
Chen Zheng
Jianfeng Zhan (Eds.)

LN
CS

 1
14

59

First BenchCouncil International Symposium, Bench 2018
Seattle, WA, USA, December 10–13, 2018
Revised Selected Papers

Benchmarking, Measuring,
and Optimizing

Lecture Notes in Computer Science 11459

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7409

http://www.springer.com/series/7409

Chen Zheng • Jianfeng Zhan (Eds.)

Benchmarking, Measuring,
and Optimizing
First BenchCouncil International Symposium, Bench 2018
Seattle, WA, USA, December 10–13, 2018
Revised Selected Papers

123

Editors
Chen Zheng
Chinese Academy of Sciences
Beijing, China

Jianfeng Zhan
Chinese Academy of Sciences
Beijing, China

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-32812-2 ISBN 978-3-030-32813-9 (eBook)
https://doi.org/10.1007/978-3-030-32813-9

LNCS Sublibrary: SL3 – Information Systems and Applications, incl. Internet/Web, and HCI

© Springer Nature Switzerland AG 2019, corrected publication 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-32813-9

BenchCouncil: Benchmarking and Promoting
Innovative Techniques

The past decade witnessed many innovative techniques as they evolved our economy
and society. The innovative techniques in Datacenter, AI, dedicated processors, and
IoT are especially changing our world. For example, new wave AI techniques have
changed every part of our daily life, such as facial recognition, self-driving cars, robots,
financial services, personal assistants, etc. In recent years, this trend has accelerated,
and there is an increasing interest in generating values from these emerging tech-
nologies. However, benchmarking and promoting innovative techniques are the very
first steps in making the innovation successful, which is the mission of the International
Open Benchmark Council (BenchCouncil).

BenchCouncil is a non-profit research institute, which aims to promote
multi-disciplinary benchmarking research and practice and foster collaboration and
interaction between industry and academia. The major goals of the BenchCouncil are
as follows:

– Establish and maintain a repository of benchmark specifications for quantitative
system and algorithm evaluation and analysis

– Review, shepherd, and release open-source benchmark implementations
– Organize conferences, workshops, and teleconferences fostering the transfer of

knowledge between industry and academia in the areas of benchmarking
– Build a testbed to verify and promote the innovative techniques
– Organize challenges and competition using released benchmarks
– Publish the performance numbers to evaluate competitive techniques using the

benchmarks

In order to fulfill its mission, the BenchCouncil organized the First International
Symposium on Benchmarking, Measuring, and Optimizing (Bench 2018) (http://prof.
ict.ac.cn/Bench18/), which was co-located with IEEE BigData 2018 (http://cci.drexel.
edu/bigdata/bigdata2018/)—an IEEE International Conference on Big Data. The
symposium solicits papers that address hot topical issues in benchmarking, measuring,
and optimizing systems. This book includes 15 papers from the Bench 2018
conference, and 5 invited papers which report on the state-of-the-art AI benchmarking
research and engineering efforts of the BenchCouncil. In addition, 6 Benchmark pro-
posals were presented at the conference, but were not included in this book.

http://prof.ict.ac.cn/Bench18/
http://prof.ict.ac.cn/Bench18/
http://cci.drexel.edu/bigdata/bigdata2018/
http://cci.drexel.edu/bigdata/bigdata2018/

The call for papers for Bench 2018 attracted a number of high-quality submissions.
During a rigorous review process, each paper was reviewed by at least three experts. In
addition, we invited three keynote speakers:

– Prof. Geoffrey Fox (Indiana University): “Big Data Benchmarking: Applications
and Systems”

– Prof. Vijay Janapa Reddi (Harvard University): “MLPerf: the Vision Behind an ML
Benchmark Suite for Measuring the Performance of ML Software Frameworks, ML
Hardware Accelerators, and ML Cloud and Edge Platforms”

– Dr. Arne Berre (SINTEF Digital): “Benchmarking for Digital Platforms with Big
Data, IoT, AI, Cloud, HPC, and Cyber Security”

During the conference, we had 6 benchmark proposals covering the topics in Big
Data, AI, Datacenter, Scalable Transaction, and Database. In order to discuss the
implementation of benchmark and BenchCouncil workgroup specification, we also
held the BenchCouncil Open Meeting to format the working groups.

We are very grateful for the efforts of all authors in relation to writing, revising, and
presenting their papers at Bench 2018. We appreciate the indispensable support of the
Bench 2018 Program Committee and thank them for their efforts and contributions in
maintaining the high standards of the Bench 2018 Symposium.

June 2019 Chen Zheng
Jianfeng Zhan

vi BenchCouncil: Benchmarking and Promoting Innovative Techniques

Organization

Program Chair

Jianfeng Zhan ICT, Chinese Academy of Sciences, and University
of Chinese Academy of Sciences, China

Program Committee

Lizy K. John The University of Texas at Austin, USA
Vijay Janapa Reddi University of Texas at Austin and Google, USA
Wenguang Chen Tsinghua University, China
Woongki Baek UNIST, South Korea
Yunji Chen ICT, Chinese Academy of Sciences, China
Piotr Luszczek University of Tennessee, USA
Rui Hou Institute of Information Engineering, Chinese Academy

of Sciences, China
Yueguo Chen Renmin University of China, China
H. Peter Hofstee IBM, USA
Cheqing Jin East China Normal University, China
Trevor E. Carlson National University of Singapore (NUS), Singapore
Jun-zhao Du Xidian University, China
Hyogi Sim Oak Ridge National Laboratory, USA
Weining Qian East China Normal University, China
Zheng Cao Alibaba, China
Matthias Nicola IBM, Germany
Zhihui Du Tsinghua University, China
Chunjie Luo ICT, Chinese Academy of Sciences, China
Bin Ren College of William and Mary, USA
Hua Chen ICT, Chinese Academy of Sciences, China
Jiaquan Gao Nanjing Normal University, China
Jiannan Ouyang Facebook, USA
Xueming Si Fudan University, China
Yanjun Wu Institute of Software Chinese Academy of Sciences,

China
Lucas Mello Schnorr Federal University of Rio Grande do Sul (UFRGS),

Brazil
Yunquan Zhang ICT, Chinese Academy of Sciences, China
Shengzhong Feng Shenzhen Institutes of Advanced Technology,

Chinese Academy of Sciences, China
Zhen Jia Princeton University, USA
Zhibin Yu Shenzhen Institutes of Advanced Technology,

Chinese Academy of Sciences, China

Dapeng Wang Institute of Software Chinese Academy of Sciences,
China

Bo Wu Colorado School of Mines, USA
Shaoliang Peng National University of Defense Technology, China
Yong Qi Xi’an Jiaotong University, China
Gwangsun Kim Arm Inc., Austin, USA
Rui Ren ICT, Chinese Academy of Sciences, China
Zujie Ren Hangzhou Dianzi University, China
Xiaoyi Lu The Ohio State University, USA
Lei Wang ICT, Chinese Academy of Sciences, China
Jianhui Li Computer Network Information Center,

Chinese Academy of Sciences, China
Jianwu Wang University of Maryland, USA
Kenli Li Hunan University, China
Suzanne Rivoire Sonoma State University, USA
Rui Han ICT, Chinese Academy of Sciences, China
Jungang Xu Chinese Academy of Sciences, China
Xu Liu College of William and Mary, USA
Tong Wu National Institute of Metrology, China
Li Zha University of the Chinese Academy of Sciences, China
Lei Liu ICT, Chinese Academy of Sciences, China
Chen Zheng ICT, Chinese Academy of Sciences, China

viii Organization

Contents

AI Benchmarking

AIBench: Towards Scalable and Comprehensive Datacenter
AI Benchmarking . 3

Wanling Gao, Chunjie Luo, Lei Wang, Xingwang Xiong, Jianan Chen,
Tianshu Hao, Zihan Jiang, Fanda Fan, Mengjia Du, Yunyou Huang,
Fan Zhang, Xu Wen, Chen Zheng, Xiwen He, Jiahui Dai, Hainan Ye,
Zheng Cao, Zhen Jia, Kent Zhan, Haoning Tang, Daoyi Zheng,
Biwei Xie, Wei Li, Xiaoyu Wang, and Jianfeng Zhan

HPC AI500: A Benchmark Suite for HPC AI Systems 10
Zihan Jiang, Wanling Gao, Lei Wang, Xingwang Xiong, Yuchen Zhang,
Xu Wen, Chunjie Luo, Hainan Ye, Xiaoyi Lu, Yunquan Zhang,
Shengzhong Feng, Kenli Li, Weijia Xu, and Jianfeng Zhan

Edge AIBench: Towards Comprehensive End-to-End Edge
Computing Benchmarking . 23

Tianshu Hao, Yunyou Huang, Xu Wen, Wanling Gao, Fan Zhang,
Chen Zheng, Lei Wang, Hainan Ye, Kai Hwang, Zujie Ren,
and Jianfeng Zhan

AIoT Bench: Towards Comprehensive Benchmarking Mobile
and Embedded Device Intelligence . 31

Chunjie Luo, Fan Zhang, Cheng Huang, Xingwang Xiong, Jianan Chen,
Lei Wang, Wanling Gao, Hainan Ye, Tong Wu, Runsong Zhou,
and Jianfeng Zhan

A Survey on Deep Learning Benchmarks: Do We Still Need New Ones? . . . 36
Qin Zhang, Li Zha, Jian Lin, Dandan Tu, Mingzhe Li, Fan Liang,
Ren Wu, and Xiaoyi Lu

Cloud

Benchmarking VM Startup Time in the Cloud . 53
Samiha Islam Abrita, Moumita Sarker, Faheem Abrar,
and Muhammad Abdullah Adnan

An Open Source Cloud-Based NoSQL and NewSQL Database
Benchmarking Platform for IoT Data. 65

Arjun Pandya, Chaitanya Kulkarni, Kunal Mali, and Jianwu Wang

Scalability Evaluation of Big Data Processing Services in Clouds 78
Xin Zhou, Congfeng Jiang, Yeliang Qiu, Tiantian Fan, Yumei Wang,
Liangbin Zhang, Jian Wan, and Weisong Shi

PAIE: A Personal Activity Intelligence Estimator in the Cloud 91
Yingjie Shi, Fang Du, Yanyan Zhang, Zhi Li, and Tao Zhang

DCMIX: Generating Mixed Workloads for the Cloud Data Center 105
Xingwang Xiong, Lei Wang, Wanling Gao, Rui Ren, Ke Liu,
Chen Zheng, Yu Wen, and Yi Liang

Machine-Learning Based Spark and Hadoop Workload Classification
Using Container Performance Patterns . 118

Mikhail Genkin, Frank Dehne, Pablo Navarro, and Siyu Zhou

Testing Raft-Replicated Database Systems . 131
Guohao Ding, Weining Qian, Peng Cai, Tianze Pang,
and Qiong Zhao

Big Data

Benchmarking for Transaction Processing Database Systems
in Big Data Era . 147

Chunxi Zhang, Yuming Li, Rong Zhang, Weining Qian, and Aoying Zhou

UMDISW: A Universal Multi-Domain Intelligent Scientific Workflow
Framework for the Whole Life Cycle of Scientific Data 159

Qi Sun, Yue Liu, Wenjie Tian, Yike Guo, and Bocheng Li

MiDBench: Multimodel Industrial Big Data Benchmark. 172
Yijian Cheng, Mengqian Cheng, Hao Ge, Yuhe Guo, Yuanzhe Hao,
Xiaoguang Sun, Xiongpai Qin, Wei Lu, Yueguo Chen, and Xiaoyong Du

Modelling and Prediction

Power Characterization of Memory Intensive Applications:
Analysis and Implications . 189

Yeliang Qiu, Congfeng Jiang, Tiantian Fan, Yumei Wang,
Liangbin Zhang, Jian Wan, and Weisong Shi

Multi-USVs Coordinated Detection in Marine Environment
with Deep Reinforcement Learning . 202

Ruiying Li, Rui Wang, Xiaohui Hu, Kai Li, and Haichang Li

EC-Bench: Benchmarking Onload and Offload Erasure Coders
on Modern Hardware Architectures . 215

Haiyang Shi, Xiaoyi Lu, and Dhabaleswar K. Panda

x Contents

Algorithm and Implementations

Benchmarking SpMV Methods on Many-Core Platforms 233
Biwei Xie, Zhen Jia, and Yungang Bao

Benchmarking Parallel K-Means Cloud Type Clustering
from Satellite Data . 248

Carlos Barajas, Pei Guo, Lipi Mukherjee, Susan Hoban, Jianwu Wang,
Daeho Jin, Aryya Gangopadhyay, and Matthias K. Gobbert

Correction to: MiDBench: Multimodel Industrial Big Data Benchmark C1
Yijian Cheng, Mengqian Cheng, Hao Ge, Yuhe Guo, Yuanzhe Hao,
Xiaoguang Sun, Xiongpai Qin, Wei Lu, Yueguo Chen, and Xiaoyong Du

Author Index . 261

Contents xi

AI Benchmarking

AIBench: Towards Scalable
and Comprehensive Datacenter

AI Benchmarking

Wanling Gao1,2,4, Chunjie Luo1,2,4, Lei Wang1,2,4, Xingwang Xiong1,4,
Jianan Chen1,4, Tianshu Hao1,4, Zihan Jiang1,4, Fanda Fan1,4, Mengjia Du1,4,

Yunyou Huang1,4, Fan Zhang1, Xu Wen1,4, Chen Zheng1,2,4, Xiwen He1,
Jiahui Dai2,3, Hainan Ye2,3, Zheng Cao5, Zhen Jia6, Kent Zhan7,

Haoning Tang8, Daoyi Zheng9, Biwei Xie10, Wei Li11, Xiaoyu Wang12,
and Jianfeng Zhan1,2,4(B)

1 State Key Laboratory of Computer Architecture, Institute of Computing
Technology, Chinese Academy of Sciences, Beijing, China

{gaowanling,wanglei 2011,luochunjie,xiongxingwang,chenjianan,haotianshu,

jiangzihan,fanfanda,dumengjia,huangyunyou,zhangfan,wenxu,zhengchen,

zhanjianfeng}@ict.ac.cn
2 BenchCouncil (International Open Benchmark Council), Dover, Delaware, USA

3 Beijing Academy of Frontier Sciences and Technology, Beijing, China
{daijiahui,yehainan}@mail.bafst.com

4 University of Chinese Academy of Sciences, Beijing, China
5 Alibaba, Hangzhou, China

zhengzhi.cz@alibaba-inc.com
6 Princeton University, Princeton, USA

zhenj@cs.princeton.edu
7 Wuba, Zhuxi, China
zhankunlin@58.com

8 Tencent, Shenzhen, China
haoningtang@tencent.com

9 Baidu, Beijing, China
zhengdaoyi@baidu.com

10 China RISC-V Alliance, Beijing, China
11 Cambricon, Shenzhen, China

liwei1@cambricon.com
12 Intellifusion, Shenzhen, China

wang.xiaoyu@intellif.com

Abstract. AI benchmarking provides yardsticks for benchmarking,
measuring and evaluating innovative AI algorithms, architecture, and
systems. Coordinated by BenchCouncil, this paper presents our joint
research and engineering efforts with several academic and industrial
partners on the datacenter AI benchmarks—AIBench. The benchmarks
are publicly available from http://www.benchcouncil.org/AIBench/
index.html. Presently, AIBench covers 16 problem domains, includ-
ing image classification, image generation, text-to-text translation,
image-to-text, image-to-image, speech-to-text, face embedding, 3D face

c© Springer Nature Switzerland AG 2019
C. Zheng and J. Zhan (Eds.): Bench 2018, LNCS 11459, pp. 3–9, 2019.
https://doi.org/10.1007/978-3-030-32813-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32813-9_1&domain=pdf
http://www.benchcouncil.org/AIBench/index.html
http://www.benchcouncil.org/AIBench/index.html
https://doi.org/10.1007/978-3-030-32813-9_1

4 W. Gao et al.

recognition, object detection, video prediction, image compression, rec-
ommendation, 3D object reconstruction, text summarization, spatial
transformer, and learning to rank, and two end-to-end application AI
benchmarks. Meanwhile, the AI benchmark suites for high performance
computing (HPC), IoT, Edge are also released on the BenchCouncil web
site. This is by far the most comprehensive AI benchmarking research
and engineering effort.

Keywords: Datacenter · AI · Benchmark

1 Introduction

AIBench provides a scalable and comprehensive datacenter AI benchmark suite.
In total, it includes 12 micro benchmarks, 16 component benchmarks, covering 16
AI problem domains: image classification, image generation, text-to-text trans-
lation, image-to-text, image-to-image, speech-to-text, face embedding, 3D face
recognition, object detection, video prediction, image compression, recommenda-
tion, 3D object reconstruction, text summarization, spatial transformer, learning
to rank, and two end-to-end application AI benchmarks: DCMix [1]—a data-
center AI application combination mixed with AI workloads, and E-commerce
AI—an end-to-end business AI benchmark. The details of AIBench is introduced
in our technical report [2].

We provide both training and inference benchmarks. The training metrics
are the wall clock time to train the specific epochs, the wall clock time to train
a model achieving a target accuracy [3], and the energy consumption to train a
model achieving a target accuracy [3]. The inference metrics are the wall clock
time, accuracy, and energy consumption. Additionally, the performance num-
bers are reported on the BenchCouncil web site (http://www.benchcouncil.org/
numbers.html), to measure the training and inference speeds of different hard-
ware platforms, including multiple types of NIVDIA GPUs, Intel CPUs, AI
accelerator chips, and to measure the performance of different software stacks,
including TensorFlow, PyTorch, and etc.

Using the benchmarks from AIBench, BenchCouncil is organizing the 2019
BenchCouncil International AI System and Algorithm Competition, includ-
ing four tracks: AI System Competitions on RISC-V—an open-source chip,
Cambricon—an AI accelerator Chip, and X86 processors, and 3D Face Recog-
nition Algorithm Competition sponsored by Intellifusion.

2 Related Work

Much previous work focuses on datacenter AI benchmarking. Table 1 summa-
rizes the differences between AIBench and the state-of-the-art and state-of-the-
practise datacenter AI benchmarks. Previous work like MLPerf [4], Fathom [5],
DAWNBench [3], and TBD suite [6] only targets at component benchmarks,

http://www.benchcouncil.org/numbers.html
http://www.benchcouncil.org/numbers.html

AIBench—Datacenter AI Benchmarking Suite 5

while lacking of the micro and application benchmarks. On the contrary, bench-
marks like DeepBench [7] and DNNMark [8] only provide several micro bench-
marks, while lacking of the component and application benchmarks. Thus, pre-
vious work adopts a narrow vision of datacenter AI scenario, and fails to propose
a comprehensive AI benchmark suite.

AIBench includes a series of micro, component and application benchmarks
to benchmark the AI systems, architectures, and algorithms. Also, a wide variety
of data types and data sources are covered, including text, images, street scenes,
audios, videos, etc. The workloads are implemented not only based on main-
stream deep learning frameworks like TensorFlow and PyTorch, but also based
on traditional programming model like Pthreads, to conduct an apple-to-apple
comparison. Meanwhile, the HPC AI benchmarks [9], IoT AI benchmarks [10],
Edge AI benchmarks [11], and big data benchmarks [12–14] are also released on
the BenchCouncil web site.

Table 1. The Summary of different AI Benchmarks.

Micro benchmark Component

benchmark

Application

benchmark

Dataset Software stacks

AIBench 12 16 2 16 3

MLPerf [4] N/A 7 N/A 3 2

Fathom [5] N/A 8 N/A 6 1

DeepBench [7] 4 N/A N/A N/A 1

DNNMark [8] 8 N/A N/A N/A 1

DAWNBench [3] N/A 2 N/A 3 2

TBD [6] N/A 7 N/A 6 4

3 Datacenter AI Benchmark Suite—AIBench

Totally, AIBench covers 16 representative real-world data sets widely used in
AI scenario and provides 12 AI micro benchmarks and 16 AI component bench-
marks. Among them, each micro benchmark provides a neural network kernel
implementation, consisting of a single unit of computation [15]; Each component
benchmark provides a full neural network model to solve multiple tasks, each
of which is a combination of multiple units of computation; Each application
benchmark provides an end-to-end application scenario.

3.1 Datacenter AI Micro Benchmarks

Micro benchmarks in AIBench abstracts units of computation among a majority
of AI algorithms, and covers 12 units of computation in total. The micro bench-
marks are convolution, fully connected, relu, sigmoid, tanh, maximum pooling,
average pooling, cosine normalization, batch normalization, dropout, element-
wise operation, and softmax.

6 W. Gao et al.

3.2 Datacenter AI Component Benchmarks

Component benchmarks in AIBench cover 16 problem domains and contain both
training and inference. For both training and inference, TensorFlow and PyTorch
implementations are provided.

Image classification uses ResNet neural network [16] and uses Ima-
geNet [17] as data input to solve image classification task.

Image generation uses WGAN [18] algorithms and uses LSUN [19] dataset
as data input to generate image data.

Text-to-Text Translation uses recurrent neural networks [20] and takes
WMT English-German [21] as data input to translate text data.

Image-to-Text uses Neural Image Caption [22] model and takes Microsoft
COCO dataset [23] as input to describe image using text.

Image-to-Image uses the cycleGAN [24] algorithm and takes Cityscapes
[25] dataset as input to transform the image to another image.

Speech-to-Text uses the DeepSpeech2 [26] algorithm and takes Lib-
rispeech [27] dataset as input to recognize the speech data.

Face embedding uses the FaceNet [28] algorithm and takes the LFW
(Labeled Faces in the Wild) dataset [29] or VGGFace2 [30] as input to con-
vert image to an embedding vector.

3D face recognition uses 3D face modes to recognize 3D information within
images. The input data includes 77,715 samples from 253 face IDs, which is
published on the BenchCouncil web site.

Object detection uses the Faster R-CNN [31] algorithm and takes Microsoft
COCO dataset [23] as input to detect objects in images.

Recommendation uses collaborative filtering algorithm and takes Movie-
Lens dataset [32] as input to provide recommendations.

Video prediction uses motion-focused predictive models [33] and takes
Robot pushing dataset [33] as input to predict video frames.

Image compression uses recurrent neural networks and takes ImageNet
dataset as input to compression images.

3D object reconstruction uses a convolutional encoder-decoder network
and takes ShapeNet Dataset [34] as input to reconstruct 3D object.

Text summarization uses sequence-to-sequence model [35] and takes Giga-
word dataset [36] as input to generate summary description for text.

Spatial transformer uses spatial transformer networks and takes MNIST
dataset [37] as input to make spatial transformations.

Learning to Rank uses ranking distillation algorithm [38] and uses Gowalla
dataset [39] to generate ranking scores.

3.3 Application Benchmarks

The suite also provides two end-to-end application benchmarks: DCMix [1]—
mixed datacenter workloads, and E-commerce AI—an end-to-end business AI

AIBench—Datacenter AI Benchmarking Suite 7

benchmark. Among them, DCMix is to model the datacenter application sce-
nario, and generate mixed workloads with different latencies, including AI work-
loads (i.e., image recognition, speech recognition), online service (e.g., Online
search), etc.

E-commerce AI is to mimic complex modern Internet services workloads,
which is a joint work with Alibaba. An AI-based recommendation module is
included.

3.4 AI Competition

Using the benchmark implementations from AIBench as the baselines, Bench-
Council is organizing the International AI System and Algorithm Competition,
advancing the state-of-the-art or state-of-the-practice algorithms on different
systems or architecture, like X86, Cambricon, RISC-V, and GPU. This year,
there are four tracks, including AI System Competition based on RISC-V, Cam-
bricon, and X86 chips, and Intellifusion 3D Face Recognition Algorithm Com-
petition. The competition information is publicly available from http://www.
benchcouncil.org/competition/index.html. Any companies and research insti-
tutes are welcomed to join and organize a competition track each year.

Among the four tracks., RISC-V and Cambricon-based AI System Competi-
tions are to implement and optimize image classification on RISC-V and Cam-
bricon, respectively. The X86-based AI System Competition is to implement
and optimize the recommendation algorithm. The algorithm Competition is to
develop innovative algorithms for 3D Face Recognition.

4 Conclusion

This paper proposes a comprehensive datacenter AI benchmarks—AIBench, cov-
ering 12 micro benchmarks, 16 component benchmarks, and 2 end-to-end appli-
cation benchmarks. The benchmark suite is publicly available from http://www.
benchcouncil.org/AIBench/index.html .

Acknowledgment. This work is supported by the Standardization Research Project
of Chinese Academy of Sciences No.BZ201800001.

References

1. Xiong, X., et al.: DCMIX: generating mixed workloads for the cloud data cen-
ter. In: BenchCouncil International Symposium on Benchmarking, Measuring and
Optimizing (Bench18) (2018)

2. Gao, W., et al.: An industry standard internet service AI benchmark suite. Tech-
nical report, AIBench (2019)

3. Coleman, C., et al.: Dawnbench: an end-to-end deep learning benchmark and com-
petition. Training 100(101), 102 (2017)

4. Mlperf. https://mlperf.org

http://www.benchcouncil.org/competition/index.html
http://www.benchcouncil.org/competition/index.html
http://www.benchcouncil.org/AIBench/index.html
http://www.benchcouncil.org/AIBench/index.html
https://mlperf.org

8 W. Gao et al.

5. Adolf, R., Rama, S., Reagen, B., Wei, G.-Y., Brooks, D.: Fathom: reference work-
loads for modern deep learning methods. In: Workload Characterization (IISWC),
pp. 1–10 (2016)

6. Zhu, H., et al.: TBD: Benchmarking and analyzing deep neural network training
arXiv preprint arXiv:1803.06905 (2018)

7. Deepbench. https://svail.github.io/DeepBench/
8. Dong, S., Kaeli, D.: DNNMark: a deep neural network benchmark suite for GPUs.

In: Proceedings of the General Purpose GPUs, pp. 63–72. ACM (2017)
9. Jiang, Z., et al.: HPC AI500: a benchmark suite for HPC AI systems. In: 2018

BenchCouncil International Symposium on Benchmarking, Measuring and Opti-
mizing (Bench18) (2018)

10. Luo, C., et al.: AIoT Bench: towards comprehensive benchmarking mobile and
embedded device intelligence. In: 2018 BenchCouncil International Symposium on
Benchmarking, Measuring and Optimizing (Bench18) (2018)

11. Hao, T., et al.: Edge AIBench: towards comprehensive end-to-end edge computing
benchmarking. In: 2018 BenchCouncil International Symposium on Benchmarking,
Measuring and Optimizing (Bench18) (2018)

12. Gao, W., et al.: BigDataBench: a scalable and unified big data and AI benchmark
suite. arXiv preprint arXiv:1802.08254 (2018)

13. Wang, L., et al.: BigDataBench: a big data benchmark suite from internet services.
In: IEEE International Symposium On High Performance Computer Architecture
(HPCA) (2014)

14. Jia, Z., Wang, L., Zhan, J., Zhang, L., Luo, C.: Characterizing data analysis work-
loads in data centers. In: 2013 IEEE International Symposium on Workload Char-
acterization (IISWC), pp. 66–76. IEEE (2013)

15. Gao, W., et al.: Data Motifs: a lens towards fully understanding big data and AI
workloads. In: 2018 27th International Conference on Parallel Architectures and
Compilation Techniques (PACT) (2018)

16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

17. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: a large-scale
hierarchical image database. In: 2009 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2009, pp. 248–255. IEEE (2009)

18. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN arXiv preprint
arXiv:1701.07875 (2017)

19. Yu, F., Seff, A., Zhang, Y., Song, S., Funkhouser, T., Xiao, J.: LSUN: construction
of a large-scale image dataset using deep learning with humans in the loop arXiv
preprint arXiv:1506.03365 (2015)

20. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, pp. 5998–6008 (2017)

21. https://nlp.stanford.edu/projects/nmt/
22. Vinyals, O., Toshev, A., Bengio, S., Erhan, D.: Show and tell: lessons learned from

the 2015 MSCOCO image captioning challenge. IEEE Trans. Pattern Anal. Mach.
Intell. 39(4), 652–663 (2017)

23. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D.,
Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp.
740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1 48

24. Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation
using cycle-consistent adversarial networks. In: Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pp. 2223–2232 (2017)

http://arxiv.org/abs/1803.06905
https://svail.github.io/DeepBench/
http://arxiv.org/abs/1802.08254
http://arxiv.org/abs/1701.07875
http://arxiv.org/abs/1506.03365
https://nlp.stanford.edu/projects/nmt/
https://doi.org/10.1007/978-3-319-10602-1_48

AIBench—Datacenter AI Benchmarking Suite 9

25. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understand-
ing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 3213–3223 (2016)

26. Amodei, D., et al.: Deep speech 2: end-to-end speech recognition in English and
Mandarin. In: International conference on machine learning, pp. 173–182 (2016)

27. Panayotov, V., Chen, G., Povey, D., Khudanpur, S.: Librispeech: an ASR corpus
based on public domain audio books. In: 2015 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 5206–5210. IEEE (2015)

28. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face
recognition and clustering. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 815–823 (2015)

29. Huang, G.B., Mattar, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild:
a database for studying face recognition in unconstrained environments. In: Work-
shop on faces in ‘Real-Life’ Images: Detection, Alignment, and Recognition (2008)

30. Cao, Q., Shen, L., Xie, W., Parkhi, O.M., Zisserman, A.: VGGFace2: a dataset for
recognising faces across pose and age. In: 2018 13th IEEE International Conference
on Automatic Face & Gesture Recognition (FG 2018), pp. 67–74. IEEE (2018)

31. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object
detection with region proposal networks. In: Advances in Neural Information Pro-
cessing Systems, pp. 91–99 (2015)

32. Harper, F.M., Konstan, J.A.: The movielens datasets: history and context. ACM
Trans. Interact. Intell. Syst. (TiiS) 5(4), 19 (2016)

33. Finn, C., Goodfellow, I., Levine, S.: Unsupervised learning for physical interaction
through video prediction. In: Advances in Neural Information Processing Systems,
pp. 64–72 (2016)

34. Chang, A.X., et al.: ShapeNet: an information-rich 3D model repository arXiv
preprint arXiv:1512.03012 (2015)

35. Nallapati, R., Zhou, B., Gulcehre, C., Xiang, B., et al.: Abstractive text
summarization using sequence-to-sequence RNNs and beyond arXiv preprint
arXiv:1602.06023 (2016)

36. Rush, A.M., Harvard, S., Chopra, S., Weston, J.: A neural attention model for sen-
tence summarization. In: ACLWeb. Proceedings of the 2015 Conference on Empir-
ical Methods in Natural Language Processing (2017)

37. LeCun, Y., Cortes, C., Burges, C.: MNIST handwritten digit database, AT&T
Labs, vol. 2, p. 18 (2010). http://yann.lecun.com/exdb/mnist

38. Tang, J., Wang, K.: Ranking distillation: learning compact ranking models with
high performance for recommender system. In: Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, pp.
2289–2298. ACM (2018)

39. Gowalla dataset. https://snap.stanford.edu/data/loc-gowalla.html

http://arxiv.org/abs/1512.03012
http://arxiv.org/abs/1602.06023
http://yann.lecun.com/exdb/mnist
https://snap.stanford.edu/data/loc-gowalla.html

HPC AI500: A Benchmark Suite
for HPC AI Systems

Zihan Jiang1,2, Wanling Gao1,2,3, Lei Wang1,3, Xingwang Xiong1,2,
Yuchen Zhang5, Xu Wen1,2, Chunjie Luo1, Hainan Ye4, Xiaoyi Lu6,

Yunquan Zhang9, Shengzhong Feng7, Kenli Li8, Weijia Xu10,
and Jianfeng Zhan1,2,3(B)

1 State Key Laboratory of Computer Architecture,
Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China

{jiangzihan,gaowanling,wanglei 2011,xiongxingwang,

wenxu,luochunjie,zhanjianfeng}@ict.ac.cn
2 University of Chinese Academy of Sciences, Beijing, China

3 BenchCouncil (International Open Benchmark Council), Dover, Delaware, USA
4 Beijing Academy of Frontier Sciences and Technology, Beijing, China

5 State University of New York, Buffalo, USA
zhang232@buffalo.edu

6 Department of Computer Science and Engineering, The Ohio State University,
Columbus, USA

luxi@cse.ohio-state.edu
7 National Supercomputing Center in Shenzhen, Shenzhen, China

fengsz@nsccsz.cn
8 National Supercomputing Center in Changsha, Changsha, China

lkl@hnu.edu.cn
9 National Supercomputing Center in Jinan, Jinan, China

zyq@ict.ac.cn
10 Texas Advanced Computing Center, The Texas University at Austin, Austin, USA

xwj@tacc.utexas.edu

Abstract. In recent years, with the trend of applying deep learning
(DL) in high performance scientific computing, the unique characteris-
tics of emerging DL workloads in HPC raise great challenges in design-
ing, implementing HPC AI systems. The community needs a new yard
stick for evaluating the future HPC systems. In this paper, we propose
HPC AI500—a benchmark suite for evaluating HPC systems that run-
ning scientific DL workloads. Covering the most representative scientific
fields, each workload from HPC AI500 is based on real-world scientific
DL applications. Currently, we choose 14 scientific DL benchmarks from
perspectives of application scenarios, data sets, and software stack. We
propose a set of metrics for comprehensively evaluating the HPC AI
systems, considering both accuracy, performance as well as power and
cost. We provide a scalable reference implementation of HPC AI500. The
specification and source code are publicly available from http://www.
benchcouncil.org/HPCAI500/index.html. Meanwhile, the AI benchmark
suites for datacenter, IoT, Edge are also released on the BenchCouncil
web site.

c© Springer Nature Switzerland AG 2019
C. Zheng and J. Zhan (Eds.): Bench 2018, LNCS 11459, pp. 10–22, 2019.
https://doi.org/10.1007/978-3-030-32813-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32813-9_2&domain=pdf
http://www.benchcouncil.org/HPCAI500/index.html
http://www.benchcouncil.org/HPCAI500/index.html
https://doi.org/10.1007/978-3-030-32813-9_2

HPC AI500: A Benchmark Suite for HPC AI Systems 11

Keywords: HPC · Deep learning · Benchmarking

1 Introduction

The huge success of AlexNet [1] in the ImageNet [2] competition marks that deep
learning(DL) is leading the renaissance of Artificial Intelligence (AI). Since then,
a wide range of application areas have started using DL and achieved unprece-
dented results, such as image recognition, natural language processing, and even
autonomous driving. In the commercial fields, many DL-based novel applica-
tions have emerged, creating huge economic benefits. In the fields of high perfor-
mance scientific computing, similar classes of problems are faced, i.e., predicting
extreme weather [21], finding signals of new particles [22], and estimating cosmo-
logical parameters [23]. These scientific fields are essentially solving the common
class of problems that exist in commercial fields such as classifying images, pre-
dicting classes labels, or regressing a numerical quantity. In several scientific
computing fields, DL has replaced traditional scientific computing methods and
becomes a promising tool [24].

As an emerging workload in high performance scientific computing, DL has
many unique features compared to traditional high performance computing.
First, training a DL model depends on massive data that are represented by
high-dimensional matrices. Second, leveraging deep learning frameworks such as
Tensorflow [3] and caffe [4] aggravates the difficulty of the software and hardware
co-design. Last but not least, the heterogeneous computing platform of DL is far
more complicated than traditional scientific workloads, including CPU, GPU,
and various domain-specific processor (e.g. Cambricon Diannao [5] or Google
TPU [6]). Consequently, the community requires a new yardstick for evaluating
future HPC AI systems. However, the diversity of scientific DL workloads raise
great challenges in HPC AI benchmarking.

1. Dataset: Scientific data is often more complex than MINST or ImageNet data
sets. First, the shape of scientific data can be 2D images or higher-dimension
structures. Second, there are hundreds of channels in a scientific image, while
the popular image data often consists of only RGB. Third, Scientific datasets
are always terabytes or even petabytes in size.

2. Workloads: Modern scientific DL doesn’t adopt off-the-shelf models, instead
builds more complex model with domain scientific principles (e.g. energy con-
servation) [21].

3. Metrics: Due to the importance of accuracy, using a single performance met-
ric such as FLOPS leads to insufficient evaluation. For a comprehensively
evaluation, the selected metrics should not only consider the performance of
the system, but also consider the accuracy of the DL model [8].

4. Scalability: Since the scientific DL workloads always run on the supercom-
puters, which are equipped with tens of thousands nodes, the benchmark
program must be highly scalable.

12 Z. Jiang et al.

Most of the existing AI benchmarks [7–10,28,29] are based on commercial
scenarios. Deep500 [30] is a benchmarking framework aiming to evaluate high-
performance deep learning. However, its reference implementation uses commer-
cial open source data sets and simple DL models, hence cannot reflect real-world
HPC AI workloads. We summary these major benchmarking efforts for AI and
compare them with HPC AI500 as shown in the table below.

Table 1. Comparison of AI Benchmarking efforts.

Benchmark efforts Datasets Problem domains Implementation

Scientific Commercial Standalone Distributed

EWAa Cosb HEPc

HPC AI500 Scientific data � � � × � �
TBD Commercial data × × × � � ×
MLPerf Commercial data × × × � � ×
DAWNBench Commercial data × × × � � ×
Fathom Commercial data × × × � � ×
Deep500 Commercial data Framework, undefined � �
a Extreme Weather Analysis
b Cosmology
c High Energy Physics

Consequently, targeting above challenges, we propose HPC AI500—a bench-
mark suite for HPC AI systems. Our major contributions are as follows:

1. We create a new benchmark suite that covers the major areas of high per-
formance scientific computing. The benchmark suite consists of micro bench-
marks and component benchmarks. The workloads from component bench-
marks use the state-of-the-art models and representative scientific data sets
to reflect the real-world performance results. In addition, we select several DL
kernels as the micro benchmarks for evaluating the upper bound performance
of the systems.

2. We propose a set of metrics for comprehensively evaluating the HPC AI
systems. Our metrics for component benchmarks include both accuracy and
performance. For micro benchmarks, we provide metrics such as FLOPS to
reflect the upper bound performance of the system.

Coordinated by BenchCouncil (http://www.benchcouncil.org), we also
release the datacenter AI benchmarks [16,17], the IoT AI benchmarks [15], edge
AI benchmarks [14], and big data benchmarks [12,13], which are publicly avail-
able from http://www.benchcouncil.org/HPCAI500/index.html.

2 Deep Learning in Scientific Computing

In order to benchmark HPC AI systems, the first step is to figure out how DL
works in scientific fields. Although it is an emerging field, several scientific fields
have applied DL to solve many important problems, such as extreme weather
analysis [21,40–42], high energy physics [22,36–39], and cosmology [23,26,33–
35].

http://www.benchcouncil.org
http://www.benchcouncil.org/HPCAI500/index.html

HPC AI500: A Benchmark Suite for HPC AI Systems 13

2.1 Extreme Weather Analysis

Extreme Weather Analysis (EWA) poses a great challenge to human society.
It brings severe damage to people health and economy every single year. For
instance, the heatwaves in 2018 caused over 1600 deaths according to the UN
report [44]. And the landfall of hurricane Florence and Michael caused about 40
billion dollars worth of damage to US economy [45]. In this context, understand-
ing extreme weather life cycle and even predicting its future trend become a sig-
nificant scientific goal. Achieving this goal always requires accurately identifying
the weather patterns to acquire the insight of climate change based on massive
climate data analysis. Traditional climate data analysis methods are built upon
human expertise in defining multi-variate thresholds of extreme weather events.
However, it has a major drawback: there is no commonly held set of criteria
that can define a weather event due to the man-made subjectivism, which leads
to inaccurate pattern extraction. Therefore, DL has become another option for
climate scientists. Liu et al. [40] develop a relatively simple CNN model with two
convolutional layers to classify three typical extreme weather events and achieve
up to 99% accuracy. Racah et al. [42] implement a multichannel spatiotempo-
ral CNN architecture for semi-supervised prediction and exploratory extreme
weather data analysis. GlobeNet [41] is a CNN model with inception units for
typhoon eye tracking. Kurth et al. [21] use variants of Tiramisu and DeepLabv3+
neural networks which are both built on Residual Network (ResNet) [20]. They
deployed these two networks on Summit and firstly achieved exascale deep learn-
ing for climate analysis.

2.2 High Energy Physics

Particle collision is the most important experiment approach in High Energy
Physics (HEP). Detecting the signal of new particle is the major goal in exper-
imental HEP. Today’s HEP experimental facility such as LHC creates particle
signals with hundreds of millions channels with a high data rate. The signal data
from different channels in every collision usually are represented as a sparse 2d
image, so called a jet-image. In fact, accurately classifying these jet-images is the
key to find signals of new particles. In recent years, due to the excellent perfor-
mance in pattern recognition, DL has become the focus of the data scientists in
HEP community and has a tendency to go mainstream. Oliveira et al. [38] use
a CNN model with 3 convolutional layers to tag jet-images. They firstly demon-
strated that using DL not only improve the discrimination power, but also gain
new insights compared to designing physics-inspired features. Komiske et al. [39]
adopt a CNN model to discriminate quark and gluon jet-image. Kurth et al. [22]
successfully deploy CNN to analyze massive HEP data on the HPC system and
achieve petaflops performance. Their work is the first attempt at scaling DL on
large-scale HPC systems.

14 Z. Jiang et al.

2.3 Cosmology

Cosmology is a branch of astronomy concerned with the studies of the origin and
evolution of the universe, from the Big Bang to today and on into the future [49].
In 21st century, the most fundamental problem in cosmology is the nature of dark
energy. However, this mysterious energy greatly affects the distribution of matter
in the universe that is described by cosmological parameters. Thus, accurately
estimating these parameters is the key to understand the insight of the dark
energy. For solving this problem, Ravanbakhsh et al. [26] firstly propose a 3D
CNN model with 6 convolutional layers and 3 fully-connected layers and opens
the way to estimating the parameters with high accuracy. Mathuriya et al. pro-
pose CosmoFlow [23], which is a project aiming to process large 3D cosmology
dataset on HPC systems. They extend the CNN model designed by Ravan-
bakhsh et al. [26]. Meanwhile, in order to guarantee the high fidelity numerical
simulations and avoid the use of expensive instruments, generating high qual-
ity cosmological data is also important. Ravanbakhsh et al. [33] propose a deep
generative model for acquiring high quality galaxy images. Their results show a
reliable alternative for generating the calibration data of cosmological surveys.

2.4 Summary

After investigating the above representative scientific fields, we have identified
the representative DL applications and abstracted these DL applications into
classical AI tasks. As shown in Table 2, almost all the applications are essentially
using CNN to extract the patterns of various scientific image data. From this
perspective, image recognition, image generation, and object detection are the
most important tasks in modern scientific DL. In our benchmark methodology
(Sect. 3.1), we use these three classic AI tasks as the component workloads of
the HPC AI500 Benchmark.

Table 2. Modern Scientific Deep Learning.

Scientific fields DL applications Classical DL tasks Model type

Extreme weather analysis Identify weather patterns Object detection CNN

High energy physics Jet-images discrimination Image recognition CNN

Cosmology Estimate parameters Image recognition CNN

Galaxy image generation Image generation

3 Benchmarking Methodology and Decisions

3.1 Methodology

Our benchmarking methodology is shown in Fig. 1, similar to that [12]. As HPC
AI is an emerging and evolving domain, we take an incremental and iterative

HPC AI500: A Benchmark Suite for HPC AI Systems 15

Fig. 1. HPCAI500 methodology

approach. First of all, we investigate the scientific fields that use DL widely. As
mentioned in Sect. 2, extreme weather analysis, high energy physics, and cosmol-
ogy are the most representative fields. Then, we pay attention to the typical DL
workloads and data sets in these three application fields.

In order to cover the diversity of workloads, we focus on the critical tasks that
DL has performed in the aforementioned fields. Based on our analysis in Sect. 2,
we extracts three important component benchmarks that can represent modern
scientific DL, namely image recognition, image generation, and object detection.
This shows that CNN models play an important role. In each component, we
choose the state-of-the-art model and software stack from the applications. We
also select the hotspot DL operators as the micro benchmark for evaluating
upper bound performance of the system.

We chose three real-world scientific data sets from aforementioned scientific
fields and consider their diversity from the perspective of data formats. In mod-
ern DL, the raw data is always transformed into matrix for downstream process-
ing. Therefore, we classify these matrices into three kinds of formats: 2D sparse
matrix, 2D dense matrix, and 3 dimensional matrix. In each matrix format, we
also consider the unique characteristics (e.g., multichannel that more than RGB,
high resolution) in the scientific data.

3.2 The Selected Datasets

We investigate the representative data sets in our selected scientific fields and
collect three data sets as shown in Table 3. Our selection guidelines follow the
aforementioned benchmarking methodology.

Table 3. The Chosen Datasets

Dataset Data format Scientific features

Extreme weather dataset 2D dense matrix High resolution, multichannel

HEP dataeset 2D sparse matrix Multichannel

Cosmology dataset 3D matrix Multidimensional

16 Z. Jiang et al.

The Extreme Weather Data set [46] is made up of 26-year of climate
data. The data of every year is available as one HDF5 file. Each HDF5 file
contains two data sets: images and boxes. Images data set has 1460 example
dense images (4 per day, 365 days per year) with 16 channels. Each channel
is 768 * 1152 corresponding to one measurement per 25 square km on earth.
Boxes dataset records the coordinates of the four extreme weather events in the
corresponding images: tropical depression, tropical cyclone, extratropical cyclone
and the atmospheric river.

The HEP Data set [25] is divided into two classes: the RPV-Susy signal
and the most prevalent background. The training data set is composed of around
400 k jet-images. Each jet-image is represented as a 64*64 sparse matrix and has
3 channels. It also provides validation and test data. All the data are generated
by using the Pythia event generator [51] interfaced to the Delphes fast detector
simulation [38].

The Cosmology Data set [23] aims to predict the parameters of cosmology.
It is based on dark matter N-body simulations produced using the MUSIC [52]
and pycola [53] packages. Each simulation covers the volumes of 512h−1Mpc3

and contains 5123 dark matter particles.

3.3 The Selected Workloads

Component Benchmarks. Since object detection, image recognition, and
image generation are the most representative DL tasks in modern scientific DL.
We choose the following state-of-the-art models as the HPC AI500 component
benchmarks.

Faster-RCNN [60] targets real-time object detection. Unlike the previous object
detection model [61,62], it replaces the selective search by a region proposal
network that achieves nearly cost-free region proposals. Further more, Faster-
RCNN combines the advanced CNN model as their base network for extracting
features and is the foundation of the 1st-place winning entries in ILSVRC’15
(ImageNet Large Scale Visual Recognition Competition).

ResNet [27] is a milestone in Image Recognition, marking the ability of AI
to identify images beyond humans. It solves the degradation problem, which
means in the very deep neural network the gradient will gradually disappear
in the process of propagation, leading to poor performance. Due to the idea of
ResNet, researchers successfully build a 152-layer deep CNN. This ultra deep
model won all the awards in ILSVRC’15.

DCGAN [63] is one of the popular and successful neural network for GAN [50].
Its fundamental idea is replacing fully connected layers with convolutions and
using transposed convolution for upsampling. The proposal of DCGAN helps
bride the gap between CNNs for supervised learning and unsupervised learning.

HPC AI500: A Benchmark Suite for HPC AI Systems 17

Micro Benchmarks. We choose the following primary operators in CNN as
our micro benchmarks.

Convolution. In mathematics, convolution is a mathematical operation on two
functions to produce a third function that expresses how the shape of one is
modified by the other [54]. In a CNN, convolution is the operation occupying
the largest proportion, which is the multiply accumulate of the input matrix and
the convolution kernel, and then produces feature maps. There are many con-
volution kernels distributed in different layers responsible for learning different
level features.

Full-connected. The full-connected layer can be seen as the classifier of a CNN,
which is essentially matrix multiplication. It is also the cause of the explosion of
CNN parameters. For example, in AlexNet [1], the number of training parameters
of fully-connected layers reaches about 59 million and accounts for 94% of the
total.

Pooling. Pooling is a sample-based discretization process. In a CNN, the objec-
tive of pooling is to down-sample the inputs (e.g., feature maps), which leads to
the reduction of dimensionality and training parameters. In addition, it enhances
the robustness of the whole network. The commonly used pooling operations
including max-pooling and average-pooling.

3.4 Metrics

Metrics for Component Benchmarks. At present, time-to-accuracy is the
most well-received solution [8,29]. For comprehensive evaluate, the training accu-
racy and validation accuracy are both provided. The former is used to measure

Table 4. The Summary of HPC AI500 Benchmark.

App scenarios Workloads Fields Datasets Data format Software
stack

Micro benchmarks Convolution HEPa Matrix Sparse 2D matrix CUDA
MKL

Pooling EWAb Dense 2D matrix

Fully-connected Cosc 3D matrix

Image recognition ResNet HEP HEP dataset Sparse 2D matrix TensorFlow

Cos Cos dataset 3D matrix Pytorch

Object detection Faster-RCNN EWA EWA dataset Dense 2D matrix TensorFlow

Pytorch

Image generation DCGAN Cos Cos dataset 3D matrix TensorFlow

Pytorch
a High Energy Physics
b Extreme Weather Analysis
c Cosmology

18 Z. Jiang et al.

the training effect of the model, and the latter is used to measure the gener-
alization ability of the model. The threshold of target accuracy is defined as a
value according to the requirement of corresponding application domains. Each
application domain needs to define its own target accuracy. In addition, cost-to-
accuracy and power-to-accuracy are provided to measure the money and power
spending of training the model to the target accuracy (Table 4).

Metrics for Micro Benchmarks. The metrics of the micro benchmarks is
simple since we only measure the performance without considering accuracy. We
adopt FLOPS and images per second (images/s) as two main metrics. We also
consider power and cost related metrics.

4 Reference Implementation

4.1 Component Benchmarks

According to the survey [59] of NERSC (National Energy Research Scientific
Computing Center, the most representative DL framework is TensorFlow, and
the proportion of which is increasing year by year. Consequently, we adopt Ten-
sorFlow for preferred framework.

In order to evaluate large-scale HPC systems running scientific DL, scala-
bility is the fundamental requirement. In modern distributed DL, synchronized
training through data parallelism is the mainstream. In this training scheme,
each training process gets a different portion of the full dataset but has a com-
plete copy of the neural network model. At the end of each batch computation,
all processes will synchronize the model parameters by all reduce operation to
ensure they are training a consistent model. TensorFlow implements all reduce
through a parameter server [32] and use the GRPC protocol for communica-
tion by default. The master-slave architecture and socket-based communication
can not extend to large-scale clusters [55]. Horovod [56] irrespective a library
originally designed for scalable distributed deep learning using TensorFlow. It
implements all reduce operation using ring-based algorithm [57] and MPI (Mes-
sage Passing Interface) for communication. Due to the decentralized design and
high effective protocol, the combination of TensorFlow and Horovod has success-
fully scaled to 27360 GPUs on Summit [21]. Therefore, we leverage Horovod to
improve the scalability.

4.2 Micro Benchmarks

The goal of micro benchmarks is to determine the upper bound performance of
the system. To do so, we implement it with succinct software stack. Every DL
operator is written in C++ or call the low-level neural networks library (e.g.
CuDNN) without any other dependencies.

HPC AI500: A Benchmark Suite for HPC AI Systems 19

5 Conclusion

In this paper, we propose HPC AI500—a benchmark suite for evaluating HPC
system that running scientific deep learning workloads. Our benchmarks model
real-world scientific deep learning applications, including extreme weather anal-
ysis, high energy physics, and cosmology. We propose a set of metrics for com-
prehensively evaluating the HPC AI systems, considering both accuracy, perfor-
mance as well as power and cost. We provide a scalable reference implementation
of HPC AI500. The specification and source code of HPC AI500 are publicly
available from http://www.benchcouncil.org/HPCAI500/index.html.

Acknowledgments. This work is supported by the Standardization Research Project
of Chinese Academy of Sciences No.BZ201800001.

References

1. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Systems
(2012)

2. http://www.image-net.org/
3. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: OSDI,

vol. 16 (2016)
4. Jia, Y., et al.: Caffe: convolutional architecture for fast feature embedding. In: Pro-

ceedings of the 22nd ACM International Conference on Multimedia. ACM (2014)
5. Chen, Y., et al.: DianNao family: energy-efficient hardware accelerators for machine

learning. Commun. ACM 59(11), 105–112 (2016)
6. Jouppi, N.P., et al.: In-datacenter performance analysis of a tensor processing

unit. In: 2017 ACM/IEEE 44th Annual International Symposium on Computer
Architecture (ISCA). IEEE (2017)

7. Robert, A., et al.: Fathom: reference workloads for modern deep learning methods.
In: 2016 IEEE International Symposium on Workload Characterization (IISWC).
IEEE (2016)

8. Coleman, C., et al.: DAWNBench: an end-to-end deep learning benchmark and
competition. Training 100(101), 102 (2017)

9. Zhu, H., et al.: TBD: benchmarking and analyzing deep neural network training
arXiv preprint arXiv:1803.06905 (2018)

10. Shi, S., et al.: Benchmarking state-of-the-art deep learning software tools. In: 2016
7th International Conference on Cloud Computing and Big Data (CCBD). IEEE
(2016)

11. Hennessy, J.L., Patterson, D.A.: Computer Architecture: A Quantitative App-
roach. Elsevier, Amsterdam (2011)

12. Wang, L., et al.: BigDataBench: a big data benchmark suite from internet services.
In: 2014 IEEE 20th International Symposium on High Performance Computer
Architecture (HPCA). IEEE (2014)

13. Jia, Z., Wang, L., Zhan, J., et al.: Characterizing data analysis workloads in data
centers. In: 2013 IEEE International Symposium on Workload Characterization
(IISWC), pp. 66–76. IEEE (2013)

http://www.benchcouncil.org/HPCAI500/index.html
http://www.image-net.org/
http://arxiv.org/abs/1803.06905

20 Z. Jiang et al.

14. Hao, T., Huang, Y., Wen, X., et al.: Edge AIBench: towards comprehensive end-
to-end edge computing benchmarking. In: 2018 BenchCouncil International Sym-
posium on Benchmarking, Measuring and Optimizing (Bench18) (2018)

15. Luo, C., Zhang, F., Huang, C., Xiong, X., Chen, J., et al.: AIoT Bench: towards
comprehensive benchmarking mobile and embedded device intelligence. In: 2018
BenchCouncil International Symposium on Benchmarking, Measuring and Opti-
mizing (Bench18) (2018)

16. Gao, W., Tang, F., Wang, L., Zhan, J., et al.: AIBench: an industry standard
internet service AI benchmark suite. Technical report (2019)

17. Gao, W., Luo, C., Wang, L., Xiong, X., et al.: AIBench: towards scalable and
comprehensive datacenter AI benchmarking. In: 2018 BenchCouncil International
Symposium on Benchmarking, Measuring and Optimizing (Bench18) (2018)

18. Dean, J.: Keynote: Large Scale Deep Learning
19. Collobert, R., Bengio, S., Marithoz, J.: Torch: a modular machine learning software

library, no. EPFL-REPORT-82802. Idiap (2002)
20. He, K., et al.: Deep residual learning for image recognition. In: Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (2016)
21. Kurth, T., Treichler, S., Romero, J., et al.: Exascale deep learning for climate

analytics. In: Proceedings of the International Conference for High Performance
Computing, Networking, Storage, and Analysis, p. 51. IEEE Press (2018)

22. Kurth, T., Zhang, J., Satish, N., et al.: Deep learning at 15pf: supervised and semi-
supervised classification for scientific data. In: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis,
p. 7. ACM (2017)

23. Mathuriya, A., Bard, D., Mendygral, P., et al.: CosmoFlow: using deep learning
to learn the universe at scale. In: Proceedings of the International Conference for
High Performance Computing, Networking, Storage, and Analysis, p. 65. IEEE
Press (2018)

24. https://www.oreilly.com/ideas/a-look-at-deep-learning-for-science
25. Bhimji, W., Farrell, S.A., Kurth, T., et al.: Deep neural networks for physics anal-

ysis on low-level whole-detector data at the LHC. J. Phys.: Conf. Ser. 1085(4),
042034 (2018)

26. Ravanbakhsh, S., Oliva J.B., Fromenteau, S., et al.: Estimating cosmological
parameters from the dark matter distribution, pp. 2407–2416. In: ICML (2016)

27. He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

28. Chen, T., Chen, Y., Duranton, M., et al.: BenchNN: On the broad potential appli-
cation scope of hardware neural network accelerators. In: 2012 IEEE International
Symposium on Workload Characterization (IISWC), pp. 36–45. IEEE (2012)

29. https://mlperf.org/
30. Ben-Nun, T., Besta, M., Huber, S., et al.: A modular benchmarking infras-

tructure for high-performance and reproducible deep learning. arXiv preprint
arXiv:1901.10183 (2019)

31. Patton, R.M., Johnston, J.T., Young, S.R., et al.: 167-PFlops deep learning for
electron microscopy: from learning physics to atomic manipulation. In: Proceedings
of the International Conference for High Performance Computing, Networking,
Storage, and Analysis, p. 50. IEEE Press (2018)

32. Li, M., Andersen, D.G., Park, J.W., et al.: Scaling distributed machine learning
with the parameter server. In: 11th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 14), pp. 583–598 (2014)

https://www.oreilly.com/ideas/a-look-at-deep-learning-for-science
https://mlperf.org/
http://arxiv.org/abs/1901.10183

HPC AI500: A Benchmark Suite for HPC AI Systems 21

33. Ravanbakhsh, S., Lanusse, F., Mandelbaum, R., et al.: Enabling dark energy with
deep generative models of galaxy images. In: Thirty-First AAAI Conference on
Artificial Intelligence (2017)

34. Mustafa, M., Bard, D., Bhimji, W., et al.: Creating virtual universes using gener-
ative adversarial networks. arXiv preprint arXiv:1706.02390 (2017)

35. Schmelzle, J., Lucchi, A., Kacprzak, T., et al.: Cosmological model discrimination
with deep learning. arXiv preprint arXiv:1707.05167 (2017)

36. Peterson, C.: Track finding with neural networks. Nucl. Instrum. Methods Phys.
Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 279(3), 537–545 (1989)

37. Denby, B.: Neural networks and cellular automata in experimental high energy
physics. Comput. Phys. Commun. 49(3), 429–448 (1988)

38. de Oliveira, L., Kagan, M., Mackey, L., et al.: Jet-images-deep learning edition. J.
High Energy Phys. 2016(7), 69 (2016)

39. Komiske, P.T., Metodiev, E.M., Schwartz, M.D.: Deep learning in color: towards
automated quark/gluon jet discrimination. J. High Energy Phys. 2017(1), 110
(2017)

40. Liu, Y., Racah, E., Correa, J., et al.: Application of deep convolutional neu-
ral networks for detecting extreme weather in climate datasets. arXiv preprint
arXiv:1605.01156 (2016)

41. Hong, S., Kim, S., Joh, M., et al.: GlobeNet: convolutional neural net-
works for typhoon eye tracking from remote sensing imagery. arXiv preprint
arXiv:1708.03417 (2017)

42. Racah, E., Beckham, C., Maharaj, T., et al.: ExtremeWeather: a large-scale climate
dataset for semi-supervised detection, localization, and understanding of extreme
weather events. In: Advances in Neural Information Processing Systems, pp. 3402–
3413 (2017)

43. Gmez-Bombarelli, R., Wei, J.N., Duvenaud, D., et al.: Automatic chemical design
using a data-driven continuous representation of molecules. ACS Cent. Sci. 4(2),
268–276 (2018)

44. https://www.ecowatch.com/un-extreme-weather-climate-change-2633131018.html
45. https://www.cbsnews.com/news/extreme-weather-events-2018-top-3-most-expen

sive-climate-driven-events-took-place-in-us/
46. https://extremeweatherdataset.github.io/
47. http://stanford.edu/group/stanford atlas/
48. Spira, M., Djouadi, A., Graudenz, D., et al.: Higgs boson production at the LHC.

Nucl. Phys. B 453(1–2), 17–82 (1995)
49. https://en.wikipedia.org/wiki/Cosmology
50. Goodfellow, I., Pouget-Abadie, J., Mirza, M., et al.: Generative adversarial nets.

In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)
51. Sjstrand, T., Mrenna, S., Skands, P.: PYTHIA 6.4 physics and manual. J. High

Energy Phys. 2006(05), 026 (2006)
52. https://www-n.oca.eu/ohahn/MUSIC/
53. https://bitbucket.org/tassev/pycola/
54. https://en.wikipedia.org/wiki/Convolution
55. Mathuriya, A., Kurth, T., Rane, V., et al.: Scaling GRPC tensorflow on 512 nodes

of cori supercomputer. arXiv preprint arXiv:1712.09388 (2017)
56. Sergeev, A., Del Balso, M.: Horovod: fast and easy distributed deep learning in

TensorFlow. arXiv preprint arXiv:1802.05799 (2018)
57. Gibiansky, A.: Bringing HPC techniques to deep learning (2017). http://research.

baidu.com/bringing-hpc-techniques-deep-learning. Accessed 6 Dec 2017

http://arxiv.org/abs/1706.02390
http://arxiv.org/abs/1707.05167
http://arxiv.org/abs/1605.01156
http://arxiv.org/abs/1708.03417
https://www.ecowatch.com/un-extreme-weather-climate-change-2633131018.html
https://www.cbsnews.com/news/extreme-weather-events-2018-top-3-most-expensive-climate-driven-events-took-place-in-us/
https://www.cbsnews.com/news/extreme-weather-events-2018-top-3-most-expensive-climate-driven-events-took-place-in-us/
https://extremeweatherdataset.github.io/
http://stanford.edu/group/stanford_atlas/
https://en.wikipedia.org/wiki/Cosmology
https://www-n.oca.eu/ohahn/MUSIC/
https://bitbucket.org/tassev/pycola/
https://en.wikipedia.org/wiki/Convolution
http://arxiv.org/abs/1712.09388
http://arxiv.org/abs/1802.05799
http://research.baidu.com/bringing-hpc-techniques-deep-learning
http://research.baidu.com/bringing-hpc-techniques-deep-learning

22 Z. Jiang et al.

58. https://www.open-mpi.org/
59. https://www.jlab.org/indico/event/247/session/8/contribution/30/material/slides

/0.pdf
60. Ren, S., et al.: Faster R-CNN: towards real-time object detection with region pro-

posal networks. In: Advances in Neural Information Processing Systems (2015)
61. Girshick, R., et al.: Rich feature hierarchies for accurate object detection and

semantic segmentation. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (2014)

62. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference
on Computer Vision (2015)

63. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434
(2015)

64. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Infor-
mation Processing Systems, pp. 2672–2680 (2014)

https://www.open-mpi.org/
https://www.jlab.org/indico/event/247/session/8/contribution/30/material/slides/0.pdf
https://www.jlab.org/indico/event/247/session/8/contribution/30/material/slides/0.pdf
http://arxiv.org/abs/1511.06434

Edge AIBench: Towards Comprehensive
End-to-End Edge Computing

Benchmarking

Tianshu Hao1,2, Yunyou Huang1,2, Xu Wen1,2, Wanling Gao1,3, Fan Zhang1,
Chen Zheng1,3, Lei Wang1,3, Hainan Ye3,4, Kai Hwang5, Zujie Ren6,

and Jianfeng Zhan1,2,3(B)

1 State Key Laboratory of Computer Architecture,
Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China

{haotianshu,huangyunyou,wenxu,gaowanling,zhangfan,zhengchen,wanglei 2011,

zhanjianfeng}@ict.ac.cn
2 University of Chinese Academy of Sciences, Beijing, China

3 BenchCouncil (International Open Benchmark Council), Dover, Delaware, USA
4 Beijing Academy of Frontier Sciences and Technology, Beijing, China

yehainan@mail.bafst.com
5 Chinese University of Hongkong at Shenzhen, Shenzhen, China

hwangkai@cuhk.edu.cn
6 Zhejiang Lab, Zhejiang, China

renzj@hdu.edu.cn

Abstract. In edge computing scenarios, the distribution of data and
collaboration of workloads on different layers are serious concerns for
performance, privacy, and security issues. So for edge computing bench-
marking, we must take an end-to-end view, considering all three lay-
ers: client-side devices, edge computing layer, and cloud servers. Unfor-
tunately, the previous work ignores this most important point. This
paper presents the BenchCouncil’s coordinated effort on edge AI bench-
marks, named Edge AIBench. In total, Edge AIBench models four typical
application scenarios: ICU Patient Monitor, Surveillance Camera, Smart
Home, and Autonomous Vehicle with the focus on data distribution and
workload collaboration on three layers. Edge AIBench is publicly avail-
able from http://www.benchcouncil.org/EdgeAIBench/index.html. We
also build an edge computing testbed with a federated learning frame-
work to resolve performance, privacy, and security issues.

Keywords: Edge computing · AI benchmarks · Testbed · Federated
learning

1 Introduction

Cloud computing is a mature model to share computing resources by providing
network access to users [1]. In cloud computing models, users communicate with

c© Springer Nature Switzerland AG 2019
C. Zheng and J. Zhan (Eds.): Bench 2018, LNCS 11459, pp. 23–30, 2019.
https://doi.org/10.1007/978-3-030-32813-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32813-9_3&domain=pdf
http://www.benchcouncil.org/EdgeAIBench/index.html
https://doi.org/10.1007/978-3-030-32813-9_3

24 T. Hao et al.

the data center to get hardware, software and other computing resources and
store data. However, In recent years, the number of client-side devices (e.g.
smart devices and monitors) grows rapidly. IoT Analytics [2] has reported the
number of connected devices reached 17 billion in 2018 and Gartner says the IoT
devices will install 26 billion units by 2020 [3]. These client-side devices produce
a large amount of data to process. The overhead of data transmission and data
encryption among devices and data centers becomes significant bottlenecks for
many IoT scenarios, and hence it raises a daunting challenge for throughput,
latency, and security guarantee.

Edge computing emerges as a promising technical framework to overcome
the challenges in cloud computing. The edge computing framework adds a new
layer, named the edge computing layer, on the basis of the traditional cloud
computing framework. In the edge computing framework, only the real-time data
processing is transferred to the edge computing layer, while other complicated
data processing is still executed on the cloud server. Figure 1 shows a general edge
computing framework, which includes three layers: cloud server, edge computing
layer, and client-side devices.

In the edge computing scenarios, the distribution of data and collaboration
of workloads on different layers are serious concerns for performance, security,
and privacy issues. So for benchmarking, designing, and implementing edge com-
puting systems or applications, we shall take an end-to-end view, considering all
three layers. Unfortunately, the previous work, especially the previous bench-
marking efforts [4,6,7,14] ignore this most important point.

In edge computing scenarios, AI techniques are widely used to augment
device, edge and cloud intelligence, and they are most demanding in terms
of computing power, data storage, and network. Typical application scenarios
include smart city, smart home, autonomous vehicle, surveillance camera, smart
medical, wearable devices and so on. These scenarios are complicated because
of different kinds of client-side devices, a large quantity of heterogeneous data,
privacy and security issues. Most of these scenarios have a high requirement for
latency and network bandwidth. However, edge computing is in the initial stage
and doesn’t have a uniform standard for these scenarios. Therefore, a compre-
hensive end-to-end edge computing benchmark suite is needed to measure and
optimize the systems and applications.

Meanwhile, edge computing is still in the initial stage with a lack of testbed.
Because of the privacy issue, there is no incentive to share data. Because of the
complexity, there is no end-to-end application scenario to validate the architec-
tures, systems, or specific algorithms in certain settings.

Above all, it’s necessary to develop a benchmark suite and testbed for edge
computing. This paper reports the BenchCouncil’s coordinated effort on edge AI
benchmarks, named Edge AIBench, which is publicly available from http://www.
benchcouncil.org/EdgeAIBench/index.html. Edge AIBench includes four typical
application scenarios: ICU Patient Monitor, Surveillance Camera, Smart Home,
and Autonomous Vehicle, which consider the complexity of all edge computing
AI scenarios. Coordinated by BenchCouncil (http://www.benchcouncil.org), we

http://www.benchcouncil.org/EdgeAIBench/index.html
http://www.benchcouncil.org/EdgeAIBench/index.html
http://www.benchcouncil.org

Edge AIBench 25

are also building an edge computing testbed with a federated learning framework
to resolve security and privacy issue, which can be accessed from http://www.
benchcouncil.org/testbed/index.php. BenchCouncil also release datacenter AI
benchmarks [8,9], HPC AI benchmarks [10], IoT AI benchmarks [11], and big
data benchmarks [12,13], publicly available from the BenchCouncil website.

Fig. 1. A general edge computing framework.

2 Related Work

Since the edge computing AI applications have become more and more popular
these years, benchmarks are needed to measure and optimize the systems and
applications. There are several related benchmark suites. We summarize the
state-of-the-art and state-of-the-practice work on edge AI benchmarking.

MLPerf [4] is a benchmark suite focusing on measuring Machine Learn-
ing(ML) performance. It provides the edge inference benchmarks, including eight
ML tasks: image classification, object detection and so on [5]. But this bench-
mark suite just evaluates the edge computing layer with the lack of an end-to-end
view.

EEMBC [6] develops an ML benchmark suite, named MLMark on embedded
edge computing platforms. MLMark includes four AI applications: image classifi-
cation, object detection, language translation, and speech recognition. However,
only the licensees and members of EEMBC have the right to access these bench-
marks and this benchmark suite is still in “beta” state now.

