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Abstract. Existing scientific data management systems rarely manage
scientific data from a whole-life-cycle perspective, and the value-creating
steps defined throughout the cycle constitute essentially a scientific work-
flow. The scientific workflow system developed by many organizations
can well meet their own domain-oriented needs, but from the perspec-
tive of the entire scientific data, there is a lack of a common framework
for multiple domains. At the same time, some systems require scien-
tists to understand the underlying content of the system, which virtu-
ally increases the workload and research costs of scientists. In this con-
text, this paper proposes a universal multi-domain intelligent scientific
data processing workflow framework (UMDISW), which builds a general
model that can be used in multiple domains by defining directed graphs
and descriptors, and makes the underlying layer transparent to scientists
to just focus on high-level experimental design. On this basis, the paper
also uses scientific data as a driving force, incorporating a mechanism
of intelligently recommending algorithms into the workflow to reduce
the workload of scientific experiments and provide decision support for
exploring new scientific discoveries.
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1 Introduction

Scientific research has entered the era of big data. Instruments and equipment
with ever-increasing data collection capabilities and ever-evolving computing
facilities and simulation methods are important sources of scientific big data,
causing explosive growth in data size, which is happening in different scientific
domains [1–3]. At the same time, because scientific data faces greater “broad-
ness” and “depth” than commercial data, the processing patterns and methods
of scientific data are also diversified. It can be said that the management and
processing of scientific data now face enormous challenges.
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In this case, many organizations have carried out a series of work on the struc-
ture and system of scientific data management from different perspectives, and
developed many scientific data management systems or analytical frameworks.
Such as SkyServer for managing SDSS data [4], Paradise for storing geographic
information [5], Google’s virtual digital earth system Google Earth for visu-
alization [6], Apache’s big data high-performance computing framework Hama
[7], etc. These systems perform well at some point in management, analysis, or
visualization, but lack a complete solution from the perspective of the whole
life cycle of scientific data. Scientific data creates value, and the whole lifecycle
of scientific data defines the various steps in creating value, including import-
ing, storing, processing, visualizing, analyzing, re-storing, and so on, as well as
the conditions associated with each step. These steps essentially constitute a
workflow, or data flow, information flow.

The concept of workflow has been widely used in many fields, such as business
processes, industrial manufacturing, scientific research, medicine, etc. [8]. For sci-
entific workflows, the most common representation is to create a high-level graph
composed of directed graphs, related nodes and edges that define the sequence
and interaction between the various steps associated with the scientific workflow,
and this graphy defines the sequence and interaction between the various steps.
In addition, because of the diversity and complexity of scientific research, only
one directed graph is not sufficient to represent the processing flow of multiple
scientific domains, so additional descriptors are needed to specifically identify
and control the nodes of a series of steps. The information exchange standard
proposed by the Open Provenance Model (OPM) core specification [9] for data
traceability and the concepts and terminology defined in the S88 standard [10]
for production recipe process can be applied to the scientific workflow. The scien-
tific workflows that will be presented later in this paper also refer to the relevant
content of these two standards.

It turns out that it is feasible to use workflow to represent the processing of
scientific data, many organizations continue to develop their own field-oriented
scientific workflow system based on their needs. From the combination of scien-
tific workflows, it is divided into text-based combinations such as BPEL4WS [11],
DAGMan, SCUFL; graphics-based combinations such as Triana [12], VisTrails,
Kepler [13]; semantic-based combinations such as K-WF, Pegasus, Taverna [14].
These scientific workflow systems have brought great convenience to the pro-
cessing of scientific data to a certain extent, but there are also some problems:

– It is more difficult to meet the needs of many types of users. Domain experts
are more focused on domain-related research than on the scheduling of under-
lying resources related to specific calculations.

– Most of the existing scientific workflows are only for a single domain, lacking
a universal framework.

– Lack of a more efficient method of scheduling. Users usually need to choose
different methods to compare to select the better one, so that the workload
of scientific experiments is increased.
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In summary, based on the previous research [15], this paper proposes a Uni-
versal Multi-Domain Intelligent Scientific data processing Workflow (UMDISW),
which solves the problems of current scientific workflow from the perspectives
of model, structure and application. The second section of this paper describes
the state and status of the proposed workflow in previous research. In the third
section, the model of the UMDISW is analyzed. And in the fourth section, we
describes the structure of the UMDISW. What’s more, the fifth section intro-
duces the application scenario of the UMDISW, highlighting the characteristics
of intelligence, and the sixth section is to introduce the workflow implementation
in combination with the previous research. Finally, we have a conclusion in the
seventh section.

