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Abstract. Deep learning approaches have recently been proposed for
breast cancer screening in mammograms. However, the performance of
such deep models is often severely constrained by the limited size of
publicly available mammography datasets and the imbalance of healthy
and abnormal images. In this paper, we propose a blending adversar-
ial learning method to address this issue by regularizing the imbalanced
data with synthetically generated abnormal samples. Unlike most exist-
ing data generation methods that require large-scale training data, our
approach is carefully designed for augmenting small datasets. Specifically,
we train a generative model to simulate the growth of mass on normal
tissue by blending mass patches into healthy breast images. The resulting
synthetic images are exploited as complementary abnormal data to make
the training of deep learning based mass detector more stable and the
resulting model more robust. Experimental results on the commonly used
INbreast dataset demonstrate the effectiveness of the proposed method.

Keywords: Mammogram synthesis · Mass detection · Adversarial
deep learning · Digital mammography

1 Introduction

Breast cancer is among the most common cancers affecting women around the
world. Mammography has been demonstrated to be an effective imaging modal-
ity for early detection and diagnosis, and has contributed to substantial reduc-
tion of mortality due to breast cancer. Over the past few years, computer-aided
detection of breast masses in mammography has attracted much attention from
the medical imaging community [1,3,8,9,15].

Recently, with the prevalent success of deep learning in natural image applica-
tions, there has been keen interest in the medical imaging community to apply
these methods to mammogram screening. However, deep convolutional neural
networks (CNN) based approaches require a large amount of annotated data.
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Fig. 1. Training a detector with small-scale and imbalanced datasets leads to unsat-
isfactory results. Our blending adversarial networks help to increase the scale of the
datasets and address the class imbalance issues for training more robust detector.

The lack of such data has become the main obstacle impeding deep learning
methods from achieving impressive performance for breast cancer screening. In
contrast to the natural image domain, collecting annotated breast mammograms
is very expensive due to the need for expert annotation and oftentimes diffi-
cult or even impossible because of privacy restrictions. In addition to the lack
of large-scale datasets, the natural class imbalance in mammography samples,
where “normal” (or healthy) images significantly outnumber abnormal samples,
further limits the performance of deep CNN based methods for breast cancer
detection, as illustrated in Fig. 1.

A common way to alleviate these issues involves applying a series of trans-
formations such as flipping, rotation or resizing to augment the training images.
However, data augmentation using image transformation is limited in its ability
to expand the manifold the positive samples occupy. More recently, generative
adversarial networks (GANs) [4] have demonstrated the capability to synthesize
realistic images that can be used for data augmentation. For example, Korki-
nof et al. [9] utilized the progressive generative adversarial network to generate
high resolution mammograms. Wu et al. [15] proposed the conditional infilling
GANs to generate lesions on non-malignant patches. One major drawback of
these methods is that they rely on a large amount of data to train the generator,
making them unsuitable for small-scale datasets.

In this paper, we propose blending adversarial networks to address the lim-
itation of small-scale and imbalanced data for mass detection in mammogram.
GANs based methods usually train a generator to synthesize mammograms from
Gaussian distributed random values. This demands the generator to learn the
texture, the shape and the size of the breast and lesion. Learning to synthesize
these features requires inevitably a large-scale training dataset. As opposed to
such a heavy task, we simplify the burden of the generator: we provide both the
real lesion and “normal” image at the input, and train a model to imagine how
this lesion will grow on the normal breast tissue. Since the information about
the lesion and breast are given, the generator can focus on integrating the lesion
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Fig. 2. Overview of the pipeline of the proposed blending adversarial networks. Given a
real “normal” breast image and a lesion patch, the generator aims to blend these images
at the indicated location. The discriminator verifies the quality of the generated data
at patch level forcing the generator to produce highly realistic images.

into healthy breast tissue. By simplifying the task of the generator, we can train
it even with a very small dataset. Therefore, we are able to utilize “normal”
images to artificially generate abnormal mammograms to increase the data size
and alleviate class imbalance. Extensive experiments on widely-used INbreast
dataset [11] demonstrate the effectiveness of the proposed method, where the
mass detector becomes significantly more robust when trained with the comple-
mentary synthetic samples.

