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Abstract In the last fifty years, the development of new technologies has enabled
machines to sustain the ever increasing computational load, thus providing the imple-
mentation capability requested by real time applications. In this context, digital signal
processing played an important role especiallywith relation to audio systems. Several
approaches have been proposed to solve the main issues of the audio field in complex
scenarios, including advanced audio rendering applications and acoustic monitoring
systems exploiting multirate adaptive algorithms, machine learning techniques and
deep neural circuits. Following this trend and based on our experience, the future
will witness the joint use of these techniques to design applications able to improve
quality and comfort of people’s daily life. Among them, in this contribution we want
to focus on the employment of advanced audio augmented reality solutions, involv-
ing both virtual audio sensors and transducers, to design enhanced spatial hearing
experiences in diverse application contexts, spanning from entertainment to safety.
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1 Introduction

In the last fifty years, the development of new technologies has enabled machines
to sustain the ever increasing computational load, thus providing the implementa-
tion capability requested by real time applications. In this context, digital signal
processing played an important role especially with relation to audio systems that
are present in different applications and scenarios of the daily life. In particular, the
growing presence and adoption of electronic equipment in the everyday life, has led
to the need of audio processing procedures to make the ambient intelligent, such
as the automatic recognition of commands and activities performed by subjects in
their living environment, to help and support them. Furthermore, the pervasiveness
of technology has raised a great attention on the aspects related to a comfortable
living, including also the acoustic comfort. In this context, several audio processing
algorithms can be used to enhance the audio reproduction systems, exploiting audio
equalization and analyzing the non-linear behaviour of audio devices. All these appli-
cations can be implemented introducing multirate adaptive algorithms and machine
learning techniques. Multirate adaptive algorithms are based on the use of adaptive
filtering with subband structure allowing a real time identification of the analyzed
system with fast convergence and low computational complexity. Machine learn-
ing techniques, including deep neural circuits which have recently encountered a
remarkable success, are aimed at extracting useful representation knowledge from
acquired audio signals, to pilot the execution of automatized services. Taking a look
at the future, the use of these techniques will increase since they guarantee good
results in terms of computational complexity, achieved quality and easy adoption in
those applications that address people’s comfort in their daily life.

In Sect. 2, a brief overview of our contributions is reported. In particular, Sect. 2.1
describes our contribution on the use of audio signals for ambient intelligence while
Sect. 2.2 reports our contribution on the use of audio algorithms for the improvement
of the audio reproduction. New trends and future research directions are presented
in Sect. 3, where the employment of advanced audio augmented reality solutions,
involving both virtual audio sensors and transducers, is introduced to design enhanced
spatial hearing experiences in diverse application contexts.

2 Our Contribution in the Audio Field

2.1 Audio-Based System for Ambient Intelligence

Systems and solutions based on audio processing are of great interest for Ambient
Intelligence, to allow the automatic recognition of commands, the identification of
either so-called Activities of Daily Living (ADLs) as well as anomalous events or
potentially dangerous situations, like human falls. Several research studies addressed
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the possibility to exploit the audio signals acquired bymeans of suitablemicrophones
deployed in the monitored living environment [2, 17].

In this context, the Audio-based System for Ambient Intelligence [5, 51, 52] has
been recently developed by someof the authors atUnivPM. It addresses the automatic
detection of emergencies and the recognition of commands in home automation con-
texts. An emergency here is represented by a situation of distress for the user, where
he/she intentionally asks for help, or by an abnormal acoustic event. Recalling the
classification proposed in [1] the application scenario is thus monitoring for emer-
gency detection and ambient assisted living. The system operates in two modalities
that are chosen by the user to monitor different situations.

The first modality, speech monitoring, is enabled when the user is inside the
home and consists in recognizing home automation commands and distress calls.
Commands are automatically interpreted to control the appliances and the devices
connected to the home automation system. Distress calls are employed to provide
tele-assistance to the users. In particular, a distress call triggers an automatic phone
call to a relative or a care center that then can provide assistance to the user. The acous-
tic environment is constantly monitored to detect speech signals by means of a Voice
Activity Detector (VAD), and a speech recognizer based on PocketSphinx [23] cap-
tures distress calls and voice commands. Robustness against noise and reverberation
is increased by integrating Power Normalized Cepstral Coefficients (PNCC) [26]
and Multichannel Histogram Equalization (MHEQ) [57]. In addition, the sounds
from a television or a radio are reduced by means of an interference cancellation
module. The recognition performance has been assessed on ITAAL [52] a corpus
of home automation commands and distress calls in Italian. The experiments have
been conducted both with and without the presence of a radio show that represents
an interference audio signal that can be present in the everyday use of the system.

