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Abstract In Italy, the Bioengineering Community was founded in 1980. The kick-
off meeting was held in Montesicuro, a little village near Ancona and organized
by Prof. Tommaso Leo from the then-named “Università degli Studi di Ancona”
(nowUniversità Politecnica delleMarche, UNIVPM) in cooperationwith the nascent
National Group of Bioengineering. This chapter aims to produce a brief review of the
main results in Biomedical Engineering by UNIVPM during the first 50 years useful
to understand the present and to track future contributions for the next 50 years.
It is also an occasion to recall the pioneering work on the Bioengineering of the
Neuromuscular, Cardiovascular and Metabolic systems performed by our leading
colleaguesTommasoLeo, PaoloMancini andRobertoBurattini, aswell as to describe
significant research achievements obtained by professors, researchers, post-doc fel-
lows and Ph.D. students who worked and/or are currently working at the UNVPM.
Though mainly focusing on research findings in the above cited physiological sys-
tems, it is alsoworthmentioning in this chapter that UNIVPMhas also an educational
mission, provided by the two Biomedical Engineering courses currently active at the
Engineering Faculty: the three-year Bachelor and the two-year Master (in English)
courses.
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1 Motion Analysis

The interest in Motion Analysis (MA) started by the very beginning of the research
work at UNIVPM and is still lasting on the topics treated below.

1.1 Joint Kinematics

Since the beginning of 80’s particular attentionwas devoted to 3D and in vivo analysis
of human joints with advanced techniques. Initially, the attention was focused on the
kinematics of the metacarpo-phalangeal joint (MCP).

This research started in collaboration with the Catholic University of Rome that
put at disposal a photographic system constituted by two Polaroid cameras and an
electronic chronophotographic apparatus based on LEDs emitting light in the visible
band.Dataweremanually digitized on a commercial digitizer, 3Dmarker coordinates
were computed byDirect Linear Transformation approach and joint angles computed
with classical joint kinematic equations. Preliminary results were interesting but at
the same time prone to errors that were successively minimized by the following
innovations:

(a) use of an automatic optoelectronic stereometric system (firstly, a prototype
version and successively a commercial system)

(b) use of Kalman filtering techniques for data processing and derivative estimation
(c) joint kinematic characterization by means of the Instantaneous Helical Axis

(IHA) descriptor.

It has been shown that the determination of direction and position of axes of
rotation at each time instant during motion can be improved if a continuous-time
rigid body model is adopted. In this case, with respect to its finite counterpart (i.e. the
Finite Helical Axis—FHA), IHA parameters are characterized by a more favorable
signal-to-noise ratio but their estimate requires the knowledge of the first derivative of
displacement data, i.e. of velocity of points). Unfortunately, numerical differentiation
of noisy data as those derived by any measurement process, belongs to the class of
ill-posed problems. Consequently, great attention was paid to the accuracy of data
acquisition and processing in order to obtain reliable IHA estimates. In particular, an
automatic stereophotogrammetric system (CoSTEL) very accurate and precise was
used in order to record movements of point body landmarks and to interfere as little
as possible with the subjects. Moreover, very accurate stereophotogrammetric and
numerical differentiation algorithms based on Kalman filtering methodology were
properly developed.

The idea at the basis of the filtering and differentiation algorithm based onKalman
filtering, or better on Kalman Smoothing, is that every band-limited signal (such as
the trajectory of a marker placed in correspondence of a moving body segment)
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belongs to the class of C∞ function. Hence it is possible to define a state vector X(t)
composed of the signal x(t) and its derivative x (i)(t) up to N th order:

X(t) �
[
di x(t)

dti
, i = 0, . . . , N

]T

, N = 0, 1, 2, . . . (1)

Differentiating X(t) with respect to t, the following equation results:

Ẋ(t) = FX(t) + Gw(t) (2)

where F is an (N + 1) × (N + 1) matrix with elements fi, j = δi+1, j (δ is the

Kronecker delta), G is an (N + 1) vector given by
[
0 . . . 0 1

]T
and w(t) =

x (N+1)(t).
Under the hypothesis of a sampling frequency fc = 1/�, the integration of (1)

between t and t + � results in:

X(t + �) = AX(t) + W (t) (3)

where:

A = eF� =

⎡
⎢⎢⎢⎣

1 �

0 1
· · · �N/N !

