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Abstract. To improve system resource utilization, consolidating multi-
tenants’ workloads on the common computing infrastructure is a popu-
lar way for the cloud data center. The typical deployment of the mod-
ern cloud data center is co-locating online services and offline analyt-
ics applications. However, the co-locating deployment inevitably brings
workloads’ competitions for system resources, such as the CPU and the
memory resources. These competitions result in that the user experience
(the request latency) of the online services cannot be guaranteed. More
and more efforts try to assure the latency requirements of services as
well as the system resource efficiency. Mixing the cloud workloads and
quantifying resource competition is one of the prerequisites for solving
the problem. We proposed a benchmark suite—DCMIX as the cloud
mixed workloads, which covered multiple application fields and differ-
ent latency requirements. Furthermore the mixture of workloads can be
generated by specifying mixed execution sequence in the DCMIX. We
also proposed the system entropy metric, which originated from some
basic system level performance monitor metrics as the quantitative met-
ric for the disturbance caused by system resource competition. Finally,
compared with the Service-Standalone mode (only executing the online
service workload), we found that 99th percentile latency of the service
workload under the Mixed mode (workloads mix execution) increased 3.5
times, and the node resource utilization under that mode increased 10
times. This implied that mixed workloads can reflect the mixed deploy-
ment scene of cloud data center. Furthermore, the system entropy of
mixed deployment mode was 4 times larger than that of the Service-
Standalone mode, which implied that the system entropy can reflect the
disturbance of the system resource competition. We also found that the
isolation mechanism has some efforts for mixed workloads, especially the
CPU-affinity mechanism.
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1 Introduction

Today, more and more data centers are being used to provide cloud computing
services, whatever the public cloud or the private cloud. To implement the econ-
omy of scale of cloud computing, consolidating more tenants’ workloads is the
basic idea [17]. Furthermore, the higher system resource utilization can bring
more profits, so deploying diverse multi-tenant workloads on the same physical
node is a popular way for the cloud data center. And typically, online services and
offline analytics applications are co-located on shared resources [10]. However,
the co-locating deployment inevitably brings workloads’ competitions for sys-
tem resources, such as CPU and memory resources within the same node. These
competitions always result in high response latency of online service workload
and further lead to poor user experience.

More and more previous work tries to assure the user experience as well as the
system efficiency, such as Intel’s Cache Allocation Technology [8], Linux Contain-
ers Technology [11], Labeled von Neumann Architecture [1], et al. Benchmarks
measure the systems and architectures quantitatively, so the cloud data center
benchmark is one of the prerequisites for solving the problem. There are two
main challenges: first, the benchmark suite should reflect the application char-
acteristic of cloud data center as well as the mixed execution pattern of cloud
data center. Second, we need a metric to quantify the resource competition of
mixed execution workloads.

In this paper, we propose DCMIX—a cloud data center benchmark suite
covering multiple cloud application fields and the mixed workloads’ execution
mechanisms. DCMIX has 17 typical cloud data center workloads, which covered
four typical application fields and the latencies of workloads range from microsec-
onds to minutes. Furthermore, DCMIX can generate mixed execution sequence
of workloads by the user customization, and it supports the mixture of serial
execution and parallel execution. Then we propose system entropy as the joint
entropy of system resource performance data, to reflect system resource competi-
tions. We chose four system level metrics (CPU utilization, memory bandwidth,
disk I/O bandwidth, and network I/O bandwidth) as the basic elements of the
system entropy, and the system entropy is the joint entropy of them. The ele-
ments of the system entropy can easily get by monitoring the target node without
third party application’s participation, which is more suited for the public cloud
scenes.

Finally, we conduct a series of experiments under five different modes on the
X86 platform, which are Service-Standalone (only online services), Analytics-
Standalone (only offline analytics applications), Mixed (workloads mix without
any isolation setting), Mixed-Tied (workloads mix under the CPU-affinity set-
ting), and Mixed-Docker (workloads mix under Linux containers). Compared
with the Service-Standalone mode, we found that the latency of the service
workload under the mixed mode increased 3.5 times, and the node resource uti-
lization under that mode increased 10 times. Furthermore, the system entropy
of the Mixed mode was 4 times larger than that of the Service-Standalone mode.
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We also found that the isolation mechanisms have some efforts under the mixed
mode, especially the CPU-affinity mechanism.

2 Related Work

Related work is summarized from two perspectives: cloud data center bench-
marks and the system entropy.