The second modality is activated for surveillance purposes, e.g., when the user
is outside the house. The system now monitors the acoustic environment to detect
events that deviate from normality. As in the case of distress calls, their detection
triggers an automatic phone call towards a user-defined phone number. The novelty
detector [33, 34, 47] is based on the approach proposed in [39] which consists in
extracting a set of features from the audio signal, and in modeling normal sounds by
means of a statistical generative model. PNCCs, MFCCs, critical band-based TEO
autocorrelation envelope [64], MPEG-7 features [25] and their combinations have
been evaluated in order to determine the feature set with the overall best perfor-
mance/computational cost ratio. In regard to the normality model, Gaussian Mixture
Models and Hidden Markov Models have been both considered in order to find the
best performing technique for the application scenario. Differently from [39] in the
recognition phase, the decision is performed on a chunk-based analysis. The effec-
tiveness of the approach has been assessed on a newly developed corpus for novelty
detection, named A3Novelty, which contains more than 56 hours of recordings com-
prising both normal abnormal sounds.

Summarizing, it can be said that the system combines active and pro-active oper-
ation modes for emergency detection, since the user can explicitly ask for assistance
by uttering a distress call, or have the system detect an emergency by analyzing
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abnormal sounds. Moreover, the latter mode is performed by means of a novelty
detector algorithm that does not require the explicit modeling of abnormal sounds
representing an emergency. In regard to the sensors employed, the use of microphone
does not require the user to wear a specific device for emergency detection and allows
a simple integration of a voice user interface. Finally, the proposed system comprises
both the algorithms for emergency detection, and the ones for its management, i.e.,
for enabling the communication between the person asking for assistance and the
relative or care center. The algorithms have been implemented on a low-consuming
embedded platform, i.e., the BeagleBoard-xM, while state-of-the art alternatives are
based on more costly and energy consuming PC hardware [46].

A specific subsystem for fall detectionbasedon an innovativefloor acoustic sensor,
as described in [50], has been also developed and included in the overall audio-based
system for Ambient Intelligence. The sensor is composed of amicrophone embedded
in a resonant enclosure whose bottom surface is in direct contact with the floor. In this
way, the microphone captures the acoustic waves transmitted through the floor and
it mainly captures the sound of falling objects, resulting in a minor sensitivity to the
environmental noise. In addition, it is able to capture the subtle signal components
transmitted through the floor, which are absent in the signal transmitted through the
air. The fall signals are then processed to recognize from which kind of fall they
are produced: for this purpose, a multiclass classifier is implemented. The algorithm
is based on Mel-Frequency Cepstral Coefficients as low-level acoustic features and
Gaussian means supervectors as features for a Support Vector Machine classifier.
More in details, a background model is created from a large set of audio events
signals, and for each audio event class taken into consideration, a set of supervectors
is calculated by adapting the background model with the Maximum a Posteriori
algorithm and extracting the means of the Gaussians. The supervectors are then
employed for training the Support Vector Machine classifier. The performance of the
system has been assessed by creating a corpus of fall events acquired using the audio
sensor in a realistic scenario. The obtained results showed that the proposed approach
is able to discriminate persons’ falls with values of recall and precision higher than
98%. A recent update of the subsystem includes a semi-supervised approach, relying
on advanced template-matching solutions, for automatic human fall detection [15].

It must be observed that falls of persons have been widely addressed by the sci-
entific community, since they represent the primary cause of injury-related death for
the elders [37]. Approaches to the problem are based either onwearable sensors (e.g.,
accelerometers) or on ambient sensors (e.g., microphones, cameras, floor vibration
sensors). The first ones exploit the information of the falling body acceleration [14],
from which a fall event is detected when the value exceeded the typical normal
level. Instead, the ambient sensors reveal the falling activity from the observation
of the environment in which they are positioned: those could be used individually
[55, 65] or combining the information coming from heterogeneous sensors [63, 66]
for improving the reliability. In the case of floor vibration sensors, the detection
is performed by analysing the signal resulting from the fall event, which produces
a characteristic vibration, while in systems based on videocameras, the detection is
based on the deformation of the human shape. Recently, several approaches appeared
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in the literature that are based exclusively on audio signals [31, 32]. The motivation
is that microphones are perceived as less invasive compared to wearable sensors and
cameras and they do not suffer from occlusions. A common approach is to install
several microphones in the house, usually on the ceiling or near the walls. The prob-
lem with these approaches is their sensitivity to environmental noise, that usually
requires the adoption of beamforming techniques to enhance the signal quality and
thus achieve a sufficient detection accuracy [31]. The floor acoustic sensor is immune
to this kind of limitations.