EdgeBench [14] compares two edge computing platforms–Amazon AWS
Greengrass and Microsoft Azure IoT Edge. And it includes two AI applications:
speech-to-text and image recognition. EdgeBench fails to provide an end-to-end
application benchmarking framework.

AI Benchmark [7] is a benchmark suite for AI applications on smartphones,
and it includes nine AI applications. It’s an IoT benchmark suite and only focuses
on the client-side devices (smartphones)’ performance.

http://www.benchcouncil.org/testbed/index.php
http://www.benchcouncil.org/testbed/index.php

26 T. Hao et al.

Table 1 compares the state-of-the-art and state-of-the-practice edge comput-
ing AI benchmarks. It shows many of them only focus on the edge computing
layer instead of the whole edge computing framework. Our benchmark suite Edge
AIBench provides an end-to-end application benchmarking framework, includ-
ing train, validate and inference stages. Moreover, Edge AIBench includes four
typical edge computing AI scenarios and measures the whole three-layer edge
computing framework.

Table 1. Comparison among edge computing AI benchmarks

Benchmark

name

End-to-end

application scenarios

Components on

cloud server

Components on edge

computing layer

Components on

client-side devices

Open-source

Edge

AIBench

ICU patient monitor

surveillance camera

smart home

autonomous vehicle

√ √ √ √

MLPerf N/A × √ × √

EEMBC

MLMark

Not clear Not clear Not clear Not clear ×

EdgeBench N/A
√ √ √ √

AI

benchmark

N/A × × √ √

3 The Summary of Edge AIBench

Edge AIBench includes four typical scenarios: Intensive care unit(ICU) patient
monitor, surveillance camera, smart home, and autonomous vehicle. These four
AI scenarios can present the complexity of edge computing AI scenarios from
different perspectives.

3.1 ICU Patient Monitor

ICU is the treatment place for critical patients. Therefore immediacy is signif-
icant for ICU patient monitor scenario to notify doctors of the patients’ status
as soon as possible. The dataset we use is MIMIC-III [15]. MIMIC-III provides
many kinds of patients data such as vital signs, fluid balance and so on. More-
over, we choose heart failure prediction [16] and endpoint prediction [17] as the
AI benchmarks.

Heart failure prediction uses the MIMIC-III dataset and a two-level neural
attention model. It collects the patients’ data on the virtual client-side devices,
trains on the cloud server (the data will be sent from the edge) and predicts the
heart failure on the edge computing layer.

Endpoint prediction benchmark also uses the MIMIC-III dataset, and it uses
an LSTM model. This benchmark collects patients’ data on the virtual patient
device generator and then transmit it to the edge to make the inference. Then
the data will be sent to the cloud server to do more training.

Edge AIBench 27

3.2 Surveillance Camera

There are many surveillance cameras all over the world nowadays, and these
cameras will produce a large quantity of video data at all times. If we transmit
all of the data to cloud servers, the network transmission bandwidth will be
very high. Therefore, this scenario focus on edge data preprocesses and data
compression.

We choose the person re-identification application as the component bench-
mark. It collects data from the virtual camera devices and pre-process and infer
these video data on the edge computing layer. Then the edge computing layer
will send the compressed data to the cloud server. Moreover, the decompression
and training process are on the cloud server.

3.3 Smart Home

Smart home includes a lot of smart home devices such as automatic controller,
alarm system, audio equipment and so on. Thus, the uniqueness of the smart
home includes different kinds of edge devices and heterogeneous data. We will
choose two AI applications as the component benchmarks: speech recognition
and face recognition. These two components have heterogeneous data and dif-
ferent collecting devices. These two component benchmarks both collect data on
the client side devices(e.g. camera and smartphone), infer on the edge computing
layer and train on the cloud server.

Speech recognition uses the DeepSpeech2 [18] model and the LibriSpeech
dataset [19].

Face recognition uses the FaceNet [20] model and uses the LFW (Labeled
Faces in the Wild) [21] dataset.

3.4 Autonomous Vehicle

The uniqueness of the autonomous vehicle scenario is that the high demand for
validity. That is to say, it takes absolute correct action even without human
intervention. This feature represents the demand of some edge computing AI
scenarios. The automatic control system will analyze the current road condi-
tions and make a corresponding reaction at once. We will choose the road sign
recognition as the component benchmark.

The road sign recognition will collect the road signs data from the camera,
train these data on the cloud and infer on the edge computing layer.

Table 2 shows the component benchmarks of Edge AIBench. Edge AIBench
provides an end-to-end application benchmarking, consisting of train, inference,
data collection and other parts using a general three-layer edge computing frame-
work.

28 T. Hao et al.

Table 2. The Summary of Edge AIBench

End-to-end application

scenarios

AI component

benchmarks

Cloud server Edge computing

layer

Client side device

ICU patient monitor Heart failure

prediction

Train Infer send alarm Generate data

ICU patient monitor Endpoint

prediction

Train Infer Generate data

Surveillance camera Person

re-identification

Decompress

data train

Compress data

infer

Generate data

Smart home Speech

recognition

Train Infer Generate data

Smart home Face recognition Train Infer Generate data

Autonomous vehicle Road sign

recognition

Train Infer Generate data

Fig. 2. An edge computing AI testbed with a federated learning framework

3.5 A Federated Learning Framework Testbed

We have developed an edge computing AI testbed to provide support for
researchers and common users, which is publicly available from http://www.
benchcouncil.org/testbed.html. Security and privacy issues become significant
focuses in the age of big data, as well as edge computing. Federated learning is
a distributed collaborative machine learning technology whose main target is to
preserve the privacy [22]. Our testbed system will combine the federated learning
framework.

http://www.benchcouncil.org/testbed.html
http://www.benchcouncil.org/testbed.html

Edge AIBench 29

At present, we are implementing the ICU scenario on the testbed. We are
developing a “virtual patient” data generator and a federated machine learning
training model. Doctors can train the model on the local server and transmit
the encrypting parameter to the cloud server. Then the cloud server computes
the overall parameter on the basis of these encrypting parameter from different
hospitals. After all, the cloud server will send the overall parameter to the local
server and the local server will decrypt it to update their models. Figure 2 shows
our federated learning testbed framework.

4 Conclusion

This paper presents an edge computing AI benchmark, named Edge AIBench,
which consists of four end-to-end application benchmarking framework and six
component benchmarks. These scenarios we choose can present the complexity
of edge computing scenarios from different perspectives. Also, we build an edge
computing AI testbed with a federated learning framework.

Acknowledgment. This work is supported by the Standardization Research Project
of Chinese Academy of Sciences No. BZ201800001.

References

1. Peter, M., Timothy, G.: The NIST definition of cloud computing, recommendations
of the National Institute of Standards and Technology. In: National Institute of
Standards and Technology (NIST) Special Publication 800–145. Technical report
(2011)

2. IoT Analytics. https://iot-analytics.com/state-of-the-iot-update-q1-q2-2018-num
ber-of-iot-devices-now-7b/

3. Gartner Says the Internet of Things Will Transform the Data Centre. https://
prwire.com.au/pr/42679/gartner-says-the-internet-of-things-will-transform-the-
data-centre

4. MLPerf. https://mlperf.org/
5. Vijay, J.R.: An ML benchmark suite for ML software frameworks and ML hardware

accelerators in ML cloud and edge computing platforms. In: Report in BenchCoun-
cil International Symposium on Benchmarking, Measuring and Optimizing (2018)

6. EEMBC. https://www.eembc.org/
7. Ignatov, A., et al.: AI benchmark: running deep neural networks on Android smart-

phones. In: Leal-Taixé, Laura, Roth, Stefan (eds.) ECCV 2018. LNCS, vol. 11133,
pp. 288–314. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11021-
5 19

8. Gao, W., et al.: AIBench: an industry standard internet service AI benchmark
suite. Technical report (2019)

9. Gao W, et al.: AIBench: towards scalable and comprehensive datacenter AI bench-
marking. In: BenchCouncil International Symposium on Benchmarking, Measuring
and Optimizing (Bench 2018) (2018)

10. Jiang, Z., et al.: HPC AI500: a benchmark suite for HPC AI systems. In: Bench-
Council International Symposium on Benchmarking, Measuring and Optimizing
(Bench 2018) (2018)

https://iot-analytics.com/state-of-the-iot-update-q1-q2-2018-number-of-iot-devices-now-7b/
https://iot-analytics.com/state-of-the-iot-update-q1-q2-2018-number-of-iot-devices-now-7b/
https://prwire.com.au/pr/42679/gartner-says-the-internet-of-things-will-transform-the-data-centre
https://prwire.com.au/pr/42679/gartner-says-the-internet-of-things-will-transform-the-data-centre
https://prwire.com.au/pr/42679/gartner-says-the-internet-of-things-will-transform-the-data-centre
https://mlperf.org/
https://www.eembc.org/
https://doi.org/10.1007/978-3-030-11021-5_19
https://doi.org/10.1007/978-3-030-11021-5_19

30 T. Hao et al.

11. Luo, C., et al.: AIoT bench: towards comprehensive benchmarking mobile and
embedded device intelligence. In: BenchCouncil International Symposium on
Benchmarking, Measuring and Optimizing (Bench 2018) (2018)

12. Wang, L., et al.: BigDataBench: a big data benchmark suite from internet services.
In: 2014 IEEE 20th International Symposium on High Performance Computer
Architecture (HPCA), 15 February 2014, pp. 488–499. IEEE (2014)

13. Jia, Z., Wang, L., Zhan, J., Zhang, L., Luo, C.: Characterizing data analysis work-
loads in data centers. In: 2013 IEEE International Symposium on Workload Char-
acterization (IISWC), 22 September 2013, pp. 66–76. IEEE (2013)

14. Das, A., Patterson, S., Wittie, M.: EdgeBench: benchmarking edge computing
platforms. In: 2018 IEEE/ACM International Conference on Utility and Cloud
Computing Companion (UCC Companion), 17 December 2018, pp. 175–180. IEEE
(2018)

15. Johnson, A.E.W., et al.: MIMIC-III, a freely accessible critical care database. Sci.
Data 3, 160035 (2016)

16. Choi, E., Bahadori, M.T., Sun, J., Kulas, J., Schuetz, A., Stewart, W.: RETAIN: an
interpretable predictive model for healthcare using reverse time attention mech-
anism. In: Advances in Neural Information Processing Systems, pp. 3504–3512
(2016)

17. Liu, L., Shen, J., Zhang, M., Wang, Z., Tang, J.: Learning the joint representation of
heterogeneous temporal events for clinical endpoint prediction. In: Thirty-Second
AAAI Conference on Artificial Intelligence, 25 April 2018

18. Amodei, D., et al.: Deep speech 2: end-to-end speech recognition in English and
Mandarin. In: International Conference on Machine Learning, 11 June 2016, pp.
173–182 (2016)

19. Panayotov, V., Chen, G., Povey, D., Khudanpur, S.: Librispeech: an ASR corpus
based on public domain audio books. In: 2015 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 19 April 2015, pp. 5206–5210.
IEEE (2015)

20. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face
recognition and clustering. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 815–823 (2015)

21. Huang, G.B., Mattar, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild:
a database for studying face recognition in unconstrained environments. In: Work-
shop on Faces in ‘Real-Life’ Images: Detection, Alignment, and Recognition, Octo-
ber 2008

22. Yang, Q., Liu, Y., Chen, T., Tong, Y.: Federated machine learning: concept and
applications. ACM Trans. Intell. Syst. Technol. (TIST) 10(2), 12 (2019)

AIoT Bench: Towards Comprehensive
Benchmarking Mobile and Embedded

Device Intelligence

Chunjie Luo1,2,4, Fan Zhang1, Cheng Huang1,2, Xingwang Xiong1,2,
Jianan Chen1,2, Lei Wang1,4, Wanling Gao1,4, Hainan Ye3,4, Tong Wu5,

Runsong Zhou6, and Jianfeng Zhan1,2,4(B)

1 State Key Laboratory of Computer Architecture,
Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China

zhanjianfeng@ict.ac.cn
2 University of Chinese Academy of Sciences, Beijing, China

3 Beijing Academy of Frontier Science and Technology, Beijing, China
4 BenchCouncil (International Open Benchmarking Council), Dover, England

5 China National Institute of Metrology, Beijing, China
6 China Software Testing Center, Beijing, China

Abstract. Due to increasing amounts of data and compute resources,
the deep learning achieves many successes in various domains. Recently,
researchers and engineers make effort to apply the intelligent algorithms
to the mobile or embedded devices. In this paper, we propose a bench-
mark suite, AIoT Bench, to evaluate the AI ability of mobile and embed-
ded devices. Our benchmark (1) covers different application domains,
e.g. image recognition, speech recognition and natural language process-
ing; (2) covers different platforms, including Android and Raspberry Pi;
(3) covers different development frameworks, including TensorFlow and
Caffe2; (4) offers both end-to-end application workloads and micro work-
loads.

Keywords: AI · IoT · Benchmark

1 Introduction

Due to increasing amounts of data and compute resources, the deep learning
achieves many successes in various domains. Recently, researchers and engi-
neers make effort to apply the intelligent algorithms to the mobile or embed-
ded devices, e.g. smart phone, self-driving cars, smart home. On one hand, the
neural networks are made more lightweight to adapt the mobile or embedded
devices by using simpler architecture, or by quantizing, pruning and compress-
ing the networks. On the other hand, the mobile and embedded devices provide
additional hardware acceleration using GPUs or NPUs to support the AI appli-
cations. Since AI applications on mobile and embedded devices get more and

c© Springer Nature Switzerland AG 2019
C. Zheng and J. Zhan (Eds.): Bench 2018, LNCS 11459, pp. 31–35, 2019.
https://doi.org/10.1007/978-3-030-32813-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32813-9_4&domain=pdf
https://doi.org/10.1007/978-3-030-32813-9_4

32 C. Luo et al.

more attention, the benchmarking of the AI ability of those devices becomes an
urgent problem to be solved.

Benchmarking the AI ability of mobile and embedded devices is non-trivial.
We consider that the benchmark should meet the following requirements. (1)
It should cover typical AI application domains. Currently, the AI application
mainly focuses on the image, speech, and text domain. The workloads should
satisfy the diversity of the AI application domain. (2) It should cover the typical
platforms of the IoT devices. Android devices and Raspberry Pi are the widely
used in IoT environments. (3) It should consider the different development frame-
works of the AI applications on the mobile and embed devices. (4) Beyond the
end-to-end application workloads which can reflect the performance of the sys-
tem comprehensively, we also need micro workloads to obtain the fine-grained
analysis of the performance.

Recently, there are several AI related benchmarks have been proposed. For
example, ETH Zurich AI benchmark [10] aim to benchmark the Android smart-
phone using different vision tasks implemented with TensorFlow Lite. Other AI
related benchmarks have Fathom [2], DAWNBench [4]. The existing AI related
benchmarks do not satisfy the requirements mentioned above.

In this paper, we propose a benchmark suite, AIoT Bench, to evaluate the
AI ability of mobile and embedded devices. Our benchmark (1) covers different
application domains, e.g. image recognition, speech recognition and natural lan-
guage processing; (2) covers different platforms, including Android devices and
Raspberry Pi; (3) covers different development tools, including TensorFlow and
Caffe2; (4) offers both end-to-end application workloads and micro workloads.
Coordinated by BenchCouncil, we also release AIBench [5,6], HPC AI500 [12],
Edge AIBench [8] and BigDataBench [14,15].

2 Benchmarking Requirements

Here we will discuss the requirements of benchmarking mobile and embedded
devices intelligence.

– Domain Diversity. Computer vision is the most active research area for AI
applications, typical vision tasks include image classification, face recognition,
and object detection. Speech recognition, to map an acoustic signal into the
corresponding sequence of words, is another active area of AI research and
application. Natural language processing (NLP) is one of the main AI areas.
Natural language processing includes applications such as language model,
machine translation, sentiment analysis and so on [7]. There are different
features in different areas. The AI benchmarks should cover those typical
application areas.

– Platform Diversity. Android is designed primarily for touchscreen mobile
devices such as smartphones and tablets. In addition, Google has developed
Android TV for televisions, Android Auto for cars, and Wear OS for wrist
watches. Because of its openness, Android becomes the world’s most popular

AIoT Bench 33

mobile platform. The Raspberry Pi is a series of small single-board comput-
ers. The Raspberry Pi is a powerful platform when it comes to AI. Because of
its strong processing capability, the small form factor, and low power require-
ment, the Raspberry Pi is very popular for smart robotics and embedded
projects.

– Framework Diversity. There are a number of popular deep learning frame-
works. The benchmarks should cover the main frameworks, which are widely
used on mobile and embedded devices. TensorFlow [1] is an open-source
machine learning library, released by Google in 2015. TensorFlow Lite,
designed for mobile and embedded devices, is presented in 2017. Caffe [11]
is another popular open-source deep learning framework, developed at UC
Berkeley. Facebooks releases Caffe2 in 2017, the mobile version for iOS and
Android platforms.

– Testing Hierarchy. The end-to-end application benchmark can reflect the
performance of the system comprehensively, while micro benchmark can get
the fine-grained analysis of the performance. Both of them are useful for
evaluating the mobile and embedded devices.

3 AIoT Bench

We propose a benchmark suite, AIoT Bench, to evaluate the AI ability of mobile
and embedded devices. Our benchmark (1) covers different application domains,
e.g. image recognition, speech recognition and natural language processing; (2)
covers different platforms, including Android and Raspberry Pi; (3) covers differ-
ent development frameworks, including TensorFlow and Caffe2; (4) offers both
end-to-end application workloads and micro workloads.

Image Classification Workload. This is an end-to-end application workload
of vision domain, which takes an image as input and outputs the image label.
The model we use for image classification is MobileNet [9], which is a light weight
convolutional network designed for mobile and embedded devices.

Speech Recognition Workload. This is an end-to-end application workload
of speech domain, which takes words and phrases in a spoken language as input
and converts them to the text format. The model we use is the DeepSpeech 2 [3],
which consists of 2 convolutional layers, 5 bidirectional RNN layers, and a fully
connected layer.

Transformer Translation Workload. This is an end-to-end application work-
load of NLP domain, which takes the text of one language as input and translates
into another language. The model we use is transformer translation model [13],
which solves sequence to sequence problems using attention mechanisms without
recurrent connections used in traditional neural seq2seq models.

Micro Workloads. In our benchmarks, we provide the micro workloads, which
are the basic operations to compose different networks. In detail, the micro work-
loads include convolutional operation, pointwise convolution, depthwise convolu-
tion, matrix multiply, pointwise add, ReLU activation, sigmoid activation, max
pooling, average pooling.

34 C. Luo et al.

The workloads in AIoT Bench are implemented using both TensorFlow Lite
and Caffe 2 on the platform of Android as well as Raspberry Pi. We only include
the prediction procedure since the training are usually carried out on datacenters.

4 Related Work

ETH Zurich AI benchmark [10] contains workloads covering the tasks of object
recognition, face recognition, playing atari games, image deblurring, image super-
resolution, bokeh simulation, semantic segmentation, photo enhancement. Those
tasks are mainly focus on the vision application. The benchmark suite is imple-
mented only using TensorFlow Lite and aims to evaluate the Android smart-
phones (Table 1).

Table 1. The comparison of AIoT Bench against ETH Zurich AI benchmark.

AIoT bench ETH Zurich AI benchmark

Domain diversity Vision Yes Yes

Speech Yes No

NLP Yes No

Platform diversity Android Yes Yes

Raspberry Pi Yes No

Framework diversity Tensorflow Lite Yes Yes

Caffe2 Yes No

Testing hierarchy End-to-end Yes Yes

Micro Yes No

5 Conclusion

In this paper, we analyze the requirements of benchmarking IoT devices intel-
ligence. And to meet the requirements, we propose a benchmark suite, AIoT
Bench, to evaluate the AI ability of mobile and embedded devices. Our bench-
mark covers different application domains, different platforms, different devel-
opment frameworks. Moreover, we offer both end-to-end application workloads
and micro workloads in our benchmark.

Acknowledgment. This work is supported by the Standardization Research Project
of Chinese Academy of Sciences No.BZ201800001.

AIoT Bench 35

References

1. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In:
12th {USENIX} Symposium on Operating Systems Design and Implementation
({OSDI} 16), pp. 265–283 (2016)

2. Adolf, R., Rama, S., Reagen, B., Wei, G.Y., Brooks, D.: Fathom: Reference work-
loads for modern deep learning methods. In: 2016 IEEE International Symposium
on Workload Characterization (IISWC), pp. 1–10. IEEE (2016)

3. Amodei, D., et al.: Deep speech 2: end-to-end speech recognition in English and
Mandarin. In: International Conference on Machine Learning, pp. 173–182 (2016)

4. Coleman, C., et al.: DAWNBench: an end-to-end deep learning benchmark and
competition. Training 100(101), 102 (2017)

5. Gao, W., et al.: AIBench: an industry standard internet service AI benchmark
suite. Technical report (2019)

6. Gao, W., et al.: The report of datacenter AI benchmarks in BigDataBench: towards
scalable and comprehensive AI and big data benchmarking. In: 2018 BenchCouncil
Symposium on Benchmarking, Measuring and Optimizing (Bench 2018) (2018)

7. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016)
8. Hao, T., et al.: Edge AIBench: towards comprehensive end-to-end edge computing

benchmarking. In: 2018 BenchCouncil Symposium on Benchmarking, Measuring
and Optimizing (Bench 2018) (2018)

9. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile
vision applications. arXiv preprint arXiv:1704.04861 (2017)

10. Ignatov, A.: AI benchmark: running deep neural networks on android smartphones.
In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11133, pp. 288–314.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11021-5 19

11. Jia, Y., et al.: Caffe: Convolutional architecture for fast feature embedding. In:
Proceedings of the 22nd ACM International Conference on Multimedia, pp. 675–
678. ACM (2014)

12. Jiang, Z., et al.: HPC AI500: a benchmark suite for HPC AI systems. In: 2018
BenchCouncil Symposium on Benchmarking, Measuring and Optimizing (Bench
2018) (2018)

13. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, pp. 5998–6008 (2017)

14. Wang, L., et al.: BigDataBench: a big data benchmark suite from internet services.
In: IEEE International Symposium on High Performance Computer Architecture
(HPCA) (2014)

15. Jia, Z., Wang, L., Zhan, J., Zhang, L., Luo, C.: Characterizing data analysis work-
loads in data centers. In: 2013 IEEE International Symposium on Workload Char-
acterization (IISWC), 22 September 2013, pp. 66–76. IEEE (2013)

http://arxiv.org/abs/1704.04861
https://doi.org/10.1007/978-3-030-11021-5_19

A Survey on Deep Learning Benchmarks:
Do We Still Need New Ones?

Qin Zhang1,2(B), Li Zha1, Jian Lin3, Dandan Tu3, Mingzhe Li4, Fan Liang5,
Ren Wu6, and Xiaoyi Lu7

1 University of Chinese Academy of Sciences, Beijing, China
char@ict.ac.cn

2 Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
zhangqin17s@ict.ac.cn

3 Huawei Technologies Co., Ltd., Shenzhen, China
{linjian4,tudandan}@huawei.com
4 Facebook, Inc., Menlo Park, USA

mingzhe0908@fb.com
5 Cambricon, Inc., Beijing, China

liangfan@cambricon.com
6 NovuMind, Inc., Santa Clara, USA

renw@novumind.com
7 Department of Computer Science and Engineering, The Ohio State University,

Columbus, USA
luxi@cse.ohio-state.edu

Abstract. Deep Learning has recently been gaining popularity. From
the micro-architecture field to the upper-layer end applications, a lot of
research work has been proposed in the literature to advance the knowl-
edge of Deep Learning. Deep Learning Benchmarking is one of such hot
spots in the community. There are a bunch of Deep Learning bench-
marks available in the community already and new ones keep coming as
well. However, we find that not many survey works are available to give
an overview of these useful benchmarks in the literature. We also find
few discussions on what has been done for Deep Leaning Benchmark-
ing in the community and what are still missing. To fill this gap, this
paper attempts to provide a survey on multiple high-impact Deep Learn-
ing Benchmarks with training and inference support. We share some of
our insightful observations and discussions on these benchmarks. In this
paper, we believe the community still needs more benchmarks to capture
different perspectives, while these benchmarks need a way for converging
to a standard.

Keywords: Deep Learning · Benchmark · Survey · Training ·
Inference

1 Introduction

Deep Learning (DL) is a rapidly moving area in terms of both software systems
and hardware architectures. With the rapid evolution of Deep Learning, it is
c© Springer Nature Switzerland AG 2019
C. Zheng and J. Zhan (Eds.): Bench 2018, LNCS 11459, pp. 36–49, 2019.
https://doi.org/10.1007/978-3-030-32813-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32813-9_5&domain=pdf
https://doi.org/10.1007/978-3-030-32813-9_5

A Survey on Deep Learning Benchmarks 37

very difficult to quickly evaluate the performance of a Deep Learning framework
or a new DL model on new hardware platforms. However, such evaluation is
vastly important in guiding framework and model developers, as well as hardware
designers.

To help researchers and designers to perform meaningful studies, Deep
Learning benchmarks are useful and vital tools to be adopted. Thus, a lot of
Deep Learning benchmarks [3,8,13,14,21,51,52] have been proposed from both
academia and industry areas and new ones keep coming as well.

Deep Learning training and inference is sometimes similar with High Perfor-
mance Computing (HPC) tasks, and there has been a large number of bench-
marks on HPC operations and systems [4,17,18,39,41]. However, we surprisingly
find that not many survey works are available in the literature to give an overview
of these useful benchmarks. Instead, multiple surveys have been done on Deep
Learning methods and software tools or libraries [9,19,20,24,42,50,53]. We also
find few discussions on what has been done for Deep Leaning Benchmarking in
the community and what are still missing.

Therefore, we believe there is a need to have a survey paper on Deep Learning
Benchmarking topic in the literature. To meet with this, this paper attempts to
provide a comprehensive survey on multiple high-impact Deep Learning Bench-
marks with training and inference support. Section 2 has summarized four Deep
Learning benchmarks in detail. Two of them are chosen from the works proposed
by research institutions and the other two are chosen from industry companies.
In addition, some other related benchmarks are also discussed in Sect. 2.

Through our survey, we find the following important observations:

– Current-generation Deep Learning Benchmarks have covered many per-
spectives, such as performance, heterogeneity, power-consumption, accuracy,
model density, precision requirement, cost, etc. But maybe more aspects can
be considered, such as productivity.

– More benchmarks pay attention to training than inference so far. The commu-
nity may need to start paying more attention to inference-centric benchmarks.

– The current-generation Deep Learning benchmarks are broadly designed with
two methodologies. One way is proposing benchmarks with basic Deep Learn-
ing operations, while the other is collecting end-to-end Deep Learning models
as benchmarks. Hybrid solutions are also available.

– The current status of Deep Learning Benchmark community is still in the
“Warring States Period”. There is no converged Deep Learning Benchmark
standard yet in the community.

We share our thoughts and envisioned research directions on these obser-
vations in Sect. 3. We conclude this paper in Sect. 4 with many possible future
works.

Through our survey, we believe that the community still needs more bench-
marks to capture different perspectives, while these benchmarks need a way to
converge to a standard.

38 Q. Zhang et al.

2 A Survey on Deep Learning Benchmarks

In this section, we present a survey on related benchmarks in the literature and
community.

2.1 Stanford DAWNBench

DAWNBench [12,13] is an open-source benchmark and competition for end-to-
end deep learning training and inference. Measuring end-to-end performance of
training such as time and cost, and inference such as latency. DAWNBench gives
researchers an objective judgment standard of different computation frameworks,
hardware, hyper-parameter settings, and optimization algorithms.

DAWNBench can measure the end-to-end time and cost to train a deep
learning model to a specific accuracy together with its inference time. Specifi-
cally, DAWNBench measures the inference time to 93% validation accuracy for
different hardware, frameworks, and model architectures. In their initial release,
DAWNBench released benchmark specifications for image classification (Ima-
geNet [15], CIFAR10 [35]) and question answering (SQuAD) [43]. Additional
tasks and datasets may be included in their future releases.

The models in DAWNBench can be tested on both TensorFlow [1,2,44] and
PyTorch [34], with four different types of hardware platforms, including one
single NVIDIA Tesla K80 on Google Cloud and Amazon EC2, one single NVIDIA
Tesla P100, and 16 vCPUs on Google Cloud.

Besides the official benchmarks, the DAWNBench project allows people to
submit their benchmarking results for competition, which can push the commu-
nity and promote the development of DAWNBench.

Fig. 1. Training and inference performance of DAWNBench ResNet-20 using a single
GPU

To demonstrate the capability of performing training and inference with
DAWNBench, we perform a set of experiments with DAWNBench ResNet-20 [26]
benchmark on our platform. Figure 1 shows our experimental results. Figure 1a
presents the process of training the model with a batch size of 128. Figure 1b

A Survey on Deep Learning Benchmarks 39

presents the inference results, which include Top-1 accuracy, Top-5 accuracy,
and time cost. It is easy for us to observe the performance of the system and the
characteristics of the model from these benchmark results. For example, we can
find that in the process of training, other than increasing gradually, the accuracy
of ResNet-20 increases in a ladder-shaped manner. The experiments above are
finished on one compute node, which is equipped with one NVIDIA Tesla P100
GPU and two Intel Xeon Silver 4114 10-core CPUs.

The DAWNBench project largely relies on results uploaded by researchers
and itself does not provide enough benchmark tools. It leads to the lack of detail
profiling results of different experiments. When we need an in-depth understand-
ing of different executions with varied models on different hardware platforms,
it is not easy for developers to look for bottlenecks of the systems and models
with DAWNBench.

2.2 Baidu DeepBench

DeepBench [14] from Baidu is an open-source benchmark covering both train-
ing and inference. DeepBench focuses on measuring the performance of basic
operations in neural network libraries. It aims at determining the most suitable
hardware for specific operations, and communicating requirements to hardware
manufacturers. The benchmark has been adapted to both server-side and edge-
side platforms. For example, DeepBench can run on top of mainstream GPU
devices as well as mobile devices, such as iPhone.

DeepBench [14] focuses more on basic operations of Deep Learning inference
rather than complete inferences. The key question DeepBench is trying to answer
is – “Which hardware provides the best performance on the basic operations used
in deep neural networks?”.

Table 1. Operation benchmarks in DeepBench for inference

Operation Applications

Dense Matrix Multiplication DeepSpeech, Language Modeling

Sparse Matrix Multiplication DeepSpeech

Convolution DeepSpeech, Face Recognition, Vision

Recurrent Layers - LSTM Language Modeling, Machine Translation

Recurrent Layers - GRU DeepSpeech, Speaker ID

Table 1 shows the inference-related operations and devices supported by
DeepBench. We can see that DeepBench can measure operations and layers like
Dense Matrix Multiplication, Sparse Matrix Multiplication, Convolution [36,37],
Long Short Term Memory [28] and Gated Recurrent Unit [11] layers. These oper-
ations and layers are widely used in applications like DeepSpeech [5,23], Lan-
guage Modeing [7], Machine Translation, Speaker Identification [45], etc. Com-
paring with the training benchmark, the inference benchmark has some distinct

40 Q. Zhang et al.

Fig. 2. Training and inference performance of DeepBench ResNet-20 using a single
GPU

Fig. 3. Baidu DeepBench GEMM operation performance with Intel CPU and ARM
CPU

designs. It provides a batching scheduler to improve the performance issue led
by individual requests and provides kernels with different precisions to adapt
diversified terminal devices. Sparse kernels are employed for benchmarking the
optimized neural network operations on mobile devices.

In many deep learning models, the fully connected layer and convolution layer
are basically implemented by General Matrix Multiplication (GEMM) opera-
tions, and about 90% of the network operations are in these two layers. Figure 2
shows the time cost of GEMM operation provided by DeepBench for train and
inference with Intel CPU (Intel Xeon Silver 4114, 2.20 GHz) and NVIDIA GPU
(P100, 12 GB). It can be seen that through using GPU, the time cost of GEMM
operation can be reduced by about 90% in both training and inference scenarios.
Figure 3 shows the time cost and GFLOPS values using x86 CPU (Intel Xeon
Silver 4114, 2.20 GHz) and ARM CPU (ARMv8 (Atlas/A57), 2.4 GHz). The val-
ues are taken in the form of logarithm since the difference between values is too
large. We can learn through these experiments that the performance difference
between these two CPUs is big. The peak GFLOPS value of the ARM CPU is
about 1/14 of that of Intel x86 CPU. But when the size of matrix gets smaller, the
performance difference will become smaller at the same time. It is because small
computation load cannot make full use of the ability of CPUs, and when run-

A Survey on Deep Learning Benchmarks 41

ning with small jobs, ARM CPUs can be totally competent. Experiments show
that Baidu DeepBench can test Deep Learning operations on different hardware
and architectures. Figures 2 and 3 are the typical example results which this
benchmark can give us.

Although Baidu DeepBench can be run on different types of hardware plat-
forms, it is not easy to use on some non-x86 architecture CPUs. For example,
when we want to run DeepBench on ARM CPUs, we need to select the type of
CPUs carefully because not all ARM CPUs are supported in DeepBench. We
need to modify the code of DeepBench and the supporting libraries on ARM
CPUs, because there may have some bugs. On the other hand, the datasets
(e.g., the size of matrix) tested on different hardware are not exactly the same.
It is inconvenient for users to compare the performance with different hardware.

2.3 Facebook AI Performance Evaluation Platform

Facebook AI Performance Evaluation Platform (i.e., FAI-PEP) [21] provides
a way to compare Machine Learning or Deep Learning inference performance
metrics on a set of models over different backends. This platform supports both
mobile devices and server platforms.

Currently, FAI-PEP supports two platforms, TensorFlow Lite (TFLite) [38]
and Caffe2 [31]. It includes 16 popular machine learning models including
MobileNet [29,46], SqueezeNet [30], ShuffleNet [54], etc. This platform collects
the total execution time, error rate, and power consumption of a model. It can
also accept any ML or Deep Learning models given by users and reports any
metrics defined by users.

The platform supports two modes of execution which are standalone bench-
mark run and continuous benchmark run. The standalone benchmark run mode
reports the results for one benchmark run. Continuous benchmark run mode
repeatedly pulls the framework and runs the benchmarks.

For model engineers, this platform provides an easy-to-use front-end that
can get the performance of new Machine Learning or Deep Learning models
on all existing backends. For Machine Learning or Deep Learning framework
developers, this platform can be used to evaluate performance improvement and
detect regression.

FAI-PEP provides a centralized model/benchmark specification, a bench-
mark driver for distributed execution, and a data consumption tool to com-
pare the performance. The currently supported frameworks in FAI-PEP include
Caffe2 and TFLite. FAI-PEP can test benchmarks with multiple different back-
ends, including CPU, GPU, DSP, Android, iOS, and other Linux based systems.

2.4 ICT BigDataBench

BigDataBench [8,22] from Institute of Computing Technology, Chinese Academy
of Sciences (ICT, CAS) is a comprehensive Big Data and AI benchmark suite.
The core concept in BigDataBench is called data motifs, which considers any

42 Q. Zhang et al.

Table 2. Operations, benchmarks, and data motifs in BigDataBench

Basic operation Data motifs Model benchmark Data motifs

Convolution Transform Alexnet Matrix, Transform, Sampling,

Logic, Basic statistics

Fully Connectced Matrix Googlenet Matrix, Transform, Sampling,

Logic, Basic statistics

Relu Logic Resnet Matrix, Transform, Sampling,

Logic, Basic statistics

Sigmoid Matrix Inception Resnet V2 Matrix, Transform, Sampling,

Logic, Basic statistics

Tanh Matrix VGG16 Matrix, Transform, Sampling,

Logic, Basic statistics

MaxPooling Sampling DCGAN Matrix, Transform, Sampling,

Logic, Basic statistics

AvgPooling Sampling WGAN Matrix, Transform, Sampling,

Logic, Basic statistics

CosineNorm Basic Statistics GAN Matrix, Sampling, Logic, Basic

statistics

BatchNorm Basic Statistics Seq2Seq Matrix, Sampling, Logic, Basic

statistics

Dropout Sampling Word2vec Matrix, Basic statistics, Logic

Big Data and AI workload as a pipeline of one or more classes of computation
units performed on different input data sets.

The BigDataBench team has identified eight data motifs from a wide range of
Big Data and AI workloads, including Matrix, Sampling, Logic, Transform, Set,
Graph, Sort, and Statistic computation. Each data motif captures the common
requirements of each class of computation units. The behaviors of each data
motif are affected by the sizes, patterns, types, and sources of different data
inputs. These data motifs can reflect not only computation patterns, memory
access patterns, but also disk and network I/O patterns.

There are many benchmarks included in BigDataBench. The Deep Learning
related basic operation and model benchmarks are summarized in Table 2. All
of these operations and model benchmarks in BigDataBench can run on top of
both TensorFlow and Caffe Deep Learning frameworks [33].

Figure 4 shows the time costs of five epochs and their average time costs
of four deep learning models (AlexNet [36], GoogleNet [49], Inception-ResNet-
v2 [48], VGG16 [47]) provided by BigDataBench v4.0 based on TensorFlow. We
can test the training efficiency and time cost stability of different models and
compare them with each other. The experiments are performed on a compute
node with an Intel Xeon Silver 4114 10-core CPU.

2.5 Other Benchmarks

The community has many other Deep Learning related benchmarks as well. We
can not discuss all of them in detail. Thus, we briefly summarize some of them
in the following list.

A Survey on Deep Learning Benchmarks 43

Fig. 4. Training performance of four benchmarks in BigDataBench. The bars represent
the time costs of five epochs and the average time costs of four benchmarks provided
by BigDataBench. The batch size is set to 64

MLPerf [40] is a synthetic benchmark suite for measuring the performance
of software frameworks, hardware accelerators, and cloud platforms for machine
learning. It is driven by a community supported by industry and academy. The
basic approach of MLPerf is to measure the clock time of running the selected
problem set with the standard dataset, and report a summarized score. With
equivalent workloads, the performance of different software or hardware can be
compared fairly. It also concerns the power cost of computation. MLPerf aims
at enabling fair comparison of competing systems and promoting technologi-
cal innovation. On the deep learning side, MLPerf covers problems like image
classification, object detection, and speech recognition. As of now, the training
benchmark of MLPerf is relatively mature, while the inference benchmark is still
in its infancy.

Fathom [3] is a set of reference implementations of state-of-the-art deep
learning models and has the ability to provide a quantitative analysis of the
fundamental computational characteristics of these workloads. Fathom uses a
custom and high-level analysis framework to identify the execution time of differ-
ent types of operations and compares the performance of training and inference
between different deep learning models. Furthermore, Fathom is able to measure
the similarity between different deep learning models.

TensorFlow Benchmark [51] tests a selection of image classification mod-
els across multiple platforms. These tests are specially done to show the perfor-
mance of TensorFlow in different environments. The models selected for Tensor-
Flow Benchmark include InceptionV3 [32], ResNet50, ResNet152, VGG16, and
AlexNet. All tests can be done with both NVIDIA GPGPUs and CPUs on native
and cloud computing environments.

44 Q. Zhang et al.

CortexSuite [52] is a Synthetic Brain Benchmark Suite which classifies
and identifies benchmarks by analogy to the human neural processing func-
tions. The goal of CortexSuite is to collect together man-made algorithms
that have similar capabilities and have met with success in the real world.
ioffe2015batchCortexSuite does not only focus on deep learning models like
Restricted Boltzmann Machine (RBM) [27] and Image Recolonization, but also
selects some widely used mathematical algorithms such as Principal Component
Analysis (PCA) and Singular Value Decomposition (SVD).

BenchNN [10] highlights that a hardware-based neural network accelerator
can be compatible with many of the emerging benchmarks for high-performance
micro-architectures. The result of BenchNN will be used to help design hard-
ware accelerators for deep learning models, applications and machine learning
algorithms.

DjiNN [25] is an open infrastructure for providing Deep Neural Networks
(DNN) as a service. Tonic [25] is a suite of seven end-to-end applications that are
using DjiNN services. Tonic Suite provides image, speech, and natural language
processing applications that can have a common DNN backend. The system
measures the throughput, GPU occupancy, and latency of model training and
inference.

Deep500 [6] is a customizable benchmarking infrastructure that enables
a fair comparison of the plethora of deep learning frameworks, algorithms,
libraries, and techniques. It supports distributed training on TensorFlow, Caffe
and PyTorch and users can design different codes with its high-level APIs.

AIoT Bench [9] is a benchmark that is designed for mobile and embedded
devices, from Android devices to Raspberry Pi. It supports both Tensorflow and
Caffe2 and covers different application domains such as image recognition, speech
recognition, and natural language processing. Besides end-to-end application
workloads, AIoT Bench also offers micro workloads.

EdgeAI Bench [50] focuses on benchmarking artificial intelligence applica-
tions for edge computing scenarios. It takes four applications into consideration:
ICU Patient Monitor, Surveillance Camera, Smart Home, and Autonomous Vehi-
cle. Client-side devices, edge computing layer, and cloud servers are all included
in this benchmark. EdgeAI Bench also builds an edge computing testbed to help
the community to resolve performance, privacy, and security issues.

HPC AI500 [53] is a benchmark suite for testing Deep Leaning benchmarks
on HPC systems. It selects several typical scientific fields to be the target scenes,
e.g. extreme weather analysis, high energy physics, and cosmology. Workloads
in this benchmark are made up of state-of-the-art DL models and representative
scientific data sets instead of standard DL models (e.g., VGG and LSTM) and
datasets (e.g., MNIST [16] and ImageNet).

3 Discussion

In this section, we provide a detailed comparison among many of the above-
mentioned benchmarks. Based on our survey, experiments, and comparisons, we
further discuss some interesting observations in this study.

A Survey on Deep Learning Benchmarks 45

3.1 Benchmark Comparison

To compare benchmarks introduced above, we build and test them (based on
their code availability) on our platform. According to our experiments and lit-
erature survey, we summarize the capabilities of several typical benchmarks in
Table 3. The column of Time represents whether the benchmark can give us
the timing information of training and inference. Similarly, the column of Loss
represents whether the benchmark can report training loss. The Acc column rep-
resents whether the benchmark can measure training accuracy. The Cost column
represents whether the benchmark will report the execution cost (i.e., how many
dollars to run the experiments.). The Power column represents whether the
benchmark can report the power consumption. The column of Util represents
whether the benchmark will report the usage of cache, memory, and processors
(e.g., CPU or GPU). Tput represents whether the benchmark is designed for
reporting system throughput. Train and Infer columns indicate whether the
benchmark is designed mainly for training or inference. Column Hete repre-
sents whether this benchmark supports heterogeneous software and hardware
platforms. Under this column, S means this benchmark supports software het-
erogeneity (i.e. supports different Deep Learning frameworks, like Tensorflow
and PyTorch), while H means it supports hardware heterogeneity (i.e. supports
different kinds of devices, like x86 processors, GPUs, and ARM processors).

Table 3. The capabilities of several typical deep learning benchmarks

Benchmark Time Loss Acc Cost Power Tput Util Train Infer Hete

DAWNBench � × � � × × × � � S

DeepBench � × × × × � × � � H

FAI-PEP � × � × � × × � � H/S

BigDataBench � � � × × × × � × S

Fathom � × × × × � × � � ×
MLPerf � � � � � × × � × H/S

Deep500 � � � � × � × � � ×

3.2 Observations

Even though we can not cover all the benchmarks in the community in this study,
we believe the ones we have surveyed can represent the design philosophies for
many other benchmarks as well. Through our survey and experiments, we have
found the following interesting observations:

Observation-1: Current-generation Deep Learning benchmarks have covered
many perspectives which are important for hardware and software system
researchers as well as AI application designers. As shown in Table 3, almost
all the benchmarks pay attention to performance, heterogeneity, and accuracy,

46 Q. Zhang et al.

which are the most important three properties for benchmarking Deep Learn-
ing systems and applications. Here, the heterogeneity means the benchmarks
can support more than one type of Deep Learning frameworks as well as dif-
ferent hardware platforms, especially for both edge devices and cloud servers.
Some benchmarks, such as Baidu DeepBench, start paying attention to more
in-depth requirements, such as model density, precision requirement, etc. Some
other interesting and important metrics, such as cost and energy consumption,
are supported by Stanford DAWNBench and Facebook AI benchmarks.

Even though current-generation benchmarks can cover many aspects, we
believe may be more aspects can be still considered, such as productivity, which
means how fast a designer can propose a new model on a particular platform.
This could be very interesting for Deep Learning algorithm researchers to have
a way for comparing platforms and choosing a proper one to implement their
ideas.

Observation-2: Many of current-generation benchmarks pay attention to mea-
suring the training performance. Not all of them have a component for bench-
marking inference process. However, some benchmarks start supporting inference
benchmarking, such as Baidu DeepBench and Facebook AI benchmarks.

Observation-3: The current-generation Deep Learning benchmarks are broadly
designed with two methodologies. In one way, designers are trying to propose
benchmarks with basic Deep Learning operations, such as Baidu DeepBench,
while the other way is collecting end-to-end Deep Learning models as bench-
marks, such as ResNet, VGG, etc. Comprehensive solutions (like a hybrid app-
roach) are also available, such as ICT BigDataBench.

Observation-4: The current status of Deep Learning Benchmark community
is still in the “Warring States Period”, which means the leading organizations
of these projects are trying to propose their own benchmarks to the community
and try to grow them stronger for the potential competition in the future. There
is no converged and well-received single Deep Learning benchmark standard yet
in the community. So far, it may not be easy for the community to define a clear
and representative Deep Learning benchmark standard, but we believe this may
happen in the future.

4 Conclusion and Future Work

This paper is an on-going work to survey the existing Deep Learning benchmarks
in the community. We have covered multiple important ones, such as Stanford
DAWNBench, Baidu DeepBench, Facebook AI Benchmarks, ICT BigDataBench,
and many others. We have shared our experimental results, experience, and
observations in this study. We wish our survey on these benchmarks can promote
the evolution of Deep Learning benchmarks in the community.

In the future, we plan to do a comprehensive survey on more benchmarks. We
also plan to perform systematical performance evaluations on these benchmarks
and share more experience with the community.

A Survey on Deep Learning Benchmarks 47

Acknowledgments. This research is supported in part by the Strategic Priority
Research Program of the Chinese Academy of Sciences, Grant No. XDA19020400.

References

1. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous dis-
tributed systems. arXiv preprint arXiv:1603.04467 (2016)

2. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In:
12th {USENIX} Symposium on Operating Systems Design and Implementation
({OSDI} 2016), pp. 265–283 (2016)

3. Adolf, R., Rama, S., Reagen, B., Wei, G.-Y., Brooks, D.M.: Fathom: reference
workloads for modern deep learning methods. CoRR, abs/1608.06581 (2016)

4. Akioka, S., Muraoka, Y.: HPC benchmarks on Amazon EC2. In: 2010 IEEE 24th
International Conference on Advanced Information Networking and Applications
Workshops, pp. 1029–1034. IEEE (2010)

5. Amodei, D., et al.: Deep speech 2: end-to-end speech recognition in English and
Mandarin. In: International Conference on Machine Learning, pp. 173–182 (2016)

6. Ben-Nun, T., Besta, M., Huber, S., Ziogas, A.N., Peter, D., Hoefler, T.: A modular
benchmarking infrastructure for high-performance and reproducible deep learning.
arXiv:1901.10183 (2019)

7. Bengio, Y., Ducharme, R., Vincent, P., Jauvin, C.: A neural probabilistic language
model. J. Mach. Learn. Res. 3(Feb), 1137–1155 (2003)

8. BigDataBench: A Big Data and AI Benchmark Suite (2018). http://prof.ict.ac.cn/
9. Huang, C., et al.: AIoT bench: towards comprehensive benchmarking mobile

and embedded device intelligence. In: BenchCouncil International Symposium on
Benchmarking, Measuring and Optimizing (Bench), Seattle, WA, USA (2018)

10. Chen, T., et al.: BenchNN: on the broad potential application scope of hardware
neural network accelerators. In: Proceedings - 2012 IEEE International Symposium
on Workload Characterization, IISWC 2012, pp. 36–45, November 2012

11. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for
statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

12. Coleman, C., et al.: DAWNBench: an end-to-end deep learning benchmark and
competition. In: Proceedings of ML Systems Workshop, Co-Located with 31st Con-
ference on Neural Information Processing Systems (NIPS) (2017)

13. Stanford DAWNBench: An End-to-End Deep Learning Benchmark and Competi-
tion (2018). https://dawn.cs.stanford.edu/benchmark/

14. Baidu DeepBench: Benchmarking Deep Learning Operations on Different Hard-
ware (2018). https://github.com/baidu-research/DeepBench

15. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: a large-scale
hierarchical image database. In: 2009 IEEE Conference on Computer Vision and
Pattern Recognition, pp. 248–255. IEEE (2009)

16. Deng, L.: The MNIST database of handwritten digit images for machine learning
research. IEEE Sign. Process. Mag. 29(6), 141–142 (2012)

17. Dongarra, J., Heroux, M.A., Luszczek, P.: HPCG benchmark: a new metric for
ranking high performance computing systems. Technical report UT-EECS-15-736,
Electrical Engineering and Computer Science Department, University of Tennessee
(2015)

18. Dongarra, J.J., Luszczek, P., Petitet, A.: The LINPACK benchmark: past, present
and future. Concurrency Comput.: Pract. Exp. 15(9), 803–820 (2003)

http://arxiv.org/abs/1603.04467
http://arxiv.org/abs/1901.10183
http://prof.ict.ac.cn/
http://arxiv.org/abs/1406.1078
https://dawn.cs.stanford.edu/benchmark/
https://github.com/baidu-research/DeepBench

48 Q. Zhang et al.

19. Druzhkov, P.N., Kustikova, V.D.: A survey of deep learning methods and software
tools for image classification and object detection. Pattern Recogn. Image Anal.
26(1), 9–15 (2016)

20. Erickson, B.J., Korfiatis, P., Akkus, Z., Kline, T., Philbrick, K.: Toolkits and
libraries for deep learning. J. Dig. Imaging 30(4), 400–405 (2017)

21. Facebook AI Performance Evaluation Platform (2018). https://github.com/
facebook/FAI-PEP

22. Gao, W., et al.: BigDataBench: a dwarf-based big data and AI benchmark suite,
pp. 1–23 (2018)

23. Hannun, A., et al.: Deep speech: scaling up end-to-end speech recognition. arXiv
preprint arXiv:1412.5567 (2014)

24. Hatcher, W.G., Yu, W.: A survey of deep learning: platforms, applications and
emerging research trends. IEEE Access 6, 24411–24432 (2018)

25. Hauswald, J., et al.: DjiNN and Tonic: DNN as a service and its implications
for future warehouse scale computers. In: Proceedings of the 42nd Annual Inter-
national Symposium on Computer Architecture (ISCA), ISCA 2015. ACM, New
York (2015)

26. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition
(2015)

27. Hinton, G.E.: A practical guide to training restricted boltzmann machines. In:
Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the
Trade. LNCS, vol. 7700, pp. 599–619. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-35289-8 32

28. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

29. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile
vision applications. arXiv preprint arXiv:1704.04861 (2017)

30. Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.:
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model
size. arXiv preprint arXiv:1602.07360 (2016)

31. Facebook Inc.: Caffe2. https://caffe2.ai/
32. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by

reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)
33. Jia, Y., et al.: Caffe: convolutional architecture for fast feature embedding. In:

Proceedings of the 22nd ACM International Conference on Multimedia, pp. 675–
678. ACM (2014)

34. Ketkar, N.: Introduction to PyTorch. Deep Learning with Python, pp. 195–208.
Apress, Berkeley (2017). https://doi.org/10.1007/978-1-4842-2766-4 12

35. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny
images. Technical report, Citeseer (2009)

36. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097–1105 (2012)

37. Lawrence, S., Giles, C.L., Tsoi, A.C., Back, A.D.: Face recognition: a convolutional
neural-network approach. IEEE Trans. Neural Netw. 8(1), 98–113 (1997)

38. Lee, J., et al.: On-device augmented reality with mobile GPUs (2019). https://
mixedreality.cs.cornell.edu/s/10 CV4ARVR2019-jet-camera-ready.pdf

39. Luszczek, P.R., et al.: The HPC challenge (HPCC) benchmark suite. In: Proceed-
ings of the 2006 ACM/IEEE Conference on Supercomputing, vol. 213. Citeseer
(2006)

https://github.com/facebook/FAI-PEP
https://github.com/facebook/FAI-PEP
http://arxiv.org/abs/1412.5567
https://doi.org/10.1007/978-3-642-35289-8_32
https://doi.org/10.1007/978-3-642-35289-8_32
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1602.07360
https://caffe2.ai/
http://arxiv.org/abs/1502.03167
https://doi.org/10.1007/978-1-4842-2766-4_12
https://mixedreality.cs.cornell.edu/s/10_CV4ARVR2019-jet-camera-ready.pdf
https://mixedreality.cs.cornell.edu/s/10_CV4ARVR2019-jet-camera-ready.pdf

A Survey on Deep Learning Benchmarks 49

40. MLPerf: A Broad ML Benchmark Suite for Measuring Performance of ML Software
Frameworks, ML Hardware Accelerators, and ML Cloud Platforms (2018). https://
mlperf.org/

41. Nelson, M.T., et al.: NAMD: a parallel, object-oriented molecular dynamics pro-
gram. Int. J. Supercomput. Appl. High Perform. Comput. 10(4), 251–268 (1996)

42. Ota, K., Dao, M.S., Mezaris, V., De Natale, F.G.B.: Deep learning for mobile
multimedia: a survey. ACM Trans. Multimed. Comput. Commun. Appl. 13(3s),
34:1–34:22 (2017)

43. Rajpurkar, P., Zhang, J., Lopyrev, K., Liang, P.: SQuAD: 100,000+ questions for
machine comprehension of text. arXiv preprint arXiv:1606.05250 (2016)

44. Rampasek, L., Goldenberg, A.: TensorFlow: biology’s gateway to deep learning?
Cell Syst. 2(1), 12–14 (2016)

45. Reynolds, D.A., Rose, R.C.: Robust text-independent speaker identification using
Gaussian mixture speaker models. IEEE Trans. Speech Audio Process. 3(1), 72–83
(1995)

46. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.-C.: MobileNetV2:
inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

47. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

48. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, inception-ResNet
and the impact of residual connections on learning. In: Thirty-First AAAI Confer-
ence on Artificial Intelligence (2017)

49. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

50. Wen, X., et al.: EdgeAI bench: towards comprehensive end-to-end edge comput-
ing benchmarking. In: BenchCouncil International Symposium on Benchmarking,
Measuring and Optimizing (Bench), Seattle, WA, USA (2018)

51. TensorFlow Benchmarks (2018). https://www.tensorflow.org/performance/bench
marks

52. Thomas, S., et al.: CortexSuite: a synthetic brain benchmark suite. In: 2014
IEEE International Symposium on Workload Characterization (IISWC), pp. 76–
79, October 2014

53. Wang, L., et al.: HPC AI500: a benchmark suite for HPC AI systems. In: Bench-
Council International Symposium on Benchmarking, Measuring and Optimizing
(Bench), Seattle, WA, USA (2018)

54. Zhang, X., Zhou, X., Lin, M., Sun, J.: ShuffleNet: an extremely efficient convolu-
tional neural network for mobile devices. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 6848–6856 (2018)

https://mlperf.org/
https://mlperf.org/
http://arxiv.org/abs/1606.05250
http://arxiv.org/abs/1409.1556
https://www.tensorflow.org/performance/benchmarks
https://www.tensorflow.org/performance/benchmarks

Cloud

Benchmarking VM Startup Time
in the Cloud

Samiha Islam Abrita1(B), Moumita Sarker1, Faheem Abrar2,
and Muhammad Abdullah Adnan1

1 Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
{0416052053.sia,0416052070.ms}@grad.cse.buet.ac.bd

adnan@cse.buet.ac.bd
2 University of Saskatchewan, Saskatoon, Canada

faheem.abrar@usask.ca

Abstract. Elasticity is one of the primary reasons of the popularity of
cloud computing. However, a frequent problem is affecting this popu-
larity - longer processing time for the acquired Virtual Machines (VM)
to be ready for usage. This problem hinders the advantages of elasticity.
This processing time, known as VM startup time, depends on various fac-
tors. VM startup time varies due to space-time trade-off. Comparing VM
startup time according to distinctive factors allows users to choose their
desirable VM. They have options to select among the VMs as per their
preferences. In this paper, we benchmark VM startup time in Amazon
EC2, Microsoft Azure and Google Cloud for factors like instance type,
time of the day, instance location, cluster creation and cluster resize.

Keywords: Elasticity · Cloud computing · VM startup time ·
Benchmarking

1 Introduction

Cloud Computing is a specialized distributed computing paradigm which deliv-
ers storage, platforms and services on demand to external customers over the
Internet [1]. It provides benefits such as elasticity, load balancing, low hardware
cost and high computing power. Elasticity means the degree to which a system is
able to adapt to workload changes by provisioning and de-provisioning resources
in an autonomic manner to match the current demand with available resources
as closely as possible [2]. This elasticity attracts many users to opt for cloud
computing services which can handle dynamic workload and reduce cost. How-
ever, elasticity is only helpful to the client when the acquired Virtual Machines
can be provisioned in time and ready to use within a reasonable time frame by
user [3].

Researchers found that although cloud users can request to start a Virtual
Machine (VM) at any time, it requires some time for the acquired VMs to be
ready for production use. This happens because cloud providers need some time
c© Springer Nature Switzerland AG 2019
C. Zheng and J. Zhan (Eds.): Bench 2018, LNCS 11459, pp. 53–64, 2019.
https://doi.org/10.1007/978-3-030-32813-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32813-9_6&domain=pdf
https://doi.org/10.1007/978-3-030-32813-9_6

54 S. I. Abrita et al.

to find a spot to provision the VM in their data centers, to allocate resources
to the VM and to copy/boot/configure the OS image. This processing time is
known as VM startup time. As a result of the extended waiting time, users can
get frustrated and lose their interest in using cloud computing services. The
long waiting time can slow down user’s progress and the performance of their
applications. At this rate, the advantage of having elasticity makes no sense.
Due to this problem, the cloud service providers can potentially lose a lot of
customers. To solve this problem, it is important to benchmark VM startup
time of existing cloud service providers and find out the bottlenecks causing the
delays in startup.

A number of cloud computing services are providing VMs recently. Amazon
Elastic Compute Cloud (EC2) [4], launched by Amazon.com in 2006, forms a
central part of Amazon Web Services (AWS) by allowing users to rent virtual
computers to run their own computer applications. It is a web service providing
resizable compute capacity in the cloud and designed to make web-scale cloud
computing easier for developers. The simple web interface provided by EC2
allows users to obtain and configure compute capacity with minimal friction.
EC2 provides users significant control of their own computing resources and lets
them run applications on Amazon‘s computing environment. Amazon claims
that EC2 reduces the time required to obtain and boot new server instances to
minutes, allowing users to quickly scale capacity both up and down. Using EC2,
users will only need to pay for capacity that they will actually use. EC2 provides
developers the tools to build fault tolerant applications and isolate themselves
from common failure scenarios.

Microsoft Azure [5] is another cloud computing platform and infrastructure
launched by Microsoft in 2010 for building, deploying and managing applications
and services through a global network of Microsoft-managed data centers. It is
a collection of integrated cloud services such as analytics, computing, database,
mobile, networking, storage and web. Azure claims that users can deploy highly
available and scalable applications and APIs as well as thousands of instances
in minutes.

Similar to EC2 and Azure, Google Cloud Platform [6] is a cloud computing
platform launched by Google in 2010 that offers hosting on the same support-
ing infrastructure that Google uses internally for end-user products like Google
Search. Cloud Platform gives users options for both computing and hosting.
Users can choose to work with a managed application platform, leverage con-
tainer technologies to gain flexibility or build their own cloud-based infrastruc-
ture to have the most control and flexibility. With App Engine, Google han-
dles most of the management of the resources. For example, if a user’s appli-
cation requires more computing resources because traffic to the user’s website
has increased, Google Cloud can automatically scale the system to provide those
resources. If the software of a system needs a security update, that is handled
for users as well.

In this paper, we calculate VM startup time across the cloud service providers
mentioned above. To calculate VM startup time, we first create instances at

https://www.amazon.com/

Benchmarking VM Startup Time in the Cloud 55

different data center locations of the cloud service providers. Next, we stop these
VM instances on cloud. After that, we restart the VM and calculate VM startup
time which refers to the time it takes for a VM to go from stopped to running
state. Then we compare the VM startup times among the cloud service providers
chosen. Finally, we benchmark VM startup time for factors such as instance type,
time of the day, instance location, cluster startup time and cluster resize time
among the cloud service providers, as VM startup time depends on these factors.

The rest of the paper is organized as follows. Section 2 describes works related
to this research. Section 3 details the methodology and the working process.
Section 4 reports the performance analysis of the work. Section 5 provides a con-
clusion to the research.

2 Related Works

Although the performance of VM startup process is an important metric, very
few studies have been done on VM startup time performance. These few studies
focus on comparing VM startup time of different cloud service providers based
on relative factors.

Mao and Humphrey [3] studied the startup time of cloud VMs across
three real world cloud service providers - Amazon EC2, Windows Azure and
Rackspace. They analyzed the relationship between the VM startup time and
different factors such as time of the day, instance type, data center location and
so on. They discovered that within each cloud provider, the VM startup time of
both Linux and Windows machines are independent of time of the day. They also
found that Rackspace has a higher failure rate (8 times) than EC2 (0.8 times)
and Azure (0.4 times). Mao and Humphrey’s research is the most comprehensive
work done on VM startup time comparison so far, and we aim to extend this
work by including different cloud providers in the experiments.

Ostermann et al. [7] conducts a performance analysis of EC2 services in which
the duration of VM acquisition and release was evaluated using different meth-
ods. EC2 VMs of different sizes were used for the experiments. The experiments
revealed that the time to acquire multiple instances can be more varied than
acquiring a single instance and Amazon EC2 instances do not face system over-
load problems while instantiating VMs. The VM acquisition experiments were a
small part of the overall research work, and it lacks details which can be useful
to figure out how to make VM startup time faster.

Hill et al. [8] analyzed the startup time for WebRole and WorkRole in Azure.
The study evaluated VM instantiating time as a critical metric for performance
evaluation of dynamic scalability. The results of the study demonstrated an aver-
age startup time of 10 min for Azure machines. Hill et al. concluded that those
who already chose Windows Azure as the target cloud are facing the challenge of
architecting their cloud application to accommodate performance considerations
and they do not consider the factors that affected VM startup time.

To the best of our knowledge, only Mao and Humphrey [3] extensively worked
on comparing VM startup time. We wanted to extend their research and update

56 S. I. Abrita et al.

their experiments to see what changes may have occurred in the meantime.
As Rackspace has higher failure rate in Mao and Humphrey’s [3] research, we
decided to work with Google Cloud. The study of Mao and Humphrey defined
the VM startup time as the time starting from VM instantiation to successful
SSH login, but in our paper, VM startup time will refer to the time it takes for
a VM to go from stopped to running state. The reason to choose this method to
calculate the startup time is that it would provide a different perspective of the
time it takes to start a VM. We also compare the VM startup time for two new
factors - one is based on the cluster startup time and the other is based on the
action of resizing a cluster and then restarting it.

3 Methodology

We chose three cloud service providers for our research - Amazon EC2, Microsoft
Azure and Google Cloud Computing, as they are some of the top ranked cloud
service providers [9]. A number of tools were used to calculate VM startup time
for these cloud service providers. For Amazon EC2 we used Amazon Command
Line Interface (CLI), for Microsoft Azure we used Azure REST API and for
Google Cloud we used gcloud command line tool. Ruby Benchmark Module
is used for benchmarking VM startup time. The module provides methods to
measure and report the time used to execute Ruby code.

3.1 Environment Setup

During measurement of VM startup time, one factor is selected as variable and
other factors as constant. For all of the considering factors, the operating system
is Linux. Using Graphical User Interface (GUI) we create the VMs and select
SSH for secure login. Each of these VMs has an unique ID. We pass the ID as
parameter during script launch.

We run the script in a terminal and the data is saved in Comma-Separated
Values (CSV) format. For experiments based on time of a day, Batch (BAT) file
are assigned to task scheduler which executes at one hour interval. Finally, we
save all the startup times in CSV format.

3.2 Algorithm

For accurate measurement of starting up a VM from stopped state, an algorithm
has been developed to calculate the VM startup time. The algorithm is as follows:

Before the measurement starts, the machine is in stopped state. The startup
time is set to zero. The status of the VM is initially set as stopped. When
the start request is sent to the cloud provider, the status of the VM is set to
pending. At the same time, a time counter is initialized using the benchmark
module. After that, a request is sent to the cloud provider continuously to check
if the machine has started. Once the machine is confirmed to be running, the
counter is stopped and the startup time is recorded.

Benchmarking VM Startup Time in the Cloud 57

Algorithm 1. startup time measurement
1: startup time ← 0
2: time ← 0
3: status stopped ← −1
4: status pending ← 0
5: status running ← 1
6: vm status ← status stopped
7: SEND START REQUEST TO VIRTUAL MACHINE
8: time counter

.= Benchmark.realtime
9: vm status ← status pending

10: while vm status = status pending do
11: if vm status = status running then
12: startup time ← time counter
13: break
14: end if
15: end while

4 Result

We benchmark VM startup time for instance type, time of the day, instance loca-
tion, cluster create time and cluster resize time among Amazon EC2, Microsoft
Azure and Google Cloud. The experimental results are presented in this section.

4.1 By Instance Type

In our first experiment, we calculate VM startup time based on VM instance
types. Cloud service providers provide different types of instances to fulfill user
demand. Amazon EC2 provides twenty types of instances, Microsoft Azure
provides six types of instances and Google Cloud provides eighteen types of
instances. In Table 1 we list the instance types we have worked on.

In this experiment, the data center locations are in Singapore and the oper-
ating system is Linux for the instances of the cloud service providers. Table 2
shows the experiment results and Fig. 1 shows the results in a bar plot.

As can be seen from Fig. 1, for Amazon EC2, m4.large takes lowest time to
start (17.046 s) and t2.micro takes highest time (19.194 s) to start. On average,
instances of Amazon EC2 take around 19.5 s to startup. Furthermore, standard-
f1 takes lowest time (29.709 s) to start and basic-A0 takes highest time (36.744 s)
to start for Microsoft Azure. Finally, Google Cloud n1-standard-1 takes the
lowest time (27.152 s) and f1-micro takes the highest time (32.842 s) to start.
Amazon EC2 has the lowest startup time on average, while Microsoft Azure and
Google cloud are quite close, with Google Cloud having a slight advantage.

4.2 By Time of the Day

In our second experiment, we calculate VM startup time based on time of the day.
From 12AM to 12PM, we take thirteen hours of measurement of VM startup

58 S. I. Abrita et al.

Table 1. VM types for EC2, Azure and Google Cloud

Cloud provider Instance type CPU Memory Disk

Amazon EC2 t2.nano 1CU 0.5 GB EBS

t2.micro 1CU 1 GB EBS

m4.large 2CU 6 GB EBS

Microsoft Azure basic A0 1CU (shared) 0.75 GB 20 GB

standard-A0 2CU 0.75 GB 20 GB

standard-A1 1CU 1.75 GB 70 GB

Google Cloud f1-micro 1CU 0.60 GB 3 TB

g1-small 1CU 1.70 GB 3 TB

n1-standard-1 1CU 3.75 GB 64 TB

Table 2. VM startup time by instance type

Cloud provider Instance type Startup time (second)

Amazon EC2 t2.nano 18.681

t2.micro 19.194

m4.large 17.046

Microsoft Azure basic-A0 36.744

standard-A0 36.278

standard-A1 29.709

Google Cloud f1-micro 32.842

g1-small 27.264

n1-standard-1 27.152

time. During these thirteen hours, we restart the instances in interval of an
hour and calculate the VM startup time for each interval. In this experiment,
the location of the data centers is Singapore and the operating system for the
instances of the cloud service providers is Linux. We use t2.micro for Amazon
EC2, basic-A0 for Microsoft Azure and f1-micro for Google cloud. Table 3 shows
the experiment results and Fig. 2 shows the results in a bar plot.

Figure 2 shows that for Amazon EC2, t2.micro takes the lowest time
(15.945 s) to start at 9AM and highest time (42.815 s) to start at 12AM. From
12AM to 1AM, there is a major startup time difference of 24.589 s. The instance
takes half the time to start at 4AM (17.647 s) compared to startup time at 5AM
(34.979 s), at 6AM (16.191 s) compared to startup time at 5AM (34.979 s) and
at 9AM (15.945 s) compared to startup time at 10AM (31.058 s).

For Microsoft Azure, basic-A0 takes lowest time (23.202 s) to start at 2AM
and highest time (89.678 s) to start at 8AM. From 7AM to 8AM, there is a major
startup time difference of 58.4 s. The instance takes one third the time to start

Benchmarking VM Startup Time in the Cloud 59

Fig. 1. VM startup time by instance type

at 9AM (23.739 s) compared to startup time at 8AM (89.678 s) and half the time
to start at 9AM (23.739 s) compared to startup time at 10AM (41.852 s).

