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Preface

The Medical Image Computing and Computer Assisted Intervention (MICCAI)
community needs data with known ground truth to develop, evaluate, and validate
computerized image analytic tools, as well as to facilitate clinical training. Since
synthetic data are ideally suited for this purpose, over the years, a full range of models
underpinning image simulation and synthesis have been developed: (i) machine and
deep learning methods based on generative models; (ii) simplified mathematical models
to test segmentation, tracking, restoration, and registration algorithms; (iii) detailed
mechanistic models (top–down), which incorporate priors on the geometry and physics
of image acquisition and formation processes; and (iv) complex spatio-temporal
computational models of anatomical variability, organ physiology, and morphological
changes in tissues or disease progression.

The goal of the Simulation and Synthesis in Medical Imaging (SASHIMI)1

workshop is to bring together all those interested in such problems in order to engage in
invigorating research, discuss current approaches, and stimulate new ideas and
scientific directions in this field. The objectives were to (a) hear from invited speakers
in the areas of transfer learning, generative adversarial networks, variational auto
encoders, and biophysical models to cross-fertilize these fields; (b) bring together
experts of image synthesis to raise the state of the art; and (c) identify challenges and
opportunities for further research. We also wanted to identify the suitable approaches to
evaluate the plausibility of synthetic data and to collect benchmark data that could help
with the development of future algorithms.

The 4th SASHIMI workshop was successfully held in conjunction with the 22nd
International Conference on Medical Image Computing and Computer-Assisted
Intervention (MICCAI 2019) as a satellite event in Shenzhen, China, on October 13,
2019. Submissions were solicited via a call for papers circulated by the MICCAI
organizers, as well as by directly emailing colleagues and experts in the area. Each
submission underwent a double-blind review by at least three members of the Program
Committee, consisting of researchers actively contributing in the area. Compared to the
2018 edition, we saw an increased number of submissions and diversity of covered
topics. At the conclusion of the review process, 16 papers were accepted. Overall, the
contributions span the following broad categories in alignment with the initial call for
papers: methods based on generative models or adversarial learning for
MRI/CT/PET/microscopy image synthesis, image super resolution, and several
applications of image synthesis and simulation for data augmentation, segmentation, or
lesion detection. The accepted papers were presented within an oral session (5 papers)
and a poster session (11 papers).

Finally, we would like to thank everyone who contributed to this fourth workshop:
members of the Organizing Committee for their assistance; the authors for their

1 http://www.sashimi.aramislab.fr.

http://www.sashimi.aramislab.fr


contributions; the members of the Program Committee for their review work,
promotion of the workshop, and general support; the invited speaker, Prof. Andreas
Maier, for sharing his expertise and knowledge; the Steering Committee for their
advice and support; and the MICCAI society for the general support.

October 2019 Ninon Burgos
Ali Gooya

David Svoboda

vi Preface



Organization

Organizing Committee

Ninon Burgos CNRS - Brain and Spine Institute, France
Ali Gooya University of Leeds, UK
David Svoboda Masaryk University, Czech Republic

Steering Committee

Sotirios A. Tsaftaris University of Edinburgh, UK
Alejandro F. Frangi University of Sheffield, UK
Jerry L. Prince Johns Hopkins University, USA

Program Committee

Navid Alemi Koohbanani University of Warwick, UK
Ninon Burgos CNRS - Brain and Spine Institute, France
Aaron Carass The Johns Hopkins University, USA
Hamid Fehri University of Oxford, UK
Ali Gooya University of Leeds, UK
Matteo Maspero UMC Utrecht, The Netherlands
Martin Maška Masaryk University, Czech Republic
Jack Noble Vanderbilt University, USA
Dzung Pham Henry Jackson Foundation, USA
Nishant Ravikumar University of Leeds, UK
Snehashis Roy Henry Jackson Foundation, USA
David Svoboda Masaryk University, Czech Republic
Vladimír Ulman Max Planck Institute, Germany
Devrim Unay Izmir University of Economics, Turkey
François Varray Creatis, France
Arezoo Zakeri University of Leeds, UK
Ting Zhao Janelia Research Campus, USA



Contents

Empirical Bayesian Mixture Models for Medical Image Translation. . . . . . . . 1
Mikael Brudfors, John Ashburner, Parashkev Nachev,
and Yaël Balbastre

Improved MR to CT Synthesis for PET/MR Attenuation Correction
Using Imitation Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Kerstin Kläser, Thomas Varsavsky, Pawel Markiewicz,
Tom Vercauteren, David Atkinson, Kris Thielemans, Brian Hutton,
M. Jorge Cardoso, and Sébastien Ourselin

Unpaired Multi-contrast MR Image Synthesis Using Generative
Adversarial Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Muhammad Sohail, Muhammad Naveed Riaz, Jing Wu,
Chengnian Long, and Shaoyuan Li

Unsupervised Retina Image Synthesis via Disentangled
Representation Learning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Kang Li, Lequan Yu, Shujun Wang, and Pheng-Ann Heng

Pseudo-normal PET Synthesis with Generative Adversarial Networks
for Localising Hypometabolism in Epilepsies . . . . . . . . . . . . . . . . . . . . . . . 42

Siti Nurbaya Yaakub, Colm J. McGinnity, James R. Clough,
Eric Kerfoot, Nadine Girard, Eric Guedj, and Alexander Hammers

Breast Mass Detection in Mammograms via Blending
Adversarial Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Chunze Lin, Ruixiang Tang, Darryl D. Lin, Langechuan Liu, Jiwen Lu,
Yunqiang Chen, Dashan Gao, and Jie Zhou

Tunable CT Lung Nodule Synthesis Conditioned on Background
Image and Semantic Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Ziyue Xu, Xiaosong Wang, Hoo-Chang Shin, Holger Roth, Dong Yang,
Fausto Milletari, Ling Zhang, and Daguang Xu

Mask2Lesion: Mask-Constrained Adversarial Skin Lesion Image Synthesis. . . . 71
Kumar Abhishek and Ghassan Hamarneh

Towards Annotation-Free Segmentation of Fluorescently Labeled Cell
Membranes in Confocal Microscopy Images. . . . . . . . . . . . . . . . . . . . . . . . 81

Dennis Eschweiler, Tim Klose, Florian Nicolas Müller-Fouarge,
Marcin Kopaczka, and Johannes Stegmaier



Intelligent Image Synthesis to Attack a Segmentation CNN Using
Adversarial Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Liang Chen, Paul Bentley, Kensaku Mori, Kazunari Misawa,
Michitaka Fujiwara, and Daniel Rueckert

Physics-Informed Brain MRI Segmentation . . . . . . . . . . . . . . . . . . . . . . . . 100
Pedro Borges, Carole Sudre, Thomas Varsavsky, David Thomas,
Ivana Drobnjak, Sebastien Ourselin, and M. Jorge Cardoso

3D Medical Image Synthesis by Factorised Representation
and Deformable Model Learning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Thomas Joyce and Sebastian Kozerke

Cycle-Consistent Training for Reducing Negative Jacobian Determinant
in Deep Registration Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Dongyang Kuang

iSMORE: An Iterative Self Super-Resolution Algorithm . . . . . . . . . . . . . . . 130
Can Zhao, Seoyoung Son, Yongsoo Kim, and Jerry L. Prince

An Optical Model of Whole Blood for Detecting Platelets
in Lens-Free Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Benjamin D. Haeffele, Christian Pick, Ziduo Lin, Evelien Mathieu,
Stuart C. Ray, and René Vidal

Evaluation of the Realism of an MRI Simulator for Stroke Lesion
Prediction Using Convolutional Neural Network . . . . . . . . . . . . . . . . . . . . . 151

Noëlie Debs, Méghane Decroocq, Tae-Hee Cho, David Rousseau,
and Carole Frindel

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

x Contents



Empirical Bayesian Mixture Models
for Medical Image Translation

Mikael Brudfors1(B), John Ashburner1, Parashkev Nachev2,
and Yaël Balbastre1

1 Wellcome Centre for Human Neuroimaging, UCL, London, UK
{mikael.brudfors.15,j.ashburner,y.balbastre}@ucl.ac.uk

2 UCL Institute of Neurology, London, UK
p.nachev@ucl.ac.uk

Abstract. Automatically generating one medical imaging modality
from another is known as medical image translation, and has numer-
ous interesting applications. This paper presents an interpretable gen-
erative modelling approach to medical image translation. By allowing a
common model for group-wise normalisation and segmentation of brain
scans to handle missing data, the model allows for predicting entirely
missing modalities from one, or a few, MR contrasts. Furthermore, the
model can be trained on a fairly small number of subjects. The pro-
posed model is validated on three clinically relevant scenarios. Results
appear promising and show that a principled, probabilistic model of the
relationship between multi-channel signal intensities can be used to infer
missing modalities – both MR contrasts and CT images.

1 Introduction

This paper concerns a relatively simple method of synthesising data of one medi-
cal image modality, from data of other modalities. This is known as ‘image trans-
lation’. Applications of medical image translation are numerous, and include
e.g. harmonising data across scanners; synthesising computed tomography (CT)
images from magnetic resonance (MR) images for positron emission tomography
(PET) attenuation correction [1], or decrease the need for radiating a patient;
simplifying the problem of multi-modal image registration [2]; or generalising
machine learning techniques by transferring out-of-distribution input data to
the domain of the model’s training data [3].

Mapping from the signal intensities of one modality to those of another can
be loosely categorised as either optimisation- or learning-based. Optimisation-
based methods rely only on the data at hand to optimise a mapping between
modalities, and do not use training data. Examples include using non-parametric
joint histograms [4], estimating an intensity transformation during image reg-
istration [5], and biophysical models [6]. Learning-based methods use training
data to learn the mapping, and can be applied to translating an unseen image
from one domain into another. Some examples in this category use clustering

c© Springer Nature Switzerland AG 2019
N. Burgos et al. (Eds.): SASHIMI 2019, LNCS 11827, pp. 1–12, 2019.
https://doi.org/10.1007/978-3-030-32778-1_1
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2 M. Brudfors et al.

[7], random forests [8], patch-matching [9] and dictionaries [10]. Learning-based
methods based on various convolutional neural network architectures are cur-
rently the most popular approach for this. Trained end-to-end, on either paired
or unpaired training data [11–13], they show promising results at this task,
although they can run the risk of hallucinating unwanted features [14].

This paper presents a more interpretable generative modelling approach
to image translation. It could be classed as an optimisation-based approach,
although it does use training data to learn priors that inform the optimisation
of mappings. More specifically, we show how a generative model for group-wise
normalisation and segmentation of neuroimaging data can be extended to handle
missing data. The generative model has a Gaussian mixture model component,
which can naturally handle missing data [15]. In this paper, we extend this miss-
ing data model to a variational Gaussian mixture. Fitting this model to various
populations of medical images allows us to predict, from a few MR contrasts,
entirely missing modalities (e.g., non-acquired MR contrasts or CT images).

2 Methods

The prediction of one modality from another is here cast as a joint intensity
modelling problem. The workhorse of the proposed method is the unified seg-
mentation model [16], which uses mixtures of Gaussians with non-stationary
tissue priors derived from a deformable template. When a large dataset is avail-
able, the optimisation of the template can be interleaved with the mixture model
fit to each individual subject [17]. Furthermore, priors over the intensity param-
eters of the Gaussian mixture – its means and covariances – can be defined and
optimised as well. This type of learning, where subject-specific parameters are
marginalised while population parameters are optimised, is known as parametric
empirical Bayesian methods [18]. Here, exact marginalisation is intractable, so
we resort to a variational approximation.

Fully Observed Model: Let X ∈ R
D×M be a multimodal dataset from one

subject, where M is the number of modalities and D is the number of voxels
in the images. Each voxel is assumed to belong to one of K classes, where the
classification is encoded by the label matrix Z ∈ [0, 1]D×K , with zdk = 1 iff. voxel
d belongs to class k. Each tissue class is associated with a multivariate Gaussian
distribution of dimension M , which encodes the intensities’ mean (μk ∈ R

M )
and covariance (Σk ∈ R

M×M ) over the modalities. The Gaussian mixture model
can then be written as a conditional probability that factorises across voxels:

p (X | Z,μ1...K ,Σ1...K) =
D∏

d=1

K∏

k=1

N (xd | μk,Σk)
zdk . (1)

Subject-specific parameters (the label matrix and Gaussian parameters) are
assumed to be drawn from prior distributions that describe their variability at
the population level. Labels are drawn from a categorical distribution whose
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probabilities are encoded by a deformable template a ∈ R
Da×K . This template

is mapped to the subject’s brain using a non-linear deformation field φ. This
assumption can be written as the conditional likelihood:

p (Z) =
D∏

d=1

Cat (zd | πd) , πd ∈ R
K , πdk =

exp(ωk + adk(φ))
∑K

j=1 exp(ωj + adj(φ))
, (2)

where ω ∈ R
K is a vector of global class proportions, which can be optimised

to account for variable amounts of different classes (an example when modelling
brain images could be atrophy due to ageing). The Gaussian parameters are
drawn from their conjugate Gauss-Wishart distribution:

p
(
μk,Σ

−1
k

)
= NW (

μk,Σ
−1
k | μ0k, b0k,V 0k, ν0k

)

= N (μk | μ0k,Σk/b0k) W (
Σ−1

k | V 0k, ν0k
)
. (3)

Assuming that all population parameters are fixed, a mean-field approxima-
tion is made so that the posterior distribution over all latent, subject-specific
parameters factorises as:

q
(
Z,μ1...K ,Σ−1

1...K

)
=

[
D∏

d=1

q (zd)

] [
K∏

k=1

q
(
μk,Σ

−1
k

)
]

, (4)

with q (zd) = Cat (zd | z̃d) and q
(
μk,Σ

−1
k

)
= NW

(
μk,Σ

−1
k | μ̃k, b̃k, Ṽ k, ν̃k

)
.

The posterior parameters (denoted by a tilde) can be optimised in turn by max-
imising the evidence lower bound (ELBO):

L = E [ln p (X | Z,μ1...K ,Σ1...K)]

−
D∑

d=1

DKL (qzd
‖ pzd

) −
K∑

k=1

DKL

(
qμk,Σk

‖ pμk,Σk

)
. (5)

When multiple subjects {Xn}Nn=1 are processed, the posterior distribution fac-
torises across subjects and a combined ELBO can be written by summing the
individual ELBOs (L =

∑N
n=1 Ln). In this case, empirical population priors can

be obtained by optimising the combined ELBO with respect to the template
(a) and Gauss-Wishart prior hyper-parameters (μ0k, b0k,V 0k, ν0k). The means
and scale matrices have closed form solutions, while the template and degrees of
freedom must be optimised using an iterative scheme. Population prior param-
eters and subject posterior parameters can be optimised in turn, resulting in a
variational Expectation-Maximisation (VEM) algorithm [19].

Missing Modalities: Let us assume that some modalities are missing in a
voxel1. We write as o the vector indexing observed modalities and as m the
1 For example, a multi-channel MRI might have three contrasts: T1w, T2w and PDw.

In one voxel, only the T1w intensity is observed. The T2w and PDw intensities are
then assumed missing in that voxel. Note that different voxels can have different
combinations of contrasts/modalities missing.
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vector indexing missing modalities. Therefore, the observed channels can be
written as g = xo and the missing channels as h = xm , where the voxel index
d has been temporarily dropped for clarity. For a voxel in class k, the marginal
distribution of the observed channels can then be written as [20]:

p (g | μk,Σk, zk = 1) = N (g | μko ,Σkoo) , (6)

and the conditional distribution of the missing channels as:

p (h | g,μk,Σk, zk = 1) =

N
(
h | μkm − (Λkmm )−1

Λkmo (g − μko) , (Λkmm )−1
)

, (7)

where the precision matrix Λ = Σ−1 is the inverse of the covariance matrix.
The set of all missing values in an image is written as H = {hd}Dd=1. The

mean field approximation becomes:

q
(H,Z,μ1...K ,Σ−1

1...K

)
=

[
D∏

d=1

q (hd | zd) q (zd)

][
K∏

k=1

q
(
μk,Σ

−1
k

)
]

, (8)

where q (hd | zd) =
∏K

k=1 N
(
hd | h̃dk, S̃dk

)zdk
. The marginal posterior over

missing values is a mixture of Gaussians that can be obtained by marginalising
the labels:

q(hd) =
K∑

k=1

z̃dkN
(
hd | h̃dk, S̃dk

)
. (9)

Its expected value is E [hd] =
∑

k z̃dkh̃dk. This is the expression that we evaluate
to predict missing voxels.

The set of all observed values is written as G = {gd}Dd=1. The ELBO can
then be written in two equivalent forms:

L = E [ln p (G | Z,μ1...K ,Σ1...K)]

−
D∑

d=1

DKL (qzd
‖ pzd

) −
K∑

k=1

DKL

(
qμk,Σk

‖ pμk,Σk

)
(10)

L = E [ln p (X | Z,μ1...K ,Σ1...K)] −
D∑

d=1

Ezd

[
DKL

(
qhd|zd

‖ phd|zd

)]

−
D∑

d=1

DKL (qzd
‖ pzd

) −
K∑

k=1

DKL

(
qμk,Σk

‖ pμk,Σk

)
. (11)

The first form is used to optimise the labels’ posterior parameters, while the
second is used to optimise, in turn, the missing values and the Gaussian posterior
parameters.
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Model Updates: Optimising the ELBOs in (10) and (11) gives the subject-
level update equations as:

z̃dk =
exp (E [ln N (gd | μk,Σk)] + lnπdk)∑K
l=1 exp (E [ln N (gd | μl,Σl)] + lnπdl)

. (12)

b̃k = b0k +
D∑

d=1

z̃dk (13)

μ̃k =
b0kμ0k +

∑D
d=1 E [zdkxd]
b̃k

(14)

ν̃k = ν0k +
D∑

d=1

z̃dk (15)

Ṽ
−1

k = ν0kV
−1
0k +

D∑

d=1

E
[
zdkxdx

T
d

]
+ bk0μk0μ

T
k0 − b̃kμ̃kμ̃

T
k (16)

The update equations for the Gaussian parameters in the missing data case are
very similar to the fully observed case, except that expectations are taken about
the data. These expectations are evaluated as:

E [zdkxd]o = z̃dkgd,

E [zdkxd]m = z̃dkh̃dk,

E
[
zdkxdx

T
d

]
oo

= z̃dkgdg
T
d ,

E
[
zdkxdx

T
d

]
mm

= z̃dk

(
h̃dkh̃

T

dk + S̃dk

)
,

E
[
zdkxdx

T
d

]
om

= z̃dkgdh̃
T

dk,

E
[
zdkxdx

T
d

]
mo

= z̃dkh̃dkg
T
d ,

(17)

where

h̃dk = μ̃km − Λ̃
−1

kmm Λ̃kmo (gd − μ̃ko) , S̃dk = Λ̃
−1

kmm , (18)

and Λ̃k = ν̃kṼ k is the posterior expected precision matrix of a given class.
Finally, we provide the optimal updates of the Gaussian prior parameters,

given a set of individual posterior parameters. All prior parameters have closed-
form updates, except for the degrees of freedom of the Wishart distribution,
which is updated using an iterative Gauss-Newton scheme. The update equations
are:

μ0k =

(
N∑

n=1

ν̃nkṼ nk

)−1 (
N∑

n=1

ν̃nkṼ nkμ̃nk

)
, (19)

b−1
0k =

1
NM

N∑

n=1

ν̃nk (μ0k − μ̃nk)
T

Ṽ nk (μ0k − μ̃nk) , (20)

V 0k =
1

Nν0k

N∑

n=1

ν̃nkṼ nk, (21)
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∂L
∂ν0k

= − 1
2

(
N

(
ln |V 0k| + ψM

(ν0k
2

))
−

N∑

n=1

(
ln

∣∣∣Ṽ nk

∣∣∣ − ψM

(
ν̃nk
2

)))
,

(22)

∂2L
∂ν2

0k

= − N

4
ψ′
M

(
ν̃0k
2

)
. (23)

We do not provide update rules for the template (a), as they can be found in
[17].

3 Experiments and Results

In this section we aim to explore the translation (or inference) capability of the
proposed model by conducting three experiments on publicly available data. We
investigate: (1) inferring missing voxels of MRIs with differing field of views; (2)
inferring entirely missing MRI contrasts; and (3), inferring CT scans from MRIs.
The findings are quantified by computing the peak-signal-to-noise-ratio (PSNR)
for an image channel c as:

PSNR = 10 log10
maxval2

MSE
, (24)

where the mean-squared error is defined as MSE = 1
D

∑D
d=1(x̂cd − (E [hd])c)2,

maxval is the maximum channel intensity in the reference image X̂, and E [hd]
from (9) is evaluated to predict missing voxels. The PSNR is a metric that is
commonly used in the medical image synthesis literature [11–13]. Note that no
voxels are excluded when computing the PSNR.

3.1 MRI Contrast Translation

This section evaluates translating between MR contrasts. The model is trained
on 50 subjects from the publicly available IXI dataset2, which was acquired on
three different MR scanners3. Each IXI subject has three MR images: a T1-,
T2- and PD-weighted scan (T1w, T2w and PDw). Furthermore, the images
have approximately 1 mm isotropic voxels and all subjects are healthy. K = 12
mixture components are used, resulting in the model shown in Fig. 1. Note that
the template learned by the algorithm does not need to represent real tissues.
Here, the model has been treated as a method of representing a probability
density function, rather than as a way to do clustering. Any ‘meaningful’ clusters
are incidental.

2 http://brain-development.org/ixi-dataset/.
3 This scenario is more realistic in a clinical context. The results would improve if

data from only one scanners was used.

http://brain-development.org/ixi-dataset/
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Template Joint density (T1,PD) Joint density (T2,PD)

Fig. 1. Template and expectations of the Gaussians drawn from the Gauss-Wishart
priors, learnt from 50 IXI subjects. Densities are plotted using their 3σ isocontours.
This model is fit to a new subject, which allows for inferring missing voxels.

Inferring MRIs with Differing Fields of View: Doctors often acquire rou-
tine clinical MR scans of multiple contrasts. Commonly, these contrasts have
differing fields of view, meaning the brain coverage varies (cf. observed T1w and
T2w images in Fig. 2). This can be problematic for image segmentation routines
as voxels with non-observed contrasts need to be discarded. The model should
prevent this issue by inferring the values of these missing voxels. To test this,
T1w, T2w and PDw scans of 50 unseen IXI subjects are used4. All of the voxels
are retained in the PDw image, while an increasing amount of voxels are removed
from the T1w and T2w images (25%, 50%, 75% and 100%). The missing voxels
are then inferred with the trained model. An example can be seen in Fig. 2. The
mean PSNR computed between the known references and the inferred images
are shown in Table 1. For routine clinical MRI, it is rare that more than 50% of
the field of view is missing. The results therefore suggest that the model does a
good job at filling in missing fields of view, which could be of value in segmenting
hospital data.

Inferring MR Contrasts: Could the proposed model be used to infer an
entirely missing MR contrast? An interesting application for this type of MRI
translation could be for segmentation methods based on deep learning. A deep
learning model that has been trained on MR images of a specific contrast can
overfit to its training data [21]. If images could be simulated as to match the
training data of the deep learning model, it might generalise better.

To test how well the model predict a missing contrast the same IXI subjects
as in the previous experiment are used. For each subject, all combinations of
contrasts are permuted over, set as either observed or missing. For example, we
observe just the T1w image and infer the T2w and PDw scans, or we observe
the T2w and PDw scans and infer the T1w (see Fig. 3). The results from this
experiment are shown in Table 2. These results imply that the T1w image is the
most predictive, as the lowest PSNR is obtained when this contrast is missing.
4 The model is trained on IXI subjects IXI[064--118], and tested on IXI[002--063].
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References

T1w

Observed

PDw

T1w  (50%) T2w  (50%)

Reference

Reference

PSNR=34.3T2w PSNR=36.6

InferredInferred

T1w T2w

Inferred

Fig. 2. Example of inferring MRIs with differing field of views. An MR image with three
channels (PDw, T1w and T2w) is observed. The PDw scan has full brain coverage, while
the T1w and T2w scans have partial brain coverage (50% of voxels removed in each
channel). From the observed data the values of the missing T1w and T2w voxels are
inferred. The reference T1w and T2w scans are shown for comparison, as well as PSNR
values.

Table 1. Results for inferring MR images with different fields of view (for 50 subjects).
The PSNR is computed between known T2w and PDw references and inferred images,
where an increasing percentage of the field of view has been removed. Results are shown
as mean± std.

Contrast PSNR

25% 50% 75% 100%

T1w 42.1 ± 1.6 36.3 ± 1.3 31.1 ± 1.3 28.9 ± 1.2

T2w 40.7 ± 2.1 34.4 ± 2.0 30.4 ± 1.8 27.6 ± 1.6

Observed

T1w T2w
Inferred Reference

PDw

Inferred

Reference

Observed

PSNR=28.7

Fig. 3. Example of inferring non-acquired MR contrasts. An MR image with two chan-
nels (T1w and T2w) is observed. The PDw scan is missing, but inferred from the
observed T1w and T2w scans. The reference PDw scan is shown for comparison, as
well as the PSNR value.
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Table 2. Results for inferring MR image contrasts (for 50 subjects). PSNR is computed
for all different permutations of observed and missing contrasts. Results are shown as
mean± std.

Contrasts PSNR

Observed Missing T1w T2w PDw

T1w T2w, PDw - 28.9 ± 1.5 28.5 ± 1.1

T2w T1w, PDw 28.2 ± 1.0 - 28.3 ± 1.5

PDw T1w, T2w 28.0 ± 1.2 27.6 ± 1.6 -

T1w,T2w PDw - - 28.8 ± 0.9

T2w,PDw T1w 29.2 ± 1.4 - -

T1w,PDw T2w - 28.1 ± 1.5 -

The example inferred PDw image in Fig. 3 looks realistic when compared to
the known reference, although more noisy. The results in Table 2 are close to
those previously reported in the literature [11] (for the same task but a different
dataset).

3.2 MRI to CT Translation

Accurately translating MRIs to CTs is interesting for numerous reasons, e.g., for
removing the exposure to radiation that CT imaging involves, or for attenuation
correction in MR-PET imaging. The proposed model should allow for this type
of translation, by training it on subjects who have both MR and CT imaging.
We therefore retrain the intensity distribution hyper-parameters of the model –
retaining the template learnt from the IXI dataset – on eight patients from the
RIRE dataset5 [22]. Each patient in this dataset contains a number of imaging
modalities. Here, only the patients with T1w and T2w MR scans (non-rectified),
and CT images, are used. Note that the RIRE dataset is challenging to use
due to the images having thick-slices, sometimes pathology, as well as requiring
an initial co-registration (the dataset is part of a registration challenge and
therefore purposefully misaligned). Each subject’s scans are registered using the
co-registration routine of the SPM12 software.

To test the models ability to translate MRIs to CTs, eight unseen RIRE
patients are used6. The trained model is fit to each subject’s T1w and T2w scans.
The expected marginal posterior distribution over the missing CT image can then
be computed. An example is shown in Fig. 4. The mean ± std PSNR between
the inferred CT images and the known references is 25.5 ± 1.2. Considered the
intensity hyper-parameters were trained on only eight subjects, the results are
satisfactory, although not on pair with deep learning based techniques [13]. The

5 https://www.insight-journal.org/rire/.
6 The model is trained on RIRE patients patient[102--109], and tested on
patient[001--007,101].

https://www.insight-journal.org/rire/
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Observed

T2w T1w

1500-1000 1000

Reference

CT

Inferred

CT
1500-1000 1000

Inferred

Reference
PSNR=24.3

Fig. 4. Example of MRI to CT translation. An MR image with two channels (T1w and
T2w) is observed. A CT scan is then inferred from the observed T1w and T2w scans.
The reference CT scan is shown for comparison, as well as the PSNR value.

examples images in Fig. 4 suggests that the model does not capture a detailed
enough distribution of bone. Additionally, the meninges does not appear in the
inferred image, but is instead modelled as cerebrospinal fluid. Fitting not only
the intensity hyper-parameters to the CT data, but also the template, could
resolve these issues. More training data would also help.

4 Conclusion

This paper showed how a popular model for segmenting brain scans – a prob-
abilistic forward model with a Gaussian mixture part – can be extended to
infer missing data. For multi-channel segmentation, this extension circumvents
the need to model only voxels that are observed in all channels. It furthermore
enables predicting one MR contrast from another, or CTs from MRIs. The model
gives reasonable results if trained on a small number of subjects, but we would
expect further improvements with access to more training data. Interestingly,
image translation is just a ‘by-product’ of learning the parameters of a joint
probability distribution that models missing voxels. The same model can also
be used to segment, bias correct and spatially normalise brain scans.

The model requires setting the number of Gaussian mixture components
(K) at the start of the training. If this number is set too low, then the simulated
images will look unrealistic. Here, this issue was resolved by using a fairly large
number of components, which was found empirically capturing a detailed enough
model distribution. Uninformative mixture components can then be drived to
zero, due to the Bayesian setting of the Gaussian mixture model, by making
point estimates of the values of the global tissue proportions (ω). This is known
as automatic relevance determination [20].

Generative modelling approaches integrating multi-channel images, like the
one presented here, should involve a component that relates signal across the
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various channels. The approach presented in this paper involves a probabilistic
model of the relationship between signal intensities over channels. An alternative
approach would be to use a multi-channel total variation (MTV) prior, which
ensures that ‘edges’ appear in similar locations across channels. The MTV prior
can be used to achieve super-resolution or denoising of medical images [23].
An avenue of future work could therefore be to incorporate both of these com-
ponents into a super-resolution method, to improve resolution of thick-sliced,
hospital-grade MR scans. By combining, for example, axial thick-sliced T2-
weighted images and sagittal thick-sliced T1w images of the same subjects. In
this example, the T2w image could provide some of the missing T1w signal in
the left-right direction, whereas the T1w image could fill in some of the missing
T2w signal in the inferior-posterior direction. Of course, this strategy would need
to be formulated properly, but this work aimed to show a proof of the concept
that one of those components, a probabilistic model between channels, does a
good job at filling in missing data in MR images.
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Abstract. The ability to synthesise Computed Tomography images -
commonly known as pseudo CT, or pCT - from MRI input data is com-
monly assessed using an intensity-wise similarity, such as an L2-norm
between the ground truth CT and the pCT. However, given that the
ultimate purpose is often to use the pCT as an attenuation map (µ-
map) in Positron Emission Tomography Magnetic Resonance Imaging
(PET/MRI), minimising the error between pCT and CT is not neces-
sarily optimal. The main objective should be to predict a pCT that,
when used as µ-map, reconstructs a pseudo PET (pPET) which is as
close as possible to the gold standard PET. To this end, we propose a
novel multi-hypothesis deep learning framework that generates pCTs by
minimising a combination of the pixel-wise error between pCT and CT
and a proposed metric-loss that itself is represented by a convolutional
neural network (CNN) and aims to minimise subsequent PET residu-
als. The model is trained on a database of 400 paired MR/CT/PET
image slices. Quantitative results show that the network generates pCTs
that seem less accurate when evaluating the Mean Absolute Error on
the pCT (69.68HU) compared to a baseline CNN (66.25HU), but lead to
significant improvement in the PET reconstruction - 115a.u. compared
to baseline 140a.u.

1 Introduction

The combination of Positron Emission Tomography (PET) and Magnetic Reso-
nance Imaging (MRI) marked a significant event in the field of Nuclear Medicine,
facilitating simultaneous structural and functional characterisation of soft tissue
[1]. In order to accurately reconstruct quantitative PET images, it is indispens-
able to correct for attenuation of the whole imaging object (part of the human
c© Springer Nature Switzerland AG 2019
N. Burgos et al. (Eds.): SASHIMI 2019, LNCS 11827, pp. 13–21, 2019.
https://doi.org/10.1007/978-3-030-32778-1_2
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body) including the hardware (patient bed and additional coils). However, this
is particularly challenging in PET/MRI as there is no direct correlation between
MR image intensities and attenuation coefficients in contrast to the case when
a CT image is available. In hybrid imaging systems that combine PET with
Computed Tomography (CT), the tissue density information is derived from the
CT image as Hounsfield units (HU), which can bi-linear approximate the atten-
uation coefficients (μ). While CT remains the clinically accepted gold-standard
for PET/MR attenuation correction, it is desirable to generate accurate μ-maps
without the need for an additional CT acquisition. Hence, the concept of syn-
thesising pseudo CT (pCT) images from MRs raised significant attention in the
research area of PET/MR reconstruction.

Recently, a multi-centre study has shown that compared to physics and seg-
mentation based approaches, methods based on multi-atlas approaches were best
suited to generate appropriate pCTs. These methods estimate μ-maps on a con-
tinuous scale by deforming an anatomical model that contains paired MR and
CT data to match the subject’s anatomy by using non-rigid registration algo-
rithms [2].

In recent years, there has been a shift of emphasis in the field of PET/MR
attenuation correction towards deep learning approaches that have demonstrated
significant improvements in the MR to CT image translation task, surpassing
state-of-the-art multi-atlas-based approaches [3]. Such methods often utilise con-
volutional neural networks (CNN) that are able to capture the contextual infor-
mation between two image domains (as between MR and CT) in order to trans-
late one possible representation of an image into another. Supervised learning
settings assume that the training dataset comprises examples of an input image
(e.g. MR here) along with their corresponding target image (i.e. CT here). A pop-
ular method to optimise image translation networks is to minimise the residuals
between the predicted pCT and the corresponding ground-truth CT, equivalent
to minimising the L2-loss. L2-losses make sense when the optimal pCT for PET
reconstruction is the one that is the closest, intensity-wise, to the target ground
truth CT. However, this L2-loss fails to recognise that the primary objective of
CT synthesis is to create a synthetic CT that, when used to reconstruct the PET
image, makes it as close as possible to the gold standard PET reconstructed with
the true CT. Also, the risk-minimising nature of the L2-loss disregards the fact
that small local differences between the pCT and the true CT can have a large
impact on the reconstructed PET. This downstream impact in PET reconstruc-
tion is illustrated in Fig. 1.

