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Abstract. Image registration is a fundamental step in medical image
analysis. Ideally, the transformation that registers one image to another
should be a diffeomorphism that is both invertible and smooth. Tradi-
tional methods like geodesic shooting study the problem via differential
geometry, with theoretical guarantees that the resulting transformation
will be smooth and invertible. Most previous research using unsuper-
vised deep neural networks for registration address the smoothness issue
directly either by using a local smoothness constraint (typically, a spatial
variation loss), or by designing network architectures enhancing spatial
smoothness. In this paper, we examine this problem from a different
angle by investigating possible training mechanisms/tasks that will help
the network avoid predicting transformations with negative Jacobians
and produce smoother deformations. The proposed cycle consistent idea
reduces the number of folding locations in predicted deformations with-
out making changes to the hyperparameters or the architecture used in
the existing backbone registration network. Code for the paper is avail-
able at https://github.com/dykuang/Medical-image-registration.
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1 Introduction

Image registration is a key element of medical image analysis. Most state-of-the-
art registration algorithms, such as ANTs [1], can utilize geometric methods that
are guaranteed to produce smooth invertible deformations that are much desired
in medical image registrations. A revolution is taking place in the last couple
of years in the application of machine learning methods. Especially, the method
of convolutional neural networks have made impressive progresses and caused a
lot of attentions. While recent registration networks can make predictions of the
nonlinear transformation much faster and obtain registration accuracy compa-
rable to or better than traditional methods, they usually do not have theoretical
guarantees on the smoothness or invertibility of their predicted deformations.
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Supervised methods, such as in [8,11,13], learn from known reference defor-
mations for training data – either actual “ground truth” in the case of synthetic
image pairs, or deformations computed by other automatic or semi-automatic
methods. They usually do not have problems of smoothness, but still rely on
other tools such as ANTs running ahead to produce desired transformations.
The registration problem is much harder in the setting of unsupervised meth-
ods. Most of the early unsupervised approaches like [2,7,10,12,14] take the idea
of spatial transformer (ST) [4]. This spatial transformer used in registration usu-
ally consists of two basic functional units: a deformation unit and a sampling
unit. With input x (source image) and y (target image) stacked as an ordered
pair, the deformation unit produces a static displacement field u : R3 → R3.
The warped image ỹ is then constructed in the sampling unit by interpolating
the source image with u via ỹ = x(Id + u), where Id is the identity map. As a
summary, the right action of diffeomorphism φ on image x is approximated by
φ ·x = x◦φ−1 ≈ x(Id+u). The smoothness constraint on u is usually addressed
by regularizing its derivative Du. The work [2] is one representative and Fig. 1
shows the work flow of the idea introduced as above. The whole network is
trained so that it minimizes the loss: CC(y, ỹ) + λ||Du||l2 , where CC stands for
cross correlation loss and λ is a hyperparameter controlling the strength of the
regularization.

Fig. 1. An overview of the registration network usually used for registration. The popu-
lar U-net architecture [9] is used as the deformation unit for generating the displacement
field.

These work emphasize more on the accuracy and efficiency of registration
when compared to classical methods but usually did not put equal attentions
on checking geometric properties such as smoothness, invertibility or orientation
preservation for the predicted deformations. Particularly, Jacobian determinant
of the predicted transformations i.e. det(Dφ−1) ≈ det(Id + Du) from a neu-
ral network can very likely be negative at multiple locations. This “folding”
issue during prediction may still persist even when one increases regularization
strength of Du (see Fig. 2). Additionally, the value of this hyper-parameter is
usually difficult to set in practice in order to reach a good balance between nice
geometrical properties1 and registration accuracy, since larger λ values often
cause smaller deformations reducing the accuracy.

1 In the paper, it will mainly refer to smoothness, invertibility and particularly, trans-
formations has positive Jacobian determinant everywhere.
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Fig. 2. A snapshot of at the same location of the projected warped grid with different
regularization strength. From left to right, the network is trained with λ = 1, 2, 4
separately. The same location is also used in Fig. 7.