2 The Status of UMDISW in System Architecture

In previous research, we proposed a scientific big data management system archi-
tecture for multiple domains and roles, The architecture is divided into four
areas: Basic Service Function Area (BSFA), Storage and Access Area (SAA),
Query Function Area (QFA), and Analysis Function Area (AFA). Each area has
its own corresponding function. For example, the AFA is responsible for pro-
cessing scientific data in different domains using machine learning or domain
methods. On this basis, we integrated UMDISW proposed in this article in the
AFA, and the AFA is updated to have three component: the Asset Loader (AL),
the Pipeline Manager (PM), and the Pipeline Tool (PT). These three compo-
nents show the composition of the UMDISW in the architecture, where the AL
is used to get the data and algorithms needed by the experiments; the PM is
responsible for the design, build, and integration of the workflow; the PT is
responsible for providing the operating environment and execution engine. Each
component has its own port and interface to interact with outside. The model,
structure and implementation of the UMDISW in the AFA will be detailed later.

3 The Model of UMDISW

The UMDISW proposed in this paper consists of the following modules: workflow
and task, data flow and information flow, data node and algorithm node. The
functions of each of the modules will be described in the next few subsections.

3.1 Workflow and Task

The processing of scientific data can be divided into modules that depict the
processing details, and a workflow is the sum of all these modules. On this basis,
the workflow is essentially a container that defines the scope of data processing
under the user’s decision. Typically, scientific data processing will have one or
more tasks, and the workflow should also consist of at least one task.
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A task represents a collection of steps performed on or by an allocated
resource. In science, these resources often refer to scientific devices, instrumen-
tation, scientific software, scientific data and algorithms, and are distinct in
different scientific domains. When a resource is shared by multiple tasks, the
allocation of resources to perform a given task depends on its availability, suit-
ability, and priority of the task to be completed. The start and execution of the
task will be postponed until the resources are allocated to it.

3.2 Data Flow and Information Flow

Depending on the structure of the workflow, its execution will involve the transfer
of entities (data, information, etc.) because they are generated or used during
the execution of the workflow, and this transfer forms the data and information
flows.

The data flow usually refers to the process or location of the data in the
workflow, so it’s necessary to define the nodes to represent the start and end of
the data flow; define the input and output locations of subtasks to represent the
current progress of the data; define connect lines to represent the movement of
data between two subtasks, which is also a factor driving the workflow; define
work areas to distinguish between different workflows. In order to describe the
model of UMDISW in a graphical way in the following discussion, the data flow is
represented by solid lines, which start from the start node (represented by a solid
circle), or from the output of the subtask module (represented by rectangle), or
from the data node (represented by rounded rectangle), and terminate at the end
node (represented by triangle) or subtask module input. What’s more, different
workflows are divided into different areas (represented by lanes).

The information flow in the workflow also requires the above definition to
represent the start and end, movement, and the classification of information. At
the same time, the definition of data nodes and algorithm nodes is needed to
display the development and changes of information during the execution of the
workflow, such as data generation and update of algorithm parameters, and these
changes based on the definitions form the workflow’s information flow. Similarly,
for graphical description, the information flow is designated as a dashed dotted
arrow that begins at the subtask module and ends at the information module
(represented by dashed rectangle).

3.3 Data Node and Algorithm Node

Defining data nodes and algorithm nodes for two purposes: first, they contain
data inputs and algorithm inputs for a module in the workflow, or metadata
information that is used to standardize the module’s output; second, they contain
addresses that point to the actual stored data and algorithms in the databases.
An algorithm node and several data nodes combine to form a module of the
workflow, that is, a subtask in the task.
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Fig. 1. Workflow sample diagram

Algorithm Node. According to the above description, the number of algorithm
nodes in a workflow should be equal to the length of the workflow (remove the
start and end nodes). In addition to the metadata information of the correspond-
ing algorithm and the actual stored reference address, the algorithm node needs
to indicate what format of input and output are needed in this step to improve
the efficiency of the user to build the workflow. The algorithm corresponding to
the algorithm node here may be a file or an algorithm program that has been
integrated in the system.