Concluding, it is interesting to underline that, besides a specific deployment of
acoustic sensors in the environment to be monitored, also microphones mounted
on mobile devices, like smartphones, can be effectively used to collect audio data,
and integrated into ADL identification modules, in order to facilitate the correct
classification of theADLby sensor-fusion approaches. As shown in the recent review
by Pires et al. [49], most of the studies exploitingmicrophones on-board smartphones
apply audio fingerprinting techniques, aiming to find a match between the signal
collected by the microphone during ADL execution, and a database of well-known
audio fingerprints. Being the published methods very diverse, and having been tested
over different data sets and different feature extraction techniques, it is quite difficult
to provide a final evaluation about the best audio fingerprinting technique to be used
for the aim of ADL identification. Different approaches exist, that avoid the need to
collect big amounts of fingerprints, despite being anyway able to identify different
acoustic events. This aspect will be faced in the next future and suitable algorithms
need to be developed for integration within the current Audio-based Systems of
Ambient Intelligence.

2.2 Advanced Systems for Audio Reproduction Enhancement

When sound is reproducedbyoneormore loudspeakers in a real scenario, the acoustic
perception is modified by the characteristics of the listening environment such as a
room or a car cockpit. A small quantity of reverberation is required since it adds
spaciousness and depth to the sound, however excessive reflections or resonances
may result in an undesired alteration of the auditory illusion, adding some artifacts
(e.g., frequency band extension, nonlinearities) to the original sound. In this context,
an audio equalization algorithm is required to contrast the detrimental effects of
the room environment and of the reproduction system [13]. Equalization is realized
taking into consideration the transfer function that represents the path from the sound
reproduction system to the listener and then this function is modified with a suitably
designed equalizer that can be realized in several manners. The basic idea is to
measure the impulse response of the environment using a microphone, and then
obtain the equalizer through its inversion. However, several issues influence this
method, and thus a wide variety of techniques have been developed over the last
40 years to counteract them [13]. Approaches to the design of the equalizer can be
divided in single-point and multi-point ones. A single position equalizer estimates
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the equalization filter on the basis of the measurement of the impulse response in a
single location [38]. This way, the filter is effective only on a reduced zone around the
measurement point, the extension ofwhich is proportional to a fraction of the acoustic
wavelength. However, the impulse response varies significantly with the position of
the microphones in the room or car environment [29, 35] and with time [22] as these
environments can be considered as “weakly non-stationary” systems [36]. To enlarge
the equalized zone and to contrast the room and car response variations, multi-point
equalizers have been proposed [4, 7, 11]. A multi-point equalizer uses multiple
measurements of the impulse responses at different locations in order to design the
equalizer. These approaches can be used for fixed and adaptive equalization [12].
The former is based on measurements obtained with a microphone positioned in a
fixed place, the latter is capable of tracking and adapting to environment variations
that can occur due to the modifications of temperature, pressure, and movement of
people or other obstacles within the enclosure. Different pre-processing techniques
can be applied to contrast the audible distortions caused by equalization errors due to
these environment variations [11], and different equalizer design techniques can also
be adopted, taking into consideration minimum-phase or mixed-phase approaches.

In the context of audio reproduction enhancement, an important role is relative
to the audio devices identification. The non-linear behaviour of some devices could
be considered beneficial in some cases, such as guitar amplifier reproduction, or
not beneficial in the case of impulse response measurement, where the amplifier can
introduce its own non-linear behaviour. Severalmethods can be found in the literature
about non-linear system identification.

Volterra series is a linear-in-the-parameters (LIP) [8] nonlinear filter used for non-
linear signal processing and non-linear system identification. It was actively used in
the audio field from audio effect emulation [59, 60], to nonlinear acoustic echo
cancellation [3, 6] or nonlinear active noise control [18, 58]. The identification of
Volterra series can be carried out by searching the minimum of the mean square error
(MMSE) between the outputs of the series and the target system. If the input is taken
from an independent identically distributed (i.i.d.) sequence, it is well known that
the cross-correlation method due to Lee–Schetzen [56] gives the optimal solution
in the MMSE sense. This method needs the output to be expressed as a sum of
orthogonal functional as those proposed by Wiener [62], since Volterra functional
are not orthogonal to each other.