For Google Cloud, f1-micro takes lowest time (27.710 s) to start at 12PM and
highest time (68.839 s) to start at 3AM. From 3AM to 4AM, there is a major
startup time difference of 39.429 s. The instance takes half the time to start at
1AM (33.002 s) compared to startup time at 12AM (68.145 s), at 4AM (29.410 s)
compared to startup time at 3AM (68.839 s) and at 9AM (15.945 s) compared to
startup time at 10AM (31.058 s). From 1AM to 2AM, the instance take almost
equal time (33.002 s) to start.

We can conclude that VM startup time changes during each part of a day
from the result of this experiment. This can be an indication that there is a
relation between the time of a day and the startup time of a VM.

4.3 By Instance Location

In our third experiment, we calculate VM startup time based on VM instance
location. There are six regions for Amazon EC2, twenty six regions for Microsoft
Azure and five regions for Google. Each region consists of several locations. We
create and start instances in different locations and measure the startup time of
the instances based on these locations. We take t2.micro for Amazon EC2, basic-
A0 for Microsoft Azure and f1-micro for Google cloud. The operating system is
Linux for the instances. Table 4 shows the experiment results and Fig. 3 shows
the results in a bar plot.

60 S. I. Abrita et al.

Table 3. VM startup time by time of the day

Time of the day Startup time (second)

Amazon EC2
(t2.micro)

Microsoft Azure
(basic-A0)

Google Cloud
(f1-micro)

12:00:00 AM 42.815 38.324 68.145

1:00:00 AM 18.226 23.953 33.002

2:00:00 AM 24.175 23.202 33.002

3:00:00 AM 30.067 24.145 68.839

4:00:00 AM 17.647 31.128 29.410

5:00:00 AM 34.979 23.533 48.015

6:00:00 AM 16.191 31.277 38.771

7:00:00 AM 22.846 31.278 32.414

8:00:00 AM 19.232 89.678 35.425

9:00:00 AM 15.945 23.739 32.723

10:00:00 AM 31.058 41.852 46.797

11:00:00 AM 35.973 30.746 49.617

12:00:00 PM 28.900 23.626 27.710

Fig. 2. VM startup time by time of the day

Benchmarking VM Startup Time in the Cloud 61

From Fig. 3, it can be seen that Amazon EC2 takes the lowest time (26.147 s)
to start instances on ap-south-1 and Google Cloud takes the highest time
(32.842 s) to start instances on asia-east1-a; both of these instances are located
in Asia. Microsoft Azure takes moderate time (29.709 s) to start instances on
southeast-asia which is located in Asia. If we compare the instances of each
providers, we can see that for Amazon EC2, the t2.micro instance located in
sa-east-1 takes the highest time to startup (30.321 s). For Microsoft Azure, the
Basic-A0 instance located in south-central-us takes the lowest time (27.346 s) to
startup and the instance located in east-asia takes the highest time to startup
(33.734 s). Finally, for Google Cloud, the f1-micro instance located in us-east1-c
takes the lowest time to startup (29.539 s) and the instance located in us-west1-a
takes the highest time to startup (36.098 s). On average, the instances of Google
Cloud take slightly longer to startup than the other two cloud providers.

Table 4. VM startup time by instance location

Cloud provider Instance location Startup time (second)

Amazon EC2 ap-south-1 26.147

eu-west-1 29.025

sa-east-1 30.321

us-east-1 27.594

us-west-2 30.241

Microsoft Azure southeast-asia 29.709

east-asia 33.734

north-central-us 31.028

south-central-us 27.346

Google Cloud asia-east1-a 32.842

us-east1-c 29.539

europe-west1-c 32.969

us-west1-a 36.098

4.4 By Cluster

In our fourth experiment, we calculate the time to startup and resize clusters.
The cluster consists of instances from the same service providers. The clusters
are resized up to two instances. We take m4.medium and m3.xlarge instances for
Amazon EC2, standard-A0 and standard-F1 instances for Microsoft Azure and
f1.micro and g1.small instances for Google Cloud. Table 5 shows the result of
startup time and resize time of the clusters. Figure 4 shows the result of startup
time of the clusters and Fig. 5 shows the result of resize time of the clusters in
bar plot.

Figure 4 shows that m3.xlarge cluster takes around 1.4 times less time than
m4.medium cluster to start up for Amazon EC2. It also shows that standard-
A0 cluster is 2.5 times faster than standard-F1 cluster to start up for Microsoft

62 S. I. Abrita et al.

Fig. 3. VM startup time by instance location

Table 5. Cluster startup and resize time

Cloud provider Cluster type Startup time (second) Resize time (second)

Amazon EC2 m4.medium 506.441 3.388

m3.xlarge 373.515 3.855

Microsoft Azure standard-A0 69.565 69.019

standard-F1 178.308 83.533

Google Cloud f1-micro 240.597 240.597

g1-small 245.241 1639.302

Azure. For Google Cloud startup time, the difference between f1-micro cluster
and g1.small cluster is 5 s. Overall, the instances in the cluster of Microsoft
Azure took the lowest time on average, while the cluster of Amazon EC2 took
the highest time on average.

Figure 5 shows that the resize time difference between m4.medium and
m3.xlarge instances is 0.467 s for Amazon EC2. Moreover, the resize time differ-
ence between standard-A0 and standard-F1 instances is 14.514 s for Microsoft
Azure. Finally, f1-micro cluster takes 6.3 times less than g1-small cluster to resize
for Google Cloud. On average, Amazon EC2 has the fastest resize time while
Google Cloud has the slowest resize time.

Benchmarking VM Startup Time in the Cloud 63

Fig. 4. Cluster startup time

Fig. 5. Cluster resize time

64 S. I. Abrita et al.

5 Conclusions and Future Work

In this paper, we benchmark the VM startup time of three different cloud service
providers based on different factors. From our experiments, we can conclude that
for the time of the day benchmark, Amazon EC2 performs the best, Microsoft
Azure is balanced and Google Cloud performs the worst. For the instance loca-
tion benchmark, Amazon EC2 performs the best, Microsoft Azure is balanced
and Google Cloud performs the worst. For the instance type benchmark, Google
Cloud performs the best, Amazon EC2 is balanced and Microsoft Azure performs
the worst. For the benchmark of startup time of instances in a cluster, Microsoft
Azure performs the best, Google Cloud is balanced and Amazon EC2 performs
the worst. For the benchmark of resize time of instances in a cluster, Amazon
EC2 performs the best, Microsoft Azure is balanced and Google cloud performs
the worst. In the future, we plan to include more cloud service providers and
add more factors which can affect VM startup time.

References

1. Foster, I., Zhao, Y., Raicu, I., Lu, S.: Cloud computing and grid computing 360-
degree compared. In: 2008 Grid Computing Environments Workshop. IEEE, Novem-
ber 2008. https://doi.org/10.1109/gce.2008.4738445

2. Herbst, N.R., Kounev, S., Reussner, R.: Elasticity in cloud computing: what it
is, and what it is not. In: Proceedings of the 10th International Conference on
Autonomic Computing (ICAC 2013), pp. 23–27. USENIX, San Jose (2013). https://
www.usenix.org/conference/icac13/technical-sessions/presentation/herbst

3. Mao, M., Humphrey, M.: A performance study on the VM startup time in the
cloud. In: 2012 IEEE Fifth International Conference on Cloud Computing. IEEE,
June 2012. https://doi.org/10.1109/cloud.2012.103

4. Amazon elastic compute cloud. https://aws.amazon.com/ec2. Accessed 02 Sept 2016
5. Microsoft azure. https://azure.microsoft.com. Accessed 02 Sept 2016
6. Google cloud platform. https://cloud.google.com. Accessed 02 Sept 2016
7. Ostermann, S., Iosup, A., Yigitbasi, N., Prodan, R., Fahringer, T., Epema, D.: A

performance analysis of EC2 cloud computing services for scientific computing. In:
Avresky, D.R., Diaz, M., Bode, A., Ciciani, B., Dekel, E. (eds.) CloudComp 2009.
LNICSSTE, vol. 34, pp. 115–131. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-12636-9 9

8. Hill, Z., Li, J., Mao, M., Ruiz-Alvarez, A., Humphrey, M.: Early observations on
the performance of windows Azure. In: Proceedings of the 19th ACM International
Symposium on High Performance Distributed Computing - HPDC 2010. ACM Press
(2010). https://doi.org/10.1145/1851476.1851532

9. Evans, B.: The top 5 cloud-computing vendors, November 2017. https://www.
forbes.com/sites/bobevans1/2017/11/07/the-top-5-cloud-computing-vendors-1-
microsoft-2-amazon-3-ibm-4-salesforce-5-sap/

https://doi.org/10.1109/gce.2008.4738445
https://www.usenix.org/conference/icac13/technical-sessions/presentation/herbst
https://www.usenix.org/conference/icac13/technical-sessions/presentation/herbst
https://doi.org/10.1109/cloud.2012.103
https://aws.amazon.com/ec2
https://azure.microsoft.com
https://cloud.google.com
https://doi.org/10.1007/978-3-642-12636-9_9
https://doi.org/10.1007/978-3-642-12636-9_9
https://doi.org/10.1145/1851476.1851532
https://www.forbes.com/sites/bobevans1/2017/11/07/the-top-5-cloud-computing-vendors-1-microsoft-2-amazon-3-ibm-4-salesforce-5-sap/
https://www.forbes.com/sites/bobevans1/2017/11/07/the-top-5-cloud-computing-vendors-1-microsoft-2-amazon-3-ibm-4-salesforce-5-sap/
https://www.forbes.com/sites/bobevans1/2017/11/07/the-top-5-cloud-computing-vendors-1-microsoft-2-amazon-3-ibm-4-salesforce-5-sap/

An Open Source Cloud-Based NoSQL
and NewSQL Database Benchmarking

Platform for IoT Data

Arjun Pandya(&), Chaitanya Kulkarni, Kunal Mali, and Jianwu Wang

Department of Information Systems, University of Maryland, Baltimore County,
Baltimore, MD 21250, USA

{apandya1,chai2,kunal.mali,jianwu}@umbc.edu

Abstract. Internet of Things (IoT) is continually expanding, and the infor-
mation being transmitted through IoT is often in large-scale in both volume and
velocity. With its evolution, IoT raises new challenges such as throughput and
scalability of software and database working with it. This is the reason that
traditional techniques for data management and database operations cannot
adopt the new challenges from IoT data. We need an efficient database system
that can handle, store, and retrieve continuous, high-speed, and large-volume
data, perform various database operations, and generate quick results. Recent
developments of database technologies such as NoSQL and NewSQL database
provides promising solutions to IoT. This paper proposes an extensible cloud-
based open-source benchmarking framework on how these databases could
work with IoT data. Using the framework, we compare the performances of
VoltDB NewSQL and MongoDB NoSQL database systems on IoT data injec-
tion, transactional operations, and analytical operations.

Keywords: NoSQL � NewSQL � IoT � Big Data � MongoDB � VoltDB �
Cloud computing � Benchmarking

1 Introduction

In the last few years, there has been an incredible rise in the amount of data that is being
generated. Big data is the term, used to describe such a massive volume of data, which
can be structured, semi-structured, and unstructured. According to the Gartner group,
Big Data can be defined by 3Vs: volume, velocity, and variety [1]. Processing such vast
amounts of data requires speed, flexible schemas, and distributed databases [2]. As a
typical Big Data, we are now seeing more and more Internet of Things (IoT) data,
which could be large in both volume and velocity that needs to be stored and processed
efficiently.

Meanwhile, database systems are also evolving quickly in recent years, especially
with new generations of database systems such as NewSQL and NoSQL. Although
these database systems claim to be more efficient and scalable than many traditional
database systems, it is still an open challenge on which database system can work better

© Springer Nature Switzerland AG 2019
C. Zheng and J. Zhan (Eds.): Bench 2018, LNCS 11459, pp. 65–77, 2019.
https://doi.org/10.1007/978-3-030-32813-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32813-9_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32813-9_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32813-9_7&domain=pdf
https://doi.org/10.1007/978-3-030-32813-9_7

with IoT data. To deal with the challenge, this paper compares two entirely different
types of database systems, NewSQL and NoSQL, on Amazon Web Service AWS
cloud. These databases are designed to address the 3Vs (Velocity, Volume, Variance)
challenge of Big Data processing. Several tests have been performed for two popular
database systems: MongoDB representing the NoSQL category and VoltDB repre-
senting NewSQL. Both are configured as multi-node cluster/shard on AWS.

The contributions of this paper are two folds. First, we propose an extensible cloud
open-source benchmarking framework on how well different database systems could
work with respect to the IoT data which has been tested on both AWS and Microsoft
Azure cloud. Second, using the framework, we compare the performances of a
NewSQL database system, namely VoltDB, and a NoSQL database system, namely
MongoDB, on IoT data injection and database operations.

The paper is organized as follows. Section 2 focuses on the background of each
system. Section 3 covers the benchmarking framework we developed to compare these
databases. Section 4 covers the experimental setup. Section 5 covers the analysis and
results. Section 6 eventually draws a conclusion and mentions future research.

2 Background

2.1 NewSQL

NewSQL describes new database architectures, deviating from the way relational
DBMS are implemented. In contrast to the NoSQL databases, they aim to maintain
characteristics of relational databases, similar to SQL as a query language, which has
support for the relational model and ACID transactions. At the same time, they provide
additional performance, scalability, and distribute-ability. This is done by leveraging
modern hardware and deploying improved algorithms which have not been available
yet when older existing DBMS had been designed. NewSQL databases rewrite the core
of the database system from scratch to remove legacy code that hinders distribute-
ability and performance due to its assumptions being outdated [3]. Operating in-
memory is often mentioned as a key property of NewSQL, making relational databases
like Google Spanner and VoltDB.

2.2 NoSQL

NoSQL stands for “not only SQL”. In a broader sense, it includes all non-relational
DBMS (which may or may not use a querying language). In contrast with RDBMS
conforming to ACID (Atomicity, Consistency, Isolation, Durability), NoSQL DBMS
follow the CAP (Consistency, Availability, Partition Tolerance) theorem (Eric Brewer)
and thus their transactions conform to the BASE principle [4]. DBMS based on CAP,
instead of having their transactions conform to ACID, conform to BASE (Basically,
Available, Soft State, and Eventually Consistent) properties. NoSQL systems are dis-
tributed, non-relational databases designed for large-scale data storage and for
massively-parallel data processing across a large number of commodity servers.

66 A. Pandya et al.

2.3 MongoDB

MongoDB is a document-based database which stores data in JSON like documents.
MongoDB provides flexibility of storing data, meaning the fields within a collection
can vary from document to document and can be changed over time without altering
the previously stored data. This schema-free type of design is suitable when the
incoming data is highly unstructured. Each document within MongoDB can be mapped
with objects within the application code which makes data easy to work with. Although
the documents may vary within the same collection, this feature does not compromise
the MongoDB features like Ad hoc queries, indexing, and real-time aggregation to
access and analyze your data. Since it is a distributed database at its core high avail-
ability, horizontal scaling, and geographical distribution are built in an easy to use [5].

2.4 VoltDB

VoltDB is an in-memory, scale-out SQL database built to power a new generation of
applications that thrive on fast, smart data. VoltDB is a fully ACID-compliant trans-
actional database, relieving the application developer from having to develop code to
perform transactions and manage rollbacks within their own application [6]. VoltDB is
designed to take full advantage of the modern computing environment, VoltDB uses
in-memory storage to maximize throughput, avoiding costly disk access. Further per-
formance gains are achieved by serializing all data access, avoiding any of the time-
consuming functions of traditional databases such as locking, latching, and maintaining
transaction logs. Scalability, reliability, and high availability are achieved through
clustering and replication across multiple servers and server farms (Table 1).

2.5 Apache Kafka

Apache Kafka is a distributed streaming platform. Initially, it was started as a mes-
saging queue system and quickly evolved into a “publish and subscribe”, streaming
platform [7]. Being a streaming platform, Apache Kafka provides services like publish
and subscribe, to stream and consume records like a message queue system, store the

Table 1. Conceptual comparison between VoltDB and MongoDB.

VoltDB MongoDB

Scaling Yes Yes
Partitioning Yes Yes
Flexible schema No Yes
Replication Yes Yes
Primary data store Relation store Document store
Note Distributed with In-Memory

new SQL RDBMS
Document store, schema-free
database

An Open Source Cloud-Based NoSQL and NewSQL Database Benchmarking Platform 67

messages with fault tolerance capabilities and records can be streamed as they occur. It
provides the connection with customer front-end applications and a downstream system
with data in real-time.

2.6 Cloud Computing

Cloud computing includes on-demand computing resources, such as virtual machines,
storage, or an application as a utility rather than having them in-house. Everything is
available over the internet on a pay-to-use basis. Here, security and maintenance are not
the user concerns as it is taken care of by the vendor. Some of the benefits of cloud
computing are self-service provisioning, elasticity, pay-per-use, workload resilience,
and migration flexibility. Cloud computing service can be private, public, or a com-
bination of both [8, 9].

3 Benchmarking Framework

Following Infrastructure as a service (IaaS), our benchmarking environment consists of
three types of virtual servers: IoT data generators, Stream messaging middleware, and
Database clusters/shards. Our open-source benchmarking framework is available at
[18]. We have tested our benchmarking environment on both Microsoft Azure and
AWS clouds.

3.1 Framework Components

IoT Data Generator. We generated synthetic IoT sensor data by executing the java
code on dedicated servers. Synthetic data generator provided us with the flexibility of
controlling the volume and velocity of sensor data. These data generators implemented
a Kafka Simple Producer API to send data to Kafka servers. Further, it produced sensor
data in two different formats CSV and JSON.

Stream Messaging Middleware. Since the location where IoT data is generated is
also different from the location of the database, it often requires a stream messaging
middleware to make sure IoT data is injected to the database in real-time and with fault-
tolerance support.

We have selected Apache Kafka to be our stream messaging middleware which is a
distributed streaming platform. Kafka publishes and subscribes to streams of records,
similar to a message queue or enterprise messaging system. It is used in building real-
time streaming data pipelines that reliably get data between systems or applications. All
the sensors are pushing data to Kafka servers, for the experiments we set up 3 node
Kafka server to ensure fault tolerance.

Database Clusters/Shards. Database sharding can be simply defined as a “shared-
nothing” partitioning scheme for large databases across a number of servers, enabling
new levels of database performance and scalability achievable [10]. A database cluster

68 A. Pandya et al.

is a collection of databases that is managed by a single instance of a running database
server [11]. MongoDB and VoltDB use different mechanisms to achieve scalability. In
VoltDB we can simply add database servers to create an elastic cluster. Whereas in
MongoDB we need an additional configuration server to create a MongoDB sharded
cluster and a Mongos server to run queries in distributed mode.

3.2 Architecture

Figure 1 represents the conceptual architecture our framework supports. This archi-
tecture is divided into 3 tiers: (1) IoT Data Generators, (2) Stream messaging mid-
dleware and (3) Database cluster.

Our test setup had a dedicated environment for each database with 3, 6, and 9 nodes
cluster. This was done to ensure the performance of any database should not be
affected.

The architecture of the MongoDB test environment is represented in Fig. 2. The
following figure represents 6 node MongoDB sharded cluster, similarly, we had 3 node
and 9 node clusters. In the following MongoDB test environment, sensor data pro-
ducer, and Kafka server are running on the same virtual machines, the database is
running with 2 replication sets on 6 nodes. In addition to data nodes, MongoDB
requires a configuration server which has information about all the available nodes, and
a MongoDB’s server which executes queries in distributed mode.

Fig. 1. Conceptual architecture diagram for the database benchmarking platform for IoT data.

An Open Source Cloud-Based NoSQL and NewSQL Database Benchmarking Platform 69

Figure 3 represents the VoltDB test environment architecture. Sensor data pro-
ducers and Kafka servers are set up in the exact same way as it was in the case of
MongoDB test environment, the major difference is in the database tier, VoltDB does
not need a separate configuration server and query server for distributed query exe-
cution. All the VoltDB nodes are started using the same configuration settings and each
node acts as a Kafka consumer.

3.3 Data Generation and Consumption Algorithms

We implemented the Apache Kafka Producer API [12] to develop sensor data pro-
ducer. For synthetic sensor data generation, we used a Random Java class [13]. To
consume messages from Kafka server into MongoDB we implemented Kafka Con-
sumer API [14] and for the VoltDB, we used VoltDB Kafka importer utility.

Fig. 2. System architecture for the benchmarking platform for IoT data withMongoDB (6Nodes).

Fig. 3. System architecture for the benchmarking platform for IoT data with VoltDB (6 nodes).

70 A. Pandya et al.

Algorithm 1. Sensor Data Producer
Input: N Number of sensors, T Execution Time, R Number of records per second
Output: Message post on Kafka Server under the specific topic

Step 1: Create Kafka Producer using Kafka API
Step 2: Generate random sensor data
Step 3: Send the data as a message to Kafka server
Step 4: Repeat steps 2 and 3 R times per second till T seconds

The above process is performed in parallel for N number of sensors. Each database
test environment had its own set of sensor data producer which generates the data in the
database’s required format.

Algorithm 2. Sensor Data Consumer
Input: S Kafka Server name, T Kafka Topic Name, P Number of message partitions
Output: Record insertion in MongoDB database

Step 1: Create Consumer using Kafka Consumer API
Step 2: Create database connector using MongoDB connector API
Step 3: Open Database connection
Step 4: Read message from Kafka Server S, topic T and partition P
Step 5: Insert the message as the BSON document in the database
Step 6: Get next message
Step 7: Repeat steps 4 to 6 till the end of messages in Kafka topic T
Step 8: Close database connection

We developed a consumer program only for MongoDB. The consumer program
was executed in N (Number of producers) � P (Number of message partitions) parallel
threads i.e., we will have 10 � 4 parallel consumers for 10 sensor data producers and 4
Kafka message partitions. This program was executed on MongoDB’s server to exe-
cute queries in distributed mode.

4 Experiments

Questions we want to answer through the experiments are as follows:

1. Which database can ingest and scale high-velocity IoT data more efficiently?
2. Which database can ingest and scale high volume IoT data more efficiently?
3. Which database is more suitable for fast transactional data processing on the high

volume of data?
4. Which database is more suitable for the fast analytical data processing on the high

volume of data?

An Open Source Cloud-Based NoSQL and NewSQL Database Benchmarking Platform 71

To answer these questions, we performed three different experiments on 3 and 6
node partitioned/sharded database clusters hosted on the AWS cloud.

Experiment I consists of 6 different tests and will help us answer questions 1 and 2.
Experiment II consists of 2 tests which help us answer to question 3. Experiment III
helps us answer the last question.

4.1 System Configuration, Sensor Data Structure, and Formats

For these experiments, we used the same system configuration for all the servers. These
servers are deployed on Linux Ubuntu virtual machines on AWS cloud (Table 2).

Table 3 lists the IoT sensor data structure; this structure was common among the
databases. However, both the databases handle the storage of this data separately.

4.2 Experiment I: Data Injection with Different Volume and Velocity

Under the data injection experiment, we performed 6 tests to ensure we cover different
volume and velocity. Following tests are performed on 3 and 6 node database cluster
hosted on AWS (Table 4).

Table 2. Hardware and software information used in our experiments.

Hardware Software
Operating system Linux Ubuntu 16.04 LTS Mongo DB 3.6 community edition

Memory 8 GBs Volt DB 8.1.2 community edition
Storage 200 GBs Kafka 2.11
Processors 8 vCPUs Java 1.8

Table 3. IoT sensor data structure used in our experiments.

Name Type

SENSOR_ID INTEGER
CLOCK_TIME TIMESTAMP
AIR_TEMP VARCHAR
WIND SPEED VARCHAR
SURFACE_TEMP VARCHAR
LATITUDE VARCHAR
LONGITUDE VARCHAR
RECEIVED_TIME TIMESTAMP

72 A. Pandya et al.

Figure 4 shows 3 node injection time comparison of VoltDB and MongoDB, On 3
node setup, VoltDB was unable to complete injection tests 3, 5, and 6 because the
server went out of memory, remember VoltDB is an in-memory database so the total
memory of 3 nodes with (8 GB memory) was not sufficient to store a high volume of
data. On the other hand, the MongoDB was able to complete all the injection tests on 3
node setup. VoltDB was slightly fast in the injection for the tests it was able to finish.

Figure 5 shows Injection time comparison on 3 and 6 node cluster for the same
amount of data for VoltDB (left) and MongoDB (right). Data injection timings of both
the databases were slightly improved with the increase in the number of nodes in the
database cluster. In the case of VoltDB, an increase in the number of nodes leads to an
increase in the amount of data stored. The following figure represents the comparison
between the injection time on 3 nodes and 6 nodes cluster for the same number of
records. The left graph shows VoltDB injection timings for 3 and 6 nodes, and the right
graph shows MongoDB injection timings. We can notice from the left graph that
VoltDB does not have results for 3 nodes.

Table 4. Tests for data injection with different volume and velocity.

Test Sensors Experiment time (Hrs.) Velocity (records/sec) Volume (GBs)

1 1 4 100 *1
2 10 4 100 3
3 20 4 100 6
4 1 4 1000 3
5 10 4 1000 30
6 20 4 1000 60

Fig. 4. Injection time comparison on 3 node MongoDB and VoltDB cluster.

An Open Source Cloud-Based NoSQL and NewSQL Database Benchmarking Platform 73

4.3 Experiment II: Transactional Data Processing on High Volume
of Data

In this experiment, we conducted two transactional functions, namely query and
indexing, on the whole dataset.

Query Processing. We executed queries to get records with specific air temperature
value within the specific time window. Figure 6 displays the query execution time
comparison of VoltDB and MongoDB for same number of records. The experiment
shows for less than 2 million records both databases performed equally well, but
VoltDB outperformed MongoDB as the number of records increased.

Indexing. Index on the field “AIR_TEMP” of our data structure. Figure 7 shows the
indexing time comparison for same number of records in millions. VoltDB performed
consistently, on the other hand with an increase in the number of records MongoDB
took much more time to index the data. Again, VoltDB outperformed MongoDB in
data indexing.

Fig. 5. Injection time comparison on 3 and 6 node cluster for the same amount of data for
VoltDB (left) and MongoDB (right)

Fig. 6. Query time comparison on high volume data.

74 A. Pandya et al.

4.4 Experiment III: Analytical Data Processing on High Volume of Data

We executed three analytical aggregation functions, namely sum, count, and average,
on the whole dataset. Figure 8 shows the comparison of the average time taken by the 3
aggregation operations listed above on the given number of records. Initially, the
performance of MongoDB and VoltDB varies slightly but as the number of records
increases, the performance varies considerably. In overall aggregation performance
comparison, VoltDB performed better.

4.5 Findings from Experiments

Based on the above results, we can answer the questions we had at the starting of these
experiments. When it comes to efficiently handle the high velocity of data, both the

Fig. 7. Indexing time comparison on high volume data.

Fig. 8. Data aggregation time comparison on high volume data.

An Open Source Cloud-Based NoSQL and NewSQL Database Benchmarking Platform 75

databases performed well. MongoDB was able to manage better than VoltDB in storing
a high volume of data on comparative smaller environments. In fast data processing
and aggregation section, VoltDB outperformed MongoDB that makes it a better choice.

5 Related Work

There are various database solutions now available which offers an adaptable data
model, scale-out on commodity hardware for existing and future applications, thus
various survey papers were published NoSQL databases were evaluated for different
use cases in [15]. Numerous comparison papers are published, SQL, NoSQL and
NewSQL Databases for IoT was compared on a single system in [16]. Different
NewSQL databases were compared in [17].

To our best knowledge, our work is unique and different from existing work in the
following three aspects. First, we developed a benchmarking framework which can be
used to compare this new generation of databases on distributed networks. Second, our
framework uses IoT middleware to ensure zero percent data loss over the networks.
Third, instead of using simple client-server architecture to test database performance,
our architecture is cloud-based in which we can scale our databases. Our paper com-
pares NoSQL and NewSQL database systems on the basis of IoT transaction pro-
cessing performance on the cloud-based environment like AWS.

6 Conclusion

We performed experiments to explore not only the storage ability of databases but also
horizontal scalability of data and how efficiently we can perform operations on the
distributed data. Our purpose is to create an open source benchmarking framework
which can evaluate such database technologies on distributed systems. This bench-
marking framework will benefit users who are planning to setup IoT systems and
looking for right database solutions for their customized requirements.

In our experiments, none of the databases came as a clear winner, MongoDB was
able to store all the data with the minimum configuration provided but got hit in terms
of database processing and aggregation performance. Whereas, VoltDB was not able to
store the volume of data we generated on the system configuration for the VoltDB
database servers we used for our tests, but it outperformed MongoDB in data pro-
cessing and aggregation in the scenarios where the memory was enough for VoltDB.

These databases handle data storage differently, VoltDB uses main memory of the
system to store all the data we need for processing which requires a considerable
amount of RAM on a system, the secondary storage is not used except for storing data
snapshots. The processing time of operations on VoltDB is impressive. On the other
hand, MongoDB stores data on secondary storage, which enables it to store huge data
on systems with less main memory, but it takes longer to process and aggregate the
same amount of data which VoltDB can handle.

76 A. Pandya et al.

Acknowledgment. This work is supported in part by the National Natural Science Foundation
of China (No. 61462076).

References

1. Beyer, M.A., Laney, D.: The Importance of ‘Big Data’: A Definition. Gartner, Stamford
(2012)

2. Li, Y., Manoharan, S.: A performance comparison of SQL and NoSQL databases. In:
Proceedings of 2013 IEEE Pacific Rim Conference on Communications, Computers and
Signal Processing (PACRIM), pp. 15–19. IEEE (2013)

3. Stonebraker, M., Madden, S., Abadi, D.J., Harizopoulos, S., Hachem, N., Helland, P.: The
end of an architectural era: (it’s time for a complete rewrite). In: Proceedings of the 33rd
International Conference on Very Large Data Bases, pp. 1150–1160. VLDB Endowment
(2007)

4. Guy, H.: Next Generation Databases: NoSQL, NewSQL, and Big Data. Apress, New York
City (2015)

5. MongoDB. https://www.mongodb.com/what-is-mongodb. Accessed 14 Feb 2019
6. VoltDB. https://docs.voltdb.com/UsingVoltDB/. Accessed 14 Feb 2019
7. Apache Kafka. https://kafka.apache.org/intro. Accessed 14 Feb 2019
8. Kafka. https://www.confluent.io/what-is-apache-kafka/. Accessed 14 Feb 2019
9. Cloud Computing. https://www.ibm.com/cloud/learn/what-is-cloud-computing. Accessed 14

Feb 2019
10. Database Sharding. http://www.agildata.com/database-sharding. Accessed 14 Feb 2019
11. Database Cluster,. https://www.postgresql.org/docs/9.0/static/creating-cluster.html. Acces-

sed 14 Feb 2019
12. Apache Kafka Producer API. https://kafka.apache.org/0110/javadoc/index.html?org/apache/

kafka/clients/producer/KafkaProducer.html. Accessed 14 Feb 2019
13. JavaRandomClass. https://docs.oracle.com/javase/8/docs/api/java/util/Random.html. Accessed

14 Feb 2019
14. Apache Kafka Consumer API. https://kafka.apache.org/0100/javadoc/index.html?org/

apache/kafka/clients/consumer/KafkaConsumer.html. Accessed 14 Feb 2019
15. Hecht, R., Jablonski, S.: NoSQL evaluation: a use case oriented survey. In: 2011

International Conference on Cloud and Service Computing (CSC), pp. 336–341. IEEE
(2011)

16. Haleemunnisa, F., Wasnik, K.: Comparison of SQL, NoSQL and NewSQL databases for
Internet of Things. In: Bombay Section Symposium (IBSS), pp. 1–6. IEEE (2016)

17. Kaur, K., Sachdeva, M.: Performance evaluation of NewSQL databases. In: 2017
International Conference on Inventive Systems and Control (ICISC), pp. 1–5. IEEE (2017)

18. Open Source IoT Database Benchmarking Framework. https://github.com/big-data-lab-
umbc/IoT-database-benchmarking. Accessed 14 Feb 2019

An Open Source Cloud-Based NoSQL and NewSQL Database Benchmarking Platform 77

https://www.mongodb.com/what-is-mongodb
https://docs.voltdb.com/UsingVoltDB/
https://kafka.apache.org/intro
https://www.confluent.io/what-is-apache-kafka/
https://www.ibm.com/cloud/learn/what-is-cloud-computing
http://www.agildata.com/database-sharding
https://www.postgresql.org/docs/9.0/static/creating-cluster.html
https://kafka.apache.org/0110/javadoc/index.html?org/apache/kafka/clients/producer/KafkaProducer.html
https://kafka.apache.org/0110/javadoc/index.html?org/apache/kafka/clients/producer/KafkaProducer.html
https://docs.oracle.com/javase/8/docs/api/java/util/Random.html
https://kafka.apache.org/0100/javadoc/index.html?org/apache/kafka/clients/consumer/KafkaConsumer.html
https://kafka.apache.org/0100/javadoc/index.html?org/apache/kafka/clients/consumer/KafkaConsumer.html
https://github.com/big-data-lab-umbc/IoT-database-benchmarking
https://github.com/big-data-lab-umbc/IoT-database-benchmarking

Scalability Evaluation of Big Data
Processing Services in Clouds

Xin Zhou1,2, Congfeng Jiang1,2(B), Yeliang Qiu1,2, Tiantian Fan1,2,
Yumei Wang1,2, Liangbin Zhang3, Jian Wan4, and Weisong Shi5

1 Key Laboratory of Complex Systems Modeling and Simulation,
Ministry of Education, Hangzhou Dianzi University, Hangzhou 310037, China

cjiang@hdu.edu.cn
2 School of Computer Science and Technology, Hangzhou Dianzi University,

Hangzhou 310037, China
3 College of Big Data and Software Engineering, Zhejiang Wanli University,

Ningbo, China
4 School of Information and Electronic Engineering,

Zhejiang University of Science and Technology, Hangzhou 310023, China
5 Department of Computer Science, Wayne State University,

Detroit, MI 48202, USA

Abstract. Currently, many cloud providers deploy their big data pro-
cessing systems as cloud services, which helps users conveniently manage
and process their data in clouds. Among different service providers’ big
data processing services, how to evaluate and compare their scalabil-
ity is an interesting and challenging work. Most traditional benchmark
tools focus on performance evaluation of big data processing systems,
such as aggregated throughput and IOPS, but fail to conduct a quan-
titative analysis of their scalability. In this paper, we propose a mea-
surement methodology to quantify the scalability of big data processing
services, which makes the cloud services scalability comparable. We con-
duct a group of comparative experiments on AliCloud E-MapReduce and
Baidu MRS, and collect their respective scalability characteristics under
Hadoop and Spark workloads. The scalability characteristics observed in
our work could help cloud users choose the best cloud service platform to
set up an optimized big data processing system to achieve their specific
goals more successfully.

Keywords: Big data · Benchmark · Scalability · AliCloud · Baidu
cloud

1 Introduction

In the past decade, a variety of big data processing platforms, such as Hadoop
[1] and Spark [2] have been proposed to accelerate the processing of large-scale
data. Today many giant cloud providers move big data processing systems to the
clouds, forming as public cloud services. Typical examples include Amazon EMR
c© Springer Nature Switzerland AG 2019
C. Zheng and J. Zhan (Eds.): Bench 2018, LNCS 11459, pp. 78–90, 2019.
https://doi.org/10.1007/978-3-030-32813-9_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32813-9_8&domain=pdf
https://doi.org/10.1007/978-3-030-32813-9_8

Scalability Evaluation of Big Data Processing Services in Clouds 79

[3], AliCloud E-MapReduce [4], and Baidu MRS [5]. As more and more SaaS
products of big data processing become available, the demand of benchmarking
and evaluating these cloud services rises continuously because cloud users need
to compare these services and choose the best one according to their require-
ments. Moreover, cloud system designers and operators also need to understand
the system performance and scalability to improve the systems deployment and
workload placement.

However, most of today’s cloud system benchmarks focus on the performance
of the system, such as the job response time and system throughput. There is
a lack of study on the scalability characteristics of big data processing services
in clouds. Generally better scalability means that the system can handle larger
workloads as the amount of additional resources available increases. Given a spe-
cific budget, how to build a high performance platform is a non-trivial problem.
On the other hand, the workloads in clouds are also diverse, in terms of required
resources types and resource capacities. The workloads may also require specific
resources temporally or spatially. For example, CPU-intensive or IO-intensive,
or mixed workloads may require different resource deployment. Therefore, given
a group of workload, should user scale-up or scale-out their deployed cluster?

To address these problems, in this paper we propose a measurement app-
roach to quantify the scalability of data processing services in clouds. A group
of experiments are conducted on AliCloud E-MapReduce and Baidu MRS using
various workloads. We collect the comparative results regarding horizontal scal-
ability and vertical scalability with workloads on Hadoop and Spark platforms.
Some observations are derived from the experimental results, which can help
users build a more scalable data processing system.

The reminder of this paper is organized as follows. Section 2 presents some
related work on big data processing benchmarks and their scalability evaluation.
Section 3 describes our quantitative measurement method. In Sect. 4 we conduct
a group of experiments to analyze the scalability of two cloud services. Section 5
concludes this paper and directs our future work.

2 Related Work

In the fields of big data benchmarks, researchers have taken a lot of research
efforts and designed several benchmarks for big data. In this section, we briefly
introduce some existing works close to ours.

2.1 Big Data Benchmarks

With the advent of big data techniques, there have been plenty of benchmarks
developed to evaluate the performance of big data systems. These benchmarks
are mainly designed for two kinds of systems: benchmarks for big data manage-
ment systems and benchmarks for big data processing systems.

For example, YCSB (Yahoo! Cloud Serving Benchmark) [6], was proposed to
compare the performance of transactional processing systems including Cassan-
dra [7], HBase [8], PNUTS [9], and a simple sharded MySQL implementation.

80 X. Zhou et al.

YCSB supplies several workloads with different combinations of insert, read,
update and scan on database tables. Similarly, Shi et al. [10] developed two
benchmarks with a collection of structured queries, to compare the performance
of Cassandra, HBase, Hive and HadoopDB.

In addition, dozens of benchmarks have been proposed for big analytical
processing systems, such as CloudSuite [11], Bigdatabench [12], DCBench [13],
Hibench [14], GraySort [15], CloudRank-D [16], and several other research work
in [17–20], and so on. These benchmarks supply a set of analytical jobs to bench-
mark the performance to MapReduce systems. Besides, Pavlo et al. [21] proposed
a general benchmark with a collection of analytical jobs to compare the perfor-
mance between Hadoop and parallel DBMS.

Generally, these benchmarks can be effectively utilized to evaluate the per-
formance of standalone transactional or analytical processing systems hosted in
a cloud platform. Unfortunately, there is a lack of study on how to conduct a
comparable experiment.

2.2 Scalability Evaluation of Big Data Processing Systems

Scalability is the ability to describe a process, network, software, or organization
to cope with increased demand and load. A system, business, or software that is
described as being extensible is generally a favorable condition, because it will
be more adaptable to the needs of its users. Scalability is usually a synonym for
stability, which means that networks, systems, software, or organizations have
the ability to deal with changes in demand, increased productivity and even
competition from other challengers.

Since the time scalability has been proposed, a series of scalability definitions
and measurement methods have been proposed. Rizzelli et al. proposed a novel
approach to assess wavelength switched optical network scalability and efficiency.
This method takes into account the routing constraints of reconfigurable opti-
cal add/drop multiplexers, a variety of coherent transmission systems, different
amplification schemes and types of fibre [22]. Badia et al.’ paper [23] includes
a comprehensive performance and scalability study of the resulting codes when
they are applied to the solution of the Poisson problem on a large-scale multicore-
based distributed-memory machine with up to 4096 cores.

Unlike the scalability discussed in the literature [22,23], this paper examines
the relationship between big data process tools in extending and performance,
that is, how to quantify the scalability of big data processing tools. Gunther
[24] referred to a generic model USL (Universal Scalability Law), and made
the following definition, Mp stands for speed-up ratio, that can represent the
scalability:

Mp = T1/Tp (1)

In Eq. 1, Tp represents the execution time that is measured on the p =
1, 2, 3, . . . processor or cluster node. This method measures the execution time
of the task and derives the speed-up ratio. But this method is used only from

Scalability Evaluation of Big Data Processing Services in Clouds 81

the Scale-out metric, relatively simple, and this model cannot directly quantify
the scalability, just to observe the scalability from the figures.

Gao et al. [25] utilized the radar map to assess the scalability of the Sass appli-
cation on the cloud. This paper measures the performance of many Sass applica-
tions, the system load, throughput, response time, etc., and show the area of the
radar map for each metric, then add all the area value, obtain the corresponding
performance or capacity value. Ultimately by subtracting the best performance
and worst performance, derived scalability range. Giant cloud providers tend to
mix online and batch services on the same cluster to save energy costs. Jiang
[26] analyzed the actual tracking data of the production cluster containing 1.3k
servers in Alibaba Cloud. The findings and insights can help researchers better
understand the workload characteristics and achieve more efficient cluster expan-
sion. Jiang and Qiu [27–29] proposed a virtual machine scheduling framework
based on energy efficiency and proportional awareness, EASE. EASE correlates
the server’s EP and EE preferences with the VM’s workload type to schedule
the VM to the most proper server to ensure performance growth during cluster
expansion.

In the field of big data processing tools, the above methods are difficult for
comparing the scalability of different tools, do not use a scalability measurement
model about big data processing tool. Therefore, we have done the following
work.

3 Evaluation Model

Through the analysis of the previous quantitative method, we think the USL [24]
is worthy of reference. The method only quantifies the scalability from scale-out
metric, but we can also apply this method to quantify the scalability of big data
processing by scale-up.

Traditionally, evaluating the performance of a scaled system is to measure
the amount of performance changes within unit resources of system, and this
calculation is monotonously rising or declining functional relationships. In the
cloud environment, the relationship of resource changes and system performance
is not monotonous.

In the model, the resources of the cloud environment are extended by the
approach of horizontal extension and vertical extension. After each extension,
the performance of the test system is collected, and the performance parameters
are collected.

We have made the following definition by extending generic model USL [24],
Sp represents the speed-up ratio:

Sp = M1/Mp (2)

Where p (p = 1, 2, 3, 4, 5...), p is not only node nums, but also is resource
change, so we can apply this method to quantify the scalability of scale-up, and
M is the task running time. Since the multi-node’s time is expected to be less

82 X. Zhou et al.

than the single-node, the scalability usually is a discrete concave function about
p. According to the relationship, scalability can be divided into three categories:

1. Linear acceleration: If Mp is equal to M1/p, then Sp will equal 1, 2, 3 ... so
appear linearly.

2. Sub-linear acceleration: For each node of the cluster or every resource change,
Mp > M1/p, the speed-up ratio will be lower than the linear acceleration.
For example, if p = 2 and M2 = 3M1/4, then S2 = 1.33. Since S2 less than
2, scalability is sub-linear.

3. Super linear acceleration: If Mp < M1/p, the speed-up ratio will be better
than the linear, that is, super linear expansion. For instance, if M = 2 and
M2 = M1/3, then S2 = 3, which is bigger than linear acceleration.

Figure 1 shows the scalability of three acceleration models, including super linear
acceleration, linear acceleration, and sub-linear acceleration. In order to further
quantify the scalability of a certain stage, we fit the speed-up ratio curve, the
relationship we use the following formula:

S = f(P) (3)

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
pe

ed
-u

p
ra

tio

The number of nodes

Acceleration classification

linear
 super linear

sub-linear

Fig. 1. Acceleration classification.

P is the resource change value, and S is the speed-up ratio. Since the rela-
tionship between S and P is not monotonic, in order to accurately express the
scalability, set p = ΔP, q = ΔS, and by integrating ΔP, and get the area, then
measure the scalability of the system by the value Q:

Q =
∫

f(p)dp (4)

Scalability Evaluation of Big Data Processing Services in Clouds 83

The bigger the Q, the better the scalability of the system. For comparison, we
also calculate the scalability of linear acceleration, the value is Qlinear. Through
the ratio of Q and Qlinear, the final scalability of the target system is obtained:

Vscalability = Q/Qlinear (5)

4 Experiments

In this section, we use Hadoop and Spark to execute a group of big data tasks, by
running Terasort [30] and WordCount [31], and applying the evaluation model
which is proposed in this paper, to obtain scalability of Hadoop and Spark.
Terasort is used to test the data processing capabilities of distributed big data
processing tools. Internationally, there are Terasort games with big data tools
each year. Therefore we think it can reflect the scalability of the system.

Terasort is a CPU-intensive task, and for the usual tasks, in addition to
CPU-intensive tasks, there are a lot of IO-intensive tasks, and only conducting
the CPU-intensive task are relatively simple and unacceptable, so we pick a
representative IO-intensive tasks: WordCount. We apply the random 50G text
data, to compare Hadoop with Spark in the IO-intensive tasks.

Due to the heterogeneity of the workload in the cloud environment, a sin-
gle experiment is hard to guarantee the validity and accuracy of the results.
This section will design the experiment firstly, then conduct the experiment, to
find the corresponding speed-up ratio, and try to analyze experiments. Then
we introduce the experimental environment, system parameters and experimen-
tal process. Finally, the experimental results are analyzed, the scalability of the
system is evaluated, and the optimization proposal is given.

With the rapid development of cloud computing, more and more companies
will choose the cloud environment, which is the trend. Therefore, we chose to
do comparative experiments about big data processing services, to compare the
advantages and disadvantages of different cloud providers’ processing tools and
the scalability of different processing tools.

4.1 Experiment Environment

According to the analysis of the architecture about AliCloud and Baidu cloud,
the experimental test cluster is initially a namenode node and a datanode node.
Our initial configuration is three-nodes, a namenode node, two datanode nodes.
Then, we use the Teragen [32] (Terasort data generator) to produce disordered
data, and then conduct experiment. In the course of the experiment, recording
the task execution time. Table 1 shows the hardware configuration for the cloud
host:

84 X. Zhou et al.

Table 1. Configuration for the cloud host.

Configuration NameNode DataNode

CPU 4core 4core

Memory 16GB 16 GB

Disk SATA SATA

4.2 Scale-Out Analysis

AliCloud Scale-Out Experiment. On the AliCloud E-MapReduce platform,
we used Teragen [32] to generate 50G disordered data, followed by Terasort
experiment. During the sorting process, recorded the sort execution time. We
measured the experiment data about Hadoop cluster and Spark cluster that were
extended from 2 data nodes to 16 data nodes, respectively, and the experiment
execution time is shown in Fig. 2. Then we used the evaluation model to calculate
the speed-up ratio of different nodes under the scale-out, and by making the
figure to show the speed-up ratio, as showed in Fig. 3:

From Fig. 3, we found that after the implementation of same Terasort task,
Spark execution time was significantly less than Hadoop, which proves the fact
that Spark is faster than Hadoop, in fact, it is a victory of memory calculation.
In the comparison of the speed-up ratio, spark in the front 8 nodes, scalability is
better than Hadoop, then the scalability is smaller than Hadoop. By fitting the
curves of Hadoop and Spark, we obtained the corresponding fitting functions,
respectively:

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000
 1100
 1200
 1300
 1400
 1500
 1600
 1700
 1800
 1900

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E
xe

cu
tio

n
tim

e(
S

ec
on

ds
)

The number of nodes

The Execution time of Terasort

AliCloud Hadoop
AliCloud Spark

Fig. 2. AliCloud Terasort execution time.

S1 = −0.000798271p3 + 0.0131687p2 + 0.343683p + 0.241379 (6)

S2 = 0.000693182p3 − 0.0340611p2 + 0.670093p − 0.197714 (7)

Scalability Evaluation of Big Data Processing Services in Clouds 85

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
pe

ed
-u

p
ra

tio

The number of nodes

The speed-up ratio of Terasort

Linear
AliCloud Hadoop

AliCloud Spark

Fig. 3. AliCloud Terasort speed-up ratio.

We integrated on the S1 and S2, the resulting area were:

Qalihadoop = 51.552 (8)

Qalispark = 46.604 (9)

We also integrated the linear acceleration, the area obtained is:

Qlinear = 63 (10)

Further, we obtained the scalability of 0.818 and 0.739, respectively, which
showed on the AliCloud. When Hadoop and Spark scale out to 16 nodes, the
scale-out performance is good, and Hadoop overall performance is better than
the Spark.

On AliCloud, we also used WordCount to do 50G text data’s word statistics,
the result of different nodes are shown in Figure 4:

Through the evaluation model, we made the chart when the nodes were
extended, as showed in Fig. 5, respectively, integrated on Hadoop and Spark,
we found the scalability of Hadoop and Spark were 0.77 and 0.504. In the IO-
intensive tasks, the scalability of Hadoop is still good, but the scalability of Spark
is not so good.

Baidu Cloud Scale-Out Experiment. In the Baidu cloud platform, we also
used the cloud server with same configuration to execute Hadoop Terasort, the
execute time and speed-up ratio shown in Fig. 6. The Spark version in Baidu
cloud is 1.6, and the Spark version in AliCloud is 2.1. So, we didn’t compare
Baidu BMR with AliCloud on Spark.

86 X. Zhou et al.

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000
 1100
 1200
 1300
 1400
 1500
 1600

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E
xe

cu
tio

n
tim

e(
se

co
nd

s)

The number of nodes

The Execution time of WordCount

AliCloud Hadoop
AliCloud Spark

Fig. 4. WordCount execution time.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
pe

ed
-u

p
ra

tio

The number of nodes

The speed-up ratio of WordCount

Linear
AliCloud Hadoop

AliCloud Spark

Fig. 5. The speed-up ratio for WordCount job.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E
xe

cu
tio

n
tim

e(
se

co
nd

s)

The number of nodes

The execution time of Terasort

Baidu Hadoop

(a) Baidu Terasort execution Time

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
pe

ed
-u

p
ra

tio

The number of nodes

The speed-up ratio of Terasort

Linear
Baidu Hadoop

(b) Baidu Terasort speed-up ratio

Fig. 6. Baidu Terasort experiment.

Scalability Evaluation of Big Data Processing Services in Clouds 87

4.3 Scale-Up Experiment

It’s only one important aspect to measure the scalability from scale-out. In order
to analyze the scalability of the big data processing system, we had done four
different configurations’ experiment on two datanodes, the configuration is as
Table 2. The same, starting from the Terasort, the experimental results are as
Table 3.

Table 2. Configuration for scale-up.

Experimental group CPU Memory

1 4core 16 GB

2 8core 32 GB

3 16core 64 GB

4 32core 128 GB

Table 3. Execution time for scale-up.

Experimental group/Task execution time Hadoop Spark

4core, 16 GB 1872 s 1151 s

8core, 32 GB 940 s 870 s

16core, 64 GB 457 s 810 s

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 1 2 3 4 5 6 7 8

S
pe

ed
-u

p
ra

tio

The number of nodes

Comparing scale-out with scale-up

Hadoop scale out
Hadoop scale up

Spark scale out
Spark scale up

Fig. 7. A comparison between scale-out and scale-up.

We made a figure to show the speed-up ratio by extending the nodes and
increasing the configuration, respectively. Here we think 8-core 32 GB configu-
ration is equivalent to two 4-core 16 GB nodes, and so on. So scale-up can be
compared with scale-out, the result is shown at Fig. 7.

88 X. Zhou et al.

4.4 Experimental Results

Through the AliCloud E-MapReduce and Baidu cloud BMR experiment, firstly,
we find that the scalability of Hadoop and Spark are good on AliCloud and Baidu
cloud, because the cloud platform, subject to different factors, but also can rep-
resent basic performance of the two cloud platform, when users get confused in
the selection of big data processing tools, they can learn from. From the perfor-
mance of Hadoop and Sparks on AliCloud E-MapReduce, we can see Hadoop’s
scalability is slightly better than Spark. For Hadoop users, they can use big data
processing service by adding nodes, and do not need to consider scalability with
relatively few nodes. Spark’s speed is faster than Hadoop, memory computing
reflects the advantages, and users that speed seeking can give priority to Spark.
On Baidu cloud, the scalability of Hadoop is better than AliCloud at some stage.

Secondly, comparing scale-out with scale-up, each has its own advantages and
disadvantages. Extended configuration, for Hadoop, the performance is better
than increase nodes, but for Spark, it’s not so good. The scalability of Spark is
bad when enhancing the configuration of the server. We think users that use big
data processing service, if you want to enhance your configuration on Spark, it
will not a better choice than add nodes. And though our observation, adding
nodes isn’t expensive relative to enhance configuration. But for Hadoop, you
should take this choice, when we upgrade configuration on Hadoop, its scalability
is even more better than scale-out.

Thirdly, as shown by the significant variance of every big data processing
service, this work enhances the understanding of the risks and rewards when
processing big data by clouds. The results imply that clouds service need to be
analysed so that the user picks them easily. The results for cloud provider could
be a valuable design implication that they need to improve their services to avoid
loss of customers.

5 Conclusion

In this paper, the scalability evaluation model is used to quantity the scalability
of AliCloud E-MapReduce and Baidu BMR on big data processing tools. Com-
pared with the scalability performance of Hadoop and Spark, this paper draws
some conclusions which are worthy of reference and attention. We hope that
readers will be able to work better on the big data processing services through
our work. And researchers also can apply our method to quantify other big data
processing service. As future work, we are to continue the experimental analysis
and we will seek ways to optimize the existing big data processing tool.

Acknowledgement. This work is supported by Natural Science Foundation of China
(No. 61472109, No. 61572163 and No. 61472112) and Key Research and Development
Program of Zhejiang Province (No. 2018C01098,2019C01059 and 2019C03134). This
work is also supported in part by National Science Foundation (NSF) grant CNS-
1205338 and CNS-1561216, and by the Introduction of Innovative R&D team program
of Guangdong Province (No. 201001D0104726115). This work is supported by Alibaba

Scalability Evaluation of Big Data Processing Services in Clouds 89

Group through Alibaba Innovative Research (AIR) Program. This work is partially
supported by Visiting Scholarship of Teachers’ Professional Development Program (No.
FX2018050).

References

1. Hadoop. http://hadoop.apache.org/
2. Spark. https://spark.apache.org/
3. Amazon EMR. https://aws.amazon.com/cn/emr/
4. AliCloud E-MapReduce. https://www.aliyun.com/product/emapreduce?utm med

ium=text&utm source=baidu&utm campaign=emr&utm content=se 331947
5. Baidu BMR. https://cloud.baidu.com/product/bmr.html?track=cp:nsem|pf:pc|pp:

bmr|pu:brand|ci:|kw:50293
6. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking

cloud serving systems with YCSB. In: SoCC, pp. 143–154 (2010)
7. Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage system.

Spec. Interest Group Oper. Syst. Oper. Syst. Rev. 44(2), 35–40 (2010)
8. George, L.: HBase - The Definitive Guide. O’Reilly, Newton (2011)
9. Cooper, B.F., et al.: PNUTS: Yahoo!’s hosted data serving platform. Proc. VLDB

Endow. 1(2), 1277–1288 (2008)
10. Shi, Y., Meng, X., Zhao, J., Hu, X., Liu, B., Wang, H.: Benchmarking cloud-based

data management systems. In: Proceedings of the Second International Workshop
on Cloud Data Management, pp. 47–54. ACM (2010)

11. Ferdman, M., et al.: Clearing the clouds: a study of emerging scale-out workloads
on modern hardware. In: ACM SIGARCH Computer Architecture News, vol. 40,
pp. 37–48. ACM (2012)

12. Jia, Z., et al.: Understanding big data analytics workloads on modern processors.
IEEE Trans. Parallel Distrib. Syst. 28(6), 1797–1810 (2017)

13. Jia, Z., Wang, L., Zhan, J., Zhang, L., Luo, C.: Characterizing data analysis work-
loads in data centers. In: IISWC, pp. 66–76. IEEE (2013)

14. Huang, S., Huang, J., Dai, J., Xie, T., Huang, B.: The HiBench benchmark suite:
characterization of the MapReduce-based data analysis. In: 2010 IEEE 26th Inter-
national Conference on Data Engineering Workshops (ICDEW), pp. 41–51. IEEE
(2010)

15. Gray, J.: Graysort benchmark. Sort Benchmark. http://sortbenchmark.org
16. Luo, C., et al.: CloudRank-D: benchmarking and ranking cloud computing systems

for data processing applications. Front. Comput. Sci. 6(4), 347–362 (2012)
17. Jia, Z., et al.: The implications of diverse applications and scalable data sets in

benchmarking big data systems. In: Rabl, T., Poess, M., Baru, C., Jacobsen, H.-
A. (eds.) WBDB -2012. LNCS, vol. 8163, pp. 44–59. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-53974-9 5

18. Baru, C., Bhandarkar, M., Nambiar, R., Poess, M., Rabl, T.: Benchmarking big
data systems and the bigdata top100 list. Big Data 1(1), 60–64 (2013)

19. Dede, E., Fadika, Z., Govindaraju, M., Ramakrishnan, L.: Benchmarking MapRe-
duce implementations under different application scenarios. Future Gener. Com-
put. Syst. 36, 389–399 (2014)

20. Ming, Z., et al.: BDGS: a scalable big data generator suite in big data benchmark-
ing. arXiv preprint arXiv:1401.5465 (2014)

21. Pavlo, A., et al.: A comparison of approaches to large-scale data analysis. In:
Special Interest Group on Management Of Data, pp. 165–178. ACM (2009)

http://hadoop.apache.org/
https://spark.apache.org/
https://aws.amazon.com/cn/emr/
https://www.aliyun.com/product/emapreduce?utm_medium=text&utm_source=baidu&utm_campaign=emr&utm_content=se_331947
https://www.aliyun.com/product/emapreduce?utm_medium=text&utm_source=baidu&utm_campaign=emr&utm_content=se_331947
https://cloud.baidu.com/product/bmr.html?track=cp:nsem|pf:pc|pp:bmr|pu:brand|ci:|kw:50293
https://cloud.baidu.com/product/bmr.html?track=cp:nsem|pf:pc|pp:bmr|pu:brand|ci:|kw:50293
http://sortbenchmark.org
https://doi.org/10.1007/978-3-642-53974-9_5
http://arxiv.org/abs/1401.5465

90 X. Zhou et al.

22. Rizzelli, G., Maier, G., Quagliotti, M., Schiano, M., Pattavina, A.: Assessing the
scalability of next-generation wavelength switched optical networks. J. Lightwave
Technol. 32(12), 2263–2270 (2014)

23. Badia, S., Mart́ın, A.F., Principe, J.: Implementation and scalability analysis of
balancing domain decomposition methods. Arch. Comput. Methods Eng. 20(3),
239–262 (2013)

24. Gunther, N., Puglia, P., Tomasette, K.: Hadoop superlinear scalability. Queue
13(5), 20 (2015)

25. Gao, J., Pattabhiraman, P., Bai, X., Tsai, W.T.: Saas performance and scalabil-
ity evaluation in clouds. In: 2011 IEEE 6th International Symposium on Service
Oriented System Engineering (SOSE), pp. 61–71. IEEE (2011)

26. Jiang, C., Han, G., Lin, J., Jia, G., Shi, W., Wan, J.: Characteristics of co-allocated
online services and batch jobs in internet data centers: a case study from alibaba
cloud. IEEE Access 7, 22495–22508 (2019)

27. Jiang, C., et al.: Energy efficiency comparison of hypervisors. Sustain. Comput.:
Inf. Syst. 22, 311–321 (2019)

28. Jiang, C., et al.: Interdomain I/O optimization in virtualized sensor networks.
Sensors 18(12), 4395 (2018)

29. Qiu, Y., Jiang, C., Wang, Y., Ou, D., Li, Y., Wan, J.: Energy aware virtual machine
scheduling in data centers. Energies 12(4), 646 (2019)

30. Terasort. https://hadoop.apache.org/docs/current/api/org/apache/hadoop/exam
ples/terasort/package-summary.html

31. WordCount. https://hadoop.apache.org/docs/current/hadoop-mapreduce-client/
hadoop-mapreduce-client-core/MapReduceTutorial.html#Example: WordCount
v1.0

32. OMalley, O.: Terabyte sort on apache Hadoop. Yahoo, pp. 1–3, May 2008. http://
sortbenchmark.org/Yahoo-Hadoop.pdf

https://hadoop.apache.org/docs/current/api/org/apache/hadoop/examples/terasort/package-summary.html
https://hadoop.apache.org/docs/current/api/org/apache/hadoop/examples/terasort/package-summary.html
https://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html#Example:_WordCount_v1.0
https://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html#Example:_WordCount_v1.0
https://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html#Example:_WordCount_v1.0
http://sortbenchmark.org/Yahoo-Hadoop.pdf
http://sortbenchmark.org/Yahoo-Hadoop.pdf

PAIE: A Personal Activity Intelligence
Estimator in the Cloud

Yingjie Shi1(B), Fang Du2, Yanyan Zhang3, Zhi Li4, and Tao Zhang4

1 School of Information Engineering, Beijing Institute of Fashion Technology,
Beijing, China

20150015@bift.edu.cn
2 School of Information Engineering, Ningxia University, Yinchuan, China

dfang@ruc.edu.cn
3 Rural Development Institute, Chinese Academy of Social Sciences, Beijing, China

zhang yy1900@163.com
4 Internet Finance Department, Agricultural Bank of China, Beijing, China

{lizhi,zhangtaoo}@abchina.com

Abstract. Personal Activity Intelligence (PAI) is a recently proposed
metric for physical activity tracking, which takes into account continuous
heart rate and other physical parameters. PAI plays an important role to
inform users of the risk of premature cardiovascular disease, and helps to
promote physical activity. However, the PAI computing is too expensive
to provide feedback in time, which restricts its practical value in disease
warning. In this paper, we present PAIE, a Personal Activity Intelligence
Estimator based on massive heart rate data in the cloud. PAIE provides
approximate PAI with desired accuracy of statistical significance, which
costs much less time than that used to provide the exact value. We design
the PAI estimate framework in the cloud, and propose a novel estimate
mechanism to leverage the efficiency and accuracy. We analyze the PAI
algorithm, and formulate the statistical foundation that supports block-
level stratified sampling, effective estimation of PAI and error bounding.
We experimentally validate our techniques on Storm, and the results
demonstrate that PAIE can provide promising physical activity estimate
for massive heart rate data in the cloud.

Keywords: Personal Activity Intelligence · Cloud · Estimate · Storm

1 Introduction

Cardiovascular disease (CVD) is the leading cause of death in the world [4],
and the corresponding studies have shown that high levels of moderate inten-
sity physical activity (PA) is helpful to reduce the risk of cardiovascular disease
mortality [8,9]. Moreover, it’s a general belief that physical activity and exer-
cise can enhance the quality of life and bring positive health outcomes, which is
also proven by scientific evidences [17]. Nowadays, as people pay more and more
attention to health, numberous devices and applications are designed to track
c© Springer Nature Switzerland AG 2019
C. Zheng and J. Zhan (Eds.): Bench 2018, LNCS 11459, pp. 91–104, 2019.
https://doi.org/10.1007/978-3-030-32813-9_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32813-9_9&domain=pdf
https://doi.org/10.1007/978-3-030-32813-9_9

92 Y. Shi et al.

physical activity, which always take step number, walk distance or exercise time
as the metric. However, the measurements based directly on these physiologi-
cal variables can only detect the body’s behaviour changing without reflecting
the body’s response to each activity. So they can not provide evidence-based
recommendations nor risk of premature diseases. Monitoring a person’s heart
rate is suggested to track body’s response as a predictor for future health, and
the Nord-Trodelag Health (HUNT) study develops a new single metric called
Personal Activity Intelligence (PAI) that can be integrated in self-assessment
heart rate devices. PAI takes into account sex, age and continuous heart rate
to reflect the body’s response to PA, and it’s an important tool to determine
the sufficient amount of PA required to produce significant health benefit in
an individual from the general population [12]. It is proven that PAI is closely
associated with risk of cardiovascular disease mortality in all age-groups [22].
PAI has a huge potential to motivate people to become and stay active, what’s
more, it can be used to prevent or predict premature cardiovascular disease.
However, the PAI algorithm may cost long time, on the one hand, it requires
complex mathematical calculations with expensive computing resource, on the
other hand, the continuous heart rate data gotten from monitoring devices can
be huge. As a predictor of person’s health, the PAI’s practice value decreases as
the running time increases. Since computing the precise PAI on massive data is
expensive, getting the approximate PAI within a given error range of statistical
significance is a more feasible solution.

Approximate query processing (AQP) is proposed and studied in the data
management field to provide approximate results with desired accuracy. How-
ever, the PAI compute mechanism is different from query processing: the PAI
computation conducts algebraic calculus on continuous heart rate data, while
query processing executes relational operations on the tuples. So the techniques
of AQP can not be used directly in PAI estimation. Motivated by the require-
ments and challenges, we propose and develop a system called PAIE to estimate
PAI in the cloud. The main contributions of our work include:

1. We design the architecture for estimating PAI based on massive heart rate
data in the cloud, which includes sampling phase and estimating phase. PAIE
retrieves random sampling from distributed data, and provide progressive
approximate answers with bounded error.

2. We analyze the PAI computing algorithm and the characteristics of collected
heart rate data, and transform the definite integral into the sum of rectan-
gle areas, then we model the PAI estimation into estimating the average of
specified random variable.

3. We formulate a statistical framework to support PAI estimation in the cloud.
We design a block-level stratified sampling method to make best use of trans-
mitted sampling data, based on which we develop the estimation mechanisms
to provide approximate results and bound the estimation error.

4. We implement PAIE on Storm and conduct comprehensive experiments, the
results show PAIE’s efficiency in PAI estimating, and we also verity it’s scal-
ability as both data volume and cluster scale increase.

PAIE: A Personal Activity Intelligence Estimator in the Cloud 93

The rest of the paper is organized as follows. In Sect. 2 we summarize the
related work in physical activity tracking and approximate query processing. In
Sect. 3 we introduce the main framework and workflow of PAIE. Section 4 dis-
cusses the problem modeling and statistical issues, which includes the sampling
mechanism and PAI estimation algorithm. The implementing details of PAIE
based on Storm is described in Sect. 5. The performance evaluation is given in
Sect. 6, followed by the conclusions.

2 Related Work

It’s widely recognized that physical activity is associated with enhanced health,
and numerous studies have proven that physical activity is a mean of prevent-
ing chronic diseases and reducing the risk of all-cause mortality [7,10,17,20]. As
people pay more and more attention to health associated with physical activ-
ity, many devices and applications are designed to tracking physical activity.
According to [11], there are 23,490 and 17,756 applications in the Apple store
and Google Play respectively categorized in the health and fitness section. Most
of the applications track physiological variables such as step number, activity
time, distance walked, heart rate changes and so on [16]. Though these applica-
tions are designed to guide people towards healthy lifestyle, the variables pro-
vided do not reflect the body’s response to different activity, and they are not
scientifically proven metrics that could inform users of physical activity needed
to reduce the risk of chronic diseases or prevent the premature diseases. The
HUNT study proposed a new single metric called Personal Activity Intelligence
(PAI), which is computed comprehensively based on age, sex, and changing heart
rate [12]. The PAI is proven to be closely associated with cardiovascular disease
mortality risk, and can be used to offer individuals with recommended physical
activity quantity and to predict cardiovascular disease risk [22]. However, the
PAI algorithm is too expensive to provide realtime feedback, which limits its
practical value in disease warning. Approximate query processing provides esti-
mated results with bounded errors of statistical significance, which provides a
more feasible solution.

Approximate query processing (AQP) is proposed in the database field [2],
which guarantees results at interactive speeds during the data exploration pro-
cess. The AQP technique preprocesses the original data, and construct auxiliary
data structure for estimate, including wavelets [6], histograms [21], and sam-
pling technique [18,19]. The above work is implemented on traditional database,
BlinkDB provides approximate query results on very large data, and is imple-
mented on Spark [14]. Though the AQP technique is well studied during the
data management field, it can not be used directly to estimate the PAI met-
ric, which is computed through complex mathematical calculation. We analyze
the computing mechanism of PAI, and model the estimation into estimating the
population average of specified random variable.

94 Y. Shi et al.

3 Overview of PAIE

PAIE estimates the PAI based on the changing heart rate data and provides the
corresponding accuracy, which significantly reduce the time it takes to get the
PAI value over large data sets. However, providing approximate PAI in the cloud
requires to solve the following challenging problems. First, computing the PAI
requires complex mathematical computing, the random variable and population
should be carefully designed to guarantee the statistical significance. Secondly,
the heart rate data distributed in the cloud should be sampled randomly to
guarantee the estimation accuracy, and data in the cloud is always organized
into blocks. Sampling on the tuple level is expensive on the block-organized
data set, while sampling on block brings correlation into the estimation. We
design a block-level stratified sampling mechanism to provide online random
samples, which adapts to the data correlation of tuples in one block. Thirdly,
the estimate error should be determined during the online processing, in order
to verify whether the estimate result satisfies the desired accuracy.

In order to provide online feedback, we implement PAIE on Storm [1], which
is a realtime processing system for big data flow. Figure 1 illustrates the workflow
of PAIE, and the architecture includes two phases: sampling phase and online
processing phase. The collected heart rate data is distributed on the cluster, and
PAIE conducts random sampling on each node to generate one strata of the
stratified sampling. The stratified sampling is put into a scheduling queue, and
the data is then retrieved randomly from this queue to the Kafka spout, which
manages the data into topics, and transfers the data to the online processing
phase as a data pipeline. The KafkaReader of the online processing phase gets
the data flow through subscribing the corresponding topic. There are three bolts
in the Storm processing phase. The AlgebraComputer spans the sample data,
computes the intensity score, and accumulates the corresponding variables of
one block. The StatisticalComputer computes the estimated activity score and
bounds the error of every user. The FinalReducer collects the estimate results of
all the users, and show them at fixed time intervals. In order to decrease the com-
pute cost and network data transmission, we design a spout called SignalSpout,
which broadcasts timing signals to all the bolts to trigger the data emission.