�N−1/(N − 1)!
...

. . .
...

0 0 · · · 1

⎤
⎥⎥⎥⎦ (4)

W (t) = �∫
0
eFθGw(t + � − θ)dθ (5)

Taking into account that the only observation is that of the signal (i.e. the point
marker position), the following measurement equation can be associated with Eq. 3:

y(t) = CX(t) + v(t) (6)

where C is a (N + 1) row vector given by
[
1 0 . . . 0

]
and v(t) is the white

observation noise ∼ N
(
0, σ 2

v

)
.

Equations 3 and 6 have a form suitable to the Kalman filter implementation
provided that W(t) is modelled as white gaussian noise. Because Kalman filtering
methodology gives at each time instant the best estimate of the state vector X(t), it is
evident from the definition of the state vector X(t) that by this approach one obtains
contemporaneously the best estimate of the position and of its first N-order time
derivatives that can be used to compute the IHA parameters characterizing the joint
kinematics.



126 L. Burattini et al.

1.2 Standardization of Clinical Protocols Used in Movement
Analysis for Rehabilitation

By the end of 80’s, Movement Analysis obtained number of significant results used
mainly in research contexts like kinesiology, ergonomics, sport medicine and obvi-
ously in rehabilitation. However, in this latter field, MA had received limited clin-
ical acceptance, at least in Europe. The major causes which justify the transfer
of laboratory based research findings into clinical practice can be summarized as
follows:

(a) At that time,MAhad limited diagnostic capability. It wasmainly a tool for quan-
titative, functional movement assessment usually in already diagnosed diseases.
Consequently, MAwasmainly a useful tool in the clinical decision-making pro-
cess and inmonitoring the effects of conservative and surgical treatments. Today
with the advent of artificial intelligence tools MA is becoming also a diagnostic
tool.

(b) There was a lack of consensus on what motor ability is, and of the simplicity
of the motor tasks required in the usual clinical protocols used as functional
evaluation tools.

(c) There are many technical questions that gave rise to some doubts about the
reliability of MA methods and techniques in managing relevant and intrinsic
inaccuracies.

(d) The lack of standardization in the clinical and experimental protocols, ham-
pered a coalescence of findings into coherent and agreed knowledge bases.
Consequently, results obtained in individual laboratories were poorly or not at
all communicable to others.

The above considerations have led a consortium of academic public-health and
industrial european entities to the development of two main European Projects
CAMARC and CAMARC-II leaded by Prof. T. Leo in order: to build-up a Europe-
wide network to practice Movement Analysis; to define agreed clinical and exper-
imental protocols; to integrate existing and new instrumentation; to define suitable
User Interfaces driving the clinician in the tests; to define a comprehensive Knowl-
edge Base (KB) of the MA experience; to build-up suitable databases (DB) of MA
data accessible through the Network; to assess criteria for the definition of norma-
tive data for a conventional age-related classification of normality, impairment and
disability for motor behavior. All these activities ran for a decade providing the basis
for further EU projects and represented a recognized milestone in the development
of MA in Europe.
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1.3 Posturographic Analysis

Preliminarily, it is right to mention that all the studies cited in the present sub-
section that involved the presence of pathological subjects were conducted at INRCA
MovementAnalysisLaboratory in collaborationwith theRehabilitation,Diabetology
and Neurology Departments of INRCA geriatric hospital.

Static posturography: A third topic that was studied both at the methodological
and at the clinical application levels has been the study of equilibrium maintenance
while subjects maintained a quiet orthostatic position.

Various methods to analyze healthy and pathological subjects were implemented
and tested, starting from those usually applied in clinical contexts. Though the pro-
tocol is very simple to apply because it is required to maintain an upright posture
for half a minute in open and closed eyes conditions while measuring by a force
platform the trajectory of the point of application of the resultant ground reaction
force vector, i.e. the center of pressure (CoP), results are prone to a great variability
and to an unfavorable signal-to-noise ratio [52].

