideration and C(x) is the cost of a failure event occurring at severity level x.

In practice the area of the discrete trapezoids formed by the points in the curve
are determined and summed using,

PCFCiitial = i[E(H— 1)+ 0.5E(@)]|[C(i+1) — C(i)] (8.7)
i=1

where E(x) is the expected number of failures per product per unit lifetime of point
(severity level) x on the curve.

8.3.4 Activities Affecting the Number of Failures

An activity is sub-process, process, or group of processes that when performed (or
applied) changes the expected number of failures over the service life of the
product. Activities can be performed at multiple levels of rigor; rigor is the detail or
depth at which the activity is performed. Performing an activity at a higher level of
rigor has the potential for a greater reduction in the number of expected failures, but
it will cost more.

Activities can affect specific failure modes, failure mechanisms, failure causes,
and parts. If an activity affects the mode, mechanism, cause, or part that corre-
sponded to a failure in the FMMEA used to create the initial severity level profile,
then if that activity is performed, the expected number of failures will change.
Equation (8.8) shows the calculation of the new expected number of failures after
activities are performed.

Ny—y = Np-i H Pg(i,R) (8.8)

i=1

where Ny is the number of failures expected to occur over the service life of the
product for a particular failure listed in the FMMEA after considering activities;
Ny; is the number of failures expected to occur over the service life of the product
for a particular failure listed in a the FMMEA before considering activities; Py (i, R)
is the fractional reduction in the expected number of failures occurring over the
service life of the product due to performing activity i; g is the number of activities
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performed that affect the failure under consideration; and R is the level of rigor
activity i is performed at.

An activity is defined by the change in failures over the service life of the
product, the non-recurring (NRE) cost for each level of rigor, and the particular
failure modes, failure mechanisms, failure causes, and parts the activity will impact
if performed.

The cost of performing all activities, called the Total Implementation Cost,
(Crorar) 1s calculated according to,

q
Croar = Z Cwre(i,R) (8.9)

i=1

where Cngg(i,R) is the cost of performing activity i at level of rigor R.

Performing an activity at level of rigor R may reduce the number of times a
failure is expected to occur. The model determines which failures listed in the
FMMEA each activity affects by checking if a failure’s mode, mechanism, cause,
and part are impacted by the activity. The model performs the calculation for each
activity on every failure listed in the FMMEA whose mode, cause, mechanism, and
part are all impacted by the activity.

Once a set of activities has been chosen, the model calculates the modified PCFC
for the system. First the model calculates the number of failures expected to occur at
each severity level using Eq. (8.5) and generates a modified severity level profile.
Next, the model uses the new expected number of failures (determined via a
discrete-event simulation that samples cycles to failure distributions through the
support life of the product—see the case study) to calculate expected PCFC of the
system using,

Ey-s
PCFCde,ﬁed = / C(x)dx (8 10)

Elif

where E;_,is the expected number of severity level 1 failures after activities are
considered and E,,, is the expected number of severity level m failures after
activities are considered.

The difference between the initial PCFC and the modified PCFC, called the
Reduction in Failure Cost is calculated as,

Reduction in Failure Cost = PCFCryjiat — PCFCpyodifiea (8.11)

The Reduction in Failure Cost can be graphically represented as the difference in
the areas under the curves in Fig. 8.6. The top curve is the expected number of
failures versus PCFC before activities are considered, and the bottom curve is the
expected numbers of failures versus PCFC after activities are considered.
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Fig. 8.6 The blue (dashed, top) curve represents the number of failures per product per unit
lifetime at each severity level before activities are considered, and the red (solid, bottom) line
represents the expected number of failures with the activities performed [15]. © 2015 Elsevier.
Reprinted, with permission

8.3.5 Return on Investment

The final step in the model is to calculate the Return on Investment or ROL
The ROI is defined as the difference between return and investment divided by
investment. In this model, the investment is the money spent on performing
activities, the Total Implementation Cost, and the return is the PCFC that will be
avoided because activities have been performed, the Reduction in Failure Cost.

Reduction in Failure Cost — Cr,,
Return on Investment(ROI) = Total

8.12
CTotal ( )

8.4 Case Study—The Cost Implications of Implementing
Whisker Growth Mitigation Plans

In this section, we will use the model described in Sect. 8.3 to calculate the cost
implications of using mitigation approaches that will affect the growth of whiskers
in electronic systems. We will consider a generic printed circuit board (PCB) with a
congested layout of surface mount components. The case study will analyze two
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Table 8.1 Surface mount components on the PCB

Number of leads on one side Number of surface mount Gap size Severity
(number of sides) components on the PCB (mm) level
38(4) 2 0.08 5

6(2) 10 0.12 1

12(4) 8 0.1 3

10(2) 8 0.12 2

19(4) 4 0.1 4

different applications of the PCB each with its own specific working environment
conditions and risk consequences. The first application is a desktop computer with
the expected life of 5 years while the second application is using the PCB in a
commercial aircraft with the expected life of 20 years.