With the emergence of the cycleGAN in 2017 [4], many efforts have been
made to synthesise CT images in an unsupervised manner disregarding the need
of the L2-loss. Wolterink et al. [5] used a CNN that minimises an adversarial loss
to learn the mapping from MR to CT. This adversarial loss forces the pseudo CT
to be indistinguishable from a real CT. A second CNN ensures that the pseudo
CT corresponds to the actual input MR image. However, using a cycleGAN
only to synthesise pseudo CTs does not necessarily guarantee structural consis-
tency between pseudo CT and original CT. Therefore Yang et al. [6] proposed
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CT pCT CT Residuals PET Residuals

Fig. 1. (a) The ground truth CT, (b) the predicted pseudo CT, (c) the absolute resid-
ual between true and pseudo CT, and (d) the absolute residual between PETs recon-
structed using the CT and synthetic CT as attenuation maps. Note that small and
very localised difference in the CT (c) result in large PET residuals (d). We argue that
algorithms should be optimising for PET residuals (d) and not for CT residuals (c).

a structure-constraint cycleGAN that minimises an additional structural consis-
tency loss. In 2019, Jin et al. [7] presented a method that combines paired and
unpaired data in order to overcome the missing structural consistency of the
cycleGAN and to mitigate the errors introduced by the registration of paired
data.

To the best of our knowledge, all these methods focus on minimising the
error of the synthesised pCT. However, synthesising a CT image only acts as an
interim step when aiming for PET attenuation correction creating an additional
stage for potentially introduced errors. This work aims to directly minimise the
PET residuals and achieves this by introducing a novel MR to CT synthesis
framework that is composed of two separate CNNs. The first network generates
multiple plausible CT representations using Multi-Hypothesis Learning instead
of just a single pCT [8]. An oracle determines the most correct predictor and only
updates the weights with regards to the winning mode, enabling the first network
to specialise in generating pCTs with specific features (e.g. skull thickness, bone
density). A second network then predicts the residuals between ground-truth
PETs and PETs reconstructed using each plausible pCT using imitation learn-
ing. In this setting, the second network can be seen as a metric that estimates
the pPET residuals, and thus, by minimising this metric, the network learns to
generate pCTs that will subsequently result in pPETs with lower residual errors.

2 Methods

2.1 Multi-hypothesis Learning

Given a set of input MR images x ∈ X and a set of output CT images y ∈ Y, the
proposed image synthesis approach aims to find a mapping function fφ between
the two image domains X and Y, i.e. fφ : X → Y with unique parameters
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φ ∈ R
n. In a supervised learning setting with a set of N paired training tuples

(xi, yi), i = 1, ..., N , we try to find the predictor fφ that minimises the error

1
N

N∑

i=1

L(fφ(xi), yi).

where L can be any desired loss, such as the classical L2-loss. In the proposed
multi-hypothesis scenario, the network provides multiple predictions pCT, where
f j

φ(x) ∈ (f1
φ(x), ..., fM

φ (x)) with M ∈ N.
As in the original work [8], only the loss of the best predictor f j

φ(x) will be
considered in the training following a Winner-Takes-All (WTA) strategy, i.e.

L(fφ(xi), yi) = minj∈[1,M ]L(f j
φ(xi), yi).

This way the network learns M modes to predict pCTs each specialising on
specific features.

2.2 Imitation Learning

Following the hypothesis that the L2-loss is not an optimal loss metric when
generating pCTs for the purpose of PET/MR attenuation correction because of
its risk minimising nature, we propose to train a second network that, by taking
ground truth CTs (yi) and pCTs (f j

φ(xi) ∈ Ỹ) as inputs, aims to approximate
the function gψ : Y, Ỹ → Z with ψ ∈ R

n. Here, Z is a set of error maps
between the ground truth PET and the pPET that was reconstructed using
each of the M pCT realisations as μ-maps. In other words, this second network
tries to predict what the PET residuals would be from an input CT-pCT pair,
thus imitating, or approximating, the PET reconstruction process. We train this
imitation network by minimising the L2-loss between the true PET uptake error
z and the predicted error z̃, i.e. L2 = ||z − z̃||2.

Lastly, we use this second network as a new loss function for the first network,
as it provides an approximate and differentiable estimate of the PET residual
loss. The loss minimised by the first network is then defined as L(xi, yi, zi) =
minm∈[1,M ][gψ(fφ(xi), yi), zi].

2.3 Proposed Network Architecture

The proposed network architecture (Fig. 2) is trained in three phases: First, a
HighResNet [9] with multiple hypothesis outputs is trained with L2-WTA loss
to generate different pCT (yellow box). In the second stage, while freezing the
weights of the first network a second instance (purple box) of HighResNet is
trained to learn the error prediction between true and predicted PET and learn
the mapping between pCT residual and subsequent pPET reconstruction error.
Once learnt, the first network is retrained using both the CT L2-loss and the
metric loss in equal proportions.
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2.4 Implementation Details

The training was performed on whole images using 70% of the dataset (10% was
reserved for validation and 20% for testing). All training phases were performed
on a Titan V GPU with Adam optimiser. A model was trained with a learn-
ing rate of 0.001 for 20k iterations decreasing the learning rate by a factor of
10 and resuming training until convergence. The architecture was implemented
using NiftyNet, an open-source TensorFlow-based CNN platform developed for
research in the domain of medical image analysis [10].

3 Experimental Datasets and Materials

The experimental dataset consisted of pairs of T1- and T2-weighted MR and
CT brain images of 20 patients. For each subject, an intra-subject registration
was performed, where MRs and CTs were aligned using first a rigid registration
algorithm followed by a very low degree of freedom non-rigid deformation [3]. A
second non-linear registration was performed, using a cubic B-spline with nor-
malised mutual information, only on the neck region to correct for soft tissue shift
[11]. Each volume had 301 × 301 × 153 voxels with a voxel size of approximately
1 mm3. For the purpose of this work, the original data was then resampled to the
original Siemens Biograph mMR PET resolution of 344 × 344 × 127 voxels with
a voxel size of approximately 2 mm3 before we extracted the 20 central slices per

Fig. 2. Yellow box: semantic regression. Net1 takes MR images as inputs and predicts
multiple pCT realisations by minimising a combination of the L2-loss between ground
truth CT and pCT (L2-loss CT) and a learned metric loss (L2-loss ML). In the first
stage only L2-loss CT is considered and L2-loss ML is weighted to zero. Purple box:
imitation network. Net2 takes pCTs and corresponding CTs as input and predicts
the error between ground truth PET and pPET reconstructed with pCT as µ-map
by minimising L2-loss PET. Semantic regression and imitation network are trained
separately in three stages. (Color figure online)
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volume resulting in a registered 2D MR/CT/PET dataset of 400 images. MR
and CT images were downsampled because all image analysis was performed in
the original PET space since the ultimate aim of the method is to minimise PET
residuals. For evaluation purposes, a head region mask was extracted from the
CT image to exclude the background from the performance metric analysis. In
order to train the imitation network, three PETs were reconstructed using each of
the multi-hypothesis pCTs over 20 slices (here denoted as pPET), resulting in a
total of 60 pCT/pPET pairs. PET reconstruction was performed using NiftyPET
[12]. Since the raw PET data was not accessible, the following simulation was
performed: a PET forward projection was applied on the μ-map transformed
versions of the pCTs in order to obtain attenuation factor sinograms. Similar
forward projection was applied to the original PET images to obtain simulated
emission sinograms which are then attenuated through element-wise multipli-
cation using the attenuation factor sinograms. Those simulated sinograms were
then reconstructed using both the original CT-based attenuation map to obtain
a reference image, as well as the attenuation maps derived from the different
pCT images.

4 Experiments and Results

Qualitative results are presented in Fig. 3. The first column shows the ground
truth CT image (top), the pCTs generated with the HighResNet that we used
as baseline (middle) and a pCT generated with the proposed imitation learning
(bottom). Next to the CTs (2nd column) the error between pCT and ground
truth CT is shown. In the third column the true PET (top), imitation learning
pPET (middle) and the baseline pPET (bottom) are shown followed by the
corresponding pPET residuals in the last column.

As a second experiment, we performed an evaluation on the use of Monte-
Carlo (MC) dropout versus multi-hypothesis as a sampling scheme to generate
multiple realisations of pCTs. The results are depicted in Fig. 4. The variance in
the pPET intensities, which was reconstructed with a μ-map from the pCTs gen-
erated with MC dropout, was found to be artificially low, while the multiple pCT
realisations of the proposed multi-hypothesis model provided a wider distribu-
tion of pPET intensities. In order to investigate the accuracy of the predictions,
we investigated the Z-score of both sampling schemes in order to show the rela-
tionship of the mean data distribution to the ground truth PET. Figure 4-Right
presents the per pixel Z-score defined as PET−μ(pPETM )

σ(pPETM )
, with μ(pPETM ) and

σ(pPETM ) being the per-pixel average and per pixel variance over M pPET
samples respectively. Results show that the Z-score for multi-hypothesis is sig-
nificantly lower in the brain region than the one from MC dropout, meaning
that the multi-hypothesis-based PET uncertainty does encompass the true PET
value more often than the competing MC dropout method.

In a third experiment, and for quantification purposes, we calculated the
Mean Absolute Error (MAE) of the pseudo CTs only in the head region
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Fig. 3. Qualitative results. From top to bottom: Ground-truth, baseline (HighResNet),
and imitation learning. From left to right: CT, pCT-CT residuals, PET, pPET-PET
residuals. As expected, we note that MAE in the pCT generated with the proposed imi-
tation learning is higher than the baseline, but the resulting pPET error is significantly
lower for the proposed method.

and of the pseudo PET only in the brain region by masking out the back-
ground of the images. We validated the advantages of the proposed imita-
tion learning model on the remaining 20% of the dataset hold out for testing
(see Table 1). Although, as expected, the proposed method leads to a higher
MAE on the CT (69.68 ± 32.22HU) compared to the simple feed forward model
(66.25 ± 30.54HU), the MAE in the resulting pPET is significantly lower (paired
t-test, p < 10−4) for the proposed method (115.41 ± 78.72) when compared to
the baseline model (140.76 ± 91.87). The proposed method also outperforms the
multi-hypothesis only approach in both metrics.

5 Discussion and Conclusion

In this work, we proposed a novel network architecture for pCT synthesis for
PET/MR attenuation correction. We were able to show that the L2-loss, often
used as a minimisation metric in the field of CT synthesis, is not optimal when
ultimately aiming for a low error in the corresponding pPET when used as
attenuation map. Quantitative analysis on an independent dataset confirmed the
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Fig. 4. PET intensities (first column), variance (middle column) and Z-score (right
column) of ground truth PET (top row) compared to pPET intensities reconstructed
with pCTs from Monte Carlo (MC) dropout sampling (middle row) and pCTs from
multi-hypothesis sampling (bottom row). Sampling from multi-hypothesis captures true
PET intensities better than sampling from MC dropout.

Table 1. Mean Absolute Error (MAE) pCTs generated with HighResNet, Multi-
hypothesis pCTs and Imitation Learning pCTs and corresponding MAE in pPET.

Method MAE CT (in HU) MAE PET (in a.u.)

HighResNet 66.25± 30.54 140.76± 91.87

Multi-hypothesis 72.23± 27.69 215.57± 102.99

Imitation learning 69.68± 32.22 115.41± 78.72

proposed hypothesis that pCTs with a low MAE do not necessarily result in a low
pPET error. This work also demonstrates that minimising a more suitable metric
that indeed optimises for PET residuals (from CTs and pCTs) can improve the
process of CT synthesis for PET/MR attenuation correction.
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Abstract. Magnetic Resonance Imaging (MRI) has been established as
an important diagnostic tool for research and clinical purposes. Multi-
contrast scans can enhance the accuracy for many deep learning algo-
rithms. However, these scans may not be available in some situations.
Thus, it is valuable to synthetically generate non-existent contrasts from
the available one. Existing methods based on Generative Adversarial
Networks (GANs) lack the freedom to map one image to multiple con-
trasts using only a single generator and discriminator, hence, requiring
training of multiple models for multi-contrast MR synthesis. We present a
novel method for multi-contrast MR image synthesis with unpaired data
using GANs. Our method leverages the strength of Star-GAN to trans-
late a given image to n contrasts using a single generator and discrimina-
tor. We also introduce a new generation loss function, which enforces the
generator to produce high-quality images which are perceptually closer
to the real ones and exhibit high structural similarity as well. We exper-
iment on IXI dataset to learn all possible mappings among T1-weighted,
T2-weighted, Proton Density (PD) weighted and Magnetic Resonance
Angiography (MRA) images. Qualitative and quantitative comparison
against baseline method shows the superiority of our approach.

Keywords: Generative Adversarial Networks · Multi-contrast
synthesis · MR Imaging

1 Introduction

Within last three and a half decade Magnetic Resonance Imaging (MRI) has
evolved from a potential idea to primary diagnostic tool for many clinical and
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research problems [1]. The reason for such an enormous growth is its non-invasive
nature, the ability to generate distinct contrasts of same anatomical structure
and non-exposure to ionization radiation [2]. Different deep learning methods uti-
lize these multi-contrast MR images (T1-weighted, T2-weighted etc.,) for brain
tumor segmentation [3] and white/gray matter segmentation [4]. However, these
deep neural networks rely heavily on huge datasets for training. The availability
of such datasets in the domain of medical imaging is quite challenging and it
becomes even more difficult when the required data is multi-contrast. Therefore,
to enhance the performance of deep learning methods, synthetic generation of
images for data augmentation is of great importance [5].

Since the introduction of generative adversarial networks (GANs), there has
been remarkable development in the direction of image synthesis [6]. GANs have
been widely adopted in medical imaging, [5] uses Wasserstein-GANs to gener-
ate T1-weighted, T2-weighted and FLAIR images of brain, [3] used Progres-
sively Growing GANs for generation of retinal fundus and brain images. Some
cross-modality image synthesis methods based on Cycle-GAN [7], cGAN [8] and
Pix2Pix [9] have also been presented for generating missing modality data. How-
ever, all of these methods are limited to generate synthetic data for one or two
contrasts only. For generation of multi-contrast data, existing methods require
training of separate models for each corresponding contrast which is extensively
time consuming, and computationally very expensive. This also limits the poten-
tial of generator network to learn common features from all available data sam-
ples which is crucial when training dataset is small.

To alleviate the above issue, we propose a new method, which leverages the
power of Star-GAN [6] and U-NET [10] for synthetic generation of multi-contrast
MR images (T1-weighted, T2-weighted, PD-weighted and MRA) using only one
generator and discriminator network. Our method eliminates the requirement
of training separate models for each mapping, thus, reducing the training time
significantly. In addition, our approach allows us to utilize images from all con-
trasts for training in an unsupervised manner, which helps the generator to learn
common geometric properties among all contrasts. The unsupervised training
eliminates the requirement of paired data, hence broadening the scope of our
method.

A new generation loss is proposed which preserves the small anatomical struc-
tural details of given input image using structural similarity (SSIM) [11]. It also
employs recently proposed Learned Perceptual Image Patch Similarity (LPIPS)
metric [12], that forces the generator to learn reverse mapping for reconstruct-
ing real image from fake image while prioritizing perceptual similarity between
reconstructed and real images. For stable training of our model we add regu-
larization term to the adversarial loss [13]. The model is trained to generate
images for all four contrasts using only one image as input from any contrast.
We provide qualitative and quantitative results for synthetic generation of multi-
contrast MR images, which shows the superiority of our approach over existing
methods.
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2 Method

The proposed method efficiently and effectively learns the mappings among four
contrasts of MRI [T1-weighted, T2-weighted, Proton Density (PD)-weighted,
Magnetic Resonance Angiography (MRA)] to generate a fake image of target
contrast given a real image and original contrast. For example, given an input
image of T1-weighted contrast our model can generate fake T2-weighted, PD-
weighted and MRA images using only one generator. Working of the model is
illustrated by Fig. 1 and details of loss functions are described next.

Fig. 1. U-NET generator performs two synthesis: (i) generating a fake image given
depth-wise concatenated real image and target contrast; (ii) reconstructing real image
given fake image concatenated depth-wise with original contrast. Fake image is used to
measure two losses: (i) Adversarial loss and (ii) contrast classification loss using Patch-
GAN discriminator. Reconstructed and real image are used to measure reconstruction
loss to observe how close reconstructed image is to the real image in terms of structural
(SSIM), perceptual (LPIPS) and global (L1) similarity

2.1 Loss Functions

Adversarial Loss: Instead of using adversarial loss proposed by [14], which is
reported to suffer from various training problems including mode collapse, van-
ishing gradients and senstitivity to hyper-parameters, we use regularized Wasser-
steing GAN with gradient penalty (WGAN-GP). This not only provides stable
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learning for deep generator and discriminator networks but also increase the
quality of generated images. It is defined as

Ladv = LWGANgp
+ λctCT |x′,x′′ (1)

Here, the first term gives us the WGAN-GP loss and the second term regularize
this loss using a consistency term. WGAN-GP loss is given as

LWGANgp
= E

[
Dsrc(x)

] − Ex,c

[
Dsrc(G(x, c))

]

−λgpEx̂

[
(‖ �x̂Dsrc(x̂) ‖2 −1)2

] (2)

In above equation, generator G takes an input image x and a target label c
to generate a fake image of the target contrast. While the discriminator D is
responsible for finding out if the given image is real (from training set) or fake
(generated by G). The consistency term of Eq. 1 is given as

CT |x′,x′′ = Ex∼P

[
max(0, d(D(x′),D(x′′))

+0.1 · d(D (x′),D (x′′)) − M ′)
] (3)

here, x′ and x′′ corresponds to virtual data points close to x and D is the output
of the discriminator from second to the last layer.

For our experiments, we use λgp = 10, λct = 1 and M ′ = 0.

Contrast Classification Loss: It forces the generator to produce image of
correct contrast and allows discriminator to perform contrast classification for
real and fake images [6]. It is defined as

Lr
cls = Ex,c′

[ − log Dcls(c′|x)
]

(4)

for fake images
Lf
cls = Ex,c′

[ − log Dcls(c′|G(x, c)
]

(5)

Here, x and c′ represents real image and original label. while G(x, c) and c
corresponds to fake image and target contrast.

Generation Loss: If the model generates a fake image T′
1 belonging to T1

contrast using a real T2-weighted image then by using reverse mapping it should
reconstruct the real T2-weighted image. For this [7] uses cycle consistency loss:

Lcyc = Ex,c,c′
[ ‖ x − G(G(x, c), c′) ‖ ]

(6)

However, this L1 loss focuses on an entire image ignoring patch level dissimilar-
ity among images, thus providing less information for generator to work with.
Therefore, to impose small patch wise dissimilarity measure between real and
reconstructed image, we increment generation loss with two additional terms.
(i) Inspired by the strength of structural similarity (SSIM) [11] for measuring
structural similarity between two images in a patch-wise manner, we employ
structural dissimilarity loss (DSSIM); an extension of (SSIM) as

LDSSIM = Ex,c,c′

[
1 − SSIM(x − G(G(x, c), c′))

2

]
(7)
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(ii) Secondly, to enforce the generator to produce images perpetually more closer
to the target contrast, we utilize recently proposed Learned Perceptual Image
Patch Similarity metric [12]:

LLPIPS = Ex,c,c′ [x − G(G(x, c), c′))] (8)

Both additional terms calculate differences between real and reconstructed image
in a patch wise manner. This allows our generator to focus on small anatomical
regions and preserve structure while changing only contrast related properties
for image synthesis. Our final reconstruction loss takes the good from all three
terms:

Lrec = λcyc Lcyc + λDSSIM LDSSIM + λlpips Llpips (9)

We use λcyc = λDSSIM = λlpips = 10 for training.

Full Objective: Finally, the full objective for our discriminator network is to
minimize the loss LD, which is defined as

LD = −Ladv + Lr
cls (10)

while the generator tries to minimize LG given as

LG = Ladv + Lf
cls + Lrec (11)

2.2 Network Architecture

For the exceptional performance of U-Net [10] for medical images, we use U-
Net based generator for our model adapted from [7]. The generator contains
7 down-sampling layers with strided convolutions of stride 2 followed by the 7
up-sampling layers with fractional strides. Each convolutional layer is followed
by instance normalization and ReLU activation except for the final layer which
uses tanh after convolution layer. Similar to [6,7,15] we are using PatchGANs-
based discriminator which can classify local patches for real or fake, providing
efficiency over full image classifier. No normalization is applied to discriminator.

3 Experiments and Results

3.1 Dataset

We use IXI dataset1 for all of our experiments, which provides scans of almost
600 subjects for all four contrasts. Images for IXI dataset are acquired using
three different scanners, however information for only two (Philips Medical Sys-
tems Gyroscan Intera 1.5T → S1, Philips Medical Systems Intera 3T → S2)is
available which is provided in Table 1. Since, the provided images were not regis-
tered we used AntsPy2 package for registering all images to a common template
using affine transformation. This provides us with 568 images of same size and
position from which 68 were randomly selected for testing while remaining 500
were used for training. Since the MRA images of IXI dataset provide better
resolution in axial plane, therefore, axial slices of all images were taken.
1 https://brain-development.org/ixi-dataset/.
2 https://github.com/ANTsX/ANTsPy.

https://brain-development.org/ixi-dataset/
https://github.com/ANTsX/ANTsPy
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Table 1. Images acquisition parameters

Dimensions T1-weighted T2-weighted PD-weighted MRA

Flip AnlgeS1 8 90 90 25

Flip AnlgeS2 8 90 90 16

TES1 4.6ms 100ms 8ms 6.9ms

TES2 4.6ms 100ms 8ms 5.75ms

TRS1 9.813ms 8178.34ms 8178.34ms 20ms

TRS2 9.60ms 5725.79ms 5725.79.34ms 20ms

Volume Size 256 × 256 × 150 256 × 256 × 130 256 × 256 × 130 512 × 512 × 100

Voxel Dimensions 0.94 × 0.94 × 1.2 0.94 × 0.94 × 1.2 0.94 × 0.94 × 1.2 0.47 × 0.47 × 0.8

3.2 Implementation Details

For all of our experiments we used PyTorch, and the image slices were center
croped and resized to 256 × 256 due to computational limitations. Input image
and target contrast are selected randomly in an unpaired manner for training.
For fair comparison both models default Star-GAN and proposed use same values
of hyperparameters. Both models are trained for 200,000 iterations with a batch
size of 10, for optimization Adam optimizer with momentum of 0.9 is used.

3.3 Quantitative Results

To evaluate the performance of our model against Star-GAN, we utilize the
commonly used metrics of peak signal-noise ratio (PSNR), SSIM [11] and LPIPS
[12]. The averaged results of 4129 slices for each meaningful mapping are shown
in Table 2. Here, high PSNR, SSIM and lower LPIPS means better quality of
the generated images. Our method has clearly outperformed Star-GAN for all
mappings.

3.4 Qualitative Results

Figures 2, 3 and 4 shows the qualitative comparison of our method against Star-
GAN for multi-contrast synthesis. It can be seen that images generated by Star-
GAN lack structural and perceptual similarity for small anatomical regions,
which are captured by our method. Synthesis of MRA from T2-weighted image
Fig. 2 shows Star-GAN failed to capture the overall color of the image, while our
method generated image identical to the real one. Similarly Figs. 3 and 4 show
the superiority of our method.
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Table 2. Synthesis: Real Image → Fake Image (generated by network).

Mappings Star-GAN Proposed Method

PSNR SSIM LPIPS PSNR SSIM LPIPS

T2 → MRA 19.51 0.4502 0.1628 27.17 0.7545 0.0688

T2 → PD 21.81 0.7882 0.0614 25.30 0.9118 0.0287

T2 → T1 18.46 0.6135 0.0902 20.05 0.6864 0.0650

MRA → PD 20.66 0.6197 0.1152 22.43 0.7345 0.0694

MRA → T1 20.34 0.7169 0.1032 21.78 0.8016 0.0698

MRA → T2 20.81 0.6373 0.1211 20.90 0.7106 0.0680

PD → MRA 16.02 0.4182 0.1817 25.18 0.7348 0.0648

PD → T1 18.81 0.6352 0.0842 21.41 0.7170 0.0561

PD → T2 21.46 0.7481 0.0658 27.43 0.9116 0.0248

T1 → MRA 17.80 0.4678 0.1756 25.03 0.7378 0.0736

T1 → PD 19.99 0.6168 0.0834 21.92 0.6869 0.0539

T1 → T2 19.69 0.5850 0.0903 19.29 0.6510 0.0615

Fig. 2. Synthesis of MRA, PD-weighted and T1-weighted images using a single T2-
weighted image as input.
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Fig. 3. Synthesis of MRA, T2-weighted and T1-weighted images using a single PD-
weighted image as input.

Fig. 4. Synthesis of PD, T2-weighted and T1-weighted images using a single MRA
image as input.
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4 Conclusion

In this paper, we proposed a Star-GAN based method with U-NET generator
and new generation loss for multi-contrast MR image synthesis using only one
generator and discriminator. The qualitative and quantitative results show the
superiority of our method against default Star-GAN. Our solution also removes
the limitation of training multiple networks for multi-contrast image synthesis,
which is extremely important for many deep learning methods dependent on
multi-contrast data for training. In our future work, we would like to extend our
experiments to include more modalities and learn mappings among all of them
using only a single generator and discriminator.
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Abstract. Fluorescein Fundus Angiography (FFA) is an effective
and necessary imaging technology for many retinal diseases including
choroiditis, preretinal hemorrhage, and diabetic retinopathy. However,
due to the invasive operation, harmful fluorescein dye, and the conse-
quent side effects and complications, it is also an image modality that
both doctors and patients are reluctant to use. Therefore, we propose an
approach to use Fluorescein Fundus (FF) images, which are non-invasive
and safe, to synthesize the invasive and harmful FFA images. Addition-
ally, since paired data are rare and time-consuming to get, the proposed
method uses unpaired data to synthesize FFA images in an unsupervised
way. Previous unpaired image synthesis methods treat image translation
between two domains in two separate ways and thus ignore the implicit
feature correlation in the translation process. To solve that, the proposed
method first disentangles domain features into domain-shared structure
features and domain-independent appearance features. Guided by the
adversarial learning, two generators will learn to synthesize FFA-like
images and FF-like images correspondingly. Perceptual loss are intro-
duced to preserve the content consistency during translation. Qualitative
results show that our model could generate realistic and mimic images
without the usage of paired data. We also make quantitative comparisons
on Isfahan MISP dataset to demonstrate the superior image quality of
the synthetic images.

Keywords: Unsupervised image synthesis · Disentangled
representation learning · Fundus images · Fundus angiography images

1 Introduction

Fluorescein Fundus Angiography (FFA) is widely used for imaging the functional
state of retinal circulation [13]. With angiographic imaging, detailed informa-
tion of human retina fundus are enhanced and augmented including vessels and
granular structures, which make it a routine diagnostic tool for disease diagno-
sis including choroiditis, preretinal hemorrhage and diabetic retinopathy [1,14].
However, it is an image modality that both doctors and patients are reluctant
to use. Invasive operation, harmful fluorescein dye, consequent side effects and
potential complications force physicians only use it in severe situations [10].
c© Springer Nature Switzerland AG 2019
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Moreover, conventional Fluorescein Fundus (FF) imaging is non-invasive and
safe. It is a widely used technique for early diagnosis and regular checkup in
hospitals. Since the common retina structures like vessels and granular structures
are shared in both domains, we propose an approach to use non-invasive and safe
FF images to synthesize the invasive and harmful FFA images. Synthesizing FFA
images could help doctors to diagnosis with smaller potential risk in patients and
relatively reduce the need for actual angiographic imaging.

Medical image synthesis and translation between different domains has been
well studied in the past several years. Considering large radiation explosion
of CT, Nie et al. [11,12] proposed a context-aware generative adversarial net-
work to synthesize CT images from MRI images. However, their methods need
paired data, which are hard to obtain in practice. Chartsias et al. [2] presented
an approach based on latent representation, which aims to synthesize multi-
output images with multi-input MRI brain images. Similarly, their methods
also required aligned image pairs as input. Moreover, their methods focused
more about the discovery of modality-invariant content features and ignore the
modality-specific features. As image pairs from two image domains of the same
patient with the same disease are relatively rare and creates higher demands
for data acquisition, the proposed image synthesis method is based on unpaired
data in an unsupervised way.

There are also several image synthesis works focused on retina fundus images.
Zhao et al. [16,17] and Costa et al. [3] synthesized retina fundus images based
on the corresponding segmentation masks for the purpose of data augmentation,
segmentation and other usages. These approaches also required fundus images
and the corresponding masks to construct training pairs, which similarly also
cause difficulty for data acquisition.

Hervella et al. [5] and Schiffers et al. [13] share a similar motivation with
us. They also developed approaches to generate FFA images based on retina
fundus images. Similar to previous methods, Hervella et al. [5] constructed a
Unet architecture with fundus images as input and FFA images as output to
learn a direct mapping between two domains. Without the help of adversarial
learning, their method leads the model to learn a pixel-to-pixel mapping instead
of distribution-to-distribution mapping. Due to the scarcity of paired data, the
model would easily become overfitting, which deteriorates the generalization
ability of the model.

Schiffers et al. [13] handled this problem with the unpaired data. Inspired
by CycleGAN [18], their approach adopted the cycle consistency loss to add
reverse mapping for the image translation from FF domain to FFA domain.
However, CycleGAN-based methods use two separate generators to learn the
translation between two domains, which ignores the implicit relationship of fea-
ture translation during the image synthesis process. To be more specific, during
translation, structure features are shared in both domains including vessels and
granular structure. On the contrary, appearance features are distinctive between
two domains like color. As CycleGAN [18] does not utilize these information,
the translation process is less controllable.
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To solve that, we proposed an unsupervised image synthesis method via
disentangled representation learning based on unpaired data. Our approach is
based on an assumption that images from two domains could be mapped to
the same latent representation in a shared space [8,9]. Inspired by that, we use
three encoders to disentangle the domain features into domain-shared structure
features and domain-independent appearance features. After that, FFA appear-
ance features are fused with domain-shared structure features to synthesize the
required FFA-like images by FFA domain generator. We also put domain-shared
structure features into FF domain generator to help stabilize the training pro-
cess. By adversarial learning, two generators are pushed to synthesize FFA-like
images and FF-like images respectively. Moreover, we apply perceptual loss to
preserve the structural information during translation. The proposed method is
evaluated on public Isfahan MISP dataset [4] with other state-of-the-art meth-
ods. Qualitative analysis shows that our methods could generate mimic FFA
images. Meanwhile the quantitative comparison demonstrates our method could
produce synthetic images with superior image quality over other methods.

2 Methodology

Our method aims to learn a image distribution mapping from domain FF to
domain FFA without paired data. To be more specific, for any synthetic FFA
image, it should have the structure of the FF image it generates from, combined
with the appearance of domain FFA. In the following section, we introduce the
disentanglement of domain-shared structure features and domain-independent
appearance features first. After that, we describe perceptual loss to make sure
the structure-consistency during image translation process. We also introduced
other important loss including KL loss and adversarial loss in the end of this
section.

2.1 Disentanglement of Structure Features and Appearance
Features

There exist common structures like vessels and granular structures between
domain FF and domain FFA. Intuitively we use two structure encoders to extract
the common features that are shared in two domains

{
ES

FF , ES
FFA

}
. Mean-

while, we use one appearance encoder EA
FFA to capture the independent FFA

attributes. Besides that, we also adopt generators {GFF , GFFA} and discrimi-
nators {DFF ,DFFA} for two domains, as shown in Fig. 1.

To better deal with non-corresponding data, there are two stages in our
model. The forward translation stage learns a mapping from real images to
generated images as follows:

fake FFA = GFFA

(
EA

FFA(IFFA), ES
FF (IFF )

)
, (1)

fake FF = GFF

(
ES

FFA(IFFA)
)
. (2)
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Fig. 1. Model Architecture, where the green and blue blocks represent for structure
encoders and appearance encoders. Yellow blocks stand for generators and discrimina-
tors. Green dotted lines stand for shared weights between structure encoders. (Color
figure online)

Beside that, in backward translation stage, we add a reverse mapping from the
generated images back to real images [18], which is formulated as:

ˆIFFA = GFFA

(
EA

FFA (fake FFA) , ES
FF (fake FF )

)
, (3)

ˆIFF = GFF

(
ES

FFA (fake FFA)
)
. (4)

To achieve better representation disentanglement, we apply weight sharing
strategy and perceptual loss. For the weight sharing strategy, We let the last
layer of ES

FF and ES
FFA to share weights based on the assumption that two

domains share one latent content space [9]. The weight sharing strategy could
effectively map the domain-shared structure information between two domains
into the same latent space.

Moreover, to make sure the generated FFA images could preserve as much
as content features of FF images, we construct a perceptual loss between the
real FF images and fake FFA images by using the features of a well-trained
network. Since a well-trained model contains rich high-level semantic features,
it implies that if the real images and generated images have the same structure
information, after feeding them into a pre-trained model, they should produce
similar high-level features [6,15]. Therefore, the distance of the features above
could be act as an evaluation metric of content similarity. Based on that, we
construct a perceptual loss to preserve structure-consistency as:

Lp = ‖φl (IFFA) − φl(fake FFA)‖22 , (5)

where φl(x) represents for the con3, 3 layer in VGG-19 network [6].
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2.2 Loss Functions

Cycle-Consistency Loss. Since there is no paired data involved in the image
translation process, we constrain the image translation process by forcing the
generated images could be translated back into real images and add L1 loss
between the constructed images and input images. The cycle-consistency loss of
two domains is defined as:

Lcc = EFF∼p(FF )

[
‖IFF − ˆIFF ‖1

]
+ EFFA∼p(FFA)

[
‖IFFA − ˆIFFA‖1

]
. (6)

KL Loss. Since the encoder-generator architecture is basically a Variation
Auto-encoder (VAE), we introduce the KL divergence loss in appearance feature
extraction. KL loss forces the appearance representation zFFA = EA

FFA(IFFA)
to be close to the normal Gaussian distribution p(z) ∼ N(0, 1), which would help
suppress the structure information contained in zFFA. The KL loss is defined
as:

KL (q (zFFA) ‖p(z)) = −
∫

q (zFFA) log
p(z)

q (zFFA)
dz. (7)

In VAE, minimizing KL loss is equivalent to minimizing the following equa-
tion [7]:

LKL =
1
2

N∑

i=1

(
μ2
i + σ2

i − log
(
σ2
i

) − 1
)
, (8)

where μ and σ are the mean and standard deviation of appearance feature zFFA.
And zFFA is sampled as zFFA = μ + z ◦ σ, where ◦ is the element-wise multi-
plication.