Fig. 1. Architecture of PAIE

PAIE: A Personal Activity Intelligence Estimator in the Cloud 95

4 Statistic Issues

In this section, we analyze the PAI computing algorithm and model the estima-
tion into a statistical problem, based on which we discuss the statistical issues.
First we introduce the computing mechanism of PAI.

4.1 PAI Computing Mechanism

The HUNT study invites 4,631 participants aged 20–74 as derivation cohort to
construct the offset and decay level coefficients of the mathematical model to
derive PAI, which is based on the comprehensive analysis including sex, age, body
mass index, hypertension status, smoke status, physical activity habits, etc. [13].
They also invite 39,298 participants as the validation cohort to verify the PAI’s
efficiency on prevention of premature cardiovascular disease and promotion of
physical activity. The PAI algorithm includes three steps. First, it computes the
normalized intensity ȳ(t) based on y(t), which represents the heart rate value at
time t:

ȳ(t) =
y(t) − yth

ymax − yth
(1)

ymax is the maximum heart rate and yth is the threshold of heart rate less than
which the intensity does not contribute to increased cardiorespiratory fitness.
Both ymax and yth are different for various person categories of different sexes,
ages, physical habits, etc. Then ȳ(t) is further scaled with an exponential function
containing two coefficients c1 and c2, which are derived based on the analysis of
the derivation cohort:

z(t) = c1(ec2y(t) − 1) (2)

z(t) is referred to as the intensity score, then the activity score is calculated:

P =
∫ 0

−T

z(t)dt (3)

T is the time when the heart rate data begins to be gotten. Finally, a health-
predictive activity score is calculated based on P and then scaled ranging from
0 for convenience and readability. The first two steps conduct direct algebraic
calculus on each variable, and the third step requires integration on the variables
during the time of interest. The third step costs most of the computation time,
and the estimation of PAIE is conducted on this step.

4.2 Statistical Modeling

The heart rate data y(t) is gotten at specific time interval, so the z(t) function
curve is like Fig. 2. According to the geometric definition of definite integral, the

96 Y. Shi et al.

value of P is the area of the region of the xy-plane bounded by the graph of
z(t), the x-axis and the vertical lines of x = −T and x = 0. Set Δt to represent
the time interval, z(ti) to represent the intensity score of the ith time interval,
and set R to represent the number of heart rate records, then the activity score
P can be modeled as the accumulation of all the rectangle areas:

P =
R∑

i=1

z(ti) ∗ Δt (4)

We construct a random variable: Xi = R ∗ z(ti) ∗ Δt, then the average of
random variable Xi in the population μ is the exact activity score:

μ =
1
R

R∑
i=1

Xi (5)

Consequently the problem of estimation can be transformed to estimating the
average value of Xi over all the heart rate data.

Fig. 2. Function curve of z(t)

4.3 PAI Estimating and Error Bounding

The approximate computation requires uniform sampling over the population,
however, the record-level uniform sampling is very inefficient in the cloud. Recall
that data in the cloud is organized into blocks, so retrieving n records under this
organization may cause a full scan of n blocks in the worst case. Let μ̃b and
μ̃r represent the estimated result on block-level uniform sampling and record-
level sampling respectively. According to the analysis of [15], both μ̃b and μ̃r are
unbiased estimates of μ, and μ̃b provides more accurate estimate than μ̃r under
the same data transmission cost. PAIE adopts block-level uniform sampling from
each node in the cluster, which constructs the stratified sample data from the
population. The stratified sampler of PAIE retrieves blocks according to the data
size on each node. Set Ni to represent the number of data blocks on the ith node,
and set p to represent the sampling proportion on each node, then Ni ∗ p blocks

PAIE: A Personal Activity Intelligence Estimator in the Cloud 97

are sampled on the ith node. Set N to represent the total number of blocks, and
each block size is B.

We adopt relative err to measure the accuracy of the estimated result, which
is defined as: relative err = |μ̃b−μ|

μ̃b
. Let z(Bi) represent the accumulation of

intensity scores during the ith block. Based on the n blocks sampled from the
cluster, we propose the unbiased estimation and error bounding method in The-
orem 1:

Theorem 1. Set σ2 to represent the variance of sampled data, then μ̃b =
1
n

∑n
i=1 N ∗ z(Bi) ∗ Δt is the unbiased estimate of the activity score, and the

bound of the error can be computed through:err bound = zpσn√
nμ̃b

.

Proof. After the sampling phase, Ni ∗ p blocks are retrieved randomly from
each node, and construct one strata of the stratified sampling. According to the
stratified sampling property [3], the unbiased estimate of P on the sample data
from c nodes can be computed as:

μ̃b =
c∑

k=1

Nk

N
∗ 1

NkpB
∗

Nkp∑
m=1

B∑
n=1

Xmn

=
1

Np

c∑
k=1

Nkp∑
m=1

1
B

B∑
n=1

Xmn

=
1

Np

c∑
k=1

Nkp∑
m=1

1
B

B∑
n=1

NB ∗ z(tmn) ∗ Δt

=
1
n

n∑
i=1

N ∗ z(Bi) ∗ Δt (6)

According to Eq. 6, the final activity score can also be considered as the
average of Θi, where Θi = N ∗ z(Bi) ∗ Δt. The sampled blocks are retrieved
in random order from each node, so the observations of Θi from each node
are identical distributed and independent. According to the analysis based on
CLT (Central Limited Theorem) of [5], the average of Θi obeys the normal
distribution: μ̃b ∼ Normal(μ, σ2/n), during which μ is the average of the normal
distribution, and it is also the actual activity score. The distribution can be
standardized as: Z = (μ̃b − μ)/(σ

n) ∼ Normal(0, 1). Given the confidence level
p, we can get P{−zp ≤ Z ≤ zp} = p, where zp is the p-quantile in the standard
normal distribution. Then it can be derived as: P{μ̃b − zpσ/

√
n ≤ μ ≤ μ̃b +

zpσ/
√

n} = p. It means that with probability p, we have: | μ− μ̃b |≤ zpσ/
√

n. In
most cases, the variance of the population is not available, we adopt the variance
on the sample data σ2

n to compute the err bound, where σ2
n = 1

n

∑n
i=1(Θi−μ̃b)2.

According to the property of stratified sampling, σ2
n is a consistent estimation

of σ2 [3].

98 Y. Shi et al.

Algorithm 1. AlgebraComputer Function
input : record r
output: text key, double z sum, double z quad

1 // key: user ID
2 // z sum: accumulation of intensity score
3 //z quad: accumulation of intensity score’s square
4 cols= r.split();
5 if cols.length()!=1 then
6 key.set(col[0]);
7 y=(col[3]-yth)/(ymax-yth);
8 z=c1(Math.pow(e,c2y)-1);
9 z sum+=z;

10 z quad+=z*z;
11 end
12 else
13 collector.emit(key, z sum, z quad);
14 end

5 Implementing over Storm

Storm supports realtime computing through data stream in the cloud, so it sup-
ports online data processing naturally. PAIE is implemented on Storm to provide
online estimate result and error bound at fixed time interval. When the estimate
reaches the desired accuracy, the computing can be stopped. We designed two
spouts and three bolts in the Storm processing topology, which is illustrated in
Fig. 3. The KafkaReader reads the sampled data from the subscribed topic of
Kafka, and then sends it to the AlgebraComputer with random grouping. The
other spout called SignalSpout broadcasts signals to StatisticalComputer and
FinalReducer at fixed time interval. The StatisticalComputer and FinalReducer
only emit output results when getting the SignalSpout’s signal. Before getting
the signal, the StatisticalComputer only accumulates the intermediate statistical
variables based on the received data. This mechanism is designed to reduce the
data transmission cost in the network.

Fig. 3. Topology design on storm

PAIE: A Personal Activity Intelligence Estimator in the Cloud 99

Algorithm 2. StatisticalComputer Function
input : text key, double list zsum list, double list zquad list
output: double μ̃, double err

1 // μ̃: estimated result
2 // err: bounded error
3 //n: number of sampled blocks
4 //suml: sum of the intensity score of the last iteration
5 //quadsuml: quadratic sum of the intensity score of the last iteration
6 while zsum list.hasNext() do
7 double zsum = zsum list.getNext();
8 double zquad = zquad list.getNext();
9 sum += zsum;

10 quadsum+= zquad;
11 end
12 sum=sum+suml;
13 quadsum=quadsum+quadsuml;
14 variance = quadsum/n - sum ∗ sum/n ∗ n;
15 μ = sum*N*Δt/n;
16 err = zp*N*Δt*sqrt(variance)/(sqrt(n)*μ);

The AlgebraComputer splits the received records, and conducts the alge-
bra computing on the heart rate data to compute the intensity score, then it
accumulates the intensity score and its square, and emits the key-value pairs
to the next bolt. The implementation is illustrated in Agorithm1. If the record
input is not the end of one data block, AlgebraComputer computes the intensity
score according to Eqs. 1 and 2 (7–8). Then the intensity score and its square
is summed with the other record’s corresponding variables of the same block
respectively (9–10). When all the records of one block are processed, Algebra-
Computer emits the key-value pair, during which the key is set as the userID,
and the value includes the intensity score’s sum and its quadratic sum (13).

The outputs of AlgebraComputer are transmitted to StatisticalComputer
through “fields grouping”, which guarantees that the values of the same key
are sent to the same bolt task. The StatisticalComputer function is designed as
Algorithm 2 illustrates. The output pairs belonging to the same userID are sent
to the same StatisticalComputer bolt task, which accumulates the intensity score
and its square (6–11). The new intensity score’s sum and square sum are then
accumulated with the values of the last iteration (12–13), and then the variance
of the samples are computed (14). At last, the estimated value and the bounded
error are computed based on the statistical parameters (15–16). All the estimate
results are sent to the FinalReducer in the manner of “global grouping”, which
shows the results of all the users at fixed time interval.

6 Performance Evaluation

In this section, we evaluate the performance of PAIE in terms of running time
to get an estimate result with desired accuracy and the required sample size.

100 Y. Shi et al.

We compare PAIE’s block-level stratified sampling with tuple-level sampling on
different block sizes, and evaluate the scalability of PAIE on data size and cluster
scale.

6.1 Experiment Methodology

Our experiment platform is a cluster of 11 nodes connected by a 1Gbit Ethernet
switch. One node serves as the nimbus (master node), and the other nodes serve
as the supervisors (worker nodes). Every node has a 3.3 GHz quad-core CPU and
4 GB of RAM, and the disk size of every node is 1 TB. The cluster coordination
is Zookeeper 3.4.7, and the Storm version is 0.10.0. We set two workers on each
supervisor of Storm. The parallel degree of KafkaReader, AlgebraComputer,
and StatisticalComputer is configured to 15, and FinalReport’s parallel degree
is configured to 1.

We adopt two metrics to evaluate the performance: avgRestime and
sampling size. AvgRestime is the average of time cost for different users to
get the estimated result of desired accuracy, and sampling size is the number of
records processed before getting the final estimate. We compare the performance
of PAIE with TUPLE, which is an estimator adopting record-level sampling
mechanism.

We monitor the heart rate changings of eight participants through wearable
wristbands, and the participants’ age ranges from 18 to 60. We also analyze
their heart rate data during different stages, which include sedentary behavior,
sleeping, physical activity of different intensities. Based on the collecting data
and the analysis, we generate the experiment data sets of different scales by
randomly choosing different stages for different persons. Each record of the data
includes four columns: userID, date, time, heart rate. We set the confidence
interval of bounding the error at 95%, and set the specified error at 0.05. The
result updating interval is set to 5 s.

6.2 Performance Analysis

In the cloud data organization, the block size is set according to the data set
scale. We evaluate the performance of PAIE and TUPLE on four kinds of block
sizes: 5 MB, 10 MB, 20 MB and 40 MB. The total data size of the experiment
is 200 GB. During our experiment data set, the records of the same hour are
ordered by the user ID, so the data correlation is between random layout and the
fully ordered layout. The sample size of PAIE is actually the number of blocks,
in order to compare the two sampling mechanisms more directly, we show the
number of records in the experiment results. As Fig. 4 illustrated, the PAIE
required more samples than TUPLE, while its avgResTime is much shorter than
TUPLE in general. The sample variance of PAIE is generally larger than that
of TUPLE, so given the desired estimate accuracy, it requires more sampled
records according to the error bounding theorem. However, during the sampling
phase, TUPLE scans the total data block to retrieve some of records with uniform
sampling. So it costs more time than the PAIE’s sampling phase, which conducts

PAIE: A Personal Activity Intelligence Estimator in the Cloud 101

block-level uniform sampling directly. What’s more, during the online processing
phase, the AlgebraComputer bolt of PAIE emits one output result each block.
While TUPLE emits one output result each record on the corresponding bolt,
which requires more data transmission and sends more computer burden on the
following bolt.

Fig. 4. Performance on different block size

The block size doesn’t affect the sample size of TUPLE because of its sam-
pling level. Given the data set, larger data block results in less number of blocks.
During the sampling phase of TUPLE, it requires less tasks to retrieve sampling
records, and at the same time, each sampling task costs more time, so there is a
tradeoff between the block size and avgResTime of TUPLE.

During the experiment data set, records according to one hour is stored
in a file, whose size is about 10 MB. As a result, the data correlation during
one block of 5 MB is larger than the other three block sizes, so it requires
more sampling blocks for PAIE. When the block is larger than 10 MB, the data
correlation decreases gradually as the block size increases, so the number of
required sampling blocks of PAIE decreases correspondingly. As the block size
increases, the time to process one block of the AlgebraComputer bolt gets longer,
so there is also a tradeoff between the block size and avgResTime of PAIE. In
our experiment results, PAIE gets the shortest avgResTime when the block size
is 10 MB.

6.3 Scalability Evaluation

We evaluate the scalability from both data size and cluster scale on the data size
of 200 GB, and we set the block size to 10 MB. Figure 5 illustrates the avgRes-
Time and sampling size of the estimators on the 10-worker node cluster with
different data sizes. As analyzed in Theorem1, the bounded error is not affected

102 Y. Shi et al.

directly by the data size, but associated with the variance and the sample size.
During our experiment data set, the variance doesn’t change a lot as the data
size increases. So given the desired error, the sample size doesn’t increase propor-
tionally to the data size for neither PAIE nor TUPLE. Though the sample size
changes little for TUPLE, its avgResTime increases as the data size increases.
This is because that the sample phase of TUPLE has to access more blocks as
the data size increases. The PAIE directly conducts block-level sampling, so its
sampling phase doesn’t cost much more time as the data size increases.

Fig. 5. Scale-up with data size

The scalability on cluster scale is evaluated by varying the number of workers.
The cluster scale doesn’t affect the sample size, so we only show the results of
avgResTime in Figure 6. As the number of worker nodes increases, the running
time decreases, and the speedup mainly originates from the distributed sampling
phase and the online processing phase on Storm. Generally speaking, PAIE has
scalability both on data size and cluster scale.

Fig. 6. Scale-up with cluster scale

PAIE: A Personal Activity Intelligence Estimator in the Cloud 103

7 Conclusions

As people’s concern for health increases rapidly, to track the body’s physical
activity and reflect the health status timely have attracted more and more atten-
tions. PAI is a recently proposed metric based on continuous heart rate and other
physical parameters, and it is validated in the general HUNT population aged
20–74 that PAI helps to prevent cardiovascular disease and promote physical
activity. However, the complex computing algorithm and huge continuous heart
rate data affect its timeliness to flect the body’s health status. In this paper,
we propose a novel PAI estimator called PAIE, which focuses on estimating the
PAI based on massive heart rate data in the cloud. Based on the analysis of
PAI algorithm and characteristics of data organization in the cloud, we propose
the stratified block-level sampling mechanism, and design the algorithm of PAI
estimating and error bounding. The evaluation results of our technique on Storm
show that PAIE can provide promising estimate on massive heart rate data in
the cloud.

Acknowledgment. This research was supported by the grants from the Natural
Science Foundation of China (No. 61502279), the General Program of Science and
Technology Development Project of Beijing Municipal Education Commission (No.
KM201710012008), the Special Funds for High-level Teacher’s Building of Beijing Insti-
tute of Fashion Technology (No. BIFTQG201803), the Ningxia Natural Science Foun-
dation (No. 2018A0899). We would like to thank Yadong You, Guangyao Guo, Yong-
peng Sun and Tianchen Xiong from Beijing Institute of Fashion Technology, who gave
much help in the experiment.

References

1. Apache storm (2018). http://storm.apache.org
2. Barbara, D., Dumouchel, W., Faloutsos, C., et al.: The New Jersey data reduction

report. Data Eng. Bull. 20(4), 3–45 (1997)
3. Cochran, W.G.: Sampling Techniques. Wiley, New York (1977)
4. GBD 2013 Mortality and Causes of Death Collaborators: Global, regional, and

national agecsex specific all-cause and cause-specific mortality for 240 causes of
death, 1990–2013: a systematic analysis for the global burden of disease study
2013. Lancet 385(9963), 117–171 (2015)

5. Hellerstein, J.M., Haas, P.J., Wang, H.J.: Online aggregation. In: Proceedings of
the SIGMOD 1997 Conference, pp. 171–182 (1997)

6. Kaushik, C., Minos, N., Rajeev, R., et al.: Approximate query processing using
wavelets. Proc. VLDB Endow. 10(2), 199–223 (2001)

7. Kruk, J.: Physical activity in the prevention of the most frequent chronic diseases:
an analysis of the recent evidence. Asian Pac. J. Cancer Prevent. 8, 325–338 (2007)

8. Lavie, C., Arenaand, R., Blair, S.: A call to increase physical activity across the
globe in the 21st century. Future Cardiol. 12, 605–607 (2016)

9. Lavie, C., Arenaand, R., Swift, D., et al.: Exercise and the cardiovascular system:
clinical science and cardiovascular outcomes. Circ. Res. 117, 207–219 (2015)

http://storm.apache.org

104 Y. Shi et al.

10. Lebrun, C.E.I., Van der Schouw, Y.T., De Jong, F.H., et al.: Relations between
body composition, functional and hormonal parameters and quality of life in
healthy postmenopausal women. Maturitas 55, 82–92 (2006)

11. Middelweerd, A., Mollee, J.S., Natalie, C., et al.: Apps to promote physical activity
among adults: a review and content analysis. Int. J. Behav. Nutr. Phys. Activ.
11(1), 97 (2014)

12. Nes, B., Gutvik, C., Lavie, C., et al.: Personalized activity intelligence (PAI) for
prevention of cardiovascular disease and promotion of physical activity. Am. J.
Med. 130(3), 328–336 (2017)

13. Nes, B., Janszky, I., Vatten, L., et al.: Estimating V.O2 peak from a nonexercise
prediction model: the HUNT study, Norway. Med. Sci. Sports Exerc. 43(11), 2024–
2030 (2011)

14. Sameer, A., Barzan, M., Aurojit, P., et al.: BlinkDB: queries with bounded errors
and bounded response times on very large data. In: Proceedings of the Eighth
Eurosys Conference, pp. 29–42 (2013)

15. Shi, Y., Meng, X., Wang, F., Gan, Y.: HEDC++: an extended histogram estimator
for data in the cloud. J. Comput. Sci. Technol. 28(6), 973–988 (2013)

16. Silva, B.M., Rodrigues, J.J., et al.: Mobile-health: a review of current state in 2015.
J. Biomed. Inform. 56, 265–272 (2015)

17. Strohle, A.: Physical activity, exercise, depression and anxiety disorderss. J. Neural
Transm. 116(6), 777–784 (2009)

18. Surajit, C., Rajeev, M., Vivek, R.: On random sampling over joins. In: Proceedings
of the 1999 ACM SIGMOD International Conference on Management of Data, pp.
263–274 (1999)

19. Swarup, A., Phillip, B., Viswanath, P.: Congressional samples for approximate
answering of group-by queries. In: Proceedings of the 2000 ACM SIGMOD Inter-
national Conference on Management of Data, pp. 487–498 (2000)

20. Wen, C.P., Wai, J.P.M., Tsai, M.K., et al.: Minimum amount of physical activity
for reduced mortality and extended life expectancy: a prospective cohort study.
Lancet 378(9798), 1244–1253 (2011)

21. Yannis, E., Viswanath, P.: Histogram-based approximation of set-valued query-
answers. In: Proceedings of 25th International Conference on Very Large Data
Bases, pp. 174–185 (1999)

22. Zisko, N., Skjerve, K., Tari, A., et al.: Personal Activity intelligence (PAI), seden-
tary behavior and cardiovascular risk factor clustering-the HUNT study. Prog.
Cardiovasc. Dis. 60(1), 89–95 (2017)

DCMIX: Generating Mixed Workloads
for the Cloud Data Center

Xingwang Xiong1, Lei Wang1, Wanling Gao1, Rui Ren1, Ke Liu1,
Chen Zheng1, Yu Wen2, and Yi Liang3(B)

1 Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
{xiongxingwang,wanglei 2011,gaowanling,renrui,liuke19g,zhengchen}@ict.ac.cn
2 Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China

3 College of Computer Science, Beijing University of Technology, Beijing, China
yliang@bjut.edu.cn

Abstract. To improve system resource utilization, consolidating multi-
tenants’ workloads on the common computing infrastructure is a popu-
lar way for the cloud data center. The typical deployment of the mod-
ern cloud data center is co-locating online services and offline analyt-
ics applications. However, the co-locating deployment inevitably brings
workloads’ competitions for system resources, such as the CPU and the
memory resources. These competitions result in that the user experience
(the request latency) of the online services cannot be guaranteed. More
and more efforts try to assure the latency requirements of services as
well as the system resource efficiency. Mixing the cloud workloads and
quantifying resource competition is one of the prerequisites for solving
the problem. We proposed a benchmark suite—DCMIX as the cloud
mixed workloads, which covered multiple application fields and differ-
ent latency requirements. Furthermore the mixture of workloads can be
generated by specifying mixed execution sequence in the DCMIX. We
also proposed the system entropy metric, which originated from some
basic system level performance monitor metrics as the quantitative met-
ric for the disturbance caused by system resource competition. Finally,
compared with the Service-Standalone mode (only executing the online
service workload), we found that 99th percentile latency of the service
workload under the Mixed mode (workloads mix execution) increased 3.5
times, and the node resource utilization under that mode increased 10
times. This implied that mixed workloads can reflect the mixed deploy-
ment scene of cloud data center. Furthermore, the system entropy of
mixed deployment mode was 4 times larger than that of the Service-
Standalone mode, which implied that the system entropy can reflect the
disturbance of the system resource competition. We also found that the
isolation mechanism has some efforts for mixed workloads, especially the
CPU-affinity mechanism.

Keywords: Cloud computing data centers · System entropy ·
Benchmark

c© Springer Nature Switzerland AG 2019
C. Zheng and J. Zhan (Eds.): Bench 2018, LNCS 11459, pp. 105–117, 2019.
https://doi.org/10.1007/978-3-030-32813-9_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32813-9_10&domain=pdf
https://doi.org/10.1007/978-3-030-32813-9_10

106 X. Xiong et al.

1 Introduction

Today, more and more data centers are being used to provide cloud computing
services, whatever the public cloud or the private cloud. To implement the econ-
omy of scale of cloud computing, consolidating more tenants’ workloads is the
basic idea [17]. Furthermore, the higher system resource utilization can bring
more profits, so deploying diverse multi-tenant workloads on the same physical
node is a popular way for the cloud data center. And typically, online services and
offline analytics applications are co-located on shared resources [10]. However,
the co-locating deployment inevitably brings workloads’ competitions for sys-
tem resources, such as CPU and memory resources within the same node. These
competitions always result in high response latency of online service workload
and further lead to poor user experience.

More and more previous work tries to assure the user experience as well as the
system efficiency, such as Intel’s Cache Allocation Technology [8], Linux Contain-
ers Technology [11], Labeled von Neumann Architecture [1], et al. Benchmarks
measure the systems and architectures quantitatively, so the cloud data center
benchmark is one of the prerequisites for solving the problem. There are two
main challenges: first, the benchmark suite should reflect the application char-
acteristic of cloud data center as well as the mixed execution pattern of cloud
data center. Second, we need a metric to quantify the resource competition of
mixed execution workloads.

In this paper, we propose DCMIX—a cloud data center benchmark suite
covering multiple cloud application fields and the mixed workloads’ execution
mechanisms. DCMIX has 17 typical cloud data center workloads, which covered
four typical application fields and the latencies of workloads range from microsec-
onds to minutes. Furthermore, DCMIX can generate mixed execution sequence
of workloads by the user customization, and it supports the mixture of serial
execution and parallel execution. Then we propose system entropy as the joint
entropy of system resource performance data, to reflect system resource competi-
tions. We chose four system level metrics (CPU utilization, memory bandwidth,
disk I/O bandwidth, and network I/O bandwidth) as the basic elements of the
system entropy, and the system entropy is the joint entropy of them. The ele-
ments of the system entropy can easily get by monitoring the target node without
third party application’s participation, which is more suited for the public cloud
scenes.

Finally, we conduct a series of experiments under five different modes on the
X86 platform, which are Service-Standalone (only online services), Analytics-
Standalone (only offline analytics applications), Mixed (workloads mix without
any isolation setting), Mixed-Tied (workloads mix under the CPU-affinity set-
ting), and Mixed-Docker (workloads mix under Linux containers). Compared
with the Service-Standalone mode, we found that the latency of the service
workload under the mixed mode increased 3.5 times, and the node resource uti-
lization under that mode increased 10 times. Furthermore, the system entropy
of the Mixed mode was 4 times larger than that of the Service-Standalone mode.

DCMIX: Generating Mixed Workloads for the Cloud Data Center 107

We also found that the isolation mechanisms have some efforts under the mixed
mode, especially the CPU-affinity mechanism.

2 Related Work

Related work is summarized from two perspectives: cloud data center bench-
marks and the system entropy.

For cloud data center benchmarks, we classify cloud data center benchmarks
into two categories from the perspective of the co-locating deployment. The
first one is generating multiple workloads individually, such as CALDA [12],
Hibench [7], BigBench [5], BigDataBench 4.0 [4,16], TailBench [9], and Cloud-
Suite [3]. These benchmarks don’t consider the co-locating deployment, and they
provide multiple typical cloud data center workloads. CALDA provides Cloud
OLAP workloads; Hibench provides Hadoop/Spark data analytics workloads;
TailBench provides diverse tail latency sensitive service workloads; CloudSuite
and Bigdatabench provide multiple workloads of the data center; BigBench pro-
vides an end-to-end data center workload. The second one is mixed workloads.
SWIM [2] and CloudMix [6] build a workload trace to describe the realistic
workloads mixed by mining production trace, and then run synthetic operations
according to the trace. However, how to generate real workloads on the basis of
mixture is still an open question.

In the area of the system entropy, the information entropy, also called Shan-
non entropy, is often used to quantify the degree of uncertainty of which infor-
mation is produced by a stochastic source of data. Google [13] applied entropy
for the system monitor, which is used to assess the stability of the profiling and
sampling. BDTune [14] applied the relative entropy, which is the relative value of
performance metrics on different data center nodes, to troubleshoot anomalous
nodes in the data center. How to quantify resource competition in the cloud data
center is still an open question.

3 DCMIX

Figure 1 shows the framework of DCMIX, there are four main modules: Work-
loads, User interface, Mixed workloads generator, and Performance monitor.
DCMIX contains two types of workloads: online services and data analytic work-
loads, and they are all deployed on the target system. User interface is the por-
tal for user, and users can specify their workload mix requirements, including
workloads and mixture patterns. Mixed workloads generator can generate online
services’ requests and submit data analytics jobs to the target system. Perfor-
mance monitor can monitor the performance data of the target system, and the
system entropy is calculated by these original monitor data.

108 X. Xiong et al.

Fig. 1. The DCMIX framework

3.1 Workloads

DCMIX contains two types of workloads: online services and data analytic work-
loads. As shown on Fig. 2, these workloads have different application fields
and different user experience (latency). DCMIX’s application fields are big
data, artificial intelligence, high-performance computing, transaction processing
databases, et al. The latencies of DCMIX workloads range from microseconds to
minutes.

Fig. 2. The DCMIX workloads

The details of workloads are shown on Table 1. DCMIX Workloads are from
two famous benchmark suites, which are Bigdatabench 4.0 [4,16] and TailBench
[9].

DCMIX: Generating Mixed Workloads for the Cloud Data Center 109

Table 1. The DCMIX workloads

Workloads Application type Domain Latency requirement

Count [16] Offline analytics application Big data Larger than 10 s

Sort [16] Offline analytics application Big data Larger than 10 s

Bayes [16] Offline analytics application Big data Larger than 10 s

Convolution [16] Offline analytics application AI Larger than 10 s

Alexnet [16] Offline analytics application AI Larger than 10 s

MD5 [16] Offline analytics application HPC Larger than 10 s

Multiply [16] Offline analytics application HPC Larger than 10 s

FFT [16] Offline analytics application HPC Larger than 10 s

Union [16] Offline analytics application Transaction DB Larger than 10 s

Redis Online service Big data Less than 0.1ms

Xapian [9] Online service Big data 1–100 ms

Masstree [9] Online service Big data 1–10ms

Img-dnn [9] Online service AI 1–20ms

Moses [9] Online service AI 1–100 ms

Sphinx [9] Online service AI 1–10 s

Silo [9] Online service Transaction DB Less than 0.1ms

Shore [9] Online service Transaction DB 1–10ms

3.2 Mixed Workload Generator

Mixed workloads generator can generate the mixed workloads through submit-
ting queries (service requests queries and data analytics job submitting queries).
Mixed workloads generator supports the mixture execution of serial execution
and parallel execution. Serial execution means that the workload must start up
after the previous workload complete. Parallel execution means that multiple
workloads start up at the same time.

Moreover, in the workload generator configuration file, users can set request
configurations for each workload. For online-services, we provided request inten-
sity, number of requests, number of warmup requests, etc.; for offline-analytics,
we provide path of the data set, threads number of jobs, etc. Table 2 lists the
parameters in the workload generator configuration file.

4 System Entropy

System entropy is used to reflect system resource disturbances, i.e., the uncer-
tainty associated with resources usage.

Although the concept of system entropy has been proposed [18], there is
no formal definition and corresponding calculation method. In this section, we
defined the concept of system entropy as the joint entropy S of system resource
performance data, to reflect system resource competition. The definition of Sys-
tem Entropy is based on the Shannon entropy. Shannon entropy is often used
to quantify the degree of uncertainty of which information is produced by a
stochastic source of data. The measure of Shannon entropy associated with each

110 X. Xiong et al.

Table 2. Parameters in workload generator configuration

Parameter name Description

WarmupReqs For online services. The number of requests
for warm-up

Reqs For online services. The total number of
requests (not include Warmup Reqs)

QPS For online services. The average request rate,
i.e., queries per second

ServerThreads For online services. The number of server
threads for processing requests

ClientThreads For online services. The number of client
threads for generating requests

ServerIP For online services. The IP address of the
server

ServerPort For online services. The TCP/IP port used
by the server

JobThreads For offline analytics workloads. The number
of threads for executing jobs

DataPath For offline analytics workloads. The path of
data set

possible data value is the negative logarithm of the probability mass function
for the value [15].

We chose four architecture-independent system metrics, which are CPU uti-
lization, memory bandwidth utilization, disk I/O utilization, and network I/O
bandwidth utilization, as elements of the system entropy. And the system entropy
is the sum of these four elements’ entropies. In other words, we measure system
uncertainty with variations of the four most common system resource utilization.

As shown in Formula 1, S is the variable of system entropy, S contains
four elements. C is the CPU utilization, which is defined as the percentage of
time that the CPU executing at the system or user level. M is the memory
bandwidth utilization, which is the occupied memory bandwidth divided by the
peak memory bandwidth. D is the disk I/O utilization, which is the occupied
disk I/O bandwidth divided by the peak disk I/O bandwidth. N is the network
I/O utilization, which is the occupied network I/O bandwidth divided by the
peak network I/O bandwidth.

S = (C,M,D,N) (1)

As shown in Formula 2, the entropy of S is the joint entropy of (C,M,D,N),
and we assume that these elements are independent of each other, so the calcu-
lation of H(S) is the sum of them.

H(S) = H(C) + H(M) + H(D) + H(N) (2)

DCMIX: Generating Mixed Workloads for the Cloud Data Center 111

The principle of system entropy is according with the information entropy.
According to the information entropy calculation formula given by Shannon, for
any discrete random variable X, its information entropy is defined as Formula 3
[15].

H(X) = −
∑

x∈X

p(x) ∗ log2 p(x) (3)

So, the entropy of each element can be obtained by Formula 3. And we take
C as the example to describe the calculation of p(x). As shown on Formula 4,
p(c) is the probability of C, the Num(c) is the count of the value is c in the
sample, and n is the total number of the sample.

p(c) =
Num(c)

n
(4)

5 Experiment and Experimental Analysis

5.1 Experimental Configurations and Methodology

Experimental Configurations. We used two physical nodes for experiments,
one is the target node (Server node) and the other is the workload generator
node (Client node). The operating system of the Server node is Linux Ubuntu
16.04. The Server node is equipmented with Intel Xeon E5645 processor and
96GB memory. The detailed configurations are summarized in Table 3.

Table 3. The configuration of the server node

CPU Intel(R) Xeon(R) E5645 2.40G

Memeory 96 GB DDR3 1333 MHz bandwidth: 8 GB/s

Network Ethernet 1G bandwidth: 943 Mbits/s

Disk SATA 1T bandwidth: 154.82 MB/s

OS Ubuntu 16.04 and the kernel is 4.13.0-43-generic

GCC 4.3

Redis 4.2.5

We chose four workloads in the experiments, they are Redis (the online service
workload), Sort (the offline analytics workload), Wordcount (the offline analytics
workload), and MD5 (the offline analytics workload). Redis is a single thread in-
memory database, which has been used in the cloud widely. Sort and Wordcount
are multi-threaded big data workloads, which is implemented with OpenMP in
our experiment. MD5 is a multi-threaded HPC workload, which is also imple-
mented with OpenMP. Four workloads are deployed on the Server node. And we
deployed the workload generator on the Client node. We generated the mixed
workloads with the parallel execution mode, in which four workloads start up at

112 X. Xiong et al.

the same time and run together. For the offline analytics workloads, we submit-
ted jobs of Sort, Wordcount and MD5 with 8GB data scale. For the online service
workload, the client request intensity of Redis is 50,000 requests per second, and
follows the exponential distribution.

Experimental Methodology. We conduct the experiment under five different
modes, which were Service-Standalone, Analytics-Standalone, Mixed, Mixed-
Tied, and Mixed-Docker. For the Service-Standalone mode, we only run the
Redis workload on the physical machine. For the Analytics-Standalone mode,
we run all of offline workloads on the physical machine. For the Mixed mode,
we co-located Redis and offline workloads on the physical machine without any
isolation setting, but the total thread number is according with the total hard-
ware thread number of the target platform. For the Mixed-Tied mode, we run
Redis and offline workloads on separated cores through the CPU affinity setting.
Different with the Mixed mode, we run Redis on one core, while run the other
offline workloads on the other cores. For the Mixed-Docker mode, Redis and
offline workloads were executed in two separate Docker containers (Redis run on
one container, and offline workloads run on the other container).

Metrics. The evaluation metrics cover the spectrum of user-observed metrics,
system level metrics, and micro-architectural metrics. As for user-observed met-
rics, we chose the average latency and the tail latency. In terms of system level
metrics, we chose CPU utilization, memory bandwidth utilization, disk band-
width utilization, and network I/O bandwidth utilization.

5.2 Experiment Results and Observations

The User-Observed Metric. Figure 3 shows the latency of Redis. From Fig. 3,
we have the following observations:

First, the tail latency is severe, even in the Service-Standalone mode. In the
Service-Standalone mode, we only run Redis (the single thread workload) on the
multi-core node (Intel Xeon processor), the 99th latency (0.367 ms) is 2 times
to the average latency (0.168 ms), and 99.9th latency (0.419 ms) is 2.5 times to
the average latency. This implied that the state-of-practice system architecture,
i.e., CMP micro-architecture and time-sharing OS-architecture, would incur the
high tail latency.

Second, mixed deployment without any isolation mechanism also incurs the
high latency. In the Mixed mode, the average latency is 0.429 ms (2.6 times
to the Service-Standalone mode) and 99.9th latency is 16.962 ms (27 times to
the Service-Standalone mode). Although, the thread number accords with the
total hardware thread number of the target platform, the interfere of mixed
deployment should incur the high latency of online services.

Third, the CPU affinity setting can relieve the competition. The average
latency of Mixed-tied is 0.173 ms and 99.9th latency is 1.371 ms. So in our
condition, the CPU affinity setting can relieve the competition efficiently.

DCMIX: Generating Mixed Workloads for the Cloud Data Center 113

Fig. 3. The request latency of the redis

Fourth, the average latency of Mixed-Docker is 0.977 ms and 99.9th latency is
2.75 ms. The container can relieve the tail latency, but make the average latency
higher.

The System Level Metrics for the System. Figure 4 presents the resource
utilization of server node. From Fig. 4, we find that mixed deployment can
prompt the resource utilization. The CPU utilization of the Service-Standalone
mode is only 4%, while the mixed deployment can achieve 46%–55%.

Figure 5 shows the system entropy of server node. From Fig. 5, we find that
the system entropy of the Service-Standalone mode is only 5.9, while that of the
Analytics-Standalone, the Mixed mode, the Mixed-Tied mode, and the Mixed-
Docker mode are 20, 23, 22, 25 respectively. Furthermore, the system entropy of
the Mixed-tied mode is the minimum among all of the mix modes.

The Architecture Level Metrics for the System. Figure 6 shows the micro-
architecture metrics of server node. From Fig. 6, we find larger L1I cache misses
and L2 cache misses under the Service-Standalone mode, smaller L1I cache
misses and L2 cache misses under Analytics-Standalone mode, and that the
micro-architecture metrics have minor variations among three mixed modes.
In other words, the micro-architecture metrics can not reflect the disturbance
caused by system resource competition.

Offline Analytics Application Execution Time. Figure 7 shows offline ana-
lytics application execution time under four different modes. From Fig. 7, we find

114 X. Xiong et al.

Fig. 4. The system level metrics of the server node

Fig. 5. The system entropy of the server node

that the execution time of Sort under the Analytics-Standalone mode is 495 s,
and that under the Mixed mode, the Mixed-Tied mode, and the Mixed-Docker
mode are 519 s, 534 s, 486 s respectively. Interference has less impact on offline
analytics applications than that on the online services.

DCMIX: Generating Mixed Workloads for the Cloud Data Center 115

Fig. 6. The architecture metrics of the server node

Fig. 7. Offline analytics application execution time

5.3 Summary

Mixed Workloads. Compared with the Service-Standalone mode, we found
the latency of the service workload under the Mixed mode increased 3.5 times,
and the node resource utilization under that increased 10 times. This implied
that mixed workloads can reflect the mixed deployment scene.

116 X. Xiong et al.

Tail Latency of the Service Workload. The state-of-the-practice system
architecture, i.e., CMP micro-architecture and time-sharing OS-architecture,
should incur the high tail latency, even in the Service-Standalone mode.

The System Entropy for the Server Node. The system entropy of the
Mixed mode was 4 times larger than that of the Service-Standalone mode, and
its tendency was corresponding to latency among different mixed modes. This
implied that the system entropy can reflect the disturbance caused by system
resource competition.

Isolation Mechanisms. State-of-the-practice isolation mechanisms have some
efforts under the mixed workloads, especially the CPU-affinity mechanism.

Impacts for Offline Workloads. Compared with execution time under the
Analytics-Standalone mode, there is only a slight increase in execution time of
offline analytics applications under the mixed modes. So we can see that the root
cause of long latency of online services under the co-locating deployment is not
insufficient resources, but the short-term disorder competitions.

6 Conclusion

In this paper, we proposed DCMIX as the cloud data center benchmark suite. We
also defined the system entropy to quantify resource competition in the cloud
data center. Through the experiment, we found that DCMIX can reflect the
mixed deployment scene in the cloud data center and the system entropy can
reflect the disturbance of the system resource competition.

Acknowledgment. This work is supported by the National Key Research and Devel-
opment Plan of China Grant No. 2016YFB1000201.

References

1. Bao, Y.G., Wang, S.: Labeled von neumann architecture for software-defined cloud.
J. Comput. Sci. Technol. 32(2), 219–223 (2017). https://doi.org/10.1007/s11390-
017-1716-0

2. Chen, Y., Alspaugh, S., Katz, R.: Interactive analytical processing in big data
systems: a cross-industry study of mapreduce workloads. Proc. VLDB Endow.
5(12), 1802–1813 (2012). https://doi.org/10.14778/2367502.2367519

3. Ferdman, M., et al.: Clearing the clouds: a study of emerging workloads on modern
hardware, p. 18 (2011)

4. Gao, W., et al.: Bigdatabench: a scalable and unified big data and AI benchmark
suite. Under review of IEEE Trans. Parallel Distrib. Syst. (2018)

5. Ghazal, A., et al.: Bigbench: towards an industry standard benchmark for big data
analytics. In: Proceedings of the 2013 ACM SIGMOD International Conference
on Management of Data, SIGMOD 2013, pp. 1197–1208. ACM, New York (2013).
https://doi.org/10.1145/2463676.2463712

https://doi.org/10.1007/s11390-017-1716-0
https://doi.org/10.1007/s11390-017-1716-0
https://doi.org/10.14778/2367502.2367519
https://doi.org/10.1145/2463676.2463712

DCMIX: Generating Mixed Workloads for the Cloud Data Center 117

6. Han, R., Zong, Z., Zhang, F., Vazquez-Poletti, J.L., Jia, Z., Wang, L.: CloudMix:
generating diverse and reducible workloads for cloud systems. In: 2017 IEEE 10th
International Conference on Cloud Computing (CLOUD), pp. 496–503, June 2017.
https://doi.org/10.1109/CLOUD.2017.123

7. Huang, S., Huang, J., Dai, J., Xie, T., Huang, B.: The hibench benchmark suite:
characterization of the mapreduce-based data analysis. In: 2010 IEEE 26th Inter-
national Conference on Data Engineering Workshops (ICDEW 2010), pp. 41–51,
March 2010. https://doi.org/10.1109/ICDEW.2010.5452747

8. Intel Corporation: Improving Real-Time Performance by Utilizing Cache Alloca-
tion Technology, April 2015. http://www.intel.com/content/dam/www/public/us/
en/documents/white-papers/cache-allocation-technology-white-paper.pdf

9. Kasture, H., Sanchez, D.: Tailbench: a benchmark suite and evaluation method-
ology for latency-critical applications. In: 2016 IEEE International Symposium on
Workload Characterization (IISWC), pp. 1–10, September 2016. https://doi.org/
10.1109/IISWC.2016.7581261

10. Liu, Q., Yu, Z.: The elasticity and plasticity in semi-containerized co-locating cloud
workload: a view from alibaba trace. In: Proceedings of the ACM Symposium on
Cloud Computing, SoCC 2018, pp. 347–360. ACM, New York (2018). https://doi.
org/10.1145/3267809.3267830

11. Merkel, D.: Docker: lightweight Linux containers for consistent development and
deployment. Linux J. 2014(239), 2 (2014). http://dl.acm.org/citation.cfm?id=26
00239.2600241

12. Pavlo, A., et al.: A comparison of approaches to large-scale data analysis. In:
Proceedings of the 2009 ACM SIGMOD International Conference on Management
of Data, SIGMOD 2909, pp. 165–178. ACM, New York (2009). https://doi.org/10.
1145/1559845.1559865

13. Ren, G., Tune, E., Moseley, T., Shi, Y., Rus, S., Hundt, R.: Google-wide profiling:
a continuous profiling infrastructure for data centers. IEEE Micro 30(4), 65–79
(2010). https://doi.org/10.1109/MM.2010.68

14. Ren, R., Jia, Z., Wang, L., Zhan, J., Yi, T.: BDTUne: hierarchical correlation-
based performance analysis and rule-based diagnosis for big data systems. In: 2016
IEEE International Conference on Big Data (Big Data), pp. 555–562, December
2016. https://doi.org/10.1109/BigData.2016.7840647

15. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3),
379–423 (1948)

16. Wang, L., et al.: BigDataBench: a big data benchmark suite from internet ser-
vices. In: 2014 IEEE 20th International Symposium on High Performance Com-
puter Architecture (HPCA), pp. 488–499, February 2014. https://doi.org/10.1109/
HPCA.2014.6835958

17. Zhang, Q., Cheng, L., Boutaba, R.: Cloud computing: state-of-the-art and research
challenges. J. Internet Serv. Appl. 1(1), 7–18 (2010). https://doi.org/10.1007/
s13174-010-0007-6

18. Zhiwei, X., Chundian, L.: Low-entropy cloud computing systems. SCIENTIA
SINICA Inform. 47(9), 1149 (2017). https://doi.org/10.1360/N112017-00069.
http://engine.scichina.com/publisher/ScienceChinaPress/journal/SCIENTIASIN
ICAInformationis/47/9/10.1360/N112017-00069

https://doi.org/10.1109/CLOUD.2017.123
https://doi.org/10.1109/ICDEW.2010.5452747
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/cache-allocation-technology-white-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/cache-allocation-technology-white-paper.pdf
https://doi.org/10.1109/IISWC.2016.7581261
https://doi.org/10.1109/IISWC.2016.7581261
https://doi.org/10.1145/3267809.3267830
https://doi.org/10.1145/3267809.3267830
http://dl.acm.org/citation.cfm?id=2600239.2600241
http://dl.acm.org/citation.cfm?id=2600239.2600241
https://doi.org/10.1145/1559845.1559865
https://doi.org/10.1145/1559845.1559865
https://doi.org/10.1109/MM.2010.68
https://doi.org/10.1109/BigData.2016.7840647
https://doi.org/10.1109/HPCA.2014.6835958
https://doi.org/10.1109/HPCA.2014.6835958
https://doi.org/10.1007/s13174-010-0007-6
https://doi.org/10.1007/s13174-010-0007-6
https://doi.org/10.1360/N112017-00069
http://engine.scichina.com/publisher/ScienceChinaPress/journal/SCIENTIASINICAInformationis/47/9/10.1360/N112017-00069
http://engine.scichina.com/publisher/ScienceChinaPress/journal/SCIENTIASINICAInformationis/47/9/10.1360/N112017-00069

Machine-Learning Based Spark and
Hadoop Workload Classification Using

Container Performance Patterns

Mikhail Genkin(B), Frank Dehne, Pablo Navarro, and Siyu Zhou

School of Computer Science, Carleton University, Ottawa, Canada
michael.genkin@carleton.ca

https://carleton.ca/scs/

Abstract. Big data Hadoop and Spark applications are deployed on
infrastructure managed by resource managers such as Apache YARN,
Mesos, and Kubernetes, and run in constructs called containers. These
applications often require extensive manual tuning to achieve accept-
able levels of performance. While there have been several promising
attempts to develop automatic tuning systems, none are currently robust
enough to handle realistic workload conditions. Big data workload analy-
sis research performed to date has focused mostly on system-level param-
eters, such as CPU and memory utilization, rather than higher-level con-
tainer metrics. In this paper we present the first detailed experimental
analysis of container performance metrics in Hadoop and Spark work-
loads. We demonstrate that big data workloads show unique patterns of
container creation, completion, response-time and relative standard devi-
ation of response-time. Based on these observations, we built a machine-
learning-based workload classifier with a workload classification accuracy
of 83% and a workload change detection accuracy of 74%. Our observed
experimental results are an important step towards developing automati-
cally tuned, fully autonomous cloud infrastructure for big data analytics.

Keywords: Big data cloud performance · On-line automatic tuning ·
YARN · Hadoop · Spark

1 Introduction

1.1 Background

Key big data technologies such as Hadoop map-reduce jobs, Spark applications,
Hive, Hbase and others run on hardware clusters that are managed by open-
source and commercial resource managers, such as YARN, Mesos, and Kuber-
netes. Resource managers arbitrate resources available to different applications,
to form a key architectural layer in the cloud computing paradigm. Resource
managers use constructs called containers to manage analytic and other appli-
cations running on the cluster. Containers manage, and gate, CPU memory and
c© Springer Nature Switzerland AG 2019
C. Zheng and J. Zhan (Eds.): Bench 2018, LNCS 11459, pp. 118–130, 2019.
https://doi.org/10.1007/978-3-030-32813-9_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32813-9_11&domain=pdf
https://doi.org/10.1007/978-3-030-32813-9_11

Workload Classification Using Container Performance Patterns 119

disk resources assigned by the resource manager to the application. Containers
make sure that a given application does not exceed it’s allotted share of resources.
Applications, and analytic frameworks, interact with the resource manager to
schedule tasks to run in these containers. The way a container is implemented
by the resource manager varies among resource managers. In some cases, such as
in YARN, containers are explicitly defined data structures used by the resource
manager for resource arbitration and internal book-keeping. In other cases, such
as with Mesos, the resource manager uses an operating-system-level technology,
such as Docker, to attach container semantics to it’s internal resource arbitra-
tion mechanism. Regardless of how the container concept is implemented, the
end result is essentially the same - application tasks run in containers, and thus
examining container performance can provide insights into application perfor-
mance.

1.2 Problem

Apache Hadoop and Spark each have dozens of configurable parameters that
can significantly affect performance of analytic jobs. A poorly tuned configura-
tion can result in order-of-magnitude slower performance than for an optimally-
tuned one. Manual tuning involves experimenting with different combinations of
tunable parameters. Considering that each experiment, at multi-Terabyte data
scale, can take hours to days to run, this can turn into a very long and expensive
procedure.

1.3 Limitations of Previous Approaches

To solve this problem, there have been a number of attempts to automatically
tune big data applications [1,2,4–13]. These focused primarily on automati-
cally tuning the Hadoop MapReduce framework. More recently there have been
attempts to automatically tune Spark as well. In our previous work we devel-
oped KERMIT - the first on-line automatic tuning engine for YARN, capable of
automatically tuning CPU and memory for both Apache Hadoop and Apache
Spark [3]. KERMIT was able to demonstrate better tuning efficiency for stan-
dard Hadoop and Spark benchmarks.

Most studies demonstrated improvements only on small data sets that are
not representative of data volumes in big data applications. Furthermore, per-
formance improvements were only documented on very simple, single-user work-
loads based on a few sample applications. For real-life big data applications,
systems such as Hadoop or Spark need to be dynamically tuned to handle large
scale, big data workloads that arise from a multitude of applications and user
requirements, and change over time. Such real-life scenarios are not addressed
by any of the published automatic tuning approaches.

For on-line automatic tuning applications - “to tune or not to tune?” - is
the key question that the tuning engine needs to be able to answer accurately
in order to achieve optimal performance. Too much tuning causes an overhead
that can sometime cancel out any performance benefit from optimizing tunable

120 M. Genkin et al.

parameters. Not enough tuning results in jobs running slower due to sub-optimal
tuning.

A number of researchers studied big data workload characteristics [4,6,9].
However, virtually all of these studies focused on lower-level operating system
metrics such as CPU, memory and disk utilization, and even lower-level hard-
ware counters such as L1, L2 and L3 cache hit rates. While these data provide
important insights about the workload, it is difficult to relate them directly to
Hadoop and Spark tunable parameters and develop a tuning strategy at the
resource manager level. No published research to date has focused on container
performance analysis. However, as discussed above, resource managers operate
on and interact with containers. Optimizing performance of big data applica-
tions deployed on containerized cloud infrastructure requires optimizing the per-
formance of the containers in which they run.

1.4 Our Contribution

We present the first experimental study of container performance patterns
observed in Hadoop and Spark workloads. We focus on the following container
performance metrics:

– container duration (response-time),
– container response-time relative standard deviation (RSD),
– container creation rate,
– container completion rate.

We demonstrate that for realistic big data workload sizes (e.g. 2 TB data
sets) all important workload changes that are relevant for on-line automatic
tuning are accompanied by:

– order of magnitude changes in container creation rate,
– statistically significant changes in RSD.

Our experiments demonstrate that the above metrics provide very clear sta-
tistical markers that can be used by automatic tuning systems to detect changes
in workload characteristics and initialize local and global parameter searches. We
also observed that many Hadoop MapReduce and Spark jobs have distinctive
signatures that can be used by machine learning systems to identify jobs on the
fly and apply effective tuning parameters.

Based on these observations, we built a machine-learning based workload
classifier with a workload classification accuracy of 83% and a workload change
detection accuracy of 74%. Our observed experimental results are an important
step towards developing automatically tuned, fully autonomous cloud infrastruc-
ture for big data analytics.

1.5 Resource Managers and Containers

YARN, Mesos and Kubernetes are the most popular open-source resource man-
agers used today. Resource managers arbitrate system resource such as CPU,

Workload Classification Using Container Performance Patterns 121

memory and disk among different applications that run on a cluster. Resource
managers use containers to assign and track resource allocations to different
applications. In the context of this study the term container refers to a con-
struct the resource manager uses to track resources allocated to an application.
The container may be an abstract construct, or it may be backed by a technology
such as Docker that enforces resource utilization at the operating system level
and ensures isolation of one application from another. Most resource managers
available today implement this container concept even though it is not called the
container in all cases. YARN, Mesos and Kubernetes provide Docker integration.

2 Evaluation Methodology

Our evaluation methodology focused on simulating common Hadoop and Spark
workloads and workload transitions using well-understood big data benchmarks.
Container performance metrics were compiled by analyzing log data.

Before capturing container performance statistics for each workload transi-
tion experiment, runs were performed to establish the optimal sampling window
length. The sampling window duration was chosen so that the majority of win-
dows had a statistically valid number of containers recorded. For example, if
all container creation and completion events were recorded during a single, very
long, window then this would not make for a compelling analysis.

2.1 Container Performance Metrics

As part of our experiments, the following container performance metrics were
collected and analyzed:

1. Container Creation Rate. This is the number of containers created during
a given observation window.

2. Container Completion Rate. This is the number of containers that finish
execution during a given observation window.

3. Container Average Response-Time. This is the average response-time
calculated for all containers that complete execution during a given observa-
tion window.

4. Container Response-Time Relative Standard Deviation (RSD). This
metric measures the degree of scatter among container response time measure-
ments in a given observation window. It is defined as the standard deviation
of container response-times, divided by the average container response-time
for container response-times in a given observation window. Small RSD indi-
cates tightly clustered data while large RSD indicates widely scattered data.
Increase in the RSD value across a workload transition can indicate the intro-
duction of a bottleneck due to a change in processing.

Our analysis focuses on calculating both the absolute values for container
metrics at steady state, and the relative amount of change that occurs as the
workload passes through each transition. The relative amount of change equals

122 M. Genkin et al.

the average metric value observed in two observation windows after the transi-
tion, divided by the average metric value in the two windows immediately before
the transition.

2.2 Workloads and Workload Transitions

Table 1 summarizes the different workloads and workload transitions analyzed
in this study, with the benchmarks, data size, and procedure used in each case.

2.3 Parameter Settings

Unless stated otherwise, the Hadoop MapReduce and Spark configurations used
default values. For YARN, the yarn.nodemanager.resource.cpu-vcores parameter
in the yarn-site.xml file was set to the total number of CPUs shown by the operat-
ing system on each of the cluster nodes. The yarn.nodemanager.resource.memory-
mb and yarn.scheduler.maximum-allocation-mb parameters were set to the
total amount of memory on each data node. In mapred-site.xml, the param-
eter mapreduce.job.reduces was set to 36. The parameters mapreduce.output.
fileoutputformat.compress and mapreduce.map.output.compress were set to true.
The parameters mapreduce.output.fileoutputformat.compress.codec and mapre-
duce.map.output.compress.code were set to org.apache.hadoop.io.compress.
Default in order to avoid running out of space in the HDFS during bigger runs. The
parameter mapred.child.java.opts was modified to increase the maximum JVM
heap size setting from the default to 850 MB. This was done to remove the pos-
sibility of a memory bottleneck impacting container performance. On the Spark
side, the spark.executor.memory configuration parameter was set to 6G to ensure
that most memory on our nodes was utilized.

2.4 Hardware and Software

All measurements were performed on a 8-node cluster comprising 1 management
node and 7 compute/data nodes (all KVM virtual machines running on IBM
S822L Power8 with Dual 10-core Power8 3.42 GHz; one bare metal server was
used for every two VMs). Each node was equipped with a 100 GB SSD drive
for operating system and Hadoop stack installation. All the nodes shared access
to a 12 TB network shared drive connected through a 10Gb fiber switch. Each
node was also equipped with 48 GB RAM and 10 virtual cores. All nodes were
running the Ubuntu 16.04 ppc64le operating system. The test cluster topology
is shown in Fig. 1. We used Hadoop 2.7.3 and Spark 2.1.1. In order to facilitate
container metric collection, a jar file containing the YARN resource manager and
our KERMIT library [3] was built and deployed to replace the standard YARN
jar.

Workload Classification Using Container Performance Patterns 123

Table 1. Workloads, workload transitions, and benchmarks.

Transition Description Benchmarks, procedure and data size

Hd-sj-1 Transition from map to reduce processing in a

single Hadoop map-reduce job

HiBench WordCount benchmark. 2 TB

Hd-sj-2 Transition from map to reduce processing in a

single Hadoop map-reduce job

TeraSort benchmark. 2 TB

Hd-sj-3 Transition from reduce-shuffle to reduce

processing in a single Hadoop map-reduce job

TeraSort. 2 TB

Hd-sufl-4 Transition from TeraGen to TeraSort

processing in a Hadoop single-user job flow

TeraGen-TeraSort-TeraValidate sequence of

jobs. 2 TB

Hd-sufl-5 Transition from TeraSort to TeraValidate

processing in Hadoop single-user job flow

TeraGen-TeraSort-TeraValidate sequence of

jobs. 2 TB

Hd-sj-6 Transition from one iteration to another

within Hadoop K-Means machine learning job

HiBench K-Means. 2 TB

Hd-sufl-7 Transition from Hadoop WordCount reduce

processing to TeraSort map processing in a

single-user job flow

HiBench WordCount-TeraSort-K-Means job

flow. 2 TB

Hd-sufl-8 Transition from TeraSort reduce processing to

K-Means processing in a single-user job flow

HiBench WordCount-TeraSort-K-Means job

flow. 2 TB

Hd-mufl-9 Multi-user transition from TeraSort shuffle to

K-Means

2 users (1 running TeraSort, and 1 K-Means)

2 TB

Hd-mufl-10Multi-user transition from K-Means iteration

back to TeraSort reduce phase

2 users (1 running TeraSort, and 1 K-Means)

2 TB

Hd-mufl-11Multi-user transition from TeraSort map

phase to K-Means iteration

2 users (1 running TeraSort, and 1 K-Means)

2 TB

Hd-mufl-12Multi-user transition from K-Means iteration

to TeraSort map phase

2 users (1 running TeraSort, and 1 K-Means)

2 TB

Hd-mufl-13Multi-user transition from TeraSort map

phase to K-Means iteration

3 users (1 running TeraSort, and 2 K-Means)

2 TB

Hd-mufl-14Multi-user transition from K-Means iteration

to TeraSort reduce phase

3 users (1 running TeraSort, and 2 K-Means)

2 TB

Sp-sj-1 Transition from map() to reduceByKey()

processing in a single Spark job

Spark ARL TeraSort. 2 TB

Sp-sufl-2 Transition from Spark K-Means processing to

TPC-DS-inspired Q3

SMB-2 1 user, use case 2 (batch analytics)

Spark job sequence. 2 GB per application

Sp-sufl-3 Transition from Spark TPC-DS-inspired Q3 to

Q53

SMB-2 1 user, use case 2 (batch analytics)

Spark job sequence. 2 GB per application

Sp-sufl-4 Transition from Spark TPC-DS-inspired Q53

to Q89

SMB-2 1 user, use case 2 (batch analytics)

Spark job sequence. 2 GB per application

Sp-sufl-5 Transition from Spark TPC-DS-inspired Q89

to Q8

SMB-2 1 user, use case 2 (batch analytics)

Spark job sequence. 2 GB per application

Sp-mufl-6 Transition from Spark single-user batch

processing to multi-user (3 interactive users)

SMB-2 1 batch user + 3 interactive users, use

case 3 (mixed analytics) Spark job sequence. 2

GB per application

Sp-mufl-7 Transition from Spark multi-user (3

interactive users) to single-user batch

processing

SMB-2 1 batch user + 3 interactive users, use

case 3 (mixed analytics) Spark job sequence. 2

GB per application

Sp-sufl-8 Initiation of Spark streaming spark-perf benchmarking suite

Sp-sufl-9 Completion of Spark streaming spark-perf benchmarking suite

Sp-sufl-10 Transition from Spark aggregateByKey to

aggregateByKey(Int)

spark-perf benchmarking suite, data scale 3

Sp-sufl-11 Transition from Spark aggregateByKey to

sortByKey()

spark-perf benchmarking suite, data scale 3

Sp-sufl-11 Transition from Spark count() to filter() spark-perf benchmarking suite, data scale 3

124 M. Genkin et al.

Fig. 1. Test-bed topology.

Fig. 2. Radar chart showing average Hadoop and Spark workload metric values.

3 Results

Below we present our workload analysis, workload classification and workload
transition detection findings.

3.1 Steady State Workload Characteristics

Figure 2 shows a radar chart that compares container performance metric aver-
ages observed for Hadoop and Spark workloads. To construct this chart, a ran-
dom sampling of observation windows for Hadoop and Spark observed during
steady state conditions were selected for analysis. Container performance statis-
tics, including maximum, minimum, average, and standard deviation were cal-
culated for all metrics. Although averages are shown in Fig. 2, maximum values
were also examined and found to show almost exactly the same trend as averages.
For brevity, only averages are shown.

It was observed that for Hadoop workloads, average container metric values
showed much greater range than for Spark workloads. Average container cre-
ation rate, container completion rate, container response-time and RSD were all
observed to be about 3x greater for Hadoop than for Spark. There is an area on
the radar chart where Hadoop and Spark workloads do overlap, but there is a
much larger area where they do not overlap.

Workload Classification Using Container Performance Patterns 125

Fig. 3. Radar chart showing average Hadoop and Spark workload transition values.

3.2 Dynamic Workload Characteristics - Workload Transitions

Figure 3 shows a radar chart that compares container performance metric
changes observed for Hadoop and Spark workloads. The change of a metric
is defined as the average metric value observed after the workload transition
divided by the average metric value observed before the workload transition.
Figure 3 shows average changes observed for all transitions measured during this
study. As for steady-state performance statistics, full statistics including maxi-
mum, minimum, average, and standard deviation were calculated and examined
for all cases. Since maximum values were found to show almost exactly the same
trend as averages, only averages are shown.

Hadoop workloads were observed to produce container creation rate changes
and container response-time changes that were on average 3x greater than corre-
sponding changes produced by Spark workloads. Changes in RSD and container
completion rate were observed to show a similar trend. As with steady-state met-
rics, an area of overlap between Hadoop and Spark workloads can be observed
in Fig. 3. However, we observe a larger area where workload transition metrics
do not overlap.

4 Identifying and Classifying Workloads

A prototype classifier using several popular machine-learning algorithms was
constructed. The prototype was developed in Scala, using Apache Spark Mlib
to implement k-means, logistic regression, decision tree, gradient-boosted trees,
and random forest algorithms. A machine learning data-set (in libsvm format)
was compiled from workload transition data that were labeled as either Spark or
Hadoop. The data set was randomly split into training and testing data sets using
a 70-30 rule, and the accuracy of prediction for each algorithm was evaluated.
The process of splitting, training and testing was repeated 100 times for each
algorithm to study the variance produced by the random splits.

126 M. Genkin et al.

Fig. 4. Workload classification accuracy for common machine-learning algorithms.

Fig. 5. Impact of using different container performance statistics on the classification
accuracy of the Random Forrest algorithm.

The average classification accuracy (and standard deviation) for each algo-
rithm is shown in Fig. 4. We observe that the Random Forest algorithm achieves
the best workload classification accuracy of 83%.

To investigate how different container performance measures affect accuracy
of prediction, several additional experiments were performed. The following data
sets were prepared: (1) Container creation rate data only. (2) Container cre-
ation rate data plus container completion rate data. (3) Container creation rate
data plus container completion rate data plus container response-time data. (4)
Container creation rate data, plus container completion rate data, plus con-
tainer response-time data, plus RSD data. The same random split procedure as
described above was performed on each data set. The accuracy of classification
was evaluated for the Random Forest algorithm. Results are shown in Fig. 5.

The findings are surprising. We observe that using container creation rate
data alone resulted in the best classification accuracy. Adding data from other
dimensions reduced rather than enhanced the classification accuracy.

5 Detecting Workload Transitions

Data collected for a typical Hadoop single-user job flow are shown in Fig. 6.
This flow executes the following benchmark sequence back-to-back: WordCount-
TeraSort-K-Means. Workload transitions are marked with vertical dashed lines
and indicated in Fig. 6. The horizontal axis records the observation window num-
ber. The job flow is divided into a series of observation windows. Window number

Workload Classification Using Container Performance Patterns 127

Fig. 6. Container performance metrics observed for Hadoop WordCount-TeraSort-K-
Means job flow, using a 2 min observation window and 2 TB data size.

0 represents the very beginning for the entire job sequence. The duration of each
window is fixed (set at the beginning of the job flow). The y-axis records the
value of each container metric for a given observation window.

Figure 7 shows a multi-user Spark job flow. In this case a single-user thread
was started. This thread executed the sequence of batch-type Spark jobs includ-
ing a K-Means machine learning job and longer-running TPC-DS-inspired
queries Q3, Q8, Q53 and Q89. After a delay of 600 s, 3 more user threads were
started. Each of those user threads executed a sequence of 8 shorter TPC-DS-
inspired queries running under a single Spark context. These queries were meant
to simulate interactive drill-down operations initiated by a human analyst.

Container metric values measured during the course of a single observation
window are shown as different symbols described in the figure legend. As we move
right along the x-axis we can see drops and jumps in the patterns of symbols as
we cross the workload transitions, represented by vertical dashed lines.

Observation window data collected for all data points were replayed as a real-
time stream. A rolling average and standard deviation for each container metric
were computed for 5 consecutive windows in the stream. During each computa-
tion, Welch’s test was performed to evaluate whether a statistically meaningful
difference existed between the means observed at current and previous steps.
Welch’s test was performed double-sided, using 95% confidence.

In those cases where a statistically meaningful difference was observed, our
prototype code recorded the current observation window and noted a transition
there. Transitions identified by the prototype were compared with transitions
identified manually by examining YARN, MapReduce and Spark executor logs.
Transition detection accuracy for each metric was calculated by dividing total
transitions identified by the prototype by total transitions identified manually
from logs and multiplying by 100. Results are shown in Fig. 8.

Surprisingly, workload change detection was observed to be the least accu-
rate when using the container creation rate metric (18%), and the most accurate
(74%) when using the RSD metric. Changes in nature of processing being per-

128 M. Genkin et al.

Fig. 7. Container performance metrics observed for multi-user Spark workload with
batch and interactive query components, using a 30 sec observation window, 2 GB
data.

formed by containers result in increased variance of the data. This is reflected
in different RSD values before and after the transition even in those cases
where changes in average container creation rate, container completion rate,
and response-time are not statistically significant.

Fig. 8. Workload transition detection accuracy for different container performance met-
rics.

6 Relative Value and Importance of Container
Performance Metrics

Based on our findings presented above, it is possible to propose a ranking of
container performance metrics:

1. Container Creation Rate. This metric was observed to deliver the most
accurate workload classification. It is possible to achieve very good classifica-
tion results using this metric alone.

2. Container Response-Time Relative Standard Deviation (RSD).
Although less effective than the first two metrics for both workload classifica-
tion, RSD was observed to be very effective for detecting important workload
transitions.

Workload Classification Using Container Performance Patterns 129

3. Container Average Response-Time. The average container response-
time was observed to allow reasonably accurate identification of workload
transitions.

4. Container Completion Rate. Container completion rate was observed to
be less useful than the first three metrics for both workload classification and
workload transition detection.

7 Conclusion

In this paper we presented a new way of capturing and analyzing workload
characteristics of Spark and Hadoop workloads. We demonstrated that is possible
to identify and classify big data analytic workloads with high degree of accuracy
using their container performance characteristics. We also demonstrated that it
is possible to use container performance metrics to accurately identify important
workload transitions.

The most useful metrics were found to be the container creation rate and
RSD. Using these metrics, it was possible to accurately distinguish Hadoop and
Spark workloads, and identify important workload transitions. Based on these
observations, we built a machine-learning based workload classifier and transition
monitor with a workload classification accuracy of 83% and a workload change
detection accuracy of 74%.

Our observed experimental results are an important step towards developing
automatically tuned, fully autonomous cloud infrastructure for big data analyt-
ics. The next generation of on-line automatic tuning systems can leverage our
findings to develop tuning approaches that are more fine-grained than tuning
end-to-end performance of a job. Resource managers and analytic frameworks
can begin to move away from exposing large numbers of tuneable parameters,
and instead focus on implementing intelligent automatic tuners.