2 Methodology

Mathematically, given a set of “normal” images X = {X1, ...,XN} and a set of
lesion patches E = {E1, ..., EM}, our goal is to learn a network to seamlessly
blend the lesions into the “normal” images to form a new set of images containing
lesions Ỹ = {Ỹ1, ..., ỸL}. The proposed blending adversarial networks can be
learned from a small-scale dataset to generate new images. We then include
them as the complementary training samples to train a deep learning based
breast mass detector, making it more robust and effective.

2.1 Blending Adversarial Networks

In Fig. 2, we illustrate the pipeline of our blending adversarial networks, compos-
ing mainly of a generator and a patch discriminator. Unlike the vanilla GANs [4]
which rely on large-scale datasets for training, we incorporate prior knowledge
into the generator input and supervision signals to make the adversarial model
robust to small-scale training data.

Generator: Rather than using a Gaussian distributed vector as input like
vanilla GANs, we carefully design a three-channel input for our generator as
shown in Fig. 2. The first channel corresponds to a “normal” image that provides
contextual information about the overall breast. The second channel consists of
a lesion patch directly pasted into the “normal” image to provide the texture
of the mass. The third channel is a binary mask indicating the location where
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we aim to blend the lesion, as a way to inform the model to pay more atten-
tion to this region. With these strong clues, we purposefully ease the task of
our generative model, such that it can focus on the task of seamless blending
alone. The generator is a fully convolutional network (FCN) that takes these
three channels as input and produces an image with mass. The generator has an
hourglass architecture with an encoder and a decoder. The encoder assimilates
and fuses information associated with the normal breast and lesion patch. The
decoder then expands the encoded information to generate a realistic image. In
order to preserve the prior knowledge, we add the skip connections between the
encoder and decoder layers to facilitate the propagation of prior clues given at
the input.

Patch Discriminator: The generated images from the generator are then fed
into a discriminator whose purpose is to verify the quality of the synthesized
mammogram. In most existing GANs based method the discriminator performs
an image level classification to distinguish real from fake images. However, in
medical imaging, the texture details are crucial and a global classifier could over-
look such information. We therefore propose to explore a patch discriminator [7]
that can focus on the texture details in local image patches. This discriminator
aims to classify whether each N ×N patch in an image is real or fake. If a region
looks fake or lacks texture details, it will result in a large value of loss forcing
the generator to improve the quality. We run this discriminator convolutionally
across the image and average all responses to provide the final output. In our
experiments, we empirically set N = 16.

2.2 Adversarial Seamless Blending Supervision

Given a lesion patch E, a “normal” breast image X and a random position (x, y),
the blending generator G aims to generate an artificial mammogram image Ỹ
that contains the lesion at the position (x, y):

Ỹ = G(X,E, x, y; θg)

where θg corresponds to the parameters of the network that should be optimized.
Since our goal is to incorporate the lesion into a breast image, the network needs
to pay attention to two parts: the region Ω where we want to integrate the lesion,
and the remainder of the image, B, where we want to keep unaltered (Fig. 3).
The network needs to imagine how the lesion should grow according to the
characteristics of the breast tissue inside the target region Ω, while keeping the
background portion B identical. To this end, we propose the adversarial seamless
blending supervision signals to guide the training process.

L = Ladv + λpLprior (1)
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Adversarial Loss: We aim to generate synthetic images that are indistinguish-
able from real images, in order that the generated mammograms can be used as
training samples. More specifically, we apply the adversarial loss [4] to supervise
the generator and the discriminator in an adversarial manner:

Ladv = EY [log D(Y )] + EX,E [log(1 − D(G(X,E)))] (2)

where the generator G is constrained to produce realistic images to confuse
the discriminator D, while the discriminator D should correctly distinguish real
images Y from generated ones G(X,E). However, the min-max game between
the generator and discriminator is not easy to converge during training, espe-
cially with a small-scale dataset. Therefore, we introduce the additional prior
knowledge loss Lprior = LS + LB to help guide the training process. It is com-
posed of the following two loss functions and balanced with the parameter λp.