Data Node. Data nodes are divided into data input nodes and data output
nodes. The data input node can be combined with the algorithm node to become
a subtask or a module of the workflow, and it may be a data file, a database
table or a value; the data output node is an online result set or image (available
for download), but it is not displayed in the workflow, and will only be displayed
in the user interface when clicking on an algorithm node.

3.4 Example

Figure 1 shows two sample workflows that use machine learning methods to illus-
trate the workflow symbols mentioned earlier. There are two workflows, Work-
flowA and WorkflowB, separated by lanes.

WorkflowA is a branched workflow that includes five subtasks: PPROC, FS,
Show, ML, Store. Each subtask uses the corresponding algorithm for calculation
and processing. WorkflowA starts from the subtask PPROC, which needs to
input the data set pointed by the data node A. After a period of processing, the
processing result is pushed to the subtask FS, and the corresponding information
module Info1 is generated.
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Fig. 2. Hierarchical structure of UMDISW

When the subtask FS gets the output of the previous step, it takes itself as its
own input and starts executing. It should be noted that when the FS is executed,
the output will be passed to the two subtasks, Show and ML, the former displays
the results of the previous step to the page, and the latter combines the result of
the previous step with the newly entered data B as its own input, and the result
of the operation is passed to the next Store, and the corresponding information
module Info2 is generated.

After executing the ML, the Store subtask will receive the result of the ML,
which will save it to the database and generate the information module Info3,
and end the WorkflowA.

The solid line in Fig. 1 reflects the flow of data during the execution of the
workflow, which shows the process of data changes; the combination of the infor-
mation modules corresponding to the dotted lines is the embodiment of the infor-
mation flow in the workflow, which shows the gain process of the information.

WorkflowB is a linear workflow, and its execution process is similar to Work-
flowA, except that each subtask has data input and information output, and
there is no branch.

Although this sample workflow is only for machine learning processing, the
nodes, modules, and regions shown in the figure provide the necessary functions
to model the workflow of various scientific domains and non-machine learning
methods. In addition, the graphical representation of the workflow provides a
very compact view of the features and controls used to implement the workflow.
In principle, since any organized process can be projected as a workflow, the
proposed workflow model can facilitate the development of a common frame-
work for managing related processes in different domains. Such a framework can
promote understanding and application of cross-domain knowledge processing.
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4 The Structure and Execution of UMDISW

In order to eliminate the inconsistency between scientific data and methods in
different domains, the UMDISW proposed in this paper is transparent to the
bottom and inside, and can be divided into three layers to meet the needs of
different domains.

As shown in Fig. 2, UMDISW consists of three layers: Running Service Layer
(RSL), Workflow Execution Layer (WEL), and Data Resource Layer (DRL).
Each layer interacts with each other to complete the execution of the workflow
and save the information.

4.1 Running Service Layer

The Running Service Layer is the only open part of the UMDISW, located at
the top of the entire structure, providing a series of methods to interact with the
user. Its core function is to instantiate user-created workflow models and display
workflow information.

The RSL is web-based, thus allowing users to dynamically design workflows
on the browser and to support visual editing operations such as adding, copying,
dragging, and double-clicking on graphical elements representing components.
When the page is loaded, an area is first drawn in the page according to the
initialization incoming data as the working area of the workflow, and the related
components are instantiated. At this time, the user needs to click the component
to complete the binding operation of the data and the algorithm. When the above
operation is completed, the components and connect lines in the entire area will
be locked, and the workflow will be instantiated by the RSL and passed to the
WEL.

In addition, as a layer of display information, the RSL also supports the
relevant data information transmitted on the underlying layer and rendered on
the page.

4.2 Workflow Execution Layer

Workflow execution typically involves one pass of all modules modeled in the
workflow or the whole life cycle of scientific data. For such a loop, the workflow
starts from the initial state and is converted by all or part of the finite state
for each module. Workflow execution may be affected by a number of specific
factors, such as the value of various parameters, the final application, decision
logic, the execution engine, and the user’s input at a particular point in the
workflow. WEL is to implement the built-in or implicit logic in the workflow,
and to perform a cycle of the workflow. The WEL consists of two core modules:
Execution Engine and Scheduling Framework.