References

1. Awan, A.J., Brorsson, M., Vlassov, V., Ayguade, E.: Micro-architectural character-
ization of apache spark on batch and stream processing workloads. In: 2016 IEEE
International Conferences on Big Data and Cloud Computing (BDCloud), Social
Computing and Networking (SocialCom), Sustainable Computing and Communi-
cations (SustainCom) (BDCloud-SocialCom-SustainCom), pp. 59–66. IEEE (2016)

2. Ding, X., Liu, Y., Qian, D.: JellyFish: Online performance tuning with adaptive
configuration and elastic container in Hadoop yarn. In: 2015 IEEE 21st Interna-
tional Conference on Parallel and Distributed Systems (ICPADS), pp. 831–836.
IEEE (2015)

3. Genkin, M., Dehne, F., Pospelova, M., Chen, Y., Navarro, P.: Automatic, on-line
tuning of yarn container memory and cpu parameters. In: 2016 IEEE 18th Inter-
national Conference on High Performance Computing and Communications; IEEE
14th International Conference on Smart City; IEEE 2nd International Conference
on Data Science and Systems, pp. 317–324. IEEE (2016)

130 M. Genkin et al.

4. Huang, S., Huang, J., Dai, J., Xie, T., Huang, B.: The HiBench benchmark suite:
characterization of the mapreduce-based data analysis. In: 2010 IEEE 26th Inter-
national Conference on Data Engineering Workshops (ICDEW), pp. 41–51. IEEE
(2010)

5. Jia, Z., et al.: Auto-tuning spark big data workloads on POWER8: prediction-based
dynamic SMT threading. In: Proceedings of the 2016 International Conference on
Parallel Architectures and Compilation, pp. 387–400. ACM (2016)

6. Jia, Z., et al.: Characterizing and subsetting big data workloads. In: 2014 IEEE
International Symposium on Workload Characterization (IISWC), pp. 191–201.
IEEE (2014)

7. Mishra, A.K., Hellerstein, J.L., Cirne, W., Das, C.R.: Towards characterizing cloud
backend workloads: insights from google compute clusters. ACM SIGMETRICS
Perform. Eval. Rev. 37(4), 34–41 (2010)

8. Moreno, I.S., Garraghan, P., Townend, P., Xu, J.: An approach for characteriz-
ing workloads in google cloud to derive realistic resource utilization models. In:
2013 IEEE 7th International Symposium on Service Oriented System Engineering
(SOSE), pp. 49–60. IEEE (2013)

9. Mulia, W.D., Sehgal, N., Sohoni, S., Acken, J.M., Stanberry, C.L., Fritz, D.J.:
Cloud workload characterization. IETE Tech. Rev. 30(5), 382–397 (2013)

10. Wang, G., Xu, J., He, B.: A novel method for tuning configuration parameters
of spark based on machine learning. In: 2016 IEEE 18th International Conference
on High Performance Computing and Communications; IEEE 14th International
Conference on Smart City; IEEE 2nd International Conference on Data Science
and Systems (HPCC/SmartCity/DSS), pp. 586–593. IEEE (2016)

11. Wang, K., Tan, B., Shi, J., Yang, B.: Automatic task slots assignment in Hadoop
MapReduce. In: Proceedings of the 1st Workshop on Architectures and Systems
for Big Data, pp. 24–29. ACM (2011)

12. Wasi-Ur-Rahman, M., Islam, N.S., Lu, X., Shankar, D., Panda, D.K.: MR-advisor:
a comprehensive tuning tool for advising HPC users to accelerate mapreduce appli-
cations on supercomputers. In: 2016 28th International Symposium on Computer
Architecture and High Performance Computing (SBAC-PAD), pp. 198–205. IEEE
(2016)

13. Zhang, R., Li, M., Hildebrand, D.: Finding the big data sweet spot: towards auto-
matically recommending configurations for Hadoop clusters on docker containers.
In: 2015 IEEE International Conference on Cloud Engineering (IC2E), pp. 365–
368. IEEE (2015)

Testing Raft-Replicated Database
Systems

Guohao Ding1, Weining Qian1(B), Peng Cai1, Tianze Pang2, and Qiong Zhao2

1 East China Normal University, Shanghai, China
guohaoding@stu.ecnu.edu.cn, {wnqian,pcai}@dase.ecnu.edu.cn

2 Bank of Communications, Shanghai, China
{pangtz,qiongzhao}@bankcomm.com

Abstract. The replication technique based on Raft protocol is essential
in modern distributed and highly-available database systems. Although
Raft is a protocol easy to understand and implement, testing a Raft-
replicated database system is still a challenging task due to multiple
sources of nondeterminism. Conventional testing techniques, such as
unit, integration and stress testing, are ineffective in preventing seri-
ous but subtle bugs from reaching production. This paper first intro-
duces evaluation metrics after the abstraction of general Raft-replicated
database systems. These metrics are defined from several aspects includ-
ing correctness, performance, and scalability. Then, we present test
dimensions for the design of test cases, which contain various fault types,
different workloads and system configurations. Finally, we describe test
results of Raft-replicated open source database system.

Keywords: Raft · Distributed database · Test

1 Introduction

In recent years, the amount of data created by human activities goes far beyond
the storage and processing power of a single computer. In order to process mas-
sive amounts of data, distributed systems, especially distributed database sys-
tems, are becoming more and more popular. It serves millions of users in many
important applications. However, distributed database systems are notoriously
hard to design, implement and test because they introduce more variables into
a design than a single machine does, making the root cause of an application
problem much harder to discover.

Developers of distributed systems use many testing techniques, such as unit
testing, integration testing, stress testing, and fault injection. In spite of exten-
sive use of these testing methods, many bugs that arise from subtle combina-
tions of concurrency and failure events that are missed during testing and get
exposed only in production. According to the interview [4], many technical lead-
ers and senior managers in famous companies, such as Microsoft, Amazon and
Google, have the consensus that one of the most critical problems today is how
c© Springer Nature Switzerland AG 2019
C. Zheng and J. Zhan (Eds.): Bench 2018, LNCS 11459, pp. 131–144, 2019.
https://doi.org/10.1007/978-3-030-32813-9_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32813-9_12&domain=pdf
https://doi.org/10.1007/978-3-030-32813-9_12

132 G. Ding et al.

to improve testing coverage so that bugs can be uncovered during testing and
not in production.

Distributed consensus is a fundamental problem in distributed system. As
we all know, Paxos [8,9] is an important algorithm for solving distributed con-
sensus problems, proposed by Lamport in 1998, but over the years, few people
can really understand Paxos algorithm. Therefore, in order to let more people
understand the distributed consensus algorithm and also provide a better foun-
dation for building practical systems, Ongaro and Ousterhout proposed Raft [12]
protocol, which can be used as an alternative to the Paxos protocol. According
to the official website of the Raft protocol, there are currently over 50 different
implementations of Raft listed on their website. For a distributed system using
the Raft protocol, the correctness of the Raft implementation is critical, and
we must have a rigorous test. The amount of code used for testing should be
higher than the implementation Raft itself, which can be used as a reference for
open source implementation selection. The correctness of the Raft algorithm is
theoretically proven (specific reference paper [12]). That is to say, it is correct as
long as the algorithm is implemented correctly. But there is no uniform standard
on how to test the correctness of such systems, what metrics are needed to be
tested and how to design test cases.

In this paper, we define some evaluation metrics for testing distributed
database system based on the Raft protocol and propose how to design test
cases from different test dimensions. This further provides a reference for dis-
tributed system developers and testers to verify the correctness of the Raft-based
distributed system.

To the best of our knowledge, we are the first to systematically propose
test metrics and test dimensions of distributed database system based on Raft
protocol, and design hundreds of test cases to test the Raft-replicated database
systems in the actual production environment.

To summarize, our contributions are as follows:

– Abstract a general distributed database system model based on Raft protocol.
– Define the evaluation metrics for testing such system based on the Raft pro-

tocol and explain why these metrics are important.
– Describe the test dimensions and design hundreds of test cases to test Raft-

replicated open source database system in the actual production environment.

The remaining of this paper is organized as follows. Section 2 introduces the
background of replicated state machine problem and Raft. Section 3 gives a Raft-
based system model abstraction. Section 4 defines the evaluation metrics for
testing. Section 5 describes the different test dimensions. Section 6 evaluates the
performance of the Raft we implemented in the system. Section 7 presents related
work.

2 Background

This section first introduces the replicated state machine problem and then gives
an overview of basic Raft [12] protocol.

Testing Raft-Replicated Database Systems 133

2.1 Replicated State Machines

Consensus protocols generally appear in the context of a replicated state machine
[14]. In a distributed environment, a group of machines (at least 3) execute the
same sequence of instructions, so that each machine finally has the same state.
When a machine fails, the system can continue to provide services as long as most
of the machines can work normally and communicate with each other. However,
how to ensure that the machines in this group have the same state, a direct way is
to ensure that the same sequence of instructions is executed by machines in this
group. In order to have each machine execute the same sequence of instructions,
we write each command to log file. When the master server (we specify one
of the servers as the master and the others as the slave servers) accepts the
instructions from the client, it first records this command in its log, then sends
the corresponding command to all other servers. When most of the servers receive
the log and respond to the master, the master can submit the command (that is
to say, the command is executed) after receiving the response from most of the
slaves. The slave server executes these commands asynchronously to maintain
the same state as the master. The consensus algorithm is to ensure that the
same sequence of instructions is recored in the logs on each server under various
abnormal conditions, such as machine fails, network failure, etc. Thus, the whole
system looks like a server, so clients can get consistent results no matter which
server is requested.

2.2 Raft Overview

Raft is a distributed consensus protocol that is mainly used to manage the
consistency between replicated log. In order to make the consensus protocol
easy to understand, the Raft protocol separates the key elements of consensus
into three main parts: leader election, log replication, and safety.

Leader Election. A Raft cluster consists of a set of servers, the cluster can
provide services as long as a majority of servers are working. Five servers are typ-
ical in a Raft cluster, which allows the system to tolerate two failures. The Raft
protocol classifies server states into three types: leader, follower, and candidate.

– Leader: An active node which is currently leading the cluster, this node
handles requests from clients to interact with the replicated state machine.

– Follower: A passive node which only responds to requests from the leader
and candidates and will not initiate any communications.

– Candidate: An active node which is attempting to become a Leader. If the
node finds that there is no available leader, it can transfer from follower state
to candidate state.

Each server is only in one of the above three states at any given time. Under
normal circumstances, there is only one leader and all other servers are followers
in a Raft cluster, and candidates only appear in the process of election. In the

134 G. Ding et al.

Raft protocol, the concept of the leader is strengthened, and all requests are
required to go through the leader, then the leader copies logs to all other servers.

A new leader is elected when the existing leader fails or when you start
your cluster. The Raft protocol divides the time into small consecutive periods,
called terms. Each of them has own ID which is a natural number and increases
monotonically. At the beginning of a term, participants determine a leader of
this term. Then, the leader executes the log replication. The following three
situations may occur in each leader election:

– One of the candidates receives votes from majority of servers and becomes
the new leader.

– Candidates discover the new leader and convert its own state to follower.
– No leader is elected, then candidates restart a new leader election after waiting

for a random time.

Log Replication. When a leader is elected in the Raft cluster, then it can
receive requests from clients and all requests must pass through the leader.
If the request is sent to the follower, the follower forwards the request to the
leader. Each request contains a command to be executed by the replicated state
machines. Leader first appends the command as a log entry to the local log and
then replicates the log to all other servers by sending an RPC request. If the
leader receives a response from majority servers, it regards the log can be sub-
mitted safety, that is to say, the command can be applied to the replicated state
machine. If some of the servers are down or the network fails, the leader will
continue to send RPC requests until the log entry is finally stored by all servers.

Safety. Through the previous leader election and log replication, Raft works
fine in most cases, but in some cases it is impossible to guarantee safety. There
is no guarantee that the state machines on each server will execute the same
sequence of instructions in the same order. In order to achieve security, Raft
adds the following constraints:

– The elected leader must contain all the log entries that have been committed.
– The leader commits log entries by counting replicas only for the current term.

3 System Model

We abstract a distributed database state machine system model as the basis for
defining our goals, and we believe this model is general enough to capture the
behaviors of many practical systems.

A distributed database system usually consists of different types of nodes and
each node type is designed to perform a specific set of things. We believe this
design separates concerns and simplifies the complexity of the overall system.
Therefore, we abstract our distributed database system architecture model into

Testing Raft-Replicated Database Systems 135

Fig. 1. System model

two basic types of nodes: Transaction-node (abbreviated as T-node) and Storage-
node (abbreviated as S-node). As shown in Fig. 1, there are three T-nodes and
three S-nodes. Each type of node supports scalability, and we usually deploy
different types of nodes on different servers (but can also be deployed on the
same server).

– T-node: This node is mainly responsible for the transaction processing of
the distributed database system, similar to most distributed clusters, one
of which is the leader T-node, which receives read and write requests from
clients. All T-nodes consist of four parts: the replicated state machine, the
consensus module, the memory table (Memtable), and the log. For read and
write operations, the leader T-node first records the operation in the log, and
then the consensus module sends the corresponding command log to all other
T-nodes. If the leader T-node receives response from most of the other T-
nodes, it can consider the modified log can be submitted safely. The T-node
applies the commands in the log to the replicated state machine, and the
replicated state machine updates the data in the memory table. The memory
table here is actually a memory index structure which is persisted to disk
either periodically or after some maximum limit is reached, and eventually
the data on the disk will be merged into the Storage-nodes.

– S-node: This node is mainly used to store data of the table and provides read
service. Data can be stored in chunks and these data are usually immutable.
S-nodes follow a shared-nothing architecture and there is no single point of
contention among the nodes. The nodes have no knowledge of one another
and are operationally simple, and they only know how to load, drop, and
serve immutable chunks.

4 Evaluation Metrics

Evaluation metrics are an essential part of any test benchmark definition and
may be the most controversial when trying to reach agreements between differ-

136 G. Ding et al.

ent vendors. There are some test benchmarks from different perspectives to test
database system, such as TPC-H, TPC-C, etc. However these test benchmarks
are usually focused on a certain aspect of test metrics according to the workload
type, such as throughput, response delay, etc. In order to test Raft-replicated
distributed database systems comprehensively, we divided the tests into correct-
ness test (namely basic function and fault-tolerant test) and performance test.
As is shown in Table 1.

Table 1. Evaluation metrics

Correctness Performance

Test metrics Availability Recovery time, Throughput

Data consistency Lantency, Stability

4.1 Correctness

Correctness testing can also be understood as functional and fault-tolerant test-
ing, which is mainly used to test whether the different parts of the system meet
the functional requirements of the design. Correctness testing is the most basic
test for both centralized and distributed software systems, but it is often over-
looked. The correctness test is required to verify whether the system is oper-
ating normally in accordance with the expected design under normal and fault
conditions. Here we divide the test metrics of correctness into two categories:
availability and data consistency.

Availability. Availability refers to whether all nodes or some nodes in the
system can continue to serve upper-layer services when a node or link failure
occurs. For the sake of discussion, we only consider link failure (also known as
network partition). Node failure can be regarded as a special network partition
(the failure node is separated from the user in addition to being separated from
the rest of the nodes).

When a network partition occurs, as long as there is a majority in a partition,
then the whole system can still provides services. Service-level high availability
does not require all nodes to be available after the failure, but it is required that
some nodes are available, and the process of switching to an available node is
fully automated, so the service is not interrupted or only for a short period of
time.

Data Consistency. In a distributed system, in order to deal with possible
failures, the system holds multiple replicas of each data and stores them on
different nodes. When a node fails, the system can migrate the service to other
nodes. In all replicas, there is usually one primary replica, the update operation

Testing Raft-Replicated Database Systems 137

will be performed on the primary replica firstly, and then synchronized to other
backup replicas. The essence of Raft protocol is to guarantee the consistency
between different data replicas, so the data consistency between replicas is an
important test metrics.

4.2 Performance

The Raft performance metrics are similar to other consensus algorithms, where
high availability is an important performance metric for distributed database
based on Raft. One way to evaluate high availability is to test the system’s non-
service time in the event of a failure. For database, we often use throughput and
response latency as an important metric. The stability can also directly affects
the throughput of the system and the response time that users care about, so it
is also an important part of the performance test.

Recovery Time. The recovery time refers to the time interval from the system
can not provide external service to normal service when the system encounters a
failure, and it is an important metric to evaluate the availability of the system.
In a distributed system, we need to deal with various exceptions, such as node
crash, network partition. When the system fails, the system may not be able to
provide services for a period of time. In order to improve system availability, we
need to minimize system non-service time. Because all requests are sent to the
leader in Raft-replicated database systems, the system can not be able to provide
services if the leader is down. Therefore, the leader election timeout is a key
factor in determining the recovery time. In addition, some leader switching and
initialization operations are required before the new elected leader can provide
services, so we define the recovery time equal to the election timeout plus the
time of the leader switching and the initialization.

Throughput. The throughput of the system refers to the number of requests
that can be processed in a certain period of time, which is usually measured
by the number of read operations per second (QPS, query per second) or the
number of write operations (TPS, transaction per second).

Latency. The system’s response latency is the elapsed time from the time a
request is sent until the response is received. It is usually measured by the
average latency or the request latency of 99.9% or more. The response latency
and throughput of the system are often contradictory, and it is often difficult
to achieve extremely low latency in systems that pursue high throughput. The
throughput is limited in systems that pursue low latency. Therefore, there is a
trade-off between these two metrics when we design a system.

Stability. System stability can also be called system reliability. The standard
definition of reliability is “the ability of a system or component to perform its

138 G. Ding et al.

required functions under stated conditions for a specified period of time” [2].
There are many factors that could affect the ability of a system to function as
expected, such as unpredictable hardware faults or even natural disasters. How-
ever, most software failures are caused by programming errors, which introduce
unintentional behaviour during program execution. Ensuring the absence of bugs
is a prerequisite for building systems that execute reliably.

At present, there is no definite test metric for database stability. In this
paper, we define a stability metric model based on TPS fluctuations. In order
to evaluate system stability, we simulate the user’s workload and let the system
run for a period of time. The changes of system’s TPS are recorded during this
period. Finally, we put the test results into a stability model to see if the system
meets the requirement of stability.

TPS fluctuation trajectories can be summarized into two categories:

– TPS has significant fluctuations and instability. For example, the trajectory
of TPS is like waterfall type which declines slowly and then rises slowly. The
trajectories of these TPSs reflect performance bottlenecks in some point that
require test or development engineers to look for performance bottlenecks.

– The TPS trajectory is relatively stable, but there are also some fluctuations.
This type of fluctuation is not obvious, so it is difficult to determine whether
there is a performance bottleneck directly.

It is necessary to judge the range of fluctuations to determine whether it is
stable for the second category. In statistics, the mean and standard deviation
are important factors in measuring whether the data is stable. The average value
of TPS (TPS in (1)) refers to the number of transactions processed per second
by the system for a specified period of time. The standard deviation of TPS
(σ(TPS) in (1)) is based on the concept of mathematical statistics, reflecting
the fluctuation of the system under testing. The smaller the standard deviation,
the smaller the fluctuation and the more stable the system.

The stability metric model is defined as follow:

θ(TPS) = σ(TPS)/TPS ∗ 100% (1)

θ(TPS) is the fluctuation range of TPS, and the acceptable range of fluctuation
is 5% plus or minus 3% according to our production environment (can also be
configured according to different scenarios).

4.3 Scalability

Scalability means that distributed storage systems increase system storage
capacity, compute capacity, and performance capabilities by adding the num-
ber of servers. As the business development, the performance requirements for
underlying storage systems continue to increase, and the better way to improve
system performance is to add more servers. The ideal distributed storage system
can achieve “linear scalability” that the overall performance of the system is
linear with the number of servers.

Testing Raft-Replicated Database Systems 139

Fig. 2. Test design

5 Test Dimensions

In this section, we mainly introduce how to design test cases. It is difficult to
exhaust all test cases for large-scale distributed database systems, so we need a
systematic, simple and effective design method of test case. Systems based on
the Raft protocol generally divide the system into several functional modules,
such as leader election and log replication. We adopt a modular design approach.
For each module, test cases are designed according to the following three dif-
ferent dimensions, i.e., fault type, data operation type (workload), and system
configuration. As is shown in Fig. 2.

5.1 Fault Type

We need to deal with various failures in a distributed environment. The fault
types are mainly divided into three categories, including node crash, network
anomaly and insufficient system resources. In this test dimension, we need to
test system under normal conditions firstly.

– Node crash: Many factors may cause node downtime, such as memory error,
server power failure, etc. Node downtime may occur at any time. When node
downtime occurs, the node can not work normally. For highly available dis-
tributed database which allows some nodes failures as long as a large number
of nodes can work normally, the whole system can provides services. There-
fore, We need to test the impact on different test metrics in the case of
different number of nodes crash.

– Network anomaly: The cause of network anomaly may be message loss,
out of order messages, or network packet errors. There is a special network
exception called “network partition” where all nodes in the cluster are divided
into multiple areas, the nodes in each area can communicate normally, but
they can not communicate between the areas. We assume that the network is
always unreliable, so it is necessary to test the impact of different test metrics
according to whether the primary node is located in the majority partition
when the network partition appears.

– Insufficient system resources: This type of failures are mainly hardware
limitations, such as insufficient disk storage space or memory, CPU is under
high load, etc.

140 G. Ding et al.

5.2 Data Operation Type

The basic function of the database is to provide read and write operations.
Therefore, we need to test system performance and verify whether the system
can provide services under normal conditions and failures.

5.3 System Configuration

Distributed database system can be deployed to multiple servers through data
distribution and replication. We can make the database scalable by increasing
the number of copies or the number of nodes. Therefore, it is necessary to test
the impact on metrics with different nodes and replicas.

6 Experiments

6.1 Experimental Setups

We implemented a variant of the Raft protocol on the open source distributed
database OceanBase [1], which is developed by Alibaba. In our implementation,
we mainly focus on two types of nodes: Rootserver and Updateserver. The Root-
server is used to manage all other servers and the Updateserver is an in-memory
database engine of OceanBase, which is equivalent to a replication state machine.
There are multiple Updateservers in a cluster deployment of OceanBase, one of
which is called leader. All write requests are sent to the leader Updateserver, and
the leader Updateserver synchronizes the logs to other slave Updateservers. If
the leader Updateserver fails, a slave Updateserver will be elected to continue to
provide services to ensure the system is highly available. Raft is mainly used to
manage the Rootserver election and Updateserver log replication in a OceanBase
cluster.

According to the above performance test metrics, we mainly test the per-
formance of the system from four aspects: recovery time after the leader node
is down, throughput, latency and stability. The experimental configuration is
shown in Table 2.

Table 2. Server setup

Type Description

OS CentOS release 6.5 (Linux version 2.6.32)

CPU 2*Intel(R) Xeon(R) CPU E5-2620 0 @ 2.00 GHz (6 cores/CPU)

Memory 165G

Network Broadcom Corporation NetXtreme BCM5719 Gigabit Ethernet

Testing Raft-Replicated Database Systems 141

6.2 Recovery Time

From the perspective of fault recovery, one of the most important performance
metrics of Raft-based system is fault recovery time, which is the time required for
the system to recover from non-availability to normal operation when the system
fails. The recovery time includes the expiration time of the previous leader’s lease
(default 9 s in our configuration) plus the time to elect a new leader. In different
fault types, the recovery time may also be different. Here we test the average
fault recovery time when the node is down, which is a common type of fault.
The test results are shown in Fig. 3. With the increase of the number of servers,
the recovery time increases slightly. After many tests, the average recovery time
is about 10 s.

Fig. 3. Recovery time Fig. 4. Stability

6.3 Throughput and Latency

The system throughput refers to the number of write requests successfully pro-
cessed per second, and the latency refers to the time that a request is successfully
processed. We use a multi-threaded client to continuously send write requests to
the leader Updateserver to measure the throughput and latency of the system

Fig. 5. Performance

142 G. Ding et al.

under different number of threads and Updateservers. The test results are shown
in the Fig. 5. The abscissa represents the number of Updateservers.

Figure 5(a) shows the throughput of the system. As we can see from the
result, one server has the highest throughput under different number of servers
because it does not to replicate logs to other servers, about 17000 operations
per second with 200 threads. When the number of client threads is the same,
the throughput of the system decreases slightly with multiple servers, but it
does not change significantly with different number of servers because the leader
replicates its logs to all other slave servers in parallel and it respond to the client
as long as it receive a majority response. In addition, the throughput obviously
increases with the number of threads when the number of servers is the same.

Figure 5(b) shows the latency of the system. Similarly, the latency is the
lowest when there is only one server because the leader does not need to copy
the logs to other servers. The latency is about 1.1 ms when there is only one
client thread and the change of latency is not obvious in larger clusters.

6.4 Stability

By adding a certain pressure load to the system, we count the TPS every ten
minutes, and record the changes of TPS in a period of time. The test results are
shown in Fig. 4. The dotted line represents the average TPS during this time. By
putting the test results into the stability metric model based on TPS proposed
in Sect. 4.2, we conclude that the fluctuation range of TPS is about 5.44% which
is within the acceptable fluctuation range.

7 Related Work

Raft is a consensus algorithm that keeps replicated logs of transactions to a
database or key-value store. It has received a lot of attention despite its recent
release. However, each implementation is slightly different, and this introduces
possibilities for protocol errors and inconsistent corner case performance.

Distributed system protocols are known to be difficult to design correctly.
Thus, a systems design is often accompanied by a formal English proof of cor-
rectness, typically relegated to a technical report or thesis. Examples include
Paxos [13], the BFT protocol for Byzantine fault tolerance [3], the reconfigura-
tion algorithm in SMART [10], Raft [11,12], and Zookeeper’s consistent broad-
cast protocol Zab [7].

Coracle [6] by Howard and Crocroft is a tool that verifies distributed consen-
sus and claims to do it at settings that are closer to realistic deployments. Coracle
also claims that consensus algorithms like Raft and Paxos face an availability
issue when deployed in scenarios closer to real-life.

Flotsam [5] by Gilbert is a tool which works by comparing various systems
implemented using Raft against one another and compares their output to verify
the systems. The author of [15] proposes the development of a tool that validates
different key-value based implementations of Raft. Validation is done based on
testing various test cases for distributed systems.

Testing Raft-Replicated Database Systems 143

8 Conclusion

Consensus protocol is the foundation of constructing distributed database sys-
tem and many database systems are built based on Raft because it’s easy to
understand and implement. However, how to evaluate these different implemen-
tations has not been studied extensively and it is difficult to test in a distributed
environment which has to deal with various exceptions.

In this paper, we addressed the issue of testing for Raft-replicated database
systems from three aspects, including abstraction of system model, definition
of test metrics and test dimensions. Finally, we give the test result on an open
source distributed database system. In the future work, we hope to build an
automated testing framework based on our test metrics and test dimensions,
including automatic system deployment, automatic generation of test cases and
automatic comparison of test results.

Acknowledgements. This research is supported in part by National Science Foun-
dation of China under grant number 61432006, and National Key R&D Program of
China (2018YFB1003303).

References

1. Oceanbase website (2019). https://github.com/alibaba/oceanbase/
2. ISO/IEC/IEEE international standard - systems and software engineering-

vocabulary. In: ISO/IEC/IEEE, pp. 1–541 (2017)
3. Castro, M., Liskov, B.: Practical byzantine fault tolerance and proactive recovery.

ACM (2002)
4. Deligiannis, P., et al.: Uncovering bugs in distributed storage systems during testing

(not in production!). In: USENIX Conference on File and Storage Technologies,
pp. 249–262 (2016)

5. Gilbert, C.: Flotsam: evaluating implementations of the raft consensus algorithm
(2019, unpublished). http://www.scs.stanford.edu/14aucs244b/labs/projects/flot
sam.pdf

6. Howard, H., Crowcroft, J.: Coracle: evaluating consensus at the internet edge. In:
ACM SIGCOMM Computer Communication Review, vol. 45, pp. 85–86. ACM
(2015)

7. Junqueira, F.P., Reed, B.C., Serafini, M.: Zab: high-performance broadcast for
primary-backup systems. In: 2011 IEEE/IFIP 41st International Conference on
Dependable Systems and Networks (DSN), pp. 245–256. IEEE (2011)

8. Lamport, L.: The part-time parliament. Acm Trans. Comput. Syst. 16(2), 133–169
(1998)

9. Lamport, L., et al.: Paxos made simple. ACM Sigact News 32(4), 18–25 (2001)
10. Lorch, J.R., Adya, A., Bolosky, W.J., Chaiken, R., Douceur, J.R., Howell, J.: The

smart way to migrate replicated stateful services. ACM Sigops Oper. Syst. Rev.
40(4), 103–115 (2006)

11. Ongaro, D.: Consensus: bridging theory and practice. Ph.D. thesis, Stanford Uni-
versity (2014)

https://github.com/alibaba/oceanbase/
http://www.scs.stanford.edu/14aucs244b/labs/projects/flotsam.pdf
http://www.scs.stanford.edu/14aucs244b/labs/projects/flotsam.pdf

144 G. Ding et al.

12. Ongaro, D., Ousterhout, J.: In search of an understandable consensus algo-
rithm. In: 2014 USENIX Annual Technical Conference (USENIX ATC 14), pp.
305–319. USENIX Association, Philadelphia, PA (2014). https://www.usenix.org/
conference/atc14/technical-sessions/presentation/ongaro

13. De Prisco, R., Lampson, B., Lynch, N.: Revisiting the paxos algorithm. In: Mavron-
icolas, M., Tsigas, P. (eds.) WDAG 1997. LNCS, vol. 1320, pp. 111–125. Springer,
Heidelberg (1997). https://doi.org/10.1007/BFb0030679

14. Schneider, F.B.: Implementing fault-tolerant services using the state machine app-
roach: a tutorial. ACM Comput. Surv. (CSUR) 22(4), 299–319 (1990)

15. Vishwanath, D.: Validating key-value based implementations of the raft consensus
algorithm for distributed systems (2018)

https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://doi.org/10.1007/BFb0030679

Big Data

Benchmarking for Transaction Processing
Database Systems in Big Data Era

Chunxi Zhang, Yuming Li, Rong Zhang(B), Weining Qian, and Aoying Zhou

School of Data Science and Engineering, East China Normal University,
Shanghai, China

{cxzhang,ym.li}@stu.ecnu.edu.cn, {rzhang,wnqian,ayzhou}@dase.ecnu.edu.cn

Abstract. Benchmarking is an essential suite supporting development
of database management systems. It runs a set of well defined data
and workloads on a specific hardware configuration to gather the results
to fill the measurements. It is used widely for evaluating new technol-
ogy or comparing different systems so as to promote the progress of
database systems. To date, under the requirement of data management,
new databases are designed and issued for different application require-
ments. Most of the state-of-the-art benchmarks are also designed for
specific types of applications. Based on our experiences, however, we
argue that considering the characteristics of data or workloads in big
data era, benchmarking transaction processing databases (TP) must put
much effort for domain specific needs to reflet 4V properties (i.e. volume,
velocity, variety and veracity). With the critical transaction processing
requirements of new applications, we see an explosion of designing inno-
vative scalable databases or new processing architecture on traditional
databases dealing with high intensive transaction workloads, which are
called SecKill and can saturate the traditional database systems by high
workloads, for example “11·11” of Tmall, “ticket booking” during China
Spring Festival and “Stock Exchange” applications.

In this paper, we first analyze SecKill applications and the implemen-
tation logics, and also summarize and abstract the business model in
details. Then, we propose a totally new benchmark called PeakBench
for simulating SecKill applications, including workload characteristics
definition, workload distribution simulating, and logics implementing.
Additionally, we define new evaluation metrics for performance compari-
son among DBMSs under different implementation architecture from the
micro- and macro- points of views. At last, we provide a package of tools
for simulating and evaluating purpose.

Keywords: DB-testing · Transaction processing · Intensive
workloads · Evaluation

1 Introuduction

Big data have been generated and used in different kinds of domains, such as
e-commerce, financial, and search engine, as well as scientific research areas.
c© Springer Nature Switzerland AG 2019
C. Zheng and J. Zhan (Eds.): Bench 2018, LNCS 11459, pp. 147–158, 2019.
https://doi.org/10.1007/978-3-030-32813-9_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32813-9_13&domain=pdf
https://doi.org/10.1007/978-3-030-32813-9_13

148 C. Zhang et al.

It brings new chance for new applications, but also puts new requirements for
novel technology. Then it gives birth to a bunch of new application-oriented data
management systems, for data store, search or analysis.

Generally, benchmarking aims to generate application-oriented workloads,
evaluate the performance by simulating the real intensity and produce the valu-
able results for guiding comparisons or designs [16]. Database (DB) management
systems are general tools for data management in different domains, which have
also been extended or redesigned for new critical applications. For example,
Hbase [12] for fast read, VoltDB [17] for in-memorty transaction processing,
Oceanbase [19] for distributed transaction processing and so on. One possibility
to test the new databases is to use TPC-series benchmark [6], which are domain
specific. The dataset and workloads can be scaled to desired sizes. Developers
and vendors have used these benchmarks to compare and improve their products.
Researchers can use them to test their new algorithms, technology or prototypes.
Thus TPC benchmarks have played an important role in the growth of database
industry and the progress of database research. However, there is a tremendous
varieties of databases for applications, which may have total different perfor-
mance requirements on a set of specific workloads. Since TPC benchmarks are
domain specific, which can not cover new applications or give a concrete mea-
surement for new applications.

At present data storage of massive data, large scale parallel query process-
ing or high contention of parallel data accessing has become new challenges for
databases. Especially commercial developments have promoted the new style
of business model. One of the most representative ones is Second Kill (abbr.
SecKill), which has a massive scale of transactions, especially Write, erupting
within a short period, e.g., in a second. It has become a popular application in
E-commerce for sale promotion or advertising, such as “black Friday” in USA,
“11·11” or train ticket booking during Spring Festival in China. For this kind
of real application, dealing with large dynamic changes in high workload, high
concurrency, and high contention access is a new challenge for databases. In real
applications, the traditional system architecture, that is, the request directly
falls on the database, is likely to be implemented at a high cost, and may not
meet the demand. The SecKill service is usually supported by a system archi-
tecture of read-write separation. Traditional classic database benchmarks such
as the TPC series cannot fully satisfy the analysis and evaluation of the SecKill
application. Within this context, we propose our insights into the requirement
and challenges in developing new benchmarks for databases supporting trans-
action processes. And we give a brief introduction to our new benchmark tool
PeakBench supporting intensive workload testing on TP databases.

According to these new features in the applications, it generates a new
requirement for benchmarking work to simulate such intensive workloads. We
compare the related benchmarks, TPC-C and TPC-E [6] are the most pop-
ular benchmarks for transaction processing systems (OLTP); Y CSB [9] and
Y CSB++ [14] benchmark R/W workloads on key-value stores, which is widely
used to benchmark NoSQL Databases for the I/O performance; DebitCredit [15]

Benchmarking for Transaction Processing Database Systems 149

is used to define a throughput measurement on Transaction Processing. All of
its transactions involve a small number of tuples, which is too simple to be
used nowadays. SmallBank [5] workload models a banking application where
transactions perform simple read and update operations on customers accounts.
TATP [18] benchmark simulates a caller location system used by telecommuni-
cation providers, in which transactions contain only 1–3 queries and 80% of them
are read-only. This benchmark provides a useful workload scenario for measuring
a DBMS’s ability to run non-conflicting transactions concurrently.

Contention have never been taken seriously by all of those benchmarks, which
have been said to be important in OLTP-Bench [11]. However, OLTP-Bench is
a testbed instead of a benchmark. Workloads are usually generated statistically
by predefining the percentages among different kinds of workloads, which rep-
resents a global workload distribution and cannot easily simulate distribution
changes on each type of workloads along the time. Contention simulation has
not been explicitly declared by most of the benchmarks even in TPC-C which
simply controls contentions by changing the number of Warehouse or the num-
ber of concurrent posts. The other benchmarks control the contention by chang-
ing the size of data tables accessed by workloads, which is too rough to serve
performance comparisons among databases. Most of benchmarks have provided
workload skewness distributions on data items. However, skewness can be dif-
ferent among different types of workloads and change along the time, which has
been overlooked until now. So current benchmarks have not been designed for
most of the characteristics of this kind of applications with intensive workloads,
and an apples-to-apples comparison cannot be promised.

This paper design and implement benchmark, evaluate the ability of different
database systems for transaction processing and query processing in peak testing;
and integrate different database systems to define different loads. As well as
load distribution, measure the system architecture performance supporting peak
traffic and give detailed performance analysis.

2 Requirements and Challenges

The benchmark of database refers to the specification for evaluating and com-
paring the performance of different database systems. Generally, benchmark
includes definition and generation to three basic elements, which are data gener-
ation, workload generation and measurement definition, shown in Fig. 1, which is
used to objectively and comprehensively evaluate the performance each database
system. Each developer or company can update or select a system that meets
their needs based on the evaluation report. The definition of the benchmark with
the objectives of “FEAS”:

Factuality: This includes the factuality of data generation and the workload
simulation. On the one hand, how to get the data set. Some test data can be
obtained from real application data sets, but most of the data is confidential,
so the data needs to be generated based on characteristics to ensure the factu-
ality. On the other hand, how to define the workload, it is crucial to abstract

150 C. Zhang et al.

Fig. 1. Benchmark ingredient

the workload characteristics according to the actual application, determine the
logical relationship between the workloads, and simulate the workload closer to
the real application, e.g. big data and workload dynamics.

Extensibility: It had better be extensible for different scale of testing require-
ments, either for data/workload size or system size. And it shall be easy to adjust
configurations for different workload generation and easy to add new database
for testing, or deployments for different systems or on different platforms.

Adaptability: Includes configurable parameters for data generation and work-
load simulation, as well as flexibility for reserved interfaces. During the execu-
tion process, various types of data and workload characteristics are classified to
determine various parameters, so that users can configure to generate data and
workload according to requirements. With more configurable interfaces, users
can customize the workload and easily add new test functions.

Specificity: The measurements must expose the main purpose of benchmark
tasks, which must be specific and valuable, e.g. TPS and Latency of databases.
And define new evaluation metric based on application characteristics require-
ments, making the meaning of the standards more fair, objective, and usable.

2.1 Data Generation

Automatic empirical data generation is the first fundamental requirement for
benchmarking work. One of the most important issues here is to deal with the
scaling problem. Researchers have proposed a number of database generation
techniques [1,2,4], which are able to create databases with specific character-
istics or based on a seed dataset. It may be easy to control the generation for

Benchmarking for Transaction Processing Database Systems 151

data size, which is volume, such as Terabyte (TB) or Petabyte (PB). Velocity
is controlled by increasing or decreasing generation threads. Variety has been
defined statically, which denotes the range of data type or sources. Veracity is
required to reflect the inherent and important characteristics of raw data, which
has been verified by comparing the data distribution among attributes. Previ-
ous data generation methods obviously lose the dynamics from the view of data
generation, including data distribution changes and data quantity changes along
time.

Although some benchmarks use the real data as inputs to guarantee data
veracity, it can not be adapted to other application scenarios, and the seed
data is a static snapshot at some specific time, which can not represent the
later evolution of data. But usually evolution of data leads to totally different
performance on TP databases, which is the other kind of variety.

2.2 Workload Generation

Generally speaking, we can divide the benchmarks into two kinds: micro bench-
mark and macro benchmark. Micro benchmark is designed to test or evaluate
the specific technology supporting the whole software/hardware systems. For
example, for a new file system, we may test its advantages with I/O intensive
workloads; for an indexing algorithm in DB, we may exhibit the performance
by the specific select workloads. So micro benchmark is especially useful and
necessary for technology innovators. For vendors or system developers, a testing
result is meaningful only when applying an application-oriented benchmark [16],
which is the Macro benchmark. It is challenging to develop benchmarks to reflect
various workload cases. And identifying the typical workloads for applications
and automatically generating these workloads are the prerequisite of system
evaluation.

Though TPC series workloads are well extracted and defined from real appli-
cations, it is too general to be applied to specific applications and still lack of
consideration in fine granularity execution simulation between workloads and
data. First, current benchmarks provide the control for workload distribution
on data items and the distributions among themselves, but it still neglects the
dynamic distribution changes among workloads. Second, there is almost no work
considering workload interactions along time. Different access pattern will affect
TP performance greatly. Last but not the least, candidate size along the query
tree is one of the most crucial elements deciding performance. None of current
benchmarks has put effort to control the intermediate results.

2.3 Measurement Definition

In the benchmark, the performance of the database is measured by multiple
sets of measurement, including request latency, throughput, resource utilization,
concurrency, cost-effective, stability, maintainability, scalability, and so on. The
latency is the time between when the user sends a request and when the returned
result is received, usually measured by the average response time of number

152 C. Zhang et al.

test. The throughput usually refers to QPS/TPS (query/transaction response
requests per second), and the throughput is also limited by the number of con-
current connections of the database. When the number of connections does not
reach the peak, the greater the number of connections, the higher the through-
put. For different database systems, the optimal concurrent connection state is
usually selected, and the throughput of the system is tested for comparison.
Resource utilization generally refers to system cpu utilization and memory con-
sumption. Concurrency testing of databases means that multiple users access the
database at the same time to do the same operation. Highly concurrent tests can
also measure the stability of the database system and discover design problems
in the system. The cost-effective measurement formula is usually: cost-effective
= performance-value/price-value, which can better balance the performance and
price.

Measurement shall be valuable and specificity considering different applica-
tions. Current benchmarks usually take Throughput and Latency as the general
measurements. Since different applications have different workloads, the general
ones can not guide the design or implementation well. For example, for work-
loads having intensive burst, developers or vendors desire to exploit self adaptive
capability, and it may not be easy to catch database disadvantage by the average
Throughput or Latency metrics.

2.4 Others

For the easy use of benchmarks, it is preferred to prepare benchmark packages
which are tools for data/workload generation and deploying. For implementation,
we shall guarantee the parallel generation for both data and workloads, which is
called extensibility on both volume and system scale. For package deployments,
it is required to be easy to use, having friendly user interfaces.

During implementation, the most challenge part is to guarantee the workload
interaction patterns distributedly, e.g. contention, among distributed workloads,
which can not obstruct the data/workload generation paces.

3 PeakBench: Benchmarking Transaction Processing
Database Systems on Intensive Workloads

In order to facilitate the generation of a TP benchmark satisfying the properties
of “FEAS”, we define and implement PeakBench, open sourced in Github [7].
PeakBench is implemented from four levels described in the following parts:

Generation Control for Extensibility: In order to make benchmarks scal-
able for different data/workload size requirements or on different system scale,
our data/workload generators can run on threads, supporting distributed deploy-
ment.

Configuration for Factuality: PeakBench exposes enough parameters for
users to specify their own data and workload demands. It allows to declare both

Benchmarking for Transaction Processing Database Systems 153

the static and dynamic demands on data and workloads characteristics. For
example, we can characterize data by its static properties, e.g. item quantity,
record size, table arrangement, distributions; we can also define the dynamic
properties, such as distribution changes of workloads along time. The most
important thing is that we have a fine granularity control on workload execution
for simulating contention, which has not been well studied until now.

Executor for Adaptability: Data generator and workload generator are
designed based on requirements assigned in Configuration level, and we design
new evaluation metrics to show system stability under dynamic environment,
which is totally new. Our workload executor can distribute the workloads on
distributed clients scalability. However simulation on distributed workload inter-
action is still a hard work.

Storage for Generality: Our tool can apply, run and test on different databases
with general interfaces. Generated data and workloads can be stored in different
DBs with different scales.

3.1 Business Description

Generally for an item booking and buying, we have the following steps: first,
browse and check the interested items; second, put the expected items into the
shopping cart or buy items directly; third, pay for the items or cancel the order
actively or passively by a period of time. SecKill applications have especially
rigorous requirements on DSC2. The most different thing is the obvious distri-
bution separation between Read (R) and Write (W) operations at SecKill start
time point, and the severe contention on hot items: ReadPhase: Before SecKill
start time point, all SecKill items can only be browsed (Read) since customers
are searching or keeping monitoring the interested ones. It will be read-heavy.

CriticalityPhase: It reaches read peak closing SecKill time. Almost all cus-
tomers start focusing on the status changing of items and continuously refresh-
ing, when SecKill time approaches.

KillPhase: It turns almost all browsers (R) into buy (W) at the point of kill
start. It will be write-heavy and contention-intensive, especially for hot items.

3.2 Implementation of Benchmark Tool

We have developed a benchmark tool Called PeakBench tool to gener-
ate/deploy workloads/data and execute the benchmarks. The most important
and unique work in PeakBench tool is that it can support fine granularity def-
inition of skewness and dynamics, we make transaction contention controllable,
which is the most tough but essential work for evaluating TP databases.

The architecture is shown in Fig. 2, which includes 5 important functional
modules.

154 C. Zhang et al.

3.3 Workloads

On RDB, we meet five kinds of browse queries and one periodical updating
requirement. Users can browse on product categories Q2, keywords Q3, price Q4

or shops Q5 and then browse the details Q1. Since we have the R/W separate
architecture, Q6 is used to promise the weak consistency by updating RDB
according to WDB for the change in the number of KilProds skpcount in table
seckillplan and the number of payed products paycount in seckillpay.

On WDB for KilProds, we have 5 kinds of operations (Q7–Q11), including
submit, pay, cancel, browse orders and one cancel overdue orders actions. On
WDB, it also includes transactions to non-KilProd, since it does not generate the
high pressure for databases compared to KilProds, we overlook these workloads.

Fig. 2. Benchmarking components

4 Test of PeakBench

We define an E-commerce scenario, and show the main characteristics of Peak-
Bench, and workload details can be found in Github [7].

Table 1. Default data size

Table Size

Customer 8 · 104

Supplier 5 · 102

Item 105

Order 4 · 105

OrderItem 8 · 105

SecKill 102

scaleFactor 10

skScaleFactor 10

Table 2. The default settings for parameters

Parameter Value

CR 50 %

CI 5

Connection thread for MySql&PG 80

Connection thread for VoltDb 60

Partition number for VoltDB 3

zipfian(s, N) s = 2, N = 10

Submit order size (SuO) 106

α and β 0.5 & 0.5

Our experiments are conducted on a cluster with 8 nodes configured in RAID-
5 on CentOS v.6.5. There two nodes which are equipped with 2 Intel Xeon

Benchmarking for Transaction Processing Database Systems 155

E5-2620 @ 2.13 GHz CPUs, 130 GB memory and 3 TB HDD disk; the other 6
nodes are equipped with 2 Intel Xeon E5-2620 @ 2.0 GHz CPUs, 64 GB mem-
ory and 2.1 TB HDD disk. The cluster is connected using 1 Gigabit Ethernet.
We demonstrate the effectiveness of PeakBench by running it on three popu-
larly used open sourced database systems MySQL (v. 14.14), Postgresql (v. 9.5)
and a distributed database VoltDB (v. 7.8.2) [17]. In order to make the results
comparable, we test and configure the parameter on each DB for its best perfor-
mance, which include the cache size and the number of processing threads and
the partition number. In our implementation, we set the connection threads to
80 which are tested to get almost the best performance on Mysql and PG in our
cluster. For VoltDB, configured with 3 partitions and 60 connection threads, our
workload will reach the best performance. Default parameter setting is shown
in Table 2. The default size of our benchmark is listed in Table 1. We have two
scale factors, which are scaleFactor for the first 5 tables to expand the basic
tables and skScaleFactor for the last two ones to expand the kill items.

All metrics used in PeachBench are defined as followings: Transaction per
Second (TPS): The number of transactions processed per second.

Latency: The average process time for each query.

Sys Stability: With sharp dynamics on loads, we evaluate the ability to recover
to the stable status by:

Sys Stability = α � δt � β � δL/L̄, α + β = 1.

where t, L and L̄ represent the range of time arriving stable status, latency and
average latency, and α and β define the importance for t and L with default
values 0.5. Smaller value will be better.

Since for DB, only its client latency can be affected by the size of workloads
instead of DB latency, so we use client latency for L in Sys Stability.

Fig. 3. Contention simulation in PeakBench

Contention Simulation. It defines CR (contention ratio) to represent the per-
centage of transaction contentions in each time unit. In Fig. 3, we show the result
generated by PeakBench. It is easy to see that PeakBench can control contention
simulation precisely, where performance is affected obviously by increasing CR.

156 C. Zhang et al.

Dynamics. We can simulate workloads changes along time. In Fig. 6, we gen-
erate workloads by changing the ratio between Read and Write dynamically, in
which we simulate sharp changes among workloads.

Stability. In Fig. 5 we show the stable ability between MySql and PostgreSql
by using the workloads generated in Fig. 6. It can be see that PostgreSql is more
stable than MySql with the workloads.

Scalability. In Fig. 4, we can generate massive workloads by expanding the
client nodes. It generates workloads almost linearly.

Fig. 4. Scalable generator Fig. 5. Stability

Fig. 6. Dynamics

5 Related Work

Benchmarking and performance evaluation attract considerable attention in the
late of 1980s and early 1990s [3,13]. Generally, it aims to generate application-
oriented workloads, evaluates the performance by simulating the real intensity
and produces the valuable results for guiding comparisons or designs [16].

Benchmarking for Transaction Processing Database Systems 157

Until now for traditional transaction processing (OLTP), TPC series, e.g.,
TPC-C or TPC-E [6] are still in fashion. TPC-C simulates a warehouse-centric
order processing application. Transaction contentions is simulated by adjusting
the number of warehouses which is not controllable or effective. TPC-E por-
trays the activities of a stock brokerage firm, which has more complex schema
and workloads than TPC-C. However, it does not mention about the parallel
access control, and can’t simulate high contention workloads. Workloads in CH-
benCHmark [8] are a mixture of TPC-C and TPC-H [10] designed for databases
supporting both OLTP and OLAP workloads. It does not specify more about
contention or dynamics simulation.

There are also some other well defined TP benchmarks for traditional TP sys-
tem testing. SmallBank [5] models a banking application where transactions per-
form simple read and write on customer accounts. Despite the contentions men-
tioned in SmallBank, it was not effectively controlled and simulated. TATP [18]
simulates a caller location system to test in-memory databases. It then considers
little about the performance for concurrence control. DebitCredit [15] simulates
a typical bank account change on a bank database, which tests system through-
put without considering workload distributions or contentions among reads and
updates.

In industry, recently Yahoo! develops its cloud serving benchmark, YCSB [9],
to evaluate NoSQL data stores. It emphasizes client scalability (concurrency)
and one kind of write-heavy workloads, but still lacks dynamics simulation on
different workloads. YCSB++ [14] is an extension of YCSB, which emphasizes
more on the evaluation of table storage characteristics, and still can not be
adapted for simulating workload intensive applications. OLTP-Bench [11] is a
comprehensive test platform integrating tens of benchmarks, with the purpose
to provide enough workloads or datasets for evaluation.

Though we have so many different kinds of benchmarks, benchmarking for
intensive workloads, e.g. SecKill, is still absent, which is able to describe high
concurrency, sharp dynamics intensive skewness or high contention. Some bench-
marks have already provide concurrency control to evaluation DB scalability.
Until now no benchmarks have provided the support to dynamics which has
been declared important in OLTP-Bench [11]. Contention control has never been
exposed explicitly by any existing benchmarking work, which is the most impor-
tant aspect affecting DB performance.

6 Conclusion

With the rapid occurrence of new applications and development of new database
systems, traditional benchmarks are too old to catch up with emerging applica-
tions. In this paper, we summarize the lessons learned during system develop-
ments and analyze the requirements and challenges in design new benchmark-
ing work. We also introduce our benchmark tool PeakBench, which aims to fill
the gap between benchmarking and business requirements. However distributed
workload generation with interaction control among workloads is still a difficult
problem, which is left as our future work.

158 C. Zhang et al.

Acknowledgment. We are partially supported by the Key Program of National Nat-
ural Science Foundation of China (No. 2018YFB1003402) and National Science Foun-
dation of China (No. 61432006).

References

1. Arasu, A., Kaushik, R., Li, J.: Data generation using declarative constraints. In:
Proceedings of the 2011 ACM SIGMOD International Conference on Management
of Data, pp. 685–696. ACM (2011)

2. Binnig, C., Kossmann, D., Lo, E., Özsu, M.T.: QAGen: generating query-aware test
databases. In Proceedings of the 2007 ACM SIGMOD International Conference on
Management of Data, pp. 341–352. ACM (2007)

3. Bitton, D., DeWitt, D.J., Turbyfill, C.: Benchmarking database systems: a system-
atic approach. Computer Sciences Department, University of Wisconsin-Madison
(1983)

4. Bruno, N., Chaudhuri, S.: Flexible database generators. In: Proceedings of the
31st International Conference on Very Large Data Bases, pp. 1097–1107. VLDB
Endowment (2005)

5. Cahill, M.J., Röhm, U., Fekete, A.D.: Serializable isolation for snapshot databases.
ACM Trans. Database Syst. (TODS) 34(4), 20 (2009)

6. Chen, S., et al.: TPC-E vs. TPC-C: characterizing the new TPC-E benchmark via
an I/O comparison study. ACM SIGMOD Rec. 39(3), 5–10 (2011)

7. Zhang, Y.L.R., Zhang, R.: https://github.com/daseecnu/db-testing
8. Cole, R., et al.: The mixed workload CH-benchmark. In: Proceedings of the Fourth

International Workshop on Testing Database Systems, p. 8. ACM (2011)
9. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking

cloud serving systems with YCSB. In: Proceedings of the 1st ACM Symposium on
Cloud Computing, pp. 143–154. ACM (2010)

10. Trans-Pacific Partnership Council: TPC-H benchmark specification, vol. 21, pp.
592-603 (2008). http://www.tcp.org/hspec.html

11. Difallah, D.E., Pavlo, A., Curino, C., Cudre-Mauroux, P.: OLTP-bench: an exten-
sible testbed for benchmarking relational databases. Proc. VLDB Endow. 7(4),
277–288 (2013)

12. George, L.: HBase: The Definitive Guide: Random Access to Your Planet-size Data.
O’Reilly Media, Inc., Newton (2011)

13. Gray, J.: Benchmark Handbook: For Database and Transaction Processing Sys-
tems. Morgan Kaufmann Publishers, Inc., Burlington (1992)

14. Patil, S., et al.: YCSB++: benchmarking and performance debugging advanced
features in scalable table stores. In: Proceedings of the 2nd ACM Symposium on
Cloud Computing, p. 9. ACM (2011)

15. Stonebraker, M.: A measure of transaction processing power. Datamation 31(7),
112–118 (1985)

16. Tay, Y.C.: Data generation for application-specific benchmarking. VLDB 4, 1470–
1473 (2011)

17. LLC VoltDB: VoltDB technical overview. Whitepaper (2010)
18. Wolski, A.: TATP benchmark description (version 1.0) (2009)
19. Yang, Z.: The architecture of oceanbase relational database system. J. East China

Norm. Univ. (Nat. Sci.) 9(5), 141–148 (2014)

https://github.com/daseecnu/db-testing
http://www.tcp.org/hspec.html

UMDISW: A Universal Multi-Domain
Intelligent Scientific Workflow Framework
for the Whole Life Cycle of Scientific Data

Qi Sun, Yue Liu(B), Wenjie Tian, Yike Guo, and Bocheng Li

School of Computer Engineering and Science, Shanghai University,
Shanghai 200444, China

sunqichn@163.com, yliu@staff.shu.edu.cn, tianwenjie1997@163.com,

y.guo@imperial.ac.uk, 1124129934@qq.com

Abstract. Existing scientific data management systems rarely manage
scientific data from a whole-life-cycle perspective, and the value-creating
steps defined throughout the cycle constitute essentially a scientific work-
flow. The scientific workflow system developed by many organizations
can well meet their own domain-oriented needs, but from the perspec-
tive of the entire scientific data, there is a lack of a common framework
for multiple domains. At the same time, some systems require scien-
tists to understand the underlying content of the system, which virtu-
ally increases the workload and research costs of scientists. In this con-
text, this paper proposes a universal multi-domain intelligent scientific
data processing workflow framework (UMDISW), which builds a general
model that can be used in multiple domains by defining directed graphs
and descriptors, and makes the underlying layer transparent to scientists
to just focus on high-level experimental design. On this basis, the paper
also uses scientific data as a driving force, incorporating a mechanism
of intelligently recommending algorithms into the workflow to reduce
the workload of scientific experiments and provide decision support for
exploring new scientific discoveries.

Keywords: Scientific workflow · Intelligent · Scientific data ·
Universal framework

1 Introduction

Scientific research has entered the era of big data. Instruments and equipment
with ever-increasing data collection capabilities and ever-evolving computing
facilities and simulation methods are important sources of scientific big data,
causing explosive growth in data size, which is happening in different scientific
domains [1–3]. At the same time, because scientific data faces greater “broad-
ness” and “depth” than commercial data, the processing patterns and methods
of scientific data are also diversified. It can be said that the management and
processing of scientific data now face enormous challenges.
c© Springer Nature Switzerland AG 2019
C. Zheng and J. Zhan (Eds.): Bench 2018, LNCS 11459, pp. 159–171, 2019.
https://doi.org/10.1007/978-3-030-32813-9_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32813-9_14&domain=pdf
https://doi.org/10.1007/978-3-030-32813-9_14

160 Q. Sun et al.

In this case, many organizations have carried out a series of work on the struc-
ture and system of scientific data management from different perspectives, and
developed many scientific data management systems or analytical frameworks.
Such as SkyServer for managing SDSS data [4], Paradise for storing geographic
information [5], Google’s virtual digital earth system Google Earth for visu-
alization [6], Apache’s big data high-performance computing framework Hama
[7], etc. These systems perform well at some point in management, analysis, or
visualization, but lack a complete solution from the perspective of the whole
life cycle of scientific data. Scientific data creates value, and the whole lifecycle
of scientific data defines the various steps in creating value, including import-
ing, storing, processing, visualizing, analyzing, re-storing, and so on, as well as
the conditions associated with each step. These steps essentially constitute a
workflow, or data flow, information flow.

The concept of workflow has been widely used in many fields, such as business
processes, industrial manufacturing, scientific research, medicine, etc. [8]. For sci-
entific workflows, the most common representation is to create a high-level graph
composed of directed graphs, related nodes and edges that define the sequence
and interaction between the various steps associated with the scientific workflow,
and this graphy defines the sequence and interaction between the various steps.
In addition, because of the diversity and complexity of scientific research, only
one directed graph is not sufficient to represent the processing flow of multiple
scientific domains, so additional descriptors are needed to specifically identify
and control the nodes of a series of steps. The information exchange standard
proposed by the Open Provenance Model (OPM) core specification [9] for data
traceability and the concepts and terminology defined in the S88 standard [10]
for production recipe process can be applied to the scientific workflow. The scien-
tific workflows that will be presented later in this paper also refer to the relevant
content of these two standards.

It turns out that it is feasible to use workflow to represent the processing of
scientific data, many organizations continue to develop their own field-oriented
scientific workflow system based on their needs. From the combination of scien-
tific workflows, it is divided into text-based combinations such as BPEL4WS [11],
DAGMan, SCUFL; graphics-based combinations such as Triana [12], VisTrails,
Kepler [13]; semantic-based combinations such as K-WF, Pegasus, Taverna [14].
These scientific workflow systems have brought great convenience to the pro-
cessing of scientific data to a certain extent, but there are also some problems:

– It is more difficult to meet the needs of many types of users. Domain experts
are more focused on domain-related research than on the scheduling of under-
lying resources related to specific calculations.

– Most of the existing scientific workflows are only for a single domain, lacking
a universal framework.

– Lack of a more efficient method of scheduling. Users usually need to choose
different methods to compare to select the better one, so that the workload
of scientific experiments is increased.

UMDISW: A Universal Multi-Domain Intelligent Scientific Workflow 161

In summary, based on the previous research [15], this paper proposes a Uni-
versal Multi-Domain Intelligent Scientific data processing Workflow (UMDISW),
which solves the problems of current scientific workflow from the perspectives
of model, structure and application. The second section of this paper describes
the state and status of the proposed workflow in previous research. In the third
section, the model of the UMDISW is analyzed. And in the fourth section, we
describes the structure of the UMDISW. What’s more, the fifth section intro-
duces the application scenario of the UMDISW, highlighting the characteristics
of intelligence, and the sixth section is to introduce the workflow implementation
in combination with the previous research. Finally, we have a conclusion in the
seventh section.

2 The Status of UMDISW in System Architecture

In previous research, we proposed a scientific big data management system archi-
tecture for multiple domains and roles, The architecture is divided into four
areas: Basic Service Function Area (BSFA), Storage and Access Area (SAA),
Query Function Area (QFA), and Analysis Function Area (AFA). Each area has
its own corresponding function. For example, the AFA is responsible for pro-
cessing scientific data in different domains using machine learning or domain
methods. On this basis, we integrated UMDISW proposed in this article in the
AFA, and the AFA is updated to have three component: the Asset Loader (AL),
the Pipeline Manager (PM), and the Pipeline Tool (PT). These three compo-
nents show the composition of the UMDISW in the architecture, where the AL
is used to get the data and algorithms needed by the experiments; the PM is
responsible for the design, build, and integration of the workflow; the PT is
responsible for providing the operating environment and execution engine. Each
component has its own port and interface to interact with outside. The model,
structure and implementation of the UMDISW in the AFA will be detailed later.

3 The Model of UMDISW

The UMDISW proposed in this paper consists of the following modules: workflow
and task, data flow and information flow, data node and algorithm node. The
functions of each of the modules will be described in the next few subsections.

3.1 Workflow and Task

The processing of scientific data can be divided into modules that depict the
processing details, and a workflow is the sum of all these modules. On this basis,
the workflow is essentially a container that defines the scope of data processing
under the user’s decision. Typically, scientific data processing will have one or
more tasks, and the workflow should also consist of at least one task.

162 Q. Sun et al.

A task represents a collection of steps performed on or by an allocated
resource. In science, these resources often refer to scientific devices, instrumen-
tation, scientific software, scientific data and algorithms, and are distinct in
different scientific domains. When a resource is shared by multiple tasks, the
allocation of resources to perform a given task depends on its availability, suit-
ability, and priority of the task to be completed. The start and execution of the
task will be postponed until the resources are allocated to it.

3.2 Data Flow and Information Flow

Depending on the structure of the workflow, its execution will involve the transfer
of entities (data, information, etc.) because they are generated or used during
the execution of the workflow, and this transfer forms the data and information
flows.

The data flow usually refers to the process or location of the data in the
workflow, so it’s necessary to define the nodes to represent the start and end of
the data flow; define the input and output locations of subtasks to represent the
current progress of the data; define connect lines to represent the movement of
data between two subtasks, which is also a factor driving the workflow; define
work areas to distinguish between different workflows. In order to describe the
model of UMDISW in a graphical way in the following discussion, the data flow is
represented by solid lines, which start from the start node (represented by a solid
circle), or from the output of the subtask module (represented by rectangle), or
from the data node (represented by rounded rectangle), and terminate at the end
node (represented by triangle) or subtask module input. What’s more, different
workflows are divided into different areas (represented by lanes).

The information flow in the workflow also requires the above definition to
represent the start and end, movement, and the classification of information. At
the same time, the definition of data nodes and algorithm nodes is needed to
display the development and changes of information during the execution of the
workflow, such as data generation and update of algorithm parameters, and these
changes based on the definitions form the workflow’s information flow. Similarly,
for graphical description, the information flow is designated as a dashed dotted
arrow that begins at the subtask module and ends at the information module
(represented by dashed rectangle).

3.3 Data Node and Algorithm Node

Defining data nodes and algorithm nodes for two purposes: first, they contain
data inputs and algorithm inputs for a module in the workflow, or metadata
information that is used to standardize the module’s output; second, they contain
addresses that point to the actual stored data and algorithms in the databases.
An algorithm node and several data nodes combine to form a module of the
workflow, that is, a subtask in the task.

UMDISW: A Universal Multi-Domain Intelligent Scientific Workflow 163

Fig. 1. Workflow sample diagram

Algorithm Node. According to the above description, the number of algorithm
nodes in a workflow should be equal to the length of the workflow (remove the
start and end nodes). In addition to the metadata information of the correspond-
ing algorithm and the actual stored reference address, the algorithm node needs
to indicate what format of input and output are needed in this step to improve
the efficiency of the user to build the workflow. The algorithm corresponding to
the algorithm node here may be a file or an algorithm program that has been
integrated in the system.

Data Node. Data nodes are divided into data input nodes and data output
nodes. The data input node can be combined with the algorithm node to become
a subtask or a module of the workflow, and it may be a data file, a database
table or a value; the data output node is an online result set or image (available
for download), but it is not displayed in the workflow, and will only be displayed
in the user interface when clicking on an algorithm node.

3.4 Example

Figure 1 shows two sample workflows that use machine learning methods to illus-
trate the workflow symbols mentioned earlier. There are two workflows, Work-
flowA and WorkflowB, separated by lanes.

WorkflowA is a branched workflow that includes five subtasks: PPROC, FS,
Show, ML, Store. Each subtask uses the corresponding algorithm for calculation
and processing. WorkflowA starts from the subtask PPROC, which needs to
input the data set pointed by the data node A. After a period of processing, the
processing result is pushed to the subtask FS, and the corresponding information
module Info1 is generated.

164 Q. Sun et al.

Fig. 2. Hierarchical structure of UMDISW

When the subtask FS gets the output of the previous step, it takes itself as its
own input and starts executing. It should be noted that when the FS is executed,
the output will be passed to the two subtasks, Show and ML, the former displays
the results of the previous step to the page, and the latter combines the result of
the previous step with the newly entered data B as its own input, and the result
of the operation is passed to the next Store, and the corresponding information
module Info2 is generated.

After executing the ML, the Store subtask will receive the result of the ML,
which will save it to the database and generate the information module Info3,
and end the WorkflowA.

The solid line in Fig. 1 reflects the flow of data during the execution of the
workflow, which shows the process of data changes; the combination of the infor-
mation modules corresponding to the dotted lines is the embodiment of the infor-
mation flow in the workflow, which shows the gain process of the information.

WorkflowB is a linear workflow, and its execution process is similar to Work-
flowA, except that each subtask has data input and information output, and
there is no branch.

Although this sample workflow is only for machine learning processing, the
nodes, modules, and regions shown in the figure provide the necessary functions
to model the workflow of various scientific domains and non-machine learning
methods. In addition, the graphical representation of the workflow provides a
very compact view of the features and controls used to implement the workflow.
In principle, since any organized process can be projected as a workflow, the
proposed workflow model can facilitate the development of a common frame-
work for managing related processes in different domains. Such a framework can
promote understanding and application of cross-domain knowledge processing.

UMDISW: A Universal Multi-Domain Intelligent Scientific Workflow 165

4 The Structure and Execution of UMDISW

In order to eliminate the inconsistency between scientific data and methods in
different domains, the UMDISW proposed in this paper is transparent to the
bottom and inside, and can be divided into three layers to meet the needs of
different domains.

As shown in Fig. 2, UMDISW consists of three layers: Running Service Layer
(RSL), Workflow Execution Layer (WEL), and Data Resource Layer (DRL).
Each layer interacts with each other to complete the execution of the workflow
and save the information.

4.1 Running Service Layer

The Running Service Layer is the only open part of the UMDISW, located at
the top of the entire structure, providing a series of methods to interact with the
user. Its core function is to instantiate user-created workflow models and display
workflow information.

The RSL is web-based, thus allowing users to dynamically design workflows
on the browser and to support visual editing operations such as adding, copying,
dragging, and double-clicking on graphical elements representing components.
When the page is loaded, an area is first drawn in the page according to the
initialization incoming data as the working area of the workflow, and the related
components are instantiated. At this time, the user needs to click the component
to complete the binding operation of the data and the algorithm. When the above
operation is completed, the components and connect lines in the entire area will
be locked, and the workflow will be instantiated by the RSL and passed to the
WEL.

In addition, as a layer of display information, the RSL also supports the
relevant data information transmitted on the underlying layer and rendered on
the page.

4.2 Workflow Execution Layer

Workflow execution typically involves one pass of all modules modeled in the
workflow or the whole life cycle of scientific data. For such a loop, the workflow
starts from the initial state and is converted by all or part of the finite state
for each module. Workflow execution may be affected by a number of specific
factors, such as the value of various parameters, the final application, decision
logic, the execution engine, and the user’s input at a particular point in the
workflow. WEL is to implement the built-in or implicit logic in the workflow,
and to perform a cycle of the workflow. The WEL consists of two core modules:
Execution Engine and Scheduling Framework.

The Execution Engine’s responsibility is to obtain the workflow objects
instantiated in the RSL and combine them with the data and algorithms passed
by the Scheduling Framework to form an executable workflow. When the com-
bination is completed, the user selects whether to start executing the workflow.

166 Q. Sun et al.

If start, the Execution Engine starts executing the workflow until to the end or
an abnormality occurs in the middle. Therefore, workflow execution is based on
user-triggered events. When the execution ends, the execution engine passes the
results to the Scheduling Framework for further processing.

According to the previous description, one duty of the Scheduling Framework
is to pass data and algorithms to the Execution Engine to form an executable
workflow. In addition, the Scheduling Framework is responsible for further pro-
cessing the execution results, including passing it up to the RSL for visualiza-
tion, and passing it down to the DRL for storage. However, no matter what
processing is performed, the Scheduling Framework can form an information
flow corresponding to the workflow as shown in the right half of Fig. 2 according
to the original information and the result information, including the state of the
data, the update of the parameters, and the results of each subtask.