Traditional stabilometry techniques indicate just a descriptive way of character-
izing body movement patterns, which mainly look at the geometrical-temporal and
frequency characteristics of CoP.

Conversely, nonlinear analysis offers a way to characterize qualitative changes
in the dynamics of this complex system and promises to be important for clinical
practice because, unlike traditional (linear) models, it can extract hidden informa-
tion related to the complexity, stability and variability of the human postural system.
Because methods of nonlinear analysis and chaos theory may give effective quanti-
tative descriptors of underlying system dynamics, the properties of neuromuscular
control can be determined analyzing the CoP signal.

In [59] the largest Lyapunov exponent (LLE)was estimated to quantify the chaotic
behaviour of postural sway. LLE is a parameter that nonlinear analysismethods allow
to determine in a reliablemanner. LLEvalueswere found to be positive although close
to zero, that suggested that postural sway derives from a process exhibiting weakly
chaotic behavior. The same technique was also applied to parkinsonian patients
(PARK) in order to study the stability of posture system, the role of visual input and
the influence of an acute administration of levodopa. Results showed positive LLE
values that, in the case of PARK, tend to be higher than LLE estimated for controls.
This is particularly true before levodopa assumption thus showing a higher instability
that is reduced after levodopa intake. This instability is not always evident looking
at the classical posturographic parameters.

Static posturography was also applied to identify the presence of peripheral neu-
ropathy in type-2 diabetic (T2D) subjects at an early stage [54] and to distinguish,
retrospectively, non-fallers and frequent fallers in the elderly population [63]. In both
cases, classificationmethods based on the principal component analysis were applied
and a structural approach based on the sway-density plot resulted more indicative
with respect to the classical, geometric, posturographic parameters.
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Dynamic posturography: The stimulus to face this way to analyze equilibrium
maintenance was the VAMA project financed by the ISS (Istituto Superiore di San-
ità). Its aim was the functional evaluation of the motor ability of elderly people
by means of simple but significant movement tests by the use of simple and low-
cost instrumentation. The simplicity in the use of protocols and instrumentation was
counterbalanced by the complexity of models used to pursue the Minimum Input
Measured Model (MIMM) approach. The kinematics and dynamics of the func-
tional reach (FR) test, usually used in rehabilitation to estimate the risk of fall of
elderly people, was studied by the use of only one force-platform. The model and
the optimization techniques used to obtain reliable results from the measurement of
the ground reaction force data are shown in [53]. A more detailed study of the FR
test by means of a complete set of classic movement analysis instrumentation has
been applied on diabetic subjects in order to understand if there exist differences
in the motor strategies employed to execute the FR test by patients with or without
peripheral neuropathy. Results reported in [62] show that individuals adopt different
motor strategies (both for kinematic and muscle behaviour) also when they exhibit
the same clinical score.

As reported earlier, the instrumental assessment of balance is nowadays consid-
ered fundamental in order to characterize the principles governing the optimization
and deterioration of postural control. However, in some cases a subject can maintain
the upright stance without showing abnormal oscillation of both center of pressure
and center of mass and at the same time exhibit abnormal responses when his balance
encounters perturbations, of environmental as well as of proprioceptive origins. In
the last years, the analysis of balance responses to various type of external stimuli,
such as translation, tilt, rotation or backward and forward shift of the base of support,
has been applied to subjects suffering of different neuro-muscular diseases. In this
context the research group of the Movement Analysis Laboratory, is involved in a
series of experimental activities aimed at investigating the motor control strategies
carried out after sudden translation of the base of support produced by amotor driven
device. Dynamic posture tests characterized by different translation velocities, back-
ward and forward shift of the base of support and by different conditions, i.e. with
open- closed-eyes and in dual task, are performed to analyze subjects behavior. The
habituation rate and the effect of the first trial have been examined through dynamic,
kinematic and surface electromyography (sEMG) analysis in normal young adults
[68, 69], when repeated perturbations are administered without providing any spe-
cific indication to the subject. Furthermore, the ability to maintain balance when the
base of support translates with increasing velocity has been investigated and different
perturbation-related responses at the ankle and hip joints have been recognized. Cur-
rently, the same analysis is carried out also in healthy children to assess postural and
balance maintenance strategies when motor development is still poorly developed.