The Execution Engine’s responsibility is to obtain the workflow objects
instantiated in the RSL and combine them with the data and algorithms passed
by the Scheduling Framework to form an executable workflow. When the com-
bination is completed, the user selects whether to start executing the workflow.
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If start, the Execution Engine starts executing the workflow until to the end or
an abnormality occurs in the middle. Therefore, workflow execution is based on
user-triggered events. When the execution ends, the execution engine passes the
results to the Scheduling Framework for further processing.

According to the previous description, one duty of the Scheduling Framework
is to pass data and algorithms to the Execution Engine to form an executable
workflow. In addition, the Scheduling Framework is responsible for further pro-
cessing the execution results, including passing it up to the RSL for visualiza-
tion, and passing it down to the DRL for storage. However, no matter what
processing is performed, the Scheduling Framework can form an information
flow corresponding to the workflow as shown in the right half of Fig. 2 according
to the original information and the result information, including the state of the
data, the update of the parameters, and the results of each subtask.

4.3 Data Resource Layer

Facing heterogeneous multi-source scientific data, the DRL implements the main-
tenance of multi-domain scientific data storage and algorithms. Due to the differ-
ent types of scientific data in different domains, this layer provides a variety types
of databases, including relational databases, non-relational databases, and graph
databases, and provides a unified access interface for data to achieve transparent
operations, including data input and output interface, algorithm call interface,
model save interface, etc. The information required by the other two layers are
stored in the DRL.

5 The Application Scenario of UMDISW

Depending on the application scenario, the UMDISW can be transformed into
different forms depending on the selection, including fully automated workflow,
semi-custom workflow, and fully custom workflow. The difference between these
three forms is that the amount of user interaction is different when building the
workflow.

5.1 Fully Automated Workflow

In many scientific fields, a set of specifications may have been formed for some
processes, and experts agree that the process is reasonable and will not change
the process when doing experiments. Based on this situation, the UMDISW can
form a template workflow based on domain specifications. The template work-
flow defines the corresponding tasks and subtasks according to the requirements
of the experts, and the location of the data nodes and algorithm nodes also
have corresponding requirements, and the data flow and information flow in the
template workflow need to meet the domain specifications.

For the template workflow, the user only needs to select the workflow tem-
plate in advance, and then the fully automated workflow as shown in the Fig. 3
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will appear on the RSL. Figure 3 shows the gravitational wave data process-
ing workflow. Each subtask, data node, algorithm node and information flow in
the workflow are pre-defined. The user only needs to specify the data address
corresponding to the data node, and then click to start running. The template
workflow automatically obtains the data of the specified address from the DRL,
and then passes the template instance and data to the WEL to complete the
workflow execution, and finally return the result to the RSL to complete the
display of the information flow.

Fig. 3. Fully automated workflow

One use of this fully automated workflow is to examine the generalization
capabilities of the same set of algorithms or processes for different data. Because
the subtasks of the template workflow are fixed, the effect of the workflow in
this case can be compared when accepting different data.

5.2 Semi-custom Workflow

In addition to the above-mentioned domain specification process, scientists may
also customize a scientific data analysis process. The workflow in this application
scenario is called a semi-custom workflow. The workflow requires the user to
define the number of steps of the workflow, data nodes and algorithm nodes,
and then RSL will generate the specified workflow based on these parameters.
However, it should be noted that the algorithms and data corresponding to the
subtasks of the created workflow are empty, and the user needs to select the
required algorithms and data. The selection steps are the same as mentioned
above. The information flow is also displayed by the WEL.

One function of this semi-custom workflow is to compare the results of the
same data in the case of different algorithms. As shown in Fig. 4, these two semi-
custom workflows built for users have the same structure, including the number
of steps and input data, the only difference is that the subtasks, the subtask in
Superalloy Experiment 1 is to analyze data A using the SVM algorithm, while
the subtask in Superalloy Experiment 2 is to analyze data A using the random
forest algorithm, returning the results to Info1 and Info2 respectively, to compare
the effects of using different algorithms when processing the same data.
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Fig. 4. Semi-custom workflow

5.3 Fully Custom Workflow

Fully custom workflows have a higher degree of freedom than semi-custom work-
flows. This is reflected in the fact that such workflows do not provide users with
the generation of related components, and users can drag and drop to display on
the RSL with their own needs, and connect the components using connectors.
Of course, each node of the workflow at this time is still empty, so the user needs
to select the corresponding data and algorithm. It is worth noting that after the
user uses such a workflow and selects the data corresponding to the data node,
the Scheduling Framework in the WEL intelligently recommends the appropri-
ate machine learning algorithm according to the data selected by the user. So
this kind of workflow is designed to provide users with an intelligent algorithm
selection tool compared to the above two workflows, reducing the workload of
users when conducting scientific experiments.

