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Abstract. Synthetic CT image with artificially generated lung nodules
has been shown to be useful as an augmentation method for certain tasks
such as lung segmentation and nodule classification. Most conventional
methods are designed as “inpainting” tasks by removing a region from
background image and synthesizing the foreground nodule. To ensure
natural blending with the background, existing method proposed loss
function and separate shape/appearance generation. However, spatial
discontinuity is still unavoidable for certain cases. Meanwhile, there is
often little control over semantic features regarding the nodule charac-
teristics, which may limit their capability of fine-grained augmentation
in balancing the original data. In this work, we address these two chal-
lenges by developing a 3D multi-conditional generative adversarial net-
work (GAN) that is conditioned on both background image and semantic
features for lung nodule synthesis on CT image. Instead of removing part
of the input image, we use a fusion block to blend object and background,
ensuring more realistic appearance. Multiple discriminator scenarios are
considered, and three outputs of image, segmentation, and feature are
used to guide the synthesis process towards semantic feature control. We
trained our method on public dataset, and showed promising results as
a solution for tunable lung nodule synthesis.

1 Introduction

Among the three major factors enabling the success of deep learning - data,
algorithm, and computation power, data covering sufficient population distribu-
tion is often most critical and most difficult to achieve. This is especially true
for medical image domain, in which labeled data availability is limited by its
unique characteristics: (1) medical images often involves high cost to produce,
and sensitivity in sharing; (2) pathological cases can have large variability in
appearances, and are often unbalanced/long tail in distribution; (3) accurate
labeling of the data requires high professional expertise, and can nevertheless
have large inter- and intra- observer variability even among experts.

Therefore, current work in medical domain mostly relies on using labeled
large public datasets [1], automated and/or semi-automated methods [5], and
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existing clinical report mining [12]. Recently, the development of generative
adversarial networks (GAN) [2] has enabled a promising way in data augmen-
tation: generate realistic synthetic data for training purpose. Preliminary works
along this direction has demonstrated the potential of such approach in lung
segmentation [6], brain tumor segmentation [11] and lung nodule classification
[13].

Although shown to be promising, current GAN-based methods generate syn-
thetic images based on limited information such as segmentation [8] and sur-
rounding images [6]. Few recent works investigated finer control over the synthe-
sis process, for example, controlling the malignancy property of the generated
lung nodules [13]. However, to our best knowledge, there is no prior work that
has the capability of controlling the semantic features of the synthesized nodules.

Meanwhile, most of previous methods model the synthesis process as an
“inpainting” problem, in which a portion of the background image is removed
before inpainting the synthesized nodule. One shortcoming of such model is that
the fusion between synthetic region and background image may not be natural.
To address this challenge, previous work used multi-mask reconstruction loss
[6], or decoupled mask-appearance generation [8]. However, since the original
information is lost in the background image input, it is difficult to recover the
spatial continuity, even with the proposed methods.

In this work, we develop a 3D multi-conditional GAN model learning the
shape and appearance distributions of lung nodules related to semantic features
in 3D space. We aim to generate not only realistic but also tunable nodules
according to its semantic features. Hence, our GAN is conditioned on both sur-
rounding background information and a controllable feature set. In order to
ensure a natural fusion with background image, we use two outputs of image
and its corresponding nodule mask to reinforce the blending of the two, rather
than erasing the region from base image. Multiple generator and discriminator
losses are used to guide the network towards controlling the semantic feature
inputs. We apply our strategy to public lung nodule dataset of LIDC [1], where
each nodule is linked with a series of semantic annotations describing its appear-
ances.

This work’s main contributions are: (1) we synthesize 3D lung nodules and
control its properties by using a 3D multi-conditional GAN with both sur-
rounding images and semantic features; (2) instead of inpainting, we address
the object/background fusion by multi-output and fusion block within network
design; (3) both feature learning and fusion learning are performed by designing
their corresponding outputs and losses during network training.

2 Method

To address the challenges of (1) incorporating semantic features, and (2)
object/background fusion, inspired by works for 2D natural image synthesis
[7,10], we design our network as a 3D multi-conditional GAN with style speci-
fication by additional regression branch. The generator takes in two conditions
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of background image and semantic feature, and produces three outputs of syn-
thetic image, nodule mask, and predicted feature. The object/background fusion
is performed with fusion blocks at each resolution level. The inter-relationships
among background, semantic feature, and target nodule are controlled via multi-
ple losses from generator and discriminator. Figures 1 and 2 depicts an overview
of our method. Below, we outline the GAN architecture, loss function design, and
training strategy for learning appearance together with the semantic features.

