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Abstract. AI benchmarking provides yardsticks for benchmarking,
measuring and evaluating innovative AI algorithms, architecture, and
systems. Coordinated by BenchCouncil, this paper presents our joint
research and engineering efforts with several academic and industrial
partners on the datacenter AI benchmarks—AIBench. The benchmarks
are publicly available from http://www.benchcouncil.org/AIBench/
index.html. Presently, AIBench covers 16 problem domains, includ-
ing image classification, image generation, text-to-text translation,
image-to-text, image-to-image, speech-to-text, face embedding, 3D face
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recognition, object detection, video prediction, image compression, rec-
ommendation, 3D object reconstruction, text summarization, spatial
transformer, and learning to rank, and two end-to-end application AI
benchmarks. Meanwhile, the AI benchmark suites for high performance
computing (HPC), IoT, Edge are also released on the BenchCouncil web
site. This is by far the most comprehensive AI benchmarking research
and engineering effort.

Keywords: Datacenter · AI · Benchmark

1 Introduction

AIBench provides a scalable and comprehensive datacenter AI benchmark suite.
In total, it includes 12 micro benchmarks, 16 component benchmarks, covering 16
AI problem domains: image classification, image generation, text-to-text trans-
lation, image-to-text, image-to-image, speech-to-text, face embedding, 3D face
recognition, object detection, video prediction, image compression, recommenda-
tion, 3D object reconstruction, text summarization, spatial transformer, learning
to rank, and two end-to-end application AI benchmarks: DCMix [1]—a data-
center AI application combination mixed with AI workloads, and E-commerce
AI—an end-to-end business AI benchmark. The details of AIBench is introduced
in our technical report [2].

We provide both training and inference benchmarks. The training metrics
are the wall clock time to train the specific epochs, the wall clock time to train
a model achieving a target accuracy [3], and the energy consumption to train a
model achieving a target accuracy [3]. The inference metrics are the wall clock
time, accuracy, and energy consumption. Additionally, the performance num-
bers are reported on the BenchCouncil web site (http://www.benchcouncil.org/
numbers.html), to measure the training and inference speeds of different hard-
ware platforms, including multiple types of NIVDIA GPUs, Intel CPUs, AI
accelerator chips, and to measure the performance of different software stacks,
including TensorFlow, PyTorch, and etc.

Using the benchmarks from AIBench, BenchCouncil is organizing the 2019
BenchCouncil International AI System and Algorithm Competition, includ-
ing four tracks: AI System Competitions on RISC-V—an open-source chip,
Cambricon—an AI accelerator Chip, and X86 processors, and 3D Face Recog-
nition Algorithm Competition sponsored by Intellifusion.

2 Related Work

Much previous work focuses on datacenter AI benchmarking. Table 1 summa-
rizes the differences between AIBench and the state-of-the-art and state-of-the-
practise datacenter AI benchmarks. Previous work like MLPerf [4], Fathom [5],
DAWNBench [3], and TBD suite [6] only targets at component benchmarks,
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while lacking of the micro and application benchmarks. On the contrary, bench-
marks like DeepBench [7] and DNNMark [8] only provide several micro bench-
marks, while lacking of the component and application benchmarks. Thus, pre-
vious work adopts a narrow vision of datacenter AI scenario, and fails to propose
a comprehensive AI benchmark suite.

AIBench includes a series of micro, component and application benchmarks
to benchmark the AI systems, architectures, and algorithms. Also, a wide variety
of data types and data sources are covered, including text, images, street scenes,
audios, videos, etc. The workloads are implemented not only based on main-
stream deep learning frameworks like TensorFlow and PyTorch, but also based
on traditional programming model like Pthreads, to conduct an apple-to-apple
comparison. Meanwhile, the HPC AI benchmarks [9], IoT AI benchmarks [10],
Edge AI benchmarks [11], and big data benchmarks [12–14] are also released on
the BenchCouncil web site.

Table 1. The Summary of different AI Benchmarks.

Micro benchmark Component

benchmark

Application

benchmark

Dataset Software stacks

AIBench 12 16 2 16 3

MLPerf [4] N/A 7 N/A 3 2

Fathom [5] N/A 8 N/A 6 1

DeepBench [7] 4 N/A N/A N/A 1

DNNMark [8] 8 N/A N/A N/A 1

DAWNBench [3] N/A 2 N/A 3 2

TBD [6] N/A 7 N/A 6 4

3 Datacenter AI Benchmark Suite—AIBench

Totally, AIBench covers 16 representative real-world data sets widely used in
AI scenario and provides 12 AI micro benchmarks and 16 AI component bench-
marks. Among them, each micro benchmark provides a neural network kernel
implementation, consisting of a single unit of computation [15]; Each component
benchmark provides a full neural network model to solve multiple tasks, each
of which is a combination of multiple units of computation; Each application
benchmark provides an end-to-end application scenario.

