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Abstract. In recent years, with the trend of applying deep learning
(DL) in high performance scientific computing, the unique characteris-
tics of emerging DL workloads in HPC raise great challenges in design-
ing, implementing HPC AI systems. The community needs a new yard
stick for evaluating the future HPC systems. In this paper, we propose
HPC AI500—a benchmark suite for evaluating HPC systems that run-
ning scientific DL workloads. Covering the most representative scientific
fields, each workload from HPC AI500 is based on real-world scientific
DL applications. Currently, we choose 14 scientific DL benchmarks from
perspectives of application scenarios, data sets, and software stack. We
propose a set of metrics for comprehensively evaluating the HPC AI
systems, considering both accuracy, performance as well as power and
cost. We provide a scalable reference implementation of HPC AI500. The
specification and source code are publicly available from http://www.
benchcouncil.org/HPCAI500/index.html. Meanwhile, the AI benchmark
suites for datacenter, IoT, Edge are also released on the BenchCouncil
web site.
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1 Introduction

The huge success of AlexNet [1] in the ImageNet [2] competition marks that deep
learning(DL) is leading the renaissance of Artificial Intelligence (AI). Since then,
a wide range of application areas have started using DL and achieved unprece-
dented results, such as image recognition, natural language processing, and even
autonomous driving. In the commercial fields, many DL-based novel applica-
tions have emerged, creating huge economic benefits. In the fields of high perfor-
mance scientific computing, similar classes of problems are faced, i.e., predicting
extreme weather [21], finding signals of new particles [22], and estimating cosmo-
logical parameters [23]. These scientific fields are essentially solving the common
class of problems that exist in commercial fields such as classifying images, pre-
dicting classes labels, or regressing a numerical quantity. In several scientific
computing fields, DL has replaced traditional scientific computing methods and
becomes a promising tool [24].

As an emerging workload in high performance scientific computing, DL has
many unique features compared to traditional high performance computing.
First, training a DL model depends on massive data that are represented by
high-dimensional matrices. Second, leveraging deep learning frameworks such as
Tensorflow [3] and caffe [4] aggravates the difficulty of the software and hardware
co-design. Last but not least, the heterogeneous computing platform of DL is far
more complicated than traditional scientific workloads, including CPU, GPU,
and various domain-specific processor (e.g. Cambricon Diannao [5] or Google
TPU [6]). Consequently, the community requires a new yardstick for evaluating
future HPC AI systems. However, the diversity of scientific DL workloads raise
great challenges in HPC AI benchmarking.

1. Dataset: Scientific data is often more complex than MINST or ImageNet data
sets. First, the shape of scientific data can be 2D images or higher-dimension
structures. Second, there are hundreds of channels in a scientific image, while
the popular image data often consists of only RGB. Third, Scientific datasets
are always terabytes or even petabytes in size.

2. Workloads: Modern scientific DL doesn’t adopt off-the-shelf models, instead
builds more complex model with domain scientific principles (e.g. energy con-
servation) [21].

3. Metrics: Due to the importance of accuracy, using a single performance met-
ric such as FLOPS leads to insufficient evaluation. For a comprehensively
evaluation, the selected metrics should not only consider the performance of
the system, but also consider the accuracy of the DL model [8].

4. Scalability: Since the scientific DL workloads always run on the supercom-
puters, which are equipped with tens of thousands nodes, the benchmark
program must be highly scalable.
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Most of the existing AI benchmarks [7–10,28,29] are based on commercial
scenarios. Deep500 [30] is a benchmarking framework aiming to evaluate high-
performance deep learning. However, its reference implementation uses commer-
cial open source data sets and simple DL models, hence cannot reflect real-world
HPC AI workloads. We summary these major benchmarking efforts for AI and
compare them with HPC AI500 as shown in the table below.

Table 1. Comparison of AI Benchmarking efforts.

Benchmark efforts Datasets Problem domains Implementation

Scientific Commercial Standalone Distributed

EWAa Cosb HEPc

HPC AI500 Scientific data � � � × � �
TBD Commercial data × × × � � ×
MLPerf Commercial data × × × � � ×
DAWNBench Commercial data × × × � � ×
Fathom Commercial data × × × � � ×
Deep500 Commercial data Framework, undefined � �
a Extreme Weather Analysis
b Cosmology
c High Energy Physics

Consequently, targeting above challenges, we propose HPC AI500—a bench-
mark suite for HPC AI systems. Our major contributions are as follows:

1. We create a new benchmark suite that covers the major areas of high per-
formance scientific computing. The benchmark suite consists of micro bench-
marks and component benchmarks. The workloads from component bench-
marks use the state-of-the-art models and representative scientific data sets
to reflect the real-world performance results. In addition, we select several DL
kernels as the micro benchmarks for evaluating the upper bound performance
of the systems.