For cloud data center benchmarks, we classify cloud data center benchmarks
into two categories from the perspective of the co-locating deployment. The
first one is generating multiple workloads individually, such as CALDA [12],
Hibench [7], BigBench [5], BigDataBench 4.0 [4,16], TailBench [9], and Cloud-
Suite [3]. These benchmarks don’t consider the co-locating deployment, and they
provide multiple typical cloud data center workloads. CALDA provides Cloud
OLAP workloads; Hibench provides Hadoop/Spark data analytics workloads;
TailBench provides diverse tail latency sensitive service workloads; CloudSuite
and Bigdatabench provide multiple workloads of the data center; BigBench pro-
vides an end-to-end data center workload. The second one is mixed workloads.
SWIM [2] and CloudMix [6] build a workload trace to describe the realistic
workloads mixed by mining production trace, and then run synthetic operations
according to the trace. However, how to generate real workloads on the basis of
mixture is still an open question.

In the area of the system entropy, the information entropy, also called Shan-
non entropy, is often used to quantify the degree of uncertainty of which infor-
mation is produced by a stochastic source of data. Google [13] applied entropy
for the system monitor, which is used to assess the stability of the profiling and
sampling. BDTune [14] applied the relative entropy, which is the relative value of
performance metrics on different data center nodes, to troubleshoot anomalous
nodes in the data center. How to quantify resource competition in the cloud data
center is still an open question.

3 DCMIX

Figure 1 shows the framework of DCMIX, there are four main modules: Work-
loads, User interface, Mixed workloads generator, and Performance monitor.
DCMIX contains two types of workloads: online services and data analytic work-
loads, and they are all deployed on the target system. User interface is the por-
tal for user, and users can specify their workload mix requirements, including
workloads and mixture patterns. Mixed workloads generator can generate online
services’ requests and submit data analytics jobs to the target system. Perfor-
mance monitor can monitor the performance data of the target system, and the
system entropy is calculated by these original monitor data.
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Fig. 1. The DCMIX framework

3.1 Workloads

DCMIX contains two types of workloads: online services and data analytic work-
loads. As shown on Fig. 2, these workloads have different application fields
and different user experience (latency). DCMIX’s application fields are big
data, artificial intelligence, high-performance computing, transaction processing
databases, et al. The latencies of DCMIX workloads range from microseconds to
minutes.

Fig. 2. The DCMIX workloads

The details of workloads are shown on Table 1. DCMIX Workloads are from
two famous benchmark suites, which are Bigdatabench 4.0 [4,16] and TailBench
[9].
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Table 1. The DCMIX workloads

Workloads Application type Domain Latency requirement

Count [16] Offline analytics application Big data Larger than 10 s

Sort [16] Offline analytics application Big data Larger than 10 s

Bayes [16] Offline analytics application Big data Larger than 10 s

Convolution [16] Offline analytics application AI Larger than 10 s

Alexnet [16] Offline analytics application AI Larger than 10 s

MD5 [16] Offline analytics application HPC Larger than 10 s

Multiply [16] Offline analytics application HPC Larger than 10 s

FFT [16] Offline analytics application HPC Larger than 10 s

Union [16] Offline analytics application Transaction DB Larger than 10 s

Redis Online service Big data Less than 0.1ms

Xapian [9] Online service Big data 1–100 ms

Masstree [9] Online service Big data 1–10ms

Img-dnn [9] Online service AI 1–20ms

Moses [9] Online service AI 1–100 ms

Sphinx [9] Online service AI 1–10 s

Silo [9] Online service Transaction DB Less than 0.1ms

Shore [9] Online service Transaction DB 1–10ms

3.2 Mixed Workload Generator

Mixed workloads generator can generate the mixed workloads through submit-
ting queries (service requests queries and data analytics job submitting queries).
Mixed workloads generator supports the mixture execution of serial execution
and parallel execution. Serial execution means that the workload must start up
after the previous workload complete. Parallel execution means that multiple
workloads start up at the same time.

Moreover, in the workload generator configuration file, users can set request
configurations for each workload. For online-services, we provided request inten-
sity, number of requests, number of warmup requests, etc.; for offline-analytics,
we provide path of the data set, threads number of jobs, etc. Table 2 lists the
parameters in the workload generator configuration file.

4 System Entropy

System entropy is used to reflect system resource disturbances, i.e., the uncer-
tainty associated with resources usage.

Although the concept of system entropy has been proposed [18], there is
no formal definition and corresponding calculation method. In this section, we
defined the concept of system entropy as the joint entropy S of system resource
performance data, to reflect system resource competition. The definition of Sys-
tem Entropy is based on the Shannon entropy. Shannon entropy is often used
to quantify the degree of uncertainty of which information is produced by a
stochastic source of data. The measure of Shannon entropy associated with each
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Table 2. Parameters in workload generator configuration

Parameter name Description

WarmupReqs For online services. The number of requests
for warm-up

Reqs For online services. The total number of
requests (not include Warmup Reqs)

QPS For online services. The average request rate,
i.e., queries per second

ServerThreads For online services. The number of server
threads for processing requests

ClientThreads For online services. The number of client
threads for generating requests

ServerIP For online services. The IP address of the
server

ServerPort For online services. The TCP/IP port used
by the server

JobThreads For offline analytics workloads. The number
of threads for executing jobs

DataPath For offline analytics workloads. The path of
data set

possible data value is the negative logarithm of the probability mass function
for the value [15].