Adversarial Loss. To generate more realistic and mimic images, we impose
domain adversarial loss. The adversarial loss of two domains are formulated as:

LDFFA
= EFFA∼p(FFA) [log DFFA(IFFA)] +

EFF∼p(FF )

[
log

(
1 − DFFA

(
GFFA

(
ES

FF (IFF ), EA
FFA(IFF )

)))]
,

(9)

LDFF
= EFF∼p(FF ) [log DFF (IFF )] +

EFFA∼p(FFA)

[
log

(
1 − DFF

(
GFF

(
ES

FFA(IFFA)
)))]

.
(10)

The generator tries to generate mimic fake images to fool the discriminator,
while the discriminator tries to distinguish between the real images and fake
images.

The full objective function is formed by the weighted sum of perceptual loss,
KL loss, cycle-consistency loss and adversarial loss as follows:

L = λadvLadv + λKLLKL + λccLcc + λpLp, (11)

where Ladv = LDFFA
+ LDFF

and the hyper-parameters are setting empirically.
In testing, there still needs one FFA image as appearance guide image. According
to our observation, the FFA images have minor appearance differences and the
choice of guide images has little influence to the generated images, which will be
demonstrated in detail at the end of next section.
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3 Experiments and Results

3.1 Dataset

In experiments, we use Isfahan MISP dataset which contains 59 image pairs in
total [4]. In specific, 30 pairs are healthy cases and 29 pairs are abnormal cases
with diabetic retinopathy. We randomly pick 29 pairs as the training set and
leave the remaining 30 pairs as the test set. It is worth to mention that the
images fed into our methods and Schiffers et al. [13] are randomly chosen and
randomly cut into patches to make sure no pair information is involved during
the training. Also, since our methods needs a FFA image as appearance guide
image in testing, the guide image is also randomly picked. The choice of guide
images has very little influence to the final results, which will be demonstrated
in the end of this section.

3.2 Technique Details

In order to extract more details, we cut the whole images with the resolution
of 720 × 576 into 256 × 256 patches and perform data augmentation including
rotation, random crop and random flip. The structure encoder ES

FFA and ES
FF

consist of 3 convolution layers and 4 residual blocks where the last residual block
shares weights with each other. For the appearance encoder EA

FFA, we use four
convolution layers and one fully connected layer in the end. The generator GFFA

and GFF have a symmetric architecture to the structure encoder, which are con-
structed by 4 residual blocks and 3 transposed convolution layers. In the training
process, Adam optimizer is used to update discriminator first and generator and
encoder later with beta1 and beta2 setting to 0.5 and 0.999 respectively. The ini-
tial learning rate is set to be 0.0001 for the first 50 epochs and linearly decayed
for the following 50 epochs. During training, the hyper-parameters λadv, λcc,
λKL and λpp set to be 1, 10, 0.01 and 0.001 respectively. The entire training
requires around 6 h computed with one NVIDIA TITAN V GPU card.

3.3 Qualitative Analysis

We compare our results with Hervella et al. [5] and Schiffers et al. [13], which
tackle the same task with us. We visualize several synthetic images generated by
the comparison methods and our methods in Fig. 2. All three methods could cap-
ture main vessel structures in real FF images. However, the results of Hervella et
al. [5] have low contrast between the vessels and other tissues. The detailed ves-
sels in the center blend into the surroundings which causes difficulty to observe.
Schiffer et al. [13] produces better image contrast and highlights the vessels.
However, direct mapping between two domains without structure consistency
constrain makes the model lack the ability to preserve tiny details like small ves-
sels in the center, which are enlarged and illustrated in Fig. 3 for better image
contrast. On the other side, our results preserve the basic vessel structure with
clear edges and keep the detailed vessels as well. Moreover, our results have
similar appearance to real FFA images.
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Fig. 2. Qualitative results of our methods and compared methods.

Fig. 3. Enlarged details of synthetic images generated by our methods and other com-
pared methods, where the first row and second row represent for the original size of
synthetic images and the zoom-in details of the red bounding box respectively. The
arrows with the same color point out the tiny vessels in the same region. (Color figure
online)

3.4 Quantitative Analysis

For quantitative comparison, we use several standard evaluation metrics includ-
ing Peak signal-to-noise Ratio (PSNR), Mean Squared Error (MSE) and Struc-
tural Similarity Index (SSIM) to evaluate the image quality of generated images,
as shown in Table 1. Due to the size of training dataset, the method of Hervella et
al. [5] based on paired data are easy to overfit. Their results are not as good as
that of Schiffers et al. [13], which utilizes the unpaired images to better exploit
feature representation in limited data. The method of Schiffers et al. [13] obtains
better results in MSE, PSNR and SSIM by 0.0775, 4.7675 and 0.0222 respec-
tively. Meanwhile, as our method takes advantage of domain-shared structure
features and domain-independent appearance features in the synthesis process
while the approach of Schiffers et al. [13] ignores the implicit feature relation-
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Table 1. Comparison with other methods in test data.

Methods MSE ↓ PSNR ↑ SSIM ↑
Hervella et al. [5] 0.1181 9.9512 0.5898

Schiffers et al. [13] 0.0406 14.7187 0.6312

Ours 0.0242 16.9094 0.6452

Table 2. Quantitative results of different guide images.

MSE ↓ PSNR ↑ SSIM ↑
std 0.00043 0.00617 0.00015

ship, our results achieve 2.19% and 0.014% improvements in PSNR and SSIM
compared to Schiffers et al. [13]. The MSE of our results is also lower than that
of Schiffers et al. [13] by 0.0164%, which demonstrates the effectiveness of our
methods and shows the generated images could well preserve structures in FF
images.

Since our method needs a FFA image as the appearance guide image to
generate mimic FFA images in testing, we also explore the influence of different
guide images to the final synthetic images. In this experiment, all FFA images
in training dataset are tested here. We compare the standard deviation (std)
of MSE, PSNR and SSIM of our synthetic results under different guide images,
which are shown in Table 2.

As shown in Table 2, the std of MSE, PSNR and SSIM are relatively small,
which implies the image quality of fake FFA images guided by different FFA
images have little fluctuation. It also demonstrates that the choice of guide
images has minor effects to the generated images.

4 Discussion and Conclusion

Due to the invasive operation and harmful fluorescein dye of Fluorescein Fundus
Angiography, we proposed an image synthesis method based on disentangled rep-
resentation learning to synthesize mimic FFA images from non-invasive and safe
Fluorescein Fundus images. Considering data acquisition, the proposed method
is designed for unpaired data in unsupervised way. The features of two domains
are disentangled into domain-shared structure features and domain-independent
appearance features. By adversarial learning, two domain discriminators push
generators to synthesize realistic images. To preserve content features during
translation, perceptual loss is applied. Both the quantitative comparison and
qualitative analysis demonstrate that our methods could generate competitive
mimic results with good image quality compared with the state-of-the-art meth-
ods.
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Abstract. [18F]fluorodeoxyglucose (FDG) positron emission tomogra-
phy (PET) aids in the localisation of the epileptogenic zone in patients
with focal epilepsy, especially when magnetic resonance imaging (MRI) is
normal or non-contributory. We propose a two-stage deep learning frame-
work to support the clinical evaluation of patients with focal epilepsy
by identifying candidate regions of hypometabolism in [18F]FDG PET
scans. In the first stage, we train a generative adversarial network (GAN)
to learn the mapping between healthy [18F]FDG PET and T1-weighted
(T1w) MRI data. In the second stage, we synthesise pseudo-normal PET
images from T1w MRI scans of patients with epilepsy to compare to the
real PET scans. Comparing the estimated pseudo-PET images to the true
PET scans in healthy control data, our GAN produced whole-brain mean
absolute errors of 0.053 ± 0.015, outperforming a U-Net (0.058 ± 0.021)
and a high-resolution dilated convolutional neural network (0.060±0.024;
all images scaled 0–1). In a sample of 20 epilepsy patients, we created Z-
statistic images (with thresholding at +2.33) by subtracting the patient’s
true PET scans from their estimated pseudo-normal PET images to iden-
tify regions of hypometabolism. Excellent sensitivity for lobar location of
abnormalities (92.9± 13.1%) was observed for the seven cases with MR-
visible epileptogenic lesions. For the 13 cases with non-contributory MR,
a lower sensitivity of 74.8± 32.3% was observed. Our method performed
better than a statistical parametric mapping analysis. Our results high-
light the potential of deep learning-based pseudo-normal [18F]FDG PET
synthesis to contribute to the management of epilepsy.

Keywords: PET · MRI · Clinical decision support · Epilepsy · GAN
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1 Introduction

The accurate localisation of the epileptogenic zone, i.e. the part of the brain that
initiates the seizure, is a prerequisite to the surgical management of patients with
drug-resistant (i.e. ‘refractory’) focal epilepsy. This can be extremely challeng-
ing, in particular in those with small epileptogenic lesions such as focal cortical
dysplasias (FCDs) which are often overlooked (e.g. 33% in [1]) or impossible
to visualise on conventional magnetic resonance imaging (MRI) scans (e.g. 28%
of patients in [2]). [18F]fluorodeoxyglucose (FDG) positron emission tomogra-
phy (PET) is used clinically to detect focal reductions of glucose metabolism
(hypometabolism) that are characteristic of the epileptogenic zone. Clinical eval-
uation, which relies on subjective visual analysis and is often performed in the
absence of co-registered MRI images, can be challenging and time-consuming
even for experts.

Regarding the identification of subtle FCDs, the majority of work to date has
neglected the high sensitivity of expertly read co-registered PET, whereas the
multi-modal approaches have required time-consuming feature extraction [3].
There are very little data available for research use that have been validated
by post-surgical follow-up, and particularly few true MRI-negative cases. Other
work has focused on mass univariate approaches in comparison to healthy con-
trols with normalisation to a standard brain template [4].

Recently, T1-weighted (T1w) MRI images have been used to synthesise miss-
ing [18F]FDG PET images via 3D convolutional neural networks (CNN) [5], U-
Net networks [6], and cycle-consistent generative adversarial networks (GAN)
[7]. These methods went on to classify patients with Alzheimer’s Disease where
hypometabolism is spatially extensive. Pseudo-PET synthesis has so far not been
applied to the more challenging problem of detecting small lesions in epilepsy.

The current work aims to use a CNN to synthesise pseudo-normal PET scans
from T1w MRIs for the identification of candidate regions of hypometabolism
to complement the visual analysis of PET scans in patients with focal epilepsy.

2 Methods

Our method (Fig. 1) consists of two stages. In stage 1, we train a 3D GAN to learn
the mapping between T1w MRIs and [18F]FDG PET scans in healthy control
data. In stage 2, we use this network to synthesise pseudo-normal [18F]FDG PET
scans in patients with epilepsy, based on the patient’s T1w MRI. We subtract
the patient’s real PET scan from the estimated (i.e. synthesised) pseudo-normal
PET scan in order to locate areas of hypometabolism.

2.1 Stage 1: Network Architecture

The architecture of our 3D patch GAN model (Fig. 1) is based on [8]. The gener-
ator is based on a residual U-Net CNN [9,10], consisting of blocks of two 3×3×3
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Fig. 1. Two stage method for identifying hypometabolism in patients with epilepsy.
Stage 1: 3D patch GAN architecture for estimating pseudo-normal PET from MRI. G:
Generator. D: Discriminator. Stage 2: Identifying hypometabolic clusters in patients.

convolutions, each followed by a batch normalisation [11] and PReLU [12] acti-
vation. It takes a T1w MRI image patch as input. In the encoding path, instead
of max pooling, downsampling is performed using convolutions with a stride of
2. In the decoding path, the upsampled input is concatenated with the output
from the encoding path on the same level. The final convolution in the last layer
uses a sigmoid activation to output the voxel-wise predictions of PET intensities
for the patch. The discriminator consists of five layers of convolution, batch nor-
malisation and PReLU sequences with downsampling using a stride of 2, with
64, 128, 256, 512, and 1 channels each. The input is a pair of real and synthetic
PET image patches and the output is a binary real or fake prediction.

We compare our method to a U-Net with the same architecture as the gen-
erator in [8]. Since U-Net models have been shown to produce smoother output,
we also compare our method to a high-resolution 3D CNN with dilated convo-
lutions [13], which is able to retain high-resolution features across the network
without down- or up-sampling. For the dilated CNN, we use the network archi-
tecture as described in the original work, with the exception of the final layer,
where we replace the softmax with a sigmoid activation.

We use the bias-field corrected T1w MRIs as input and the [18F]FDG PET
scans as output. We evaluate the performance of each network by comparing the
errors between the network output and ground truth PET images.
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2.2 Stage 2: Identification of Hypometabolic Regions

Hypometabolic regions were identified by subtracting each patient’s ground truth
(‘real’) PET scan from the estimated pseudo-normal PET scan, converting the
values to a Z-score (Z = (X − μ) ÷ σ), where X is the difference value at
each voxel, μ is the mean and σ is the standard deviation across the whole
image, and thresholding at Z = 2.33 (equivalent to a p-value of 0.01). This is
similar to the method used in comparing ictal SPECT scans to identify regions
of hyperperfusion for epilepsy localisation [14]. Additionally we applied a cluster
size threshold of 1000 mm3, aligned to typical FCD size [15]. We limited the
calculation of Z-score within a brain mask generated using FSL BET [16], which
was eroded by 3 voxels to give a conservative brain mask.

We compare our method to a mass univariate single subject analysis per-
formed within the statistical parametric mapping (SPM) framework imple-
mented in Matlab using the SPM12 software (fil.ion.ucl.ac.uk/spm). All patient
and healthy control PET images were first normalised to MNI space (23 mm3

spatial resolution). For each patient, a general linear model (GLM) was then
fitted to each voxel, with group as the variable of interest. Post-hoc inference
on the contrast of interest (controls > patient) was done using a standard mass
univariate statistical test resulting in a T-statistic map for each patient. Areas
of hypometabolism were identified as clusters of voxels above an uncorrected
statistical threshold of p < 0.001 with a cluster-forming threshold of 1000 mm3.

3 Experiments and Results

3.1 PET Synthesis from T1 in Healthy Control Data

Materials. Our training data set consisted of 55 healthy control partici-
pants aged between 21 and 78 years (mean age = 49.6± 16.2; 32 female) from
a database of [18F]FDG PET and MRI scans. The images included a 3D T1w
MPRAGE (Siemens MAGNETOM Symphony 1.5T, voxel size = 1 mm3 matrix
size = 160×256×256) and a 15-minute averaged [18F]FDG PET image (GE Dis-
covery ST PET/CT system, voxel size = 0.8 mm3, matrix size = 256× 256× 47,
resampled to 2563). The PET scan was performed after a bolus intravenous injec-
tion of 150 MBq of [18F]FDG and 30-minutes of eyes-closed uptake time. Each
participant’s PET scan was rigidly aligned to their MRI using NiftyReg [17] and
all images were scaled between 0 and 1 and cropped to have a 17 cm cranio-caudal
extent to exclude the neck.

Network Training and Cross-Validation of PET Synthesis. We imple-
mented all three network architectures using the Keras framework with the
TensorFlow backend on an NVIDIA Quadro M4000 GPU with 8 GB of RAM.
Networks were trained on mini-batches of patches each of size 32 × 32× 32. We
used the Adam optimiser with Nesterov momentum [18] and mean squared error
(MSE) as the loss, with weights initialised as in [12]. All networks were trained
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Fig. 2. Examples of synthesised pseudo-normal [18F]FDG PET scans of one healthy
control subject. Top, left to right: real PET, synthesised pseudo-PET using the U-Net,
high-resolution dilated CNN, and our proposed GAN. Bottom, left to right: T1w MRI,
difference maps between synthesised and real PET scans for the U-Net, high-resolution
dilated CNN and our proposed GAN. Positive differences indicate higher intensities in
the synthesised scan.

with an initial learning rate of 0.0002. The residual U-Net was trained on 25000
mini-batches of 24 patches, the high-resolution CNN was trained on 25000 mini-
batches of 8 patches, and the GAN was trained on 10000 mini-batches of 24
patches. We performed a five-fold cross-validation with each fold consisting of
40 training, 4 validation and 11 test cases.

Performance of PET Synthesis Model. We evaluated the performance of
the network by comparing the estimated and ground truth PET images using
two metrics: the mean absolute error (MAE) and the peak signal-to-noise ratio
(PSNR). We compared the MAE and PSNR of PET images synthesised by the
GAN to each of the other two methods using paired t-tests. The proposed 3D

Table 1. Performance of PET synthesis models. Mean absolute error (MAE) and peak
signal-to-noise ratio (PSNR) are given as mean ± SD across the 5-fold cross-validation.

Model MAE PSNR

U-Net 0.058 ± 0.021 22.9 ± 2.6

High-res Net 0.060 ± 0.024 22.8 ± 2.6

GAN 0.053± 0.015 23.2± 2.3
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conditional GAN method had significantly lower MAE and higher PSNR values
(all p < 0.05) compared to each of the other two methods for the 5-fold cross-
validation on healthy controls (Table 1). Examples of synthesised pseudo-PETs
are shown in (Fig. 2).

3.2 Identification of Hypometabolism in Epilepsy Patients

Materials. We studied 20 patients with drug-resistant epilepsy who were
referred for a PET scan as part of their clinical evaluation (age range = 13–
70 years; mean age = 32.4±17.3; 13 female). Data was acquired on a whole-body
GE Discovery 710 PET/CT system and a 3T Siemens Biograph mMR PET-MR
system on the same day. Scans included a 15-minute [18F]FDG PET scan on the
PET/CT system 30 min post-injection, and a 3D T1w MPRAGE scan on the
PET-MR system (acquired in sagittal orientation, 1.1 mm3 voxels, 176×224×256
matrix). MRI scans were bias-field corrected using the N4 algorithm [19] and
resampled to 1 mm3 voxels. Each patient’s PET scan was converted to stan-
dardised uptake values (SUVs) and linearly aligned to their MRI scan using
NiftyReg [17], scaled between 0 and 1, and cropped as above.

All participants provided written informed consent and procedures performed
were in accordance with the ethical standards of the Health Research Author-
ity UK National Research Ethics Service (North East – York Research Ethics
Committee, approval number: 15/NE/0203).

Validation of Method in Epilepsy Patients. The patients’ PET/CT scans
were reported by two Consultant Nuclear Medicine Physicians as part of their
clinical management. In this proof-of-concept study, we only used patient data
where the PET showed abnormalities on visual inspection in order to have
ground truth for comparison. Patients were classified as either MRI-positive
(n = 7, where both MRI and PET showed abnormalities on visual inspection)
or MRI-negative (n = 13, where MRI was normal or non-contributory and PET
showed abnormalities).

We trained the GAN on the full database of healthy controls and synthesised
a pseudo-normal PET image from the T1w MRI scan of each epilepsy patient,
which we compared to the patient’s ground truth PET scan. Sensitivity and
precision were calculated as compared to the physician’s reports. For each cluster
of identified hypometabolism, we counted a true positive (TP) if the cluster
matched the location described in the patient’s clinical PET reading at the
lobar level, a false positive (FP) if the cluster was not reported, and a false
negative (FN) if no cluster was found where the report described a region of
hypometabolism. For each patient, we quantified the sensitivity, or true positive
rate (TP ÷(TP +FN)), and precision, or positive predictive value (TP ÷(TP +
FP )), of the method for detecting hypometabolism.
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Table 2. Performance of our method compared to the SPM analysis for
hypometabolism detection. Sensitivity and Precision are given as percent mean ± SD.
FP and FN refer to False Positive and False Negative clusters respectively.

Method Sensitivity (%) Precision (%) Number of FP Number of FN

All patients (n = 20)

Proposed Method 81.1 ± 28.5 52.2 ± 24.5 3.0 ± 1.6 0.8 ± 1.1

SPM Analysis 41.7 ± 46.0 34.0 ± 36.5 1.6 ± 1.7 1.9 ± 2.2

MRI-positive patients (n = 7)

Proposed Method 92.9 ± 13.1 52.1 ± 11.6 2.6 ± 1.0 0.3 ± 0.5

SPM Analysis 42.9 ± 42.6 52.4 ± 41.3 0.8 ± 0.4 2.6 ± 2.3

MRI-negative patients (n = 13)

Proposed Method 74.8 ± 32.3 50.7 ± 27.5 3.2 ± 1.8 1.1 ± 1.3

SPM Analysis 41.0 ± 48.7 24.0 ± 30.3 2.0 ± 1.9 1.6 ± 2.2

Performance of Method for Hypometabolism Detection. Results for
hypometabolism detection for our proposed method compared to the SPM anal-
ysis are shown in Table 2. In 11 of the 20 cases, we had 100% sensitivity, i.e. we
were able to identify all the regions of hypometabolism found in the physician’s
PET reports. We show two example cases of the clusters of hypometabolism
detected using our method in Fig. 3.

4 Discussion and Conclusion

We present a two-stage framework utilising deep learning applied to the novel
application of detecting hypometabolism in patients with drug-resistant focal
epilepsy. In the first stage, we used a GAN to synthesise pseudo-normal [18F]FDG
PET images from T1w MRI scans. We found that our GAN significantly out-
performed two CNNs, and the MAEs and PSNRs obtained were comparable to
previous PET synthesis studies [5,6]. In the second stage, we subtracted real
patient [18F]FDG PET scans from synthesised pseudo-normal [18F]FDG PET
images in order to detect clusters of significant hypometabolism. Our method
was able to detect hypometabolic regions with high sensitivity in both MRI-
positive (93% sensitivity) and MRI-negative (75% sensitivity) patients.

We compared three networks for PET image synthesis from MRI. The U-Net,
although traditionally used for image segmentation, has been shown to work
well for MRI to PET image synthesis [6], but fails to capture high-resolution
detail and produces blurry images. A CNN which is able to maintain high-
resolution image features across the network, such as the high-resolution dilated
convolutional network, might theoretically work better. However, we found the
two CNNs did not differ significantly in terms of the images produced, and the
GAN outperformed both methods. This might be because the GAN is more
suited to image synthesis. The discriminator loss could potentially pick up on
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Fig. 3. Examples of hypometabolic clusters detected in an MRI-positive (top) and
an MRI-negative (bottom) patient. Left to right: Real [18F]FDG PET scan; synthe-
sised pseudo-normal [18F]FDG PET scan; T1w MRI with clusters of hypometabolism
overlaid; T2-FLAIR MRI. We show the patient’s T2-FLAIR MRI to highlight the
hypometabolism corresponding to the FCD for the MRI-positive case (white arrows).

subtle textural details in a more nuanced way compared to MSE, where the
differences between image patches are averaged across the whole patch and hence
the shape of the predicted image contributes more to the loss value.

Our method exploits the mismatch between an apparently normal [18F]FDG
PET image synthesised from the patient’s largely normal T1w MRI, and the
patient’s actual abnormal [18F]FDG PET scan. It is thus able to provide a
“personalised” pseudo-normal template of the patient’s [18F]FDG PET uptake,
compared to conventional methods (e.g. an SPM-type analysis) where compari-
son is made via a normalised brain template. Here, we were able to show that our
method performs significantly better than a standard SPM analysis. Our method
also generalises well to different MR and PET acquisitions as the network was
trained on healthy control data obtained from a different site and applied to
unseen patient data.

We found higher sensitivity in patients who were MRI-positive than MRI-
negative. This could be due to smaller overall numbers in the MRI-positive
group. The MRI-positive cases in this study were predominantly temporal lobe
lesional cases (5 of 7 cases), and PET is known to be more sensitive than MRI
in lesional than in non-lesional temporal lobe epilepsy cases [20]. This might
explain the larger mismatch between the pseudo-normal and real PET images,
and thus higher sensitivity, in the MRI-positive patients reported here.

While our method does yield roughly 3 false positives per patient, for eight of
the 20 patients these clusters were in spatially plausible regions, either in close
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spatial proximity to the true positive region(s) reported by expert visual analysis,
or in the contralateral lobe which may represent secondarily decreased synaptic
activity in areas that are connected via commissural fibres. Another explanation
may be that less conspicuous abnormalities were not reported. Finally, focal
epilepsy is also increasingly appreciated as a network disorder and abnormalities
distant from the epileptogenic zone are seen on PET and MRI [21].

We envision the method forming the basis of a tool that could highlight
regions of potential clinical significance to the physician, to facilitate compre-
hensive clinical reporting. The clinician reports used in this study consisted of
two initial independent reports, followed by a consensus report after discussion
of any mismatch in the reports. Future work to assess the effectiveness of the
method as a complementary tool could involve a further tertiary review of the
PET images with the help of the clusters obtained from our method, however
this is beyond the scope of the present paper.

We were unable to evaluate the method in the most challenging clinical sub-
population, i.e. MR- and PET-negative patients. This limitation is common as
the “ground truth” in such patients is often impossible to obtain. Post-surgical
follow-up of the cases described herein, as well as validation in a larger patient
population has the potential to build confidence in the method in general. Fur-
ther studies will allow the optimisation of the cluster-forming thresholds through
receiver operating characteristic curves across a range of thresholds.

In conclusion, our results demonstrate that the proposed two-stage approach
yields accurate pseudo-normal PET images and has potential clinical value as
an objective complement to expert visual analyses.
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Abstract. Deep learning approaches have recently been proposed for
breast cancer screening in mammograms. However, the performance of
such deep models is often severely constrained by the limited size of
publicly available mammography datasets and the imbalance of healthy
and abnormal images. In this paper, we propose a blending adversar-
ial learning method to address this issue by regularizing the imbalanced
data with synthetically generated abnormal samples. Unlike most exist-
ing data generation methods that require large-scale training data, our
approach is carefully designed for augmenting small datasets. Specifically,
we train a generative model to simulate the growth of mass on normal
tissue by blending mass patches into healthy breast images. The resulting
synthetic images are exploited as complementary abnormal data to make
the training of deep learning based mass detector more stable and the
resulting model more robust. Experimental results on the commonly used
INbreast dataset demonstrate the effectiveness of the proposed method.

Keywords: Mammogram synthesis · Mass detection · Adversarial
deep learning · Digital mammography

1 Introduction

Breast cancer is among the most common cancers affecting women around the
world. Mammography has been demonstrated to be an effective imaging modal-
ity for early detection and diagnosis, and has contributed to substantial reduc-
tion of mortality due to breast cancer. Over the past few years, computer-aided
detection of breast masses in mammography has attracted much attention from
the medical imaging community [1,3,8,9,15].

Recently, with the prevalent success of deep learning in natural image applica-
tions, there has been keen interest in the medical imaging community to apply
these methods to mammogram screening. However, deep convolutional neural
networks (CNN) based approaches require a large amount of annotated data.
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Fig. 1. Training a detector with small-scale and imbalanced datasets leads to unsat-
isfactory results. Our blending adversarial networks help to increase the scale of the
datasets and address the class imbalance issues for training more robust detector.

The lack of such data has become the main obstacle impeding deep learning
methods from achieving impressive performance for breast cancer screening. In
contrast to the natural image domain, collecting annotated breast mammograms
is very expensive due to the need for expert annotation and oftentimes diffi-
cult or even impossible because of privacy restrictions. In addition to the lack
of large-scale datasets, the natural class imbalance in mammography samples,
where “normal” (or healthy) images significantly outnumber abnormal samples,
further limits the performance of deep CNN based methods for breast cancer
detection, as illustrated in Fig. 1.

A common way to alleviate these issues involves applying a series of trans-
formations such as flipping, rotation or resizing to augment the training images.
However, data augmentation using image transformation is limited in its ability
to expand the manifold the positive samples occupy. More recently, generative
adversarial networks (GANs) [4] have demonstrated the capability to synthesize
realistic images that can be used for data augmentation. For example, Korki-
nof et al. [9] utilized the progressive generative adversarial network to generate
high resolution mammograms. Wu et al. [15] proposed the conditional infilling
GANs to generate lesions on non-malignant patches. One major drawback of
these methods is that they rely on a large amount of data to train the generator,
making them unsuitable for small-scale datasets.

In this paper, we propose blending adversarial networks to address the lim-
itation of small-scale and imbalanced data for mass detection in mammogram.
GANs based methods usually train a generator to synthesize mammograms from
Gaussian distributed random values. This demands the generator to learn the
texture, the shape and the size of the breast and lesion. Learning to synthesize
these features requires inevitably a large-scale training dataset. As opposed to
such a heavy task, we simplify the burden of the generator: we provide both the
real lesion and “normal” image at the input, and train a model to imagine how
this lesion will grow on the normal breast tissue. Since the information about
the lesion and breast are given, the generator can focus on integrating the lesion
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Fig. 2. Overview of the pipeline of the proposed blending adversarial networks. Given a
real “normal” breast image and a lesion patch, the generator aims to blend these images
at the indicated location. The discriminator verifies the quality of the generated data
at patch level forcing the generator to produce highly realistic images.

into healthy breast tissue. By simplifying the task of the generator, we can train
it even with a very small dataset. Therefore, we are able to utilize “normal”
images to artificially generate abnormal mammograms to increase the data size
and alleviate class imbalance. Extensive experiments on widely-used INbreast
dataset [11] demonstrate the effectiveness of the proposed method, where the
mass detector becomes significantly more robust when trained with the comple-
mentary synthetic samples.

2 Methodology

Mathematically, given a set of “normal” images X = {X1, ...,XN} and a set of
lesion patches E = {E1, ..., EM}, our goal is to learn a network to seamlessly
blend the lesions into the “normal” images to form a new set of images containing
lesions Ỹ = {Ỹ1, ..., ỸL}. The proposed blending adversarial networks can be
learned from a small-scale dataset to generate new images. We then include
them as the complementary training samples to train a deep learning based
breast mass detector, making it more robust and effective.

2.1 Blending Adversarial Networks

In Fig. 2, we illustrate the pipeline of our blending adversarial networks, compos-
ing mainly of a generator and a patch discriminator. Unlike the vanilla GANs [4]
which rely on large-scale datasets for training, we incorporate prior knowledge
into the generator input and supervision signals to make the adversarial model
robust to small-scale training data.

Generator: Rather than using a Gaussian distributed vector as input like
vanilla GANs, we carefully design a three-channel input for our generator as
shown in Fig. 2. The first channel corresponds to a “normal” image that provides
contextual information about the overall breast. The second channel consists of
a lesion patch directly pasted into the “normal” image to provide the texture
of the mass. The third channel is a binary mask indicating the location where
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we aim to blend the lesion, as a way to inform the model to pay more atten-
tion to this region. With these strong clues, we purposefully ease the task of
our generative model, such that it can focus on the task of seamless blending
alone. The generator is a fully convolutional network (FCN) that takes these
three channels as input and produces an image with mass. The generator has an
hourglass architecture with an encoder and a decoder. The encoder assimilates
and fuses information associated with the normal breast and lesion patch. The
decoder then expands the encoded information to generate a realistic image. In
order to preserve the prior knowledge, we add the skip connections between the
encoder and decoder layers to facilitate the propagation of prior clues given at
the input.

Patch Discriminator: The generated images from the generator are then fed
into a discriminator whose purpose is to verify the quality of the synthesized
mammogram. In most existing GANs based method the discriminator performs
an image level classification to distinguish real from fake images. However, in
medical imaging, the texture details are crucial and a global classifier could over-
look such information. We therefore propose to explore a patch discriminator [7]
that can focus on the texture details in local image patches. This discriminator
aims to classify whether each N ×N patch in an image is real or fake. If a region
looks fake or lacks texture details, it will result in a large value of loss forcing
the generator to improve the quality. We run this discriminator convolutionally
across the image and average all responses to provide the final output. In our
experiments, we empirically set N = 16.

2.2 Adversarial Seamless Blending Supervision

Given a lesion patch E, a “normal” breast image X and a random position (x, y),
the blending generator G aims to generate an artificial mammogram image Ỹ
that contains the lesion at the position (x, y):

Ỹ = G(X,E, x, y; θg)

where θg corresponds to the parameters of the network that should be optimized.
Since our goal is to incorporate the lesion into a breast image, the network needs
to pay attention to two parts: the region Ω where we want to integrate the lesion,
and the remainder of the image, B, where we want to keep unaltered (Fig. 3).
The network needs to imagine how the lesion should grow according to the
characteristics of the breast tissue inside the target region Ω, while keeping the
background portion B identical. To this end, we propose the adversarial seamless
blending supervision signals to guide the training process.

L = Ladv + λpLprior (1)



56 C. Lin et al.

Adversarial Loss: We aim to generate synthetic images that are indistinguish-
able from real images, in order that the generated mammograms can be used as
training samples. More specifically, we apply the adversarial loss [4] to supervise
the generator and the discriminator in an adversarial manner:

Ladv = EY [log D(Y )] + EX,E [log(1 − D(G(X,E)))] (2)

where the generator G is constrained to produce realistic images to confuse
the discriminator D, while the discriminator D should correctly distinguish real
images Y from generated ones G(X,E). However, the min-max game between
the generator and discriminator is not easy to converge during training, espe-
cially with a small-scale dataset. Therefore, we introduce the additional prior
knowledge loss Lprior = LS + LB to help guide the training process. It is com-
posed of the following two loss functions and balanced with the parameter λp.

Seamless Blending Loss: As the lesions are often of small size in mammo-
grams and the adversarial loss specifies only a high-level goal for the authen-
ticity of the entire image, the generator may generate mammogram without
any lesions. To circumvent this issue, we propose the following loss to make the
generator pay attention to the region Ω where we aim to blend the lesion.

LS = ‖∇G(X,E)Ω − v‖2 (3)

where

for all i, j ∈ Ω, v(i, j) =

{
∇XΩ(i, j) if |∇XΩ(i, j)| > |∇E(i, j)|
∇E(i, j) otherwise

(4)

This supervision signal makes the generator take into account the intensity vari-
ations of both the source lesion E and the normal tissue patch XΩ for seamless
blending. The notation ∇(·) represents the gradient operation.

Background Loss: In order to preserve the background region B of the breast
as given at input, we constrain the generator to output an image that maintains
identical intensity and gradient. We employ both the L1 distance loss and the
gradient difference loss to supervise the generator:

LB =
∥∥(G(X,E) − X)B

∥∥
1

+
∥∥(|∇G(X,E)| − |∇X|)B

∥∥
2

(5)

The subscript B indicates that the supervision operates at the background region
of the breast excluding the location where we aim to incorporate the lesion. We
use L1 distance rather than L2 as the former encourages less blurring [7]. The
gradient loss plays a complementary role to L1 loss and forces the generator to
better preserve the texture variations in background regions.