2. We propose a set of metrics for comprehensively evaluating the HPC AI
systems. Our metrics for component benchmarks include both accuracy and
performance. For micro benchmarks, we provide metrics such as FLOPS to
reflect the upper bound performance of the system.

Coordinated by BenchCouncil (http://www.benchcouncil.org), we also
release the datacenter AI benchmarks [16,17], the IoT AI benchmarks [15], edge
AI benchmarks [14], and big data benchmarks [12,13], which are publicly avail-
able from http://www.benchcouncil.org/HPCAI500/index.html.

2 Deep Learning in Scientific Computing

In order to benchmark HPC AI systems, the first step is to figure out how DL
works in scientific fields. Although it is an emerging field, several scientific fields
have applied DL to solve many important problems, such as extreme weather
analysis [21,40–42], high energy physics [22,36–39], and cosmology [23,26,33–
35].

http://www.benchcouncil.org
http://www.benchcouncil.org/HPCAI500/index.html
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2.1 Extreme Weather Analysis

Extreme Weather Analysis (EWA) poses a great challenge to human society.
It brings severe damage to people health and economy every single year. For
instance, the heatwaves in 2018 caused over 1600 deaths according to the UN
report [44]. And the landfall of hurricane Florence and Michael caused about 40
billion dollars worth of damage to US economy [45]. In this context, understand-
ing extreme weather life cycle and even predicting its future trend become a sig-
nificant scientific goal. Achieving this goal always requires accurately identifying
the weather patterns to acquire the insight of climate change based on massive
climate data analysis. Traditional climate data analysis methods are built upon
human expertise in defining multi-variate thresholds of extreme weather events.
However, it has a major drawback: there is no commonly held set of criteria
that can define a weather event due to the man-made subjectivism, which leads
to inaccurate pattern extraction. Therefore, DL has become another option for
climate scientists. Liu et al. [40] develop a relatively simple CNN model with two
convolutional layers to classify three typical extreme weather events and achieve
up to 99% accuracy. Racah et al. [42] implement a multichannel spatiotempo-
ral CNN architecture for semi-supervised prediction and exploratory extreme
weather data analysis. GlobeNet [41] is a CNN model with inception units for
typhoon eye tracking. Kurth et al. [21] use variants of Tiramisu and DeepLabv3+
neural networks which are both built on Residual Network (ResNet) [20]. They
deployed these two networks on Summit and firstly achieved exascale deep learn-
ing for climate analysis.

2.2 High Energy Physics

Particle collision is the most important experiment approach in High Energy
Physics (HEP). Detecting the signal of new particle is the major goal in exper-
imental HEP. Today’s HEP experimental facility such as LHC creates particle
signals with hundreds of millions channels with a high data rate. The signal data
from different channels in every collision usually are represented as a sparse 2d
image, so called a jet-image. In fact, accurately classifying these jet-images is the
key to find signals of new particles. In recent years, due to the excellent perfor-
mance in pattern recognition, DL has become the focus of the data scientists in
HEP community and has a tendency to go mainstream. Oliveira et al. [38] use
a CNN model with 3 convolutional layers to tag jet-images. They firstly demon-
strated that using DL not only improve the discrimination power, but also gain
new insights compared to designing physics-inspired features. Komiske et al. [39]
adopt a CNN model to discriminate quark and gluon jet-image. Kurth et al. [22]
successfully deploy CNN to analyze massive HEP data on the HPC system and
achieve petaflops performance. Their work is the first attempt at scaling DL on
large-scale HPC systems.
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2.3 Cosmology

Cosmology is a branch of astronomy concerned with the studies of the origin and
evolution of the universe, from the Big Bang to today and on into the future [49].
In 21st century, the most fundamental problem in cosmology is the nature of dark
energy. However, this mysterious energy greatly affects the distribution of matter
in the universe that is described by cosmological parameters. Thus, accurately
estimating these parameters is the key to understand the insight of the dark
energy. For solving this problem, Ravanbakhsh et al. [26] firstly propose a 3D
CNN model with 6 convolutional layers and 3 fully-connected layers and opens
the way to estimating the parameters with high accuracy. Mathuriya et al. pro-
pose CosmoFlow [23], which is a project aiming to process large 3D cosmology
dataset on HPC systems. They extend the CNN model designed by Ravan-
bakhsh et al. [26]. Meanwhile, in order to guarantee the high fidelity numerical
simulations and avoid the use of expensive instruments, generating high qual-
ity cosmological data is also important. Ravanbakhsh et al. [33] propose a deep
generative model for acquiring high quality galaxy images. Their results show a
reliable alternative for generating the calibration data of cosmological surveys.