To completely characterize the analysis of the dynamic posture in the experi-
mental conditions above described, the interest of the group is now focused on the
development of complex motor control models able to reproduce, as faithfully as
possible, the dynamic control of the central nervous system [71].
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1.4 Electromyographic Characterization of Walking

In the wake of preliminary studies performed at the beginning of the new millen-
nium, the processing of sEMG signal was introduced (Fig. 1). Besides acknowledged
methodologies such as time filtering, muscular activity assessment, and frequency
analysis [67], a novel technique, named Statistical gait analysis (SGA), was adopted
and validated to characterize the walking task. SGA is able to provide a statistical
characterization of gait, by averaging spatial-temporal and sEMG-based parameters
over hundreds of strides during the samewalking trial of each subject. This technique
is based on the fact that muscle activates a number of times which is usually variable
from stride to stride, so that averaging is performed only over features assessed in
strides including the same number of activations. SGA requires a large amount of
data to run. A population of nearly 50 healthy adults was analyzed in our Movement
Analysis Lab, monitoring 10 muscles for each subject during 5 min walking. The
aim was to provide reference and normative data for activation during adult walking
of the main muscles involved in this motor task, such as thigh and ankle muscles
[46, 47]. Further purpose was to study and assess the co-contraction activity of joint
antagonist muscles, acknowledged as marker of pathophysiology of the neuromus-
cular system. Normative data were produced [72, 99] and novel techniques aimed at
quantifying co-contraction in time-frequency domain were developed [100].

The effect of gender was also studied in the population. Amore complexmuscular
recruitment was detected in female population, that seems to reflect a female need for
a higher level of joint stabilization [73]. In collaboration with Politecnico di Torino,
Italy, a population of more than 100 healthy school-age children was recruited at
Santa Croce Hospital, Moncalieri, TO, Italy, with the aim of providing reference and
normative data also for childrenwalking and studying thematuration of gait. Findings
support previous studies which indicate adolescence as the time-range where gait
is completing its maturation path [45, 50, 51]. Further advancements will focus
on developing new techniques in time-frequency domain, on evaluating of muscle

Fig. 1 sEMG signal acquired in the Movement analysis Lab during walking. Muscle activations
detected by sEMG processing are highlighted in black
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synergies by non-negative matrix factorization method, and on extracting significant
features by data mining approach.

2 Cardiovascular Biomedical Engineering

Research studies on the cardiovascular system have always being performed at UNI-
VPM since 1977. Initially, the cardiovascular system was studied from a modellis-
tic point of view to assess the cardiovascular hemodynamics, and in particular to
quantitatively evaluate the physical properties of arterial systems through its input
impedance, mathematically described by the windkessel models. In 1996 these stud-
ies allowed a critical comparison of linear and nonlinear formulations of the three-
element windkessel model, from which it was concluded that the nonlinear three-
element windkessel model cannot be preferred over its linear version. In 2007 Prof.
R. Burattini proposed the four-element windkessel to study the development of sys-
temic arterial mechanical properties from infancy to adulthood; the inductance and
low-resistance terms of this model were finally physiologically interpreted in 2011.

Since 2006 the studyof the cardiovascular systemhas been carried onmostly under
the supervision of Prof. L. Burattini and focused on the computerized analysis of
cardiovascular related signals, such as the electrocardiogram (ECG). Several filtering
procedures have been developed in order to obtain signals of good quality from
which to derive clinical information [4, 10, 55, 56, 91, 93, 94], and a great effort has
been put in identifying noninvasive indexes of risk to develop malignant ventricular
arrhythmias able to discriminate subjects to be treated before the occurrence of major
cardiac events [24, 26, 57, 58, 61, 95].