The Lee–Schetzen method undergoes many drawbacks: the central moments of
a Gaussian input deviate from ideal values as the moment order increases [43]; the
input non-idealities affect particularly the estimation of the kernels diagonal points
[43, 44]; and the problem is worsened by the errors caused by a model order under-
determination [40].

Effective solutions that overcome the problem of diagonal points identification
have been proposed in the literature, for series up to the third order in [19], and for
a generic order in [48], where a comparison between the two methods is also pro-
vided. While in analytical power series (infinite sum of elements), the identification
with cross-correlation is independent of the input variance, this is no more true with
truncated power series, where the approximation error depends on the variance used
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in the identification: a Volterra series is optimal only for inputs with variances in a
neighborhood of that used for identification, also called the problem of “locality”
of solution [40]. An improved cross-correlation method to overcome the problem
of the “locality” of solution, based on multiple-variances has been proposed for
Wiener-Volterra series and Gaussian noise in [40]: low input variances are used to
identify lower-order Wiener kernels, while the input variance is gradually increased
for higher-order kernels. This allows a better identification of systems that have high
dynamic inputs, like audio systems, and can be applied to amplifiers [41, 45] or
loudspeaker systems. In [41] the multiple-variance approach was used for the identi-
fication of audio devices with deterministic periodic signals, called perfect periodic
sequence (PPS), that guarantee the orthogonality of the basis functions on a finite
period. In [45] the multiple-variance approach for the identification of tube audio
devices was completed with a method that drastically reduces the curse of Volterra
series dimensionality, i.e. the exponential relashionship between the coefficient of
the series and the order and memory of the system to be identified.

It is possible to make easier the nonlinear system identification with the use of
Wiener nonlinear (WN)filters,which derive directly from the double truncation of the
Wiener series. The WN filter is a first example of nonlinear filters with orthogonal
basis functions, in particular, orthogonal for a white Gaussian input signal. The
orthogonality of the basis functions allows the efficient identification of the filter
coefficients with the cross-correlation method, as in [30]. PPS can also be developed
for WN filters. Expressing the WN filter as a linear combination of basis functions
and using a PPS input signal, problems in the estimation of the kernel diagonal points
can be avoided [9, 10]. Also the multiple-variances method, that avoid the locality
of the solution, can be applied to WN filters [42] with some advantages with respect
to the use of a white Gaussian input, as originally proposed in [40].

All experiments have been realized taking advantage of the semianechoic chamber
realized at the Department of Information Engineering, and shown in Fig. 1, that
allows to perform several tests in a controlled environment.

Fig. 1 Semianechoic
chamber at the department of
information engineering
used for audio experiments
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3 A Knowledgeable Vision on Digital Audio Applications

3.1 Vision

The overall future vision on Digital Audio applications sees the synergistic com-
bination of methodologies for spatial audio processing aimed at augmented and
virtual reality on headsets, and techniques of machine audition in the context of
safety monitoring (Fig. 2). By analyzing and defining the acoustic scene through the
use of microphones, the correct spatial information can be reproduced by means of
headphones.

Audio augmented reality (AAR) combines virtual sound sources with the real
sonic environment of the user [21]. It can be realized by means of a device that a
user could be wearing at all times, such as a headset [53]. This way, the user can at
the same time, hear and interact with the real acoustic environment in a natural way,
allowing ordinary speech communication with other people and permitting all those
operations for which acoustic feedback is important [16, 61]. To generate and render