Note that both the adversarial loss Ladv and the prior loss Lprior should be
used together to ensure the quality of synthetic images. Without the adversarial
loss, the generated images may lack the texture details and appear fake. Without
the prior loss, the generator will not be able to perform the seamless blending.
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Fig. 3. Different regions on the image
where the loss functions are applied.
The background loss affects the back-
ground regions, the seamless blending
loss focuses on the mass, and the adver-
sarial loss controls the quality of the
whole image.

Fig. 4. FROC curves comparing the
detection performance of detectors
trained with original data and comple-
mentary data generated by PIE, adv.
w/o prior knowledge of mass and our
blend. adv. methods, respectively.

2.3 Mass Localization

As training a detection model requires a large-amount of data, most existing
deep learning based methods for breast cancer diagnosis using mammograms
are limited to image-level classification [2,14,16]. In this paper, we adjust the
state-of-the-art object detection framework, Mask R-CNN [5], for mass detection
in mammography and improve the detection performance with our generated
data. Note that recently more and more deep detector based methods have been
proposed for mass detection, but they require large training datasets. Given an
input mammogram, the proposed model aims to detect the lesion with both
bounding boxes and segmentation masks. In addition to the classification loss
and bounding box regression loss, we supervise the network with the segmenta-
tion loss to exploit pixel-wise information. The multi-task loss for each region of
interest (RoI) is defined as:

Ldet = Lcls + λlocLloc + λsegLseg (6)

where Lcls is the classification loss, Lloc corresponds to the bounding box regres-
sion loss, and Lseg is the segmentation loss. λloc and λseg are weighting factors
for different components of the loss function.

3 Experiments and Results

Database: We conducted our experiments on the widely used digital mam-
mography dataset INbreaset [11]. This dataset comprises of a set of 115 cases
containing 410 images, where 116 images contain benign or malignant masses.
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Table 1. Comparison of detection performance with state-of-the-art methods in terms
of true positive rate (TPR) versus false positive per image (FPPI) on INbreast dataset.

Method TPR@FPPI Run-time

Kozegar et al. [10] 0.65@1.1, 0.87@3.67 108 s

Dhungel et al. [1] 0.87 ± 0.14@0.8, 0.96 ± 0.03@1.2 20 s

Dhungel et al. [3] 0.90 ± 0.02@1.3, 0.95 ± 0.02@5.0 39 s

Jung et al. [8] 0.88 ± 0.07@0.5, 0.91 ± 0.07@1.3 1.8 s

Ours-Blend. Adv 0.91 ± 0.07@0.5, 0.94 ± 0.07@0.8 0.5 s

Fig. 5. Visualization of the images generated by (a) our blending adversarial networks,
(b) Poisson image editing method, (c) adversarial model without mass prior knowledge
and (d) vanilla GANs, respectively. The arrows indicate the position of the masses.

While INbreast is among the highest quality public mammography dataset with
accurate annotations, there are only a limited number of images. We computed
the results using a 5-fold cross validation experiment by carefully dividing the
115 cases into 80% for training and 20% for testing at the patient-level to avoid
any positive bias.

Implementation Details: We adopted U-Net [13] as the backbone for our
generator and a series of four convolutional layers for our patch discriminator.
For our mass detector, we employed ResNet50 [6] as backbone and initialized
the parameters with COCO pretrained model. To facilitate better convergence,
the training process consists of three steps: (1) only the top layers are learned
for the first 30 epochs, (2) all layers from stage 4 of ResNet are fine-tuned for
30 epochs, and (3) we optimize all layers for 40 epochs.

In order to test the ability of the model to localize lesions, we evaluate the
predictions using the Free-Response Operating Characteristic curve (FROC).
The FROC curve depicts the true positive rate as a function of the number of
false positives per image (FPPI). A mass is considered to be correctly localized
if the intersection over union (IoU) ratio between the ground truth bounding
box and the predicted bounding box is higher than 0.5.
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Results and Analysis: To evaluate how well the generated images can enhance
the mass detector performance, we trained a few variants of the detector, using
either the original data, or the original data plus one of three types of generated
complementary data: (1) using conventional Poisson Image Editing (PIE) blend-
ing method [12]; (2) using an adversarial network without prior information of
mass; and (3) using our blending adversarial networks. For each case, we gen-
erate 200 complementary data, making the training data approximately three
times larger than original data set. For generating a mammogram with lesion,
we randomly select a region in a “normal” breast mammogram and a real lesion
as input for our generator. Note that we randomly resize and rotate the input
lesion to augment the data.

The FROC curves in Fig. 4 depict the performance of the model trained with
different sets of data. We can see that the detector trained with the additional
data generated by our blending adversarial networks performs significantly better
than the detector trained only with the original data. We observe an improve-
ment of ∼ 10% on the true positive rate for the same number of false positives per
image, clearly demonstrating the effectiveness of the proposed method. Using the
data generated by our blending adversarial networks as complementary training
data makes the detector more robust due to expanded sample space of the train-
ing data. Some examples of the images generated by our blending adversarial
networks are shown in Fig. 5(a).

On the other hand, we observe a degradation of performance when the detec-
tor is trained with the additional data generated by the conventional Poisson
Image Editing method [12]. These results suggest that naively increasing the
number of training images may potentially lead to adverse effects. The adver-
sarial learning process guides our generator to approximate the underlying dis-
tribution of the authentic data. In contrast, the conventional image processing
methods are unable to control the quality of the generated sample. As illus-
trated in Fig. 5(b), the lesions are often invisible in images synthesized with
the PIE approach. This “over-blending” effect tends to mislead the detector.
Furthermore, prior knowledge is crucial for learning a data generative model
with a small-scale dataset. Figure 5(c) shows that without the prior knowledge
of mass, i.e. replacing the real lesion patch with random noise at the input to
the generator, the generated images lack fine texture details inside the mass
region. Additionally, as shown in Fig. 5(d), the vanilla GANs (generating both
breast and lesion from noise input) fail for dataset of this size and is only able
to generate a mean shape of the breast with severe visual artifacts.

We compare the performance of our detector with several mass detection
methods in the literature [1,8,10], and tabulate the results in Table 1. We follow
the evaluation metrics as in previous works by giving the true positive rate
at some acceptable false positive per image rates (TPR@FPPI). Our detector
correctly localizes 91% of masses with a FPPI rate as of 0.50, while the existing
mass detection approaches achieve similar true positive rates only with much
larger number of false alarms. The run-time efficiency of the detector is also a
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key criterion for users. Without any cascaded structures or post refinement, our
detector can execute at significantly higher speed of 0.5 s per image.

4 Conclusion

In this paper, we proposed blending adversarial networks to help address the
issue of class imbalance and data scarcity in mammography. We made full use
of the existing “normal” images to generate breast mammograms with synthetic
masses that could be used as positive samples for training deep learning based
mass detector. As testament to the effectiveness of the proposed method, exten-
sive experiments on the widely-used INbreast dataset demonstrated significant
improvement of the detection performance.
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Abstract. Synthetic CT image with artificially generated lung nodules
has been shown to be useful as an augmentation method for certain tasks
such as lung segmentation and nodule classification. Most conventional
methods are designed as “inpainting” tasks by removing a region from
background image and synthesizing the foreground nodule. To ensure
natural blending with the background, existing method proposed loss
function and separate shape/appearance generation. However, spatial
discontinuity is still unavoidable for certain cases. Meanwhile, there is
often little control over semantic features regarding the nodule charac-
teristics, which may limit their capability of fine-grained augmentation
in balancing the original data. In this work, we address these two chal-
lenges by developing a 3D multi-conditional generative adversarial net-
work (GAN) that is conditioned on both background image and semantic
features for lung nodule synthesis on CT image. Instead of removing part
of the input image, we use a fusion block to blend object and background,
ensuring more realistic appearance. Multiple discriminator scenarios are
considered, and three outputs of image, segmentation, and feature are
used to guide the synthesis process towards semantic feature control. We
trained our method on public dataset, and showed promising results as
a solution for tunable lung nodule synthesis.

1 Introduction

Among the three major factors enabling the success of deep learning - data,
algorithm, and computation power, data covering sufficient population distribu-
tion is often most critical and most difficult to achieve. This is especially true
for medical image domain, in which labeled data availability is limited by its
unique characteristics: (1) medical images often involves high cost to produce,
and sensitivity in sharing; (2) pathological cases can have large variability in
appearances, and are often unbalanced/long tail in distribution; (3) accurate
labeling of the data requires high professional expertise, and can nevertheless
have large inter- and intra- observer variability even among experts.

Therefore, current work in medical domain mostly relies on using labeled
large public datasets [1], automated and/or semi-automated methods [5], and
c© Springer Nature Switzerland AG 2019
N. Burgos et al. (Eds.): SASHIMI 2019, LNCS 11827, pp. 62–70, 2019.
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existing clinical report mining [12]. Recently, the development of generative
adversarial networks (GAN) [2] has enabled a promising way in data augmen-
tation: generate realistic synthetic data for training purpose. Preliminary works
along this direction has demonstrated the potential of such approach in lung
segmentation [6], brain tumor segmentation [11] and lung nodule classification
[13].

Although shown to be promising, current GAN-based methods generate syn-
thetic images based on limited information such as segmentation [8] and sur-
rounding images [6]. Few recent works investigated finer control over the synthe-
sis process, for example, controlling the malignancy property of the generated
lung nodules [13]. However, to our best knowledge, there is no prior work that
has the capability of controlling the semantic features of the synthesized nodules.

Meanwhile, most of previous methods model the synthesis process as an
“inpainting” problem, in which a portion of the background image is removed
before inpainting the synthesized nodule. One shortcoming of such model is that
the fusion between synthetic region and background image may not be natural.
To address this challenge, previous work used multi-mask reconstruction loss
[6], or decoupled mask-appearance generation [8]. However, since the original
information is lost in the background image input, it is difficult to recover the
spatial continuity, even with the proposed methods.

In this work, we develop a 3D multi-conditional GAN model learning the
shape and appearance distributions of lung nodules related to semantic features
in 3D space. We aim to generate not only realistic but also tunable nodules
according to its semantic features. Hence, our GAN is conditioned on both sur-
rounding background information and a controllable feature set. In order to
ensure a natural fusion with background image, we use two outputs of image
and its corresponding nodule mask to reinforce the blending of the two, rather
than erasing the region from base image. Multiple generator and discriminator
losses are used to guide the network towards controlling the semantic feature
inputs. We apply our strategy to public lung nodule dataset of LIDC [1], where
each nodule is linked with a series of semantic annotations describing its appear-
ances.

This work’s main contributions are: (1) we synthesize 3D lung nodules and
control its properties by using a 3D multi-conditional GAN with both sur-
rounding images and semantic features; (2) instead of inpainting, we address
the object/background fusion by multi-output and fusion block within network
design; (3) both feature learning and fusion learning are performed by designing
their corresponding outputs and losses during network training.

2 Method

To address the challenges of (1) incorporating semantic features, and (2)
object/background fusion, inspired by works for 2D natural image synthesis
[7,10], we design our network as a 3D multi-conditional GAN with style speci-
fication by additional regression branch. The generator takes in two conditions
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of background image and semantic feature, and produces three outputs of syn-
thetic image, nodule mask, and predicted feature. The object/background fusion
is performed with fusion blocks at each resolution level. The inter-relationships
among background, semantic feature, and target nodule are controlled via multi-
ple losses from generator and discriminator. Figures 1 and 2 depicts an overview
of our method. Below, we outline the GAN architecture, loss function design, and
training strategy for learning appearance together with the semantic features.

2.1 GAN Architecture

Figure 1 illustrates the structure of the proposed generator. Background image
is encoded via a series of convolutional layers with three resolution levels, each
downsampling doubles the feature channel. The semantic features are trans-
formed via a fully connected layer and reshaped to bottleneck image size. The
blending of object (nodule) and background image is performed via fusion block.

Fig. 1. Proposed generator of the 3D multi-conditional GAN for tunable nodule synthe-
sis. Generator utilizes both background image and semantic feature code to synthesize
image, nodule segmentation, and also a regression branch for feature code prediction.

As shown in Fig. 2, following [10], the fusion block is designed so that half
of the object code is used to control the “soft” merging of the two feature sets
in order to produce the synthetic image and its corresponding segmentation
mask. Such fusion is enforced by the prediction of segmentation mask as an
auxiliary output during training. As compared with “inpainiting”, this strategy
performs better in natural blending of the object/background. Also, the mask
output is potentially helpful for data augmentation in tasks such as detection
and segmentation.
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Fig. 2. Fusion block and discriminator of the 3D multi-conditional GAN. Left: fusion
block at each resolution layer helps to fuse the information from background with that
from previous layer. Right: with image, segmentation, and feature code, discriminator
distinguishes three types of real/fake scenarios (Sect. 2.2).

To address the challenge of semantic feature specification, in addition to
discriminator pairing, we added a regression branch (Fig. 1) beyond synthetic
image and mask generation. Specifically, a encoding block is added to the output
layer of the generator followed by fully connected layer to predict the vector of
semantic features from the synthesized feature map. Furthermore, to control the
size of the generated nodule, a loss is computed from the size of mask prediction
in comparison with that of the ground truth segmentation of training data.

Figure 3 shows a result example for the proposed GAN from three views.
The second column is the weighting mask from the last fusion block. It can be
observed that the nodule and background are naturally separated and fused with
the proposed fusion block and network.

2.2 Loss Functions and Training Strategy

The proposed GAN synthesize nodule with segmentation according to semantic
feature vector. In order to guide the training process, several losses are proposed
to supervise different aspects of the network.

The discriminator is illustrated in Fig. 2. The input to the discriminator is
a tuple of image-segmentation-semantic feature code. Two encoders are utilized
to encode: (1) image for discriminator DI , and (2) image-segmentation pairs
for discriminator DIS . The second encoder’s output is further combined with
feature code f and further encoded via convolution, batch normalization, and
leaky ReLU activation layers for discriminator DISG. Discriminators are trained
with least squares loss functions [9]. Given image x, matched semantic feature
code f , and matched segmentation mask m, tuples to be discriminated against it
include cases containing mismatched feature code f̄ , mismatched segmentation
mask m̄, synthetic image Gx, and synthetic mask Gm. Let pd and pG denote
the distributions of real and synthetic data, we have x, f,m, f̄ , m̄ ∼ pd and
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Fig. 3. Example of results produced by proposed synthesis GAN from three views:
left to right - background image, background weight image during fusion, synthesized
nodule image, and output segmentation mask.

Gx, Gm ∼ pG. With different combinations, we have

LDI
= E[(DI(x) − 1)2] + E[DI(Gx)2]

LDIS
= E[(DIS(x,m) − 1)2] + E[DIS(x, m̄)2] + E[DIS(Gx, Gm)2]

LDISG
= E[(DISG(x,m, f) − 1)2] + E[DISG(x, m̄, f)2]

+ E[DISG(x,m, f̄)2] + E[DISG(Gx, Gm, f)2]

For training the generator, in addition to discriminator loss, we further rein-
forced background reconstruction, semantic feature prediction, and size control
with their corresponding losses. Let GM̄ be a morphological eroded version of
segmentation mask Gm’s inverse (i.e. background region), � denote element-wise
multiplication. The background reconstruction loss LGBG

is formulated as the
L1 loss over background between synthetic image Gx and base image x. The
semantic feature prediction loss LGF

and size loss LGS
are formulated as the L2

loss between predictions Gf , Gs and ground truth f, s, where Gs =
∑

(Gm > 0)
and s =

∑
(m > 0)

LGBG
= E[‖Gx � GM̄ − x � GM̄‖1]

LGF
= E[‖Gf − f‖2]

LGS
= E[‖Gs − s‖2]

With all the proposed losses, the generator loss is

LG = E[(DI(Gx) − 1)2] + E[(DIS(Gx, Gm) − 1)2]

+ E[(DISG(Gx, Gm, g) − 1)2] + λ1LGBG
+ λ2LGF

+ λ3LGS

3 Experiment and Result

We evaluate the proposed method using the publicly available LIDC dataset [1].
This dataset contains 1018 chest CT scans of patients with lung nodules. There
are 9 semantic features for each nodule: subtlety, internal structure, calcification,
sphericity, margin, lobulation, spiculation, texture, and malignancy. Addition-
ally, we can calculate the volume V of each nodule’s manual segmentation, and
estimate its diameter using sphere model d = 3

√
6V/π. For this work, we select

a subset of all nodules with approximate diameter between 3 mm and 30 mm
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following clinical standard of micro-nodule (<3 mm) and mass (>30 mm) [3].
In total there are 5942 semantic records from 826 patients. Note that multiple
records can be related to the same nodule, as a single nodule can be annotated
by several experts. Therefore, the annotation inherently contains certain amount
of variability/noise. A 60 × 60 × 60 mm3 volume-of-interest (VOI) centered at
each nodule is first cropped from the original image, then resampled to a fixed
size of 64 × 64 × 64.

To generate background image, we first: (1) segment the lung region of each
CT volume using [4] from the whole CT volume; (2) make binary union of all
manual nodule segmentations; and (3) exclude the nodule mask from lung mask.
Hence there will be no nodule presence within the resulting mask after step (3),
so that “painting nodule over existing nodule” can be avoided. Next, distance
transform is computed from this mask, and centers for 3D background VOI
patches are selected at a random location 5 to 25 mm from the mask boundary.
The VOIs of the same size as nodule cases are cropped and resized to a fixed
size of 64 × 64 × 64.

The aim of our proposed method is to (1) generate realistic nodules and nat-
ural blending with the specified background, and (2) control the nodule appear-
ance with semantic features.

Figure 4 shows the performance of image synthesis with multi-conditional
GAN. As shown in the image, based on random nodule-free background B, the
proposed method generates realistic images D, which reflects the semantic fea-
tures as the reference training samples A (clear/fuzzy boundary, solid/ground-
glass, etc.). As comparison, we implemented a 3D version of baseline [10],
although it also have feature vector matching during discriminator phase, it failed
to achieve same level of semantic feature control without the help of regression
branch.

Fig. 4. Result of nodule synthesis, A: 4 different training image, B: random nodule-free
background image, C: synthetic image generated by 3D version of baseline method [10],
and D: synthetic images generated by the proposed method. Note that A, C, and D
shared the same semantic features.

Figure 5 shows the synthesis result using the same background image with
various semantic features and sizes. Two sets of examples are given under three
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views, and one additional result on changing size only is presented with one view
(last row). As shown in the image, the proposed method has the capability of gen-
erating various nodules from a background image under different configurations
of semantic features and sizes. From the result, we can observe some distortion
of the background image, especially for the ground-glass, heterogeneous case of
the last column due to its challenging nature. Last row shows the change with
small to large size parameters. We observe that although the size changed as
expected, they are not very accurate with regard to the real “expected” size (as
input parameter). Therefore, potential improvements and future work include
the investigation into annotation uncertainty/correlation among semantic fea-
tures, better network structure design for higher quality image and more accu-
rate control, and application to other tasks as data augmentation.

Fig. 5. Two sets of results of nodule synthesis based on the same background image
under different semantic features and sizes, three views are provided. First column
is the background image, and the following columns are synthetic cases, each column
using a semantic feature/size combination. Last row showed an experiment of changing
size parameter only.
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4 Conclusion

We use a multi-conditional GAN, coupled with fusion structure, multiple out-
puts, and loss functions, to effectively generate realistic nodules with control
over appearance by semantic features and size. Without erasing any portion of
condition image, the proposed method achieves realistic nodule generation and
smooth background fusion. The tunable size and semantic features ensures fur-
ther diversified and targeted data augmentation. Current results showed promis-
ing diversity, however, more vigorous study is needed to verify their actual “con-
trollability” over the image generation. As such, our approach can provide a
potentially effective means for nodule image sample generation.
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Abstract. Skin lesion segmentation is a vital task in skin cancer diag-
nosis and further treatment. Although deep learning based approaches
have significantly improved the segmentation accuracy, these algorithms
are still reliant on having a large enough dataset in order to achieve ade-
quate results. Inspired by the immense success of generative adversarial
networks (GANs), we propose a GAN-based augmentation of the original
dataset in order to improve the segmentation performance. In particu-
lar, we use the segmentation masks available in the training dataset to
train the Mask2Lesion model, and use the model to generate new lesion
images given any arbitrary mask, which are then used to augment the
original training dataset. We test Mask2Lesion augmentation on the ISBI
ISIC 2017 Skin Lesion Segmentation Challenge dataset and achieve an
improvement of 5.17% in the mean Dice score as compared to a model
trained with only classical data augmentation techniques.

Keywords: Skin lesion · Generative adversarial networks · Image
segmentation

1 Introduction

Melanoma, a type of skin cancer, although represents a small fraction of all
skin cancers in the USA, accounts for over 75% of all skin cancer related fatali-
ties [21], and is responsible for over 10,000 deaths annually across the country [1].
However, studies have shown that the survival rates of patients improve drasti-
cally with early diagnosis. Efficient assessment of dermoscopic images for indi-
cators of melanoma is an important component of early diagnosis and improved
patient prognosis. Automated methods to extract image features indicative of
skin lesions are promising tools for dermatologists. Based on core methods such
as the 7-point checklist [15], the ABCD (Asymmetry, Border, Color, and Differ-
ential structure) rule [18], and the CASH (Color, Architecture, Symmetry, and
Homogeneity) algorithm [11], deep learning methods can aid the diagnosis of skin
lesion images. However, these methods use hand-crafted features, and therefore
rely on an accurate segmentation of the lesion [2]. Moreover, lesion segmenta-
tions have been used to assist melanoma diagnosis [12,23,26]. This motivates
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the use of deep learning based computer-aided diagnosis systems to improve the
accuracy and sensitivity of melanoma detection methods.

Recent works on skin lesion segmentation using deep learning have shown
significant improvements in segmentation accuracy. Yuan et al. [28] used a 19-
layer deep fully convolutional network with a Jaccard distance based loss function
that is trained end-to-end to segment skin lesions. Mirikharaji et al. [17] proposed
a deep auto-context architecture to use image appearance information along
with the contextual information to improve segmentation results. Yu et al. [27]
proposed using a deep residual network architecture with several blocks stacked
together to improve the representative capability of the network and therefore
increased the segmentation accuracy.

Generative adversarial networks (GANs), proposed by Goodfellow et al. [9]
have been immensely popular in realistic image generation tasks. Numerous vari-
ations of these generative models have been developed for a variety of applica-
tions, including text to image synthesis and video generation [20,24]. GANs
have also been used to generate medical images of various modalities, such as
generating liver lesion images to augment the CT lesion classification training
dataset [8], generating chest X-ray images to augment the dataset for abnormal-
ity detection [16], and generating brain CT images from corresponding brain MR
images [25]. Some skin lesion synthesis tasks have also relied upon GAN-based
approaches, such as generating images of benign and malignant skin lesions [3],
modeling skin lesions using semantic label maps and superpixels in order to
generate new lesion images [6], and generating skin lesions along with their cor-
responding segmentation masks [19].

In this work, we propose to use lesion masks to generate synthetic lesion
images in order to augment the segmentation training dataset and improve skin
lesion segmentation performance. Isola et al. [13] and Zhu et al. [30] have shown
that it is possible to generate high resolution realistic images from object bound-
aries. An inherent advantage of using lesion masks to generate skin lesion images
is that the newly generated images can be used for training the segmentation
network without requiring annotation. To the best of our knowledge, this is the
first work towards generating skin lesion images from lesion masks.

The paper is structured as follows: we discuss the proposed approach in
Sect. 2, describe the dataset and experimental details in Sect. 3, and analyze the
quantitative and qualitative results of our proposed approach in Sect. 4. Section 5
concludes the paper.

2 Method

2.1 Method Overview

The purpose of our method is to synthesize segmentation training data which is
then used to augment the existing data for training a segmentation network. We
model this as an image-to-image translation task where we train a deep neural
network model, called Mask2Lesion, to generate the synthetic data. In particular,
we translate images containing binary segmentation masks, which highlight the
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area of a target skin lesion, to a skin image containing a lesion confined to that
binary mask, making it a paired image-to-image translation task. To this end,
we train a network with skin lesion images and their corresponding masks. Such
training data is also typically provided for training segmentation methods. Our
deep network is based on the pix2pix conditional generative adversarial network
(GAN), described in Sect. 2.3. With the ability to translate a binary mask to a
corresponding image containing a lesion delineated by the mask, we can then
turn our attention to creating synthesized masks (via different approaches), and
rely on our trained Mask2Lesion model to generate the corresponding images.
Given a training dataset of images and segmentation masks, with or without
augmentation (performed using Mask2Lesion or otherwise), we can then train
a segmentation network. The segmentation network used here is described in
Sect. 3.

2.2 Segmentation Masks

We propose to use lesion segmentation masks as input to the generative algo-
rithm, making it easy to produce a large number of inputs. Since the ISIC 2017
Skin Lesion Segmentation Challenge dataset [7] used for the segmentation task
has ground truth segmentation masks available, they can be used as inputs to
the generative algorithm to synthesize skin lesions, thus creating new pairs of
lesion images and their masks. Figure 1 shows four sample lesion images with
their corresponding segmentation masks.

Fig. 1. A few sample images from the ISIC training dataset along with the corre-
sponding segmentation masks. Note the presence of artifacts in some of the images.

2.3 Image-to-Image Translation Network

The paired image-to-image translation model proposed by Isola et al. [13] uses
a conditional GAN to generate images. Unlike traditional GANs which learn
a mapping from a random noise vector to an output image, conditional GANs
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learn a mapping from an observed image x and a random noise vector z to an
output image y. The two components of a conditional GAN are a generator
and a discriminator. The generator G is trained to produce output images, G :
{x, z} → y which are “realistic”, meaning they cannot be distinguished from the
original images. The discriminator D tries to distinguish between the original
images and the output of the generator G. The two components can be estimated
using deep neural networks. This conditional GAN is trained in an adversarial
manner, and the objective function can be written as

LcGAN (G,D) = Ex,y [log D(x, y)] + Ex,z [log (1 − D(x,G(x, z)))] , (1)

where the generator G tries to minimize this objective function and the dis-
criminator D tries to maximize it. The optimal solution is obtained using this
minimax game

G* = arg min
G

arg max
D

LcGAN (G,D). (2)

This is different from an unconditional GAN where the discriminator D does
not observe the input image x.

Generator Architecture: Since the output of the generator shares the under-
lying structure with the input, an encoder decoder architecture with skip con-
nections has been chosen as the generator. We use U-Net [22] with an L1 loss
because, in its attempt to fool the discriminator, L2 loss tends to produce more
blurry generator outputs. The U-Net has a fully convolutional neural network
architecture consisting of two paths - a contracting path and a symmetric expan-
sive path. Skip-connections containing feature maps from the contracting path to
the symmetrically corresponding layer’s upsampled feature maps in the expand-
ing path assist recovery of the full spatial resolution at the network output [14].

Discriminator Architecture: While using the L1 loss for the generator
ensures that the low frequency details are accurately captured, it is also impor-
tant to model the high-frequency structure of the image. This is achieved by using
a PatchGAN [13], a discriminator architecture which penalizes structure at local
image patch level. As a result, the image is divided into several (overlapping)
patches, each of which is labeled by the discriminator as “real” or “fake”, and
the overall output of the discriminator is the average of the individual responses.
Fig. 2 shows a high level overview of the Mask2Lesion algorithm.

3 Data and Experimental Details

The dataset used for evaluation of the proposed approach was obtained from
the 2017 ISBI ISIC Skin Lesion Analysis Towards Melanoma Detection: Lesion
Segmentation Challenge [7], and contains 2000 training images and 150 test
images. All the images and their corresponding ground truth segmentation masks
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Fig. 2. The proposed Mask2Lesion algorithm.

were resized to 128 × 128 pixels using nearest neighbor interpolation from the
SciPy library.

The Mask2Lesion model was trained for 200 epochs. For both the generator
and the discriminator, all convolution operations used 4×4 spatial filters with a
stride of 2. Each convolution layer (except the first) consists of convolution, batch
normalization, dropout (with a keep probability of 0.5), and ReLU activation.
The encoder (the contracting path of the U-Net) uses leaky ReLUs with a slope
of 0.2, while the decoder (the expansive path) uses ReLUs. For the PatchGAN,
a 70 × 70 patch is processed from the input image, which assigns a score to a
30 × 30 patch of the image.

As the goal of this work is to demonstrate the efficacy of the proposed
Mask2Lesion model in augmenting the dataset for segmentation, we use U-
Net [22] as a baseline segmentation network, and optimize it with mini-batch
stochastic gradient descent with a batch size of 32. In order to evaluate the seg-
mentation performance with and without GAN based augmentation, we train
and evaluate four segmentation networks, and we use the following abbreviations
to denote them while reporting results: (i) NoAug: trained on only the orig-
inal training dataset without any augmentation, (ii) ClassicAug: trained on
the original training dataset augmented with classical augmentation techniques
(rotation, flipping, etc.), (iii) Mask2LesionAug: trained on the original train-
ing dataset augmented with Mask2Lesion outputs on masks from the training
dataset, and (iv) AllAug: trained on the original dataset augmented with clas-
sical augmentation as well as Mask2Lesion outputs on masks from the training
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Fig. 3. (a) Segmentation masks from the ISIC dataset fed to Mask2Lesion and the
corresponding generated lesion images. (b) Simple geometric shapes as masks and the
corresponding outputs. (c) Elastic deformations applied to hand drawn masks using
DeformIt and the corresponding synthesized lesion images. (d), (e) PCA-based defor-
mations applied to segmentation masks and the corresponding Mask2Lesion outputs.

dataset. For all the segmentation networks, we report the metrics used in the
challenge [7] - Dice coefficient, sensitivity, specificity, and pixel-wise accuracy.

4 Results and Discussion

We use the segmentation masks from the ISIC dataset as inputs to the Mask2Les-
ion model, and the corresponding generated lesion images are shown in Fig. 3(a).
We see that the synthesized lesions express variance in appearances and textures.

Next, we test Mask2Lesion by using simple geometric shapes as masks,
showing that synthesized images are well constrained by the mask boundaries
(Fig. 3(b)). We also test the adaptability of Mask2Lesion to hand-drawn masks.
We draw two shapes - a large blob and a star shape, and then apply varying
degrees of elastic deformations to them using DeformIt [10]. These masks are
then used as inputs to the Mask2Lesion model and the corresponding outputs
are shown in Fig. 3(c). Furthermore, we apply deformations using a PCA-based
shape model to segmentation masks. In particular, we generate new masks by
weighting the first and the third principal components in the range [−1, 1] in
order to incorporate size and orientation changes (Fig. 3(d) and (e) respectively),
and use these to generate lesion images. We note that the goal for testing on geo-
metric shapes, hand-drawn masks, and masks deformed using PCA-based shape
modeling is to showcase our method’s ability to generate skin lesion images con-
fined to the user-specified input masks, regardless of their complexity.

Table 1 shows the quantitative results for the test images evaluated using
the four trained segmentation networks. We see that Mask2LesionAug out-
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performs ClassicAug in Dice coefficient, sensitivity, and specificity. Moreover,
AllAug (which combines both classical as well as Mask2Lesion-based augmenta-
tion) outperforms ClassicAug in all four metrics, and achieves a 5.17% improve-
ment in the mean Dice coefficient. Figure 4 shows samples from the test dataset
for which the segmentation accuracy significantly improved with AllAug. The
outputs of AllAug are much more closer to the respective ground truths and
have fewer false positives as compared to ClassicAug. Moreover, the segmenta-
tion performance is within a small margin of the top 3 entries on the challenge
leaderboard [4,5,29] without using any pre-processing, post-processing or an
ensemble of models [4,29] or additional external data [5].

Fig. 4. Improved segmentation accuracy with AllAug. The first row shows the test
image samples, the second row shows the segmentation ground truths and the third
and the fourth rows show the segmentations obtained from the ClassicAug and AllAug
respectively.

To further capture the segmentation performance improvement, we plot the
Gaussian kernel density estimates of the Dice coefficient, the sensitivity, and the
specificity obtained for the test images for the ClassicAug and AllAug (Fig. 5).
The plots have been clipped to the range of values of the respective metrics and
represent their probability density function estimates. The plots show higher
peaks (which correspond to higher densities) at larger values of all the three
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Table 1. Quantitative results for segmentation (Mean ± standard error)

Method NoAug ClassicAug Mask2LesionAug AllAug

Aug. Classical ✗ ✓ ✗ ✓

Method Mask2Lesion ✗ ✗ ✓ ✓

Dice 0.7723 ± 0.0185 0.7743 ± 0.0203 0.7849 ± 0.0160 0.8144 ± 0.0160

Accuracy 0.9316 ± 0.0089 0.9321 ± 0.0086 0.9311 ± 0.0087 0.9375 ± 0.0091

Sensitivity 0.7798 ± 0.0211 0.8094 ± 0.0222 0.8197 ± 0.0186 0.8197 ± 0.0182

Specificity 0.9744 ± 0.0035 0.9672 ± 0.0047 0.9698 ± 0.0045 0.9762 ± 0.0038

metrics for AllAug as compared to ClassicAug. Moreover, the range of the speci-
ficity of AllAug is smaller than that of ClassicAug, meaning that combining
classical augmentation with Mask2Lesion-based augmentation results in fewer
mislabeled pixels.

Fig. 5. Evaluating the proposed method - comparing Dice coefficient (left), sensitivity
(middle), and specificity (right) for ClassicAug and AllAug.