2.1 GAN Architecture

Figure 1 illustrates the structure of the proposed generator. Background image
is encoded via a series of convolutional layers with three resolution levels, each
downsampling doubles the feature channel. The semantic features are trans-
formed via a fully connected layer and reshaped to bottleneck image size. The
blending of object (nodule) and background image is performed via fusion block.

Fig. 1. Proposed generator of the 3D multi-conditional GAN for tunable nodule synthe-
sis. Generator utilizes both background image and semantic feature code to synthesize
image, nodule segmentation, and also a regression branch for feature code prediction.

As shown in Fig. 2, following [10], the fusion block is designed so that half
of the object code is used to control the “soft” merging of the two feature sets
in order to produce the synthetic image and its corresponding segmentation
mask. Such fusion is enforced by the prediction of segmentation mask as an
auxiliary output during training. As compared with “inpainiting”, this strategy
performs better in natural blending of the object/background. Also, the mask
output is potentially helpful for data augmentation in tasks such as detection
and segmentation.



Tunable CT Lung Nodule Synthesis Conditioned 65

Fig. 2. Fusion block and discriminator of the 3D multi-conditional GAN. Left: fusion
block at each resolution layer helps to fuse the information from background with that
from previous layer. Right: with image, segmentation, and feature code, discriminator
distinguishes three types of real/fake scenarios (Sect. 2.2).

To address the challenge of semantic feature specification, in addition to
discriminator pairing, we added a regression branch (Fig. 1) beyond synthetic
image and mask generation. Specifically, a encoding block is added to the output
layer of the generator followed by fully connected layer to predict the vector of
semantic features from the synthesized feature map. Furthermore, to control the
size of the generated nodule, a loss is computed from the size of mask prediction
in comparison with that of the ground truth segmentation of training data.

Figure 3 shows a result example for the proposed GAN from three views.
The second column is the weighting mask from the last fusion block. It can be
observed that the nodule and background are naturally separated and fused with
the proposed fusion block and network.

2.2 Loss Functions and Training Strategy

The proposed GAN synthesize nodule with segmentation according to semantic
feature vector. In order to guide the training process, several losses are proposed
to supervise different aspects of the network.

The discriminator is illustrated in Fig. 2. The input to the discriminator is
a tuple of image-segmentation-semantic feature code. Two encoders are utilized
to encode: (1) image for discriminator DI , and (2) image-segmentation pairs
for discriminator DIS . The second encoder’s output is further combined with
feature code f and further encoded via convolution, batch normalization, and
leaky ReLU activation layers for discriminator DISG. Discriminators are trained
with least squares loss functions [9]. Given image x, matched semantic feature
code f , and matched segmentation mask m, tuples to be discriminated against it
include cases containing mismatched feature code f̄ , mismatched segmentation
mask m̄, synthetic image Gx, and synthetic mask Gm. Let pd and pG denote
the distributions of real and synthetic data, we have x, f,m, f̄ , m̄ ∼ pd and
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Fig. 3. Example of results produced by proposed synthesis GAN from three views:
left to right - background image, background weight image during fusion, synthesized
nodule image, and output segmentation mask.

Gx, Gm ∼ pG. With different combinations, we have

LDI
= E[(DI(x) − 1)2] + E[DI(Gx)2]

LDIS
= E[(DIS(x,m) − 1)2] + E[DIS(x, m̄)2] + E[DIS(Gx, Gm)2]

LDISG
= E[(DISG(x,m, f) − 1)2] + E[DISG(x, m̄, f)2]

+ E[DISG(x,m, f̄)2] + E[DISG(Gx, Gm, f)2]

For training the generator, in addition to discriminator loss, we further rein-
forced background reconstruction, semantic feature prediction, and size control
with their corresponding losses. Let GM̄ be a morphological eroded version of
segmentation mask Gm’s inverse (i.e. background region), � denote element-wise
multiplication. The background reconstruction loss LGBG

is formulated as the
L1 loss over background between synthetic image Gx and base image x. The
semantic feature prediction loss LGF

and size loss LGS
are formulated as the L2

loss between predictions Gf , Gs and ground truth f, s, where Gs =
∑

(Gm > 0)
and s =

∑
(m > 0)