Fig. 2 Future vision on digital audio applications where augmented and virtual reality will be
applied on headsets for spatial audio processing
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virtual auditory events, it is necessary to consider the properties of a real auditory
event and its perception by the human ears. The human perception is spatial and
it is bounded to localization cues and to the brain capability of interpreting them.
Therefore, it is possible to develop a spatial rendering system through the use of
auralisation, i.e., the reproduction of virtual sound considering the human perception
capability in such a way that it evokes the same listening experience of a real sound
source at a specific point in the space [27]. This aspect is realized considering binaural
audio approaches that recreate this sensation exploiting the Head Related Transfer
Functions (HRTFs) [20]. HRTFs are unique to each person since they are related
to the human head physiology, however several approaches capable of overcoming
HRTF individualization can be found in the literature [20]. In this context, several
approaches for the enhancement of spatialized sound reproduction can be developed.
Adaptive equalization is another key point to be implemented since it is necessary to
make headphones acoustically transparent allowing a real perception of the ambient
sounds [53]. In [54], a natural augmented reality headset with two pairs of binaural
microphones to achieve natural listening experience using online adaptive filtering
was presented. If the ambient is extremely noisy, anActiveNoiseCancellation (ANC)
system can be developed for the headset. Active noise controllers (or cancellers)
cancel the noise in a certain location by destructive interference with an anti-noise
signal [28]. In this particular case of AAR, selective ANC is considered since just
specific disturbances have to be cancelled, preserving other sound sources that are
important for a pleasant fruition of the audio scene [24], or for the audio security of
the user.

In the perspective of the future research activities, two relevant application sce-
narios are of interest: indoor (applicable to workers in a noisy factory) and out-
door (targeting pedestrians listening to music). In both scenarios, the computational
time required by the overall processing chain (source localization and enhancement,
acoustic scene understanding, and synthesis of the audio stream) must be kept at bay
in order to give the user the proper time to react. At the authors’ best knowledge, the
idea of synergistic cooperating tools coming from machine audition and augmented
reality on headset, featuring a low latency in order to increase the sense of presence
in real environments, is innovative and not addressed before. This goal poses several
challenges, which compel researchers to develop solutions that go beyond the state
of the art. In order to keep under control the reaction of the system, it is important to
consider the different nature of the scenarios of interest, especially for what concerns
the interfering noises and the reverberation.

The overarching goal of the envisioned research is pursued into three main objec-
tives, all of them pertaining to areas that are individually very active.

AudioQuality Enhancement. This objective aims for the enhancement of the sound
field acquired by one or more microphone arrays, to obtain specific signals for the
subsequent analysis of the acoustic scene. This is a very active area in the audio com-
munity, and many applications in the last years have gained commercial interest. The
scenarios of interest mentioned above, however, require to develop functionalities
with capabilities that go far beyond the state of the art. In particular, innovative algo-



46 F. Piazza et al.

rithms for source enhancement that canwork in the presence of strong reverberations,
multiple moving sources and interferers will be investigated and developed.

Acoustic scene analysis andunderstanding. Research on this topic has been receiv-
ing much interest within the audio research community. In this context, the problems
of localizing sources and understanding their nature will be tackled by exploiting
innovative techniques, such as plenacoustic methods, which are able to accommo-
date reverberant environments and multiple sources. In particular, advanced deep
learning techniques and neural network architectures will be considered to overcome
the main problems of the aforementioned scenarios.

Audio augmented and virtual reality. In this objective, an artificial sound spa-
tialization system exploiting personal spatial audio technologies will be proposed.
Starting from the study of the state of the art, innovative solutions based on HRTF
will be presented, exploiting the possibility of using alternate and less expensive
solutions for spatial audio rendering, based on spatial cues such as Interaural Time
Difference (ITD) and Interaural Level Difference (ILD). Furthermore, some tech-
niques capable of improving the sound perception will also be investigated, such as
adaptive equalization and selective ANC.

3.2 Proposed Methodology

The intended research direction envisioned for the future is both innovative and chal-
lenging, being based on the effective combination and fusion of different powerful
methodologies. In particular, it mainly draws on the digital signal processing and
machine learning theories applied to audio and acoustic data. The proposed method-
ology aims at providing effective solutions to the tasks identified,whilemeeting some
constraints posed by a specific application scenario and by the quality requirements
desired by a user. Among such constraints, a particular attention in the algorith-
mic design and development will be given to the available computational resources.
Indeed, the available hardware is subject to the scenario considered. For instance,
in indoor scenarios distributed hardware architectures may be used, whereas more
limited computational resources will be available in outdoor scenarios (e.g., portable
devices). In that sense, the methodology aimed at will be compatible and adaptable
to the different application contexts that will be considered and the proposed algo-
rithms will be designed to be efficient also from a computational point of view. The
proposed methodology will show a significant degree of novelty, mainly due to the
novelty of the proposed application scenarios, to the design of algorithms that must
be able to satisfy the imposed constraints (e.g., quality, hardware), to the development
of algorithms deriving from the joint use of machine learning and signal process-
ing methods. Taking into account all the aspects mentioned above, the envisioned
methodology includes diverse sets of algorithms, as described below.