5 Conclusion

In this work, we proposed Mask2Lesion, a conditional GAN-based model to
generate skin lesion images from and constrained to binary masks, and used
these newly generated images along with their corresponding masks to aug-
ment the training dataset for improving the segmentation accuracy of skin lesion
images. In particular, we used the segmentation masks from the original dataset
as input to the generative algorithm so as to avoid the manual annotation of
the newly synthesized skin lesion images. We demonstrated that the generated
lesion images are well-confined within the input mask boundaries, irrespective
of the complexity of the masks. Our results showed a significant improvement in
the segmentation accuracy when the training dataset for the segmentation net-
work is augmented with these generated images. Future work directions include
extending this model to generate skin lesion images with dermoscopic features
as well as generating diagnosis label specific skin lesions.
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Abstract. The lack of labeled training data is one of the major chal-
lenges in the era of big data and deep learning. Especially for large and
complex images, the acquisition of expert annotations becomes infeasi-
ble and although many microscopy images contain repetitive and regular
structures, manual annotation effort remains expensive. To this end, we
propose an approach to obtain image slices and corresponding annota-
tions for confocal microscopy images showing fluorescently labeled cell
membranes in an automated and unsupervised manner. Due to their reg-
ular structure, cell membrane positions are modeled in silico and respec-
tive raw images are synthesized by generative deep learning approaches.
The resulting synthesized data set is validated based on the authenticity
of generated images and the utilizability for training an existing deep
learning segmentation approach. We show, that segmentation accuracy
nearly reaches state-of-the-art performance for fluorescently labeled cell
membranes in A.thaliana, without the expense of manual labeling.

Keywords: Cell membranes · Synthesis · Microscopy ·
Annotation-free

1 Introduction

In developmental biology, a large variety of cellular characteristics can be studied
by analysis of cell shapes. Obtaining precise manual segmentations of cell mem-
branes for detailed morphological analysis are a tedious task, due to large image
sizes, proximity of cells and vanishing fluorescence intensities in deeper tissue
layers. Poor or missing manual annotations limit the performance of learning-
based segmentation approaches, especially in challenging image regions [3,6],
which could be partly improved by the incorporation of deep learning methods
[2,9]. However, in order to leverage the power of recent deep learning approaches
and to train generalized models, large amounts of data are required. Reducing
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labeling expense and still obtaining enough annotations, is often accomplished
by data augmentation [5] or sparse annotations [13]. Since augmentations have to
remain in biological appropriate ranges, the amount and variety of data is limited
and often can not account for generalized models. Transfer learning approaches
overcome this issue by training models on large data sets from slightly related
domains and only use small portions of labeled data from the target domain to
fine-tune the model [5].

Both approaches, however, can not completely diminish the need for manual
annotations. To achieve complete independence from manual interaction, data
needs to be synthesized, which has been addressed for several biological exper-
iments. Those approaches range from physical modeling of cells to generation
of images based on classical image features [8,10,11]. More recently, generative
adversarial approaches proved to achieve good results for data augmentations
[5], as well as data generation [4,7].

Although previous methods work well for cell synthesis, they can not straight-
forwardly be adapted to work for cell membranes, which comprise a fundamen-
tally different appearance. We propose a method, which approximates the com-
plex, densely connected membrane network, by combining randomly sampled
points and Voronoi diagrams. Subsequently, generative deep learning models are
used to translate the obtained membrane segmentation to the image domain.

The main contributions of this work are (1) a parametrized generation of
membrane segmentations and (2) unsupervised translation of the generated
annotations to the image domain, by (3) using structure-aware losses, which
ensure matching membrane locations in the label and image domain. Further-
more, (4) the proposed method offers a way to generate complete segmentations,
even in regions of low or vanishing fluorescence signals, which constitute the most
challenging and time-consuming regions for manual annotators.

For validation, we used annotated 2D slices (Fig. 1) of microscopy images
showing fluorescently labeled cell membranes in Arabidopsis thaliana [12] and
generated three additional data sets with different levels of abstraction. For each
data set, authenticity of generated images, as well as utilizability for training of
an existing segmentation approach [2] were assessed.

A1 B1 A2 B2

Fig. 1. (A) Cropped 2D slices from a 3D confocal image stack of fluorescently labeled
cell membranes in A. thaliana and (B) the associated multi-instance segmentation [12].



Towards Annotation-Free Segmentation of Cell Membranes 83

2 Method

The proposed method follows a top-down approach by generating annotations
first and subsequently synthesizing corresponding images. In this manner, the
availability of complete annotations can be ensured and we are able to obtain
images with arbitrary fluorescence intensity without losing information about
true labels, even in regions of vanishing fluorescence signals. The proposed
method can be divided into two sub-tasks, namely automated label generation
and translation of labels to the image domain.

2.1 Label Generation

As shown in [2], generation of final instance segmentations can be improved by
introducing an intermediate step that reformulates the instance segmentation
problem as a 3-class semantic segmentation, dividing the image into background,
membrane positions and cell centroids. This alternative representation describes
annotations in a more general way and is utilized as baseline for synthesized
annotations. As initial step, an arbitrary but plausible specimen shape is gener-
ated, dividing the image into foreground and background. Within the foreground
region, rough cell locations are modeled by a predefined number of points npoints

at randomly sampled positions. To prevent points from being too close to one
another and generating unnatural changes of size among neighbouring cells, a
k-means clustering approach is utilized. Clustering is performed for a predefined
number of iterations niter, which allows to further control uniformity of distances
between cell centroids. Based on these resulting cell positions, a Voronoi diagram
is constructed to partition the foreground region into separated instances, with
each of them representing a single cell. Therefore, morphological cell appearance
and final cell count is parametrized by the parameter tuple (npoints, niter, k).

2.2 Image Synthesis

To transfer the generated labels into a realistic-looking image domain, a cyclic
generative adversarial network (cycleGAN) is utilized, which allows to perform
domain transfers without the need of paired examples [14]. The underlying
framework contains two generator networks and two discriminator networks,
which are trained in an adversarial way. Considering data from the label domain
xL ∈ XL and data from the image domain xI ∈ XI , the generators contribute
two mappings GLI : XL �→ XI and GIL : XI �→ XL. The discriminator DL aims
to discriminate between reference samples xL and translated samples GIL(xI),
whereas discriminator DI discriminates between reference samples xI and trans-
lated samples GLI(xL).

Network architectures for generators and discriminators are adapted from
[14] and comprise a residual-based architecture for generators, which operate on
input patches of size 256×256 pixel and PatchGANs are used as discriminators.

As introduced in [14], the framework is trained by optimizing different loss
terms, namely the adversarial loss LGAN , the cycle-consistency loss Lcyc and the
identity loss Lidentity. For our approach, we rely on the original formulation of
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LGAN and Lidentity, utilizing the L1 norm. We also keep the original formulation
of Lcyc for the image domain cycle XI �→ XL �→ XI , but replace the cycle loss
for the label domain XL �→ XI �→ XL by a distance-weighted loss, similar to [1].
This is motivated by the fact, that cell membranes are represented as thin lines
and even slight offsets cause large jumps in the L1 loss term, which impedes the
training process and results in inaccuracies between membrane positions in the
image domain XI and label domain XL. To encourage the generators to preserve
exact correspondences between membrane positions, a distance map is generated
based on original labels xL, being minimal at membrane positions and maximal
at cell centers and in background regions. This distance map wdist is utilized to
weight the L1 distance between xL and the translated label mask GIL(GLI(xL)),
which formulates the cycle-consistency loss as

Lcyc(GIL, GLI) = ExI ∼pdata(xI )[||GLI(GIL(xI )) − xI ||1]
+ ExL∼pdata(xL)[wdist · ||GIL(GLI(xL)) − xL||1],

(1)

with pdata denoting the data distributions. Instead of using the 3-class represen-
tation as input for the generators, only the binary mask of membrane locations
is utilized and background and centroid information are omitted. That way,
the task of the generators GLI and GIL can be interpreted as a transforma-
tion between the reconstructed membrane signal and a degraded representation,
captured by the microscope.

3 Experiments

Experiments are based on 2D slices from 3D confocal microscopy image stacks
of A. thaliana [12], which serve as a baseline data set Dorig for validation. Three
additional data sets were generated by the proposed method, showing decreasing
abstraction of structures and involving increasing priors of structural appear-
ance. Details of each data set are specified in the following.

3.1 No Correspondence (Dnaive)

Cell populations in the considered data set roughly resemble a circular struc-
ture (Fig. 1). To this end, the first generated data set naively mimics the speci-
mens appearance by generation of a circularly shaped foreground region. Within
the foreground region, cell instances are generated by the method described in
Sect. 2.1 utilizing the parameter tuple (npoints = 4000, niter = 100, k = 20). Sub-
sequently, the cycleGAN approach described in Sect. 2.2 translates the generated
labels to the image domain.

3.2 Global Shape Correspondence (Dglobal)

To incorporate more accurate specimen shapes, more realistic foreground regions
are estimated from original samples of the image domain XI , by intensity
thresholding and morphological hole filling. Within the foreground region, cell
instances are generated as described in Sect. 2.1 utilizing the parameter tuple
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(npoints = 4000, niter = 100, k = 20) and subsequently images are synthesized
by the cycleGAN approach.

3.3 Local Structure Correspondence (Dlocal)

To further validate our approach, another data set is generated, which skips the
label generation step and solely relies on original labels xL ∈ XL. Corresponding
images are generated by the cycleGAN approach, which allows to investigate the
rate of errors induced by the domain translation. Note that the translation is
still trained in an unsupervised fashion, since we do not rely on paired data.

4 Results

The public data set [12] comprises a total of 124 image stacks from 6 different
plants with annotations obtained with an automatic method that was manually
corrected. Due to the high correlation between neighbouring slices along the z-
axis, for each plant we randomly select 200 2D slices at arbitrary z-locations,
which reduced the data set Dorig to a total of 1200 2D samples. Each generated
data set Dnaive, Dglobal and Dlocal, therefore, likewise comprised 200 generated
samples per plant.

For evaluation, a three-fold cross-validation was performed, subsequently uti-
lizing four plants for training of the data generation and two for testing. First,
the quality of generated images was assessed by considering two different simi-
larity measurements. Second, the generated data sets were utilized for training
of a segmentation approach [2] and final segmentation accuracies were compared
to those obtained by only using manually annotated data.

4.1 Image Quality Assessment

Similarity between real and fake data was evaluated by the structure simi-
larity measurement (SSIM) and the normalized correlation coefficient (NCC).
Following the scheme of the three-fold cross-validation, generated fake images of
each test set were compared to the corresponding real image. As the quantitative
results in Fig. 2 show, data generated from real labels exhibit the highest degree

Fig. 2. Boxplots of SSIM and NCC calculated between fake images of each folds test set
and the corresponding real images. Red lines indicate the median value and boxes extend
from the first to the third quartile. Whiskers show the range of achieved values without
considering outliers, which are represented as individual dots. (Color figure online)
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Dorig Dlocal Dglobal Dnaive

Fig. 3. Multi-class mask of each data set, color coding background in red, membrane
positions in blue and centroids in green (first row). The second row shows corresponding
images, which are, except for the original data set, generated by the cycleGAN trained
on the respectively generated labels. (Color figure online)

of similarity to real data. Small deviations from real labels lead to worse simi-
larity scores, which is attributable to the missing correspondence between exact
membrane positions in the real and generated label domain. Qualitative results
depicted in Fig. 3, show visually appealing images for all generated data sets.
Additionally, it becomes visible that unnatural mask shapes impede the learned
correspondences between membrane positions in the label and image domain.

4.2 Training with Synthesized Data

Utilizability of the generated data was assessed by training the segmentation
approach presented in [2], which was adapted to work for 2D data. To train more
general models, data augmentation was incorporated into the training process,

Fig. 4. Scores for segmentation of background, membrane and centroids, obtained by
training on the respective domain. Red lines indicate the median value and boxes extend
from the first to the third quartile. Whiskers show the range of achieved values without
considering outliers, which are represented as individual dots. (Color figure online)



Towards Annotation-Free Segmentation of Cell Membranes 87

Raw Ground Truth

Doriginal

Dlocal

Dglobal

Dnaive

Fig. 5. Right column: multi-class segmentation results for the approach proposed in
[2], trained on the respective domain. Left column: membrane predictions are overlayed
with the ground truth membrane segmentation (blue). Additionally, the raw image and
the ground truth segmentation are shown in the first row. (Color figure online)

which included rotation, flipping, additive Gaussian noise and random intensity
scaling in the range [0.5, 1]. For validation, one plant of each fold’s test set was
utilized for training and the second plant for testing and vice versa. This way,
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it was ensured that overall five plants were used for training (four for data
generation and one for segmentation) and the sixth plant was never seen during
the training. Note that, computation of segmentation scores for the sixth plant,
always considered real samples xI ∈ XI and manual annotations xL ∈ XL, but
no generated data.

Metrics were adapted from [2] and comprised the regular F1-score for back-
ground predictions, a boundary F1-score allowing a safety margin of two pixels
around each membrane for membrane predictions and a local maximum-based
detection accuracy for centroid detection. As a baseline, the segmentation app-
roach was trained on Dorig, also deploying the policy to consider one plant for
training and one for testing. Quantitative results obtained by utilizing the gener-
ated data sets for training are shown in Fig. 4, which analogously to the obtained
similarity scores show increasing prediction accuracies of each class with utiliza-
tion of more realistic data. This is also supported by qualitative results depicted
in Fig. 5.

5 Conclusion

In this paper, an approach towards annotation-free segmentation of fluorescently
labeled cell membranes was proposed. The concept for label generation demon-
strated that even with small correspondences to the real image domain, plausible
images could be generated. Training a segmentation approach with generated
data disclosed that at least small correspondences between real and generated
images had to be included, in order to obtain reliable segmentations. Especially
for the naive approach, inaccurate correspondences between membrane positions
in the label and image domain impeded the training process and resulted in vague
segmentations. Although the loss was modified to penalize offsets of membrane
positions in both domains, the offset increased with increasing abstraction of
membrane labels. However, the trade-off between less accurate label predictions
and the necessity for manual interaction has to be considered, since training with-
out manual labels not only allows to create training data sets of arbitrary size,
but additionally completely diminishes the need for tedious and time-consuming
manual interactions. In general, the results are a promising first step and we
plan to further improve the domain correspondences for the naive approach and
to extend the concept to generating realistic 3D data.
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Abstract. Deep learning approaches based on convolutional neural net-
works (CNNs) have been successful in solving a number of problems in
medical imaging, including image segmentation. In recent years, it has
been shown that CNNs are vulnerable to attacks in which the input
image is perturbed by relatively small amounts of noise so that the
CNN is no longer able to perform a segmentation of the perturbed image
with sufficient accuracy. Therefore, exploring methods on how to attack
CNN-based models as well as how to defend models against attacks have
become a popular topic as this also provides insights into the perfor-
mance and generalization abilities of CNNs. However, most of the exist-
ing work assumes unrealistic attack models, i.e. the resulting attacks
were specified in advance. In this paper, we propose a novel approach
for generating adversarial examples to attack CNN-based segmentation
models for medical images. Our approach has three key features: (1) The
generated adversarial examples exhibit anatomical variations (in form of
deformations) as well as appearance perturbations; (2) The adversarial
examples attack segmentation models so that the Dice scores decrease
by a pre-specified amount; (3) The attack is not required to be specified
beforehand. We have evaluated our approach on CNN-based approaches
for the multi-organ segmentation problem in 2D CT images. We show
that the proposed approach can be used to attack different CNN-based
segmentation models.

1 Introduction

CNNs have been amongst the most popular model for image classification and
segmentation problems thanks to their efficiency and effectiveness in learning
representative image features. However, it has been widely reported that even
c© Springer Nature Switzerland AG 2019
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the most well-established CNN models such as the GoogLeNet [14], are vulnera-
ble to almost imperceptible intensity changes to the input images [6]. These small
intensity changes can be regarded as adversarial attacks to CNNs. In medical
image classification, the adversarial attacks can also fool CNN-based classifiers
[3,16]. Therefore, it is important to verify the robustness of CNNs before deploy-
ing them into practical use.

The verification of CNNs requires good understanding of the mechanism
of adversarial attacks. In this paper, we aim at developing a novel method to
generate adversarial examples which are able to attack CNN models for medical
image segmentation. Generating adversarial examples to attack semantic image
segmentation models is challenging because: (1) Semantic segmentation means
assigning a label to each pixel (or voxel) instead of a single label per image as in
conventional adversarial attacks typically described in computer vision scenarios.
Therefore, attacking a segmentation model is more challenging than attacking
a classification model; (2) It is not straightforward to evaluate the success of
the attack. A good adversarial example for a classification model results in an
incorrect prediction on the whole image while a good adversarial example for a
segmentation model does not necessarily lead to an incorrect prediction for every
pixel (voxel); (3) Conventional adversarial attacks perturb the image intensity
by small amount, however, in medical imaging scenarios deformations are also
useful to attack segmentation models. For instance, organs can be present in
various configuration in images. Any segmentation model is therefore in principle
susceptible to unseen poses or shapes of organs.

Generative adversarial networks (GAN) [5] and variational autoencoders
(VAE) [9] are both unsupervised methods that can learn latent feature represen-
tations from training images. A GAN learns the latent feature representations
implicitly while the VAE learns them explicitly. Training a GAN is difficult
due to mode collapse and unreasonable results, e.g. a dog with two heads. In
contrast, training a VAE is fairly simple. However, while a GAN can generate
realistic images, images generated by a VAE are blurry because of the L2 loss
employed during training. Inspired by these observations, we propose to com-
bine the advantages of VAE and GAN to generate realistic and reasonable image
deformations and appearance changes so that the transformed images can attack
medical segmentation models.

Our main contributions can be summarised as follows: (1) We propose a
novel approach to generate adversarial examples to attack the CNN model for
abdominal organ segmentation in CT images; (2) We also measure the success of
attack by means of observing significant reductions in the Dice score compared
to ground truth segmentations; (3) The proposed approach attacking the seg-
mentation model does not require any a-priori specification of particular attacks.
In our application, we do not specify any organ which is attacked.

2 Related Work

The work in [4,11], and [19] represent state-of-the-art methods for attacking seg-
mentation models. Fischer et al. [4] proposed to attack segmentation models so
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that the models cannot segment object in a specified class (e.g. ignoring pedes-
trians on street). Metzen et al. [11] proposed to generate adversarial examples so
that the segmentation model incorrectly segments one cityscape as another one.
The adversarial examples generated by these two methods attacked the segmen-
tation models with specified targets, e.g. pedestrians. In contrast, Xie et al. [19]
proposed an approach to generate adversarial examples for image semantic seg-
mentation and object detection without attacking targets. However, a random
segmentation result should be specified so that the adversaries can be inferred.
The adversarial attacks generated by these three methods often appear as pure
noise that has no semantic meaning. Therefore, these attacks do not represent
real-world situations that can occur in medical imaging applications.

3 Our Approach

We propose a novel end-to-end approach to generate adversarial examples for
medical image segmentation scenarios. Formally, I0 is the original image (H
height and W width) and S0 ∈ R

H×W×(C+1) is its segmentation given a fixed
CNN-based segmentation model fseg(·), i.e. S0 = fseg(I0). Here C is the number
of labels, e.g. the organs of interest. The adversarial attack model allows defor-
mations D and intensity variations V applied to I0. D is a dense deformation
field which is a displacement vector for each pixel (or voxel) while V is a smooth
intensity perturbation which can be interpreted, e.g. as a bias field. Therefore,
the transformed image after adversarial attack is given by

IDV = ID + V = fD(I0,D) + V . (1)

Here fD(·, ·) is the function which transforms I0 to ID based on D. Figure 1
shows the framework which learns appropriate D and V such that IDV can
attack the segmentation model. The whole framework consists of two key com-
ponents: a CNN model for IDV generation and it’s learning algorithm.

Fig. 1. Overview of the proposed framework. The CNN decoders in blue and green
share the same architecture but they do not share weights. (Color figure online)
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3.1 Model for Generating Adversarial Attack

The CNN architecture which generates the IDV is similar to a multi-task VAE.
First, I0 is processed by an encoding CNN resulting in several feature maps
which are then used to learn a latent feature representation zD ∼ N (μD,σ2

D)
and zV ∼ N (μV ,σ2

V ). zD and zV are then reconstructed to dense deformation
field D and dense intensity variation V by two CNN decoders, respectively. The
two decoding CNNs share the same architecture but they do not share weights.
Learning zD and zV explicitly ensures the IDV looks reasonable.

The dense deformation D consists of two channels of feature maps Dx and
Dy, representing pixel position changes in horizontal and vertical directions (i.e.
x and y axis). In addition, we propose to limit the norm of D and V so that
it is difficult to be perceived by human observers. To this end, the following to
regularization terms are used:

L(D) = λD‖D‖22; L(V ) = λV ‖V ‖22. (2)

λD and λV are two fixed hyper-parameters. The regularization ensures the
smoothness of the deformation field D and intensity variation V .

Each branch of the CNNs generating IDV is different from a VAE since the
input and output of the CNN are not the same. In fact, it is an image-to-image
CNN and we can sample the learned latent space to generate multiple instances
Ds and V s. This idea is similar to the one proposed in [10] where a latent space
was learned to sample multiple realistic image segmentations.

3.2 Learning

Since the ground truth of D, V , and IDV are not available, it is not possible to
learn the parameters of the encoding and decoding CNN in a explicit supervised
manner. To address this problem, we propose to learn the parameters implicitly
based on two conditions: First, we assume that IDV should look realistic com-
pared with I0. Secondly we assume that the accuracy of the segmentation SDV

should decreases significantly compared with S0. This decrease can be measured
in terms of a reduction of Dice score.

An adversarial learning method is employed to ensure the IDV looks realistic
compared with I0. To this end, the IDV generating CNN is regarded as a gener-
ator CNN, i.e. IDV = fgen(I0). An additional discriminator CNN fdisc(·) is used
to predict the realism of IDV compared with I0 [8]. Adversarial training fgen(·)
and fdisc(·) results in realistic IDV . We adopt the Wasserstein GAN (WGAN)
[1] loss function during the adversarial training. Formally,

Lgen
adv = fdisc(I0) − fdisc(IDV ),

Ldisc
adv = fdisc(IDV ) − fdisc(I0).

(3)

The goal of this work is to generate IDV which is able to attack a given segmen-
tation CNN model, e.g. a U-Net [13]. This means that the segmentation results
S0 and SDV are different. Here SDV = fseg(IDV ). When training fseg(·), we
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use cross-entropy as the loss function between S0 and the ground truth SGT , i.e.
fxent(S0,SGT ) = −∑C

c=0 SGT (c) log(S0(c)). This leads to satisfactory S0. To
constrain the difference between S0 and SDV , we propose to use the following
loss function:

L(S0,SDV ) = (ξ − fM
xent(S0,SDV ))2. (4)

Here ξ is a hyper-parameter which controls the difference between S0 and SDV .
If ξ = 0, then SDV tends to be similar to S0 so that D and V tend to be zero.
In contrast, if ξ is a very large number, then the norm of D and V are large
that the discriminator CNN is difficult to fool. As such, the training process is
likely to collapse. Therefore, ξ should be within a proper range. In addition, we
propose to mask the standard cross-entropy function so that the ROI of organs
of interest is emphasized. Specifically, the masked cross-entropy function is

fM
xent(SDV ,S0) = −

C∑

c=1

S0(c) ∗
C∑

c=0

S0(c) log(SDV (c)). (5)

Here, M =
∑C

c=1 S0(c) is the mask highlighting the organs of interest and ∗ is
the element-wise product.

In summary, the loss functions of the whole framework are:

Lgen = Lgen
adv + L(S0,SDV ) + L(D) + L(V ),

Ldisc = Ldisc
adv .

(6)

3.3 Implementation Details

In this paper, CNNs are implemented using Tensorflow. The adversarial learning
is optimised using the RMSProp algorithm [17]. The decay is 0.9 and ε = 10−10.
We use the fixed learning rate of 10−4 for both generator and discriminator
CNNs. Batch normalization technique [7] is used after convolutions. A leaky
rectified linear unit (LReLU) is used as the nonlinear activation function to
ease the adversarial training with α = 0.2. λD and λV are set as 0.1 and 0.01,
respectively.

4 Experiments and Results

Experiments were performed on a abdominal CT dataset with multiple organs
manually annotated by human experts. The image acquisition details and the
involved patient demographics can be found in [18]. The dataset consists of
150 subjects and for each subject the annotated organs include the pancreas,
the kidneys, the liver, and the spleen. The dataset was randomly split into a
training set, a validation set, and a testing set, which have 60, 15, and 75 subjects
respectively. The voxel intensities of each subject were normalized to zero mean
and unit standard deviation.

We trained a standard U-Net [13] to segment all abdominal organs. Due to
limitations with GPU memory, the U-Net is based on 2D image, rather than 3D
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volumes. Following [2], the U-Net was trained on image patches and tested on
image slices. The trained U-Net was used as the fixed CNN in this work to be
subjected by adversarial attacks.

The Dice score was used to assess the segmentation quality for each organ.
We define a 30% decrease on the Dice score of an organ as a successful attack.
Similar to [12,15], we compute the perceptibility p of the adversarial perturbation
r = IDV − I0 by

p =
1

HW

∑

i,j

|ri,j |. (7)

p is the similarity of the real image to the synthetic image. The smaller the
value of p is, the less likely the adversarial perturbation is perceived by human
observers.

4.1 Adversarial Examples

By sampling the learned latent spaces, the deformation D and the intensity vari-
ation V are generated and therefore realistic adversarial examples are obtained.
Figure 2 shows two such examples. Thanks to the regularization imposed on D
and V , both are smooth and difficult to recognise by humans. However, the
derived adversarial examples attack the U-Net successfully. More examples are
shown in Fig. 3.

Fig. 2. Example CT abdominal image, the resulting U-Net segmentation, the generated
adversarial CT images using the proposed method, and the resulting U-Net segmen-
tation of the adversarial images. In the segmentations, the pancreas, the kidneys, the
liver, and the spleen are depicted in blue, green, orange, and red, respectively. In this
case, ξ = 2.0. (Color figure online)
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4.2 Attacking the Segmentation Model

Table 1 shows the segmentation results of the standard U-Net on multiple organs.
The aforementioned success of the attacking model results in a 30% decrease in
terms of Dice score on every organ. We also listed this borderline of Dice score
in Table 1. In the proposed attack approach, ξ is an important hyper-parameter
deciding the success of attacking the U-Net. ξ ranging from 0.5 to 3.0 was tested
and the results are shown in Table 1. The larger the ξ is, the more the Dice scores
decrease and the larger the perceptibility is. Using ξ ≥ 2.0, the U-Net can be
attacked successfully on all organs.

In terms of different organs, the segmentations on the pancreas and the kid-
neys are more difficult to be attacked compared to segmentations on the liver
and the spleen. Specifically, the segmentations on the pancreas and the kidneys
can be attacked when ξ ≥ 2.0 while the segmentations on the liver and the spleen
can be attacked when ξ ≥ 1.0.

The proposed adversarial examples feature both deformations D and inten-
sity variations V . We studied the effect of D and V individually when ξ = 2.0.
The results are reported in Table 1. For the kidneys, the deformation changes
lead to more decrease of the Dice scores while on the other organs, the intensity
variance has more impact on attacking the U-Net model. This means that the
segmentation model is more sensitive to the intensity variance. The abdominal
organs naturally vary in terms of pose on 2D image slices in the training set.
Therefore, small deformations do not significantly decrease the Dice scores. In
contrast, the intensity variations introduces shadows and artefacts which are
likely to influence the segmentation CNN.

Table 1. Abdominal organ segmentation comparison among different configurations
in terms of the Dice score (%)

Dice p

Pancreas Kidneys Liver Spleen

U-Net 80.07 94.74 94.71 94.76 –

U-Net 30% decrease 56.05 66.32 66.30 66.33 –

IDV on U-Net (ξ = 0.5) 74.77 93.88 89.81 81.87 0.061

IDV on U-Net (ξ = 1.0) 70.66 90.06 59.51 37.12 0.060

IDV on U-Net (ξ = 1.5) 64.25 66.97 26.45 35.81 0.075

IDV on U-Net (ξ = 2.0) 53.59 60.07 11.19 17.21 0.074

IDV on U-Net (ξ = 2.5) 40.57 45.47 9.16 17.60 0.084

IDV on U-Net (ξ = 3.0) 31.49 43.43 5.82 26.58 0.085

ID on U-Net (ξ = 2.0) 70.46 82.04 75.06 70.47 0.056

IV on U-Net (ξ = 2.0) 68.15 88.25 50.05 46.94 0.061
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Fig. 3. Some additional visual results of the proposed method. Each column repre-
sents an individual case. I0, SGT , S0, IDV , V , SDV are shown from the top row to the
bottom row

5 Discussion and Conclusion

In this paper, we have proposed a novel approach to generate adversarial
examples to attack an existing CNN model for medical image segmentation.
The generated adversarial examples include geometrical deformations to model
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anatomical variations as well as intensity variation which model appearance vari-
ations. These examples attack CNN-based segmentation models such as a U-Net
[13] by decreasing the Dice score by a pre-specified amount. The training process
is end-to-end without any predefined requirements. In fact, it can be replaced
by any other CNN-based models. In the future, we will investigate the use of the
proposed approach to generate additional training images so that the segmen-
tation model can be more robust and defend attacks. In addition, the proposed
approach can be used to verify if an CNN model is robust or not. Specifically, our
approach can generate adversarial examples for the CNN model. If the adver-
sarial examples are reasonable and realistic, then the CNN model is not robust
enough.
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Abstract. Magnetic Resonance Imaging (MRI) is one of the most flex-
ible and powerful medical imaging modalities. This flexibility does how-
ever come at a cost; MRI images acquired at different sites and with
different parameters exhibit significant differences in contrast and tis-
sue appearance, resulting in downstream issues when quantifying brain
anatomy or the presence of pathology. In this work, we propose to com-
bine multiparametric MRI-based static-equation sequence simulations
with segmentation convolutional neural networks (CNN), to make these
networks robust to variations in acquisition parameters. Results demon-
strate that, when given both the image and their associated physics
acquisition parameters, CNNs can produce segmentations that exhibit
robustness to acquisition variations. We also show that the proposed
physics-informed methods can be used to bridge multi-centre and longi-
tudinal imaging studies where imaging acquisition varies across a site or
in time.

Keywords: MRI · Harmonization · Deep learning

1 Introduction

Magnetic Resonance Imaging (MRI) is a widespread, non-invasive, non-ionizing
medical imaging technique. It is capable of imaging any part of the body to
produce three dimensional anatomical and functional reconstructions, excelling
at soft tissue contrast. MRI is therefore aptly suited for looking at pathological
changes in the brain, such as tissue atrophy or lesions. However, large scale stud-
ies that rely on multiple scanners from different manufacturers suffer from site
and hardware-dependent variabilities in the acquired data [13]. Without means
to account for these differences, this variability impacts our ability to conduct
multi-centre analyses and extract meaningful and reproducible biomarkers [6].
Further challenges are encountered in longitudinal studies since scanner and
sequence protocol changes cause inconsistencies in patient imaging that make
disease evolution impossible to quantify.
c© Springer Nature Switzerland AG 2019
N. Burgos et al. (Eds.): SASHIMI 2019, LNCS 11827, pp. 100–109, 2019.
https://doi.org/10.1007/978-3-030-32778-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32778-1_11&domain=pdf
https://doi.org/10.1007/978-3-030-32778-1_11


Physics-Informed Brain MRI Segmentation 101

One issue caused by the non-quantitative nature of MRI images is that
algorithms are often unable to deal with different sequence parameters. For
example, if MR images are acquired with small differences in acquisition,
segmentation algorithms often produce disparate results, exhibiting apparent
growth/shrinkage of regions of interest [4]: this is caused by signal intensity
changes that depend on the tissue. Dementia is an example of a condition in
which MR imaging biomarkers such as cortical atrophy or hippocampal volume
can be used for the diagnosis of the condition. Due to the difficulty in disentan-
gling imaging physics and underlying anatomy, even trained clinicians may fail
to account for protocol differences. This is explained by the fact that the infor-
mation available to the users is limited to voxel intensities, which are unreliable,
and a priori knowledge of brain morphology, which is not subject-specific.

Current methods to mitigate these effects are cumbersome and imperfect.
They normally rely on either a per-site analysis followed by a joint meta-analysis
[5] or the use of statistical models with linear covariates [1], which provide
computationally efficient yet often inaccurate means of standardization. When
attempted, correction for scanning variability can either be made at the tissue-
class or the voxel level. The former may be less robust due to the lack of gran-
ularity whilst the latter is highly susceptible to errors induced by the required
registration to a group-wise space.

Gaining robustness to pulse sequences has been investigated in [10] implicitly,
where parameter estimation combined with simulation as an augmentation to a
segmentation task is employed. Note however that parameters are bulk-assigned
to segmentation maps and that the segmentation network is not physics aware.

This work aims to address the issue of acquisition-induced biomarker extrac-
tion variability (resulting from imprecise segmentations) through the use of
a novel physics-informed convolutional neural network, where segmentation is
used as a pretext task. Parametric tissue maps, together with sequence simu-
lating models, are used to generate realistic samples as if they were acquired
with different physics parameters. The importance of MRI sequence simulators
is crucial here — they can be used to train machine learning algorithms to learn
the features of scanners or sequence parameters without having to expend a
vast amount of resources to acquire real data, while realistically reproducing an
MRI scan. For computational reasons, we propose to use a static equation-based
simulation approach, which makes use of simplified imaging equations to most
efficiently generate sufficiently large and varied datasets required for this under-
taking. By providing both simulated samples and associated physics parameters
as training data for a neural network, we can demonstrate that these networks
can produce segmentations that are robust to MRI physics variations because
they are explicitly learning how the physics interacts with image contrast.

2 Methodology

Here we describe how physics-based image synthesis is combined with the pro-
posed physics-informed architecture to achieve more consistent segmentations.
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2.1 MRI Simulation Methods

The signal intensity obtained in MR images results from the non-linear interac-
tion between tissue properties and parameters associated with a specific acqui-
sition sequence. In this work, we use a simplified, yet robust, simulation model
by which static singular equations are employed for each simulated sequence
previously employed by [9]. These equations take as input the tissue proper-
ties and MR sequence parameters and produce an image of the corresponding
sequence. The assumption that signal intensity at any given voxel is based on tis-
sue, sequence, and scanner properties is made here. Contrarily to more complex
MR simulators, the proposed model assumes the signal does not change in time,
i.e. the model described as ‘static’. In this work, we focus on two widely used
gradient echo T1-weighted sequences, namely 3D spoiled Gradient echo (SPGR)
and 3D magnetization prepared gradient echo (MPRAGE). For both sequences,
PD(x), T1(x) and T ∗

2 (x) are respectively the proton density, T1 value and T ∗
2

value of the tissue at position x, θ is the sequence flip angle, TR the relaxation
time and TE the echo time. For the SPGR sequence, the static equation derived
by Jog et al. [9] expresses the voxel intensity bS(x) at position x as

bS(x) = GSPD(x)sinθ
1 − e

− T R
T1(x)

1 − cos θe
− T R

T1(x)
e
− T E

T ∗
2 (x) , (1)

where GS is the scanner gain. Similarly, the static equation for MPRAGE
sequences describes the intensity bM (x) at position x as

bM (x) = GMPD(x)

(
1 − 2e

−T I
T1(x)

1 + e
−(T I+T D+τ)

T1(x)

)
, (2)

where GM is the scanner gain, TD the delay time, and τ the slice imaging time.