The PCB has different types of surface mount components soldered onto it. The
leads on the surface mount components are the elements most susceptible to growth
of whiskers. As mentioned in Sect. 8.2.2, the gap size between the leads is a major
factor in formation of short circuit connection between two adjacent leads. Here, we
only include the components with gaps between the leads that are narrow enough to
form whiskers that can make a conductive bridge to an adjacent lead. The number
of leads on each of these surface mount components varies. Some have leads only
on two sides while some others have leads on all four sides. Table 8.1 summarizes
the number of surface mount connections of various types on the PCB with gap size
between adjacent leads and their associated severity level for a failure occurrence.
A lower severity level number means failure is more serious and thus more
expensive to resolve if it occurs.

It’s important to note that since the whisker mitigation activities are only
applicable to whisker growth, we won’t be considering all the possible failures that
may occur in the PCB, i.e., all the failures in an FMMEA analysis. We assume that
the whisker mitigation plans will not affect the failures caused by the other failure
mechanisms, i.e., with and without the tin whisker mitigation plans, the number of
failures due to non-tin whisker causes remain the same for the application. We also
assume that the type of failures that occur due to whiskers could be either per-
manent (hard failures) or intermittent (soft failures). As mentioned earlier, the high
current in a short circuit caused by a whisker can vaporize the whisker and sub-
sequently fully or partially restore the operation of the affected components in some
cases. Regardless of whether the failure is permanent or intermittent, since the loss
of functionality occurred, we count the failure and assume that the mitigation plan
will affect the further occurrence of the failures. However, we are assuming that
intermittent failures are less severe than permanent failures, hence they cost less.
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8.4.1 Whisker Mitigation Activities—Conformal Coating

There are several approaches discussed in the literature to mitigate the whisker
growth. In this work, we focus on one particular approach, which is conformal
coating. Conformal coating is deposition of a layer of a chemical compound on a
PCB and its components. The goal of conformal coating is to create an insulation
layer that prevents exposure of electronic circuits to corrosive environments and
moisture.

There are several methods to create a coating including: dipping, brushing and
spraying (either by hand or by robots). The method depends on the type of coating,
which itself is a function of the application of the boards. Different coating types
provide different levels of insulation, which depend on the environmental condi-
tions associated with the board’s application. An ideal conformal coating, covers
the sides and the edges thoroughly. In this chapter, we will focus only on Silicone
and Parylene-C coatings since they are the two methods that showed the most
promising results for whisker mitigation in the Han et al. [11] study.

8.4.1.1 Silicone Coating

Silicone coating can be applied to the electronic circuitry through spraying (hand or
robot), dipping and brushing depending on the application of the boards and the
level of masking. It provides a thin transparent layer with good resistance to
moisture, high temperatures and airborne particles. For boards that require further
work after the coating, Silicone is an ideal candidate because it has a weak resis-
tance to solvents.

8.4.1.2 Parylene-C Coating

Parylene-C is considered the best conformal coating as it lacks many of the defi-
ciencies of other coatings. Parylene-C forms at room temperature and therefore does
not induce any stress on the components that it coats. It penetrates narrow gaps well
and provides a covering for all the surfaces. It also provides a uniform thickness on
all surfaces that is sometimes hard to achieve with other conformal coating
materials.

However, the process of applying Parylene-C is more complicated than other
types of conformal coating. Prior to coating, electronic components and connectors
have to be carefully masked and the surface of the board has to be cleaned carefully
and thoroughly. The coating process is performed in a chamber with specialized
vapor-phase deposition techniques. This creates challenges since vapor can get into
areas that should not be coated, hence the need for masking. The deposition of the
coating on the surface takes place at a constant rate, so depending on the application
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of the board (i.e., the thickness of the coating required), the process can take from
several hours to more than a day for a single batch of boards.

Parylene-C coating is very labor intensive since masking the components can
take a lot of time. Programming a robot that will do the deposition is expensive as
well. Overall, the Parylene-C coating may be an expensive option depending on the
complexity of the boards, their application and the number of the boards that need
to be coated.