The recommended logic for machine learning algorithms is shown in Fig. 5.
The data is first preprocessed into a conforming format, and then the data is
parsed to see if feature reduction processing is required. If necessary, workflow
will recommend the feature dimension reduction method of unsupervised learn-
ing class, such as FA, PCA, LDA and other topic model algorithms, or select
Lasso, Ridge which are depending on the number of samples. If feature dimen-
sionality reduction is not required, it will check if the dataset have decision
attributes. If not, it will recommend clustering methods of unsupervised learn-
ing class, and recommend clustering algorithms such as k-means, hierarchical
clustering, and FCM as needed. If there is a decision attribute, it will check
whether the decision data belongs to a discrete class or a continuous class. If it
belongs to the continuous class, workflow will recommend the regression method
of supervised learning class, and recommend SVR, RF, Adaboost and other algo-
rithms depending on the sample attributes. If the decision attribute is a discrete
class, it will be recommended according to the sample type, if sample is image
data, CNN is recommended, if it is time series data, RNN is recommended, and
so on.

Of course, these recommended algorithms are just to give users a reference
to help users make decisions. However, in practical applications, it can be found
that this intelligent and fully custom workflow with recommendation mechanism
does reduce the experimental steps, experiment time and workload for users who
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Fig. 5. The mechanism of intelligently recommending algorithms

do scientific experiments. Most importantly, it also plays a great role in exploring
new scientific discoveries.

6 The Implementation of UMDISW

Since the proposal of UMDISW is based on previous research on the architecture
of multi-domain scientific big data management system, the implementation of
UMDISW is also dependent on the implementation and deployment of the archi-
tecture.

After integrating the content of the UMDISW into the architecture, the
deployment of the entire architecture is updated as shown in Fig. 6. And as
mentioned earlier, our proposed UMDISW is located in the AFA area.

As shown in Fig. 6, AFA consists of two subsystems: Spark as a workflow tool
and gooFlow as a workflow manager. GooFlow is a UI component used to design
flowcharts on the web page. It is based on Jquery development, and the great
user experience makes the interface very easy to use. As a new generation of
distributed processing framework, Spark’s memory-based computing can speed
up the execution of workflows, and it has an excellent machine learning library
MLlib, which can be used as a tool for data analysis. The asset loader in the com-
ponent diagram is replaced by an adapter “QFA-AFA Adapter”. GooFlow also
integrates the Spark tool with another adapter, the “Spark-gooFlow Adapter”.

As can be seen from the deployment diagram, AFA connects to Bootstrap
through the adapter “QFA-AFA Adapter” and the interface “asset provider”.
Through adapters and interfaces, gooFlow can get the data and algorithms
stored in SAA that scientists want to experiment with. For the visualization
of the workflow, gooFlow can be presented directly to the “Chinese visCloud” or
Bootstrap via the interface “pipeline provider” and the adapter “Visualization
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Fig. 6. The deployment of architecture and the implementation of UMDISW

Adapter”. At the same time, the UMDISW also obtains the basic services and
resource management functions in the BSFA through the interface “Basic service
provider” and adapters.

7 Conclusion

Managing scientific data from a whole life cycle perspective is very helpful in
mining the value of it. This paper proposes a General Multi-Domain Intelligent
Scientific Workflow to help scientists create scientific value by dividing the whole
life cycle steps.

The highlight of this article is: (1) using graphics and descriptors to model
scientific workflows, eliminating the differences in heterogeneous scientific data,
and building a universal framework to support consistency in multi-domain data
processing; (2) transparency of the underlying architecture enables scientists
to focus on high-level experimental design, reducing the time cost of learning
and using the workflow; (3) incorporating a data-driven mechanism to intelli-
gently recommend algorithms, reducing the amount of labor required for scien-
tists to experiment and providing decision support for exploring new scientific
discoveries.
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