Built upon previous research, state-of-the-art works like [3] proposes a proba-
bilistic VoxelMorph (Prob-VM) design that takes a reparametrization trick and
inserts an “integration layer” trying to produce smoother deformation. From
modeling point of view, this process-oriented modeling is usually difficult and
requires much effort to design a new architecture ahead of time that is proved to
be effective later on general data. In order to make an easier modeling process
avoiding going inside the box to handcraft an ideal architecture, one can keep the
original network with possible flaws untouched but instead seek a different train-
ing mechanism/task that is possible to achieve better regularization implicitly.
This thought of task-oriented modeling may reveal an alternative way for solv-
ing the same problem. In this paper, we take this direction and propose a cycle
consistent design for training unsupervised registration networks by assigning
an additional task to it. The idea requires no modifications of backbone net-
work’s architectures, form of loss functions or hyperparameters used, hence can
be used upon any well-known backbone registration networks. From our exper-
iments with VoxelMorph as the backbone network, the proposed idea reduces
chances of negative Jacobian determinant in its predicted transformations and
can achieve comparable results with Prob-VM.

2 Related Work

To author’s best knowledge when completing this paper, [15] and [3] are most
relevant research in reducing negative Jacobian. Our proposed idea represents
a different strategy in solving the problem (see Fig. 3). [15] designed an inverse
consistent network and argued adding an explicit “anti-folding constraint” to
prevent folding in predicted transformation. Different from his work, we do not
create new forms of losses targeting on specific properties, but focuses on dis-
covering possible training mechanisms/tasks that will help better regularize the
network in a general way. [3] is developed upon [2] by integrating an variational
auto-encoder design and inserting an integration layer that “integrates” initial
velocity field to get the final displacements. Unlike their work on modifying back-
bone architectures for better performance, the cycle consistent idea in this paper
leaves the backbone network untouched but achieves regularization implicitly by
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adding one more task of recovering the source image from its already predicted
image during training. This additional task is meant to help narrow the solution
domain where non-smooth or non-invertible transformations are hardly inside
during optimization.

3 Proposed Methods

3.1 Cycle Consistent Design

Fig. 3. Two directions for addressing folding
issues in prediction.

From the mathematical point of
view, the transformations used in
registration tasks should ideally be
diffeomorphisms so that topological
properties are not changed during the
transformations. In order to approx-
imate the ideal deformation, training
of the network should also respect
this invertibility property. In fields
such as computer vision, there have

already been research such as [16] utilizing this idea for better quality control
of cross-domain image generations. In their work, they defined two joint cycle
consistent loops for better training two separate generative adversarial networks
for unpaired image-to-image translation back-and-forth. We use a related idea
in a different setting here for regularizing the predicted static displacement field.
This “cycle consistent” idea does not involve new form of losses but forces the
same network to perform a backward prediction trying to recover the input right
after it completes the forward prediction. As seen in Fig. 4, the spatial trans-
former will first predict a warped image ỹ and the corresponding displacement
field ux→ỹ with the stacked source image x and target image y. This predicted
warped image ỹ (now as source) is then stacked with the original source image x
(now as target). They will be fed into the same spatial transformer to produce a
reconstruction x̃ for x and corresponding inverted displacement field uỹ→x̃. The
whole network is trained with the cycle consistent loss:

CC(y, ỹ) + λ||Dux→ỹ||l2 + CC(x, x̃) + λ||Duỹ→x̃||l2 (1)

While it is straightforward that this design directly addresses the invertibility
of the network, the cycle constraint task also contributes to the task of learning
a smooth solution in an indirect way: the design regularizes the network by
forcing the spatial transformer to learn a solution and its possible inverse at the
same time. This helps the network rule out transformations that are not cycle
consistent during optimization. This design also does not add any additional
learnable parameters to the original spatial transformer and can be trained as
equally efficient.
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Fig. 4. A diagram illustrating the cycle
consistent design.

Though similar, this idea is also
different from bi-directional registra-
tions where the target image will
also be warped towards the source
image during optimization. In our
design, the target image will never be
warped. To be more specific, given
loss function L and input source-
target image pair (x, y), the neural
network with parameters θ learns the
mapping f to transform x towards y:
y ≈ f(θ; (x, y)). The two optimization problems can be vaguely summarized as
below in Table 1:

Table 1. Different object function optimization formulations between bi-directional
registration and cycle-consistent training.