4.3 Data Resource Layer

Facing heterogeneous multi-source scientific data, the DRL implements the main-
tenance of multi-domain scientific data storage and algorithms. Due to the differ-
ent types of scientific data in different domains, this layer provides a variety types
of databases, including relational databases, non-relational databases, and graph
databases, and provides a unified access interface for data to achieve transparent
operations, including data input and output interface, algorithm call interface,
model save interface, etc. The information required by the other two layers are
stored in the DRL.

5 The Application Scenario of UMDISW

Depending on the application scenario, the UMDISW can be transformed into
different forms depending on the selection, including fully automated workflow,
semi-custom workflow, and fully custom workflow. The difference between these
three forms is that the amount of user interaction is different when building the
workflow.

5.1 Fully Automated Workflow

In many scientific fields, a set of specifications may have been formed for some
processes, and experts agree that the process is reasonable and will not change
the process when doing experiments. Based on this situation, the UMDISW can
form a template workflow based on domain specifications. The template work-
flow defines the corresponding tasks and subtasks according to the requirements
of the experts, and the location of the data nodes and algorithm nodes also
have corresponding requirements, and the data flow and information flow in the
template workflow need to meet the domain specifications.

For the template workflow, the user only needs to select the workflow tem-
plate in advance, and then the fully automated workflow as shown in the Fig. 3

UMDISW: A Universal Multi-Domain Intelligent Scientific Workflow 167

will appear on the RSL. Figure 3 shows the gravitational wave data process-
ing workflow. Each subtask, data node, algorithm node and information flow in
the workflow are pre-defined. The user only needs to specify the data address
corresponding to the data node, and then click to start running. The template
workflow automatically obtains the data of the specified address from the DRL,
and then passes the template instance and data to the WEL to complete the
workflow execution, and finally return the result to the RSL to complete the
display of the information flow.

Fig. 3. Fully automated workflow

One use of this fully automated workflow is to examine the generalization
capabilities of the same set of algorithms or processes for different data. Because
the subtasks of the template workflow are fixed, the effect of the workflow in
this case can be compared when accepting different data.

5.2 Semi-custom Workflow

In addition to the above-mentioned domain specification process, scientists may
also customize a scientific data analysis process. The workflow in this application
scenario is called a semi-custom workflow. The workflow requires the user to
define the number of steps of the workflow, data nodes and algorithm nodes,
and then RSL will generate the specified workflow based on these parameters.
However, it should be noted that the algorithms and data corresponding to the
subtasks of the created workflow are empty, and the user needs to select the
required algorithms and data. The selection steps are the same as mentioned
above. The information flow is also displayed by the WEL.

One function of this semi-custom workflow is to compare the results of the
same data in the case of different algorithms. As shown in Fig. 4, these two semi-
custom workflows built for users have the same structure, including the number
of steps and input data, the only difference is that the subtasks, the subtask in
Superalloy Experiment 1 is to analyze data A using the SVM algorithm, while
the subtask in Superalloy Experiment 2 is to analyze data A using the random
forest algorithm, returning the results to Info1 and Info2 respectively, to compare
the effects of using different algorithms when processing the same data.

168 Q. Sun et al.

Fig. 4. Semi-custom workflow

5.3 Fully Custom Workflow

Fully custom workflows have a higher degree of freedom than semi-custom work-
flows. This is reflected in the fact that such workflows do not provide users with
the generation of related components, and users can drag and drop to display on
the RSL with their own needs, and connect the components using connectors.
Of course, each node of the workflow at this time is still empty, so the user needs
to select the corresponding data and algorithm. It is worth noting that after the
user uses such a workflow and selects the data corresponding to the data node,
the Scheduling Framework in the WEL intelligently recommends the appropri-
ate machine learning algorithm according to the data selected by the user. So
this kind of workflow is designed to provide users with an intelligent algorithm
selection tool compared to the above two workflows, reducing the workload of
users when conducting scientific experiments.

The recommended logic for machine learning algorithms is shown in Fig. 5.
The data is first preprocessed into a conforming format, and then the data is
parsed to see if feature reduction processing is required. If necessary, workflow
will recommend the feature dimension reduction method of unsupervised learn-
ing class, such as FA, PCA, LDA and other topic model algorithms, or select
Lasso, Ridge which are depending on the number of samples. If feature dimen-
sionality reduction is not required, it will check if the dataset have decision
attributes. If not, it will recommend clustering methods of unsupervised learn-
ing class, and recommend clustering algorithms such as k-means, hierarchical
clustering, and FCM as needed. If there is a decision attribute, it will check
whether the decision data belongs to a discrete class or a continuous class. If it
belongs to the continuous class, workflow will recommend the regression method
of supervised learning class, and recommend SVR, RF, Adaboost and other algo-
rithms depending on the sample attributes. If the decision attribute is a discrete
class, it will be recommended according to the sample type, if sample is image
data, CNN is recommended, if it is time series data, RNN is recommended, and
so on.

Of course, these recommended algorithms are just to give users a reference
to help users make decisions. However, in practical applications, it can be found
that this intelligent and fully custom workflow with recommendation mechanism
does reduce the experimental steps, experiment time and workload for users who

UMDISW: A Universal Multi-Domain Intelligent Scientific Workflow 169

Fig. 5. The mechanism of intelligently recommending algorithms

do scientific experiments. Most importantly, it also plays a great role in exploring
new scientific discoveries.

6 The Implementation of UMDISW

Since the proposal of UMDISW is based on previous research on the architecture
of multi-domain scientific big data management system, the implementation of
UMDISW is also dependent on the implementation and deployment of the archi-
tecture.

After integrating the content of the UMDISW into the architecture, the
deployment of the entire architecture is updated as shown in Fig. 6. And as
mentioned earlier, our proposed UMDISW is located in the AFA area.

As shown in Fig. 6, AFA consists of two subsystems: Spark as a workflow tool
and gooFlow as a workflow manager. GooFlow is a UI component used to design
flowcharts on the web page. It is based on Jquery development, and the great
user experience makes the interface very easy to use. As a new generation of
distributed processing framework, Spark’s memory-based computing can speed
up the execution of workflows, and it has an excellent machine learning library
MLlib, which can be used as a tool for data analysis. The asset loader in the com-
ponent diagram is replaced by an adapter “QFA-AFA Adapter”. GooFlow also
integrates the Spark tool with another adapter, the “Spark-gooFlow Adapter”.

As can be seen from the deployment diagram, AFA connects to Bootstrap
through the adapter “QFA-AFA Adapter” and the interface “asset provider”.
Through adapters and interfaces, gooFlow can get the data and algorithms
stored in SAA that scientists want to experiment with. For the visualization
of the workflow, gooFlow can be presented directly to the “Chinese visCloud” or
Bootstrap via the interface “pipeline provider” and the adapter “Visualization

170 Q. Sun et al.

Fig. 6. The deployment of architecture and the implementation of UMDISW

Adapter”. At the same time, the UMDISW also obtains the basic services and
resource management functions in the BSFA through the interface “Basic service
provider” and adapters.

7 Conclusion

Managing scientific data from a whole life cycle perspective is very helpful in
mining the value of it. This paper proposes a General Multi-Domain Intelligent
Scientific Workflow to help scientists create scientific value by dividing the whole
life cycle steps.

The highlight of this article is: (1) using graphics and descriptors to model
scientific workflows, eliminating the differences in heterogeneous scientific data,
and building a universal framework to support consistency in multi-domain data
processing; (2) transparency of the underlying architecture enables scientists
to focus on high-level experimental design, reducing the time cost of learning
and using the workflow; (3) incorporating a data-driven mechanism to intelli-
gently recommend algorithms, reducing the amount of labor required for scien-
tists to experiment and providing decision support for exploring new scientific
discoveries.

Acknowledgments. This work is supported by the National Key Research and Devel-
opment Plan of China (Grant No. 2016YFB1000600 and 2016YFB1000601).

References

1. Andreeva, J., Campana, S., Fanzago, F., Herrala, J.: High-energy physics on the
grid: the ATLAS and CMS experience. J. Grid Comput. 6(1), 3–13 (2008)

UMDISW: A Universal Multi-Domain Intelligent Scientific Workflow 171

2. Chen, J., Wang, W., Zi-Yang, L.I., An, L.I.: Landsat 5 satellite overview. Remote
Sens. Inf. 43(3), 85–89 (2007)

3. Bengtsson-Palme, J., et al.: Strategies to improve usability and preserve accuracy
in biological sequence databases. Proteomics 16(18), 2454–2460 (2016)

4. Ivanova, M., Nes, N., Goncalves, R., Kersten, M.: MonetDB/SQL meets SkyServer:
the challenges of a scientific database. In: International Conference on Scientific
and Statistical Database Management, p. 13 (2007)

5. C. T. P. Team: Paradise: a database system for GIS applications. In: ACM SIG-
MOD International Conference on Management of Data, p. 485 (1995)

6. Patterson, T.C.: Google earth as a (not just) geography education tool. J. Geogr.
106(4), 145–152 (2007)

7. Suchanek, F.M., Weikum, G.: Knowledge bases in the age of big data analytics.
Proc. VLDB Endow. 7(13), 1713–1714 (2014)

8. Schwartz, D.G., Te’Eni, D.: Encyclopedia of knowledge management. Online Inf.
Rev. 5(3), 315–316 (2006)

9. Moreau, L., et al.: The open provenance model core specification (v1.1). Future
Gener. Comput. Syst. 27(6), 743–756 (2011)

10. Batch control part 1: models and terminology (1995)
11. Reichert, M., Rinderle, S., Dadam, P.: On the modeling of correct service flows

with BPEL4WS. In: EMISA 2004, Informations system in E-Business und E-
Government, Beiträge des Workshops der GI-Fachgruppe EMISA, 6–8 October
2004, Luxemburg, pp. 117–128 (2004)

12. Taylor, I., Shields, M., Wang, I., Harrison, A.: Visual grid workflow in Triana. J.
Grid Comput. 3(3–4), 153–169 (2005)

13. Altintas, I., Berkley, C., Jaeger, E., Jones, M., Ludascher, B., Mock, S.: Kepler:
an extensible system for design and execution of scientific workflows. In: SSDBM,
pp. 423–424 (2004)

14. Turi, D., Missier, P., Goble, C., De Roure, D., Oinn, T.: Taverna workflows: syntax
and semantics. In: IEEE International Conference on e-Science and Grid Comput-
ing, pp. 441–448 (2008)

15. Sun, Q., Liu, Y., Tian, W., Guo, Y., Lu, J.: Multi-domain and sub-role oriented
software architecture for managing scientific big data. In: Ren, R., Zheng, C., Zhan,
J. (eds.) SDBA 2018. CCIS, vol. 911, pp. 111–122. Springer, Singapore (2019).
https://doi.org/10.1007/978-981-13-5910-1 10

https://doi.org/10.1007/978-981-13-5910-1_10

MiDBench: Multimodel Industrial Big
Data Benchmark

Yijian Cheng1,2, Mengqian Cheng1,2, Hao Ge1,2, Yuhe Guo1,2, Yuanzhe Hao1,2,
Xiaoguang Sun1,2, Xiongpai Qin1,2(B), Wei Lu1,2, Yueguo Chen1,2,

and Xiaoyong Du1,2

1 Key Laboratory of Data Engineering and Knowledge Engineering (MOE),
Beijing, China

2 School of Infomation, Renmin University of China, Beijing, China
{yijiancheng,chengmq,gh daniel,guoyuhe,haoyuanzhe,xg.sun,qxp1990,

lu-wei,chenyueguo,duyong}@ruc.edu.cn
Abstract. Driven by the increasing industrial data over decades, big
data systems have evolved rapidly. The diversity and complexity of indus-
trial applications raise great challenge for companies to choose appropri-
ate big data systems. Therefore, big data system benchmark becomes a
research hotspot. Most of the state-of-the-art benchmarks focus on spe-
cific domains or data formats.

This paper presents our efforts on multimodel industrial big data
benchmark, called MiDBench. MiDBench focuses on big data systems in
crane assembly, wind turbines monitoring and simulation results man-
agement scenarios, which correspond to bills of materials (a.b.a BoM),
time series and unstructured data format respectively. Currently, we have
chose and developed eleven typical workloads of these three types appli-
cation domains in our benchmark suite and we generate synthetic data
by scaling the sample data. For the sake of fairness, we chose widely
acceptable throughput and response time as metrics. Through the above
we have established a set of benchmark applicable to high-end man-
ufacturing with high credibility. Overall, experiment results show that
Neo4j (representing graph database) performs better than Oracle (rep-
resenting relation database) for processing BoM data. IotDB is better
than InfluxDB in time series data for query and stress test. MongoDB
performs better than ElasticSearch in simulation results management
domain.

Keywords: Industrial · BoM · Time series · Unstructured

1 Introduction

The spurt of data in high-end manufacturing has brought a great number of big
data systems. Big data systems can manage data and extract value from them.
Therefore, many big data systems emerged. In addition to traditional relational
databases such as MySQL [5] and Oracle [7] to manage structured data, there

The original version of this chapter was revised: the url link was cor-
rected in reference 3. The correction to this chapter is available at
https://doi.org/10.1007/978-3-030-32813-9 21

c© Springer Nature Switzerland AG 2019, corrected publication 2021
C. Zheng and J. Zhan (Eds.): Bench 2018, LNCS 11459, pp. 172–185, 2019.
https://doi.org/10.1007/978-3-030-32813-9_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32813-9_15&domain=pdf
https://doi.org/10.1007/978-3-030-32813-9_21
https://doi.org/10.1007/978-3-030-32813-9_15

MiDBench: Multimodel Industrial Big Data Benchmark 173

are also many non-relational types, such as Neo4j [6] for graph data, InfluxDB
[2] and IotDB [3] for time series data, MongoDB [4] and Elasticsearch [1] for
unstructured data and so on. Such a large number of big data systems raise
great challenge in choosing big data systems for companies.

It is of profound significance to establish a unified assessment benchmark
for high-end manufacturing big data processing systems. Most of the state-of-
the-art big data system benchmarks target specific data types or application
scenarios. [9,10,12] pay attention to structured data, [16] targets graph data,
[30] targets XML data and [8] targets time series data. Internet Services oriented
BigDataBench [29] covers both structured and unstructured data. They may not
be suitable in high-end manufacturing scenarios.

Here we present our benchmark IndustrialBigDataBench for high-end man-
ufacturing. After investigating some kinds of scenarios, we chose three typical
application domains which cover crane assembly, wind turbines monitoring and
simulation results management scenarios to build our benchmark. The three
most important factors to establish an effective benchmark are data generators,
workloads, and metrics. Reasonable design of these three factors can make the
benchmark more credible. The basic requirements of the generator is that it
should generate datasets of various data sizes while keeping the characteristics
of sample data. Therefore, we investigated BoM data for crane production, time
series data for wind turbines monitoring and unstructured (such as json, xml
and text) data for simulation result in high-end manufacturing and then model
and scale these sample data.

The diversity and complexity of the requirements in high-end manufacturing
make it difficult to investigate typical workloads. Finally, we chose and developed
eleven typical workloads of these three types application domains through in-
depth and detailed investigation.

For the sake of fairness, we need to choose a credible metrics. This mainly
depends on the application scenarios. Different scenarios may focus on one or
more of throughput, response time, and CPU or memory consumption. We select
throughput and response time to judge the performance of different big data
systems.

We used our benchmark to test different systems, and obtained the perfor-
mance results of these big data processing systems in high-end manufacturing.
Results show that Neo4j is better than Oracle in terms of import and query,
which proves that Neo4j is more suitable for managing BoM data. In terms
of time series data, InfluxDB performs almost equally with IotDB for data
appending and data appending while querying, but IotDB performs better than
InfluxDB for querying and querying while appending in both throughput and
response time. MongoDB is better than Elasticsearch in dealing with unstruc-
tured data.

The rest of this paper is organized as follows. In Sect. 2, we discuss big data
benchmarking requirements. Section 3 presents related work. Section 4 sumarizes
our benchmarking methodology. Section 5 presents how we synthesize big data.
Section 6 characterize experiments. Finally, we draw the conclusion in Sect. 7.

174 Y. Cheng et al.

2 Big Data Benchmarking Requirements

This section discuss data generator, workloads and metrics, three important
points for benchmarking [18].

Data generator is an important part of a benchmark. A good generator is
capable of highly fitting sample data and generating data similar to sample data
in terms of distribution, density and hierarchical relationship. Data generators
can simulate real data better by using algorithms, probability distribution func-
tions and so on.

Workload is used to measure the performance of big data processing sys-
tems. The results are obtained by executing the workload, and the differences
between big data processing systems are judged according to the comparison of
results. Therefore, the selection of query load becomes a guarantee of benchmark
reliability.

Big data benchmarks must include diversity of data and workloads, which
is the prerequisite for evaluating big data systems and architectures. The main
function of benchmark is to test the big data system and judge the system perfor-
mance by analyzing the results. But the prerequisite is that we have to establish
a set of indicators. Different systems have different emphasis, such as time cost,
throughput, CPU and memory consumption. However, the final selection of met-
rics depends on the real scenario requirement, which is an important basis for
measurement selection.

3 Related Work

Benchmarks have been developing continuously, from the early relational
database benchmark [9,10,12] to big data benchmark [19–22] in the past few
decades.

TPC-H [13] and TPC-DS [11] are two typical representatives of big data
benchmarks for relational database. TPC-H simulates the behaviors of purchas-
ing and ordering in the actual scenario, and selects 24 complex queries and
update statements.

TPC-DS is designed for decision support applications. Its schema uses the
shared multi-snowflake schema. The dataset consists of 24 tables, and the work-
loads contain 99 randomly replaceable SQL queries. It chooses the number of
queries executed per hour and the cost-effectiveness of the number of queries exe-
cuted per hour as metrics. SetQuery [27] is also a typical benchmark extracted
from multiple typical application scenarios. Its dataset consists of only one table,
and workloads consist of six queries that contain an aggregate function.

Of course, some of the benchmarks are for non-closed databases [14,15,25,26].
XBench [30] is a family of XML benchmarks which recognizes that the XML
data are quite varied and no one database schema and workload can properly
capture this variety. XMach-l [17] is a multi-user benchmark that is based on a
Web application and considers text documents and catalog data. Compared to
XMach-l, XMark [28] provides a more comprehensive set of queries, but it has no
support for XML schema. These three are unstructured database benchmarks.

MiDBench: Multimodel Industrial Big Data Benchmark 175

Fig. 1. The Architecture of IndustrialBigDataBench

XOO7 [23] is designed to test the efficiency of object-oriented DBMS.
LinkBench [16] is based on traces from production databases that store “social
graph” data at Facebook, a major social network. Time Series Benchmark Suite
(TSBS) [8] was designed for benchmarking several time series databases, includ-
ing TimescaleDB, MongoDB, InfluxDB, and Cassandra. BigDataBench [29] is
a comprehensive benchmark which consists of BDGS [24] and BigOP [31], not
only covers broad application scenarios, but also includes diverse and represen-
tative datasets. It can deal with structured data, unstructured data and semi-
structured data.

4 Our Benchmarking Methodology

This section presents our methodology on IndustrialBigDataBench.
Our benchmark is designed according to the requirements mentioned in

Sect. 2 and the architecture is shown in Fig. 1.
A good benchmark can help to choose a more suitable system for people. It

needs to select the typical datasets and workloads from the diversity of the appli-
cation scenarios. Therefore, we choose three scenarios of high-end manufacturing
and conducted detailed analysis.

4.1 BoM Data Scenario Analysis

BoM is a widely used data format in high-end manufacture, which can be used
to analyze the interdependence between parts, compare structural differences
between products, track product changes, develop a procurement plan and so
on.

We obtain the BoM data of assembling a crane from a company. The BoM
data contains a total of 7 layers, each of which has a complex structure and a
wide variety of components. Then, we analyze the distribution of the BoM data’s
vertexes and edges. Finally we generate synthetic datasets by scaling the sample
data.

176 Y. Cheng et al.

To consider workloads candidates, we investigate four widely used types
of queries in crane assembly, which are mainly divided into the following
where used, generate structure, and structure diff, structure aggr.

(1) where used is used to search for the usage of a part in the BoM.
(2) generate structure is to used to generate the overall structure of a product.
(3) structure diff is used to compare the differences between the two structures.
(4) structure aggr is to used to obtains purchase plan and part borrowing lists.

4.2 Analysis of Time Series Data Scenario

Time series data is ubiquitous in various monitoring scenarios. A large number of
time series data will be produced in wind turbines monitoring every day. Making
good use of these data can help us to find and solve problems such as device
failure timely.

We use real monitor data provided by a company to train the wind model,
simulate the power generation according to the cut-in and cut-out of the fan,
and the energy conversion mechanism.

The following four are the most frequent workloads after investigating the
companies’ daily operations, including data loading, data appending, query test-
ing and stress testing.

(1) data loading generates sensor data for one month, then tests the import
performance of the target database.

(2) data appending continuously increases the number of devices to append data
to the target database.

(3) query testing including simple window range queries and aggregated queries
by time, which serves the purposes of monitoring and problem diagnosis.

(4) stress testing including two modes, i.e. increase the number of query with
background data appending, and increase the number of devices to append
data with background querying.

4.3 Unstructured Data Scenario Analysis

Simulation is an indispensable part in high-end manufacture, which will generate
kinds of unstructured data consists of JSON, XML and text format. We generate
the simulation files according to the type, size and quantity of the real simulation
files.

How we can timely obtain massive simulation files, efficiently manage them
and perform exception data detection are the main tasks in the current simula-
tion. Through the refinement of the management scenarios of massive simulation
files in the manufacturing industry, we designed the following workloads.

(1) data transmission including data generation and file uploading.
(2) simple query including detection on the currently uploaded file, annotat-

ing the exception file, analyzing and calculating the statistical value of the
abnormal file.

MiDBench: Multimodel Industrial Big Data Benchmark 177

Table 1. BoM DataSets

DataSet name (Item,Edge) Size

DataSet1 (40w,1300w) 700M

DataSet2 (70w,2900w) 1.5G

DataSet3 (100w,4900w) 2.5G

DataSet4 (150w,9700w) 5G

Table 2. Time Series DataSets

Rule Proportion Number of sensors Number of data points Size

Sine 0.036 6 222171429 9.08G

Constant 0.352 53 1962514286 80.17G

Random 0.512 77 2851200000 116.47G

Saw-Tooth 0.054 8 296228571 12.10G

Square-Wave 0.054 8 296228571 12.10G

(3) complex query including version management test, abnormal file detection
test, hot-file query test and other load tests with features. It can be used to
meet users’ evaluation requirements in different levels.

5 Synthetic Data Generation

Generating scalable dataset is an important factors to be considered for a bench-
mark. Our IndustrialBigDataBench can generate three types of scalable datasets
such as BoM data, time series data and unstructured data based on the raw data
we investigated from diverse scenarios.

For the generation of BoM data, the data generator carries out statistical
analysis of sample data and collect it, then analyzes the data distribution of the
collected data. After that, we generate synthetic data by scaling the sample data
with the characteristics. The BoM datasets we generated are shown in Table 1
(“w” in Table 1 refers to “ten thousand”).

For the generation of time series data, we use the real data provided by a
company to train the wind model, simulate the power generation and generate
relevant data according to the cut-in and cut-out of the fan and the energy con-
version mechanism. For other sensors such as temperature and humidity which
are seasonal, we use ARIMA model to train and generate data from the real
data. The time series datasets generated are shown in Table 2.

For unstructured data, we have realized the rapid generation of massive small
files according to the characteristics of high-end manufacture. We can generate
a large number of files of different sizes and corresponding metadata files in a
short period of time. The unstructured datasets generated are shown in Table 3.

178 Y. Cheng et al.

Table 3. Unstructured DataSets

Parameters File distribution Exception file Num. of file

Number of Device 50 1.8MB 1.1MB 0.4MB

Original dataset Wind speed 10% 20% 70% 10% 1500

Power Gen. efficiency 10% 20% 70% 10% 1500

Power transmission 10% 20% 70% 10% 1500

Increment dataset Wind Speed 10% 20% 70% 10% 1000

Power Gen. efficiency 10% 20% 70% 10% 1000

Power transmission 10% 20% 70% 10% 1000

Fig. 2. Performance comparison for Import between Neo4j and Oracle

6 Workload Characterization Experiments

In this section, we present our experiments on different big data systems using
IndustrialBigDataBench and demonstrate the performance comparison of differ-
ent big data systems in high-end manufacturing scenarios. Our experiments are
conducted on a server with Xeon E5-2620 processor, 32 GB memory, 2 TB HDD
and the CPU frequency is 2.00 GHz.

6.1 Performance Tests on BoM Database Systems

We test the import and query performance of Neo4j and Oracle to judge the their
abilities to process BoM data. The import performance of the two under different
datasets are shown in Fig. 2. We can learn that Neo4j always maintains less time
consumption. Oracle takes more time than Neo4j and time cost increases as the
amount of data increasing.

We also execute the following four types of workloads, query the usage of the
nodes (where used), generate all structures from a node (generate structure),
compare the differences between two structures (structure diff), structure aggre-
gation and statistics (structure aggr), and make performance evaluation through
time consumption. The result are shown in Fig. 3.

We found that only the first query could run successfully(response time less
than two hours) on Oracle, and the others could not finish on any other datasets.
Furthermore, the first three queries will take much longer to execute on Oracle

MiDBench: Multimodel Industrial Big Data Benchmark 179

Fig. 3. Performance comparison for Query between Neo4j and Oracle

than on Neo4j. The results prove the deficiency of relational database in dealing
with graph data.

6.2 Performance Tests on Time Series Database Systems

The workloads of the timing series database, include data loading, data append-
ing, query testing and stress testing.

In terms of data import, we first generate historical data of sensor for wind
power plants during one month and save it in a file. Then load the data into
memory and import it. We find that both InfluxDB and IotDB achieve 100%
successful data import, but IotDB is better than InfluxDB in compression ratio
and maximum import performance.

In terms of data appending, the write pressure increases as the number of
requested clients increase. The results are shown in Fig. 4. We can learn that as
the number of client threads increases, the throughput of the two continues to
increase. When the number of clients reaches 300–500, the throughput of IotDB
increases slowly while InfluxDB is still increasing.

The query test results are shown in Fig. 5. We can learn that the throughputs
of the two increase as the number of client threads increases. In the case of 200
clients, the throughput of InfluxDB has reached saturation and the response
time is more longer. So IotDB is better than InfluxDB in both throughput and
response time.

We conduct stress testing which is divided into two modes on the target
databases. The results are show in Fig. 6. The throughput of appending perfor-

180 Y. Cheng et al.

Fig. 4. Performance comparison for Data Append between IotDB and InfluxDB

Fig. 5. Performance comparison for Query between IotDB and InfluxDB

mance with background querying is shown in Fig. 6(a). As the number of client
threads increases, the throughput of both databases continues to increase, but
InfluxDB has the best throughput. In terms of response time with background
querying shown in Fig. 6(b), for IotDB, when the number of clients reaches close
to 500, the response time of the appending operation increases. InfluxDB, with a
small number of clients, has a comparable throughput to IotDB, but the response
time is weaker than IotDB. When the number of clients continues to increase,
IotDB performs better in terms of throughput and response time.

For the querying test with background appending, as the number of client
threads increases, the throughput of the two databases as shown in Fig. 6(c) con-
tinues to increase. When the number of clients reaches 180, InfluxDB throughput
has reached saturation, while IotDB does not. At the same time, the response
time of InfluxDB far exceeds IotDB. We conclude that IotDB performs better
than InfluxDB.

6.3 Performance Tests on Unstructured Database Systems

Through analysis of the management scenarios of massive simulation files in the
manufacturing industry, we summarize the following requirements, which are
divided into three categories, including data transmission test, simple query test

MiDBench: Multimodel Industrial Big Data Benchmark 181

Fig. 6. Performance comparison for Stress Testing between InfluxDB and IotDB

and complex query test. Besides that version management test, abnormal file
detection test, and hot-file query test meet users’ evaluation requirements.

Data transmission test includes the import and export operation of binary
and metadata files, measured by throughput. The results are shown in Fig. 7. We
find that MongoDB’s throughput is higher than Elasticsearch, and in general,
the export speed of binary and metadata files is faster than the import speed.

The query load test includes seven types of test. The results of query test on
MongoDB and Elasticsearch are shown in Fig. 8 (Q1–Q7 represent seven types
of queries respectively). We can learn that the throughput of MongoDB is higher
than Elasticsearch, especially in query for discrete-valued and query for range-
valued, the advantage of throughput is more obvious.

Sorting load test includes the sorting of numeric values, the sorting of strings,
and the sorting of time. The results of sorting load test on MongoDB and Elastic-
search are shown in Fig. 9 (Q1–Q3 respectively represent three types of sorting
query). We learn that the throughput of Elasticsearch is slightly higher than
MongoDB for the sorting of numeric values. For the sorting of strings and the
sorting of time, the throughput of MongoDB is more than twice higher than
Elasticsearch.

Statistical value calculation includes average calculation, minimum calcula-
tion and maximum calculation.

The results of the statistical value calculation are shown in Fig. 10 (Q1–Q3
respectively represent three types of statistical values calculation load). From

182 Y. Cheng et al.

Fig. 7. Performance comparison for Import and Export between MongoDB and
Elasticsearch

Fig. 8. Performance comparison for Query between MongoDB and Elasticsearch

Fig. 9. Performance comparison for Sorting between MongoDB and Elasticsearch

MiDBench: Multimodel Industrial Big Data Benchmark 183

the result, we can learn that MongoDB can support the load of statistical values
calculation, while Elasticsearch does not support that.

For the average calculation, the throughput is 0.37 piece/ms, which is very
low. For the minimum calculation and maximum calculation, the throughput of
MongoDB is up to 20 piece/ms, which is high.

Fig. 10. Performance comparison for Statistics between MongoDB and Elasticsearch

Unfortunately, for version management, exception file detection and hot-file
workloads, neither MongoDB nor Elasticsearch supports them.

7 Conclusion

In this paper, we propose a benchmark based on high-end manufacturing domain.
We build our generator by analyzing the sample data of real system and we make
a trade-off between choosing different types of workloads from typical scenarios.
Also, we make our metrics referring to the real need of different application
scenarios. We use the real datasets as the seed and generate synthetic data by
scaling the seed data while keeping the characteristics of raw data. And we
use our workloads to test different big data systems and finally make a credible
performance evaluation of each big data system. Finally, we give our performance
comparisons for each big data system.

Acknowledgment. The work is partially supported by the Ministry of Science
and Technology of China, National Key Research and Development Program (No.
2016YFB1000702), and the NSF China under grant No. 61432006. You can visit our
MiDBench at https://github.com/dbiir/MiDBench.

References

1. Elasticsearch. https://www.elastic.co/
2. InfluxDB. https://www.influxdata.com/
3. IoTDB. https://iotdb.apache.org/

https://github.com/dbiir/MiDBench
https://www.elastic.co/
https://www.influxdata.com/
https://iotdb.apache.org/

184 Y. Cheng et al.

4. MongoDB. https://www.mongodb.com/
5. MySQL. https://www.mysql.com
6. Neo4j. https://neo4j.com/
7. Oracle. https://www.oracle.com
8. Time series benchmark suite (TSBS). https://github.com/timescale/tsbs
9. TPC.TPC-A, June 1994. http://www.tpc.org/tpca/spec/tpca current.pdf

10. TPC.TPC-C, February 2010. http://www.tpc.org/tpc documents current
versions/pdf/tpc-c v5.11.0.pdf

11. TPC.TPC-DS, November 2015. http://www.tpc.org/tpc documents current
versions/pdf/tpc-ds v2.1.0.pdf

12. TPC.TPC-E, April 2015. http://www.tpc.org/tpc documents current versions/
pdf/tpc-e v1.14.0.pdf

13. TPC.TPC-H, November 2014. http://www.tpc.org/tpc documents current
versions/pdf/tpc-h v2.17.1.pdf

14. Anderson, T.L., Berre, A.J., Mallison, M., Porter, H.H., Schneider, B.: The Hyper-
Model benchmark. In: Bancilhon, F., Thanos, C., Tsichritzis, D. (eds.) EDBT 1990.
LNCS, vol. 416, pp. 317–331. Springer, Heidelberg (1990). https://doi.org/10.1007/
BFb0022180

15. Arasu, A., et al.: Linear road: a stream data management benchmark. In: Proceed-
ings of the Thirtieth International Conference on Very Large Data Bases, VLDB
2004, vol. 30, pp. 480–491. VLDB Endowment (2004). http://dl.acm.org/citation.
cfm?id=1316689.1316732

16. Armstrong, T.G., Ponnekanti, V., Borthakur, D., Callaghan, M.: LinkBench: a
database benchmark based on the Facebook social graph. In: Proceedings of the
2013 ACM SIGMOD International Conference on Management of Data, SIGMOD
2013, pp. 1185–1196. ACM, New York (2013). https://doi.org/10.1145/2463676.
2465296

17. Böhme, T., Rahm, E.: Multi-user evaluation of XML data management systems
with XMach-1. In: Bressan, S., Lee, M.L., Chaudhri, A.B., Yu, J.X., Lacroix, Z.
(eds.) Efficiency and Effectiveness of XML Tools and Techniques and Data Inte-
gration over the Web. LNCS, vol. 2590, pp. 148–159. Springer, Heidelberg (2003).
https://doi.org/10.1007/3-540-36556-7 12

18. Jin, C.-Q., Qian, W.-N., Zhou, M.-Q., Zhou, A.-Y.: Benchmarking data manage-
ment systems: from traditional database to emergent big data. Chin. J. Comput.
(2014). http://cjc.ict.ac.cn/online/bfpub/jcq-2014430143239.pdf

19. Ferdman, M., et al.: Clearing the clouds: a study of emerging scale-out work-
loads on modern hardware, pp. 37–48 (2012). https://www.industry-academia.org/
download/ASPLOS12 Clearing the Clouds.pdf

20. Ghazal, A., et al.: BigBench: towards an industry standard benchmark for big data
analytics. In: Proceedings of the 2013 ACM SIGMOD International Conference on
Management of Data, SIGMOD 2013, pp. 1197–1208. ACM, New York (2013).
https://doi.org/10.1145/2463676.2463712

21. Huang, S., Huang, J., Dai, J., Xie, T., Huang, B.: The HiBench benchmark suite:
characterization of the MapReduce-based data analysis. In: 2010 IEEE 26th Inter-
national Conference on Data Engineering Workshops (ICDEW 2010), pp. 41–51,
March 2010. https://doi.org/10.1109/ICDEW.2010.5452747

22. Jia, Z., Wang, L., Zhan, J., Zhang, L., Luo, C.: Characterizing data analysis work-
loads in data centers. In: 2013 IEEE International Symposium on Workload Char-
acterization (IISWC), pp. 66–76, September 2013. https://doi.org/10.1109/IISWC.
2013.6704671

https://www.mongodb.com/
https://www.mysql.com
https://neo4j.com/
https://www.oracle.com
https://github.com/timescale/tsbs
http://www.tpc.org/tpca/spec/tpca_current.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-ds_v2.1.0.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-ds_v2.1.0.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-e_v1.14.0.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-e_v1.14.0.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.17.1.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.17.1.pdf
https://doi.org/10.1007/BFb0022180
https://doi.org/10.1007/BFb0022180
http://dl.acm.org/citation.cfm?id=1316689.1316732
http://dl.acm.org/citation.cfm?id=1316689.1316732
https://doi.org/10.1145/2463676.2465296
https://doi.org/10.1145/2463676.2465296
https://doi.org/10.1007/3-540-36556-7_12
http://cjc.ict.ac.cn/online/bfpub/jcq-2014430143239.pdf
https://www.industry-academia.org/download/ASPLOS12_Clearing_the_Clouds.pdf
https://www.industry-academia.org/download/ASPLOS12_Clearing_the_Clouds.pdf
https://doi.org/10.1145/2463676.2463712
https://doi.org/10.1109/ICDEW.2010.5452747
https://doi.org/10.1109/IISWC.2013.6704671
https://doi.org/10.1109/IISWC.2013.6704671

MiDBench: Multimodel Industrial Big Data Benchmark 185

23. Li, Y.G., et al.: XOO7: applying OO7 benchmark to xml query processing tool. In:
Proceedings of the Tenth International Conference on Information and Knowledge
Management, CIKM 2001, pp. 167–174. ACM, New York (2001). https://doi.org/
10.1145/502585.502614

24. Ming, Z., et al.: BDGS: a scalable big data generator suite in big data bench-
marking. In: Rabl, T., Jacobsen, H.-A., Raghunath, N., Poess, M., Bhandarkar,
M., Baru, C. (eds.) WBDB 2013. LNCS, vol. 8585, pp. 138–154. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-10596-3 11

25. Myllymaki, J., Kaufman, J.: DynaMark: a benchmark for dynamic spatial indexing.
In: Chen, M.-S., Chrysanthis, P.K., Sloman, M., Zaslavsky, A. (eds.) MDM 2003.
LNCS, vol. 2574, pp. 92–105. Springer, Heidelberg (2003). https://doi.org/10.1007/
3-540-36389-0 7

26. Nicola, M., Kogan, I., Schiefer, B.: An XML transaction processing benchmark. In:
Proceedings of the 2007 ACM SIGMOD International Conference on Management
of Data, SIGMOD 2007, pp. 937–948. ACM, New York (2007). https://doi.org/10.
1145/1247480.1247590

27. O’Neil, P.E.: The set query benchmark. In: The Benchmark Handbook (1991)
28. Schmidt, A., Waas, F., Kersten, M., Carey, M.J., Manolescu, I., Busse, R.: XMark:

a benchmark for XML data management. In: Proceedings of the 28th International
Conference on Very Large Data Bases, VLDB 2002, pp. 974–985. VLDB Endow-
ment (2002). http://dl.acm.org/citation.cfm?id=1287369.1287455

29. Wang, L., et al.: BigDataBench: a big data benchmark suite from internet services.
CoRR abs/1401.1406 (2014). http://arxiv.org/abs/1401.1406

30. Yao, B.B., Özsu, M.T., Khandelwal, N.: XBench benchmark and performance test-
ing of XML DBMSs. In: Proceedings of the 20th International Conference on Data
Engineering, ICDE 2004, pp. 621–632. IEEE Computer Society, Washington, DC
(2004). http://dl.acm.org/citation.cfm?id=977401.978145

31. Zhu, Y., et al.: BigOP: generating comprehensive big data workloads as a bench-
marking framework. In: Bhowmick, S.S., Dyreson, C.E., Jensen, C.S., Lee, M.L.,
Muliantara, A., Thalheim, B. (eds.) DASFAA 2014. LNCS, vol. 8422, pp. 483–492.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05813-9 32

https://doi.org/10.1145/502585.502614
https://doi.org/10.1145/502585.502614
https://doi.org/10.1007/978-3-319-10596-3_11
https://doi.org/10.1007/3-540-36389-0_7
https://doi.org/10.1007/3-540-36389-0_7
https://doi.org/10.1145/1247480.1247590
https://doi.org/10.1145/1247480.1247590
http://dl.acm.org/citation.cfm?id=1287369.1287455
http://arxiv.org/abs/1401.1406
http://dl.acm.org/citation.cfm?id=977401.978145
https://doi.org/10.1007/978-3-319-05813-9_32

Modelling and Prediction

Power Characterization of Memory
Intensive Applications: Analysis

and Implications

Yeliang Qiu1,2, Congfeng Jiang1,2(B), Tiantian Fan1,2, Yumei Wang1,2,
Liangbin Zhang3, Jian Wan4, and Weisong Shi5

1 Key Laboratory of Complex Systems Modeling and Simulation,
Ministry of Education, Hangzhou Dianzi University, Hangzhou 310037, China
2 School of Computer Science and Technology, Hangzhou Dianzi University,

Hangzhou 310037, China
cjiang@hdu.edu.cn

3 College of Big Data and Software Engineering, Zhejiang Wanli University,
Ningbo, China

4 School of Information and Electronic Engineering,
Zhejiang University of Science and Technology, Hangzhou 310023, China

5 Department of Computer Science, Wayne State University,
Detroit, MI 48202, USA

Abstract. DRAM is a significant source of server power consumption
especially when the server runs memory intensive applications. Cur-
rent power aware scheduling assumes that DRAM is as energy propor-
tional as other components. However, the non-energy proportionality of
DRAM significantly affects the power and energy consumption of the
whole server system when running memory intensive applications. Thus
good knowledge of server power characterization under memory intensive
workloads can help better workload placement with power reduction. In
this paper, we investigate the power characteristics of memory intensive
applications on real rack servers of different generations. Through com-
prehensive analysis we find that (1) Server power consumption changes
with workload intensity and concurrent execution threads. However, fully
utilized memory systems are not the most energy efficient. (2) Powered
memory modules of installed memory capacity, i.e. the memory capacity
per processor core has significant impact on the application’s perfor-
mance and server power consumption even if the memory system is not
fully utilized. (3) Memory utilization is not always a good indicator for
server power consumption when it is running memory intensive appli-
cations. Our experiments show that hardware configuration, workload
types, as well as concurrently running threads have significant impact on
a server’s energy efficiency when running memory intensive applications.
Our findings presented in this paper provide useful insights and guidance
to system designers, as well as data center operators for energy efficiency
aware job scheduling and power reductions.

Keywords: Energy efficiency · Memory system · Memory intensive
computing · Energy proportionality

c© Springer Nature Switzerland AG 2019
C. Zheng and J. Zhan (Eds.): Bench 2018, LNCS 11459, pp. 189–201, 2019.
https://doi.org/10.1007/978-3-030-32813-9_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32813-9_16&domain=pdf
https://doi.org/10.1007/978-3-030-32813-9_16

190 Y. Qiu et al.

1 Motivation

Many emerging workloads are constrained by the high cost of data access. Cur-
rently, in-memory data processing is one of the alternatives to tackle this prob-
lem. In a big data paradigm, one of the most critical challenges is highly efficient
data storage and analysis [1,8,24,31,32]. Although today’s single server equipped
with 12TB memory has become available in the market, in many cases the data
to be processed has already exceeded the server’s memory capacity [7], such as
sparse matrix vector multiplications [28]. Moreover, application-level scalability
is also subject to memory capacity and communication latency constraints. To
solve this problem, a commonly used solution is data parallelization by portion-
ing the dataset into smaller subsets to fit in the memory capacity as well as
parallelism speedup. More specifically, the data are streamed into and out of
the processor in parallel like Spark for fast analysis [8,20,22,31]. New memory
hierarchies like 3-D memory stacking have been introduced for improvements in
bandwidth, energy efficiency, and scalability [4,6,9,26,29]. In large scale memory
system, how to minimize data movement and energy consumption are also depen-
dent on these new memory technologies. In-memory computing or processing-
in-memory is also proposed to reduce the energy consumption of server systems
by performing computation in the memory modules [1].Thus, good knowledge of
server energy proportionality under a memory intensive workload can help better
workload placement and augment energy savings for hybrid resource scheduling
in data centers [12,14,23]. In virtualized environment, server’s power consump-
tion is also changing with varying workload types, workload intensities [13] and
communication performance [11]. For example, when system scale increases, the
memory per core also changes and can also affect the application performance
as well as the overall cost.

In response to the increase of energy consumption in data centers, industrial
standard organizations have developed benchmarks to evaluate a server’s energy
efficiency. SPECpower ssj2008 [27] (SPECpower is used for short in the remain-
der of the paper) is developed and widely adopted to characterize a system’s
energy efficiency at varying utilization levels. Mainstream server vendors submit
their SPECpower testing results to SPEC and the results are made available
online after reviewing and auditing.

However, the SPECpower benchmark is a server side Java benchmark and
does not stress the memory systems much. We list the statistics of memory per
core (MPC, the ratio of installed memory capacity over installed processor cores)
of the 479 servers with published SPECpower results before year 2017 in Table 1.
It is observed that most of the servers have memory per core less than 4 GB/core.
Even among the 33 servers with hardware availability year from 2015 to 2016,
the minimal, average, median, and maximal memory per core is 0.89, 3.08, 1.78,
and 16 GB/core. Among all the published 479 SPECpower results, there are only
12 servers with memory per core greater than or equal to 8 GB/core, and only
two servers have the highest memory per core as 16 GB/core.

Power Characterization of Memory Intensive Applications 191

Table 1. Memory per core statistics of published servers with SPECpower ssj result

Memory per core (GB/core) 0.06 0.25 0.5 0.67 0.89 1 1.2 1.33 1.45 1.5 1.6 1.78 2

Count 1 1 2 15 2 153 3 32 6 68 4 13 123

Memory per core (GB/core) 2.25 2.5 2.67 2.91 3 3.2 3.56 4 6 8 10.67 16

Count 1 1 5 5 3 1 1 26 1 6 4 2

In this paper, in order to investigate the energy efficiency of large memory
servers running memory intensive applications, we use the STREAM benchmark
to stress three rack servers at different workload intensities. Our experiments
show that hardware configuration has significant impact on a server’s energy
efficiency of memory intensive applications. Our findings presented in this paper
provide useful insights and guidance to system designers, as well as data center
operators for energy efficiency aware job scheduling and energy savings.

The remainder of this paper is organized as follows. In Sect. 2, we first
describe the server energy efficiency and energy proportionality from the pub-
lished SPECpower benchmark and introduce the energy efficiency metric for
servers with large memory installations. In Sect. 3, we provide experimental
results, observations, and insights of the energy efficiency of servers with large
memory. We summarize related work in Sect. 4 and conclude the paper and make
remarks on future work in Sect. 5.

2 Evolution of Server Energy Efficiency

2.1 Metrics of Energy Efficiency and Energy Proportionality

The detailed workload characterization of SPECpower can be found in [5]. We
give a sample result of a server with memory per core of 16 GB/core from the
SPECpower ssj2008 published results in the year 2016 in Table 2. For consistence
and convenience, we list some notations and terms used based on the SPECpower
benchmark results throughout this paper:

(1) Utilization. In this paper we define the server hardware utilization as the tar-
get load column in SPECpower result assuming that the benchmark excises
all hardware components concertedly. In SPECpower result, there are ten
utilization levels from 10% to 100%. Please note that here the utilization is
NOT the CPU utilization.

(2) Peak utilization. We refer to 100% utilization as peak utilization.
(3) Energy efficiency (EE). The energy efficiency is defined as the performance

to power ratio. In Table 2, the energy efficiency values are in the last column
entitled “performance to power ratio”. Specifically, we use energy efficiency
at some specific utilization without unit. We also use EE in short for energy
efficiency in the remainder of this paper. For example, in Table 2, we refer
to 6619 as energy efficiency at 70% utilization. But for memory systems, we

192 Y. Qiu et al.

use bandwidth per watt (BpW) to measure the memory energy efficiency
(MEE):

MEE = BpW =
PerceivedBandwid(MB/s)

SystemPower(watts)
(1)

(4) Server overall energy efficiency. Server overall energy efficiency is the overall
performance to power ratio of a server, i.e. the ratio of sum of ssj ops over
sum of power for 10 utilization levels (from 10% to 100%) and active idle:

Server overall energy efficiency =
∑

ssj ops/
∑

power (2)

The server overall energy efficiency is also used as the server’s SPECpower
score. For example, in Table 2 the server overall energy efficiency (overall
score) is 5316, i.e. the last row of the result table.

(5) Peak energy efficiency. Peak energy efficiency is defined as the highest (peak)
energy efficiency of a server among all utilization levels. For example, in
Table 2, the server peak energy efficiency is 6619 (at 70% utilization).

(6) Energy Proportionality (EP). A server at idle or low utilization state con-
sumes a small to large amount of power compared to power at 100% uti-
lization and this calls for the energy proportional computing. For an ide-
ally energy proportional server, its power consumption is proportional to
its utilization. For example, the ideal server consumes 50% power at 50%
utilization compared to power at 100% utilization. In this paper, we use the
energy proportionality (EP) metric proposed in [25].

Table 2. An example of SPECpower ssj2008 testing result in 2016

Performance Power Performance to
power ratio

Target load Actual load ssj ops Average active
power (W)

100% 99.80% 24,662,648 3,868 6,377

90% 90.10% 22,252,836 3,481 6,393

80% 80.00% 19,758,684 3,032 6,517

70% 70.00% 17,284,975 2,611 6,619

60% 60.00% 14,824,481 2,340 6,336

50% 50.00% 12,350,615 2,143 5,764

40% 40.00% 9,877,126 1,971 5,011

30% 30.00% 7,410,001 1,823 4,064

20% 20.00% 4,949,964 1,674 2,956

10% 10.00% 2,475,968 1,531 1,618

Active idle 0 1,080 0
∑

ssj ops/
∑

power 5,316

Power Characterization of Memory Intensive Applications 193

Take the server in Table 2 as an example; we can draw its utilization-power
curve in Fig. 1. Note that the power in Fig. 1 is normalized to its peak power.
The solid line is the energy proportionality curve of the server in Table 2 and
the dotted line is of an ideal energy proportional server. The dash line in Fig. 1
is our tested non-tuned server with memory per core of 16 GB/core running
SPECpower benchmark. With the power-utilization curve in Fig. 1, we can com-
pute the energy proportionality of a real server as the following [25]:

EP = 1 − Areareal −Areaideal
Areaideal

(3)

Thus, the power-utilization curve in Fig. 1 is also called the energy proportion-
ality curve. From Eq. 3 we can see that EP is a value equal or larger than zero
but less than 2.0. For an ideally energy proportional server, its EP value is 1.0.
For the server in Table 2, we summarize the areas of ten trapezoids and then get
its EP value 0.807 according to Eq. 3.

0

0.5

1

0 0.2 0.4 0.6 0.8 1

P
ow

er

Utilization

ideal

sample server in Table 1

Server @MPC=16,EP=0.404

Fig. 1. Energy proportionality curve of the server in Table 2 and an ideally energy
proportional server (power normalized to power at 100% utilization).

2.2 Experiment Setup

In order to derive the energy efficiency of servers running a memory intensive
application, we run STREAM and SPECpower on three different 2U rack servers.
All servers run the same x64 version CentOS 7 with Linux kernel 3.10. All the
power data are measured by a WattsUP.Net power meter. The base configuration
of these servers is listed in Table 3.

194 Y. Qiu et al.

3 Experiment Results and Observations

3.1 Results of SPECpower Workload

We first run the SPECpower workload on each platform. In our experiments on
3 tested servers, the servers have lower energy efficiency at lower CPU frequency.
Moreover, the energy efficiency does not stay constant when frequency decreases
because the completed jobs decrease more significantly.

Fig. 2. Energy efficiency with different
memory per core and CPU Frequency
on #1 server.

Fig. 3. Energy efficiency with different
memory per core and CPU Frequency
on #3 server.

Fig. 4. Energy efficiency and peak
power on server #1 with different mem-
ory per core and frequencies.

Fig. 5. Energy efficiency and peak
power on server #2 with different mem-
ory per core and frequencies.

Figures 2 and 3 show that the on-demand governor has the highest energy
efficiency and is very close to the energy efficiency with the highest frequency.
We give the energy efficiency and peak power consumption on servers in Figs. 4,
5 and 6.

We observe that the server consumes more power at higher CPU frequency at
the same memory per core configuration. When memory per core configuration

Power Characterization of Memory Intensive Applications 195

Fig. 6. Energy efficiency and peak
power on server #3 with different mem-
ory per core and frequencies.

Fig. 7. Power consumption of server
#2 with array size = 4GB

Table 3. Base configuration of tested 2U servers

No Name Hardware

availability

year

CPU model Total

cores

CPU TDP

(watts)

Memory (GB) DISK

#1 Sugon

A620r-G

2012 2*AMD Opteron

6272

32 115 64 (8G*8)

DDR3

1600MHz

4*SAS

300GB

10K rpm

(RAID10)

#2 ThinkServer

RD640

2014 2*Intel Xeon E5

2620 #2

12 80 160 (16G*10)

DDR4

2133MHz

1*SSD

480GB

#3 ThinkServer

RD450

2015 2*Intel Xeon E5

2620 #3

12 85 192 (16G*12)

DDR4

2133MHz

1*SSD

480GB

increases at fixed CPU frequency, the peak power consumption also increases.
In addition, the on-demand consumes almost the same power with the highest
CPU frequency.

3.2 Results of STREAM Workload

In order to stress the memory system, we run different numbers of concurrent
STREAM threads with varying array size from 4 GB to 16 GB. Due to space
limitation, we only provide the results of 4 GB. We present the power consump-
tion of the tested servers in Figs. 7 and 8. From Fig. 8 we observe that usually
memory systems are thought to be completely non-energy proportional (con-
stant power consumption) during working. However, our experiments show that
with the increment of concurrent threads and therefore memory utilization, the
power consumption of the server also increases. We present the perceived band-
width of single thread of the tested servers in Figs. 9 and 10. From Figs. 8, 9, 10
and 11, we observe that (take server #3 as an example):

(1) The power consumption and CPU utilization (except on-demand) is the
highest for concurrent threads of 36 for CPU frequencies of 1.2 GHz,

196 Y. Qiu et al.

Fig. 8. Power Consumption of server
#3 with array size = 4GB.

Fig. 9. Average Perceived bandwidth
of single thread with array size = 4 GB
(MB/s) on server #2.

1.8 GHz, 2.4 GHz, and on-demand governor. Intuitionally, power consump-
tion increases with the CPU frequencies.

(2) Memory utilization is the highest for 48 threads because all of the 48 threads
consume most all of the memory. Furthermore, memory utilization increases
with the number of concurrent running threads of STREAM.

(3) The perceived bandwidth of triad computation in single STREAM thread
decreases when threads increase and it comes to the lowest at 36 threads
and then bounces a little at 48 threads. This is mainly caused due to the
contention and starvation of execution threads when we run 48 threads con-
currently.

(4) While the perceived bandwidth increases when CPU frequency increases, the
bandwidth beneficial from CPU frequency decreases when CPU frequency
increases. Moreover, the difference of bandwidth induced by CPU frequency
is the least at 24 threads. This is because the server has 12 physical cores
and 24 execution threads in total.

(5) The memory energy efficiency decreases when the number of concurrent
threads increases. As well, the difference of memory energy efficiency ben-
eficial from CPU frequency with fewer threads is greater than that with
more threads that are concurrent. This means that in a highly contented
condition, frequency scaling cannot provide much memory energy efficiency
improvements.

Similarly, we can obtain the results with array sizes of 8 GB, 12 GB, and
16 GB. For array size = 8 GB, we observe that

(1) The power consumption and CPU utilization at 24 threads are the highest
for CPU frequency=1.2 GHz, 1.8 GHz, 2.4 GHz, and on-demand.

(2) The CPU utilization increases monotonically with the number of STREAM
threads and the CPU utilization gets the highest at 24 threads.

(3) The memory utilization gets the highest at 16 threads and stays almost the
highest at 24 threads.

Power Characterization of Memory Intensive Applications 197

Fig. 10. Average perceived bandwidth
of single thread with array size = 4GB
(MB/s) on server #3.

Fig. 11. Average memory energy effi-
ciency of single thread with array
size = 4GB (MB/s) on server #3.

(4) The power consumption increases with CPU frequencies. The server has the
highest power consumption or thread numbers of 3/6/12 with on-demand
governor. For thread numbers of 16 and 24, the server has almost the same
(less than 1% difference) power consumption for both on-demand governor
and 2.4 GHz.

For array size = 12 GB, we observe that

(1) The server has the highest power consumption with CPU fre-
quency = 2.4 GHz at fixed thread number (except 12 threads of on-demand
governor).

(2) The server has the highest power consumption and memory utilization with
12 STREAM threads at fixed CPU frequency. Here the number of STREAM
threads is equal to the number of physical cores in the servers.

For array size = 16 GB, we observe that

(1) The memory utilization and CPU utilization increase with the number of
STREAM threads and both get the highest with 12 STREAM threads.

(2) The server has the highest power consumption with on-demand governor at
fixed thread number (except 12 threads of CPU frequency at 2.4 GHz).

3.3 Insights on Energy Efficiency of Memory Intensive Applications

From the above observations, we derive some insights for memory intensive appli-
cations in data centers in terms of power and energy consumption.

Insight #1: For a fixed utilization, the server has higher power consumption
per percentage utilization with high operating CPU frequency. The server has the
lowest power consumption per percentage utilization with on-demand governor.
This suggests that for memory intensive applications, the on-demand governor
is the better choice than other frequency scaling.

Insight #2: The server power consumption per percentage utilization
decreases when array size increases because the number of concurrent STREAM

198 Y. Qiu et al.

threads decrease when array size increases, and vice versa. This suggests that
multiple threaded applications may increase the power consumption of the
server.

Insight #3: At a fixed CPU frequency, the minimal power per percentage
utilization shifts from the highest utilization to the lowest utilization, i.e. from
100% utilization at array size = 4 GB to 66.7% utilization at array size = 8 GB,
to 50% utilization at array size = 16 GB.

Insight #4: For many memory intensive applications, neither memory nor
CPU utilization is a good indicator for system power consumption. Therefore,
we should not implement power aware scheduling only according to a single
parameter like memory and CPU utilization even for large memory nodes run-
ning memory intensive applications.

4 Related Work

Nowadays, thanks to advancement in hardware technologies, growing main mem-
ory capacity has fueled the development of in-memory big data management and
processing [32]. Since in-memory processing moves data into memory and elim-
inates disk I/O bottleneck, it is now possible to support interactive data ana-
lytics. However, in-memory systems are much more sensitive to other sources
of overhead that do not matter in traditional I/O-bounded disk-based systems,
including modern CPU and memory hierarchy utilization, time/space efficiency,
parallelism, and concurrency control [10,21].

In many cases, the performance of computer systems is often limited by
memory bandwidth. Moreover, due to pin and power constraints of packages,
further increasing the bandwidth is challenging. To increase performance under
these constraints, near-DRAM acceleration (NDA) architectures, near-DRAM
Computing (NDC), Processing-In-Memory (PIM), Near Data Processing (NDP),
or memory driven computing, have been proposed [2,16].

In multi-core platforms, memory is shared among all processor cores. How-
ever, the computational gains offered by multi-cores are often offset by perfor-
mance degradation due to shared resources, such as main memory [3,17,19]. In
some cases, such memory interference delay can be large and highly variable.
Dirigent [34] is proposed to trade off the performance of latency-critical jobs
that finish sooner than required with higher system throughput. Min et al. also
tackled fine time granularity QoS problems for GPUs in heterogeneous platforms
[18]. However, the progress heuristics used for the GPU were not general and the
mechanism proposed is limited to managing main memory bandwidth contention
between the CPU and GPU.

In big data analytics, Computation-in-Memory (CIM)-based architectures
are proposed to address the problems of limited bandwidth, energy inefficiency,
and limited scalability by enabling in-memory computations using non-volatile
memristor technology [30]. In [33] the authors propose FusionFS, a distributed
file system and distributed storage layer local to the compute nodes, which is
responsible for most of the I/O operations and saves an extreme amount of

Power Characterization of Memory Intensive Applications 199

data movement between compute and storage resources. FusionFS is better than
popular file systems such as GPFS, PVFS, and HDFS. epiC [15] is a big data
processing framework to tackle the Big Data’s data variety challenge. epiC intro-
duces a general actor-like concurrent programming model, independent of the
data processing models, for specifying parallel computations.

In summary, a processor’s frequency scaling and power optimization is well
investigated, but memory related power performance optimization is still miss-
ing. Moreover, power consumption of large memory dominates when in-memory
computing becomes the mainstream paradigm for big data analytics. This moti-
vates us to investigate the power characteristics of servers running memory inten-
sive applications.

5 Conclusions

Understanding energy efficiency of large memory systems running a memory
intensive application can help data center designers and system operators in
many folds, including system capacity planning, power shifting, job placement,
and scheduling. In this paper, we conducted extensive experiments and measure-
ments to investigate the power and energy characteristics of three 2U servers
running various memory intensive benchmarks. Experiment results show that
server power consumption changes with workload intensity and concurrent run-
ning threads. Moreover, different powered memory modules of installed memory
capacity, i.e. the memory capacity per processor core has significant impact on
the application’s performance and server power consumption even if the memory
system is not fully utilized. This provides useful implications for reconfigurable
system design and real time power aware adaption. Last but not least, our experi-
ments also show that memory utilization is not always a good indicator for server
power consumption even when it is running memory intensive applications.

Our experiments show that both hardware configuration and concurrent run-
ning threads have significant impact on a server’s energy efficiency of mem-
ory intensive applications. Our findings presented in this paper provide useful
insights and guidance to system designers, as well as data center operators for
energy efficiency aware job scheduling and energy savings. As future work, we
plan to characterize the energy efficiency of large memory systems running more
diverse memory intensive applications like in-memory databases, Hadoop, and
Spark jobs.

Acknowledgements. This work is supported by Natural Science Foundation of China
(No. 61472109, No. 61572163 and No. 61472112) and Key Research and Development
Program of Zhejiang Province (No. 2018C01098, 2019C01059 and 2019C03134). This
work is also supported in part by National Science Foundation (NSF) grant CNS-
1205338 and CNS-1561216, and by the Introduction of Innovative R&D team program
of Guangdong Province (No. 201001D0104726115). This work is supported by Alibaba
Group through Alibaba Innovative Research (AIR) Program. This work is partially
supported by Visiting Scholarship of Teachers’ Professional Development Program (No.
FX2018050).

200 Y. Qiu et al.

References

1. Ahn, J., Hong, S., Yoo, S., Mutlu, O., Choi, K.: A scalable processing-in-memory
accelerator for parallel graph processing. ACM SIGARCH Comput. Architect.
News 43(3), 105–117 (2016)

2. Asghari-Moghaddam, H., Son, Y.H., Ahn, J.H., Kim, N.S.: Chameleon: versatile
and practical near-dram acceleration architecture for large memory systems. In:
The 49th Annual IEEE/ACM International Symposium on Microarchitecture, p.
50. IEEE Press (2016)

3. Dasari, D., Nelis, V., Akesson, B.: A framework for memory contention analysis in
multi-core platforms. Real-Time Syst. 52(3), 272–322 (2016)

4. Goswami, N., Cao, B., Li, T.: Power-performance co-optimization of throughput
core architecture using resistive memory. In: 2013 IEEE 19th International Sym-
posium on High Performance Computer Architecture (HPCA2013), pp. 342–353.
IEEE (2013)

5. Gray, L.D., Kumar, A., Li, H.H.: Workload characterization of the
SPECpower ssj2008 benchmark. In: Kounev, S., Gorton, I., Sachs, K. (eds.)
SIPEW 2008. LNCS, vol. 5119, pp. 262–282. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-69814-2 17

6. Hajkazemi, M.H., Chorney, M., Jabbarvand Behrouz, R., Khavari Tavana, M.,
Homayoun, H.: Adaptive bandwidth management for performance-temperature
trade-offs in heterogeneous HMC+ DDRx memory. In: Proceedings of the 25th
edition on Great Lakes Symposium on VLSI, pp. 391–396. ACM (2015)

7. Hamdioui, S., et al.: Memristor based computation-in-memory architecture for
data-intensive applications. In: Proceedings of the 2015 Design, Automation &
Test in Europe Conference & Exhibition, pp. 1718–1725. EDA Consortium (2015)

8. Hirzel, M., Soulé, R., Schneider, S., Gedik, B., Grimm, R.: A catalog of stream
processing optimizations. ACM Comput. Surv. (CSUR) 46(4), 46 (2014)

9. Imani, M., Mercati, P., Rosing, T.: ReMAM: low energy resistive multi-stage asso-
ciative memory for energy efficient computing. In: 2016 17th International Sympo-
sium on Quality Electronic Design (ISQED), pp. 101–106. IEEE (2016)

10. Islam, M., Scrbak, M., Kavi, K.M., Ignatowski, M., Jayasena, N.: Improving node-
level mapreduce performance using processing-in-memory technologies. In: Lopes,
L., et al. (eds.) Euro-Par 2014. LNCS, vol. 8806, pp. 425–437. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-14313-2 36

11. Jiang, C., et al.: Interdomain I/O optimization in virtualized sensor networks.
Sensors 18(12), 4395 (2018)

12. Jiang, C., Han, G., Lin, J., Jia, G., Shi, W., Wan, J.: Characteristics of co-allocated
online services and batch jobs in internet data centers: a case study from Alibaba
cloud. IEEE Access 7, 22495–22508 (2019)

13. Jiang, C., et al.: Energy efficiency comparison of hypervisors. Sustain. Comput.:
Inform. Syst. 22, 311–321 (2019)

14. Jiang, C., Wang, Y., Ou, D., Luo, B., Shi, W.: Energy proportional servers: where
are we in 2016? In: 2017 IEEE 37th International Conference on Distributed Com-
puting Systems (ICDCS), pp. 1649–1660. IEEE (2017)

15. Jiang, D., Wu, S., Chen, G., Ooi, B.C., Tan, K.L., Xu, J.: epiC: an extensible and
scalable system for processing big data. Proc. VLDB Endow. 7(7), 541–552 (2014)

16. Keeton, K.: Memory-driven computing. In: FAST (2017)

https://doi.org/10.1007/978-3-540-69814-2_17
https://doi.org/10.1007/978-3-540-69814-2_17
https://doi.org/10.1007/978-3-319-14313-2_36

Power Characterization of Memory Intensive Applications 201

17. Kim, Y., Han, D., Mutlu, O., Harchol-Balter, M.: ATLAS: a scalable and high-
performance scheduling algorithm for multiple memory controllers. In: 2010
IEEE 16th International Symposium on High Performance Computer Architec-
ture (HPCA), pp. 1–12. IEEE (2010)

18. Min, K.J., Erez, M., Sudanthi, C., Paver, N.: A QoS-aware memory controller for
dynamically balancing GPU and CPU bandwidth use in an MPSoC. In: Design
Automation Conference, pp. 850–855 (2012)

19. Muralidhara, S.P., Subramanian, L., Mutlu, O., Kandemir, M., Moscibroda, T.:
Reducing memory interference in multicore systems via application-aware memory
channel partitioning. In: IEEE/ACM International Symposium on Microarchitec-
ture, pp. 374–385 (2011)

20. Nair, R., et al.: Active memory cube: a processing-in-memory architecture for
exascale systems. IBM J. Res. Dev. 59(2/3), 17:1–17:14 (2015)

21. Pattnaik, A., et al.: Scheduling techniques for GPU architectures with processing-
in-memory capabilities. In: Proceedings of the 2016 International Conference on
Parallel Architectures and Compilation, pp. 31–44. ACM (2016)

22. Pugsley, S.H., et al.: Comparing implementations of near-data computing with
in-memory mapreduce workloads. IEEE Micro 34(4), 44–52 (2014)

23. Qiu, Y., Jiang, C., Wang, Y., Ou, D., Li, Y., Wan, J.: Energy aware virtual machine
scheduling in data centers. Energies 12(4), 646 (2019)

24. Reed, D.A., Dongarra, J.: Exascale computing and big data. Commun. ACM 58(7),
56–68 (2015)

25. Ryckbosch, F., Polfliet, S., Eeckhout, L.: Trends in server energy proportionality.
Computer 44(9), 69–72 (2011)

26. Sharad, M., Fan, D., Roy, K.: Ultra low power associative computing with spin
neurons and resistive crossbar memory. In: Proceedings of the 50th Annual Design
Automation Conference, p. 107. ACM (2013)

27. SPECpower: https://www.spec.org/power ssj2008/
28. Tanabe, N., et al.: A memory accelerator with gather functions for bandwidth-

bound irregular applications. In: Proceedings of the 1st Workshop on Irregular
Applications: Architectures and Algorithms, pp. 35–42. ACM (2011)

29. Wang, Y., Yu, H.: An ultralow-power memory-based big-data computing platform
by nonvolatile domain-wall nanowire devices. In: Proceedings of the 2013 Interna-
tional Symposium on Low Power Electronics and Design, pp. 329–334. IEEE Press
(2013)

30. Yu, J., Nane, R., Haron, A., Hamdioui, S., Corporaal, H., Bertels, K.: Skeleton-
based design and simulation flow for computation-in-memory architectures. In:
IEEE/ACM International Symposium on Nanoscale Architectures, pp. 165–170
(2016)

31. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster
computing with working sets. HotCloud 10(10–10), 95 (2010)

32. Zhang, H., Chen, G., Ooi, B.C., Tan, K.L., Zhang, M.: In-memory big data man-
agement and processing: a survey. IEEE Trans. Knowl. Data Eng. 27(7), 1920–1948
(2015)

33. Zhao, D., Zhang, Z., Zhou, X., Li, T.: FusionFS: toward supporting data-intensive
scientific applications on extreme-scale high-performance computing systems. In:
IEEE International Conference on Big Data, pp. 61–70 (2014)

34. Zhu, H., Erez, M.: Dirigent: enforcing QoS for latency-critical tasks on shared
multicore systems. ACM SIGOPS Oper. Syst. Rev. 50(2), 33–47 (2016)

https://www.spec.org/power_ssj2008/

Multi-USVs Coordinated Detection
in Marine Environment with Deep

Reinforcement Learning

Ruiying Li, Rui Wang(B), Xiaohui Hu, Kai Li, and Haichang Li

The Science and Technology on Integrated Information System Laboratory,
Institute of Software, Chinese Academy of Sciences, Beijing, China

{ruiying,wangrui,xiaohui,likai,haichang}@iscas.ac.cn

Abstract. In recent years, with the rapid development of deep rein-
forcement learning, numerous researches have begun taking more and
more attention in military and civilian fields. Compared with ship mon-
itoring and other technical means, USVs have more significant advan-
tages in marine environment and is gradually becoming a concern of
academic and marine management departments. However, single agent
reinforcement learning cannot fit well in the multi-USVs cases because
of the non-stationary environment and complex multi-agent interactions.
In order to learn cooperation models among USVs, we propose a multi-
USVs coordinated detection method based on DDPG and LSTM is used
for storage about the sequence of states and actions. Besides, in order to
adapt to the algorithm, we model the marine environment where every
USV is considered as an agent. Experiments are constructed in simula-
tion conditions and the results verify the effectiveness of the proposed
method.