Recently started research activities in the cardiovascular field still performed at
the UNIVPM include, but are not limited to, the search for indexes of cardiovascular
risk in athletes during sport activity [7, 84] and the automatic fetal monitoring [6, 9,
87, 89]. The automatic processing of the cardiovascular signals will surely remain a
hot research topic for UNIVPM in the next years.

2.1 Automatic Identification of T-Wave Alternans

T-wave alternans (TWA) is an electrophysiologic phenomenon characterizing the
ECG: it consists in beat-to-beat oscillations of T-wave morphology, concerning its
amplitude, shape or polarity, unaccompanied by evident changes in the heart cycle
length [17, 19, 32]. There are two types of TWA: the macroscopic one, first observed
by Hering in 1908 and visible at naked eye, and microscopic one, first studied by
Adam in 1984 and identifiable only through automatic methods [11]. Literature rec-
ognizes both macroscopic and microscopic TWA as useful markers of ventricular
arrhythmias leading to sudden cardiac death [32, 33]. Given this clinical usefulness
researchers have proposed many automatic methods for noninvasive detection and
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quantification of microscopic TWA and their performances can be tested and com-
pared using TWA simulators [15, 19, 82]. Prof. L. Burattini first proposed the Cor-
relation Method [17, 35, 39], implemented during her doctorate course in Rochester
(USA) and later, at UNIVPM, theHeart-RateAdaptiveMatch Filter (Fig. 2), an effec-
tive method the advantages of which are robustness against noises or interferences
and suitability to identify both stationary and time-varying TWA episodes [12, 16,
18, 20, 22, 34, 37]. Bothmethodswere applied in case of several particular conditions
or real diseases to detect the tendency to develop this kind of electrocardiographic
anomaly. In order to mention some of them: TWA was studied in ICD patients [25–
28, 60, 61], in coronary-artery disease [21, 31], in acute myocardial infarction [14,
15, 36, 38], in epilepsy [64], in sleep apnea patients [23], but also during exercise
[13] or during pregnancy [65, 66].

2.2 The Segmented Beat Modulation Method

The Segmented-Beat Modulation Method (SBMM) [10] was proposed in 2014 as a
template-based filtering technique to clean noisy ECG (SBMM algorithm has also
been patented in 2014). Template-based techniques usually do not reproduce beat-to-
beat heart-rate variability. Instead SBMM, thanks to its modulation procedure that
prolongs the template for short beats and shortens the template for long beats, is
able to adjust for short-term as well as long-term heart-rate variability. SBMM has
been tested for robustness and ability to extract clean ECG signal [10, 83, 88] from
recordings affected by low, medium and high levels of noise of various kinds.

SBMM has been successfully applied to several physiological signal processing
applications such as (1) fetal ECG signal extraction from indirect ECG recording and
(2) low-frequency component analysis and ECG noise removal in electromyography
signals [88, 90, 96]. In these applications, some variations of the algorithm have been
performed to adapt it to the specific problem [5, 83, 85].

The future work will include extending SBMM algorithm to detect cardiac
arrhythmias (such as presence of premature ventricular beats) which could pro-
vide clinicians with valuable indications to specific diseases. An additional field of

Fig. 2 Block diagram of Heart-Rate adaptive match filter
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investigation will be using SBMM to extract ECG-derived respiratory signal from
ECG recordings. Simultaneously directly acquired respiration signals will be used
to evaluate SBMM performances. Eventually, another application for SBMM will
be using SBMM for filtering ECG tracings obtained with wearable sensors, instead
of conventional, in-clinic ECG systems. This will be a promising application for
athletes requiring prolonged monitoring during exercise and sport activity, and for
diseased patients who could be continuously monitored at home.

2.3 Automatic Fetal Monitoring

Fetal monitoring during pregnancy and labor is essential in clinics for establish fetal
health status and thus to take prompt clinical decisions in critical cases. In the last four
years, Prof. L. Burattini and her collaborators have developed several applications
for fetal monitoring in order to support this sensitive practice. The focus was on
standard fetal monitoring, like cardiotocography (CTG) [1, 2, 8, 87, 89, 92] as well
as on challenging techniques, such as fetal electrocardiography [3, 6, 9, 65, 66] and
phonocardiography [97, 98]. An example of these instruments is CTG Analyzer
(Fig. 3), a graphical user interface for CTG feature extraction [87].