Methods Formulations of optimization

Bi-direction: arg minθ L(y, f(θ; x, y )) + L(x, f(θ; y, x ))

Cycle-consistent: arg minθ L(y, f(θ; x, y )) + L(x, f(θ; f(θ; x, y ), x ))

Bi-direction registration uses both pairs (x, y) and (y, x) as inputs, while the
cycle-consistent training only uses (x, y). They are equivalent if there exists a
“perfect” deformation that aligns the registration pair and this transformation
f can be learned with parameters θ during training: y = f(θ; (x, y) ).

4 Experiment

4.1 Dataset

We used MindBoggle101 dataset [6] for experiments. Details of data collection
and processing, including atlas creation, are described in [6]. In the present
paper, we used brain volumes consisting of the following three named subsets of
Mindboggle101:

– NKI-RS-22: “Nathan Kline Institute/Rockland sample”
– NKI-TRT-20: “Nathan Kline Institute/Test–Retest”
– OASIS-TRT-20: “Open Access Series of Imaging Studies/ Test–Retest”.

Each image has a dimension of 182× 218× 182, we truncated the margin reduc-
ing the size to 144 × 180 × 144. These images are already linearly aligned to
MNI152 space. We also normalized the intensity of each brain volume to [0, 1]
by its maximum voxel intensity. Figure 5 shows one subject of the dataset with
two annotated labels. Labels used in Mindboggle101 data set are cortex sur-
face labels. Their geometrical complexity leads to more challenging registration
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tasks, especially for neural network approaches. In the following experiments,
the original VoxelMorph network [2] will be used as the backbone network. This
backbone network alone, it with cycle consistent design and the probabilistic
VoxelMorph will be compared. The backbone method and the method with cycle
consistent design are trained with λ = 1. Unless specifically stated, epochs = 10
and “Adam” optimizer [5] with learning rate 10−4 are used for all the three
networks.

Fig. 5. One sample with
two ROI labels shown. Bot-
tom: the two labels viewed
from a different angle

We access the accuracy of predicted registration
via dice score between ROI labels/masks. For image
pair (x, y), each indexed label Li

x associated with
x will be warped with the deformation φ predicted
from the registration network, dice score is then cal-
culated. A higher dice score usually indicates a bet-
ter registration.

Dice( (φ · Li
x), Li

y ) =
2|(φ · Li

x) ∩ Li
y|

|φ · Li
x| + |Li

y|
(2)

We first visualize this metric on test set (OASIS-
TRT-20) in Fig. 6. It gives a detailed summary of
dice scores on separate regions for registration. All
the three neural network approaches appear to pro-
vide similar dice scores for most regions and slightly
outperform the non-neural-network-based method
such as Ants’ SyNQuick algorithm. As will be illus-
trated later in details, these similar dice scores are actually results of deforma-
tions that have different Jacobian properties. The foldings of the deformation
is accessed via examining locations where negative Jacobian determinants hap-
pen. Let P be defined as the percentage of voxel locations where the Jacobian
determinant is negative over all voxels V , i.e.

P :=
∑

δ(det(Dφ−1) < 0)
V

.

The ideal transformation predicted should have this number as small as possible.
To better access the general performance of our proposed methods, we perform a
3-fold validation2 with the 3 datasets at hand. We summarize this number from
different methods into Table 2 for comparison. The author reminds readers that
Table 2 is not for the purpose of competing with Prob-VoxelMorph or Ants’ SyN-
Quick, but simply a demonstration that an indirect task oriented method such as
the proposed cycle-consistent training can also achieve comparable registration
quality with state-of-the-art method such as Prob-VoxelMorph. To support this,
results from some statistical hypothesis tests are organized in Table 3.

2 Each fold will use 2 of the 3 datasets for forming training set and test on the third.
Figures 6 and 7 are from the fold when pairs from OAISIS dataset are used as test.
This experiment has 1722 training pairs and 380 test pairs.
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Fig. 6. Mean dice scores of different methods on selected regions. Each point is the
mean dice score averaged over corresponding ROI labels per registration pair instead of
over the union of labels in that region. Results from SyNQuick algorithm in the ANTs
package are also listed as an example for better interpreting these dice scores, but not
for the purpose of comparison.