Keywords: Deep reinforcement learning · Multiple USVs ·
Coordinated detection

1 Introduction

Instead of the lack of data in the past, the era of Big Data has arrived [1,2].
Even though Big Data applications present our opportunities to discover new
knowledge and create novel methods, there is a new question: we are drowning
in data, but starving for knowledge. The most fundamental challenge for Big
Data is to explore the large volumes of data and extract useful information or
knowledge for future actions [3]. Fortunately, with the massive data, Artificial
Intelligence (AI) emerges. Until now, AI has achieved practical products in many
field, such as virtual personal assistants, smart cars, online customer service,
referral services, security monitoring, and so on.

Deep Reinforcement Learning (DRL) has become the core interest in the field
of AI, which leverages the perceived ability of deep learning and the decision

c© Springer Nature Switzerland AG 2019
C. Zheng and J. Zhan (Eds.): Bench 2018, LNCS 11459, pp. 202–214, 2019.
https://doi.org/10.1007/978-3-030-32813-9_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32813-9_17&domain=pdf
https://doi.org/10.1007/978-3-030-32813-9_17

Multi-USVs Coordinated Detection with DRL 203

making ability of reinforcement learning. Deep learning is reborn of the artificial
neural network and has become popular around the world with its transcenden-
tal effects in practical applications. Artificial neural networks have been able to
achieve approximations of arbitrary complexity continuous functions [30]. Deep
learning use super more hidden layers to enhance the ability, which requires
exponentially hidden numbers to achieve comparable expression for shallow net-
works. The representation of deep learning is actually a combination of a large
number of functions and can be trained by the means of backpropagation. Rein-
forcement learning is often considered as a branch of machine learning. In fact,
reinforcement learning itself has a complete developmental context, and Bellman
eventually brings together and formalizes the abstractions into MDP problems.
Afterwards, with the expand of scientists, it has become a relatively complete
system, often called approximate dynamic programming [31].

Unmanned Surface Vehicles (USVs) have been widely used in various mili-
tary or civilian applications. Compared with ship monitoring and other technical
means, the use of drones has significant advantages in achieving various types
of emergencies at the marine environment, such as low cost, high efficiency and
flexibility. It is gradually becoming a concern of academic and marine manage-
ment departments at home and abroad. Unlike the land and airborne unmanned
system, weak perception is the major challenges for marine unmanned system.
There are mainly two reasons: first, until now, the detection methods of underwa-
ter sensor technology are still very scant; second, due to the limitation of volume
and energy, the load carried by the marine unmanned system is restricted largely.
These all greatly limits the sensing ability of the systems. Therefore, individual
USV has very terminate capability in marine environment. It is particularly
critical for multiple USVs to learn communication protocols and work in a col-
laborative way. The research on allowing the multi-USVs to interact information
implicitly and understand the current situation as a whole effectively is mean-
ingful. Through the intelligent coordination of multi-USVs, the system will have
the ability to assess and predict the overall situation, then make intelligent deci-
sions that comprehensively consider various requirements such as communication
function, marine environment and cluster cooperation, and finally enhance the
monitoring and sensing ability of the system with the strategy optimization.

In recent years, with the rapid development of deep reinforcement learning,
numerous institutions, universities, corporations and militaries have begun tak-
ing more and more attention in the related field. In this paper, we introduce
a multi-USVs coordinated detection method based on DDPG, as Fig. 1 shows,
which allows USVs learn approximate models of other USVs online and simul-
taneously use them in their own policy learning procedure. Based on the DDPG
algorithm, the strategy network for decision making and the value network for
evaluation are implemented, and the sequence of states and actions is input into
the LSTM network for memory storage. The key question is to map the optimal
route of each USV to the suspected sea area where the target is located so as
to effectively guide the system to find the target with a larger scale. Finally,
marine environment modeling is constructed based on deep reinforcement learn-
ing. We make experiments in simulation conditions and the results verify the
effectiveness of the proposed method.

204 R. Li et al.

Fig. 1. The framework. Based on DDPG, multiple agents interact with each other to
adjust to the non-stationary environment, and the sequence of states and actions is
stored up with LSTM.

2 Background

2.1 USV Overview

In past three decades, the researches on USVs are mostly developed and leaded
by the institutions, universities and militaries all over the world. The first USV
was developed at MIT Sea Grant, named ARTEMIS [22], which was used to
collect simple bathmetry data. One of the shortcomings of ARTEMIS was its
small size, which limited its ability to work continuously. The interests in USVs
for detection and reconnaissance missions emerged in the late 1990s [23].

USV was originally named as autonomous search and hydrographic vehicle
(ASH), and later called Owl/Owl MK I, which was developed by the Office of
Naval research (ONR). The Owls were widely used for mine field reconnaissance,
shallow water monitoring and maritime interception. Navtec Inc. continued the
development of the Owl MK II to Owl MK VI for the next decade. During
these time, they construct a fully autonomous navigation system by using sensor
fusion. The MK II with side scan sonar and video camera was the first Ameri-
can Navy USV to be deployed for a real world mission, which has been used in
shipping lanes off Kuwait to detect live mines. Other countries have also paid
much more attention to develop USVs with different features and missions. For
example, Japan and Yamaha conducted two USVs, UMV-H and UMV-O [24].
UMV-H can be equipped with underwater cameras and sonar. But UMV-H is
not totally unmanned, it can be also used in manned mode. The UMV-O is
used just for monitoring of bio-geo-chemical, physical parameter of the oceans
and atmosphere. There are also numerous USVs used for academic interests. For
example, an Italian catamaran USV named SESAMO, with improved stabil-

Multi-USVs Coordinated Detection with DRL 205

ity and greater wave resistance, was used in Antarctica for conducting oceano-
graphic research [26]. In China, a lot of work also have been researched and
done in USVs. Taiwan developed an USV named ZhengHe [25] in 2010, which
can integrate scientific equipment such as WI-FI communication and a satellite-
based global positioning (GPS). The system are appropriate for various types of
inshore research and surveys, such as marine topography, sediment disposition
analysis, inshore engineering measurements and the monitoring of hydrology.

Recent works about USVs have become a recognized technology for the use of
surveillance, detection and other missions, but most existing USVs just have lim-
ited autonomy, endurance and intelligence. The USVs mentioned above mostly
worked individually, they just had weak communication system and lacked the
greater ability to cooperate together. Our method based on the technology of
deep reinforcement learning can make the USVs more intelligent and cooperative
for the mission of coordinated detection in marine environment. The multi-USVs
system not only let every unique USV have a greater levels of autonomy to make
a better decision independently, but also the cooperation enable the USVs have
robust capabilities and situational awareness that is necessary for them to under-
take the complex mission of detection. Our work focus mainly on the intelligence
and cooperation of the USVs instead of the boat-design, costs and materials, and
it is therefore related to a lot of recent work about deep learning [27] and rein-
forcement learning [13,19,28,29].

2.2 Reinforcement Learning

Reinforcement learning (RL) [4] aims to solve sequential decision making prob-
lem, which emphasizes how to act based on the environment and maximize the
expected benefits. A typical setting where reinforcement learning operates is
shown in Fig. 2. At each timestep t, agent receives the current state st from
environment, obtains a reward rt associated with the last state transition at the
same time, then takes the next action at+1 and releases it back to the environ-
ment. The goal of RL is to learn a policy π(a|s), i.e. a mapping from state s to
action a, which can maximize the expected discount cumulative future reward:
E[R] = E[

∑T
t=0 γtrt].

In fact, there is a long history in terms of interaction and collaboration
among multi-agent settings [5,6]. In spite of the limitations to toy examples
in the beginning, reinforcement learning, as a means, has widely been applied to
multi-agent systems in order to learn optimal collaboration policies. Multi-agent
reinforcement learning (MARL) is concerned with a set of autonomous agents
that share a common environment [7]. Learning in MARL is fundamentally dif-
ficult, because agents not only interact with the environment, but also with each
other. This means that the environment is unstable: the changes in the policy
of one agent usually will affect that of the others, and vice versa [8]. How to
learn effective communication protocol, which can not result in changes of the
environment, is of crucial importance to the success of multi-agent RL. Panait
et al. [9] have shown that in cooperative games, agent who learns the effect of

206 R. Li et al.

Agent

Environment

action a
reward r

state s

s0 s1 s2 s3 sT
a0

r0

a1

r1
a2

r2

Agent

Environment

action a
reward r

state s

s0 s1 s2 s3 sT
a0

r0

a1

r1
a2

r2

Fig. 2. Reinforcement learning scenario. Agent receives the current state from envi-
ronment and reward, and then releases the next action back to the environment.

joint actions has better performance than those who do not in the same scenar-
ios. Zhang et al. [16] propose that in order to limit the coordination set, agents
dynamically decompose the coordination network in a distributed way and dra-
matically reduce communication without significantly affecting overall learning
performance. Foerster et al. [17] adopt two steps: Reinforced Inter-Agent Learn-
ing uses deep Q-learning, and Differentiable Inter-Agent Learning exploits the
error derivatives through communication channels among agents. [20] introduces
a training regimen utilizing an ensemble of policies for each agent that leads to
more robust multi-agent policies.

In the specific application of multi-USVs coordinated detection, we mainly
use multi-agent collaboration algorithm based on DDPG [13], which draws on the
successful experience of DQN [19]: experience reply and fixed Q-target network.
DQN is a method based on Critic only and it is difficult to deal with large action
space, especially continuous action. Because the network is impossible to search
for the largest Q value among so many outputs. Conversely, DDPG is based on
the Actor-Critic method. It uses a network to fit the strategy function in the
action output, and then directly outputs the action, which can cope with the
output of the continuous action and the large action space. DDPG consists of two
networks: an Policy Network (Actor) and a Value Network (Critic). The policy
network outputs action and is updated by the gradient calculation formula; the
value network judges the action and is updated according to the target value.

3 Approach

In this section, we present an idea about the multi-USVs coordinated detection
based on DDPG. The frame diagram is shown in Fig. 1. The USV is regarded as

Multi-USVs Coordinated Detection with DRL 207

an agent and thus the research is transformed into a multi-agent collaborative
detection problem, which requires special modeling for the marine environment
and USVs.

3.1 Single-USV RL

Generally, RL based on single agent can be basically divided into policy-based
methods and value-based ones. The former learns a policy with an indirect way
by learning a value function or an action-value function; the latter is to directly
model and then learn the policy, so it is also called policy optimization. Accord-
ing to whether based on value and policy or not, it can be divided into three
groups [10,11]: Critic-only methods, Actor-only methods and Actor-Critic meth-
ods.

1. Critic-only method is based entirely on value, such as Q-learning [15] and
DQN, which uses low variance temporal difference learning to estimate the
Q-value: Q(s, a;ω) = E[R; s, a]. The policy can be derived using greedy action
selection, i.e., π(a|s) = a∗ = argmaxaQ(s, a;ω). They are usually used for
discrete action as finding a∗ is computationally intensive in continuous action
space. Disadvantages of the method is that small changes in the value func-
tion can cause huge influence in the strategy, which lead to training not to
converge. Especially after the introduction of function approximation, bias
makes the convergence of training more difficult, even though the generaliza-
tion ability of the algorithm is improved.

2. Actor-only method is based entirely on policy, for example, REINFORCE [12],
which directly learns the parameterized policy π(a|s, θ). They can generate
continuous action but suffer from high variance in the estimation of policy
gradient. The gradient estimation variance is relatively high, which means it
easily converges to a non-optimal solution. Also, since the estimation of each
gradient does not depend on previous estimates, the known information can
not be utilized fully.

3. Actor-Critic method integrates value-based and policy-based together, which
jointly learns π(a|s, θ) and Q(s, a;ω): actor π(a|s, θ) gives high rewarding
trajectory, which updates critic Q(s, a;ω) towards the right direction; critic
Q(s, a;ω) picks out the good action for actor π(a|s, θ) to reinforce. This
mutual reinforcement behavior preserves the advantages of both actor-only
and critic-only, which helps avoid bad local minima and converges faster.
Especially the embrace with deep learning, produces a chemical reaction and
appears a batch of advanced algorithms, such as A3C [14] and other improve-
ments and variants based on them.

DDPG is an approach that based on Actor-Critic method: the strategy
function and the value function is simulated with deep convolutional neural
network, namely the policy network and the Q network. The policy network
integrates deep learning neural networks into Deterministic Policy Gradient:

208 R. Li et al.

at = μ(st|θμ), where μ represents the optimal behavior strategy. The Q net-
work uses a deep learning model to simulate the approximation of the action-
value function: Qμ(st, at) = E[r(st, at) + γQμ(st+1, μ(st+1)], whose definition is
a recursive expression and is solved with Bellman equation.

The training mode of DDPG is off-policy: behavior policy and target policy
is not the same. Behavior strategy is only used to interact with the environ-
ment and generate data, that is, to make decisions during the training process;
and then target strategy continuously learns from the data generated by the
behavior strategy and optimizes itself. In the DDPG training process, random
noise is introduced into the decision mechanism of the action, which help to learn
potential better strategies while leveraging existing strategies, scilicet, behaviour
policy. It changes the deterministic process to a random process, then the action
is sampled from the random process and released to the environment for exe-
cution, as Fig. 3 shows. The final target strategy is optimized with the dataset
generated by the behavior strategy.

behavior
strategy

random
noise

()ts
ta

sample

Fig. 3. Behaviour policy. The action is generated based on a given environment during
the training process, so as to obtain the data set for training the optimal strategy.

3.2 Multi-USVs Coordinated Detection

Single-agent reinforcement learning approaches are poorly suited to multi-USVs
environments. Each agent’s policy is changing and results in the environment
unstationary, which exhibit huge variance when coordination among multiple
USVs. Also, traditional intelligent USVs system perceives interaction and deliv-
ers information mainly based on the behavior of biological clusters, which allows
the system to work together at low cost and complete complex tasks in sinis-
ter environment. At present, the distribution of unmanned system is generally
ensuring the maximum profit-loss ratio and task balance, which reflects syn-
ergistic operational advantages of the system. However, these algorithms are
not very mature and are not suitable for independent planning of large scale

Multi-USVs Coordinated Detection with DRL 209

complex tasks. The method of multi-USVs coordinated detection is based on
DDPG, which allows USVs learn approximate models of other USVs online and
simultaneously use them in their own policy learning procedure.

The Q value function and state value function are defined as that in the
general reinforcement learning settings. For agent i, the state value vi(s) is
defined as the expected discounted-cumulative rewards Ri for state s, where
Ri = E[

∑T
t=0 γtrt

i |s] and γ is the discount for the reward. The Q value func-
tion is defined as Qi(s, a) = E[

∑T
t=0 γtrt

i |s, a]. The expectation is taken over the
environment and the policy. Since the deterministic policy is used, the Q value
function is equal to the state value function.

vi(s) = Qi(s, μ(s)) = E[
T∑

t=0

γtrt
i |s, μ(s)] (1)

where μ(s) = [μ1(s1), μ2(s2), . . . , μn(sn)].
For multi-agent collaborative detection problem, we try to maximize the

mean state value over all the agents in the environment, i.e. Q = 1
n

∑n
i=1 Qi(s, a).

At every time t, the loss function of the agent i is:

min(Rt
i − Qi(st, at))2 (2)

Rt
i represents the estimated reward, i.e. Rt

i = rt
i + γQi(st+1, at+1), where

Qi(st+1, at+1) is the target Q value function with its parameters periodically
updated using the recent parameters of Q function.

The policy parameters is optimized by the policy gradient algorithm, and the
objective function is defined with the mean Q value function of all the agents.
The gradients for agent i with the policy parameter θ can be written as:

∇aQi(st, at|θQ)|a=μ(st|θµ)∇θµμ(st|θμ) (3)

In general, the sequence of states and actions are interrelated, and the current
output of a sequence is also related to the previous output. We resort Recurrent
Neural Networks (RNN) to connect previous information to the current state,
which memorizes the previous information and applies it to the calculation of the
current output, that is, the nodes between the hidden layers are also connected,
and the input of the hidden layer includes not only the output of the input layer
but also the output of the hidden layer at the previous moment. Here, we mainly
adopt the LSTM network [21] to use the past pair (s, a) to help infer the next
action.

In order to adapt multi-agent reinforcement learning to the marine environ-
ment, we carry out the environment modeling. The sea area and environment,
intelligent unmanned system, decision making rules and other task related com-
prehensive jointly construct suitable marine monitoring space, where the inter-
active environment based on deep reinforcement learning is built, as shows in
Fig. 4.

210 R. Li et al.

(a) The marine coordinated environment.
(b) Every agent is treated
as a motion node

Fig. 4. Coordinated environment. The marine coordinated environment is constructed
with defining the characteristic attributes, reward and punishment rules, the state
space and action space of agents, where the red, blue and green are coordinated USVs
and the black is detected target. (Color figure online)

4 Results and Discussion

In this section, based on the built marine coordinated environment, we verify the
effectiveness of our proposed method in simulation conditions for Multi-USVs
coordinated detection. The working range is limited to an area of 1.2 km * 1.2 km
and the collaborative goal is to detect the target as much as more.

At the initial moment, the USVs are dispersed in their desired positions
according to the needs of the detection, as shown in Fig. 5. In the process of
detecting the suspected target, the USVs cooperate to maneuver and surround
the intrusion target in the shortest time and the objective is to ensure the max-
imum range of target detected. The experimental results in different directions
are shown in Fig. 7. The goal of coordinated detection is to make the system
adapt to the changing marine environment and various emergencies and have
continuous detection capability in weak sensing and weak communication con-
dition.

Fig. 5. Initial position. At the initial moment, the USVs is dispersed in its desired
position according to the needs of the detection.

Multi-USVs Coordinated Detection with DRL 211

Table 1. The parameter settings.

Parameter Value

Marine environmental noise (dB) NL0= 75

Ship self-noise (dB) NLS= 0

Working frequency (Hz) f = 4000

Pulse width (ms) T = 0.4

Array directional gain (dB) DI= 13

Expected target strength (dB) TS= 13

Active sound source level (dB) SL = 205

To quantify the effectiveness of the proposed algorithm, we rasterize the
1.2 km * 1.2 km area where the task is performed, and set the current USVs’
positions with parameters as Table 1 displays, such as marine environmental
noise, ship self-noise, operating frequency, pulse width, base directivity gain,
expected target intensity and active sound source level.

According to the performance evaluation software, the probability of target
detected can be evaluated in grid form, as Fig. 6 shows. We deduce the perfor-
mance evaluation process in reverse, i.e. given the current position of the target
(the grid), the expected area of the USVs can be obtained, and then verify the
proposed method by comparing expected area with actual position of each USV.

Fig. 6. Schematic diagram of the performance evaluation.

212 R. Li et al.

(a) Enter at 90 degree. (c) Enter at 120 degree. (e) Enter at 30 degree.

(b) Leave at 90 degree. (d) Leave at 120 degree. (f) Leave at 30 degree.

Fig. 7. Experimental result. The target enters and leaves the 1.2 km * 1.2 km area at
30◦, 90◦ and 120◦.

A total of 3168 data was intercepted from the simulation experiment, and
the actual position of the six USVs and the target was obtained. During the ver-
ification process, the values of the parameters are consistent with the parameter
settings of the detection subsystem, as shown in Table 1. Among the 3168 pieces
of data, there are 2275 pieces of data satisfying the requirements, which reaches
the correct rate of 71.81% and verify the effectiveness of the proposed method.

5 Conclusion

To real-time evaluate, understand and predict the situation of marine environ-
ment, we introduce multi-USVs coordinated detection method based on deep
reinforcement learning algorithm DDPG. Different reward functions are designed
so that each agent can learn its own strategy by modeling for the marine envi-
ronment. At the same time, with the help of LSTM, we also learn the tim-
ing information through the sequence of states and actions. From the results
shown in the simulation environment, the cooperative actions are verified. Our
research work can help the multi-USVs system guide the independent response
to changes, effectively complete tasks with limited resources and finally have con-
tinuous detection capability in weak sensing and weak communication condition
to a certain extent.

Acknowledgments. This work is supported by the Natural Science Foundation of
China (U1435220) (61802016).

References

1. Labrinidis, A., Jagadish, H.V.: Challenges and opportunities with big data. Proc.
VLDB Endow. 5(12), 2032–2033 (2012)

Multi-USVs Coordinated Detection with DRL 213

2. Jitao, S., Gao, Y., Bingkun, B., Snoek, C., Dai, Q.: Recent advances in social
multimedia big data mining and applications. Multimed. Syst. 22(1), 1–3 (2016)

3. Leskovec, J., Rajaraman, A., Ullman, J.D.: Mining of Massive Datasets, 2nd edn.
Cambridge University Press, Cambridge (2014)

4. Sutton, R.S., Barto, A.G.: Introduction to Reinforcement Learning. MIT Press,
Cambridge (1998)

5. Littman, M.L.: Markov games as a framework for multi-agent reinforcement learn-
ing. In: Proceedings of the Eleventh International Conference on Machine Learning,
pp. 157–163 (1994)

6. Schmidhuber, J.: A general method for multi-agent reinforcement learning in unre-
stricted environments. In: Adaptation, Coevolution and Learning in Multiagent
Systems: Papers from the 1996 AAAI Spring Symposium, pp. 84–87 (1996)

7. Busoniu, L., Babuska, R., De Schutter, B.: A comprehensive survey of multiagent
reinforcement learning. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 38(2),
156–172 (2008)

8. Matignon, L., Laurent, G.J., Le Fort-Piat, N.: Independent reinforcement learners
in cooperative Markov games: a survey regarding coordination problems. Knowl.
Eng. Rev. 27(1), 1–31 (2012)

9. Panait, L., Luke, S.: Cooperative multi-agent learning: the state of the art. Auton.
Agents Multi-Agent Syst. 11(3), 387–434 (2005)

10. Konda, V.R., Tsitsiklis, J.N.: Onactor-critic algorithms. SIAM J. Control Optim.
42(4), 1143–1166 (2003)

11. Grondman, I., Busoniu, L., Lopes, G.A.D., et al.: A survey of actor-critic rein-
forcement learning: standard and natural policy gradients. IEEE Trans. Syst. Man
Cybern. Part C (Appl. Rev.) 42(6), 1291–1307 (2012)

12. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Mach. Learn. 8(3–4), 229–256 (1992)

13. Lillicrap, T.P., et al.: Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971 (2015)

14. Mnih, V., et al.: Asynchronous methods for deep reinforcement learning. In: Inter-
national Conference on Machine Learning, pp. 1928–1937 (2016)

15. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge (1998)

16. Zhang, C., Lesser, V.: Coordinating multi-agent reinforcement learning with lim-
ited communication. In: Proceedings of the 2013 International Conference on
Autonomous Agents and Multi-agent Systems, pp. 1101–1108. International Foun-
dation for Autonomous Agents and Multiagent Systems (2013)

17. Foerster, J., Assael, I.A., Freitas, N., Whiteson, S.: Learning to communicate with
deep multi-agent reinforcement learning. In: Advances in Neural Information Pro-
cessing Systems, pp. 2137–2145 (2016)

18. Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., Riedmiller, M.: Deter-
ministic policy gradient algorithms. In: Proceedings of the 31st International Con-
ference on Machine Learning, pp. 387–395 (2014)

19. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature
518(7540), 529 (2015)

20. Lowe, R., Wu, Y., Tamar, A., Harb, J., Abbeel, O.P., Mordatch, I.: Multi-agent
actor-critic for mixed cooperative-competitive environments. In: Advances in Neu-
ral Information Processing Systems, pp. 6379–6390 (2017)

21. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

http://arxiv.org/abs/1509.02971

214 R. Li et al.

22. Vaneck, T., Manley, J., Rodriguez, C., Schmidt, M.: Automated bathymetry using
an autonomous surface craft navigation. J. Inst. Navig. 43(4), 407–419 (1996)

23. Bertram, V.: Unmanned surface vehicles - a survey. Skibsteknisk Selskab (2008)
24. Enderle, B., Yanagihara, T., Suemori, M., Imai, H., Sato, A.: Recent developments

in a total unmanned integration system. In: AUVSI Unmanned Systems Confer-
ence, Anaheim (2004)

25. Yang, W., Chen, C., Hsu, C., Tseng, C., Yang, W.: Multifunctional inshore survey
platform with unmanned surface vehicles. Int. J. Autom. Smart Technol. 1, 19–25
(2011)

26. Caccia, M., et al.: Sampling sea surfaces with SESAMO: an autonomous craft for
the study of sea-air interactions. Robot. Autom. Mag. 12(3), 95–105 (2005)

27. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444
(2015)

28. Lowe, R., Wu, Y., Tamar, A., Harb, J., Abbeel, P., Mordatch, I.: Multi-agent
actor-critic for mixed cooperative-competitive environments. In: Advances in Neu-
ral Information Processing Systems, pp. 6382–6393 (2017)

29. Boutilier, C.: Learning conventions in multiagent stochastic domains using likeli-
hood estimates. In: Proceedings of the Twelfth International Conference on Uncer-
tainty in Artificial Intelligence, pp. 106–114 (1996)

30. Nielsen, M.A.: Neural Networks and Deep Learning. Determination Press (2015)
31. Bertsekas, D.P.: Dynamic Programming and Optimal Control. Athena Scientific,

Belmont (2005)

EC-Bench: Benchmarking Onload
and Offload Erasure Coders on Modern

Hardware Architectures

Haiyang Shi(B), Xiaoyi Lu, and Dhabaleswar K. Panda

Department of Computer Science and Engineering, The Ohio State University,
Columbus, USA

{shi.876,lu.932,panda.2}@osu.edu

Abstract. Various Erasure Coding (EC) schemes based on hardware
accelerations have been proposed in the community to leverage the
advanced compute capabilities on modern data centers, such as Intel
ISA-L Onload EC coders and Mellanox InfiniBand Offload EC coders.
These EC coders can play a vital role in designing next-generation dis-
tributed storage systems. Unfortunately, there does not exist a unified
and easy way for distributed storage systems researchers and designers
to benchmark, measure, and characterize the performance of these dif-
ferent EC coders. In this context, we propose a unified benchmark suite,
called EC-Bench, to help the users to benchmark both onload and offload
EC coders on modern hardware architectures. EC-Bench provides both
encoding and decoding benchmarks with tunable parameter support. A
rich set of metrics, including latency, actual and normalized through-
put, CPU utilization, and cache pressure, can be reported through
EC-Bench. Evaluations with EC-Bench demonstrate that hardware-
optimized offload coders (e.g. Mellanox-EC) have lower demands on
CPU and cache compared to onload coders, and highly optimized onload
coders (e.g., Intel ISA-L) outperform offload coders for most configura-
tions.

1 Introduction

Replication, a redundancy scheme that replicates data across multiple machines
and racks, is widely used to guarantee high reliability and availability against
the most failure scenarios in distributed storage systems. Since the data being
generated increases rapidly every day, petabytes of storage in today’s data cen-
ters are becoming common. As a result, distributed systems cannot tolerate such
a significant storage overhead brought by using N-way replication, even though
disk storage is inexpensive today.

To this end, latest distributed storage systems, such as Google Colossus [6],
Facebook HDFS-RAID [1,36], the Quantcast File System [27] and Microsoft

This research is supported in part by National Science Foundation grants
CCF#1822987, CNS#1513120, IIS#1636846, and OAC#1664137.

c© Springer Nature Switzerland AG 2019
C. Zheng and J. Zhan (Eds.): Bench 2018, LNCS 11459, pp. 215–230, 2019.
https://doi.org/10.1007/978-3-030-32813-9_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32813-9_18&domain=pdf
https://doi.org/10.1007/978-3-030-32813-9_18

216 H. Shi et al.

Azure Storage System [15], are transforming to the use of Erasure Coding (EC)
scheme, which offers high reliability and availability at a prominently low storage
overhead [35,42]. For instance, Reed-Solomon [34] is a popular family of erasure
codes used in Google Colossus, Facebook HDFS-RAID, and many others. The
Reed-Solomon codes with a 6 + 3 configuration, i.e., three parity chunks for
every six data chunks, which delivers the same level of fault tolerance as 4-way
replication scheme does, has a storage overhead of 50%, while 4-way replication
has a storage overhead of 300%.

The trade-off of deploying erasure codes in distributed storage systems
instead of replication is performance. The use of erasure coding results in a sig-
nificant increase in computation overhead due to the time-consuming EC encod-
ing and decoding operations. With such a trade-off, the erasure-encoded dis-
tributed storage systems should benefit from modern high-performance hardware
architectures. The advancements in CPU/GPU architectures and network inter-
connects have enabled the design of high-performance erasure coding libraries
[16,24] for alleviating the compute overheads involved in erasure coding-based
storage resilience. This motivates us to believe that erasure coding could be a
viable primary fault-tolerance mechanism for next-generation distributed storage
systems.

High-performance EC coders can be categorized in two general ways: (1) EC
Onload, where host-based libraries such as Jerasure [30] and Intel ISA-L [16] are
employed, and, (2) EC Offload, wherein Mellanox InfiniBand HCA and GPU-
like accelerators based libraries such as Gibraltar [8] and Mellanox-EC [23] are
leveraged. With the increased compute and remote I/O required for computing
and distributing EC-coded files, EC onload can enable higher storage efficiency
that is inherent to erasure-coded storage, at the cost of performance and CPU
usage. On the other hand, the high CPU usage can be alleviated with the help
of EC Offload designs, that offload computation to the Mellanox HCAs or GPU
devices, but suffer the loss of performance due to its limited compute capabilities
in comparison to CPU cores.

As we can see, efficient EC coders can play a significant role in designing
next-generation distributed storage systems. However, each of these EC coders
has different APIs, implementations, and performance characteristics. To guide
the users to choose an appropriate one for their target platforms, the community
needs a unified and easy-to-use benchmark suite to measure the performance and
expose the insights of different coders.

Unfortunately, there does not exist such a benchmark suite for distributed
storage systems researchers and designers to benchmark, measure, and charac-
terize the performance of these different EC coders. To address this issue, in this
paper, we propose a unified benchmark suite, called EC-Bench, to help the era-
sure coding researchers and distributed storage system designers to benchmark
both onload and offload EC coders on modern hardware architectures. EC-Bench
provides both encoding and decoding benchmarks with tunable parameter sup-
port. The supported parameters include the number of data chunks, the number
of parity chunks, the number of bits in a word, and the size of each chunk. To

EC-Bench: Benchmarking Onload and Offload Erasure Coders 217

help the users to understand the EC coders in multiple dimensions, EC-Bench
reports a rich set of metrics including latency, actual and normalized throughput,
CPU utilization, and cache pressure.

With EC-Bench, we conduct experiments on four open-source libraries (i.e.,
Jerasure [30], ISA-L [16], Gibraltar [8], and Mellanox-EC [23]) to evaluate the
performance of onload and offload erasure coders. Our in-depth evaluation
exposes impressive performance insights for different coders on modern CPU,
GPU, and InfiniBand architectures. For instance, the experiments illustrate that
hardware-optimized offload coders (e.g., Mellanox-EC) have less CPU utilization
and cache pressure than onload coders, and highly optimized onload coders (e.g.,
Intel ISA-L) perform much better than offload coders due to the use of advanced
instruction sets.

The rest of the paper is organized as follows. Section 2 presents the neces-
sary background on EC. Section 3 presents our proposed design for EC-Bench.
Section 4 describes our detailed evaluation. Section 5 discusses related studies.
Finally, we conclude in Sect. 6.

2 Background

2.1 Erasure Coding

Conventionally, a storage system tolerates faults by replicating data to different
nodes and racks. For example, GFS, HDFS, and Ceph apply 3-way replica-
tion as their default storage mechanisms [11,39,43]. Unfortunately, replicating
a tremendous amount of data can incur significant storage overhead. Therefore,
erasure coding (EC), which can offer the same reliability as or higher than repli-
cation with much lower storage overhead, becomes an attractive alternative. The
Reed-Solomon (RS) code and its variations are the most popular erasure codes
employed in distributed file systems (e.g., HDFS, Ceph, QFS, Google Colos-
sus, Facebook f4, Baidu Atlas and Backblaze [3–6,18,26,27,43]). In general, the
input data is split into chunks with a fixed size (i.e., chunk size). An RS coder,
denoted as RS(k,m), computes m parity chunks for k data chunks. These k+m
chunks are organized as a group called stripe. For chunks belonging into the same
stripe, RS(k,m) is able to recover the entire stripe from up to m chunk losses,
with a storage overhead of m/k. In contrast, the replication scheme has to store
m+1 replicas to achieve the same reliability; thus the storage overhead of repli-
cation is as high as m. For example, the RS(6, 3) code has a storage overhead
of 50% and delivers the same fault-tolerance as 4-way replication that incurs
a 3x overhead. One of the disadvantages in applying erasure coding to storage
systems, however, is high pressures of erasure operations on system performance.

2.2 Onload and Offload Erasure Coders

To overcome the high computational costs involved with erasure coding, two
broad categories of coders have been proposed in the community to take advan-
tage of modern hardware capabilities: (1) onload coders, which are highly opti-
mized for advanced CPU capabilities (e.g., Intel SSE [41] and AVX [17]), and,

218 H. Shi et al.

(2) offload coders, which offload erasure operations to accelerators (e.g, GPU [8],
Host Channel Adapters (HCA) [24]). These hardware-optimized erasure coders
can potentially facilitate EC to be employed as a viable choice for fault-tolerance
in modern distributed storage systems.

3 EC-Bench Design

In this section, we discuss the design details, parameter space, and main metrics
of our benchmarking framework, i.e., EC-Bench.

3.1 Design

EC-Bench consists of two benchmarks, one for encoding and one for decoding.

Encoding Benchmark: For encoding benchmark, a large in-memory data
file of size D are split into multiple data blocks of size k × chunk size. Each
encoding operation of the evaluated erasure coder encodes a piece of data
block into k + m data and parity chunks.
Decoding Benchmark: In order to generate data and parity chunks (i.e.,
stripes), such that we can mimic chunk corruption by nullifying some chunks,
a preprocessing stage before performing decoding operations is necessary. In
the preprocessing stage, it encodes a large in-memory data file of size D into
multiple encoded stripes of size (k+m)× chunk size, and randomly zeros m
chunks out of k + m chunks in each encoded stripe. After the preprocessing
stage, each decoding operation of the evaluated erasure coder recovers an
encoded stripe. To fairly compare all erasure coders, both data and parity
chunks need to be recovered in the benchmark. For some erasure coders, such
as Gibraltar [8], which only recover data chunks in decoding, we will re-encode
to recover corrupt parity chunks.

3.2 Parameter Space

As aforementioned in Sect. 2, the most important parameters for all erasure
coders are the number of data chunks k, the number of parity chunks m, the
number of bits in a word w, and the size of each chunk chunk size. Therefore, in
EC-Bench, the values of k, m, w, and chunk size may be chosen at the discretion
of the user and according to the constraints of erasure coders to evaluate.

3.3 Metrics

In addition to latency and throughout, which are the most typical metrics for
benchmarking erasure coders, we also introduce CPU utilization and cache pres-
sure as main metrics to evaluate onload and offload erasure coders. In this
section, we clarify the definition and describe the approach used for each metric
in EC-Bench.

EC-Bench: Benchmarking Onload and Offload Erasure Coders 219

Latency. The latency in EC-Bench is defined as the time spent on erasure
coding operations (i.e., encoding and decoding).

Throughput. The throughput in EC-Bench is defined as the size of data and
parity chunks divided by the time spent on erasure coding operations (i.e., encod-
ing and decoding). Let D denote the size of k data chunks, and t denote the time
consumed by erasure coding operations. Such that the size of each chunk is D/k.
As illustrated in Sect. 3.1, for both encoding and decoding operations, the erasure
coder operates on k chunks and generates another m different chunks. It means
that each benchmark will output an in-memory data file of size D · (k + m)/k
given an input of size D. Hence, the definition of throughput turns out to be:

Thr =
D

t
· k + m

k
(1)

As shown in the equation, the value of throughput is related to k and m.
Sometimes, however, it is helpful to compare the throughput across different
combinations of k and m. Therefore, we also introduce the normalized through-
put as a metric. Since for both encoding and decoding operations, it generates
D ·m/k bytes worth of coding data. Studies [29,44] demonstrate that it takes
k − 1 XOR operations to produce a byte. Therefore, if we define the normal-
ized throughput as the number of XOR operations taken place in erasure coding
operations divided by the time consumed, the metric is fair for all combinations
of k and m. Thus, the normalized throughput is represented as:

Thrnorm =
D

t
· (k − 1) ·m

k
=

(k − 1) ·m
k + m

· Thr (2)

CPU Utilization. A well-known advantage of offload architecture is the low-
consumption of CPU cycles, which frees up CPU for computation tasks and
finally increases overall system efficiency and performance. Therefore, another
important metric to differentiate onload and offload erasure coders in EC-Bench
is CPU utilization. To precisely get the CPU utilization of each evaluated erasure
coder, we employ PAPI [40] APIs to collect the total number of CPU cycles
consumed by erasure coding operations. We define CPU utilization as the total
number of consumed CPU cycles divide by the time spent on erasure coding
operations. Its equation representation is:

CPU Utilization =
CPU cycles

t
(3)

Cache Pressure. Concerning the architecture characteristics of onload and
offload erasure coders, cache pressure is another vital metric introduced in EC-
Bench. With the fact that, for a specific erasure coder, the maximum perfor-
mance point is achieved when the coder makes the best use of the L1 cache [29],
cache pressure is at least a complementary to other metrics to explore perfor-
mance differences between onload and offload coders. For who is developing a

220 H. Shi et al.

new erasure code, cache pressure may as well be a non-trivial metric to ana-
lyze performance bottleneck. PAPI APIs are used to collect the number of cache
misses in different cache levels. Therefore, cache pressure is defined as the total
number of L1 cache misses divided by the time spent on erasure coding opera-
tions. Therefore, its formula is:

Cache Pressure =
L1 Cache Misses

t
(4)

4 Evaluation

In this section, we conduct experiments on four open-source libraries with EC-
Bench to evaluate the performance of onload and offload erasure coders. This
section also includes additional details on our experimental setup and results.

4.1 Open Source Libraries

These four erasure coder libraries are freely available from various resources on
the Internet. The following list represents their descriptions.

Jerasure: Jerasure [30] is a CPU-based library released in 2007 that supports
a wide variety of erasure codes. The w of Reed-Solomon code in Jerasure could
be 8, 16, or 32.
ISA-L: Intel Intelligent Storage Acceleration Library (ISA-L) [16] is a col-
lection of optimized low-level functions including erasure coding. The erasure
coding functions are optimized for Intel instructions, such as Intel SSE [41],
vector [17], and encryption instructions. The w of Reed-Solomon code in ISA-
L is fixed to 8.
Gibraltar: Gibraltar [8] is a GPU-based library for Reed-Solomon coding.
The Reed-Solomon code in Gibraltar is based on GF (28), which means it has
a fixed w = 8.
Mellanox-EC: Mellanox-EC [24] proposed by Mellanox is an HCA-based
library for Reed-Solomon coding. The erasure coding operations are handled
in host channel adapters (HCA). The w of Reed-Solomon code could be 4
and 8 in the latest ConnectX-5 IB NICs.

4.2 Experimental Setup

Our cluster consists of 20 nodes, and each is equipped with 2.40 GHz Intel(R)
Xeon(R) CPU E5-2680 v4 (28 cores, 32 KB L1 cache, 256 KB L2 cache, and
35 MB L3 cache), 128 GB DRAM, two K80 GPUs, and a ConnectX-5 IB-EDR
(100 Gbps) NIC. The operating system employed in the cluster is CentOS 7.2.
Other necessary drivers and libraries are CUDA 8.0, Mellanox OFED 4.2, PAPI
5.2.0.0 with perf 3.10.0, Jerasure 2.0, ISA-L 2.18.0, Gibraltar1, and Mellanox-
EC2. Note that Jerasure in our experiments is compiled without SSE support,
1 Github: https://github.com/jaredjennings/libgibraltar,

commit: c93f9d8c3be70ded173822cdca2e51900a3f5ed1.
2 Github: https://github.com/Mellanox/EC,

commit: 00bf091aa14322baf4425f8a6d5d134e91fe2a5c.

https://github.com/jaredjennings/libgibraltar
https://github.com/Mellanox/EC

EC-Bench: Benchmarking Onload and Offload Erasure Coders 221

Fig. 1. Throughput performance with varied chunk sizes for RS(3, 2)

such that Jerasure represents onload erasure coder with common instruction sets
while ISA-L with advanced instruction sets.

Experiments in this paper are all conducted with Reed-Solomon code as it is
the only common erasure code among chosen libraries as illustrated in Sect. 4.1.
We also fix the value of w into 8, such that all onload and offload coders are com-
parable. Let RS(k,m) denote the configuration of Reed-Solomon code computing
m parity chunks for k data chunks. We examine onload and offload coders with
four popular configurations, RS(3, 2), RS(6, 3), RS(10, 4) and RS(17, 3) used
by HDFS, Ceph, QFS, Google, Facebook, Baidu and Backblaze [3–6,18,26,27],
etc.

4.3 Experimental Results

It is well-known that decoding operations are similar to encoding operations for
RS code. The throughput performance of encoding and decoding for RS(3, 2)
depicted in Fig. 1 demonstrates that encoding performance and decoding perfor-
mance of all selected coders have similar trends. One interesting observation in
the figure is that the decoding performance of ISA-L to recover m (m equals 2 in
Fig. 1) lost chunks is better than its encoding performance to generate m parity
chunks. In the experiment, the m-by-m matrix used for decoding has a smaller
size than the generator matrix (i.e., a k-by-m matrix) for encoding, such that
the decoding operation requires less compute power; thus, erasure coders, espe-
cially high-performance erasure coders such as ISA-L, deliver better decoding
performance.

Since both encoding performance and decoding performance of different
coders have similar tendencies, we only show encoding results in this section
due to space limitation. In our experiments, Gibraltar coder is not able to run
with chunk size = {32MB, 64MB}, such that corresponding numbers in the
following figures are left blank.

222 H. Shi et al.

Fig. 2. Throughput performance with varied chunk sizes for RS(3, 2)

Fig. 3. Throughput performance with varied chunk sizes for RS(6, 3)

Fig. 4. Throughput performance with varied chunk sizes for RS(10, 4)

Throughput. Figures 2, 3, 4 and 5 depict throughput performance comparisons
among onload and offload coders with various chunk sizes ranging from 1 byte
to 64 MB. Normalized throughput is showing on the right-hand-side y-axis, and
each data point in the figures corresponds to two values, i.e., throughput and
normalized throughput. In all experiments, onload coders outperform offload
coders for small chunk sizes. For instance, in Fig. 2, both Jerasure and ISA-L

EC-Bench: Benchmarking Onload and Offload Erasure Coders 223

Fig. 5. Throughput performance with varied chunk sizes for RS(17, 3)

Fig. 6. Normalized throughput performance of onload and offload coders across mul-
tiple configurations. The chunk sizes for onload and offload coders are fixed into one
of their near-optimal chunk sizes. In this case, 2 KB for onload coders and 512 KB for
offload coders.

perform better than Mellanox-EC and Gibraltar with chunk sizes smaller than
32 KB. On the other hand, throughput performance of offload coders improves
significantly with increasing chunk sizes, and offload coders are able to defeat
some onload coders if chunk size is large enough. Figure 2 demonstrates that
Mellanox-EC and Gibraltar coders outperform Jerasure once chunk size is larger
than 32 KB. The reason behind the increasing throughput of offload coders with
growing chunk sizes is that large chunk sizes alleviate the overhead of transferring
data from host to device [10]. In Figs. 3, 4 and 5, we observe trends similar to
the trend demonstrated in Fig. 2.

Normalized Throughput. After being normalized, throughput performance
across different configurations is comparable [29]. Figure 6 shows how the normal-
ized throughput performance of onload and offload coders changes across multi-
ple configurations (e.g., RS(3, 2)). ISA-L, Mellanox-EC and Gibraltar coders are

224 H. Shi et al.

Fig. 7. CPU utilization with varied chunk sizes for RS(3, 2)

sensitive to configuration changes while Jerasure keeps consistent across differ-
ent configurations. One possible reason behind this observation is that different
coders have nonequivalent optimal parallelism supports. ISA-L, Mellanox-EC,
and Gibraltar have good support to larger-scale parallel configurations; thus,
they perform good with RS(10, 4) and RS(17, 3). In contrast, Jerasure (compiled
without SSE support) prefers smaller-scale parallel configurations; therefore, it
achieves its best performance with configuration RS(3, 2).

CPU Utilization. Considering CPU utilization of onload and offload coders,
Figs. 7, 8, 9 and 10 illustrate that offload coders make better use of CPU cycles
to carry out erasure operations compared with onload coders. For example, it
shows that, in Fig. 7, Mellanox-EC consumes 0.41 million cycles per second while
running with a chunk size of 64 MB. In the meantime, Jerasure and ISA-L take
2950.5 and 2932.23 million cycles per second, respectively. Another observation
is that CPU utilization for both onload and offload coders decrease with an
increase in chunk size.

Figures 7, 8, 9 and 10 also show an interesting fact that ISA-L deals with
chunk sizes smaller than 32 bytes and other chunk sizes in two different
approaches (details in the implementation of function ec encode data avx2 [2]).
That’s why in Figs. 7, 8, 9, 10, 11, 12, 13 and 14, there are big jumps in the
curves of ISA-L in the cases of 32 bytes.

Cache Pressure. The cache pressures of onload and offload coders are depicted
in Figs. 11, 12, 13 and 14. Though Gibraltar has more L1 cache misses than
ISA-L for some chunk sizes, the overall cache pressure introduced by offload
erasure coders is less than that introduced by onload coders. Within all coders,
Mellanox-EC influences cache least, while Jerasure has constant pressure on
cache for relatively large chunk sizes. The different cache behaviors of ISA-L
around chunk size = 32 across four chosen configurations (e.g., RS(3, 2)) also
indicate the same observation in Sect. 4.3 that ISA-L has two internal approaches
to carry out chunk sizes smaller than 32 bytes and other chunk sizes.

EC-Bench: Benchmarking Onload and Offload Erasure Coders 225

Fig. 8. CPU utilization with varied chunk sizes for RS(6, 3)

Fig. 9. CPU utilization with varied chunk sizes for RS(10, 4)

Fig. 10. CPU utilization with varied chunk sizes for RS(17, 3)

5 Related Work

Over the years, as erasure coding becomes an attractive alternative to replication,
several works have been focusing on employing erasure coding for performing

226 H. Shi et al.

Fig. 11. Cache pressure with varied chunk sizes for RS(3, 2)

Fig. 12. Cache pressure with varied chunk sizes for RS(6, 3)

Fig. 13. Cache pressure with varied chunk sizes for RS(10, 4)

data recovery on data centers and benchmarking erasure coders for performance
evaluation.

Erasure Coding for Storage Systems: Erasure codes, especially Reed-
Solomon code and its variations, have been adopted in famous storage sys-
tems [3–6,18,26,27,43], because of its higher reliability with lower storage

EC-Bench: Benchmarking Onload and Offload Erasure Coders 227

Fig. 14. Cache pressure with varied chunk sizes for RS(17, 3)

overhead. To further reduce the overhead introduced by erasure coding, some
research works are proposed, such as Partial-Parallel-Repair [25], Repair Pipelin-
ing [20], and [9,32,33]. Several researchers have also designed many other
classes of erasure codes to reduce the computational complexity involved in
Reed-Solomon codes [7,12–15,19]. In the meantime, erasure coding is also being
utilized to design key-value stores, including Cocytus [45], EC-Cache [31], and
RDMA-accelerated Memcached with online EC support [37].

Hardware Acceleration and Optimizations for Erasure Coding: Moti-
vated by the advanced features supported by modern CPU architectures, many
research works [16,22,28] are enabling the design of high-speed EC by taking
advantage of instruction sets like SSE, AVX, etc. Along similar lines, [24] and
[8] proposed offload approaches to reduce CPU consumption and leverage the
capabilities of GPUs and next-generation network adapters, respectively. On the
other hand, our previous work [38] has proposed a new concept Multi-Rail EC,
which enables upper-layer applications to leverage available high-performance
hardware in parallel to accelerate erasure coding.

Benchmarking Erasure Coding Libraries: Recent studies have evaluated
onload erasure coders with metrics throughput or latency. For instance, [21]
performs several experiments to test the running times of some popular software-
based onload erasure coders. [29] conducts a throughput performance evaluation
and examination of open-source erasure coding libraries and contributes a way to
normalize throughput performance across different configurations (e.g., RS(3, 2),
RS(6, 3) and RS(10, 4)).

The increased focus on employing EC in storage systems and enabling EC
on modern hardware serves as a motivation of this paper. Based on our knowl-
edge of modern hardware architectures, we propose a benchmark which supports
latency and throughput metrics as well as architecture-related metrics, such as
CPU utilization and cache pressure, to fully evaluate different erasure coders,
especially onload and offload coders.

228 H. Shi et al.

6 Conclusion

In this work, we design a benchmark framework (i.e., EC-Bench) for evaluat-
ing erasure coders, especially for onload and offload coders. EC-Bench supports
four main metrics (i.e., latency, throughput, CPU utilization, and cache pres-
sure), which we think are sufficient to explore the performance characteristics
of onload and offload coders fully. Through in-depth performance evaluations of
four erasure coders, we demonstrate that EC-Bench is able to reveal their perfor-
mance differences in terms of throughput, CPU utilization, and cache pressure.
The performance results illustrate that onload coders consumes more CPU and
cache resources than offload coders (e.g., Mellanox-EC), and highly optimized
onload coders (e.g., Intel ISA-L) typically outperform offload coders.

References

1. Facebook’s Erasure Coded Hadoop Distributed File System (HDFS-RAID) (2010).
https://github.com/facebookarchive/hadoop-20

2. ec highlevel func.c (2018). https://github.com/intel/isa-l/blob/master/erasure
code/ec highlevel func.c#L98

3. Apache Hadoop 3.0.0-alpha2 (2017). http://hadoop.apache.org/docs/r3.0.0-
alpha2/

4. Backblaze Online Backup (2015). https://www.backblaze.com/blog/reed-
solomon/

5. Ceph Erasure Coding (2016). http://docs.ceph.com/docs/master/rados/
operations/erasure-code/

6. Colossus: Successor to the Google File System (GFS) (2012). https://www.
systutorials.com/3202/colossus-successor-to-google-file-system-gfs/

7. Corbett, P., et al.: Row-diagonal parity for double disk failure correction. In: Pro-
ceedings of the 3rd USENIX Conference on File and Storage Technologies, pp.
1–14. USENIX Association, Berkeley (2004)

8. Curry, M., Skjellum, A., Lee Ward, H., Brightwell, R.: Gibraltar: a Reed-Solomon
coding library for storage applications on programmable graphics processors. Con-
curr. Comput.: Pract. Exp. 23(18), 2477–2495 (2011)

9. Dimakis, A.G., Godfrey, P.B., Wu, Y., Wainwright, M.J., Ramchandran, K.: Net-
work coding for distributed storage systems. IEEE Trans. Inf. Theory 56(9), 4539–
4551 (2010)

10. Fujii, Y., Azumi, T., Nishio, N., Kato, S., Edahiro, M.: Data transfer matters for
GPU computing. In: 2013 International Conference on Parallel and Distributed
Systems (ICPADS), pp. 275–282. IEEE (2013)

11. Ghemawat, S., Gobioff, H., Leung, S.T.: The Google file system. ACM SIGOPS
Oper. Syst. Rev. 37, 29–43 (2003)

12. Greenan, K.M., Li, X., Wylie, J.J.: Flat XOR-based erasure codes in storage sys-
tems: constructions, efficient recovery, and tradeoffs. In: 2010 IEEE 26th Sympo-
sium on Mass Storage Systems and Technologies (MSST), pp. 1–14. IEEE (2010)

13. Hafner, J.L.: WEAVER codes: highly fault tolerant erasure codes for storage sys-
tems. In: Proceedings of the 4th Conference on USENIX Conference on File and
Storage Technologies - FAST 2005, vol. 4, p. 16. USENIX Association, Berkeley
(2005)

https://github.com/facebookarchive/hadoop-20
https://github.com/intel/isa-l/blob/master/erasure_code/ec_highlevel_func.c#L98
https://github.com/intel/isa-l/blob/master/erasure_code/ec_highlevel_func.c#L98
http://hadoop.apache.org/docs/r3.0.0-alpha2/
http://hadoop.apache.org/docs/r3.0.0-alpha2/
https://www.backblaze.com/blog/reed-solomon/
https://www.backblaze.com/blog/reed-solomon/
http://docs.ceph.com/docs/master/rados/operations/erasure-code/
http://docs.ceph.com/docs/master/rados/operations/erasure-code/
https://www.systutorials.com/3202/colossus-successor-to-google-file-system-gfs/
https://www.systutorials.com/3202/colossus-successor-to-google-file-system-gfs/

EC-Bench: Benchmarking Onload and Offload Erasure Coders 229

14. Huang, C., Xu, L.: STAR: an efficient coding scheme for correcting triple storage
node failures. IEEE Trans. Comput. 57(7), 889–901 (2008)

15. Huang, C., et al.: Erasure coding in windows azure storage. In: USENIX Annual
Technical Conference, Boston, pp. 15–26 (2012)

16. Intel Intelligent Storage Acceleration Library (Intel ISA-L) (2016). https://
software.intel.com/en-us/storage/ISA-L

17. Introduction to Intel R© Advanced Vector Extensions. https://software.intel.com/
en-us/articles/introduction-to-intel-advanced-vector-extensions

18. Lai, C., et al.: Atlas: Baidu’s key-value storage system for cloud data. In: 2015 31st
Symposium on Mass Storage Systems and Technologies (MSST), pp. 1–14. IEEE
(2015)

19. Li, M., Lee, P.P.: STAIR codes: a general family of erasure codes for tolerating
device and sector failures. Trans. Storage 10(4), 14:1–14:30 (2014)

20. Li, R., Li, X., Lee, P.P., Huang, Q.: Repair pipelining for erasure-coded storage.
In: Proceedings of the 2017 USENIX Annual Technical Conference (USENIX ATC
2017), pp. 567–579 (2017)

21. Luby, M.: Benchmark comparisons of erasure codes (2002)
22. Marov, A., Fedorov, A.: Optimization of RAID erasure coding algorithms for Intel

Xeon Phi. In: 2016 IEEE International Conference on Networking, Architecture
and Storage (NAS), pp. 1–4. IEEE (2016)

23. Mellanox. HDFS Erasure Coding Offload Plugin (2016). https://github.com/
Mellanox/EC/tree/master/HDFS

24. Mellanox. Understanding Erasure Coding Offload (2016). https://community.
mellanox.com/docs/DOC-2414

25. Mitra, S., Panta, R., Ra, M.R., Bagchi, S.: Partial-parallel-repair (PPR): a dis-
tributed technique for repairing erasure coded storage. In: Proceedings of the
Eleventh European Conference on Computer Systems, p. 30. ACM (2016)

26. Muralidhar, S., et al.: f4: Facebook’s warm BLOB storage system. In: Proceedings
of the 11th USENIX Conference on Operating Systems Design and Implementa-
tion, pp. 383–398. USENIX Association (2014)

27. Ovsiannikov, M., Rus, S., Reeves, D., Sutter, P., Rao, S., Kelly, J.: The quantcast
file system. Proc. VLDB Endow. 11, 1092–1101 (2013)

28. Plank, J.S., Greenan, K.M., Miller, E.L.: Screaming fast galois field arithmetic
using Intel SIMD instructions. In: 11th USENIX Conference on File and Storage
Technologies (FAST 2013), San Jose, pp. 298–306. USENIX Association (2013)

29. Plank, J.S., et al.: A performance evaluation and examination of open-source era-
sure coding libraries for storage. In: Proccedings of the 7th Conference on File and
Storage Technologies, FAST 2009, pp. 253–265. USENIX Association, Berkeley
(2009)

30. Plank, J.S., Simmerman, S., Schuman, C.D.: Jerasure: a library in C/C++ facili-
tating erasure coding for storage applications (2008)

31. Rashmi, K.V., Chowdhury, M., Kosaian, J., Stoica, I., Ramchandran, K.: EC-
Cache: load-balanced, low-latency cluster caching with online erasure coding. In:
12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 2016). USENIX Association (2016)

32. Rashmi, K.V., Nakkiran, P., Wang, J., Shah, N.B., Ramchandran, K.: Having your
cake and eating it too: jointly optimal erasure codes for i/o, storage, and network-
bandwidth. In: FAST, pp. 81–94 (2015)

33. Rashmi, K.V., Shah, N.B., Gu, D., Kuang, H., Borthakur, D., Ramchandran, K.:
A solution to the network challenges of data recovery in erasure-coded distributed
storage systems: a study on the Facebook warehouse cluster. In: HotStorage (2013)

https://software.intel.com/en-us/storage/ISA-L
https://software.intel.com/en-us/storage/ISA-L
https://software.intel.com/en-us/articles/introduction-to-intel-advanced-vector-extensions
https://software.intel.com/en-us/articles/introduction-to-intel-advanced-vector-extensions
https://github.com/Mellanox/EC/tree/master/HDFS
https://github.com/Mellanox/EC/tree/master/HDFS
https://community.mellanox.com/docs/DOC-2414
https://community.mellanox.com/docs/DOC-2414

230 H. Shi et al.

34. Reed, I.S., Solomon, G.: Polynomial codes over certain finite fields. J. Soc. Ind.
Appl. Math. 8(2), 300–304 (1960)

35. Rodrigues, R., Liskov, B.: High availability in DHTs: erasure coding vs. replication.
In: Castro, M., van Renesse, R. (eds.) IPTPS 2005. LNCS, vol. 3640, pp. 226–239.
Springer, Heidelberg (2005). https://doi.org/10.1007/11558989 21

36. Sathiamoorthy, M., et al.: XORing elephants: novel erasure codes for big data.
Proc. VLDB Endow. 6(5), 325–336 (2013)

37. Shankar, D., Lu, X., Panda, D.K.: High-performance and resilient key-value store
with online erasure coding for big data workloads. In: 2017 IEEE 37th Interna-
tional Conference on Distributed Computing Systems (ICDCS), pp. 527–537. IEEE
(2017)

38. Shi, H., Lu, X., Shankar, D., Panda, D.K.: High-performance multi-rail erasure
coding library over modern data center architectures: early experiences. In: Pro-
ceedings of the ACM Symposium on Cloud Computing, pp. 530–531. ACM (2018)

39. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The hadoop distributed file
system. In: 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies
(MSST), pp. 1–10. IEEE (2010)

40. Terpstra, D., Jagode, H., You, H., Dongarra, J.: Collecting performance data with
PAPI-C. In: Müller, M., Schulz, A., Nagel, W. (eds.) Tools for High Performance
Computing 2009, pp. 157–173. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-11261-4 11

41. Using Intel R© Streaming SIMD Extensions and Intel R© Integrated Performance
Primitives to Accelerate Algorithms (2016). https://software.intel.com/en-us/
articles/

42. Weatherspoon, H., Kubiatowicz, J.D.: Erasure coding vs. replication: a quantita-
tive comparison. In: Druschel, P., Kaashoek, F., Rowstron, A. (eds.) IPTPS 2002.
LNCS, vol. 2429, pp. 328–337. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-45748-8 31

43. Weil, S.A., Brandt, S.A., Miller, E.L., Long, D.D., Maltzahn, C.: Ceph: a scalable,
high-performance distributed file system. In: Proceedings of the 7th Symposium on
Operating Systems Design and Implementation, pp. 307–320. USENIX Association
(2006)

44. Xu, L., Bruck, J.: X-code: MDS array codes with optimal encoding. IEEE Trans.
Inf. Theory 45(1), 272–276 (1999)

45. Zhang, H., Dong, M., Chen, H.: Efficient and available in-memory KV-store with
hybrid erasure coding and replication. In: 14th USENIX Conference on File and
Storage Technologies (FAST 2016), Santa Clara, pp. 167–180. USENIX Association
(2016)

https://doi.org/10.1007/11558989_21
https://doi.org/10.1007/978-3-642-11261-4_11
https://doi.org/10.1007/978-3-642-11261-4_11
https://software.intel.com/en-us/articles/
https://software.intel.com/en-us/articles/
https://doi.org/10.1007/3-540-45748-8_31
https://doi.org/10.1007/3-540-45748-8_31

Algorithm and Implementations

Benchmarking SpMV Methods
on Many-Core Platforms

Biwei Xie1(B), Zhen Jia2, and Yungang Bao1,3

1 State Key Laboratory of Computer Architecture,
Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China

{xiebiwei,baoyg}@ict.ac.cn
2 Department of Computer Science, Princeton University, Princeton, USA

zhenj@cs.princeton.edu
3 University of Chinese Academy of Sciences, Beijing, China

Abstract. SpMV is an essential kernel existing in many HPC and data
center applications. Meanwhile, the emerging many-core hardware pro-
vides promising computational power, and is widely used for accelera-
tion. Many methods and formats have been proposed aiming at better
performance of SpMV on many-core platforms. However, there is still
lack of a comprehensive comparison of SpMV methods to show their
performance difference on sparse matrices with various sparse patterns.
Moreover, there is still no systematic work to bridge the gap between
SpMV performance and sparse pattern.

In this paper, we investigate the performance of 27 SpMV methods
with 1500+ sparse matrices on two many-core platforms: Intel Xeon Phi
(Knights Landing 7250) and Nvidia GPGPU (Tesla M40). Our work
shows that no single SpMV methods is optimal for all sparse patterns,
but some methods can achieve approximately the best performance on
most sparse matrices. We further select 13 features to describe the sparse
pattern and analyze their correlations to the performance of each SpMV
method. Our observations should help other researchers and practitioners
to better understand the SpMV performance and provide implications
to guide the selection of suitable SpMV method.

Keywords: Benchmarking · SpMV · Many-core · Evaluation

1 Introduction

SpMV (sparse matrix-vector multiplication) is critical to the performance of
many HPC [1,2] and data center applications [3,4]. Especially in many large-
sized linear systems and eigenvalue problems, SpMV dominates the computation
as well as the overall execution time. Meanwhile, the evolution of many-core pro-
cessors provides promising computational power for the acceleration of SpMV.

Since the performance variance among different SpMV methods is usually
huge, design or select an appropriate SpMV method is important and not easy

c© Springer Nature Switzerland AG 2019
C. Zheng and J. Zhan (Eds.): Bench 2018, LNCS 11459, pp. 233–247, 2019.
https://doi.org/10.1007/978-3-030-32813-9_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32813-9_19&domain=pdf
https://doi.org/10.1007/978-3-030-32813-9_19

234 B. Xie et al.

for most of the time. There are several factors that affect the performance and
make it difficult to design a one fit all solution. (1) Sparse pattern. The mem-
ory access pattern of SpMV is determined to the the sparse pattern of the input
matrix, which is also known as the distribution pattern of non-zero elements. The
input-dependent and irregular data layout of sparse matrices results in random
memory accesses, which introduces great difficulty in designing a unified SpMV
method to handle all the cases. (2) SpMV methods and Implementations.
Targeting different application scenarios or sparse matrices with different pat-
terns, SpMV methods are designed with diverse considerations, and thus that
show much different performance. Moreover, the same SpMV method from dif-
ferent packages with different implementations, might also show huge different
performance. (3) The underlying hardware. The design decision of many-
core architecture also affects the final SpMV performance a lot. SpMV methods
designed for one specific many-core architecture might show poor performance
on another many-core architecture. For example, one SpMV method designed
for GPGPU might gain poor performance on Intel Xeon Phi. In conclusion, a
systematic analysis, which fully considers the diversity of sparse patterns, SpMV
methods, and hardware platforms, is motivated.

SpMV has been researched for decades on plenty of new architectures and
accelerators [5–9]. In addition to designing a specific SpMV method, there are
also a lot of existing work trying to bridge the performance gap between the
sparse pattern and underlying hardware [10–13]. Those work selects features to
represent the sparse pattern and train models to select SpMV methods automat-
ically using supervised [14] or unsupervised [15] machine learning/deep learning
algorithms. Researchers in any field are always interested in broader or most
latest research effort. So does SpMV field. Since the best method 2 years ago
may not be a perfect one for now. Meanwhile, it would be helpful to perform a
thorough analysis on the relationship between sparse features and SpMV per-
formance, which may provide us insights on how to select the features to profile
sparse matrices. We distinguish our work from existing ones from three perspec-
tives: more cutting edge SpMV methods, larger number of sparse matrices for
characterization, and more delicate sparse pattern analysis.

In this paper, we investigate the performance of 27 SpMV methods on more
than 1500 sparse matrices, based on two advanced many-core platforms: Intel
Xeon Phi (Knights Landing 7250) [16] and Nvidia GPGPU (Tesla M40). We
further investigate previous work and finally select 13 features, which are widely
used to describe sparse pattern. We take those features as likely candidates to
describe sparse patterns and analyze their correlations to the performance of the
SpMV methods. We conclude our observations and implications as following:

– No single SpMV method can efficiently deal with all the sparse patterns,
but some SpMV methods can achieve the best or approximately the best
performance for most sparse matrices.

– The widely used methods, like CSR, CSC and DIA, are not able to compete
with the newly proposed solutions, e.g., CVR and CSR5, from the perspec-

Benchmarking SpMV Methods on Many-Core Platforms 235

tive of performance. Counter-intuitively, even DIA is designed for diagonal
matrices, its performance is not the best for them as expected.

– Different SpMV methods show diverse sensitivities to sparse patterns.

This paper is organized as follows. Section 2 gives the benchmarking method-
ology. Section 3 analyzes the experimental results, and Sect. 4 concludes.

2 Benchmarking Methodology

2.1 Selected SpMV Methods

Many SpMV methods have been proposed with various design considerations.
Some famous packages provide diverse and stable SpMV implementations, like

Table 1. The list of chosen SpMV methods.

ID SpMV methods Input formats Package Platform OpenSource Short name

1 COO COO MKL-intel [17] X86 No

2 CSR CSR MKL-intel X86 No

3 CSC CSC MKL-intel X86 No

4 DIA DIA MKL-intel X86 No

5 IE CSR MKL-intel X86 No

6 BSR BSR [21] MKL-intel X86 No

7 ESB Dynamic ESB [22] MKL-intel X86 No ESB-d

8 ESB Static ESB [22] MKL-intel X86 No ESB-s

9 CVR CVR CGO’18 [23] X86 Yes

10 CSR5 CSR5 ICS’15 [24] X86 Yes

11 VHCC VHCC CGO’15 [25] X86 Yes

12 CSRcuSparse CSR cuSparse [18] GPGPU No CSRcu

13 BSRcuSparse BSR cuSparse GPGPU No BSRcu

14 HYBcuSparse HYB cuSparse GPGPU No COOcu

15 COOCUSP COO CUSP GPGPU Yes COOCU

16 CSRCUSP CSR CUSP GPGPU Yes CSRCU

17 ELLCUSP ELLPACK [26] CUSP GPGPU Yes ELLCU

18 HYBCUSP HYB CUSP GPGPU Yes HYBCU

19 DIACUSP DIA CUSP GPGPU Yes DIACU

20 CSRMagma CSR Magma [20] GPGPU Yes CSRMA

21 BSRMagma BSR Magma GPGPU Yes BSRMA

22 ELLMagma ELLPACK Magma GPGPU Yes ELLMA

23 SELLPMagma SELLP Magma GPGPU Yes SELLP

24 ELLPKMagma ELLPacket Magma GPGPU Yes ELLPK

25 ELLRTMagma ELLRT Magma GPGPU Yes ELLRT

26 Merge CSR SC’17 [27] GPGPU Yes

27 CSR5GPU CSR5 ICS’15 [24] GPGPU Yes CSR5g

236 B. Xie et al.

MKL [17] from Intel, cuSparse [18] from Nvidia, CUSP [19] and Magma [20] from
open-source community. We choose SpMV methods from these packages with
overlapping, since even for the same SpMV method, different implementations
result in various performance. Finally, 27 SpMV methods are selected (Table 1).

2.2 Selected Features

Based on a comprehensively investigation of existing work, we select 13 features
(Table 2) to describe the sparse patterns, which include 7 basic features related
to the whole matrix and another 6 row features reflecting the characteristics
of neighboring rows. The full list of the selected features are shown in Table 2.
Meanwhile, we use both the average value (abbreviated as avg) and coefficient
of variation (abbreviated as cv) of the row features for better description.