Fig. 1. Left: Middle axial slice of simulated MPRAGE volume with TI= 600 ms. Right:
Middle axial slice of simulated MPRAGE volume with TI= 1200 ms. Note the difference
in tissue contrasts, particularly between white and cortical grey matter.



Physics-Informed Brain MRI Segmentation 103

A variable inversion time (TI) results in images of differing contrasts owing to
the non-linear signal scaling of the different tissue types. Figure 1 illustrates the
phenomenon, showcasing two axial slices of MPRAGE simulations with TIs of
800 and 1200 ms, respectively, simulated from the same set of parametric maps.

2.2 Physics-Aware CNNs for Image Segmentation

We propose to inject the sequence parameters of an input image in a CNN
network by the addition of a fully connected layer. Since a strong correlation
between segmentation volumes and parameter choice can be observed, we expect
the introduction of the physics parameters to allow such a network to account
for the physics induced appearance variability and attain a more consistent,
unmarred segmentation.

2.3 Network Architecture

We used the 3D U-Net architecture as described in [3] as a starting point for
the proposed physics injected network. Our proposed architecture (Fig. 2) adds
an adjacent branch (physics branch), boasting two fully connected layers of ten
neurons each which have as input an N-dimensional vector. This vector consists
of the variable physics parameters used to generate the image to be segmented,
as well as negative exponentiation of said parameters. The latter is included
as a means of making the network privy to the underlying simulation process.
This branch is connected to the network via a concatenation operation that
broadcasts the branch’s output as additional channels immediately following
the final shortcut connection of the base 3D U-Net architecture.

3 Experiments

3.1 Creation of Physics-Based Gold Standard Segmentation

It is important to reiterate the primary goal of this work, which is to mitigate
the detrimental effects of imaging parameter choices on the consistency of MRI
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Fig. 2. Diagramatic representation of the proposed network. The novel contribution is
primarily the pink box (physics-aware subnet) and the simulation framework used to
train the model. (Color figure online)
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image segmentations. As such, we are primarily concerned with achieving seg-
mentations that are consistent across acquisitions, more so than approaching
a hypothetical ‘ground truth’ segmentation. With this in mind, and as proper
ground truth tissue segmentations are ‘illusory’ in brain imaging (i.e. humans
often disagree, and image resolution is insufficient), we propose to create a gold
standard reference segmentation that is consistent and stable across subjects,
i.e. one that is precise, concordant and systematic, but not necessarily accurate.

To achieve this, and owing to the T1-W nature of the simulations we propose
a “Physics Gold Standard”, whereby we make use of the quantitative R1 maps for
this purpose. By assuming that tissues can be parameterised by normal distribu-
tions, with mean and standard deviations equivalent to literature R1 values, we
can generate segmentation maps directly from quantitative acquisitions, thereby
being largely independent of acquisition physics. Because there can be some sig-
nificant variation in quantitative maps, we opt to use parameters derived from
works whose multiparametric map creation protocol most resembles our own,
with an increased standard deviation to account for some additional variability.
To this end, the R1 values we choose are 0.683 ± 0.080 ms for grey matter, 1.036
± 0.080 ms for white matter, taken from [15]. We note that [15] do not quote
values for CSF, but as per [12] which cites multiple other studies on this matter,
the R1 values for CSF are largely independent of acquisition parameters. Due
to this, and the fact that we only focus on grey and white matter segmentation
consistency in this work, we opt to model our normal CSF distribution with
0.240 ± 0.03 ms, one of the cited values that most closely matched the R1 CSF
measurements in our maps. Using this “Physics Gold Standard” we can model
each tissue in a probabilistic, and more anatomically grounded, manner without
having to concern ourselves with the inherent bias that would be associated with
choosing a more typical “ground truth”.

3.2 Datasets

27 multiparametric volumes from an early onset Alzheimer’s disease dataset
containing both patients and controls were used for simulation. The maps con-
sist of R1 (longitudinal magnetisation relaxation rate), R∗

2 (effective transverse
magnetisation relaxation rate), proton density (PD), and magnetisation transfer
(MT). We make use of the former three for the simulations. These maps are
acquired via three 3D multi-echo FLASH (fast low angle shot) acquisitions fur-
ther described in [8]. All subjects were rigidly registered to MNI space before
their use in simulations.

As a real-world data example, we used a subset of the SABRE dataset con-
sisting of data from 22 subjects drawn from an elderly population with high car-
diovascular risk factors, where each subject was imaged within the same scanning
session using two different T1-W MPRAGE protocols and one Turbo Spin-Echo
protocol. We use only the paired MPRAGE images in this work. Mid-space (so
as not to bias the registration towards either acquisition protocol) intra-subject
registrations are carried out to resample these images to be 1 mm isotropic.
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Table 1. Mean dice scores of GIF, base 3D U-Net and 3D U-Net-Physics methods
on segmentation task across inference subjects. All dice scores are estimated against a
Physics Gold Standard.

Experiments Sequences

MPRAGE SPGR

GM WM GM WM

GIF 0.851 ± 0.020 0.919 ± 0.009 0.916 ± 0.010 0.847 ± 0.018

Base 0.904 ± 0.024 0.943 ± 0.012 0.946 ± 0.017 0.902 ± 0.021

Physics 0.910 ± 0.017 0.948 ± 0.009 0.948 ± 0.019 0.907 ± 0.015

3.3 Simulation Experiment and Results

For each of the 27 subjects acquired with a multiparametric acquisition, we sim-
ulated 121 MPRAGE volumes with TIs between 600 and 1200 ms (5 ms incre-
ments) with constant TD of 600 ms and constant τ of 10 ms. These values were
chosen by extending the optimised range of 900–1200 ms found in [14]. Simi-
larly, 121 SPGR volumes were simulated per subject sampling randomly from
the parameter space spanning TR between 15 and 100 ms, TE between 4 and
10 ms, and FA between 15 and 75◦. These values were chosen according to the
typical values explored in [9] for SPGR sequences. For each subject, a single
“Physics Gold Standard” segmentation was used across the associated synthe-
sized images.

3.4 Robustness to Acquisition Parameters

We train our network on 3D 96× 96× 96 randomly sampled from the simulated
volumes. For the MPRAGE volumes, TI and e−TI are passed as a vector into
the physics branch while for SPGR volumes a vector containing TR, TE, FA,
e−TR, e−TE , and sin(FA) is passed as input to the physics branch. Subjects
were randomly split between training (2420 simulated volumes over 19 subjects),
validation (242 simulated volumes over two subjects) and testing (726 simulated
volumes over six subjects). Networks were trained until convergence, as defined
per performance on the validation set when over 1000 iterations have elapsed
without decreases in the loss (a probabilistic version of the dice loss [11]), using
NiftyNet [7], a deep learning framework designed for medical imaging.

In a first instance, we compare the performance of 3D U-Net-Physics with
that of base 3D U-Net (trained simply by excluding the physics branch), as
well as GIF [2], a segmentation software based on geodesical information flows.
Segmentation stability for the two tissue classes is assessed via measures of the
coefficient of variability within the set of synthesized data for each test subject.
Results, presented in Table 2 show that for MPRAGE simulation, the model
enhanced with the Physics branch provides more stable volume estimates for
the two tissue classes. Table 1 shows the dice scores for the segmentations com-
pared to the “Physics Gold Standard”. It is apparent that “accuracy”-wise all



106 P. Borges et al.

Table 2. Mean coefficients of variability resulting from GIF, 3D U-Net and 3D U-Net-
Physics methods on segmentation task across inference subjects

Experiments Sequences

MPRAGE SPGR

GM WM GM WM

GIF 0.00619 0.00783 0.00114 0.00091

Base 0.00332 0.01491 0.00531 0.00160

Physics 0.00244 0.00405 0.00425 0.00083

methods perform similarly. A sign-rank test is carried out to calculate the p-
value of the Physics and Base method dices, resulting in p <0.0001, indicating
the Physics model’s higher performance is statistically significant. The larger
gap in performance between the CNN and GIF methods can likely be attributed
to differences exhibited between our “Physics Gold Standard” and more typical
segmentation ground truths, the latter being closer to what GIF might output.
For a single subject, we plot in Fig. 3 the resulting variations in extracted vol-
umes for a range of TI compared to the standard obtained at 900 ms for WM
(left) and GM (right). The introduction of the physics branch to the model
appears to noticeably reduce the variability observed when using a non-physics
aware network.

3.5 Application to a Data Bridging Study

MRI acquisitions are often updated due to hardware or sequence changes, harm-
ing our ability to perform ongoing clinical research studies and to compare

Fig. 3. Comparing the (left) WM and (right) GM volume consistency for simulated
data within the 600–1200 TI range over three methods (GIF, Baseline, Physics). Vol-
umes are presented as a deviation from the volume at TI= 900 ms.
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Fig. 4. Top: GM contour of mean percent volume differences across a “training” (12
subjects) subset of SABRE paired dataset. Bottom: WM contour of mean percent
volume differences across a “training” (12 subjects) subset of SABRE paired dataset.
Black points: Ideal params for each of 10 “test” subjects. White point: Point of volume
pair minimisation for “training” subjects.

patients longitudinally. This experiment aims to test if the proposed method
could be used to compensate for acquisition parameter updates from an image
segmentation biomarker. To do this, we use the 3D-UNet-Physics network
trained in the previous section and applied it to the Bridge SABRE dataset,
where each subject has a pre and a post parameter update MRI acquisition.
Despite images being acquired back-to-back, these images exhibit significant dif-
ferences owing to differing scanning protocols. As MRI acquisition parameters
were not available for this data, we experimentally found an optimal TI param-
eter that, if applied to the pre-update and post-update acquisition parameters,
would make the segmentations between those as close as possible. To achieve
this, we partitioned the data into two sets, a “training” set with 12 image pairs,
and a “test” set with 10 image pairs. We segment all training set pairs with dif-
ferent hypothetical TI values (i.e. run inference on our physics informed network
for each image 121 times, passing a different value of TI from the 600–1200 ms
TI range at each pass), and plot the similarity (volume-wise) between TI pairs in
Fig. 4 as a contour. This plot shows us how the similarity between GM and WM
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between the pairs changes according to the TI passed at inference to segment
the images. The white point in the figure represents the pre/post TI pair that
minimizes the volume difference between training set examples. Finally, we apply
this TI parameter pair to the hold-out test set and test if the output segmenta-
tions were bridged. Similarly to the white point, the black points indicate the TI
pairing that provided the smallest difference in tissue segmentation volumes for
each of the 10 subjects. Qualitatively, we observe clustering of these black points
around the white point, indicating that this choice of parameters generalizes to
the holdout standardization subjects, lending credence to the model’s ability to
account for the imaging process.

To quantitatively compare to a baseline method, we ran GIF on both pre
and post upgrade scans, estimating the WM and GM volumes for each sub-
ject - here denoted GIF-Uncorrected. We then find a linear mapping between
pre- and post-sequence upgrade volumes on the training set as a form of correc-
tion/bridging, and apply it to the hold-out test set - here denoted GIF-Corrected.
GIF-Uncorrected exhibits a volumetric difference over tissues of 5%. We found
that the linear correction method applied to GIF resulted in a mean volumetric
segmentation difference of 3% over tissues. When using the physics model (i.e.
choosing the aforementioned ideal parameter pairs denoted by the white point
in Fig. 4), this value was found to be 2%. While the differences do not seem
large, any improvements are beneficial for the sample size for a hypothetical
trial. Consistency could have been potentially improved further if true physics
parameters were available, rather than experimentally found.

4 Discussion and Conclusions

This work aimed to address the problem of imaging induced variability in
biomarker extraction by constructing networks that are privy to those imag-
ing parameter choices. We show that, for MPRAGE-type sequences, our method
outperforms its alternatives, particularly with regards to grey matter. For SPGR
we note that performance is more tissue dependent, with small, but significant,
decreases in grey matter segmentation consistency compared to competing meth-
ods but presenting improvements in white matter consistency. Despite this, it
is worth noting that our physics informed network always outperforms its base
counterpart, lending credence to the notion that these external parameters can
always be leveraged towards some gain in segmentation consistency.

Further work is needed to ascertain the ideal architectural setup for pass-
ing external parameters. While the proposed construction performs well for
MPRAGE sequences, the results suggest that this might not be the case for
others, especially if multiple parameters are involved: The network may require
a greater capacity to leverage the additional information.

Results on real data show that the proposed method improved the consis-
tency of estimated volumes, even when the acquisition parameters were found
experimentally. Future work will test the proposed method on a more diverse
range of protocols and will apply it to larger bridge studies where significant
improvements stand to be made.
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Abstract. In this paper we propose a model for controllable synthe-
sis of 3D (volumetric) medical image data. The model is comprised of
three components which are learnt simultaneously from unlabelled data
through self-supervision: (i) a multi-tissue anatomical model, (ii) a prob-
ability distribution over deformations of this anatomical model, and,
(iii) a probability distribution over ‘renderings’ of the anatomical model
(where a rendering defines the relationship between anatomy and result-
ing pixel intensities). After training, synthetic data can be generated
by sampling the deformation and rendering distributions. To encour-
age meaningful correspondence in the learnt anatomical model the ren-
derer is kept simple during training, however once trained the (deformed)
anatomical model provides dense multi-class segmentation masks for all
training volumes, which can be used directly for state-of-the-art condi-
tional image synthesis. This factored model based approach to data syn-
thesis has a number of advantages: Firstly, it allows for coherent synthesis
of realistic 3D data, as it is only necessary to learn low dimensional gen-
erative models (over deformations and renderings) rather than over the
high dimensional 3D images themselves. Secondly, as a by-product of the
anatomical model we implicitly learn a dense correspondence between all
training volumes, which can be used for registration, or one-shot segmen-
tation (through label transfer). Lastly, the factored representation allows
for modality transfer (rendering one image in the modality of another),
and meaningful interpolation between volumes. We demonstrate the pro-
posed approach on cardiac MR, and multi-modal abdominal MR/CT
datasets.

Keywords: 3D image synthesis · Conditional image generation ·
Cardiac magnetic resonance · Anatomical model · Generative model

1 Introduction

Image synthesis techniques have improved significantly over the last few years,
and synthetic data has been effectively leveraged in a broad range of medi-
cal imaging tasks [2], including segmentation [3], classification [4] and recon-
struction [5]. However, despite these results current medical image synthesis
c© Springer Nature Switzerland AG 2019
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approaches have a number of limitations that prevent them from being applied
even more widely. Firstly, although there are now many papers demonstrating
impressive high resolution results of 2D image generation [6], there is still lim-
ited progress on the generation of 3D (volumetric) images. Secondly, controllable
image synthesis, in which image generation can be meaningfully conditioned on
some input (such as a dense semantic mask) is under explored in the medical set-
ting. Lastly, synthesis of labelled data (e.g. data with multi-class segmentation
masks) is strictly more useful than unlabelled image synthesis, but many papers
focus on unlabelled image synthesis, or synthesis restricted to binary classes [2,4]

Fig. 1. Example synthetic cardiac MR images from the proposed model. The first row
shows random samples from the learnt multi-tissue anatomical model, the second and
third rows show synthetic images generated conditioned on those anatomical model
samples with the simple and SPADE-based [1] renderers respectively. The final row
shows the closest (l2-norm) real image in the (augmented) training set. (Note that the
model synthesises 3D volumes and we visualise random slices).

Fig. 2. An overview of the proposed approach. During training (left) the anatomical
model, encoder and decoder networks are learnt through self-supervision. Image vol-
umes are encoded to latent vectors zt (encoding the transformation) and zr (encoding
the rendering), which are both encouraged to have a Gaussian distribution. When syn-
thesising data (right) Gaussian noise is fed to the decoders, and a syhtnetic volume is
produced by realistically deforming and rendering the learnt anatomical model.

In this paper we propose an approach to address these problems. We intro-
duce a model for data synthesis that learns a factored representation of 3D
medical data which it then leverages to generate diverse and realistic synthetic
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images with corresponding dense labels (Fig. 1). Specifically, the model learns
an anatomical factor, which captures the spatial structure of the data, and a
rendering factor, which describes how the anatomy is rendered to a final image.
The anatomical factor is represented as a deformation of a single multi-tissue
anatomical model. This anatomical model is also learnt during training. The
rendering factor then describes how the various tissues translate into final pixel
intensities (see Fig. 2).

We demonstrate that this explicitly enforced factorisation enables the model
to synthesise realistic 3D data. Moreover, the proposed framework also provides
additional benefits. As all data are represented by (different deformations of)
the same underlying anatomical model, we implicitly learn a dense correspon-
dence between all training volumes, as well as between all synthesised images.
We demonstrate that this dense correspondence facilitates few-shot, and even
one-shot, segmentation via label propagation. Moreover, this dense correspon-
dence allows us to co-register volumes, or to directly apply random realistic
deformations.

After training, the anatomical model provides a dense semantic segmentation
for every volume in the training set. As a second step we demonstrate that such
dense segmentation masks can be used with state-of-the-art conditional image
synthesis models [1] to generate sharp, high resolution synthetic image data, and
that moreover, this synthesis is controllable in a natural and readily interpretable
way, through varying the anatomical and rendering factors.

2 Related Work

Image synthesis has seen impressive recent development [6,7], and provides a
powerful approach to enlarging training sets for arbitrary downstream tasks [2,8].
A standard generative model (such as the original GAN [9], or DCGAN [10])
is able to synthesise images similar to1 those in a large set of example images.
Given sufficient training data the images produced by state-of-the-art genera-
tive models are both realistic and diverse [6]. However, these approaches generate
unsegmented data, and there is no (interpretable) control over the specific image
generated. Further, the requirement for large training datasets can restrict appli-
cation in a medical image context, where data is limited.

Various approaches have been developed which help to mitigate these lim-
itations. To address the lack of labels a common approach is to generate
labelled data in the target modality from labelled data in another modality
through domain transfer [3], however this requires suitable auxiliary labelled
data. To achieve controllable image synthesis various conditional generative
models have been proposed [2]. Relevant here, a number of recent works have
explored controllable synthesis of natural images conditioned on dense segmen-
tation masks [1,11]. These methods have produced exceptional results, but the
requirement for dense segmentation masks prohibits straightforward application
1 Broadly, the hope is that the synthetic images are drawn from the same probability

distribution over images as the training data was.
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to medical images, especially in the 3D case. Alternatively the labels can by syn-
thesised as part of the data (e.g. as additional channels), but this significantly
increases the data dimensionality and does not facilitate controllable synthesis.

Lastly, a number of methods that straddle the line between augmentation
and synthesis have been proposed, and generate realistic 3D data through shape-
model based image deformations [8,12], or from in silico phantoms [13]. However,
direct generation of 3D (volumetric) medical image data, to the best of our
knowledge, has not yet been demonstrated.

Factored representation learning, i.e. learning representation in which
we disentangle “[d]ifferent explanatory factors of the data [that] tend to change
independently of each other” [14], is a growing topic in both machine learning and
medical image analysis. However, it has recently been shown that factorisation
without guiding prior knowledge is not beneficial in general, and the representa-
tions learnt do not facilitate improvement in down-stream tasks [15]. In this work
our factorisation is explicitly grounded, relying on the fact that medical images
result from both a patient’s anatomy and an imaging procedure. We make use
of this prior knowledge to learn a powerful model without labelled data. Pre-
vious work has demonstrated the benefit of factorisation of medical images for
segmentation tasks [16,17], and outside of medical imaging there have also been
demonstrations of factored representations leveraged to implicitly register data,
e.g. on 2D face images [18].

3 Proposed Approach

In this section we describe the proposed approach. A schematic of the connections
between the various model components is shown in Fig. 3, and below we describe
each element of the model in detail.

Fig. 3. An overview of the proposed model. An image volume X is given as input, from
which the parameters for an affine transform (θa) are predicted through a variational
encoder-decoder (VED) network (with latent representation za). This affine transfor-
mation is applied to X producing X ′. Next, parameters for a non-linear transformation
(deformation) θw are predicted from X ′ (via another VED), and this deformation is
applied to the learnt anatomical model M yielding M ′. Next, a final VED predicts
parameters θr from X ′, and these parameters are used to render M ′, i.e. map it to an
image. Finally the rendered image is aligned with the input X by applying the inverse
affine transform. During training the encoder networks, decoder networks, and the
anatomical model M are learnt. The other components have no learnable parameters.
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Fig. 4. Example of a 8 × 64 × 64 × 6 voxel learnt anatomical model. The model was
learnt with six tissue types and then clustered into six classes for visualisation with
one color per class. The base to apical slices are shown from left to right. It can be seen
that, although learnt without supervision, various anatomical parts are clearly visible,
such as the ventricular cavities, the myocardium and the chest wall.

Anatomical Model. The proposed approach involves learning an anatomical
model M : a multi-channel volume of size S × W × H × C. S is the number of
slices in the volume, W and H are the in-plane image dimensions (in pixels),
and C is the number of channels. C can be seen as a hyper-parameter which
defines the maximum number of different ‘materials’ (or ‘tissue types’) in the
anatomical model. We restrict M such that for every voxel the values across the
channels dimension sum to one. Intuitively, this can be understood as letting
the values across the channel dimension represent the relative proportion of
each tissue type found in each voxel. To implement the model we directly learn
the (unconstrained) values of a volume Mpre (identical in size to M) during
training, and define M := softmax(Mpre) where the softmax is over the channel
dimension. An example of a learnt anatomical model is shown in Fig. 4.

Variational Encoder-Decoder Networks. Our model employs three varia-
tional encoder-decoder [19] networks (VEDs). Each of these networks consists
of an encoder, which encodes the input to a latent vector, and a decoder, which
maps this latent vector to the required output. The first VED takes as input the
original image volume X and predicts affine transformation parameters θa. The
second VED takes as input the affine-transformed image volume X ′ and pre-
dicts the non-linear warp parameters θw, and the third VED also takes as input
the affine-transformed input volume X ′, and predicts the rendering parameters
θr. We define θt = {θa, θw}, i.e. the parameters of the full transformation. We
employ the VED approach so that, as in the variational auto-encoder [19], we
learn a low-dimensional latent representation for each input, and during training
we encourage the posterior over the latent space to be a standard Gaussian dis-
tribution, allowing us to use the model in a generative way by sampling zt and zr
for standard Gaussian distributions (see Fig. 2). Each encoder is three 32 channel
3× 3× 3 convolutions with stride (1, 2, 2) then two 128 neuron dense layers and
a final dense layer of the required size with no activation. The decoders are the
same as the dense layers of the encoders. We use ReLU activations thoughout.
The latent spaces zw, za, zr are size 64, 16, 16.

Transforms. The first step of the pipeline is to transform the input volume
using an affine transform such that the input is approximately aligned with the
anatomical model. After this transformation the model and input volume have
the same overall orientation and scale, but are not co-registered at the individual
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voxel level as this requires a further non-linear registration step (see below). The
affine transform is specified by θa ∈ R

12. Note that later in the processing we
invert the predicted affine transform. This is only possible if the matrix is non-
singular, however we found that the reconstruction cost itself is sufficient to
ensure this condition is met, and no additional regularisation is required.

The next step is to perform a non-linear deformation of the anatomical model
M to produce a dense correspondence with the (affine-aligned) input volume X ′.
We investigated several deformation methods but found that directly predicting
a dense offset field (with suitable regularisation, see Sect. 3 for details), pro-
duced the best results. Thus θw ∈ R

S×W×H×3. Although this deformation is not
required to be invertible by the model, encouraging invertibility provides strong
regularisation, and allows for co-registration of volumes via their predicted defor-
mations.

Rendering. The final step is to convert the warped anatomical model into an
image. We refer to this step as ‘rendering’. In order to encourage the anatomical
model to capture as much information as possible we restrict the renderer to a
simple network that assigns a single colour per tissue. Specifically, the simple
render learns just C weights (and a bias) and performs a weighted sum of the
anatomical model’s channels to yield the final image. After training the model
we then learn a 2D SPADE-based renderer [1], leveraging the predicted dense
segmentation masks, which we up-sample to 128 × 128.

Loss Function. We train the model end-to-end to minimise the mean-absolute-
error of the reconstruction, LMAE . Additionally, we minimise the KL divergences
of zt and zr from standard Gaussian distributions (loss component LKL). This
is done using the reparameterisation trick, as in the original VAE [19].

To regularise the non-linear transformation (and encourage invertability) we
minimise Ldet(J) = |1−det(J)|, where det(J) is the determinant of the Jacoboian
of the non-linear transformation. We also minimise the overall offset resulting
from the combination of the affine and non-linear transformations, Loffset, this
encourages the model to minimise the distance between a voxel’s initial position
in the model and its final position after both transformations. We weight the z
direction of this offset to account for the volume’s non-isotropic resolution.

The overall loss function is defined as λ1LMAE + λ2LKL + λ3Ldet(J) +
λ4Loffset where λs are hyper-parameters that appropriately scale each loss and
determine their relative importances, set empirically to 1, 0.001, 0.1 and 0.0001
respectively.

4 Experiment Details

4.1 Data and Pre-processing

We make use of two datasets: ACDC (Automated Cardiac Diagnosis Chal-
lenge) [20] consists of cardiac magnetic resonance images (MRI) of 100 patients,
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both healthy (20%) and unhealthy (80%). We preprocess the data by resampling
to 1.3×1.3 mm in-plane resolution (keeping the inter-slice resolution unchanged).
We then crop the in-plane image to a 144 × 144 pixels. In total we have 200
(100 end-systolic (ES) and 100 end-diastolic (ED)) volumes, each with an aver-
age of 9 slices. The CHAOS (Combined Healthy Abdominal Organ Segmenta-
tion) dataset [21–23] consists of Abdominal CT and MRI images from different
patients. Here we use the CT data and the T1-DUAL in phase MR images, and
preprocess the data as done for ACDC, additionally downsampling to 8 slices.

4.2 Training Details

In all experiments we first train the proposed model for 2,000 epochs using
Adam [24] with default parameters, a learning rate of 0.01, and a batch size of
32. We use online data augmentation to enhance the seen data variation: we
randomly select an 8 × 128 × 128 sub-volume, down-sample to 8 × 64 × 64.

After training the initial model we then train the SPADE-based renderer on
2D image-mask pairs (at 128 × 128 resolution). The voxels in the anatomical
model are not discrete classes, but rather contain ratios of the tissues. Thus,
in order to make discrete multi-class segmentation maps we perform K-means
clustering on the voxels. This produces K distinct classes of voxel, which we use
for the segmentation map. We then train the original SPADE model on our data.

5 Results

2D and 3D Synthesis. Given Gaussian noise as input, the learnt model syn-
thesises coherent 3D volumes (from which a 2D slice can then be randomly
sampled if required, see Fig. 1). We visualise two example volumes in Fig. 5. As
can be seen, the data is anatomically coherent both within and between slices,
and the synthetic data is not simply memorised from the training set.

Label Transfer. We evaluate few-shot segmentation on ACDC by using a small
number of volumes to learn labels for the anatomical model, then encoding test
volumes and evaluating the Dice between the real labels and the labels of the
warped anatomical model. Averaged over 10 splits we achieve Dice scores of 69%,
67%, 63%, 60% and 55% for 150, 50, 10, 3 and 1 shot label transfer respectively
(over three classes: myocardium and both ventricular blood-pools). Although
these results are lower than those produced with supervision they are on par
with results learned from unpaired data [25]. It should also be noted that the
training data is used only to learn the labels for the anatomical model, the model
itself remains constant, and thus the model’s correspondence is at least 69%.

Latent Space Interpolation. First we perform Pseudo 4D synthesis. We take
the ES and ED volumes from an ACDC patient and interpolate (in the latent
space) between their anatomical model deformations. This produces a smooth
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Fig. 5. Two example 3D synthetic image sets (128× 128× 8 voxels). Each 3D image
consist of 8 short-axis slices. The first three rows show the sampled anatomical model,
result of the simple renderer, and result of the SPADE-based renderer. The final row
shows, for each generated slice, the most similar slice (l2 norm) from the (augmented)
training set.

Fig. 6. Example “4D” synthesis (8× 128× 128 voxels, 10 frames). Each frame consist
of 8 short-axis slices, here we show two slices due to space constraints. See text for
details.

Fig. 7. Latent interpolation on ACDC (top) and CHAOS (bottom). In each row the left
and right most images are real, and the ten central images show reconstructions (using
the simple renderer) when interpolating linearly between the latent representations of
the outer images. It can be seen that both the shape and intensities smoothly transition.
Note the second row shows a multi-modal transition between CT and MR.

continuum of anatomies between the two cardiac phases. We then render all vol-
umes using the SPADE-based renderer, resulting in 4D data for half of a cardiac
cycle. The results are shown in Fig. 6. As only ES and ED frames were used for
training the figure should be taken more as an example of the models ability to
meaningfully interpolate, rather then as realistic synthesis of cardiac motion, as
the intricacies of the cardiac dynamics may not be captured. We further examine
the learnt latent space of the model through additional interpolations in Fig. 7.
In particular, results on CHAOS demonstrate multi-modal interpolation.



118 T. Joyce and S. Kozerke

6 Conclusion and Discussion

We have presented a method for synthesis of medical image data via a learnt
anatomical model and factored representation. Image volumes are represented
as an anatomical factor zt (model deformation) and an rendering factor zr.
Factoring the task in this way breaks the synthesis process into two simpler
problems which can be solved in parallel. Further, the approach has a number
of benefits: it emulates the real factored nature of medical image generation into
patient and protocol, learns a multi-tissue (generative) shape model, implicitly
co-registers all volumes (i.e. both training and synthesised), and allows for multi-
modal learning by explicitly capturing the shared anatomical and discrepant
appearance information. Additionally, it yields dense segmentation masks for all
volumes, and this combined with the model’s modular nature means the render
can be replaced by a state-of-the-art conditional synthesis model after training.
We believe the proposed method can be readily applied to a range of medical
synthesis tasks.

Lastly, our method uses a voxelised anatomical model. Future work look-
ing instead at learning continuous (e.g. mesh-based) anatomy would open up a
number of research directions, e.g. allowing simulating k-space acquisition and
reconstruction without committing “inverse crime” [26]. This would allow the
rendering process to move towards simulating full MRI acquisition and recon-
struction.
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Abstract. Image registration is a fundamental step in medical image
analysis. Ideally, the transformation that registers one image to another
should be a diffeomorphism that is both invertible and smooth. Tradi-
tional methods like geodesic shooting study the problem via differential
geometry, with theoretical guarantees that the resulting transformation
will be smooth and invertible. Most previous research using unsuper-
vised deep neural networks for registration address the smoothness issue
directly either by using a local smoothness constraint (typically, a spatial
variation loss), or by designing network architectures enhancing spatial
smoothness. In this paper, we examine this problem from a different
angle by investigating possible training mechanisms/tasks that will help
the network avoid predicting transformations with negative Jacobians
and produce smoother deformations. The proposed cycle consistent idea
reduces the number of folding locations in predicted deformations with-
out making changes to the hyperparameters or the architecture used in
the existing backbone registration network. Code for the paper is avail-
able at https://github.com/dykuang/Medical-image-registration.

Keywords: Unsupervised registration · Cycle consistent training ·
Folding deduction

1 Introduction

Image registration is a key element of medical image analysis. Most state-of-the-
art registration algorithms, such as ANTs [1], can utilize geometric methods that
are guaranteed to produce smooth invertible deformations that are much desired
in medical image registrations. A revolution is taking place in the last couple
of years in the application of machine learning methods. Especially, the method
of convolutional neural networks have made impressive progresses and caused a
lot of attentions. While recent registration networks can make predictions of the
nonlinear transformation much faster and obtain registration accuracy compa-
rable to or better than traditional methods, they usually do not have theoretical
guarantees on the smoothness or invertibility of their predicted deformations.
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Supervised methods, such as in [8,11,13], learn from known reference defor-
mations for training data – either actual “ground truth” in the case of synthetic
image pairs, or deformations computed by other automatic or semi-automatic
methods. They usually do not have problems of smoothness, but still rely on
other tools such as ANTs running ahead to produce desired transformations.
The registration problem is much harder in the setting of unsupervised meth-
ods. Most of the early unsupervised approaches like [2,7,10,12,14] take the idea
of spatial transformer (ST) [4]. This spatial transformer used in registration usu-
ally consists of two basic functional units: a deformation unit and a sampling
unit. With input x (source image) and y (target image) stacked as an ordered
pair, the deformation unit produces a static displacement field u : R3 → R3.
The warped image ỹ is then constructed in the sampling unit by interpolating
the source image with u via ỹ = x(Id + u), where Id is the identity map. As a
summary, the right action of diffeomorphism φ on image x is approximated by
φ ·x = x◦φ−1 ≈ x(Id+u). The smoothness constraint on u is usually addressed
by regularizing its derivative Du. The work [2] is one representative and Fig. 1
shows the work flow of the idea introduced as above. The whole network is
trained so that it minimizes the loss: CC(y, ỹ) + λ||Du||l2 , where CC stands for
cross correlation loss and λ is a hyperparameter controlling the strength of the
regularization.

Fig. 1. An overview of the registration network usually used for registration. The popu-
lar U-net architecture [9] is used as the deformation unit for generating the displacement
field.

These work emphasize more on the accuracy and efficiency of registration
when compared to classical methods but usually did not put equal attentions
on checking geometric properties such as smoothness, invertibility or orientation
preservation for the predicted deformations. Particularly, Jacobian determinant
of the predicted transformations i.e. det(Dφ−1) ≈ det(Id + Du) from a neu-
ral network can very likely be negative at multiple locations. This “folding”
issue during prediction may still persist even when one increases regularization
strength of Du (see Fig. 2). Additionally, the value of this hyper-parameter is
usually difficult to set in practice in order to reach a good balance between nice
geometrical properties1 and registration accuracy, since larger λ values often
cause smaller deformations reducing the accuracy.