8.4.2 Board Applications

In this section, we investigate two separate applications of the board. The first
application is using the board in a desktop computer and the second application is
using the board in systems used in a commercial aircraft. The layout of the board
does not change, however, the operational environment conditions, length of
operation, risks associated with failures and costs of failures are different for the two
applications. A desktop computer is in an environment that is assumed to have
stable temperatures, pressure, and humidity, while in an aircraft we are assuming
that the board is operating in the unpressurized, non-climate controlled, tail of the
aircraft, colloquially known as the “hell hole.” The conditions in the hell hole are
assumed to be those defined by [29].

For this case study, we assume that a typical commercial aircraft has an expected
service life of 20 years. Alternatively, we assume that the desktop computer has an
expected service life of 5 years. When used in an aircraft, we assume the board will
experience one temperature cycle per flight, and that the aircraft is making an
average of 6 flights per day, and that it operates 300 days per year. We assume that
the desktop computer will encounter 1800 temperature cycles per year (on/off and
sleep cycles). Table 8.2 summarizes the operational expectations of the board when
used in both applications.

The consequences of a failure in an aircraft can be far greater than a failure in a
desktop computer. In the context of this work, we consider the consequences of
failure in terms of the financial loss to the entity or entities responsible for the
performance of the system. For the desktop computer case, we assume the entity
responsible for failure costs is the manufacturer, and the computer is under warranty
for the service life (five years). In the commercial aircraft case, we assume the entity

Table 8.2 Usage conditions for the board

PC Commercial aircraft
Temperature cycles (per lifetime) (c) 9000 36,000
Service life (years) 5 20
Temperature cycles per year 1800 1800
Number of units in service 100,000 500
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Table 8.3 Consequences and likelihoods of varying severity and occurrence ratings of failure for
the board in a desktop PC and a commercial aircraft

Severity Desktop computer Commercial aircraft
of failure | Failure event associated Failure Failure event associated Failure
with cost with cost
5 Minor nuisance $10 Minor nuisance $100
4 Minor repair $50 Minor repair $2500
3 Board replacement $150 Board replacement $5000
2 Board replacement and $400 Repair or replacement, $25,000
collateral damage to PC interrupting flight
schedule
1 Loss of entire PC $1200 Repair or replacement, $250,000
causes collateral damage

responsible for failure costs is the aircraft owner (the system operator). Table 8.3
shows the assumed consequences and likelihoods of varying severity and occur-
rence ratings of failure when the board used in a desktop computer and a com-
mercial aircraft.

In this case study we assume that all repair and replace maintenance actions
associated with a part result in a good-as-new part in the product. Also, the “minor
nuisance” failure event could be a “no fault found” failure event. This case study
assumes that the financial consequences of a no fault found event (severity level 5)
do not change if multiple no fault found events occur on the same board.

In this case study, it is assumed that for tin whisker induced failures on surface
mount components, the reliability can be modeled with a Weibull distribution:

Fle)=1—e¢ (' (8.13)

In Eq. (8.13), F(c) is the cumulative distribution failure, ¢ is the number of
temperature cycles (Table 8.2); f is the Weibull shape parameter, # is the Weibull
scale parameter, and 7 is the Weibull location parameter. In this study, the location
parameter is assumed to be zero. Table 8.4 shows the shape and scale parameters
used in this study for the surface mount components on the board. The probability
of a failure occurrence due to tin whisker formation is assumed to be a function of

Table 8.4 Weibull parameters for the components on the board

Number of leads on one side (number of Shape Scale parameters
sides) parameters (cycles)
38(4) 2.9 50,000
6(2) 29 60,000
12(4) 29 55,000
10(2) 2.9 58,000
19(4) 2.9 52,000
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(a) (b)

500 pm

Fig. 8.7 Conformal coating on surface mount components. a Silicone, b Parylene-C [11]. © 2012
Springer. Reprinted, with permission

the board design (number leads on the surface mount, gap size between the leads,
length and angle of whiskers) and therefore same reliability values are used for both
applications. These values are derived from the model explained in Sect. 8.2.2.

A discrete-event simulator that samples the respective cycles to failure distri-
butions for each of the product’s parts was used to determine the sequence of failure
events. The discrete-event simulator was run through the entire service life of the
product to determine the total failure counts for each part in the product. A Monte
Carlo model was used and 1000 independent time histories of the products analyzed
in the case study were run to build the results provided.

As mentioned earlier, the control plans to mitigate the growth of tin whiskers are
using two different conformal coatings on the boards, Silicone and Parylene-C
coating. These coatings provide different levels of mitigation as outlined by Han
et al. [11]. For the desktop computer, we only consider the Silicone coating while
for the aircraft, we consider both Silicone and Parylene-C coatings. Figure 8.7
shows examples of surface mount components with Silicone and Parylene-C
coatings.