Fig. 3 CTG Analyzer, a graphical user interface for CTG features extraction
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3 Metabolic Biomedical Engineering

Physiological processes regulating glucose tolerance can be described and quanti-
fied through a class of mathematical models called “compartmental models”. The
compartmental models defined as “minimal models” provides indexes that allow an
indirect quantification of glucose-tolerance processes. Besides “minimal models”,
more complex integrated simulation models can be designed for a more detailed
description of glucose-tolerance processes.

Development and application of model-based methodologies to describe glucose-
insulin regulatory system and pathological changes of glucose tolerance, has been
a key research area at UNIVPM since late 1990s. Research activities in this field
have been started by Prof. R. Burattini who gave substantial contribution especially
in better understanding glucose tolerance deterioration in hypertension, both in man
and in animal models. Over the years, important research collaborations in this field
have been established and are still ongoing; it is worth recalling the collaborations
with the Metabolic Disease and Diabetes Unit of INRCA (Ancona), the Department
of Experimental Medicine of the University of Genova and the Metabolic Unit of
the CNR (Padova).

3.1 Glucose Tolerance Deterioration in Hypertension

Insulin-dependent and insulin-independent processes deterioration in human hyper-
tension have been extensively investigated at UNIVPM. Main results showed that
hypertension significantly deteriorates insulin sensitivity but not glucose effective-
ness, as assessed by glucose kinetics minimal model (GKMM) interpretation of fre-
quently sampled intravenous glucose tolerance (FSIGT) test data (SI and SG indexes,
respectively). Dynamics of insulin action in hypertension was also investigated by
using the dynamic sensitivity index (SDI ); results showed that hypertension deteri-
orates SDI index, similarly to SI [30]. In normoglycemic hypertensive subjects, this
reduction in insulin sensitivitywas shown to be compensated by an increase in insulin
secretion, as assessed by C-peptide minimal model (CPMM) [30]. Hepatic insulin
degradation was not found deteriorated in hypertension and model-based techniques
were also proposed to allow a reliable estimation of such process [48].

3.2 The Role of Animal Models in the Study of Glucose
Tolerance Deterioration

Animal models have played an important role in the exploration and characteri-
zation of glucose tolerance deterioration. One of the most studied is the Zucker
Fatty Rat (ZFR), in which a mutation of the leptin receptor-coding gene impairs the
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ability of leptin to suppress food intake. ZFR are characterized by a reduced insulin
sensitivity (insulin resistance) and hyperinsulinemia. UNIVPM contributed to inves-
tigate in ZFR the existence of a relation between changes in sympathetic activity and
alterations of glucose tolerance; results suggested that stronger sympathetic nervous
reactivity in ZFR is associated with a severe insulin-resistant state before the onset
of hypertension. UNIVPM contributed also to provide model-based [44], as well as
empirical methods for the quantification of processes regulating glucose tolerance
in ZFR [49, 76, 77, 79, 80].

3.3 Quantification of Insulin-Independent Processes

Insulin sensitivity is one of the insulin-dependent processes regulating glucose tol-
erance and is defined as the ability of dynamic insulin response to stimulate glu-
cose uptake and reduce glucose production. At the same time, glucose tolerance is
regulated also by insulin-independent processes. In fact, also glucose, per se, can
stimulate its own uptake and suppress its own production even at basal insulin con-
centration; this property is called “glucose effectiveness”. Recently, there has been
a growing interest on the role of glucose effectiveness in the regulation of glucose
tolerance, although it was underestimated for many years. It was demonstrated that
glucose effectiveness is an independent strong predictor of T2D conversion and novel
therapeutic agents acting on this process have been developed.