A first set of methods is devoted to the quality enhancement of the audio cap-
tured by microphones. To this end, the geometric arrangement of microphones with
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respect to the sound sources requires an accurate study that depends on the specific
application. In stationary and controlled environments, arrays can be easily placed
on fixed and even bulky supports and their dimensions are not an issue. In con-
trast, the array size may be required to be spatially limited e.g., when microphones
are integrated in a portable device. However, regardless of the specific application,
the arrangement and correct calibration of the microphones significantly affect the
qualitative improvement of the audio signal. Methodologies to accomplish this task
include: spatial filtering design for defining the optimal geometries of microphone
arrays in well-defined environments; optimization algorithms for the selection of a
subset of microphones for a fixed geometry; deep learning techniques for relaxing
the geometrical constraints and the necessity of microphones calibration, and super-
resolution techniques that use a priori information to increase the signal resolution.

Different natural and artificial artifacts usually affect the quality of the captured
audio, including background noise, reverberation and interfering sounds. A first sig-
nificant enhancement of the audio quality is provided by beamforming techniques,
which aim at reducing the noise sounds coming from outside the sound field of
interest where a desired sound source is located. Advanced space-time processing
methods can be developed according to some general characteristics of the micro-
phones employed (e.g., single microphone, distributed sensors, coincident micro-
phone arrays). In a second stage, the residual noise can be further reduced by
implementing signal enhancement algorithms to improve the audio intelligibility.
Enhancement methods also include the plenacoustic representation, which provides
a ray space image of the directional components of the sound field by using small
sub-arrays among the employedmicrophones, machine learning techniques for dere-
verberation, as well as the separation of mixtures of sound signals.

The identification of the source position is fundamental to correctly recognize
the nature of a sound and provide an accurate rendering of the audio signal that
can be pleasant to the human listening. To this end, several methodologies will be
involved for the sound localization, including binaural techniques based on HRTF,
plenacoustic framework for distributed microphones, deep learning techniques for
3D sound localization.

Once signals have been acquired, enhanced and spatially localized, it is impor-
tant to perform a description of the whole scenario with a high-level detail. An
acoustic scene is characterized by particular sounds that can be associated with
a specific event. Advanced machine learning algorithms can be developed to detect
a well-known sound or even to identify an “anomalous” event that might represent a
potential risk for human safety. However, the detection of an anomalous sound event
should be followed by an adequately trained classification architecture to correctly
evaluate the possible risks. To this end, novel deep learning solutions involving semi-
supervised learning, data augmentation, and transfer learning strategies will be taken
into account. Sound events can be further analyzed to describe a particular environ-
ment by “listening” to the sound rebounding in it. Such analysis, known as “acoustic
scene understanding”, can be performed by involving data-driven models, providing
a scene classification based on the analysis of frames with different temporal depth.
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The high-quality audio signal rendering for an enhanced experience is also
included within the proposed methodology. In order to provide the user with a spa-
tial perception of the augmented audio, several methods based on the HRTF will be
developed. In particular, research efforts will be focused on the spatial audio render-
ing engine and its personalization, as well as on methods for personalizing HRTF
according to the user preferences, by using morphing of data both from publicly
available datasets and from real measurements. In order to improve directional cues
of warning messages, low-latency solutions will be investigated involving time dif-
ference and interaural level difference. The audio rendering for augmented reality
also involves adaptive equalization for acoustic transparency in headset reproduction.
Indeed, novel equalization algorithms will be developed to make headsets percep-
tually transparent to specific external sounds, while providing at the same time an
optimal reproduction of the infotainment audio message. Moreover, some proce-
dures to automatically select desired sound events will be developed based on spatial
filtering and advanced active noise cancellation, besides integrating the information
provided by the acoustic scene understanding subsystem.

4 Conclusions

Digital signal processing brought exciting achievements and innovations in the audio
domain, during the last fifty years. Among them, this chapter focused on advanced
audio augmented reality solutions, involving both virtual audio sensors and transduc-
ers, to design enhanced spatial hearing experiences in diverse application contexts,
spanning from entertainment to safety. According to the authors’ knowledge gained
in the field and future perspectives, all these innovative techniques will lead to new
applications able to substantially improve quality of experience and comfort in peo-
ple’s daily life.
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