2.4 Summary

After investigating the above representative scientific fields, we have identified
the representative DL applications and abstracted these DL applications into
classical AI tasks. As shown in Table 2, almost all the applications are essentially
using CNN to extract the patterns of various scientific image data. From this
perspective, image recognition, image generation, and object detection are the
most important tasks in modern scientific DL. In our benchmark methodology
(Sect. 3.1), we use these three classic AI tasks as the component workloads of
the HPC AI500 Benchmark.

Table 2. Modern Scientific Deep Learning.

Scientific fields DL applications Classical DL tasks Model type

Extreme weather analysis Identify weather patterns Object detection CNN

High energy physics Jet-images discrimination Image recognition CNN

Cosmology Estimate parameters Image recognition CNN

Galaxy image generation Image generation

3 Benchmarking Methodology and Decisions

3.1 Methodology

Our benchmarking methodology is shown in Fig. 1, similar to that [12]. As HPC
AI is an emerging and evolving domain, we take an incremental and iterative
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Fig. 1. HPCAI500 methodology

approach. First of all, we investigate the scientific fields that use DL widely. As
mentioned in Sect. 2, extreme weather analysis, high energy physics, and cosmol-
ogy are the most representative fields. Then, we pay attention to the typical DL
workloads and data sets in these three application fields.

In order to cover the diversity of workloads, we focus on the critical tasks that
DL has performed in the aforementioned fields. Based on our analysis in Sect. 2,
we extracts three important component benchmarks that can represent modern
scientific DL, namely image recognition, image generation, and object detection.
This shows that CNN models play an important role. In each component, we
choose the state-of-the-art model and software stack from the applications. We
also select the hotspot DL operators as the micro benchmark for evaluating
upper bound performance of the system.

We chose three real-world scientific data sets from aforementioned scientific
fields and consider their diversity from the perspective of data formats. In mod-
ern DL, the raw data is always transformed into matrix for downstream process-
ing. Therefore, we classify these matrices into three kinds of formats: 2D sparse
matrix, 2D dense matrix, and 3 dimensional matrix. In each matrix format, we
also consider the unique characteristics (e.g., multichannel that more than RGB,
high resolution) in the scientific data.

3.2 The Selected Datasets

We investigate the representative data sets in our selected scientific fields and
collect three data sets as shown in Table 3. Our selection guidelines follow the
aforementioned benchmarking methodology.

Table 3. The Chosen Datasets

Dataset Data format Scientific features

Extreme weather dataset 2D dense matrix High resolution, multichannel

HEP dataeset 2D sparse matrix Multichannel

Cosmology dataset 3D matrix Multidimensional
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The Extreme Weather Data set [46] is made up of 26-year of climate
data. The data of every year is available as one HDF5 file. Each HDF5 file
contains two data sets: images and boxes. Images data set has 1460 example
dense images (4 per day, 365 days per year) with 16 channels. Each channel
is 768 * 1152 corresponding to one measurement per 25 square km on earth.
Boxes dataset records the coordinates of the four extreme weather events in the
corresponding images: tropical depression, tropical cyclone, extratropical cyclone
and the atmospheric river.

The HEP Data set [25] is divided into two classes: the RPV-Susy signal
and the most prevalent background. The training data set is composed of around
400 k jet-images. Each jet-image is represented as a 64*64 sparse matrix and has
3 channels. It also provides validation and test data. All the data are generated
by using the Pythia event generator [51] interfaced to the Delphes fast detector
simulation [38].

The Cosmology Data set [23] aims to predict the parameters of cosmology.
It is based on dark matter N-body simulations produced using the MUSIC [52]
and pycola [53] packages. Each simulation covers the volumes of 512h−1Mpc3

and contains 5123 dark matter particles.

3.3 The Selected Workloads

Component Benchmarks. Since object detection, image recognition, and
image generation are the most representative DL tasks in modern scientific DL.
We choose the following state-of-the-art models as the HPC AI500 component
benchmarks.

Faster-RCNN [60] targets real-time object detection. Unlike the previous object
detection model [61,62], it replaces the selective search by a region proposal
network that achieves nearly cost-free region proposals. Further more, Faster-
RCNN combines the advanced CNN model as their base network for extracting
features and is the foundation of the 1st-place winning entries in ILSVRC’15
(ImageNet Large Scale Visual Recognition Competition).

ResNet [27] is a milestone in Image Recognition, marking the ability of AI
to identify images beyond humans. It solves the degradation problem, which
means in the very deep neural network the gradient will gradually disappear
in the process of propagation, leading to poor performance. Due to the idea of
ResNet, researchers successfully build a 152-layer deep CNN. This ultra deep
model won all the awards in ILSVRC’15.

DCGAN [63] is one of the popular and successful neural network for GAN [50].
Its fundamental idea is replacing fully connected layers with convolutions and
using transposed convolution for upsampling. The proposal of DCGAN helps
bride the gap between CNNs for supervised learning and unsupervised learning.
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Micro Benchmarks. We choose the following primary operators in CNN as
our micro benchmarks.