We chose four architecture-independent system metrics, which are CPU uti-
lization, memory bandwidth utilization, disk I/O utilization, and network I/O
bandwidth utilization, as elements of the system entropy. And the system entropy
is the sum of these four elements’ entropies. In other words, we measure system
uncertainty with variations of the four most common system resource utilization.

As shown in Formula 1, S is the variable of system entropy, S contains
four elements. C is the CPU utilization, which is defined as the percentage of
time that the CPU executing at the system or user level. M is the memory
bandwidth utilization, which is the occupied memory bandwidth divided by the
peak memory bandwidth. D is the disk I/O utilization, which is the occupied
disk I/O bandwidth divided by the peak disk I/O bandwidth. N is the network
I/O utilization, which is the occupied network I/O bandwidth divided by the
peak network I/O bandwidth.

S = (C,M,D,N) (1)

As shown in Formula 2, the entropy of S is the joint entropy of (C,M,D,N),
and we assume that these elements are independent of each other, so the calcu-
lation of H(S) is the sum of them.

H(S) = H(C) + H(M) + H(D) + H(N) (2)
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The principle of system entropy is according with the information entropy.
According to the information entropy calculation formula given by Shannon, for
any discrete random variable X, its information entropy is defined as Formula 3
[15].

H(X) = −
∑

x∈X

p(x) ∗ log2 p(x) (3)

So, the entropy of each element can be obtained by Formula 3. And we take
C as the example to describe the calculation of p(x). As shown on Formula 4,
p(c) is the probability of C, the Num(c) is the count of the value is c in the
sample, and n is the total number of the sample.

p(c) =
Num(c)

n
(4)

5 Experiment and Experimental Analysis

5.1 Experimental Configurations and Methodology

Experimental Configurations. We used two physical nodes for experiments,
one is the target node (Server node) and the other is the workload generator
node (Client node). The operating system of the Server node is Linux Ubuntu
16.04. The Server node is equipmented with Intel Xeon E5645 processor and
96GB memory. The detailed configurations are summarized in Table 3.

Table 3. The configuration of the server node

CPU Intel(R) Xeon(R) E5645 2.40G

Memeory 96 GB DDR3 1333 MHz bandwidth: 8 GB/s

Network Ethernet 1G bandwidth: 943 Mbits/s

Disk SATA 1T bandwidth: 154.82 MB/s

OS Ubuntu 16.04 and the kernel is 4.13.0-43-generic

GCC 4.3

Redis 4.2.5

We chose four workloads in the experiments, they are Redis (the online service
workload), Sort (the offline analytics workload), Wordcount (the offline analytics
workload), and MD5 (the offline analytics workload). Redis is a single thread in-
memory database, which has been used in the cloud widely. Sort and Wordcount
are multi-threaded big data workloads, which is implemented with OpenMP in
our experiment. MD5 is a multi-threaded HPC workload, which is also imple-
mented with OpenMP. Four workloads are deployed on the Server node. And we
deployed the workload generator on the Client node. We generated the mixed
workloads with the parallel execution mode, in which four workloads start up at
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the same time and run together. For the offline analytics workloads, we submit-
ted jobs of Sort, Wordcount and MD5 with 8GB data scale. For the online service
workload, the client request intensity of Redis is 50,000 requests per second, and
follows the exponential distribution.

Experimental Methodology. We conduct the experiment under five different
modes, which were Service-Standalone, Analytics-Standalone, Mixed, Mixed-
Tied, and Mixed-Docker. For the Service-Standalone mode, we only run the
Redis workload on the physical machine. For the Analytics-Standalone mode,
we run all of offline workloads on the physical machine. For the Mixed mode,
we co-located Redis and offline workloads on the physical machine without any
isolation setting, but the total thread number is according with the total hard-
ware thread number of the target platform. For the Mixed-Tied mode, we run
Redis and offline workloads on separated cores through the CPU affinity setting.
Different with the Mixed mode, we run Redis on one core, while run the other
offline workloads on the other cores. For the Mixed-Docker mode, Redis and
offline workloads were executed in two separate Docker containers (Redis run on
one container, and offline workloads run on the other container).

Metrics. The evaluation metrics cover the spectrum of user-observed metrics,
system level metrics, and micro-architectural metrics. As for user-observed met-
rics, we chose the average latency and the tail latency. In terms of system level
metrics, we chose CPU utilization, memory bandwidth utilization, disk band-
width utilization, and network I/O bandwidth utilization.