Seamless Blending Loss: As the lesions are often of small size in mammo-
grams and the adversarial loss specifies only a high-level goal for the authen-
ticity of the entire image, the generator may generate mammogram without
any lesions. To circumvent this issue, we propose the following loss to make the
generator pay attention to the region Ω where we aim to blend the lesion.

LS = ‖∇G(X,E)Ω − v‖2 (3)

where

for all i, j ∈ Ω, v(i, j) =

{
∇XΩ(i, j) if |∇XΩ(i, j)| > |∇E(i, j)|
∇E(i, j) otherwise

(4)

This supervision signal makes the generator take into account the intensity vari-
ations of both the source lesion E and the normal tissue patch XΩ for seamless
blending. The notation ∇(·) represents the gradient operation.

Background Loss: In order to preserve the background region B of the breast
as given at input, we constrain the generator to output an image that maintains
identical intensity and gradient. We employ both the L1 distance loss and the
gradient difference loss to supervise the generator:

LB =
∥∥(G(X,E) − X)B

∥∥
1

+
∥∥(|∇G(X,E)| − |∇X|)B

∥∥
2

(5)

The subscript B indicates that the supervision operates at the background region
of the breast excluding the location where we aim to incorporate the lesion. We
use L1 distance rather than L2 as the former encourages less blurring [7]. The
gradient loss plays a complementary role to L1 loss and forces the generator to
better preserve the texture variations in background regions.

Note that both the adversarial loss Ladv and the prior loss Lprior should be
used together to ensure the quality of synthetic images. Without the adversarial
loss, the generated images may lack the texture details and appear fake. Without
the prior loss, the generator will not be able to perform the seamless blending.
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Fig. 3. Different regions on the image
where the loss functions are applied.
The background loss affects the back-
ground regions, the seamless blending
loss focuses on the mass, and the adver-
sarial loss controls the quality of the
whole image.

Fig. 4. FROC curves comparing the
detection performance of detectors
trained with original data and comple-
mentary data generated by PIE, adv.
w/o prior knowledge of mass and our
blend. adv. methods, respectively.

2.3 Mass Localization

As training a detection model requires a large-amount of data, most existing
deep learning based methods for breast cancer diagnosis using mammograms
are limited to image-level classification [2,14,16]. In this paper, we adjust the
state-of-the-art object detection framework, Mask R-CNN [5], for mass detection
in mammography and improve the detection performance with our generated
data. Note that recently more and more deep detector based methods have been
proposed for mass detection, but they require large training datasets. Given an
input mammogram, the proposed model aims to detect the lesion with both
bounding boxes and segmentation masks. In addition to the classification loss
and bounding box regression loss, we supervise the network with the segmenta-
tion loss to exploit pixel-wise information. The multi-task loss for each region of
interest (RoI) is defined as:

Ldet = Lcls + λlocLloc + λsegLseg (6)

where Lcls is the classification loss, Lloc corresponds to the bounding box regres-
sion loss, and Lseg is the segmentation loss. λloc and λseg are weighting factors
for different components of the loss function.

3 Experiments and Results

Database: We conducted our experiments on the widely used digital mam-
mography dataset INbreaset [11]. This dataset comprises of a set of 115 cases
containing 410 images, where 116 images contain benign or malignant masses.
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Table 1. Comparison of detection performance with state-of-the-art methods in terms
of true positive rate (TPR) versus false positive per image (FPPI) on INbreast dataset.

Method TPR@FPPI Run-time

Kozegar et al. [10] 0.65@1.1, 0.87@3.67 108 s

Dhungel et al. [1] 0.87 ± 0.14@0.8, 0.96 ± 0.03@1.2 20 s

Dhungel et al. [3] 0.90 ± 0.02@1.3, 0.95 ± 0.02@5.0 39 s

Jung et al. [8] 0.88 ± 0.07@0.5, 0.91 ± 0.07@1.3 1.8 s

Ours-Blend. Adv 0.91 ± 0.07@0.5, 0.94 ± 0.07@0.8 0.5 s

Fig. 5. Visualization of the images generated by (a) our blending adversarial networks,
(b) Poisson image editing method, (c) adversarial model without mass prior knowledge
and (d) vanilla GANs, respectively. The arrows indicate the position of the masses.