Table 2. Selected features of sparse matrix

1 numRows m: number of rows

2 numCols n: number of columns

3 numNonZeros nnz: number of non-zero elements

4 density nnz/(m × n): density of non-zero elements

5 nonEmptyRows me: number of non-empty rows

6 numDIAs number of such diagonals

7 densityDIA nnz/(numDIAs * n): density of non-zero elements on
diagonals

8 nnzRowi number of non-zero elements in row i

9 lengthRowi col[las] - col[fir]: the distance between the last and the
first element in row i

10 densityRowi nnzRowi/lengthi: the density of non-zero elements of
row i

11 numBlockofRowi number of blocks in row i. A block indicates consecutive
non-zero elements

12 lengthBlockofRowi the average length of the blocks in row i

13 patternSectioni Sparse pattern by section, which is the sum of the
coefficient of variation value of all features in section i

Take nnzRow for example, Eqs. 1 and 2 show the computation method of
its average value and coefficient of variation in respective. We further com-
pute coefficient of variation of all features by section, which consists of multiple
consecutive rows. The coefficient of variation of a specific feature in a specific
section shows the similarity of the rows in this section on this feature. We name
the sum of the coefficient of variation of all features in a section, patternSection
(sparse pattern by section), which shows the similarity of the sparse pattern of

Benchmarking SpMV Methods on Many-Core Platforms 237

neighbouring rows in this section.

avg nnzRow = nnz/me (1)

cv nnzRow =

√
1
me

me∑
i=1

(nnzRowi − avg nnzRow)2

avg nnzRow
(2)

2.3 Hardware Configuration

We conduct the experiments on two popular many-core platforms: Intel Xeon
Phi and Nvidia GPU. They are both widely used for acceleration in many areas,
like scientific computing and deep learning, but with totally different architecture
design decisions. The details of them can bu found in Table 3.

Table 3. The configuration of experimental platforms.

Xeon Phi GPU

Architecture Knights Landing Tesla

Model 7250 M40

Details # of cores: 68 # of SMs: 24

of HT/core: 4 # of coes/SM: 128

SIMD width: 512 warp size: 32

L1 cache: 32 KB(D) + 32KB(I) shared memory/SM: 48KB

L2 cache: 1024 KB/two cores L2 cache: 3 MB

Memory: 16 GB MCDRAM Global Memory: 24 GB

96 GB DDR4

2.4 Data Sets

To cover the diversity of sparse patterns, we choose the well-known SuiteSparse
Matrix Collection [28], which includes 4700 sparse matrices covering more than
100 application scenarios. These sparse matrices are different from each other
on scale and the distribution pattern. We discard sparse matrices which are
too small, and finally select 1500+ sparse matrices for our evaluation, covering
various scenarios like social network, web graph, road network, and etc.

2.5 Experimental Methods

We choose 27 SpMV methods listed in Sect. 2.1 as our workloads: 11 on Intel
Xeon Phi and 16 on GPGPU. For the workloads that need input parameters, we

238 B. Xie et al.

use the recommended value or the default value. For workloads on Intel Xeon
Phi, we adjust the thread number (from 1 to 4) and report the best one. For
workloads on GPGPU, we use default values for the number of blocks and the
number of threads. For all workloads, we run 1000 iterations and calculate the
average SpMV execution time. As to the compiling flag options, on Intel Xeon
Phi, we use ‘-xMIC-AVX512 -qopenmp -std=c ++ 0x -mkl -O3’; on GPGPU,
we use ‘-m64 -fopenmp -lgomp -w -gencode=arch = compute 52,code = sm 52’.
Additionally, we set MCDRAM in ‘flat’ mode, and use ‘numactl –membind = 1’
to set the workloads run in MCDRAM on Intel Xeon Phi.

3 Experimental Results

In this section, we will firstly analyze the performance of each SpMV method.
Then, we compare the number of sparse matrices each method can achieve the
best or approximate best performance on. We further perform correlation anal-
ysis between the features of sparse matrices and SpMV method performance.

3.1 SpMV Performance

The experiment results of the 27 SpMV methods are sorted by nnz (the number
of non-zero elements) for better demonstration. We report both the running-time
(in millisecond) and the throughput (in GFlops). The workload performance on
Intel Xeon Phi is shown in Fig. 1a to j. GPGPU ones are given in Fig. 1l to 2g.

Performance Analysis on Intel Xeon Phi. Some SpMV methods, like CSR,
IE, CSR5 and CVR, show good performance on both small and large sparse
matrices with various sparse patterns. As nnz increases, the throughput of these
SpMV methods first grow fast and then become slow. The throughput of CSR,
IE and CSR5 decrease when dealing with large-scale sparse matrices, while that
of CVR is more stable. In addition, COO, CSC, and DIA, which are widely used
in real-world scenarios, show much poorer performance than expected.

The relationship between the performance of DIA and nnz seems to be ran-
dom, since the performance of DIA is mainly determined to the number of diag-
onals and the density of the non-zero elements on these diagonals, rather than
nnz. Besides, BSR, ESB-d and ESB-s show plain performance, but their through-
put generally keep growing when the sparse matrix scales up. Additionally, these
three workloads are more sensitive to the sparse pattern, thus that the sparse
matrices with similar scale but different sparse patterns show much different
performance. This is the main reason of the ‘glitch’ in Fig. 1f, h and g.

Performance Analysis on GPGPU. The same SpMV method from different
packages show huge performance variances. The CSR in cuSparse, CUSP and
Magma show much different performance. CSR in CUSP is more stable and

Benchmarking SpMV Methods on Many-Core Platforms 239

(a) CSR on Phi (b) COO on Phi (c) CSC on Phi (d) DIA on Phi

(e) IE on Phi (f) BSR on Phi (g) ESB-s on Phi (h) ESB-d on Phi

(i) CVR on Phi (j) CSR5 on Phi (k) VHCC on Phi (l) CSRcu on GPU

(m) BSRcu on GPU (n) HYBcu on GPU (o) COOCU on GPU (p) CSRCU on GPU

(q) ELLCU on GPU (r) HYBCU on GPU (s) DIACU on GPU (t) CSRMA on GPU

Fig. 1. SpMV performance (part I)

performs much better than the other two on large sparse matrices. HYB exists
in both cuSparse and CUSP, but the latter shows higher throughput in general.

For BSR, HYB, ELL and DIA, the ‘glich’ indicates their sensitivity to the
sparse pattern, which means their performance are quite dependent on the distri-
bution pattern of the non-zero elements. Merge SpMV is stable and insensitive

240 B. Xie et al.

(a) BSRMA on GPU (b) ELLMA on GPU (c) SELLP on GPU (d) ELLPK on GPU

(e) ELLRT on GPU (f) Merge on GPU (g) CSR5 on GPU

Fig. 2. SpMV performance (part II)

to sparse patterns. Its performance keeps growing with increasing nnz, which
makes its performance more predictable. However, the performance of Merge is
not as good as CSR and HYB in CUSP. DIA would fill zero elements in each
nonempty diagonal, which occupies too much memory and make it impossible
to deal with large sparse matrices with too many sparse diagonals.

3.2 Best-Method Analysis

For each sparse matrix, there exists one SpMV method that achieves better
performance than all other ones. We name this method best-method of this
sparse matrix. Moreover, the sparse pattern of sparse matrices from various
application scenarios are much different from each other. We show the best-
method of all sparse matrices by their belonging groups in Figs. 3 and 4.

General Analysis. No single SpMV method achieves the best performance
on all sparse matrices, but some of them perform much better than the others.
When dealing with large sparse matrices on Intel Xeon Phi, CVR and IE occupy
the largest percentage of the best-method. CSR5 and CSR both work well on
medium-sized sparse matrices. The CSR5 on GPGPU shows good performance
on large sparse matrices, while CSR from cuSparse and ELLpack from CUSP
suit well on medium and small-sized sparse matrices.

Quantitative Analysis of Best-methods. For better performance compar-
ison, we collect the number of sparse matrices in which each SpMV method
can achieve the best performance. Moreover, we also compute the corresponding
ratio for better demonstration and show them in Tables 4 and 5.

Benchmarking SpMV Methods on Many-Core Platforms 241

Fig. 3. Distribution of Best-SpMV methods on Phi over groups (only the groups with
more than 20 sparse matrices are shown).

Fig. 4. Distribution of Best-SpMV methods on GPU over groups (only the groups with
more than 20 sparse matrices are shown).

On Xeon Phi, CVR and CSR5 perform much better than other SpMV meth-
ods, and occupy 50.4% and 32.55% of the sparse matrices in respective. In other
words, CVR and CSR5 together show best performance on a large part (83%)
of sparse matrices. Meanwhile, COO, CSC and ESB-d achieve the best perfor-
mance on no sparse matrix. Given an arbitrary sparse matrix, there would be
at least one SpMV method performs better than them. VHCC, ESB-s, DIA and
BSR achieve best performance only on several sparse matrices on Intel Xeon
Phi. There are many diagonal pattern sparse matrices included in our data sets,
but DIA achieves the best performance on only one of them. It means that even
for a sparse matrix with diagonal pattern, DIA might not be the best choice.

On GPGPU, the distribution of best-method is pretty scattered. CSR5 per-
forms best on most sparse matrices, which occupies 55.9%. In General, SpMV
methods from CUSP perform better than that from cuSparse, and the latter
achieves best performance on only 35 sparse matrices in total. ELLPack (from
both CUSP and Magma) related SpMV methods, like ELLPack, SELLP and
ELLRT from Magma show good performance, which means the design of ELL-

242 B. Xie et al.

Table 4. The ratio that each method achieves the best performance on Phi.

Methods CVR CSR5 IE CSR VHCC ESB-s DIA BSR ESB-d CSC COO

Optimal 689 445 114 109 4 4 1 1 0 0 0

Ratio 50.4% 32.55% 8.34% 7.97% 0.29% 0.29% 0.07% 0.07% 0 0 0

Table 5. The ratio that each method achieves the best performance on GPU.

Methods CSR5GPU CSRCU ELLCU ELLMA SELLPMA ELLRTMA Merge DIACU

Optimal 757 148 114 80 61 53 41 40

Ratio 55.9% 10.9% 8.4% 5.9% 4.5% 3.9% 3% 2.9%

CSRcu CSRMA HYBcu HYBCU ELLPKMA COOCU BSRcu BSRMA

Optimal 30 21 5 2 0 0 0 0

Ratio 2.2% 1.5% 0.36% 0.14% 0 0 0 0

Table 6. The ratio each method achieves the close-to-best performance on Phi.

Methods CVR CSR5 IE CSR VHCC ESB-s DIA BSR ESB-d CSC COO

A-Optimal 957 650 192 192 6 25 1 5 4 0 0

Ratio 70% 47.55% 14.04% 14.04% 0.44% 1.83% 0.07% 0.36% 0.29% 0 0

Table 7. The ratio each method achieves the close-to-best performance on GPU.

Methods CSR5GPU CSRCUSP ELLCU ELLMA SELLPMA ELLRTMA Merge DIACU

Optimal 869 188 148 132 156 162 59 45

Ratio 64.2% 13.9% 10.9% 9.7% 11.5% 11.9% 4.3% 3.3%

CSRcu CSRMA HYBcu HYBCU ELLPKMA COOCU BSRcu BSRMA

Optimal 79 79 10 70 5 0 0 1

Ratio 5.8% 5.8% 0.7% 5.1% 0.36% 0 0 0.07%

pack is effective on GPGPU. In contrast, HYB from both cuSparse and CUSP
show best performance only on limited number of sparse matrices.

Quantitative Analysis of Close-to-Best-Methods. Sometimes, when we
choose a SpMV method, it does not need to be the best, if its performance is
quite close to the best-method. We re-collect the number of sparse matrices each
SpMV method can achieve the close-to-best (within 10% worse than the best
performance) performance and show them in Tables 6 and 7. On Intel Xeon Phi,
the ratio of CVR increases from 50.4% to 70% and CSR5 from 32.55% to 47.55%.
On GPGPU, the ratio of CSR5 increases from 55.9% to 64.2%.

Summary. The widely used SpMV methods, like CSR, CSC and DIA, show
much poorer performance on both Intel Xeon Phi and GPGPU than expected.
Newly proposed methods, like CVR and CSR5, show quite good performance.
Existing work on the research of auto-selection of SpMV methods, which prefers

Benchmarking SpMV Methods on Many-Core Platforms 243

Fig. 5. Analysis of the relationship between the performance and the features (nnz,
density, numDIA, densityDIA, nnzRow, lengthRow)

to take CSR, CSC, DIA, ELL, and COO as candidates, should take the newly
proposed methods into consider.

3.3 Correlation Analysis of Performance and Sparse Pattern

We compute the values of selected features that are used to describe sparse
pattern and analyze the relationship between performance and sparse pattern.

NNZ. nnz indicates the number of non-zero elements. Ignoring the distribution
pattern of these non-zero elements, we firstly analyze the correlation between
the performance and nnz. Positive correlation means that as nnz increases, the
throughput of the SpMV method keeps growing despite of the sparse pattern.
In addition, high positive correlation indicates corresponding SpMV method
attains predictable performance. In Fig. 5a, most SpMV methods show positive
correlation, while COO and ELLPK show negative correlation, which means
their throughput will decrease as nnz increases.

Density. Density is a metric used to describe the sparsity of a sparse matrix.
Lower density indicates sparser matrix. Figure 5b shows the correlation of per-
formance and density. For most SpMV methods, the sparser the matrix is, the
lower throughput they can achieve, since sparser matrix often indicates more
irregular memory references and thus poor performance.

Diagonal. The correlation of performance and the two diagonal related fea-
tures: the number of diagonals and the density of diagonals, are shown in Fig. 5c

244 B. Xie et al.

Fig. 6. Analysis of the relationship between the performance and the features (densi-
tyRow, numBlock, lengthBlock, and patternSection)

and d. The performance of DIA on both Intel Xeon Phi and GPGPU show neg-
ative correlation between the number of diagonals and throughput, and positive
correlation between the density of diagonals and throughput. DIA is suitable
for sparse matrices whose non-zero elements are compactly distributed along a
small number of diagonals.

NNZ by Row. nnzRow indicates the distribution of the number of non-zero ele-
ments in each row. Figure 5e and f show that DIA on Intel Xeon Phi is insensitive
to nnzRow, but DIA on GPGPU shows positive correlation. The performance of
most SpMV methods show negative correlation to the coefficient of variation of
nnzRow, except COO and ELLCU.

Length by Row. LengthRow is the distance between the first element and the
last element in a row. Larger lengthRow indicates larger memory reference span,
which might result in poorer cache utilization. In Fig. 5g and h, the performance
of DIA on both Xeon Phi and GPGPU show negative correlation, since larger
lengthRow often indicates more sparse diagonals.

Density by Row. In Fig. 6a and b, most SpMV methods show negative cor-
relation between performance and the density by row. In other words, if the
non-zero elements are scattered in each row, the performance of these SpMV
methods would be poor.

Blocks by Row. In Fig. 6c, d, e and f, most SpMV methods show positive
correlation to the numBlock, while BSR shows that the less the numBlock is,

Benchmarking SpMV Methods on Many-Core Platforms 245

the better performance it achieves. As to the average length of the blocks by
row, the performance of most SpMV methods show positive correlation.

Sparse Pattern by Section. The feature patternSection indicates the similar-
ity of distribution of non-zero elements of the rows in a specific section. Figure 6g
and h show that, for most SpMV methods, the more similar the pattern of rows
in each section are, the better performance they would achieve.

Summary. Different SpMV methods have different correlation and sensitivity
to each feature. It makes more sense to select the features, which are obvious
positive or negative to the performance of given SpMV methods, to describe the
sparse pattern or to train a SpMV method auto-selection model.

4 Conclusion

In this paper, we comprehensively investigate the performance of 27 SpMV meth-
ods on two many-core processors: Intel Xeon Phi and GPGPU. Our experiments
show that some widely used SpMV methods/formats, like CSR, CSC and DIA,
are not so efficient as expected. Newly proposed methods, like CVR and CSR5
show much better performance. Moreover, we analyze the correlation between
SpMV performance and 13 selected features based on more than 1500 sparse
matrices. Features with obvious correlation to the performance of some SpMV
methods are more recommended to be selected to describe sparse pattern. Our
observations and implications will help researchers to better understand the rela-
tionship between the SpMV performance and the sparse pattern.

Acknowledgement. This work was supported partially by National Key R&D Pro-
gram of China (2016YFB1000201), and the National Natural Science Foundation of
China (Grant No. 61420106013), and Youth Innovation Promotion Association of Chi-
nese Academy of Sciences (2013073).

References

1. Ravishankar, M., et al.: Distributed memory code generation for mixed irregu-
lar/regular computations. In: Proceedings of the 20th ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming, PPoPP 2015, pp. 65–75.
ACM, New York (2015). http://doi.acm.org/10.1145/2688500.2688515

2. Venkat, A., Hall, M., Strout, M.: Loop and data transformations for sparse matrix
code. SIGPLAN Not. 506, 521–532 (2015). https://doi.org/10.1145/2737924.
2738003

3. Wang, L., et al.: Bigdatabench: a big data benchmark suite from internet services.
In: Proceedings of the 20th IEEE International Symposium on High Performance
Computer Architecture, HPCA 2014, pp. 488–499, Feburary 2014

4. Jia, Z., Wang, L., Zhan, J., Zhang, L., Luo, C.: Characterizing data analysis work-
loads in data centers. In: Proceedings of the IEEE International Symposium on
Workload Characterization, IISWC 2013, pp. 66–76, September 2013

http://doi.acm.org/10.1145/2688500.2688515
https://doi.org/10.1145/2737924.2738003
https://doi.org/10.1145/2737924.2738003

246 B. Xie et al.

5. Liu, C., Xie, B., Liu, X., Xue, W., Yang, H., Liu, X.: Towards efficient SpMV on
sunway manycore architectures. In: Proceedings of the 2018 International Confer-
ence on Supercomputing, ICS 2018, pp. 363–373. ACM, New York (2018). http://
doi.acm.org/10.1145/3205289.3205313

6. Buono, D., et al.: Optimizing sparse matrix-vector multiplication for large-scale
data analytics. In: Proceedings of the 30th International Conference on Supercom-
puting, ICS 2016, pp. 37:1–37:12. ACM, New York (2016). http://doi.acm.org/10.
1145/2925426.2926278

7. Pinar, A., Heath, M.T.: Improving performance of sparse matrix-vector multipli-
cation. In: Proceedings of the 13th ACM/IEEE Conference on Supercomputing,
ICS 1999. ACM, New York (1999). http://doi.acm.org/10.1145/331532.331562

8. Yavits, L., Ginosar, R.: Accelerator for sparse machine learning. IEEE Comput.
Archit. Lett. 99, 1 (2017)

9. Greathouse, J.L., Daga, M.: Efficient sparse matrix-vector multiplication on GPUs
using the CSR storage format. In: Proceedings of the ACM/IEEE International
Conference for High Performance Computing, Networking, Storage and Analysis,
SC 2014, pp. 769–780. IEEE Press, Piscataway (2014). https://doi.org/10.1109/
SC.2014.68

10. Abu-Sufah, W., Abdel Karim, A.: Auto-tuning of sparse matrix-vector multiplica-
tion on graphics processors. In: Kunkel, J.M., Ludwig, T., Meuer, H.W. (eds.) ISC
2013. LNCS, vol. 7905, pp. 151–164. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-38750-0 12

11. Li, J., Tan, G., Chen, M., Sun, N.: SMAT: an input adaptive auto-tuner for sparse
matrix-vector multiplication. In: Proceedings of the 34th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, PLDI 2013, pp.
117–126. ACM, New York (2013). http://doi.acm.org/10.1145/2462156.2462181

12. Elafrou, A., Goumas, G., Koziris, N.: A lightweight optimization selection method
for sparse matrix-vector multiplication. arXiv e-prints, November 2015

13. Yan, S., Li, C., Zhang, Y., Zhou, H.: YASPMV: yet another SpMV framework on
GPUs. In: Proceedings of the 19th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP 2014, pp. 107–118. ACM, New York
(2014). http://doi.acm.org/10.1145/2555243.2555255

14. Sedaghati, N., Mu, T., Pouchet, L.-N., Parthasarathy, S., Sadayappan, P.: Auto-
matic selection of sparse matrix representation on GPUs. In: Proceedings of the
29th ACM on International Conference on Supercomputing, ICS 2015, pp. 99–108.
ACM, New York (2015). http://doi.acm.org/10.1145/2751205.2751244

15. Zhao, Y., Li, J., Liao, C., Shen, X.: Bridging the gap between deep learning and
sparse matrix format selection. In: Proceedings of the 23rd ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming, PPoPP 2018, pp.
94–108. ACM, New York (2018)

16. Sodani, A., et al.: Knights landing: second-generation Intel Xeon Phi product.
IEEE Micro 362, 34–46 (2016). https://doi.org/10.1109/MM.2016.25

17. Wang, E., et al.: Intel math kernel library. In: Wang, E. (ed.) High-Performance
Computing on the Intel R© Xeon PhiTM, pp. 167–188. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-06486-4 7

18. CUDA CUSPARSE Library: NVIDIA, August 2010
19. Dalton, S., Bell, N., Olson, L., Garland, M.: CUSP: generic parallel algorithms for

sparse matrix and graph computations, version 0.5.0. (2014). http://cusplibrary.
github.io/

http://doi.acm.org/10.1145/3205289.3205313
http://doi.acm.org/10.1145/3205289.3205313
http://doi.acm.org/10.1145/2925426.2926278
http://doi.acm.org/10.1145/2925426.2926278
http://doi.acm.org/10.1145/331532.331562
https://doi.org/10.1109/SC.2014.68
https://doi.org/10.1109/SC.2014.68
https://doi.org/10.1007/978-3-642-38750-0_12
https://doi.org/10.1007/978-3-642-38750-0_12
http://doi.acm.org/10.1145/2462156.2462181
http://doi.acm.org/10.1145/2555243.2555255
http://doi.acm.org/10.1145/2751205.2751244
https://doi.org/10.1109/MM.2016.25
https://doi.org/10.1007/978-3-319-06486-4_7
http://cusplibrary.github.io/
http://cusplibrary.github.io/

Benchmarking SpMV Methods on Many-Core Platforms 247

20. Bosma, W., Cannon, J., Playoust, C.: The magma algebra system I: the user
language. J. Symb. Comput. 243–4, 235–265 (1997). https://doi.org/10.1006/jsco.
1996.0125

21. Ashari, A., Sedaghati, N., Eisenlohr, J., Sadayappan, P.: An efficient two-
dimensional blocking strategy for sparse matrix-vector multiplication on GPUs. In:
Proceedings of the 28th ACM International Conference on Supercomputing, ICS
2014, pp. 273–282. ACM, New York (2014). http://doi.acm.org/10.1145/2597652.
2597678

22. Liu, X., Smelyanskiy, M., Chow, E., Dubey, P.: Efficient sparse matrix-vector mul-
tiplication on x86-based many-core processors. In: Proceedings of the 27th ACM
International Conference on Supercomputing, ICS 2013, pp. 273–282. ACM, New
York (2013). http://doi.acm.org/10.1145/2464996.2465013

23. Xie, B., et al.: CVR: efficient vectorization of spmv on x86 processors. In: Proceed-
ings of the 16th IEEE/ACM International Symposium on Code Generation and
Optimization, CGO 2018 (2018)

24. Liu, W., Vinter, B.: CSR5: an efficient storage format for cross-platform sparse
matrix-vector multiplication. In: Proceedings of the 29th ACM International Con-
ference on Supercomputing, ICS 2015, pp. 339–350. ACM, New York (2015)

25. Tang, W.T., et al.: Optimizing and auto-tuning scale-free sparse matrix-vector
multiplication on Intel Xeon Phi. In: Proceedings of the 13th IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization, CGO 2015, pp. 136–145.
IEEE Computer Society, Washington (2015)

26. Bell, N., Garland, M.: Implementing sparse matrix-vector multiplication on
throughput-oriented processors. In: Proceedings of the ACM/IEEE Conference on
High Performance Computing Networking, Storage and Analysis, SC 2009, pp.
18:1–18:11. ACM, New York (2009). http://doi.acm.org/10.1145/1654059.1654078

27. Merrill, D., Garland, M.: Merge-based parallel sparse matrix-vector multiplication.
In: Proceedings of the ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis, SC 2016, pp. 58:1–58:12. IEEE,
Piscataway (2016). https://doi.org/10.1109/SC.2016.57

28. Davis, T.A.: The University of Florida sparse matrix collection. NA DIGEST
(1997)

https://doi.org/10.1006/jsco.1996.0125
https://doi.org/10.1006/jsco.1996.0125
http://doi.acm.org/10.1145/2597652.2597678
http://doi.acm.org/10.1145/2597652.2597678
http://doi.acm.org/10.1145/2464996.2465013
http://doi.acm.org/10.1145/1654059.1654078
https://doi.org/10.1109/SC.2016.57

Benchmarking Parallel K-Means Cloud
Type Clustering from Satellite Data

Carlos Barajas1(B), Pei Guo2, Lipi Mukherjee3,4, Susan Hoban4,
Jianwu Wang2, Daeho Jin5, Aryya Gangopadhyay2, and Matthias K. Gobbert1

1 Department of Mathematics and Statistics, University of Maryland,
Baltimore County, USA

{barajasc,gobbert}@umbc.edu
2 Department of Information Systems, University of Maryland,

Baltimore County, USA
{peiguo1,jianwu,gangopad}@umbc.edu

3 Department of Physics, University of Maryland, Baltimore County, USA
lipimuk1@umbc.edu

4 Joint Center for Earth Systems Technology, University of Maryland,
Baltimore County, USA

hoban@umbc.edu
5 GESTAR, USRA and NASA GSFC, Columbia, USA

daeho.jin@nasa.gov

Abstract. The study of clouds, i.e., where they occur and what are their
characteristics, plays a key role in the understanding of climate change.
Clustering is a common machine learning technique used in atmospheric
science to classify cloud types. Many parallelism techniques e.g., MPI,
OpenMP and Spark, could achieve efficient and scalable clustering of
large-scale satellite observation data. In order to understand their differ-
ences, this paper studies and compares three different approaches on par-
allel clustering of satellite observation data. Benchmarking experiments
with k-means clustering are conducted with three parallelism techniques,
namely OpenMP, OpenMP+MPI, and Spark, on a HPC cluster using
up to 16 nodes.

Keywords: Parallel computing · High performance computing · MPI ·
OpenMP · Spark · K-means Clustering

1 Introduction

The climate of Earth tends to maintain a balance between the energy reaching
the Earth from the Sun and the energy leaving the Earth to space. This is
also known as Earth’s “radiation budget”. The components of the Earth system
contributing to the radiation budget include Earth’s surface, atmosphere, and
clouds [10,18]. The study of clouds, including their frequency of occurrence,
location, and characteristics plays a key role in the understanding of climate

c© Springer Nature Switzerland AG 2019
C. Zheng and J. Zhan (Eds.): Bench 2018, LNCS 11459, pp. 248–260, 2019.
https://doi.org/10.1007/978-3-030-32813-9_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32813-9_20&domain=pdf
https://doi.org/10.1007/978-3-030-32813-9_20

Benchmarking Parallel K-Means Cloud Type Clustering from Satellite Data 249

change. Thick clouds in the lower atmosphere primarily reflect the incoming
solar radiation and consequently cool the surface of the Earth. However thin
clouds in upper atmosphere easily transmit the incoming solar radiation and
also trap some of the outgoing infrared radiation emitted by the Earth’s surface
and radiate it back downward. This process consequently warms the atmosphere
and surface of the Earth. Usually, the clouds in the upper atmosphere have a
colder cloud top that traps the energy in form of outgoing longwave emission.
As a result of the trapped energy, the temperature of the Earth’s atmosphere
and surface increases until the longwave emission to space is balanced by the
incoming solar shortwave radiation.

Two parameters that are directly related to the heating and cooling effects
of clouds are cloud optical thickness (COT) and cloud top height (CTH) which
is related to cloud top pressure (CTP). COT is a measure of the thickness of
cloud which largely determines the reflection of sunlight, i.e., the cooling effects
of clouds. The thicker the cloud the stronger the reflection. The CTP also plays a
role in the warming of clouds in the thermal infrared region (greenhouse effect).
For example a cloud with high CTP and low COT would result in warming affect
but a cloud with a high CTP and high COT would result in a net 0 or “neutral”
effect. For this reason, the satellite retrievals of the cloud COT and CTP are
often portrayed in a joint histogram of COT and CTP.

We can study these variables using NASA satellite data such as Moderate
Resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar and
Infrared Pathfinder Satellite Observation (CALIPSO). The clouds can be stud-
ied through atmospheric modelling, where computer simulations are used in
conjunction with field measurements and lab studies to further our understand-
ing of cloud physics. In this work, we use MODIS data for five years (2005–2009)
and employ k-means clustering to identify the prominent cloud types.

K-means clustering is a widely applied unsupervised machine learning algo-
rithm. When the input data is large, the speed of k-means clustering should
be considered. In our study, we apply three different implementations of paral-
lelized computation of k-means clustering: OpenMP, OpenMP+MPI, and Spark.
The contributions of this paper are: (1) implementations of three different par-
allelization techniques on k-means clustering (2) using performance comparisons
of these three different parallelized techniques.

2 Background

2.1 Cloud Joint Histograms

COT and CTP are recorded by a satellite from the snapshot of a cloud which
we visualize with the 2-D joint histogram [13]. The International Satellite Cloud
Climatology Project (ISCCP) cloud type is used in order to interpret the his-
togram [17]. With this categorization, it is easy to link the joint histogram data
to real world clouds as shown in Fig. 1.

It is natural that multiple cloud types occur in the same 1◦ × 1◦ grid cell.
Consequently individual joint histogram data (representing one time and one

250 C. Barajas et al.

Fig. 1. Left: Cloud type definitions can be extrapolated using joint histograms where
the joint-histogram is broken up into regions which are blocked according to cloud-
type. Additional information on this technique can be seen in [17]. Right: The joint
histogram of cloud top pressure and cloud top thickness suggesting high frequency of
stratocumulus clouds.

location) has great variability. This is the reason why the concept of “cloud
regime” was created. In short, the cloud regime is the concept representing the
domain mixtures of cloud types.

2.2 K-means Clustering

In order to cluster the cloud types based on their properties (COT, CTP) as
shown in Fig. 2, we used k-means clustering. The general idea behind K-means
clustering is grouping data according to distance where distance is a measure of
similarity [9].

K-means is an unsupervised clustering algorithm. It starts with choosing k
cluster centers (centroids) in the space representing the data objects. Next each
data object is assigned to a cluster center with the closest Euclidean distance.
After assigning all data to some centroid a new position for the k centroids are
calculated. If the centroids move such that they have a smaller mean distance
the new clusters are kept and the old centroids are discarded. Then the previous
steps of assigning and calculating are repeated until the centroids’ movement is
negligible [14,15].

The k-means algorithm is sensitive to the initialization of randomly selected
cluster centers [9]. To reduce the randomness in the cluster results, it is better to
initialize the centroids as sparse as possible. To get stable clustering results, the
algorithm can be made to run multiple times, and the within-cluster-variance
and Euclidean distance can be used as clustering criteria.

3 Implementation Details

We have three different approaches to k-means clustering in this section. Two
were our own implementations and one was provided by Dr. Jin as a baseline to
be improved and compared against. Our source code can be found on GitHub [6].

Benchmarking Parallel K-Means Cloud Type Clustering from Satellite Data 251

Fig. 2. The cloud regime (CR) centroids of daily ISCCP joint histograms. The cloud
fraction (CF) of each regime, the sum of 42 bin values, is also provided. When bin
values are larger than 10%, they are explicitly colored [13]. (Color figure online)

3.1 OpenMP Based Implementation

Our initial baseline for improvement was code provided to us by Dr. Jin which
uses Python for pre-processing and post-processing of data while leveraging
OpenMP enabled FORTRAN for computationally heavy tasks such as the k-
means clustering algorithm. The bindings were generated using f2py. We refer
to this approach as the OpenMP approach.

The code takes in a binary data file that is a n× 42 multi-dimensional array
where the n dimension is the total number of histograms to be used for the k-
means algorithm whereas 42 is the number of cloud fraction bins within each his-
togram. Concisely each row is one joint histogram. The binary data is produced
using level 3 MODIS data that is provided in the HDF format. The binary format
is more compact on disk and is loaded directly into an array using NumPy. Note
that each joint histogram(s) is a data point in the k-means clustering algorithm
and will be referred frequently as “record” or “records”.

As is typical of OpenMP code the number of threads is set a priori with
the environment variable OMP NUM THREADS. First Python calculates the k = 10
initial centroids for k-means clustering using the same idea as the k-means++
initialization algorithm. This attempts to make the initial centroids sparse so
that they can each encompass the largest amount of data with minimal, if any,
overlap. The first iteration uses the initial centroids as a 0th iteration. All data
and the previous iteration’s centroids are then passed to the first FORTRAN
subroutine, assign and get new sum, which determines a new centroid and com-
putes the Euclidean distance of each record from the new centroids. The newly
generated centroids and respective distances are returned to Python from FOR-
TRAN as two NumPy arrays. To prevent performance loss that comes with using

252 C. Barajas et al.

Python, NumPy’s array vectorization is used to compute the mean distances. A
vectorized check is implemented with NumPy to determine if the mean distances
of the new centroids are superior to the previous iteration’s centroids. The cen-
troid set with the best mean distances is kept for the next iteration. This process
continues until either the maximum number of iterations is reached, 40, or the
mean distance between the previous iteration’s centroids and the newly com-
puted centroids is smaller than the given threshold of 0.125 which was provided
by Dr. Jin. Once a stopping criterion has been met the final centroids are writ-
ten to disk in a binary format so that may be post-processed at a later time. A
Python script then reads in these binary centroids to produce the several joint
histograms seen in Fig. 2.

3.2 OpenMP and MPI Based Implementation

Our first approach uses Cython, Python, OpenMP, and MPI. The total number
of records rt are split as evenly as possible between the p MPI processes such that
no process has more than one record compared to any other process. Whereas
OpenMP is used in hot computational C loops for increased parallelism. We
refer to this approach as OpenMP+MPI.

The load balancing scheme for MPI and OpenMP is discussed on a per node
basis as follows. The environment variable OMP NUM THREADS is set a priori to run
time. The Intel OpenMP environment variable KMP AFFINITY is set to scatter
so that threads are distributed as evenly as possible among the cores. Given our
HPC testbed the cores per node c = 16 in conjunction with some number of
processes per node pn the number of threads per MPI process is computed by
tp = c/pn. This balancing system allows for all node resources to be used, even
if pn < c.

Before any k-means calculations begin, each MPI process determines its own
process rank and the total number of processes running. The processes use the
total number of records and total number of processes to determine their local
number of records rl as rl = rt/p. In the event that the total number of records
cannot be evenly distributed, the remaining records will be distributed such
that no processes have more than one record compared to any other process.
Then each process reads in its respective records from the same binary data
as mentioned in Sect. 3.1. This means that each process knows only of its own
records and no data is duplicated across the processes.

First the initial centroids are calculated as mentioned in Sect. 3.1. All data
and the previous iteration’s centroids are passed to the Cython def function
assign and get new sum, which calls the cdef functions calculate cl and
calculate outsum. The deterministic behavior of k-means promises that the
new cluster produced by calculate cl is the same on every process. The
Euclidean distance computation is where the parallelism plays a role. Figure 3
represents just one of the k many centroids where p = 2. Process 0 and Process
1 compute the Euclidean distance from their respective records to the centroid
independently of each other. Then the mean distance for all records to the cen-
troid would be computed using a MPI Allreduce followed by a local division

Benchmarking Parallel K-Means Cloud Type Clustering from Satellite Data 253

Fig. 3. The general idea for parallelization over a large data set with the repeated
calculation. Each black dot is a record and the colored lines tell which process would
be handling that Euclidean distance from the current center of the cluster. (Color figure
online)

by rt. OpenMP is implemented with a pragma omp parallel for around the
record distance calculation loop. Thus the most expensive computation of the k-
means algorithm is sped up by splitting rt into rl with MPI and multi-threading
the record distance calculation with OpenMP.

In the code these distances and clusters are returned from Cython to Python
as two NumPy arrays. In actuality the processes collectively compute a global
mean distance for each cluster using a MPI.allreduce in Python. While the MPI
command could have taken place inside the Cython code the idea is to keep the
same data transaction style as the FORTRAN code. The MPI call happens
in Python rather than Cython. All processes have the same newly calculated
centroids, previous iteration’s centroids, and respective mean distances to the
centroids. So all processes make the same choice on which set of centroids have
the better mean distances and discard the other. The stopping criterion and
post-processing is the same as in Sect. 3.1.

3.3 Spark Based Implementation

Our second approach is implemented in Python using Apache Spark’s scalable
machine learning library Spark MLib and the associated API. We utilized Spark
2.3.0 and the built-in k-means algorithm for the cloud regime [1,2]. There are
four steps in our applied Spark machine learning workflow: load our data, extract
the features, train the model, and evaluate the results.

First we load our data into a Spark DataFrame which is organized as a
distributed collection of data by name columns [4]. Upon the creation of the
DataFrame it is apparent that our data contained 42 columns which are the
bins of the joint histogram. We extracted the 42 features and assembled a fea-
tures vector in preparation for the clustering. In the clustering process, we set
k = 10. We changed set the Spark variable max.iteration to 40 to make sure
that a sufficient number of iterations occurred before the algorithm stopped [3].
We also tried to set larger iteration limits such as 2000, but the run time and
clustering result remained similar. So we concluded that 40 iterations are enough

254 C. Barajas et al.

in our case. We executed the program many times and output the silhouette with
squared Euclidean distance to make sure that our result was relatively stable [14].
The results of the clustering are dumped in a binary format and post-processed
using the same Python script in Sect. 3.1.

4 Results

In this section three different aspects of the results are highlighted. Code validity
is for testing whether parallelism is implemented correctly. Computation may
proceed successfully but the application results could be incorrect. To check the
validity of our two implementations we compare our results against the results
that are produced by the provided implementation. Performance contains wall
clock times with various environment conditions as cataloged in their respective
sections for each of the code implementations. Cross-comparison compares all
implementations to one another in both qualitative and quantitative measures.

The experiments are conducted on the UMBC High Performance Computing
Facility (HPCF) hpcf.umbc.edu. Each node used in our experiments has two
eight-core 2.6 GHz Intel E5-2650v2 Ivy Bridge CPUs and 64 GB memory. These
nodes are connected by a high-speed quad-data rate (QDR) InfiniBand network.

4.1 Code Validity

When parallelism is involved, we commonly assume that there has to be some
numerical drawback. For example, if parallelism is implemented incorrectly,
rounding errors can occur, images can degrade in quality, and values that serial
code correctly computes are now no longer within an acceptable margin of error.
Any code which produces incorrect results in order to improve performance can-
not be accepted as correct code. Each of the implementations were run using the
same initial parameters in order to mimic the run environment of the OpenMP
approach. Additionally all the of the implementations were post-processed using
the same Python script so that the images are comparable qualitatively and
quantitatively.

First consider Fig. 4. The OpenMP and OpenMP+MPI joint histograms
are identical in their order, shape, and colorings. Since the algorithms in the
OpenMP approach were recoded line by line in the OpenMP+MPI approach
using Cython, it makes sense that the results should be identical. The only fun-
damental difference between the two coding schema was the major ordering of
the data and record splitting via MPI. More importantly, the OpenMP approach
and the OpenMP+MPI both used the same Python functions to calculate the
initial centroids. The underlying numerical differences between each of the results
is inevitable as there is no promise that the FORTRAN compiler and the C com-
piler will make the same sort of optimizations. Thus the FLOP round off error
is most certainly different between each of the three implementations. However
the accuracy of COT and CTP need only be accurate within 10−3 for the results
to be consider good enough in the scope of the problem. The post-processing

https://hpcf.umbc.edu/

Benchmarking Parallel K-Means Cloud Type Clustering from Satellite Data 255

Fig. 4. Post-processed joint histogram results of the k-means final stable clusters for
all three implementations. The images are qualitatively identical

script only uses decimals on the order of 10−2. Beyond the quantitative results
produced, the qualitative results are seen as the more important use of the joint
histogram model as discussed in [13]. This means that the scale, color, shape,
and ordering of the histograms play an integral role in determining the accuracy
of the implementation compared to the original.

While the implementations are fundamentally different the underlying algo-
rithm is still the k-means clustering algorithm with sparse initialization of the
first set of centroids. Even though the Spark code uses open-source libraries
rather than personally coded algorithms the qualitative results are identical to
the OpenMP approach which was programmed from scratch. The numerical val-
ues between each of the post-processed results are functionally identical and as
stated qualitatively identical as well.

The major difference is the approach of parallelism. Spark’s parallelism uses
a completely different methodology than the typical operation of one compute
node with OpenMP enabled code. Additionally Spark’s data handling is vastly
different than the OpenMP+MPI code, yet the results are the same. These differ-
ences are irrelevant because the application results computed by all approaches
are the within acceptable margins. Therefore both of the alternative implemen-
tations can be regarded as accurate parallelized representations of the OpenMP
approach, as they show no signs of result degradation.

4.2 Performance

OpenMP. Table 1 presents the recorded times for varying number of OpenMP
threads in the OpenMP approach. Clearly as we use more threads the time
improves slightly but there appears to be bottleneck. Even though we’re using
16 threads (see the final column) the time is not 16 times faster. We can use
the best speed possible from these results as a baseline to compare other results

256 C. Barajas et al.

to. There is a clear improvement in the timings as we increase the number of
threads used. This indicated that the OpenMP parallelism is having a positive
on the performance. However as the number of threads double the timing is not
halved. This then implies that the implementation has a bottleneck beyond the
OpenMP components. Thus the 1-node, 1-process-per-node, 16-thread timing in
Table 1 shall be the timing that all other timings are compared too.

Table 1. OpenMP wall clock results with total number of threads used in HH:MM:SS.

Threads 1 2 4 8 16

Wall clock 00:14:59 00:07:10 00:03:47 00:02:58 00:02:38

Table 2. OpenMP+MPI wall clock results with Nodes and Processes Per Node in
HH:MM:SS.

Nodes 1 2 4 8

1 ppn 00:01:01 00:00:34 00:00:17 00:00:08

2 ppn 00:01:23 00:00:41 00:00:20 00:00:11

4 ppn 00:01:50 00:00:54 00:00:28 00:00:16

8 ppn 00:02:42 00:01:22 00:00:45 00:00:29

16 ppn 00:04:47 00:02:32 00:01:29 00:01:07

OpenMP+MPI. The MPI results in Table 2 show that as the number of pro-
cesses per node increase the performance decreases. Consider the 8 node column
of the table. As the number of processes per node increase the times gradually
worsen at an increasing rate until the timing from eight processes per node to
sixteen processes per node doubles. This same behavior is consistent for all node
columns. Thus we can say that there is an optimal load balancing issue that must
be addressed. The most optimal way to take advantage of all cores on a node in
this case is to use the minimal amount of MPI processes and maximum number
of threads per process. This cuts down on the communication required between
processes and allows for a collection of nodes to be used mainly for threads.
These threads are lightweight and require no intercommunication of data to
function. For all rows as the number of nodes used increases the performance
also increases which is the expected strong scalability outcome.

The data set fits comfortably within the total memory capacity available.
Meaning that there is less memory contention and one process per node performs
more optimally than expected. On dual socket nodes the minimal number of
processes required for optimal performance of memory bound code has been
concluded to be two processes per node. This allows one process and its respective

Benchmarking Parallel K-Means Cloud Type Clustering from Satellite Data 257

threads to be placed on their own processor [5,16]. Once larger data sets approach
the node memory limit of ≈62GB MPI should start to demonstrate a clear
performance improvement as the communication time becomes a small player in
the overall timing results.

Spark. Table 3 is the run time table of our Spark implementation. In Table 3
by increasing nodes from 1 to 4 our spark program wallclock time decreases
significantly from 9 min to less than 3 min. However when scaling up from 4
nodes to 8 nodes, the timings do not change significantly, despite the continued
decrease from just under 3 min to around 2 min. The reason is that during most
of the run time Spark is working on loading data into the Spark DataFrame.
The actual calculating time of the centroids in Spark with 4 nodes is around 7 s,
and with 8 nodes, it is only 4 s. We conclude that performance did not improve
much by increasing the number of nodes. This is because the size the data set
(3 GB) is not big enough to make a significant difference and there’s an overhead
when loading the data into the DataFrame.

Table 3. Spark wall clock results with total number of nodes used in HH:MM:SS.

Nodes 1 2 4 8

Wall clock 00:09:03 00:06:16 00:02:51 00:02:09

4.3 Cross Comparison

Implementation Comparisons. The first step in implementing MPI was to
convert the FORTRAN code into C code to maintain high performance and ease
the MPI parallelization. MPI is better equipped to handle C’s native ordering
(row major). In contrast CPython API is rather terse and unwieldy. Thus when
trying to implement a simple interface a great deal of boilerplate code has to
be written. The use of Cython removes a large amount of the API complexities
because Cython will automatically generate the CPython API compatible C code
from the Cython code and properly optimize for C-like performance. Fortunately
the Cython handler is an executable that comes bundled with a modern NumPy
distribution at or beyond 1.14+. The Cython handler converts the Cython code
into C using the CPython API. The generated C code is compiled to a dynam-
ically linked library which can be imported directly into Python. This process
is similar to how f2py works for the original FORTRAN implementation. One
benefit is that Cython allows any C function to be used inside the Cython code.
The major benefit is that Cython also allows for C speed memory accesses via
Memoryviews. A Memoryview provides a closer interface to the heap than NumPy
arrays. This allows the block of memory controlled by the NumPy array to be
changed as if it were created using malloc. With all these tools in place the

258 C. Barajas et al.

FORTRAN code was converted line by line into Cython code and all original
NumPy arrays were converted into row-major format so that they are compat-
ible with the C-style arrays that MPI prefers. Importantly Cython allows for
easy integration of OpenMP into the cdef functions, which means that portions
of the code needed to be refactored into cdef and def portions [7].

Lastly mpi4py is used to integrate MPI into the Python portion. Since
Cython handles the computation efficiently, MPI was only tasked with chop-
ping the data into smaller portions and sharing minor amounts of data. An
MPI.allreduce is used for reducing integers and simple datatypes. Whereas we
used MPI.Allreduce for reducing NumPy arrays efficiently.

The Spark code is so fundamentally different from the other two implemen-
tations, a comparison would just be reiterating the implementation described in
Sect. 3.3.

Wall Timings. All but the bottom left three timings in Table 2 are better than
the best timing in Table 1. Consider the best timing from the OpenMP approach.
This OpenMP timing is 2× as fast as the slowest single node performance time
for the MPI enabled code. However this timing takes twice as long as the fastest
single node performance time. The 1 node 1 process per node timings in Table 2
use the same amount of resources as the best timing in Table 1. This indicates
that the benefits of Cython, rather than MPI, are to thank for the jump in
performance. By enabling MPI and using 8 nodes we get a mere 8 s run time.
This is 18× faster than the OpenMP performance time and approximately 7.5×
faster than the single node OpenMP+MPI code.

Consider the timings in Table 3 compared to the timings in Table 1. Observe
the single node performance of Spark in this case the OpenMP approach is 3.4×
faster than the Spark approach. It is not until Spark uses 8 full nodes before it
is able to compete with the single node performance of OpenMP. Even then it
is only 1.2× faster.

The main reason for the under performance of Spark is that the data set
is very small and the communication time and initial overhead of Spark far
outweigh the actual computation needed to solve the problem. Similarly as we
increase the number of MPI processes it is clear that the communication time is a
large price to pay despite very minimal amounts of communication. The problem
size is small enough that communication still plays a big role in performance
timings and OpenMP+MPI has the least amount of overheard when using only
one process per node is used which is why this row of timings dwarf all other
results.

5 Related Work

The reasons for running benchmarks vary considerably. One may wish to test
the capability of new hardware as seen in [5]. The idea of transcoding a prob-
lem into multiple languages and use different underbelly computation code is

Benchmarking Parallel K-Means Cloud Type Clustering from Satellite Data 259

commonplace in the sphere of development. Even on the exact hardware we uti-
lized for our implementations, there have been several transcoding performance
studies. For example: the performance of numerical solvers in Julia, R, and Mat-
lab which is found in [16]. In [12], k-means clustering is used as a comparison
of other machine learning techniques on Hadoop using their benchmarking suite
HiBench. OpenMP applications and k-means clustering are tested in [8]. Another
benchmarking work on parallel computing among different parallel programming
approaches includes Hadoop, Spark, and Hive database. This proved that differ-
ent programming methods could cause more than 100 times difference in running
speed [11]. However there are no specific combinations that reflect our language
choice and application problem.

6 Conclusions

Both parallel implementations managed to correctly compute the same clusters
as the original code. Only OpenMP+MPI implementation managed to outper-
form the original code with the same amount of resources at its disposal. Only
OpenMP+MPI managed to outperform the original implementation when using
more resources than the original code was capable of using.

However, the demonstration of increased performance of both parallel imple-
mentations was severely limited by the lack of data. Spark is designed to handle
data on the TB scale, yet we only used 3 GB. These results are not indicative of
what would happen given 20+ GB of data. In our Spark application, we basi-
cally use only its default level of parallelism. By configuring higher parallel level
to load data, or upload data to HDFS might improve the speed of our Spark
program. Moreover, Spark application utilizes Python, and the programming in
Python itself is slower than programming in FORTRAN and C. So we cannot
conclude that Spark is an inferior implementation in this current stage. We only
can conclude that it might need more tuning work to make it optimized and
competitive.

When MPI scaled is scaled to multiple nodes always the performance always
proved. One point is that when MPI is run with multiple nodes using one process
per node the total number of threads increase proportionally. However when
the number of processes increased beyond one process per node, performance
decreased indicating that the data set is also too small for MPI communication.
Ordinarily this would be a smaller price to pay for increased parallelism but was
not in our case.

In the future we would like to test these parallel implementations with much
larger data sets. We propose that both Spark and MPI will have significant
increases in performance beyond the original code once scaled up to 20+ GB.

Acknowledgment. This work is supported by NSF grant with number OAC–1730250
and NASA grant 80NSSC17K0366. The hardware used the UMBC High Performance
Computing Facility, which is supported by NSF grants (CNS–0821258, CNS–1228778,
and OAC–1726023) and the SCREMS program (DMS–0821311), with additional sub-
stantial support from UMBC.

260 C. Barajas et al.

References

1. Apache Software Foundation: Apache spark - unified analytics engine for big data.
https://spark.apache.org/. Accessed 15 June 2018

2. Apache Software Foundation: MLlib | Apache Spark. https://spark.apache.org/
mllib/. Accessed 15 June 2018

3. Apache Software Foundation: Spark MLlib Python API docs. https://spark.
apache.org/docs/latest/api/python/pyspark.ml.html#pyspark/.ml.clustering.
KMeans. Accessed 15 June 2018

4. Apache Software Foundation: Spark SQL, dataframes and datasets guide. https://
spark.apache.org/docs/2.3.0/sql-programming-guide.html. Accessed 15 June 2018

5. Arora, K., Barajas, C., Gobbert, M.K.: Parallel performance studies for an elliptic
test problem on the Stampede2 cluster and comparison of networks. Technical
report HPCF-2018-10, UMBC High Performance Computing Facility, University
of Maryland, Baltimore County (2018)

6. Barajas, C., Guo, P., Mukherjee, L., Daeho, J.: https://github.com/big-data-lab-
umbc/cybertraining/tree/master/year-1-projects/team-2. Source Code

7. Behnel, S., Bradshaw, R., Citro, C., Dalcin, L., Seljebotn, D.S., Smith, K.: Cython:
the best of both worlds. Comput. Sci. Eng. 13(2), 31–39 (2011)

8. Che, S., et al.: Rodinia: a benchmark suite for heterogeneous computing. In: 2009
IEEE International Symposium on Workload Characterization (IISWC), pp. 44–
54, October 2009

9. Fauld, J.: Unsupervised learning: association rule learning and clustering, March
2018

10. Graham, S.: https://earthobservatory.nasa.gov/Features/Clouds/?src=share.
March 1999

11. Guo, P., Wang, J., Chen, Z.: A comparison of big data application programming
approaches: a travel companion case study. In: 2017 IEEE International Conference
on Big Data (Big Data), pp. 2869–2878 (2017)

12. Huang, S., Huang, J., Dai, J., Xie, T., Huang, B.: The HiBench benchmark suite:
characterization of the MapReduce-based data analysis. In: 2010 IEEE 26th Inter-
national Conference on Data Engineering Workshops (ICDEW 2010), pp. 41–51,
March 2010

13. Jin, D., Oreopoulos, L., Lee, D.: Regime-based evaluation of cloudiness in CMIP5
models. Clim. Dyn. 48(1), 89–112 (2017)

14. Macqueen, J.: Some methods for classification and analysis of multivariate obser-
vations. In: 5-th Berkeley Symposium on Mathematical Statistics and Probability,
pp. 281–297 (1967)

15. Polytechnic University of Milan: A tutorial on clustering algorithms:
K-means clustering. https://home.deib.polimi.it/matteucc/Clustering/tutorial
html/kmeans.html. Accessed 15 June 2018

16. Popuri, S.K., Gobbert, M.K.: A comparative evaluation of Matlab, Octave, R, and
Julia on Maya. Technical report HPCF-2017-3, UMBC High Performance Com-
puting Facility, University of Maryland, Baltimore County (2017)

17. Rossow, W.B., Schiffer, R.A.: Advances in understanding clouds from ISCCP. Bull.
Am. Meteorol. Soc. 80(11), 2261–2288 (1999)

18. Wallace, J.M.: Atmospheric Science: An Introductory Survey. Academic Press, New
York (1977)

https://spark.apache.org/
https://spark.apache.org/mllib/
https://spark.apache.org/mllib/
https://spark.apache.org/docs/latest/api/python/pyspark.ml.html#pyspark/.ml.clustering.KMeans
https://spark.apache.org/docs/latest/api/python/pyspark.ml.html#pyspark/.ml.clustering.KMeans
https://spark.apache.org/docs/latest/api/python/pyspark.ml.html#pyspark/.ml.clustering.KMeans
https://spark.apache.org/docs/2.3.0/sql-programming-guide.html
https://spark.apache.org/docs/2.3.0/sql-programming-guide.html
https://github.com/big-data-lab-umbc/cybertraining/tree/master/year-1-projects/team-2
https://github.com/big-data-lab-umbc/cybertraining/tree/master/year-1-projects/team-2
https://earthobservatory.nasa.gov/Features/Clouds/?src=share
https://home.deib.polimi.it/matteucc/Clustering/tutorial_html/kmeans.html
https://home.deib.polimi.it/matteucc/Clustering/tutorial_html/kmeans.html

Correction to: MiDBench: Multimodel
Industrial Big Data Benchmark

Yijian Cheng, Mengqian Cheng, Hao Ge, Yuhe Guo, Yuanzhe Hao,
Xiaoguang Sun, Xiongpai Qin, Wei Lu, Yueguo Chen,

and Xiaoyong Du

Correction to:
Chapter “MiDBench: Multimodel Industrial Big Data
Benchmark” in: C. Zheng and J. Zhan (Eds.):
Benchmarking, Measuring, and Optimizing, LNCS 11459,
https://doi.org/10.1007/978-3-030-32813-9_15

In the version of this paper that was originally published, reference 3 linked to the
wrong website. This has been corrected.

The updated version of this chapter can be found at
https://doi.org/10.1007/978-3-030-32813-9_15

© Springer Nature Switzerland AG 2021
C. Zheng and J. Zhan (Eds.): Bench 2018, LNCS 11459, p. C1, 2021.
https://doi.org/10.1007/978-3-030-32813-9_21

https://doi.org/10.1007/978-3-030-32813-9_15
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32813-9_21&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32813-9_21&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32813-9_21&domain=pdf
https://doi.org/10.1007/978-3-030-32813-9_15

Author Index

Abrar, Faheem 53
Abrita, Samiha Islam 53
Adnan, Muhammad Abdullah 53

Bao, Yungang 233
Barajas, Carlos 248

Cai, Peng 131
Cao, Zheng 3
Chen, Jianan 3, 31
Chen, Yueguo 172
Cheng, Mengqian 172
Cheng, Yijian 172

Dai, Jiahui 3
Dehne, Frank 118
Ding, Guohao 131
Du, Fang 91
Du, Mengjia 3
Du, Xiaoyong 172

Fan, Fanda 3
Fan, Tiantian 78, 189
Feng, Shengzhong 10

Gangopadhyay, Aryya 248
Gao, Wanling 3, 10, 23, 31, 105
Ge, Hao 172
Genkin, Mikhail 118
Gobbert, Matthias K. 248
Guo, Pei 248
Guo, Yike 159
Guo, Yuhe 172

Hao, Tianshu 3, 23
Hao, Yuanzhe 172
He, Xiwen 3
Hoban, Susan 248
Hu, Xiaohui 202
Huang, Cheng 31
Huang, Yunyou 3, 23
Hwang, Kai 23

Jia, Zhen 3, 233
Jiang, Congfeng 78, 189
Jiang, Zihan 3, 10
Jin, Daeho 248

Kulkarni, Chaitanya 65

Li, Bocheng 159
Li, Haichang 202
Li, Kai 202
Li, Kenli 10
Li, Mingzhe 36
Li, Ruiying 202
Li, Wei 3
Li, Yuming 147
Li, Zhi 91
Liang, Fan 36
Liang, Yi 105
Lin, Jian 36
Liu, Ke 105
Liu, Yue 159
Lu, Wei 172
Lu, Xiaoyi 10, 36, 215
Luo, Chunjie 3, 10, 31

Mali, Kunal 65
Mukherjee, Lipi 248

Navarro, Pablo 118

Panda, Dhabaleswar K. 215
Pandya, Arjun 65
Pang, Tianze 131

Qian, Weining 131, 147
Qin, Xiongpai 172
Qiu, Yeliang 78, 189

Ren, Rui 105
Ren, Zujie 23

Sarker, Moumita 53
Shi, Haiyang 215
Shi, Weisong 78, 189

Shi, Yingjie 91
Sun, Qi 159
Sun, Xiaoguang 172

Tang, Haoning 3
Tian, Wenjie 159
Tu, Dandan 36

Wan, Jian 78, 189
Wang, Jianwu 65, 248
Wang, Lei 3, 10, 23, 31, 105
Wang, Rui 202
Wang, Xiaoyu 3
Wang, Yumei 78, 189
Wen, Xu 3, 10, 23
Wen, Yu 105
Wu, Ren 36
Wu, Tong 31

Xie, Biwei 3, 233
Xiong, Xingwang 3, 10, 31, 105
Xu, Weijia 10

Ye, Hainan 3, 10, 23, 31

Zha, Li 36
Zhan, Jianfeng 3, 10, 23, 31
Zhan, Kent 3
Zhang, Chunxi 147
Zhang, Fan 3, 23, 31
Zhang, Liangbin 78, 189
Zhang, Qin 36
Zhang, Rong 147
Zhang, Tao 91
Zhang, Yanyan 91
Zhang, Yuchen 10
Zhang, Yunquan 10
Zhao, Qiong 131
Zheng, Chen 3, 23, 105
Zheng, Daoyi 3
Zhou, Aoying 147
Zhou, Runsong 31
Zhou, Siyu 118
Zhou, Xin 78

262 Author Index

	BenchCouncil: Benchmarking and Promoting Innovative Techniques
	Organization
	Contents
	AI Benchmarking
	AIBench: Towards Scalable and Comprehensive Datacenter AI Benchmarking
	1 Introduction
	2 Related Work
	3 Datacenter AI Benchmark Suite—AIBench
	3.1 Datacenter AI Micro Benchmarks
	3.2 Datacenter AI Component Benchmarks
	3.3 Application Benchmarks
	3.4 AI Competition

	4 Conclusion
	References

	HPC AI500: A Benchmark Suite for HPC AI Systems
	1 Introduction
	2 Deep Learning in Scientific Computing
	2.1 Extreme Weather Analysis
	2.2 High Energy Physics
	2.3 Cosmology
	2.4 Summary

	3 Benchmarking Methodology and Decisions
	3.1 Methodology
	3.2 The Selected Datasets
	3.3 The Selected Workloads
	3.4 Metrics

	4 Reference Implementation
	4.1 Component Benchmarks
	4.2 Micro Benchmarks

	5 Conclusion
	References

	Edge AIBench: Towards Comprehensive End-to-End Edge Computing Benchmarking
	1 Introduction
	2 Related Work
	3 The Summary of Edge AIBench
	3.1 ICU Patient Monitor
	3.2 Surveillance Camera
	3.3 Smart Home
	3.4 Autonomous Vehicle
	3.5 A Federated Learning Framework Testbed

	4 Conclusion
	References

	AIoT Bench: Towards Comprehensive Benchmarking Mobile and Embedded Device Intelligence
	1 Introduction
	2 Benchmarking Requirements
	3 AIoT Bench
	4 Related Work
	5 Conclusion
	References

	A Survey on Deep Learning Benchmarks: Do We Still Need New Ones?
	1 Introduction
	2 A Survey on Deep Learning Benchmarks
	2.1 Stanford DAWNBench
	2.2 Baidu DeepBench
	2.3 Facebook AI Performance Evaluation Platform
	2.4 ICT BigDataBench
	2.5 Other Benchmarks

	3 Discussion
	3.1 Benchmark Comparison
	3.2 Observations

	4 Conclusion and Future Work
	References

	Cloud
	Benchmarking VM Startup Time in the Cloud
	1 Introduction
	2 Related Works
	3 Methodology
	3.1 Environment Setup
	3.2 Algorithm

	4 Result
	4.1 By Instance Type
	4.2 By Time of the Day
	4.3 By Instance Location
	4.4 By Cluster

	5 Conclusions and Future Work
	References

	An Open Source Cloud-Based NoSQL and NewSQL Database Benchmarking Platform for IoT Data
	Abstract
	1 Introduction
	2 Background
	2.1 NewSQL
	2.2 NoSQL
	2.3 MongoDB
	2.4 VoltDB
	2.5 Apache Kafka
	2.6 Cloud Computing

	3 Benchmarking Framework
	3.1 Framework Components
	3.2 Architecture
	3.3 Data Generation and Consumption Algorithms

	4 Experiments
	4.1 System Configuration, Sensor Data Structure, and Formats
	4.2 Experiment I: Data Injection with Different Volume and Velocity
	4.3 Experiment II: Transactional Data Processing on High Volume of Data
	4.4 Experiment III: Analytical Data Processing on High Volume of Data
	4.5 Findings from Experiments

	5 Related Work
	6 Conclusion
	Acknowledgment
	References

	Scalability Evaluation of Big Data Processing Services in Clouds
	1 Introduction
	2 Related Work
	2.1 Big Data Benchmarks
	2.2 Scalability Evaluation of Big Data Processing Systems

	3 Evaluation Model
	4 Experiments
	4.1 Experiment Environment
	4.2 Scale-Out Analysis
	4.3 Scale-Up Experiment
	4.4 Experimental Results

	5 Conclusion
	References

	PAIE: A Personal Activity Intelligence Estimator in the Cloud
	1 Introduction
	2 Related Work
	3 Overview of PAIE
	4 Statistic Issues
	4.1 PAI Computing Mechanism
	4.2 Statistical Modeling
	4.3 PAI Estimating and Error Bounding

	5 Implementing over Storm
	6 Performance Evaluation
	6.1 Experiment Methodology
	6.2 Performance Analysis
	6.3 Scalability Evaluation

	7 Conclusions
	References

	DCMIX: Generating Mixed Workloads for the Cloud Data Center
	1 Introduction
	2 Related Work
	3 DCMIX
	3.1 Workloads
	3.2 Mixed Workload Generator

	4 System Entropy
	5 Experiment and Experimental Analysis
	5.1 Experimental Configurations and Methodology
	5.2 Experiment Results and Observations
	5.3 Summary

	6 Conclusion
	References

	Machine-Learning Based Spark and Hadoop Workload Classification Using Container Performance Patterns
	1 Introduction
	1.1 Background
	1.2 Problem
	1.3 Limitations of Previous Approaches
	1.4 Our Contribution
	1.5 Resource Managers and Containers

	2 Evaluation Methodology
	2.1 Container Performance Metrics
	2.2 Workloads and Workload Transitions
	2.3 Parameter Settings
	2.4 Hardware and Software

	3 Results
	3.1 Steady State Workload Characteristics
	3.2 Dynamic Workload Characteristics - Workload Transitions

	4 Identifying and Classifying Workloads
	5 Detecting Workload Transitions
	6 Relative Value and Importance of Container Performance Metrics
	7 Conclusion
	References

	Testing Raft-Replicated Database Systems
	1 Introduction
	2 Background
	2.1 Replicated State Machines
	2.2 Raft Overview

	3 System Model
	4 Evaluation Metrics
	4.1 Correctness
	4.2 Performance
	4.3 Scalability

	5 Test Dimensions
	5.1 Fault Type
	5.2 Data Operation Type
	5.3 System Configuration

	6 Experiments
	6.1 Experimental Setups
	6.2 Recovery Time
	6.3 Throughput and Latency
	6.4 Stability

	7 Related Work
	8 Conclusion
	References

	Big Data
	Benchmarking for Transaction Processing Database Systems in Big Data Era
	1 Introuduction
	2 Requirements and Challenges
	2.1 Data Generation
	2.2 Workload Generation
	2.3 Measurement Definition
	2.4 Others

	3 PeakBench: Benchmarking Transaction Processing Database Systems on Intensive Workloads
	3.1 Business Description
	3.2 Implementation of Benchmark Tool
	3.3 Workloads

	4 Test of PeakBench
	5 Related Work
	6 Conclusion
	References

	UMDISW: A Universal Multi-Domain Intelligent Scientific Workflow Framework for the Whole Life Cycle of Scientific Data
	1 Introduction
	2 The Status of UMDISW in System Architecture
	3 The Model of UMDISW
	3.1 Workflow and Task
	3.2 Data Flow and Information Flow
	3.3 Data Node and Algorithm Node
	3.4 Example

	4 The Structure and Execution of UMDISW
	4.1 Running Service Layer
	4.2 Workflow Execution Layer
	4.3 Data Resource Layer

	5 The Application Scenario of UMDISW
	5.1 Fully Automated Workflow
	5.2 Semi-custom Workflow
	5.3 Fully Custom Workflow

	6 The Implementation of UMDISW
	7 Conclusion
	References

	MiDBench: Multimodel Industrial Big Data Benchmark
	1 Introduction
	2 Big Data Benchmarking Requirements
	3 Related Work
	4 Our Benchmarking Methodology
	4.1 BoM Data Scenario Analysis
	4.2 Analysis of Time Series Data Scenario
	4.3 Unstructured Data Scenario Analysis

	5 Synthetic Data Generation
	6 Workload Characterization Experiments
	6.1 Performance Tests on BoM Database Systems
	6.2 Performance Tests on Time Series Database Systems
	6.3 Performance Tests on Unstructured Database Systems

	7 Conclusion
	References

	Modelling and Prediction
	Power Characterization of Memory Intensive Applications: Analysis and Implications
	1 Motivation
	2 Evolution of Server Energy Efficiency
	2.1 Metrics of Energy Efficiency and Energy Proportionality
	2.2 Experiment Setup

	3 Experiment Results and Observations
	3.1 Results of SPECpower Workload
	3.2 Results of STREAM Workload
	3.3 Insights on Energy Efficiency of Memory Intensive Applications

	4 Related Work
	5 Conclusions
	References

	Multi-USVs Coordinated Detection in Marine Environment with Deep Reinforcement Learning
	1 Introduction
	2 Background
	2.1 USV Overview
	2.2 Reinforcement Learning

	3 Approach
	3.1 Single-USV RL
	3.2 Multi-USVs Coordinated Detection

	4 Results and Discussion
	5 Conclusion
	References

	EC-Bench: Benchmarking Onload and Offload Erasure Coders on Modern Hardware Architectures
	1 Introduction
	2 Background
	2.1 Erasure Coding
	2.2 Onload and Offload Erasure Coders

	3 EC-Bench Design
	3.1 Design
	3.2 Parameter Space
	3.3 Metrics

	4 Evaluation
	4.1 Open Source Libraries
	4.2 Experimental Setup
	4.3 Experimental Results

	5 Related Work
	6 Conclusion
	References

	Algorithm and Implementations
	Benchmarking SpMV Methods on Many-Core Platforms
	1 Introduction
	2 Benchmarking Methodology
	2.1 Selected SpMV Methods
	2.2 Selected Features
	2.3 Hardware Configuration
	2.4 Data Sets
	2.5 Experimental Methods

	3 Experimental Results
	3.1 SpMV Performance
	3.2 Best-Method Analysis
	3.3 Correlation Analysis of Performance and Sparse Pattern

	4 Conclusion
	References

	Benchmarking Parallel K-Means Cloud Type Clustering from Satellite Data
	1 Introduction
	2 Background
	2.1 Cloud Joint Histograms
	2.2 K-means Clustering

	3 Implementation Details
	3.1 OpenMP Based Implementation
	3.2 OpenMP and MPI Based Implementation
	3.3 Spark Based Implementation

	4 Results
	4.1 Code Validity
	4.2 Performance
	4.3 Cross Comparison

	5 Related Work
	6 Conclusions
	References

	Correction to: MiDBench: Multimodel Industrial Big Data Benchmark
	Correction to: Chapter “MiDBench: Multimodel Industrial Big Data Benchmark” in: C. Zheng and J. Zhan (Eds.): Benchmarking, Measuring, and Optimizing, LNCS 11459, https://doi.org/10.1007/978-3-030-32813-9_15

	Author Index