The costs of the mitigation plan depend on the board’s application, number of
boards, and the contractor that performs the conformal coating. Therefore, we use
probability distributions to calculate the costs of coating for the boards. Silicone
coating is the less expensive option and it can cost as little as $2 per board.
Parylene-C is more expensive due to the complicated process of coating, labor and
programming of the coating equipment; therefore, the costs of coating have a wide
range. Table 8.5 shows the distributions and their parameters that are used to
calculate the costs of coating for Silicone and Parylene-C. These cost values were
obtained through communication with companies that provide conformal coating
service. Cost values represent the costs of performing the mitigation for the entire
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Table 8.5 Triangular distribution parameters used for cost and failure reduction calculations

Conformal coating Mode Low High
Costs of coating ($) Silicone 400,000 200,000 500,000
Parylene-C 375,000 | 250,000 500,000
Failure reduction coefficient | Silicone 0.8 0.7 0.9
Parylene-C Average 0.5 0.35 0.6
Range 0.2-0.7 0.05- 0.3-0.8
0.55

population of boards (i.e., 100,000 for desktop computer and 500 for commercial
aircraft).

For the reliability improvements, probability distributions are used to quantify
the effects of conformal coating on mitigating tin whisker failures. Table 8.5 also
shows the parameters used to generate the reduction coefficients that will be used to
calculate the failure reduction due to conformal coatings of the boards. These
coefficients are multiplied by the number of failures that occurred in a board without
conformal coating in order to calculate the number of failures when the board has
conformal coating. Experiments by Han et al. [11] showed Parylene-C completely
prevented the growth of tin whiskers during the experiments period. However, this
may not be the case for the 20 year expected life of an aircraft. Therefore, we
assume that there will be tin whisker growth when Parylene-C is used but the
growth is limited. We consider a range of values for failure reduction coefficient in
the case of Parylene-C coating and investigate the sensitivity of ROI values to
changes in these coefficients.

Each application of the board was run for 1000 trials (life histories). Each trial
calculates the initial PCFC by sampling the cycles to failure distributions for each
component in the product. Each surface mount component must complete the
number of cycles defined by the service life. If a component does not survive its
service life a corrective action is taken (repair or replace) and the component
samples the cycles to failure distribution again until the cumulative lives (in cycles)
of each component is greater than or equal to the service life (also in cycles). For
each trial we calculate: an investment cost (the cost of performing activities) by
sampling the cost distribution defining the cost of performing the activity, a return
(the reduction in PCFC after performing activities) by sampling the distribution
defining the fractional reduction in failures for each activity performed and applying
the factional reduction in failures to the failures in the FMMEA? that the activity
affects, and an ROI. Thus, for each trial, the initial PCFC, investment cost, and
return could be different because the parameters that determine them are defined as
distributions that are sampled for each trial.

SAs stated previously, we are only considered tin whisker failures in this chapter. All other failure
mechanisms are assumed to be unaffected by the tin whisker mitigation and therefore are a “wash”.
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Fig. 8.8 Results of the model for a single Monte Carlo run on the desktop computer population
with Silicone coating

8.4.3 Desktop Computer Application Results

In this section, the mitigation plan is applied to the board used in a desktop
computer. The results of the case study are shown in Fig. 8.8, where the blue (solid)
lines represent the system before the tin whisker mitigation control plan activities
are performed, and the red (dash) lines represent the system after the tin whisker
mitigation control plan activities are performed. Note that while 1000 trials were
performed, for illustrative purposes, Fig. 8.8 only shows the results of a single trial.
In this particular example, throughout the five-year lifetime of the desktop com-
puters in the population, each computer has an average of a single failure occur-
rence due to tin whisker growth. This failure is a severity 2 failure where the cost of
failure is $400.

For the 1000 trials of the model, very few had tin whisker related failures. Out of
1000 trials, only 132 of them showed any type of failure and the rest did not have
any tin whisker related failures (Fig. 8.8 is one of the 132 trials that had tin whisker
related failures). In cases where there were failures, on average no more than one
failure was observed during the 5 years life cycle of a desktop computer (similar to
the case in Fig. 8.8 where only a single failure was observed). In cases where no
failure occurred, the ROI associated with the mitigation approach is —1 (i.e., the
investment in tin whisker mitigation was made, but there was no return on the
investment). Figure 8.9 shows the range of ROI values for this mitigation plan.
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Fig. 8.9 Distribution of ROI values for Silicone coating in desktop computer

As the results show, in the case of the desktop computer application only 5% of
cases yield a positive return for tin whisker mitigation using Silicone. The mean ROI
for Silicone conformal coating (to mitigate tin whiskers) for the PC application was
—78% indicating that from a financial point of view, this is obviously not worth doing.