A reliable estimation of glucose effectiveness can be achieved by GKMM inter-
pretation of FSIGT test data (SG index). SG index allows also to separately quantify
the contribution of insulin-sensitive and non-insulin-sensitive tissues to the insulin-
independent glucose disappearance; SG components are called BIE (Basal Insulin
Effect) and GEZI (Glucose Effectiveness at Zero Insulin). Studies performed at UNI-
VPMusingGKMM-basedmethodology showed that SG deteriorates with age but not
with impairment of insulin sensitivity, if a normal glucose tolerance is maintained.
In this latter condition, an increased proportional contribution of GEZI, when BIE
declines, may allow the maintenance of normal SG [78].

However, GKMM-based methodology suffers from two main limitations: it
requires expertise to run GKMM and requires at least a 3 h-test. Studies performed at
UNIVPMaimed to provide a simple predictor of SG applicable to short tests (1 h) [75],
thus allowing a simple but reliable quantitative estimation of insulin-independent
processes.

3.4 Glucose Absorption and Incretin Effect Modeling

The modelling of glucose transit through the gastro-intestinal tract and its absorp-
tion represents a key issue in the modeling of glucose-insulin regulatory system.
This issue became increasingly important after the finding that an augmented
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glucose-dependent insulin secretion (insulin potentiation) exists in response to glu-
cose transit through the gastro-intestinal tract. This phenomenon is the so called
“incretin effect”, mostly due to the gut-derived incretin hormones.

Incretin-based treatment for T2D have been proposed over recent years and sim-
ulation models contribute to improving knowledge of T2D pathophysiology and to
assess the efficacy of hypoglycemic agents in clinical drug development. An inte-
grated simulation model, intended to illustrate the importance of incretin effect, has
been proposed by UNIVPM [29, 81].

4 Conclusion and Future Remark

4.1 Smart Technologies for Movement Analysis: Where Are
We Going?

All the above citedMA applications are mainly based on classicMA instrumentation
as stereophotogrammetric systems synchronized with force platforms and sEMG
apparatus, and have been performed in a structured environment like a Movement
Analysis Laboratory. The level of accuracy obtainable in such condition is very
high but the type of instrumentation used avoids to perform analyses of daily living
activities in non-structured environments like at home, or during working or just
walking along a street. In recent years, new systems have been introduced in the
consumer grade market based on very cheap sensors like 3D-accelerometers, 3D-
gyroscopes, 3D-magnetometers that can be found integrated in smartphones or in
light, cheap and wearable systems like IMU (Inertial Measurement Units). Very
cheap gaming devices like theMicrosoft Kinect (RGB-D camera) or force plates like
the Nintendo Wii-balance board or webcams can be thought to be used in different
scenarios like in ambulatory or in home environments. Attention has been given in the
last years to this kind of devices as reported in [40–43, 70, 74, 86]. The low level of
accuracy obtainable for example by wearable IMU devices can be counterbalanced
by more complex digital signal processing techniques based on Kalman filtering
that allows data fusion by redundant and different measurement sensors. In future
we think that great attention has to be given by Machine Learning applications in
order to extract from data, hidden features that characterize different motor tasks and
behaviors.

4.2 Wearable Sensors and Smart Technology: The Future
of Cardiovascular Monitoring

The future of cardiovascular monitoring will rely on the extensive use of wearable
sensors and smart technologies. Indeed,wearable sensors aremuchmore comfortable
than traditional clinical devises and can be used routinely also at home allowing a
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continuous monitoring of the patient. Patients’ data will be sent real-time to cloud
databases and computational center thanks to telemedicine techniques, where they
will be analyzed by using deep learning and big data approaches. Self-monitoring
will also become popular thanks to software applications running on smartphone
that will be able to read the data recorded by wearable sensors and to provide alarms
when the cardiovascular risk increases.

4.3 Toward Simple Quantification of Glucose Tolerance

Although the previously described modelling methodologies provide an easier
assessment of processes mediating glucose tolerance, application to clinical settings
is still prevented. In fact, tests required for the applications of model-based method-
ologies are usually time-consuming and expensive. In this context, the development
of simpler but reliable methodologies is encouraged. Such simple indexes could be
applied also in epidemiological studies, especially to understand the role of glucose
effectiveness, on which new therapeutic agents are based, in the regulation of glucose
tolerance.
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