LGBG
= E[‖Gx � GM̄ − x � GM̄‖1]

LGF
= E[‖Gf − f‖2]

LGS
= E[‖Gs − s‖2]

With all the proposed losses, the generator loss is

LG = E[(DI(Gx) − 1)2] + E[(DIS(Gx, Gm) − 1)2]

+ E[(DISG(Gx, Gm, g) − 1)2] + λ1LGBG
+ λ2LGF

+ λ3LGS

3 Experiment and Result

We evaluate the proposed method using the publicly available LIDC dataset [1].
This dataset contains 1018 chest CT scans of patients with lung nodules. There
are 9 semantic features for each nodule: subtlety, internal structure, calcification,
sphericity, margin, lobulation, spiculation, texture, and malignancy. Addition-
ally, we can calculate the volume V of each nodule’s manual segmentation, and
estimate its diameter using sphere model d = 3

√
6V/π. For this work, we select

a subset of all nodules with approximate diameter between 3 mm and 30 mm
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following clinical standard of micro-nodule (<3 mm) and mass (>30 mm) [3].
In total there are 5942 semantic records from 826 patients. Note that multiple
records can be related to the same nodule, as a single nodule can be annotated
by several experts. Therefore, the annotation inherently contains certain amount
of variability/noise. A 60 × 60 × 60 mm3 volume-of-interest (VOI) centered at
each nodule is first cropped from the original image, then resampled to a fixed
size of 64 × 64 × 64.

To generate background image, we first: (1) segment the lung region of each
CT volume using [4] from the whole CT volume; (2) make binary union of all
manual nodule segmentations; and (3) exclude the nodule mask from lung mask.
Hence there will be no nodule presence within the resulting mask after step (3),
so that “painting nodule over existing nodule” can be avoided. Next, distance
transform is computed from this mask, and centers for 3D background VOI
patches are selected at a random location 5 to 25 mm from the mask boundary.
The VOIs of the same size as nodule cases are cropped and resized to a fixed
size of 64 × 64 × 64.

The aim of our proposed method is to (1) generate realistic nodules and nat-
ural blending with the specified background, and (2) control the nodule appear-
ance with semantic features.

Figure 4 shows the performance of image synthesis with multi-conditional
GAN. As shown in the image, based on random nodule-free background B, the
proposed method generates realistic images D, which reflects the semantic fea-
tures as the reference training samples A (clear/fuzzy boundary, solid/ground-
glass, etc.). As comparison, we implemented a 3D version of baseline [10],
although it also have feature vector matching during discriminator phase, it failed
to achieve same level of semantic feature control without the help of regression
branch.

Fig. 4. Result of nodule synthesis, A: 4 different training image, B: random nodule-free
background image, C: synthetic image generated by 3D version of baseline method [10],
and D: synthetic images generated by the proposed method. Note that A, C, and D
shared the same semantic features.

Figure 5 shows the synthesis result using the same background image with
various semantic features and sizes. Two sets of examples are given under three
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views, and one additional result on changing size only is presented with one view
(last row). As shown in the image, the proposed method has the capability of gen-
erating various nodules from a background image under different configurations
of semantic features and sizes. From the result, we can observe some distortion
of the background image, especially for the ground-glass, heterogeneous case of
the last column due to its challenging nature. Last row shows the change with
small to large size parameters. We observe that although the size changed as
expected, they are not very accurate with regard to the real “expected” size (as
input parameter). Therefore, potential improvements and future work include
the investigation into annotation uncertainty/correlation among semantic fea-
tures, better network structure design for higher quality image and more accu-
rate control, and application to other tasks as data augmentation.

Fig. 5. Two sets of results of nodule synthesis based on the same background image
under different semantic features and sizes, three views are provided. First column
is the background image, and the following columns are synthetic cases, each column
using a semantic feature/size combination. Last row showed an experiment of changing
size parameter only.
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4 Conclusion

We use a multi-conditional GAN, coupled with fusion structure, multiple out-
puts, and loss functions, to effectively generate realistic nodules with control
over appearance by semantic features and size. Without erasing any portion of
condition image, the proposed method achieves realistic nodule generation and
smooth background fusion. The tunable size and semantic features ensures fur-
ther diversified and targeted data augmentation. Current results showed promis-
ing diversity, however, more vigorous study is needed to verify their actual “con-
trollability” over the image generation. As such, our approach can provide a
potentially effective means for nodule image sample generation.
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