5.2 Experiment Results and Observations

The User-Observed Metric. Figure 3 shows the latency of Redis. From Fig. 3,
we have the following observations:

First, the tail latency is severe, even in the Service-Standalone mode. In the
Service-Standalone mode, we only run Redis (the single thread workload) on the
multi-core node (Intel Xeon processor), the 99th latency (0.367 ms) is 2 times
to the average latency (0.168 ms), and 99.9th latency (0.419 ms) is 2.5 times to
the average latency. This implied that the state-of-practice system architecture,
i.e., CMP micro-architecture and time-sharing OS-architecture, would incur the
high tail latency.

Second, mixed deployment without any isolation mechanism also incurs the
high latency. In the Mixed mode, the average latency is 0.429 ms (2.6 times
to the Service-Standalone mode) and 99.9th latency is 16.962 ms (27 times to
the Service-Standalone mode). Although, the thread number accords with the
total hardware thread number of the target platform, the interfere of mixed
deployment should incur the high latency of online services.

Third, the CPU affinity setting can relieve the competition. The average
latency of Mixed-tied is 0.173 ms and 99.9th latency is 1.371 ms. So in our
condition, the CPU affinity setting can relieve the competition efficiently.
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Fig. 3. The request latency of the redis

Fourth, the average latency of Mixed-Docker is 0.977 ms and 99.9th latency is
2.75 ms. The container can relieve the tail latency, but make the average latency
higher.

The System Level Metrics for the System. Figure 4 presents the resource
utilization of server node. From Fig. 4, we find that mixed deployment can
prompt the resource utilization. The CPU utilization of the Service-Standalone
mode is only 4%, while the mixed deployment can achieve 46%–55%.

Figure 5 shows the system entropy of server node. From Fig. 5, we find that
the system entropy of the Service-Standalone mode is only 5.9, while that of the
Analytics-Standalone, the Mixed mode, the Mixed-Tied mode, and the Mixed-
Docker mode are 20, 23, 22, 25 respectively. Furthermore, the system entropy of
the Mixed-tied mode is the minimum among all of the mix modes.

The Architecture Level Metrics for the System. Figure 6 shows the micro-
architecture metrics of server node. From Fig. 6, we find larger L1I cache misses
and L2 cache misses under the Service-Standalone mode, smaller L1I cache
misses and L2 cache misses under Analytics-Standalone mode, and that the
micro-architecture metrics have minor variations among three mixed modes.
In other words, the micro-architecture metrics can not reflect the disturbance
caused by system resource competition.

Offline Analytics Application Execution Time. Figure 7 shows offline ana-
lytics application execution time under four different modes. From Fig. 7, we find
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Fig. 4. The system level metrics of the server node

Fig. 5. The system entropy of the server node

that the execution time of Sort under the Analytics-Standalone mode is 495 s,
and that under the Mixed mode, the Mixed-Tied mode, and the Mixed-Docker
mode are 519 s, 534 s, 486 s respectively. Interference has less impact on offline
analytics applications than that on the online services.
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Fig. 6. The architecture metrics of the server node

Fig. 7. Offline analytics application execution time

5.3 Summary

Mixed Workloads. Compared with the Service-Standalone mode, we found
the latency of the service workload under the Mixed mode increased 3.5 times,
and the node resource utilization under that increased 10 times. This implied
that mixed workloads can reflect the mixed deployment scene.
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Tail Latency of the Service Workload. The state-of-the-practice system
architecture, i.e., CMP micro-architecture and time-sharing OS-architecture,
should incur the high tail latency, even in the Service-Standalone mode.

The System Entropy for the Server Node. The system entropy of the
Mixed mode was 4 times larger than that of the Service-Standalone mode, and
its tendency was corresponding to latency among different mixed modes. This
implied that the system entropy can reflect the disturbance caused by system
resource competition.

Isolation Mechanisms. State-of-the-practice isolation mechanisms have some
efforts under the mixed workloads, especially the CPU-affinity mechanism.

Impacts for Offline Workloads. Compared with execution time under the
Analytics-Standalone mode, there is only a slight increase in execution time of
offline analytics applications under the mixed modes. So we can see that the root
cause of long latency of online services under the co-locating deployment is not
insufficient resources, but the short-term disorder competitions.

6 Conclusion

In this paper, we proposed DCMIX as the cloud data center benchmark suite. We
also defined the system entropy to quantify resource competition in the cloud
data center. Through the experiment, we found that DCMIX can reflect the
mixed deployment scene in the cloud data center and the system entropy can
reflect the disturbance of the system resource competition.
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