It is clear that Table 2 suggests there are differences of the underlying trans-
formation in terms of the measures introduced as above. From the cross vali-
dation results, the baseline method has a mean value of 1.97% locations where
Jacobian determinants are negative. When the cycle consistent design is applied,
this value drops to 0.13%. In other words, more than 90% of the unsatisfactory
locations happening in the baseline prediction are eliminated (H0 can be rejected
with p-value = 0.02 in test I). This result is very close to the performance of
probabilistic VoxelMorph with 0.03% improvement in μ(P ) (whether to adopt
or reject H0 will depend on one’s confidence level with p-value = 0.05 in test
II) and 0.9% “higher” mean dice score (H0 cannot be rejected with such a large

Table 2. Summary of metrics with the 3-fold validation, mean (μ) and the standard
deviation (σ) calculated over the 3 folds are shown. Since Ants’ SyNQuick method does
not require training set to register a pair of images, folds split is not appropriate for
its evaluation. We only record mean values from registering all the pairs in the whole
dataset for comparison.

Method μ(P) σ(P) μ(Dice) σ(Dice)

Ants’ SyNQuick ≈0 47.63%

VoxelMorph 1.97% 0.59% 49.83% 0.17%

Prob-VoxelMorph 0.16% 0.05% 47.25% 0.19%

Cycle consistent 0.13% 0.04% 48.10% 0.86%
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Table 3. Some hypothesis tests results summarized from the 3-fold experiments.
Abbreviations used: CC for “VoxelMorph with Cycle-Consistent training”, VM
for “VoxelMorph without Cycle-Consistent training” and PVM for the “Prob-
VoxelMorph”.

Null Hypothesis H0: Test performed p-value

I: μ(P)|CC ≥ μ(P)|V M One tailed paired t-test 0.02

II: μ(P)|CC ≥ μ(P)|PV M One tailed paired t-test 0.05

III: μ(Dice)|CC = μ(Dice)|PV M Two tailed paired t-test 0.23

p-value in test III of Table 3, hence this improvement is not statistical significant,
the two methods are comparable in this measure). As a summary, these results
suggest the two different directions (direct ways as Prob-VoxelMorph and indi-
rect approaches as Cycle-Consistent training) have comparable effects in terms
of reducing foldings locations while maintaining registration accuracy.

For better visualization, we also put one slice of the Jacobian determinant
map and the projected warped grid on the same slice in Fig. 7. The transfor-
mation for visualization used in the figure is predicted on the pair formed by
subject OASIS-TRT-3 (source) and subject OASIS-TRT-8 (target).

Fig. 7. Determinant of Jacobian map and the warped grid projected on the same slice.
From left to right: the basline VoxelMorph prediction, the Probabilistic VoxelMorph
and baseline with cycle consistent design. Locations where determinants are negative
are shown in red. (Color figure online)

Figure 7 shows an example of locations with negative Jacobian determinants.
This help give an intuitive view of what happened behind the curtain. From
the warped grid columns, one can clearly see networks with cycle consistent
design did not change much in locations where the baseline prediction are already
smooth but put attentions on foldings and “unfold” them to produce a smoother
transformation. Note that the grid shown in the upper right corner of cycle
consistent result is smoother compared to the grid shown in the middle of Fig. 2
where the regularization strength is doubled (i.e. λ = 2). The color map of Prob-
VoxelMorph looks pale because there exists at least one location with a large
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Jacobian determinant value in this random example. In this case, most locations
with Jacobian determinants relatively smaller will be renormalized close to zero
during the normalization step when creating the color map.

5 Conclusion

We contribute the idea of cycle-consistent training for reducing locations of nega-
tive Jacobian determinants occurred in deformations when a deep neural network
is used for unsupervised registration tasks. Unlike most other approaches that
address the problem directly by creating new losses or developing new archi-
tectures for regularization, this paper focuses on another direction that could
bring improvements implicitly by adopting different training mechanisms. The
idea does not require changing anything from the backbone network and hence
can be used upon arbitrary registration networks. Heuristically, the additional
cycle-consistent task during training forces the network to learn recovery trans-
formations at the same time, hence help narrow down the solution domain dur-
ing optimization. While the theoretical support for this idea still needs to be
investigated as part of future research, experiments have shown that this indi-
rect approach is capable of obtaining comparable results with state-of-the-art
methods in terms of reducing negative Jacobian determinants while maintaining
registration accuracy.
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