3.1 Datacenter AI Micro Benchmarks

Micro benchmarks in AIBench abstracts units of computation among a majority
of AI algorithms, and covers 12 units of computation in total. The micro bench-
marks are convolution, fully connected, relu, sigmoid, tanh, maximum pooling,
average pooling, cosine normalization, batch normalization, dropout, element-
wise operation, and softmax.
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3.2 Datacenter AI Component Benchmarks

Component benchmarks in AIBench cover 16 problem domains and contain both
training and inference. For both training and inference, TensorFlow and PyTorch
implementations are provided.

Image classification uses ResNet neural network [16] and uses Ima-
geNet [17] as data input to solve image classification task.

Image generation uses WGAN [18] algorithms and uses LSUN [19] dataset
as data input to generate image data.

Text-to-Text Translation uses recurrent neural networks [20] and takes
WMT English-German [21] as data input to translate text data.

Image-to-Text uses Neural Image Caption [22] model and takes Microsoft
COCO dataset [23] as input to describe image using text.

Image-to-Image uses the cycleGAN [24] algorithm and takes Cityscapes
[25] dataset as input to transform the image to another image.

Speech-to-Text uses the DeepSpeech2 [26] algorithm and takes Lib-
rispeech [27] dataset as input to recognize the speech data.

Face embedding uses the FaceNet [28] algorithm and takes the LFW
(Labeled Faces in the Wild) dataset [29] or VGGFace2 [30] as input to con-
vert image to an embedding vector.

3D face recognition uses 3D face modes to recognize 3D information within
images. The input data includes 77,715 samples from 253 face IDs, which is
published on the BenchCouncil web site.

Object detection uses the Faster R-CNN [31] algorithm and takes Microsoft
COCO dataset [23] as input to detect objects in images.

Recommendation uses collaborative filtering algorithm and takes Movie-
Lens dataset [32] as input to provide recommendations.

Video prediction uses motion-focused predictive models [33] and takes
Robot pushing dataset [33] as input to predict video frames.

Image compression uses recurrent neural networks and takes ImageNet
dataset as input to compression images.

3D object reconstruction uses a convolutional encoder-decoder network
and takes ShapeNet Dataset [34] as input to reconstruct 3D object.

Text summarization uses sequence-to-sequence model [35] and takes Giga-
word dataset [36] as input to generate summary description for text.

Spatial transformer uses spatial transformer networks and takes MNIST
dataset [37] as input to make spatial transformations.

Learning to Rank uses ranking distillation algorithm [38] and uses Gowalla
dataset [39] to generate ranking scores.

3.3 Application Benchmarks

The suite also provides two end-to-end application benchmarks: DCMix [1]—
mixed datacenter workloads, and E-commerce AI—an end-to-end business AI
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benchmark. Among them, DCMix is to model the datacenter application sce-
nario, and generate mixed workloads with different latencies, including AI work-
loads (i.e., image recognition, speech recognition), online service (e.g., Online
search), etc.

E-commerce AI is to mimic complex modern Internet services workloads,
which is a joint work with Alibaba. An AI-based recommendation module is
included.

3.4 AI Competition

Using the benchmark implementations from AIBench as the baselines, Bench-
Council is organizing the International AI System and Algorithm Competition,
advancing the state-of-the-art or state-of-the-practice algorithms on different
systems or architecture, like X86, Cambricon, RISC-V, and GPU. This year,
there are four tracks, including AI System Competition based on RISC-V, Cam-
bricon, and X86 chips, and Intellifusion 3D Face Recognition Algorithm Com-
petition. The competition information is publicly available from http://www.
benchcouncil.org/competition/index.html. Any companies and research insti-
tutes are welcomed to join and organize a competition track each year.

Among the four tracks., RISC-V and Cambricon-based AI System Competi-
tions are to implement and optimize image classification on RISC-V and Cam-
bricon, respectively. The X86-based AI System Competition is to implement
and optimize the recommendation algorithm. The algorithm Competition is to
develop innovative algorithms for 3D Face Recognition.

4 Conclusion

This paper proposes a comprehensive datacenter AI benchmarks—AIBench, cov-
ering 12 micro benchmarks, 16 component benchmarks, and 2 end-to-end appli-
cation benchmarks. The benchmark suite is publicly available from http://www.
benchcouncil.org/AIBench/index.html .
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