Convolution. In mathematics, convolution is a mathematical operation on two
functions to produce a third function that expresses how the shape of one is
modified by the other [54]. In a CNN, convolution is the operation occupying
the largest proportion, which is the multiply accumulate of the input matrix and
the convolution kernel, and then produces feature maps. There are many con-
volution kernels distributed in different layers responsible for learning different
level features.

Full-connected. The full-connected layer can be seen as the classifier of a CNN,
which is essentially matrix multiplication. It is also the cause of the explosion of
CNN parameters. For example, in AlexNet [1], the number of training parameters
of fully-connected layers reaches about 59 million and accounts for 94% of the
total.

Pooling. Pooling is a sample-based discretization process. In a CNN, the objec-
tive of pooling is to down-sample the inputs (e.g., feature maps), which leads to
the reduction of dimensionality and training parameters. In addition, it enhances
the robustness of the whole network. The commonly used pooling operations
including max-pooling and average-pooling.

3.4 Metrics

Metrics for Component Benchmarks. At present, time-to-accuracy is the
most well-received solution [8,29]. For comprehensive evaluate, the training accu-
racy and validation accuracy are both provided. The former is used to measure

Table 4. The Summary of HPC AI500 Benchmark.

App scenarios Workloads Fields Datasets Data format Software
stack

Micro benchmarks Convolution HEPa Matrix Sparse 2D matrix CUDA
MKL

Pooling EWAb Dense 2D matrix

Fully-connected Cosc 3D matrix

Image recognition ResNet HEP HEP dataset Sparse 2D matrix TensorFlow

Cos Cos dataset 3D matrix Pytorch

Object detection Faster-RCNN EWA EWA dataset Dense 2D matrix TensorFlow

Pytorch

Image generation DCGAN Cos Cos dataset 3D matrix TensorFlow

Pytorch
a High Energy Physics
b Extreme Weather Analysis
c Cosmology
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the training effect of the model, and the latter is used to measure the gener-
alization ability of the model. The threshold of target accuracy is defined as a
value according to the requirement of corresponding application domains. Each
application domain needs to define its own target accuracy. In addition, cost-to-
accuracy and power-to-accuracy are provided to measure the money and power
spending of training the model to the target accuracy (Table 4).

Metrics for Micro Benchmarks. The metrics of the micro benchmarks is
simple since we only measure the performance without considering accuracy. We
adopt FLOPS and images per second (images/s) as two main metrics. We also
consider power and cost related metrics.

4 Reference Implementation

4.1 Component Benchmarks

According to the survey [59] of NERSC (National Energy Research Scientific
Computing Center, the most representative DL framework is TensorFlow, and
the proportion of which is increasing year by year. Consequently, we adopt Ten-
sorFlow for preferred framework.

In order to evaluate large-scale HPC systems running scientific DL, scala-
bility is the fundamental requirement. In modern distributed DL, synchronized
training through data parallelism is the mainstream. In this training scheme,
each training process gets a different portion of the full dataset but has a com-
plete copy of the neural network model. At the end of each batch computation,
all processes will synchronize the model parameters by all reduce operation to
ensure they are training a consistent model. TensorFlow implements all reduce
through a parameter server [32] and use the GRPC protocol for communica-
tion by default. The master-slave architecture and socket-based communication
can not extend to large-scale clusters [55]. Horovod [56] irrespective a library
originally designed for scalable distributed deep learning using TensorFlow. It
implements all reduce operation using ring-based algorithm [57] and MPI (Mes-
sage Passing Interface) for communication. Due to the decentralized design and
high effective protocol, the combination of TensorFlow and Horovod has success-
fully scaled to 27360 GPUs on Summit [21]. Therefore, we leverage Horovod to
improve the scalability.

4.2 Micro Benchmarks

The goal of micro benchmarks is to determine the upper bound performance of
the system. To do so, we implement it with succinct software stack. Every DL
operator is written in C++ or call the low-level neural networks library (e.g.
CuDNN) without any other dependencies.
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5 Conclusion

In this paper, we propose HPC AI500—a benchmark suite for evaluating HPC
system that running scientific deep learning workloads. Our benchmarks model
real-world scientific deep learning applications, including extreme weather anal-
ysis, high energy physics, and cosmology. We propose a set of metrics for com-
prehensively evaluating the HPC AI systems, considering both accuracy, perfor-
mance as well as power and cost. We provide a scalable reference implementation
of HPC AI500. The specification and source code of HPC AI500 are publicly
available from http://www.benchcouncil.org/HPCAI500/index.html.

Acknowledgments. This work is supported by the Standardization Research Project
of Chinese Academy of Sciences No.BZ201800001.
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