1 In the paper, it will mainly refer to smoothness, invertibility and particularly, trans-
formations has positive Jacobian determinant everywhere.
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Fig. 2. A snapshot of at the same location of the projected warped grid with different
regularization strength. From left to right, the network is trained with λ = 1, 2, 4
separately. The same location is also used in Fig. 7.

Built upon previous research, state-of-the-art works like [3] proposes a proba-
bilistic VoxelMorph (Prob-VM) design that takes a reparametrization trick and
inserts an “integration layer” trying to produce smoother deformation. From
modeling point of view, this process-oriented modeling is usually difficult and
requires much effort to design a new architecture ahead of time that is proved to
be effective later on general data. In order to make an easier modeling process
avoiding going inside the box to handcraft an ideal architecture, one can keep the
original network with possible flaws untouched but instead seek a different train-
ing mechanism/task that is possible to achieve better regularization implicitly.
This thought of task-oriented modeling may reveal an alternative way for solv-
ing the same problem. In this paper, we take this direction and propose a cycle
consistent design for training unsupervised registration networks by assigning
an additional task to it. The idea requires no modifications of backbone net-
work’s architectures, form of loss functions or hyperparameters used, hence can
be used upon any well-known backbone registration networks. From our exper-
iments with VoxelMorph as the backbone network, the proposed idea reduces
chances of negative Jacobian determinant in its predicted transformations and
can achieve comparable results with Prob-VM.

2 Related Work

To author’s best knowledge when completing this paper, [15] and [3] are most
relevant research in reducing negative Jacobian. Our proposed idea represents
a different strategy in solving the problem (see Fig. 3). [15] designed an inverse
consistent network and argued adding an explicit “anti-folding constraint” to
prevent folding in predicted transformation. Different from his work, we do not
create new forms of losses targeting on specific properties, but focuses on dis-
covering possible training mechanisms/tasks that will help better regularize the
network in a general way. [3] is developed upon [2] by integrating an variational
auto-encoder design and inserting an integration layer that “integrates” initial
velocity field to get the final displacements. Unlike their work on modifying back-
bone architectures for better performance, the cycle consistent idea in this paper
leaves the backbone network untouched but achieves regularization implicitly by
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adding one more task of recovering the source image from its already predicted
image during training. This additional task is meant to help narrow the solution
domain where non-smooth or non-invertible transformations are hardly inside
during optimization.

3 Proposed Methods

3.1 Cycle Consistent Design

Fig. 3. Two directions for addressing folding
issues in prediction.

From the mathematical point of
view, the transformations used in
registration tasks should ideally be
diffeomorphisms so that topological
properties are not changed during the
transformations. In order to approx-
imate the ideal deformation, training
of the network should also respect
this invertibility property. In fields
such as computer vision, there have

already been research such as [16] utilizing this idea for better quality control
of cross-domain image generations. In their work, they defined two joint cycle
consistent loops for better training two separate generative adversarial networks
for unpaired image-to-image translation back-and-forth. We use a related idea
in a different setting here for regularizing the predicted static displacement field.
This “cycle consistent” idea does not involve new form of losses but forces the
same network to perform a backward prediction trying to recover the input right
after it completes the forward prediction. As seen in Fig. 4, the spatial trans-
former will first predict a warped image ỹ and the corresponding displacement
field ux→ỹ with the stacked source image x and target image y. This predicted
warped image ỹ (now as source) is then stacked with the original source image x
(now as target). They will be fed into the same spatial transformer to produce a
reconstruction x̃ for x and corresponding inverted displacement field uỹ→x̃. The
whole network is trained with the cycle consistent loss:

CC(y, ỹ) + λ||Dux→ỹ||l2 + CC(x, x̃) + λ||Duỹ→x̃||l2 (1)

While it is straightforward that this design directly addresses the invertibility
of the network, the cycle constraint task also contributes to the task of learning
a smooth solution in an indirect way: the design regularizes the network by
forcing the spatial transformer to learn a solution and its possible inverse at the
same time. This helps the network rule out transformations that are not cycle
consistent during optimization. This design also does not add any additional
learnable parameters to the original spatial transformer and can be trained as
equally efficient.
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Fig. 4. A diagram illustrating the cycle
consistent design.

Though similar, this idea is also
different from bi-directional registra-
tions where the target image will
also be warped towards the source
image during optimization. In our
design, the target image will never be
warped. To be more specific, given
loss function L and input source-
target image pair (x, y), the neural
network with parameters θ learns the
mapping f to transform x towards y:
y ≈ f(θ; (x, y)). The two optimization problems can be vaguely summarized as
below in Table 1:

Table 1. Different object function optimization formulations between bi-directional
registration and cycle-consistent training.

Methods Formulations of optimization

Bi-direction: arg minθ L(y, f(θ; x, y )) + L(x, f(θ; y, x ))

Cycle-consistent: arg minθ L(y, f(θ; x, y )) + L(x, f(θ; f(θ; x, y ), x ))

Bi-direction registration uses both pairs (x, y) and (y, x) as inputs, while the
cycle-consistent training only uses (x, y). They are equivalent if there exists a
“perfect” deformation that aligns the registration pair and this transformation
f can be learned with parameters θ during training: y = f(θ; (x, y) ).

4 Experiment

4.1 Dataset

We used MindBoggle101 dataset [6] for experiments. Details of data collection
and processing, including atlas creation, are described in [6]. In the present
paper, we used brain volumes consisting of the following three named subsets of
Mindboggle101:

– NKI-RS-22: “Nathan Kline Institute/Rockland sample”
– NKI-TRT-20: “Nathan Kline Institute/Test–Retest”
– OASIS-TRT-20: “Open Access Series of Imaging Studies/ Test–Retest”.

Each image has a dimension of 182× 218× 182, we truncated the margin reduc-
ing the size to 144 × 180 × 144. These images are already linearly aligned to
MNI152 space. We also normalized the intensity of each brain volume to [0, 1]
by its maximum voxel intensity. Figure 5 shows one subject of the dataset with
two annotated labels. Labels used in Mindboggle101 data set are cortex sur-
face labels. Their geometrical complexity leads to more challenging registration
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tasks, especially for neural network approaches. In the following experiments,
the original VoxelMorph network [2] will be used as the backbone network. This
backbone network alone, it with cycle consistent design and the probabilistic
VoxelMorph will be compared. The backbone method and the method with cycle
consistent design are trained with λ = 1. Unless specifically stated, epochs = 10
and “Adam” optimizer [5] with learning rate 10−4 are used for all the three
networks.

Fig. 5. One sample with
two ROI labels shown. Bot-
tom: the two labels viewed
from a different angle

We access the accuracy of predicted registration
via dice score between ROI labels/masks. For image
pair (x, y), each indexed label Li

x associated with
x will be warped with the deformation φ predicted
from the registration network, dice score is then cal-
culated. A higher dice score usually indicates a bet-
ter registration.

Dice( (φ · Li
x), Li

y ) =
2|(φ · Li

x) ∩ Li
y|

|φ · Li
x| + |Li

y|
(2)

We first visualize this metric on test set (OASIS-
TRT-20) in Fig. 6. It gives a detailed summary of
dice scores on separate regions for registration. All
the three neural network approaches appear to pro-
vide similar dice scores for most regions and slightly
outperform the non-neural-network-based method
such as Ants’ SyNQuick algorithm. As will be illus-
trated later in details, these similar dice scores are actually results of deforma-
tions that have different Jacobian properties. The foldings of the deformation
is accessed via examining locations where negative Jacobian determinants hap-
pen. Let P be defined as the percentage of voxel locations where the Jacobian
determinant is negative over all voxels V , i.e.

P :=
∑

δ(det(Dφ−1) < 0)
V

.

The ideal transformation predicted should have this number as small as possible.
To better access the general performance of our proposed methods, we perform a
3-fold validation2 with the 3 datasets at hand. We summarize this number from
different methods into Table 2 for comparison. The author reminds readers that
Table 2 is not for the purpose of competing with Prob-VoxelMorph or Ants’ SyN-
Quick, but simply a demonstration that an indirect task oriented method such as
the proposed cycle-consistent training can also achieve comparable registration
quality with state-of-the-art method such as Prob-VoxelMorph. To support this,
results from some statistical hypothesis tests are organized in Table 3.

2 Each fold will use 2 of the 3 datasets for forming training set and test on the third.
Figures 6 and 7 are from the fold when pairs from OAISIS dataset are used as test.
This experiment has 1722 training pairs and 380 test pairs.
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Fig. 6. Mean dice scores of different methods on selected regions. Each point is the
mean dice score averaged over corresponding ROI labels per registration pair instead of
over the union of labels in that region. Results from SyNQuick algorithm in the ANTs
package are also listed as an example for better interpreting these dice scores, but not
for the purpose of comparison.

It is clear that Table 2 suggests there are differences of the underlying trans-
formation in terms of the measures introduced as above. From the cross vali-
dation results, the baseline method has a mean value of 1.97% locations where
Jacobian determinants are negative. When the cycle consistent design is applied,
this value drops to 0.13%. In other words, more than 90% of the unsatisfactory
locations happening in the baseline prediction are eliminated (H0 can be rejected
with p-value = 0.02 in test I). This result is very close to the performance of
probabilistic VoxelMorph with 0.03% improvement in μ(P ) (whether to adopt
or reject H0 will depend on one’s confidence level with p-value = 0.05 in test
II) and 0.9% “higher” mean dice score (H0 cannot be rejected with such a large

Table 2. Summary of metrics with the 3-fold validation, mean (μ) and the standard
deviation (σ) calculated over the 3 folds are shown. Since Ants’ SyNQuick method does
not require training set to register a pair of images, folds split is not appropriate for
its evaluation. We only record mean values from registering all the pairs in the whole
dataset for comparison.

Method μ(P) σ(P) μ(Dice) σ(Dice)

Ants’ SyNQuick ≈0 47.63%

VoxelMorph 1.97% 0.59% 49.83% 0.17%

Prob-VoxelMorph 0.16% 0.05% 47.25% 0.19%

Cycle consistent 0.13% 0.04% 48.10% 0.86%
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Table 3. Some hypothesis tests results summarized from the 3-fold experiments.
Abbreviations used: CC for “VoxelMorph with Cycle-Consistent training”, VM
for “VoxelMorph without Cycle-Consistent training” and PVM for the “Prob-
VoxelMorph”.

Null Hypothesis H0: Test performed p-value

I: μ(P)|CC ≥ μ(P)|V M One tailed paired t-test 0.02

II: μ(P)|CC ≥ μ(P)|PV M One tailed paired t-test 0.05

III: μ(Dice)|CC = μ(Dice)|PV M Two tailed paired t-test 0.23

p-value in test III of Table 3, hence this improvement is not statistical significant,
the two methods are comparable in this measure). As a summary, these results
suggest the two different directions (direct ways as Prob-VoxelMorph and indi-
rect approaches as Cycle-Consistent training) have comparable effects in terms
of reducing foldings locations while maintaining registration accuracy.

For better visualization, we also put one slice of the Jacobian determinant
map and the projected warped grid on the same slice in Fig. 7. The transfor-
mation for visualization used in the figure is predicted on the pair formed by
subject OASIS-TRT-3 (source) and subject OASIS-TRT-8 (target).

Fig. 7. Determinant of Jacobian map and the warped grid projected on the same slice.
From left to right: the basline VoxelMorph prediction, the Probabilistic VoxelMorph
and baseline with cycle consistent design. Locations where determinants are negative
are shown in red. (Color figure online)

Figure 7 shows an example of locations with negative Jacobian determinants.
This help give an intuitive view of what happened behind the curtain. From
the warped grid columns, one can clearly see networks with cycle consistent
design did not change much in locations where the baseline prediction are already
smooth but put attentions on foldings and “unfold” them to produce a smoother
transformation. Note that the grid shown in the upper right corner of cycle
consistent result is smoother compared to the grid shown in the middle of Fig. 2
where the regularization strength is doubled (i.e. λ = 2). The color map of Prob-
VoxelMorph looks pale because there exists at least one location with a large
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Jacobian determinant value in this random example. In this case, most locations
with Jacobian determinants relatively smaller will be renormalized close to zero
during the normalization step when creating the color map.

5 Conclusion

We contribute the idea of cycle-consistent training for reducing locations of nega-
tive Jacobian determinants occurred in deformations when a deep neural network
is used for unsupervised registration tasks. Unlike most other approaches that
address the problem directly by creating new losses or developing new archi-
tectures for regularization, this paper focuses on another direction that could
bring improvements implicitly by adopting different training mechanisms. The
idea does not require changing anything from the backbone network and hence
can be used upon arbitrary registration networks. Heuristically, the additional
cycle-consistent task during training forces the network to learn recovery trans-
formations at the same time, hence help narrow down the solution domain dur-
ing optimization. While the theoretical support for this idea still needs to be
investigated as part of future research, experiments have shown that this indi-
rect approach is capable of obtaining comparable results with state-of-the-art
methods in terms of reducing negative Jacobian determinants while maintaining
registration accuracy.
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Abstract. In 3D medical imaging, images with isotropic high reso-
lution (HR) are almost always preferred. In practice, however, many
acquired images, including magnetic resonance imaging (MRI) and fluo-
rescence microscopy, have HR in the in-plane directions and low resolu-
tion (LR) in the through-plane direction. The blurriness and aliasing arti-
facts that result cannot be solved by simple interpolation. Instead, many
researchers have proposed super-resolution algorithms including state-
of-art convolutional neural network (CNN)-based methods that require
matched training data that have paired LR/HR examples. Since these
data are often unavailable in practice, self super-resolution algorithms
that do not need external training data have also been proposed. These
self super-resolution methods assume that the in-plane slices are HR, and
can therefore be used as HR training data. By degrading them into LR
images, 2D CNNs can be trained and then used to restore the images in
the through-plane. However, there are two issues with these approaches.
The first one is that the assumption of HR in-plane slices is actually not
solid since these thick in-plane slices are averaged true HR thin slices.
Training on thick slices is equivalent to training on averaged true HR
images, which is suboptimal. The second one relates to the 2D CNNs
used on 3D volume, which cannot guarantee slice consistency. Regarding
both issues as well as the generalizability of algorithm, we made four
contributions. We show in this paper that one of the existing 2D CNN-
based self super-resolution methods, SMORE, can be further improved
by iteratively applying it using 2D or 3D networks, yielding 2D and 3D
iSMORE. This iterative framework improves training data from thick
slices to thinner slices after each iteration, thus improves super-resolution
accuracy after each iteration, and solves the first issue. The second con-
tribution is that it uses a 3D network to preserve slice consistency. The
third contribution is the use of an edge-based loss function and noise
reduction to enhance the performance. Finally, we perform iSMORE on
both MRI and two-photon fluorescence microscopy, which demonstrates
its generalizability.
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1 Introduction

In 3D medical imaging, high resolution (HR) images with adequate signal-to-
noise ratio are always preferred since they provide more anatomical details in
clinical and research applications. For magnetic resonance imaging (MRI), such
images cost more money, because they require long acquisition times, and are also
prone to motion artifacts. For fluorescence microscopy, the resolution is affected
by acquisition time, optical settings, and imaging parameters. In practice, a
common trade-off is to acquire 3D images with high in-plane resolution and
lower through-plane resolution (slice thickness) to save acquisition time.

Degrading through-plane resolution saves time and money and also provides
good anatomical detail in the in-plane orientations. However, visualization and
analysis in the through-plane direction is difficult or impossible because of the
degraded low-resolution (LR). Since most automatic image processing algorithms
for 3D analysis require images with isotropic voxels, a common first step is to
interpolate the images to meet this requirement. However, interpolation does
not restore the missing high-frequency information, which makes the resultant
images blurry and (in some cases) rife with aliasing artifacts in the through-
plane direction. Consequently, degrading through-plane resolution also degrades
the performance of subsequent image processing tasks such as registration and
segmentation.

To improve the resolution from such anisotropic acquisitions, researchers have
developed many super-resolution algorithms. The state-of-the-art algorithms are
CNN-based that require LR/HR paired training data with contrasts and reso-
lutions that closely match the subject data. Unfortunately, such training data
is often unavailable. In such cases, self super-resolution (SSR) algorithms that
do not require external training data are applicable. Researchers have developed
SSR methods that have impressive performance, including Jog et al. [3], Weigert
et al. [9] and Zhao et al. [10,11]. These SSR methods assume that the in-plane
slices of the subject image are HR and can therefore be used as HR training
data. By blurring these images in an in-plane direction, these LR images can
be used with the original HR images to train a super-resolution (SR) regressor,
which is then applied in the through-plane direction to improve the through-
plane resolution of the original data. These methods use different SR regressors.
Jog et al. [3] used Anchored Neighborhood Regression [7]; Weigert et al. [9] used
a 2D U-net [6]; and Zhao et al. [10,11] used a 2D EDSR network [4], which is
one of the state-of-the-art SR networks [8].

Although these SSR algorithms show substantial improvement compared to
interpolation, they make an assumption that does not hold up to scrutiny. To
explain, consider a thick in-plane slice. Although it has the appearance of HR,
it does suffer from through-plane blurring. Edges that pass through the slice
orthogonally will appear to be sharp while edges that pass through obliquely
will appear to be blurry. An example can be found from the Fig. 2 of Zhao et
al. [12]. In this figure, although the axial plane is considered as HR in-plane,
we can see that the axial slice of subject image suffered from through-plane
blurring, especially near the ventricals. This is because the thick in-plane slices
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can be considered as averaged HR thin slices, and the averaging brings blurring.
Training on thick slices is equivalent to training on averaged true HR images,
which is suboptimal. Using these blurred in-plane slices as HR training data will
degrade the performance of the SSR algorithm.

Another issue with the previous CNN-based SSR methods is that they all
use a 2D CNN on 3D volumes. We know that 2D CNN cannot guarantee slice
consistency. This is especially important for 2D protocols, i.e., where images are
acquired in 2D and then stacked into 3D volumes. Such 2D acquisitions may
not have good slice consistency at the outset, and applying a 2D CNN on them
can only make the slice consistency worse. For these 2D protocols, a 3D CNN is
preferred, yet this has not been reported for SSR.

The third issue is that the previous SSR methods are only applied in a single
image modality with no guidance on how to modify them for other modalities.
Weigert et al. [9] developed a method for confocal and light-sheet microscopy
data of cells. The SSR method in Jog et al. [3] and one of the SMORE methods,
which we refer as SMORE(3D) [10], were developed for MRI acquired from 3D
protocols. The other SMORE method, which we refer as SMORE(2D) [10], was
developed for MRI acquired from 2D protocols. SMORE has been demonstrated
on various of MRI datasets [12], and is therefore chosen as the baseline method.
To push it forward, we will demonstrate our methods on two image modalities.

Regarding these issues, this paper describes iSMORE and its four major
contributions: (1) an iterative SSR framework, (2) a new 3D CNN for SSR, (3)
new loss function and noise reduction, (4) application to two image modalities.

2 Method

2.1 2D iSMORE

A workflow for the iterative framework of iSMORE is shown in Fig. 1(a). Con-
sider an input image g(x, y, z) with anisotropic spatial resolution—i.e, three full-
width-half-maxima (FWHM) of the point spread function—of a × a × b, with
a < b, and let the HR in-plane directions be x and y and the LR through-plane
direction be z. Our goal is to restore a HR image f with the resolution a×a×a.
Traditional SSR methods extract in-plane (xy-plane) slices with resolution a×a
from input image g, which are considered by these methods to be HR data,
apply a point spread function (PSF) which mimics the mechanism of LR in the
through-plane direction, and simulate LR data with resolution b × a from these
HR data with resolution a × a. The LR/HR pairs are used as training data for
super-resolution (SR) networks. The trained SR networks are then applied to
LR zx-plane slices with resolution b×a to restore HR at (ideally) a×a. Finally,
the super-resolved zx-plane slices are stacked in y-axis into a 3D volume, which
is the SSR result f1. This traditional SSR procedure is the first iteration in
iSMORE.

For input image g, the thick in-plane slices are actually blurred, so they are
not perfect training data. On the other hand, the SSR result f1 has thinner slices.
Thus, f1 has better through-plane resolution than input image g, and serves
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as better training data than g. Taking in-plane slices from f1 as HR training
data, we subsequently fine-tune the SR network. The fine-tuned network is then
applied to input g as in the first iteration, and the SSR result f2. We iteratively
perform these steps until the stop condition is met.

Fig. 1. (a) The framework of iSMORE. The sequence of super-resolution networks
(SR) are trained on the SSR result from the previous iteration, and SR is always
applied to the input data.(b) Architecture of 3D EDSR

We use SMORE as our baseline SSR method and apply our 2D iterative
framework to the SMORE result, yielding 2D iSMORE. Data augmentation for
training includes flipping and rotation except for rotation of 90◦, which is only
used for validation to avoid overfitting.

2.2 3D iSMORE and a New 3D Network

It is problematic to directly train a 3D network to perform SSR. If we degrade
the input image g into an LR image with resolution b × a × b, and train a 3D
network to learn the mapping from it to g, then it is wrong to apply the network
to the rotated input image g with resolution b×a×a because this resolution does
not match the LR training data with resolution b×a× b. This is the reason that
the previous CNN-based SSR methods all use 2D CNNs instead of 3D CNNs.

Again, we note that current SSR methods gives the result f1, which has
improved through-plane resolution. We assume f1 has resolution a × a × c, with
c ≈ a. Then in the second iteration, we degrade f1 into an image with resolution
b × a × c, and train a 3D network that learns the mapping from image with
resolution b×a× c to image with resolution a×a× c. The network is applied to
a rotated input image g with resolution b×a×a. Although these two resolutions
are not exactly the same, we believe that the trained network can tolerate this
inconsistency since c ≈ a. We iteratively perform these steps until the stop
condition is met.
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In this 3D iterative framework, the first iteration is SMORE using 2D net-
works, while the subsequent iterations use 3D networks. We designed a 3D EDSR
network, with the architecture shown in Fig. 1(b). Since only the first dimension
is LR, making all the convolutional kernel to be 3 × 3 × 3 is a waste of param-
eters. We therefore only use 3 × 3 × 3 kernels in the beginning and the end,
while the repeated residual blocks contain 3 × 3 × 1 and 3 × 1 × 3 kernels. The
feature number used is 256 as in 2D EDSR. Since 3D networks are more data
hungry than 2D networks, we use reflection padding instead of zero padding for
convolution to make good use of small training patches.

2.3 Modifications for MRI and Two-Photon Fluorescence
Microscopy

The choice of 2D iSMORE or 3D iSMORE depends on the data. 3D iSMORE
uses 3D CNN, which better preserves slice consistency yet is very time consum-
ing. 2D iSMORE on the other hand, saves time and is less prone to overfitting
since 2D CNNs are not as data hungry as 3D CNNs. For MRI and two-photon
fluorescence microscopy, we made different modifications to iSMORE.

MRI: SMORE(3D) [10] and SMORE(2D) [11] are SSR methods designed
for MRI acquired from 3D and 2D protocols. 3D MRI protocols acquire data
in 3D Fourier space while 2D MRI protocols acquire data in 2D Fourier space
(after slice selection). 3D MRI requires an inverse 3D Fourier transform for
reconstruction while 2D MRI requires a set of inverse 2D Fourier transforms for
2D slices which are then stacked to form a 3D volume. For MRI data acquired
from 3D and 2D protocols, we use corresponding SMORE as our baseline SSR
method, and apply our iterative framework on SMORE, yielding iSMORE.

For further improvement, we made another modification to SMORE. The
original method uses L1 loss

∑
x |f(x) − f̂(x)| to train the CNN to perform SR,

with x being the coordinates, f̂ being the output of the network, and f being
the ground truth images. In this paper, we use a Sobel filter to compute edge
maps of f̂ and f to define a new loss function, which is previously used in Bei et
al. [1]. The new loss function is

∑
x |f(x)− f̂(x)|+w|Sobel◦f(x)−Sobel◦ f̂(x)|,

with weight w = 1. We will demonstrate its effect in Sect. 3.1.

Two-photon Fluorescence Microscopy: Two-photon fluorescence micros-
copy data are acquired in 2D, and then stacked into 3D volumes, which is a
similar strategy at MRI acquired from 2D protocols. Thus we use SMORE(2D)
as the baseline method, but we make two modifications. First, the spatial resolu-
tion (defined as the FWHM of the PSF) in the z-axis of two-photon fluorescence
microscopy data is affected by the optical setting and imaging parameters. Ide-
ally, when the laser is perfectly focused, the PSF has a closed form model, which
depends on the numerical aperture (NA) of the optical system and the wave-
length of the laser used [2]. However, the ideal PSF is often unable to be achieved
in reality. Fortunately, we know that the orthogonal cross-section of the vessels
are close to isotropic circles, and the truth isotropic HR image should have same
property. Taking advantage of this fact, we can manually estimate the FWHM
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of PSF from those enlongated orthogonal cross-sections in the subject image by
computing the fraction between the width and height of these cross-sections. We
model PSF on z-axis as Asinc(βz/4)4 [2], with β computed from the estimated
FWHM.

Second, two-photon fluorescence microscopy data have a much higher noise
level than MRI. An example is shown in the first column of Fig. 3. SR networks
sharpen edges but also emphasize noise. To prevent further noise amplification,
we add noise to the LR training data but not to the HR data, thus forcing the
network to perform resolution enhancement and noise reduction at the same
time. The noise we add contains both Poisson noise and speckle noise to mimic
that seen in the LR subject image without noise reduction.

Finally, the two-photon fluorescence microscopy we are studying contains a
large number of vessels that pass through planes and the 2D network is not able
to capture enough 3D information. Therefore, we use 3D iSMORE applied to
the denoised version of SMORE(2D). The 3D network uses the 3D Sobel edge
loss.

3 Experiments

3.1 2D iSMORE on MRI from 3D Protocols

We compare 2D iSMORE to the original SMORE(3D) [10] using MRI down-
sampled following 3D protocols. The ground truth HR images are T2-weighted
images from 14 multiple sclerosis subjects imaged on a 3T Philips Achieva scan-
ner with acquired resolution of 1×1×1 mm. The high frequency signals in z-axis
are completely zeroed out to simulate 3D protocols. An additional Fermi filter is
applied to simulate an anti-ringing filter. The blurred LR images have resolution
1 × 1 × r mm, where factor r = {2, . . . , 6}. They are used as input images for
methods including zero filling interpolation, SMORE(3D) [10], iSMORE with
i= {1, . . . , 5} using SMORE (3D) as a baseline method.

Fig. 2. SSIM and PSNR results for different anisotropic ratios r. (a) Ratio of the
mean SSIM for zero filling interpolation, original SMORE [10], iSMORE with i = 1,
and iSMORE with i = 5 with respect to iSMORE with i = 1. (b) The ratio of mean
SSIM between iSMORE with i = 1, . . . , 5 and i = 1. (c) Same plot as (a) for PSNR.
(d) Same plot as (b) for PSNR
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We computed Peak Signal to Noise Ratio (PSNR) and the Structural SIMi-
larity (SSIM) for the results of these methods using the ground truth HR images
as references. The mean values are shown in Fig. 2(a) and (c). Note that the only
difference between ‘[10]’ and ‘i = 1’ is that our proposed iSMORE with i = 1
uses the Sobel edge loss, while ‘[10]’ does not. We see that the both the Sobel
edge loss and the iterative strategy of iSMORE always improves the mean SSIM
and PSNR. To show the significance of the improvement, we performed paired
two-tail Wilcoxon signed-rank tests for SSIM and PSNR values between each
pair of adjacent methods in Fig. 2(a) and (c), with p = 0.005. The significance
of improvement holds everywhere except for a single case in SSIM between ‘[10]’
and ‘i = 1’ for r = 6.

In Fig. 2(b) and (d), we show the same ratios as in (a) and (c) but this
time for the first five iterations of iSMORE. We see that greatest improvement
happens between i = 1 and i = 2. If time cost is an important concern, then
i = 2 is a good choice. Another finding is that generally the improvement from
the iterative framework is larger when the LR factor r is larger. Since there is
randomness including random initialization during CNN training, this finding is
not strict, yet holds true in general. A third observation is that the improvement
of PSNR is larger than SSIM. This might comes from the fact that the first step
in computing SSIM is to apply a Gaussian filter, which degrades the details.

3.2 3D iSMORE on Two-Photon Fluorescence Microscopy

We used serial two-photon tomography (STPT) to image brain blood vessel
images at cellular resolution in mice. To label blood vessel, a mouse was tran-
scardially perfused with 0.9% saline followed by 4% paraformaldehyde and a
Fluorescein isothiocyanate (FITC)-albumin conjugated gel. Detailed informa-
tion about STPT imaging was described in Ragan et al. [5]. Briefly, the brain
was embedded in 4% oxidized agarose and the embedded brain was placed on
the motorized stage in tissuecyte 1000 (Tissuevision). The brain was imaged at
1 µm (xy-plane) resolution with 5 µm z-axis increment for 200 µm thickness.

In Fig. 3, we show the original LR image, and results of cubic b-spline
interpolation (BSP), Content-AwaRE image restoration (CARE) [9] and
SMORE(2D) [11] with estimated z-axis FWHM of 15 µm, the denoised ver-
sion of SMORE(2D), and the proposed 3D iSMORE after the third iteration.
CARE [9] is a SSR tool designed for fluorescence microscopy with a denoise
option, and has publicly available code. Compared with the original LR image,
BSP result has less noise and is blurry. The CARE result is sharp and relatively
clean, yet many cross-sections of vessels in it are not ellipses, which implies that
CARE contains sharp artifacts. The SMORE result is much sharper than BSP,
but is very noisy. The denoised version of SMORE assumes Poisson noise and
30% speckle noise as described in Sect. 2.3, yielding result with much less noise,
which forms our first iteration. In the second and third iterations, we train the
3D EDSR from the results of last iteration and apply it to the BSP image. The
result of the proposed 3D iSMORE has vessels with more isotropic cross-sections,
and contains the fewest artifacts in this comparison.
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Fig. 3. Views from three orthogonal planes of the original LR image, the cubic B-
spline (BSP) interpolated image, result of CARE [9], SMORE(2D) [11], our denoised
version of SMORE(2D) which is also the first iteration of iSMORE, and our proposed
3D iSMORE with i = 3
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Fig. 4. Maximum intensity projection (MIP) on three orthogonal planes of the orig-
inal LR image, the cubic B-spline (BSP) interpolated image, result of CARE [9],
SMORE(2D) [11], our denoise version of SMORE(2D) which is also the first itera-
tion of iSMORE, and our proposed 3D iSMORE with i = 3

It is very difficult to obtain isotropic HR ground truth for STPT data since
owning laser device with isotropic PSF is not common. Thus metrics like SSIM
and PSNR are not available. In order to show its overall performance in the
3D volume, we perform maximum intensity projection (MIP) on three planes,
and show the MIP results in Fig. 4. Visually, the MIP of the proposed method
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iSMORE looks the most isotropic and clear. CARE also provides a good MIP,
yet the artifacts shown in Fig. 3 cannot be ignored.

4 Conclusion and Discussion

In this paper, we described 2D and 3D iSMORE, an iterative framework built
upon the SMORE method. The idea behind iSMORE is that thick in-plane slices
are not as good training data as thin slices. Using this idea, iSMORE improves
the performance of SMORE. And more importantly, it enables a 3D network,
which solves the slice consistency issue raised by 2D networks used in previous
SSR methods.

There are some details of iSMORE that we would like to discuss. First,
we used SMORE with only one orientation, while the original SMORE used
two orientations [10,11]. In practice, we found that reducing the orientation
number from two to one does not reduce the SSIM significantly, but it cuts the
computation time in half. This strategy is also adopted by another paper from
the author of SMORE [12]. Future work will include a more detailed exploration
on the choice of number of orientations. Second, it might be confusing that
we use 2D iSMORE for images with 3D protocols, while using 3D iSMORE for
images with 2D protocols. To clarify, 2D/3D protocols are not same with 2D/3D
iSMORE, which refers to 2D/3D CNN. Although 3D iSMORE preserves slice
consistency, 2D iSMORE uses a 2D CNN, is easier to train, and saves time.
One more iteration takes about 20 mins for 2D iSMORE, and more than 1 h for
3D iSMORE on microscopy data. Images acquired with 3D protocols already
have good slice consistency, so 2D iSMORE is able to handle them. For images
acquired with 2D protocols, slice consistency is more of a concern. Thus, 3D
iSMORE is a better choice in this case, with the penalty of larger compute time.
Third, the number of iterations of iSMORE in this paper is manually set. To
clarify, due to time cost, we do not recommend a large number of iterations. From
Fig. 2(b) and (d), we found that mean SSIM/PSNR increase monotonically as
iteration i increases from 1 to 5. However, we only recommend use of i = 2 for
this dataset since time increases linearly with i. For microscopy data, we use
i = 3 since the improvement between the 2nd and 3rd iteration is still large.
Future work will include a more detailed discussion on the choice of i. Finally,
one might concern that large number of iterations might bring overfitting or
artifacts. However from our experiment, in Fig. 2, both SSIM/PSNR increase
with iteration count; while in Fig. 3, iSMORE with i = 3 has better cross-
sectional shapes and fewer artifacts than iSMORE with i = 1 and CARE which
also uses only one iteration.

In summary, we describe a new algorithm iSMORE in this paper, we evalu-
ated it both quantitatively and qualitatively, and experimented with it on both
downsampled and real acquired low resolution medical images with two very dif-
ferent modalities. We applied iSMORE to downsampled MR images with ground
truth HR images to evaluate its accuracy with SSIM and PSNR. The results show
that both Sobel edge loss and the iterative framework can significantly improve
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the accuracy. Furthermore, we adjusted iSMORE for real-world acquired two-
photon fluorescence microscopy data which have a higher noise level and more
3D information than MRI. The result and its maximum intensity projection
on three orthogonal planes are visually more isotropic, the vessels are visually
clearer and easier to track than the original SMORE. Future work will include
a deeper exploration on the parameters used in this algorithm as well as a com-
parison on different network architectures.
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Abstract. In this paper we consider the task of detecting platelets in
images of diluted whole blood taken with a lens-free microscope. Despite
having several advantages over traditional microscopes, lens-free imaging
systems have the significant challenge that the resolution of the system is
typically limited by the pixel dimensions of the image sensor. As a result
of this limited resolution, detecting platelets is very difficult to do even
by manual inspection of the images due to the fact that platelets occupy
just a few pixels of the reconstructed image. To address this challenge, we
develop an optical model of diluted whole blood to generate physically
realistic simulated holograms which we then use to train a convolutional
neural network (CNN) for platelet detection. We validate our approach
by collecting both lens-free and fluorescent microscopy images of the
same field of view of diluted whole blood samples with fluorescently
labeled platelets.