8.4.4 Commercial Aircraft Application Results

8.4.4.1 Silicone Conformal Coating

For the commercial aircraft application, two cases will be considered. In one case
the boards will be coated with Silicone and then for the second case, the effects of
Parylene-C conformal coating will be examined. Figure 8.10 shows a single run of
Monte Carlo over 20 years of operation. This is the expected number of failures per
board for the whole population of aircraft.

For 20 years expected life of an aircraft, all 1000 trials showed tin whisker
related failures. During this time, there were on average 4 failures due to tin whisker
growth in an aircraft, which the Silicone coating managed to reduce. Figure 8.11
shows the average number of failures for the aircraft population in 5 Monte Carlo
runs.

Figure 8.12 shows the distribution of ROI values for the Silicone coating case.
In order to make the figure easier to read, all the ROI values are divided by 107,
because of the very large values of ROL. This is because the costs of coating are
insignificant relative to the costs of failures and their subsequent repairs in a
commercial aircraft.



334 R. Bakhshi et al.

10.00

0.10

Expected Number of Failures per
Product Per Service Life

0.01
$100 $1,000 $10,000 $100,000 $1,000,000

Cost of Each Failure
Fig. 8.10 Results of the model for a single Monte Carlo run on the aircraft population with
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Fig. 8.11 Results of the model for a 5 Monte Carlo run on the aircraft population with Silicone
coating

8.4.4.2 Parylene-C Conformal Coating

Although Silicone coating produces a large return on investment for mitigating tin
whiskers, there may still be too many failures occurring due to tin whiskers for a
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mission critical system such as a commercial aircraft. Parylene-C, which showed
promising results in experiments becomes a viable option for coating the boards
that are used in the commercial aircraft. Figures 8.13 and 8.14 show a single and 5
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Fig. 8.13 Results of the model for a single Monte Carlo run on the aircraft population with
Parylene coating
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Fig. 8.14 Results of the model for a 5 Monte Carlo run on the aircraft population with Parylene-C
coating

Monte Carlo runs respectively for the whole population of aircrafts using the
average values in Table 8.5. The larger gap between the blue solid line and the red
dashed line show that reliability has significantly improved by using Parylene-C.

The Parylene-C coating, though more expensive than Silicone, results in positive
ROI values while at the same time significantly reducing the chances of failure due
tin whisker failures. Figure 8.15 shows the distribution of ROI values for
Parylene-C coating using the average values in Table 8.5.
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Fig. 8.16 Sensitivity of ROI to variations of the failure reduction coefficient for Parylene C
coating

Figure 8.16 shows the sensitivity of the ROI values to a range of failure
reduction coefficient values. These are the ranges in Table 8.5. As it can be seen a
50% improvement in reliability, yields an average ROI of 280. An 80% improved
reliability (which corresponds to a 0.2 failure reduction coefficient) has the largest
ROI values as it is expected.

8.5 Epilogue

Adoption and insertion of new technologies and processes into systems is inher-
ently risky—in our case lead-free solders that create a tin whisker risk. An
assessment of the cost of risk may be a necessary part of planning or building a
business case to change a system. A cost-based FMEA model that forecasts the cost
of risk associated with inserting a new technology into a system has been used to
assess a tin whisker mitigation control plan for the same product in two different
risk scenarios. In the model, the projected cost of failure consequences (PCFC) is
defined as the cost of all failure events (of varying severity) that are expected to
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occur over the service life of the system. The PCFC is uncertain, and the potential
positive impact of adopting new technologies into the system is to reduce the cost
of risk and/or reduce its uncertainty.

The case study presented assesses the adoption of a tin whisker control plan on
boards with dual applications. The case study applied the model to two applica-
tions: a desktop computer and in a commercial aircraft. This case study was per-
formed to show that if one had accurate data on the PCFC for a system, the cost of
performing various activities, and the benefit of performing the same activities, a
judgment could be made, with a quantifiable level of certainty, as to the
cost-effectiveness of performing the activity in the control plan. In the case study
performed for this chapter, performing activities was far more cost effective when
the boards were used in a commercial aircraft than when used in a desktop com-
puter, because the equipment had a greater service life requirement and higher
financial consequences of failure when used in an aircraft. The boards are projected
to fail more often over its service life in an aircraft and the entities responsible for
supporting the system incur more cost when there are failures, hence there is more
benefit to spending money to reduce the expected number of failures.
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