While INbreast is among the highest quality public mammography dataset with
accurate annotations, there are only a limited number of images. We computed
the results using a 5-fold cross validation experiment by carefully dividing the
115 cases into 80% for training and 20% for testing at the patient-level to avoid
any positive bias.

Implementation Details: We adopted U-Net [13] as the backbone for our
generator and a series of four convolutional layers for our patch discriminator.
For our mass detector, we employed ResNet50 [6] as backbone and initialized
the parameters with COCO pretrained model. To facilitate better convergence,
the training process consists of three steps: (1) only the top layers are learned
for the first 30 epochs, (2) all layers from stage 4 of ResNet are fine-tuned for
30 epochs, and (3) we optimize all layers for 40 epochs.

In order to test the ability of the model to localize lesions, we evaluate the
predictions using the Free-Response Operating Characteristic curve (FROC).
The FROC curve depicts the true positive rate as a function of the number of
false positives per image (FPPI). A mass is considered to be correctly localized
if the intersection over union (IoU) ratio between the ground truth bounding
box and the predicted bounding box is higher than 0.5.
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Results and Analysis: To evaluate how well the generated images can enhance
the mass detector performance, we trained a few variants of the detector, using
either the original data, or the original data plus one of three types of generated
complementary data: (1) using conventional Poisson Image Editing (PIE) blend-
ing method [12]; (2) using an adversarial network without prior information of
mass; and (3) using our blending adversarial networks. For each case, we gen-
erate 200 complementary data, making the training data approximately three
times larger than original data set. For generating a mammogram with lesion,
we randomly select a region in a “normal” breast mammogram and a real lesion
as input for our generator. Note that we randomly resize and rotate the input
lesion to augment the data.

The FROC curves in Fig. 4 depict the performance of the model trained with
different sets of data. We can see that the detector trained with the additional
data generated by our blending adversarial networks performs significantly better
than the detector trained only with the original data. We observe an improve-
ment of ∼ 10% on the true positive rate for the same number of false positives per
image, clearly demonstrating the effectiveness of the proposed method. Using the
data generated by our blending adversarial networks as complementary training
data makes the detector more robust due to expanded sample space of the train-
ing data. Some examples of the images generated by our blending adversarial
networks are shown in Fig. 5(a).

On the other hand, we observe a degradation of performance when the detec-
tor is trained with the additional data generated by the conventional Poisson
Image Editing method [12]. These results suggest that naively increasing the
number of training images may potentially lead to adverse effects. The adver-
sarial learning process guides our generator to approximate the underlying dis-
tribution of the authentic data. In contrast, the conventional image processing
methods are unable to control the quality of the generated sample. As illus-
trated in Fig. 5(b), the lesions are often invisible in images synthesized with
the PIE approach. This “over-blending” effect tends to mislead the detector.
Furthermore, prior knowledge is crucial for learning a data generative model
with a small-scale dataset. Figure 5(c) shows that without the prior knowledge
of mass, i.e. replacing the real lesion patch with random noise at the input to
the generator, the generated images lack fine texture details inside the mass
region. Additionally, as shown in Fig. 5(d), the vanilla GANs (generating both
breast and lesion from noise input) fail for dataset of this size and is only able
to generate a mean shape of the breast with severe visual artifacts.

We compare the performance of our detector with several mass detection
methods in the literature [1,8,10], and tabulate the results in Table 1. We follow
the evaluation metrics as in previous works by giving the true positive rate
at some acceptable false positive per image rates (TPR@FPPI). Our detector
correctly localizes 91% of masses with a FPPI rate as of 0.50, while the existing
mass detection approaches achieve similar true positive rates only with much
larger number of false alarms. The run-time efficiency of the detector is also a
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key criterion for users. Without any cascaded structures or post refinement, our
detector can execute at significantly higher speed of 0.5 s per image.

4 Conclusion

In this paper, we proposed blending adversarial networks to help address the
issue of class imbalance and data scarcity in mammography. We made full use
of the existing “normal” images to generate breast mammograms with synthetic
masses that could be used as positive samples for training deep learning based
mass detector. As testament to the effectiveness of the proposed method, exten-
sive experiments on the widely-used INbreast dataset demonstrated significant
improvement of the detection performance.
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