Keywords: Lens-free imaging · Holography · Object detection

1 Introduction

Lens-free imaging (LFI) is a form of digital microscopic holography which records
the diffraction patterns (also referred to as holograms) of a specimen illuminated
with coherent light (e.g., from a laser) and then reconstructs an image of the
specimen by inverting a mathematical model of the light diffraction process. LFI
has multiple advantages over conventional microscopy. First, as the name implies,
the system does not require lenses which significantly reduces the overall system
cost, complexity, and size. Second, LFI systems have larger fields of view than
traditional microscopes with equivalent magnification. Third, the system does
not require any manual focusing as the focal depth can be adjusted via software,
which additionally eliminates the strict mechanical stability requirements of lens-
based systems (where the lens must be held at a precise focal distance from the
image sensor) [4].

Here, we are interested in exploiting these advantages of LFI systems to
develop a compact and low-cost system that is capable of measuring the concen-
tration of platelets in human blood. Platelet counts are an indispensable tool in
c© Springer Nature Switzerland AG 2019
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modern medicine and make up one of the standard analytes of a complete blood
count (CBC), one of the most widely ordered blood tests worldwide. Addition-
ally, abnormal platelet counts can indicate a wide variety of pathologies, and
many clinical situations require routine monitoring of platelet counts. However,
despite the previously mentioned advantages of LFI systems and the significant
clinical need for monitoring platelet counts, a significant challenge in LFI appli-
cations is that the resolution of LFI systems is often limited by the pixel size
of the image sensor (typically around 1 micron square for common commercial
grade sensors). A platelet typically has a diameter of only 2–3 microns and a vol-
ume of only 9–12 femtoliters, making identification of platelets in reconstructed
LFI images very challenging even with close manual inspection of the image.
As an example, Fig. 1 (Middle) shows a small crop from a reconstructed image
of diluted whole blood. Note that while some platelets are visible (a few are
denoted with red arrows), they are hard to identify manually and can be easily
confused with artifacts in the reconstructed image (the full, uncropped image
can be found in the supplement).

Current state-of-the-art systems for object detection in images are all largely
based on deep neural networks (see [3,7,8] for a few well-known examples).
However, training large network models requires access to significant volumes of
training images along with corresponding ground-truth regarding the location of
the various objects of interest. As described above, it is often very challenging
to accurately locate and identify platelets in reconstructed lens-free images due
to their small size relative to the resolution of the image and the relatively small
signal that they generate relative to the other cells in the image (predominately
red blood cells), which limits the potential of constructing large training sets.

In this work, we address these challenges by developing an optical model
which allows us to simulate synthetic holograms of diluted whole blood with suffi-
cient realism to train a convolutional neural network (CNN) capable of detecting
platelets in real LFI images. In addition, to validate our approach we also con-
structed a tandem microscopy imaging setup which allows us to record an LFI
hologram and a fluorescent image of an overlapping field-of-view within a few
seconds of each other. By fluorescently labeling platelets we then compare the
platelet detections from our trained neural network operating on LFI images
with detections from the corresponding fluorescent image (which is much easier
due to the fluorescent labeling).

2 Optical Model

To develop our optical model of diluted whole blood, we need a means to optically
model the various cell types present in human blood: red blood cells (RBCs),
platelets (PLTs), and white blood cells (WBCs). WBCs are relatively uncom-
mon (roughly 3 orders of magnitude lower concentrations than RBCs), so their
presence or absence in an image has little impact on detecting PLTs. As a result,
we will largely focus on modeling RBCs and PLTs.
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Red Blood Cell Model. To model the optical properties of an RBC, we use
a phase-plate model which describes the modulation of the incident light wave
that is created by the RBC as a phase shift proportional to the integration of the
RBC shape along the optical axis (by common convention we’ll use the z axis
as the direction of light propagation). This model is consistent with scattering
measurements taken of RBCs which have also noted that at the wavelength of
light used by our LFI system (637 nm) RBCs do not absorb light [2]. With this
model, the optical modulation of the incident wavefront is entirely determined by
the RBC shape and orientation (and more specifically the integral of the shape
along the optical axis), so to model the RBC shape, we use the parametric model
for RBC shape given in [5], which takes the general form:

(x2 + y2 + z2)2 + P (x2 + y2) + Qz2 + R ≤ 0, (1)

where (P,Q,R) are coefficients determined by the minimum thickness of the
RBC, hmin, the maximal thickness of the RBC, hmax, and the diameter of the
RBC, d, given as:

P = 1
2

[
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)2 − 1

) (
1 −

√
1 − ( hmin
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)2

)]

R = −(d
2 )2P − (d

2 )4 Q = ( d
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)2P + (hmin

2 )2(( d
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)4 − 1).
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Given the general shape of an RBC (see Fig. 1 (Left) for an illustration of
the relevant dimensions), we then generate RBCs at arbitrary orientations and
locations in the image by rotating and translating the coordinate system in (1)
for each RBC and then integrate along the optical axis to produce the total
path length image (path length is proportional to phase shift) induced by the
kth RBC as:

θ̄RBC
k (x, y) =

∫
I[(x̄2

k + ȳ2
k + z̄2k)2 + Pk(x̄2

k + ȳ2
k) + Qkz̄2k + Rk ≤ 0]dz, (3)

where I[c] is an indicator function which takes value 1 if condition c is true and
0 otherwise, (x̄k, ȳk, z̄k) are the rotated and translated coordinates for the kth

RBC, and (Pk, Qk, Rk) are the coefficients for RBC k with a prescribed set of
shape dimensions (dk, hmax,k, hmin,k), each independently sampled for each cell
uniformly over the ranges ([7, 8.5], [2, 2.5], [0.8, 1.4])µm, respectively.

Platelet Model. Since platelets are very small for the resolution of images
we are simulating, we use a very simple model for them in our simulations as
additional details will be largely irrelevant after image discretization. Namely,
we again assume that platelets modulate the light wavefront largely by simply
shifting the phase of the wavefront (i.e., they do not significantly absorb light).
As a result, we model platelets as being a simple disk of shifted phase

θPLT
j (x, y) = ψjI[x̄2

j + ȳ2
j ≤ r2j ], (4)

where ψj denotes a constant phase shift (which we uniformly sample from
[0.25, 0.75]/(2π) radians based on typical measurements of platelets in our recon-
structed images) applied to all pixels within platelet j, where (x̄j , ȳj) are the
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Fig. 1. (Left) Parameters of the RBC shape model. (Middle) Small crop of an example
reconstructed LFI image. Red arrows denote example platelets. (Right) Small crop
from an example reconstructed image from our simulator. (Color figure online)

translated coordinates for the jth platelet, and rj is the radius of the jth platelet,
sampled uniformly over the range [0.8, 1.5]µm.

Full Model. Given these individual models for both PLTs and RBCs, we then
simulate the (complex valued) optical wavefront at the image plane by combin-
ing the various phase shifts induced by all the simulated cells of various sizes,
locations, and orientations:

I(x, y) = exp

⎧⎨
⎩2πi

⎡
⎣νRBC − νmedia

λ

∑
k

θ̄RBC
k (x, y) +

∑
j

θPLT
j (x, y)

⎤
⎦

⎫⎬
⎭ , (5)

where νRBC = 1.4 is the refractive index of an RBC at our illumination wave-
length, λ = 637 nm, as measured in [2], and νmedia = 1.33 is the refractive index
of the fluid media suspending the blood cells.

Given the simulated wavefront at the image plane, I(x, y), we then simulate
the hologram by projecting the wavefront at the specimen plane to the image
sensor plane a distance z0 away (we sample uniformly over [400, 1200]µm in our
simulations) using the wide-angular spectrum (WAS) model for light propaga-
tion [4] which projects the wavefront via a convolution with a transfer function
Iz0(x, y) = tz0(x, y) ∗ I(x, y), with the transfer function, tz0(x, y), defined in
Fourier space as,

F {tz0(x, y)} [kx, ky] = exp
(

iz0

√
( 2π

λ )2 − k2
x − k2

y

)
. (6)

Once the simulated wavefront is projected to the image sensor plane, we then
produce a final simulated hologram by taking the absolute value of the wavefront
due to the physics of the image sensor only being able to record the magnitude
of the optical wavefront but not the phase. Finally, we add a small amount of
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sampling noise, to produce the final simulated hologram as follows,

H(x, y) = |Iz0(x, y)| + ε(x, y) where ε(x, y) i.i.d.∼ N (0, σ) ∀(x, y). (7)

Here we have used a Gaussian noise model for the image sensor, with standard
deviations uniform over the range [0.0125, 0.03125], but other noise models (e.g.,
Poisson) could also be employed depending on the application.

3 Platelet Detection

Using the previously described method for simulating LFI holograms, we trained
a convolutional neural network (CNN) to detect platelet locations from the
recorded hologram. The first step in this process is to reconstruct an image
of the specimen from the simulated hologram, for which we employ the sparse
phase recovery reconstruction method developed in [1]. Figure 1 shows example
reconstructions from both a real hologram and a simulated hologram, which
have strong qualitative similarities. In addition to sensor noise added to the sim-
ulated hologram, we also add an offset (uniformly sampled over ±3µm) to the
reconstruction focal depth versus the true focal depth used to generate the sim-
ulated hologram to account for potential errors in auto-focusing that can occur
when reconstructing real images. After reconstruction, the image is complex val-
ued, representing an estimate of the image wavefront at the specimen plane (all
images of reconstructions show the absolute value of the wavefront), so to train
a CNN to detect platelets, we split the real and imaginary components of the
reconstruction into two input channels to the network. The rest of the network is
then a fully convolutional network, consisting of a sequence of six convolutional
layers with kernels of spatial dimension 3× 3 and the number of output channels
reducing by a factor of 2 each layer ([32, 16, 8, 4, 2, 1], respectively). Rectified
Linear Unit (ReLU) non-linearities are applied entry-wise after each convolu-
tion, with the exception of the final layer which applies a sigmoid non-linearity
(a diagram of the network architecture can be found in the supplement). The
use of a fully convolutional network was done for two reasons. First, it allows
the network to be applied to an input image of arbitrary size, and second, due
to the small size of the platelets in these images we did not want to lose any
spatial information regarding their location through any operation that reduces
the image dimension (such as max-pooling).

Note that the output of the network is an image with the same spatial dimen-
sion as the input, where the magnitude of each pixel is the probability that the
pixel contains a platelet. As a result, we train the network as a pixel-wise clas-
sification problem using the cross-entropy loss applied pixel-wise comparing to
whether a given pixel contains a platelet in the simulated image. The network
weights are optimized using standard stochastic gradient descent with Nesterov
acceleration. Mini-batches of 10 simulated images with dimension 1024× 1024
are generated, and for each mini-batch 50 gradient descent steps are taken before
a new mini-batch is generated. To perform inference on unseen real images, we
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simply threshold the output image at a value of 0.5 (recall the sigmoid non-
linearity outputs a value in the range [0, 1]) and treat each connected component
in the thresholded image as a platelet detection with no morphological filtering.

4 Testing and Validation

The fact that PLTs are very hard to detect even manually in LFI images presents
significant challenges not only to the training of PLT detection methods (as dis-
cussed above) but also to the testing and validation of such methods as one often
does not have access to high quality ground truth information. To address this
issue, we developed a tandem microscopy setup which allows for both fluorescent
and LFI images with a partially overlapping field of view (FOV) to be recorded
within a few seconds of each other. By fluorescently labeling the PLTs (we use
a CD41/CD61-FITC human antibody label from Miltenyi Biotec) we can then
detect PLTs in the fluorescent images with fairly high confidence (as they are the
only fluorescent objects in the image), and we then compare the set of detections
in the fluorescent images with those in the LFI images.

PLT Detection in Fluorescent Images. To detect the fluorescently labeled
PLTs in the fluorescent images we perform a standard image denoising procedure
based on sparse dictionary learning [6], where we first extract all 10 × 10 pixel
patches from the image using a sliding window, normalize the patches to have
zero mean and unit Euclidean norm, train a sparse dictionary from the patches,
reconstruct the patches using a sparse encoding approximation with the learned
dictionary, and finally regenerate the denoised image by returning the patches to
the appropriate locations and averaging over the overlapping patches. Once the
fluorescent images have been denoised via dictionary learning, the platelets are
easily detected via a simple thresholding. The middle column of Fig. 2 shows an
example image of the denoised fluorescent image and corresponding detections
(the dots indicate a detection in the fluorescent image, and the color of the dot
indicates whether the corresponding PLT was detected in the LFI image). The
original fluorescent image is given in Fig. 5.

Aligning Fluorescent and LFI Images. Once PLT detection has been per-
formed on both an LFI image and a corresponding fluorescent image, we then
align the coordinate systems between the two image modalities. Although the
two image modalities have a partially overlapping FOV, the two images are
taken at different magnifications and spatial offsets relative to each other, so to
register the two sets of image coordinates we fit an affine transformation using
an alternating minimization approach where we begin with a rough estimate
of the alignment transformation between the images. Then, given the assumed
alignment, we project one set of PLT detections into the coordinates of the
other set and match the two sets of detections using a linear assignment with
an Euclidean distance cost to produce correspondences. Using the new proposed
assignments we then update the parameters of the affine transformation between
the coordinate systems to minimize the Euclidean error between the proposed
correspondences between the two sets of detections.
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Fig. 2. (Left) Example detections from our method (bottom row) and an optimal
thresholding baseline (top row). The left column shows the LFI image from the previous
figure (with a saturated gray-scale to better visualize PLTs). The right column shows
the corresponding denoised fluorescent image after alignment to the LFI coordinate
system. Green circles (LFI Image) and dots (fluorescent image) denote true detections
where the LFI detection matched a fluorescent detection (using a detection radius of
10 pixels). Red circles (LFI Image) denote false positive detections in the LFI image,
and Red dots (fluorescent image) denote false negatives (a detection in the fluorescent
image that was not detected in the LFI image). (Right) Precision, Recall, and F-
Measure values as a function of detection radius. (Color figure online)

Performance Metrics and Baselines. To evaluate the performance of our
combined model (a PLT detection CNN trained using images from our simulator)
we collected a dataset of 39 paired images consisting of both LFI and fluorescent
images. We then treat the PLT detections in the fluorescent image as a ground
truth and compute precision and recall scores along with the F-measure (the
F-measure is defined as 2(precision ∗ recall)/(precision + recall)). Due to the
fact that the LFI and fluorescent images are not collected at exactly the same
time, the cells (which are suspended in a microfluidic flow-cell channel) can move
slightly between image acquisitions, so even after the coordinate set alignment
described above there is still some offset between detections in the two image
modalities. As a result, we compute the precision, recall, and F-measure statistics
as a function of an allowed detection radius, where we label a detection in the
LFI image as being correct if it is within the detection radius of a detection in
the fluorescent image. Specifically, we solve a linear assignment problem between
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the two sets of detections (LFI and fluorescent), with zero cost in matching two
detections if they lie within the detection radius of each other and a cost of one
if they lie outside of that radius. Any detections lying outside the overlapping
FOV between the two images (after coordinate alignment) were discarded.

To compare our method against a baseline, the fact that in our original prob-
lem we do not have knowledge of ground truth locations again presents difficulty
as we cannot compare against any supervised approaches for object detection. As
a result, we use an “optimal” thresholding baseline, where we study the best per-
formance that can be achieved via simple thresholding. Specifically, we threshold
the LFI image and then label a connected component in the thresholded image
a PLT if its area is within lower and upper bound limits. We then maximize
the F-measure at a detection radius of 25 pixels by performing an exhaustive
grid search over the choice of the image intensity threshold and lower/upper
bounds on the connected component area. Note that this uses full knowledge
of the ground-truth to tune the thresholding hyperparameters and as a result
is an over-estimate of the performance of thresholding. Figure 2 (right column)
shows that even though the optimal thresholding method makes full use of the
ground-truth in selecting hyperparameters our method still achieves a higher
F-measure across all choices of allowed detection radii. Additionally, the optimal
thresholding method is very unstable to choice of hyperparameters, and simply
increasing (Thresh +) or decreasing (Thresh −) the upper and lower limits of
the connected component area by the minimum increment in the grid search (3
pixels) significantly degrades performance. Further, manual examination of the
detection locations in the top left of Fig. 2 shows that thresholding (even with
optimal choice of thresholding hyperparameters) produces poor detections that
qualitatively do not correspond to the true platelet locations. In contrast our
CNN, trained using our developed optical simulator, achieves very good quali-
tative performance for the platelets that can be observed by eye and over 80%
F-Measure score once the detection radius is above approximately 10 pixels,
roughly on the order of the alignment error between the LFI and fluorescent
coordinates due to cells drifting between the two image acquisitions.

5 Conclusions

We have presented an optical model of diluted whole blood that is sufficiently
realistic to be successful in training a CNN based object detection network.
Our approach achieves good performance on the very difficult task of detecting
platelets in reconstructed LFI images, which can be challenging even by manual
inspection due to the limited resolution of LFI systems and additionally presents
significant challenges in even validating a given method. As a result, to validate
our approach we developed and constructed a tandem microscopy setup which
allows for close to simultaneous imaging of a fluorescent image (with fluorescently
labeled platelets) and a LFI image of an overlapping field of view.

Acknowledgments. This work was funded by miDiagnostics.
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Supplemental Figures

Fig. 3. Network architecture used for platelet detection. The first step is to convert
the complex-valued input image into a real-valued tensor by splitting the real and
imaginary values at each pixel into two separate channels. The remaining network
is then fully convolutional with bias terms with ReLU non-linearities following each
convolution with the exception of the final convolution which uses a sigmoid non-
linearity. Every convolutional kernel used a spatial dimension of 3 × 3 with a stride of
1. The indicated dimensions correspond to the output dimension of the representation
following the convolution of that layer (e.g., the output of the Conv 1 layer is m × n ×
32). Layers in blue contain trainable parameters. (Color figure online)

Fig. 4. The full reconstructed LFI image used to generate the example crops in the
main paper. (Red dashed square) Region shown in the main paper. (Yellow dashed
rectangle) Field of view that is overlapping with the fluorescent image (see Fig. 5). The
horizontal lines in the image that run the full width the image are the walls of the
microfluidic channel. (Color figure online)
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Fig. 5. (Top) The raw fluorescent image used to generate the fluorescent images in the
main paper. (Bottom) The fluorescent image following the sparse dictionary learning
denoising (all fluorescent images shown in the main paper are following denoising).
For both images, the dashed red square indicates the region used to show the example
crops in the main paper. The horizontal lines in the image that run the full width the
image are the walls of the microfluidic channel. (Color figure online)
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Abstract. We are focusing on the difficult task of predicting final lesion
in stroke, a complex disease that leads to divergent imaging patterns
related to the occluded artery level and the geometry of the patient’s
vascular tree. We propose a framework in which convolutional neural
networks are trained only from synthetic perfusion MRI - obtained from
an existing physical simulator - and tested on real patients. We incorpo-
rate new levels of realism into this simulator, allowing to simulate the
vascular tree of a given patient. We demonstrate that our approach is
able to predict the final infarct of the tested patients only from simulated
data. Among the various simulated databases generated, we show that
simulations taking into account the vascular tree information give the
best classification performances on the tested patients.

Keywords: Perfusion MRI · Lesion prediction · Simulation · Arterial
input function · Time of transport · Convolutional neural network

1 Introduction

Stroke is the leading cause of long-term disability and mortality worldwide.
Ischemic stroke (85% of all stroke cases) results from an acute occlusion of a
cerebral artery. Acute neuroimaging is crucial to choose the best therapeutic
option [4] and in particular to understand the lesion evolution. One commonly
used imaging modality for acute stroke patient management is perfusion MRI,
obtained by the acquisition of a dynamic MRI sequence synchronized with the
intravenous injection of a contrast-agent. Perfusion MRI produces a temporal
concentration signal recorded in each voxel of a volume of interest. After decon-
volution, these signals are post-processed to obtain hemodynamic biomarkers
which are used for interpretation. Lesion prediction is then addressed by thresh-
olding these biomarkers based on kinetic models. However, the dispersion of the
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contrast agent may reflect, in addition to tissue perfusion, macrovascular proper-
ties. To overcome this problem, several deconvolution techniques have been pro-
posed in the last decades [1,5,17]. In this context, simulation plays an important
role to validate deconvolution methods by generating synthetic and annotated
ground truth images and associated simulated acquired images [7,12]. Such val-
idation is required to understand the characteristics of deconvolution methods
and to evaluate their performance and limitations.

More recently, deep learning models have been successfully proposed as a
way to predict lesion without deconvolution [18]. In this context, the amount of
training data is critical for making supervised machine learning models accurate,
especially when using algorithms which require a large number of parameters to
be discriminating. A way to get around this problem is to generate more data
to increase variability in the learning dataset and thus improve regularization
and reduce overfitting. While simple transformations applied to existing datasets
(e.g. translation, rotation) often produce highly correlated images, image synthe-
sis from statistical or physical models appears to better supplement the training
dataset, although it is more complex to achieve [15,20]. In this framework, we
propose to increase the effectiveness of the simulated produced by an exist-
ing physical simulator [7] for training segmentation algorithms. This simulator,
which is currently the only one that consider the spatial context of brain tissues
and lesions, seemed therefore appropriate to test a new source of spatial vari-
ability related to stroke: the vascular tree. Anatomical studies have described
typical configurations of the Circle of Willis (CW) [10]. In view of this large
number of variations, it appears that the existence of an effective arterial CW
could not always be assumed. According to [16], incompleteness of the CW or
poor collateral circulation was significantly related to the embolism risk.

In this work, we propose to improve the realism of the perfusion MRI sim-
ulator proposed by [7]. This new version enables a patient-specific simulation
of vascular tree anatomy. Our simulation framework consists of medical image-
driven modeling of patient vascular tree through arterial flow and contrast agent
time of transport modeling. A total of 8 patient-specific models were considered,
with varying levels of occlusion in the brain and varying morphologies of vascular
tree. The realism improvement was evaluated by training a convolutional neural
network on the generated synthetic data and testing the resulting model on real
data. The results were assessed using the Dice and Hausdorff metrics.

2 Methods

2.1 Clinical MRI

Clinical data are from the European I-Know multicenter database [9]. On
admission, all patients underwent diffusion-weighted imaging (DWI), fluid-
attenuated inversion-recovery (FLAIR), T2-weighted gradient echo, time-of-
flight MR angiography, and perfusion-weighted imaging (DSC-PWI). A follow-
up FLAIR-MRI was performed at 1-month after admission time. Perfusion MRI
were registered, for each slice, using the first time point as reference for all
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the other time points, with a maximum mutual information approach. Final
lesion was segmented for each patient on the 1-month follow-up FLAIR-MRI
by 3 experts. FLAIR-MRI volumes were first coregistered to DSC-PWI vol-
umes computed by avering the temporal signal before contrast-agent arrival.
The transformation matrix obtained was then used to register the final ischemic
lesion mask. All registrations were performed using Elastix.

We selected 8 patients from the 110 available in the I-Know cohort. They were
representative of the different levels of occlusion in the middle cerebral artery
(2 in M1 segment, 3 in M2 segment, 2 in M3 segment and 1 unknown) and of
the different CW geometries with different number of communicating arteries (3
with 3 communications, 2 with 2 communications, 2 with 1 communication and
1 with no communication). Also they came from 2 distinct medical centers.

2.2 Description of the Perfusion MRI Simulator

We briefly recall the principle of the simulator developed by [7]. Their app-
roach consist in generating contrast-agent concentration images by convolution
between an arterial input function (AIF) and a simulated impulse response.
Several input parameters are adjustable such as realistic brain and lesion shapes
with distinct classes of tissues (infarcted, healthy gray matter, healthy white
matter), the associated statistical distribution of hemodynamic parameters, and
AIF parameters. In the simulator, AIF is modeled as a gamma function that can
be expressed using the simplified formulation proposed by [14]:

Γ (t) =
{

0, if t ≤ d
ymax.( t−d

tmax
)α. exp (α(1 − t−d

tmax
)), if t ≥ d

, (1)

where ymax and tmax respectively correspond to the magnitude and position
of the maximum of the AIF, d is the arrival time of the contrast agent and α
corresponds to the shape parameter of the gamma function.

By default in the simulator, AIF is represented by a single global gamma
function described in the literature [11] by the following parameters: ymax =
0.61, tmax = 4.5, d = 3, α = 3. The simulator allows to modify these parameters
to simulate patients with other specific macrovascular properties. To simulate
a specific patient, it is necessary to estimate its own AIF by positioning a ROI
near a major contralateral artery and then averaging the extracted signals to
produce a single global AIF.

To improve the physiological realism of this simulator, we propose to model
the patient-specific vascular tree anatomy. This modeling step includes arterial
flow and contrast agent time of transport variations and is graphically summa-
rized in Fig. 1.

2.3 Integration of the Arterial Flow Variability

The assumption of a global and unique AIF has recently been questioned [13]
since an important AIF variability can be observed when extracting concentra-
tion signals from a major contralateral artery in the perfusion image of a specific
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Fig. 1. Pipeline of the new version of the perfusion MRI simulator. The newly intro-
duced sources of variability are displayed in dark blue. (Color figure online)

patient (see Fig. 2). These variations may be caused by imaging artifacts (such
as partial volume effect, low temporal resolution) [6] or even the presence of
stenosis causing a lower peak and wider bolus shape in the supply territory of
the stenotic artery [2]. This intra-patient AIF variability has been incorporated
into the new version of the proposed simulator by the integration of a set of
multiple specific AIF shapes.

To this end, we first used patient data to characterize its AIF range and
associated parameters. These are then given as input to the simulator which
represents the 4 AIF parameters in a 4D space (each axis representing a param-
eter of Eq. 1) and computes a Delaunay triangulation. Finally, the set of multiple
specific AIF shapes was produced by a random selection in the associated 4D
Delaunay polygon.

Fig. 2. Set of manually extracted AIFs (black) and its associated median signal (red)
for 2 patients of our study. For illustration, intra-patient AIF variability is greater on
the right than on the left. (Color figure online)
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2.4 Integration of the Contrast Agent Time of Transport

The transport of contrast agent along the vascular tree results in an increasing
delay (i.e temporal shift) of the AIF in the periphery of the brain [3]. Taking into
account this phenomena in the simulation would enable to reach a new degree
of spatial realism and might provide important information about the vascular
supply of the lesion, and eventual collateral flow (alternate circulation around
a blocked artery). This could have consequences on the geometry of the final
predicted lesion.

In order to build the patient specific delay map, the gamma variate function
of Eq. 1 was first fitted to the time-concentration curve of each voxel in the
original perfusion image using Levenberg-Marquart algorithm. The delay was
then estimated using the method of [19]. The resulting map is particularly noisy:
voxels located in the edges of the brain surface, in the ventricles or in the heart of
the lesion part lead to poor fitting results. In these areas, the contrast agent do
not pass, which results in a very low signal to noise ratio and hence artefactual
delay values. The performances of the fitting process was evaluated for each
voxel using the sum of squared errors (SSE) after normalization of temporal
signal height.

Fig. 3. Delay map computed for one slice of a patient with successive increasing thresh-
olds of the delay. This representation gives information about the propagation of the
contrast agent from the major arteries to the tissues.

Voxels with a SSE index superior to 0.20 were removed. The missing values
were filled afterwards using an adaptative mean filter. Due to the anisotropy
of perfusion images, this filter used was 2D. The optimal neighborhood size
for every voxel was chosen so that at least 9 good fitted voxels were included.
For visualization purpose, we used the wave front propagation representation
proposed by [3] in Fig. 3. The resulting delay map was set as a new input of the
simulator.

2.5 Evaluation of the Proposed Improvements

In order to evaluate the realism of the new version of the simulator, we predicted
the final lesion of 8 real patients from associated simulated images using convo-
lutional neural networks. A patient-specific learning approach was adopted: for
each real tested patient, a model was trained only from its specific simulated



156 N. Debs et al.

Fig. 4. General pipeline of the proposed approach.

images. We show the evolution of prediction performance, for different experi-
ments, as we increase the degree of realism of the simulator. The general pipeline
is shown in Figure 4.

Synthetic Training Databases. For each of the 8 patients, 4 different training
databases were produced with an increasing degree of realism. In database A,
the images were generated using a unique global AIF for all the simulations in
the database and all the patients. The AIF parameters were set to the default
settings of the simulator. In database B, a unique AIF was also used for all
the simulations, but is different between patients. It was set according to the
median signal of all the extracted specific AIFs for a given patient (see Fig. 2).
In database C, a different AIF is used for every simulation. Each AIF was
generated from the Delaunay representation of the extracted AIFs for a given
patient, as described in Sect. 2.3. Finally, in database D, simulations were done
using a set of multiple AIF shapes (as in database C), but with the additional
inclusion of the delay map of the patient (see Sect. 2.4).

Network Classifier. We built a small neural network to provide a voxelwise
prediction. The inputs of the network consisted in small 2D+t spatio-temporal
patches of size (9,60) as described in [8]. These inputs were given to a pathway
of two 2D convolutional layers: a first layer with 16 filters (size 2× 2) and a
second layer with 32 filters (size 2 × 2). This input pathway is followed by two
fully connected layers: the first one with 15 filters and the second one with 2
output units as our task is a binary classification problem. Activation function
in the hidden layer was ReLU and the one of the output unit was softmax. As
long as the input patches have small dimensions and that convolution tends to
reduce the output image dimension, we did not use any max-pooling approach
to avoid further size reduction. We used dropout in the fully connected layers
in order to avoid overfitting. We used the categorical cross-entropy function as
a loss function and a stochastic gradient descent to optimize the model. All
CNNs were trained using Keras 2.1.3 with Python 3.6.3 interface. The training
of the networks took globally less than 15 min on a standard workstation with
an NVIDIA GeForce GTX 1080 GPU with 8 GB memory (Fig. 5).
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Fig. 5. The different databases considered in our experiments. Each corresponds to a
different degree of realism that increases from database A to database D.

Experimental Details. A simulation is a volume of 25 slices, obtained by
configuring the simulator with one or more AIF(s) and optionally with a delay
map. Each training set consisted in 150 000 patches randomly drawn without
replacement from 100 simulations (1 500 patches drawn per simulation). To
ensured a balanced training dataset, half of the training patches corresponded
to lesion voxels. The corresponding validation dataset consisted in 150 000 other
simulated patches. For all training models, the total number of weights to train
was 197 087, the dropout was set to 0.5, the number of epochs was set to 30,
the batch size to 32, and the learning rate to 0.0001. Each model was trained
10 times and the best metric shot was given in the results. Each testing set
consisted in all patches from one of the 8 real tested patients. For each database,
8 models were trained independently (a model per test patient). We assessed
our results using the Dice and Hausdorff metrics. These metrics were computed
between the predicted infarcted voxels and the mask of the final lesion provided
by the follow-up FLAIR-MRI.
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3 Experiments and Results

Dice and Hausdorff metrics associated with the lesion prediction from the 4
synthetic training databases are reported in Table 1. Each additional realism
degree brought to the simulator improved the overall classification performance
on real data. It clearly appeared that the adjustment of the AIF from the syn-
thetic data to the real data is crucial: without any adjustment (database A), the
average Dice is 0.15 against 0.39 after adjustment with one single specific AIF
(database B) and 0.44 after adjustment with multiple specific AIFs (database
C). The best classification performances are obtained with database D (i.e. by
taking into account multiple AIFs and delays in the synthetic training data),
although the improvement over database C is moderate. Note that database A
has the lowest standard deviation among all databases: since all patients are
poorly predicted, all scores are low and close to each other.

It should be noted that all patients seem to benefit from basic degrees of real-
ism (like integrating specific AIF shapes), while only few patients benefit from
finer detail improvements (such as modeling the vascular tree). In particular,
integrating the delay into synthetic training database improves lesion prediction
only for patients with complete CW, as shown in Fig. 6. These patients present
alternative circulation in the vascular tree, and hence are more likely to see their
lesion size regressing.

We can highlight that the best model so far from the ISLES ischemic lesion
prediction challenge [21] presented an average Dice score of 0.31 (±0.24). Our
prediction metrics are in same order of magnitude, even if we train only from
simulated data. It is clear that these Dice score values are low. But prediction is a
more complex problem than classical segmentation: a one-month delay separates
the PWI-DSC input from the FLAIR ground truth, therefore all the predictive
information contained in PWI-DSC are not always sufficient to precisely predict
the final lesion.

Table 1. Dice and Hausdorff metrics between the predicted infarcted voxels and the
ground truth final lesion. All the metrics are averaged over the testing dataset (average
± standard deviation).

Training database Realism Dice Hausdorff

Database A Single default AIF 0.15 ± 0.062 46.31 ± 2.9

Database B Single specific AIF 0.39 ± 0.19 45.30 ± 2.5

Database C Multiple specific AIF 0.44 ± 0.18 44.76 ± 2.5

Database D Multiple specific AIF + delays 0.45 ± 0.18 44.66 ± 2.6
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Fig. 6. Output predictions when training database C (2nd column) and database D
(3rd column) for two test patients. DSC-PWI (1st column) is the real testing image.
Columns 2 and 3 should be compared to the ground truth (4th column). Voxels in blue
and red were predicted respectively healthy and infarcted. Patient in 1st line has an
incomplete Circle of Willis (CW) while patient in 2nd line has a complete CW. Delay in
database D seems to improve lesion prediction when CW is complete (see bold circles).
(Color figure online)

4 Conclusion and Perspectives

In this paper, we demonstrated the possibility to evaluate a perfusion MRI simu-
lator using convolutional neural networks for stroke lesion prediction. We trained
several models on synthetic databases and measured there realism by testing the
models on real patient data. Integrating increasing degrees of realism in the sim-
ulator improved the lesion prediction as measured by Dice and Hausdorff met-
rics. This realism was developed to model the vascular tree and benefit mostly
patients with complete vascular trees. In this work, AIF and delay data were
extracted from real patient images. In the future, we could have access to this
data from computational fluid dynamics models of the vascular tree [22].
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