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Abstract. In the absence of sufficient data variation (e.g., scanner and
protocol variability) in annotated data, deep neural networks (DNNs)
tend to overfit during training. As a result, their performance is signifi-
cantly lower on data from unseen sources compared to the performance
on data from the same source as the training data. Semi-supervised
domain adaptation methods can alleviate this problem by tuning net-
works to new target domains without the need for annotated data from
these domains. Adversarial domain adaptation (ADA) methods are a
popular choice that aim to train networks in such a way that the features
generated are domain agnostic. However, these methods require careful
dataset-specific selection of hyperparameters such as the complexity of
the discriminator in order to achieve a reasonable performance. We pro-
pose to use knowledge distillation (KD) – an efficient way of transferring
knowledge between different DNNs – for semi-supervised domain adap-
tion of DNNs. It does not require dataset-specific hyperparameter tun-
ing, making it generally applicable. The proposed method is compared to
ADA for segmentation of white matter hyperintensities (WMH) in mag-
netic resonance imaging (MRI) scans generated by scanners that are not
a part of the training set. Compared with both the baseline DNN (trained
on source domain only and without any adaption to target domain) and
with using ADA for semi-supervised domain adaptation, the proposed
method achieves significantly higher WMH dice scores.
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1 Introduction

In the presence of a large training dataset that covers all possible data varia-
tions, deep neural networks (DNNs) can achieve super-human performance in
image recognition and semantic segmentation tasks. However, in medical image
segmentation tasks large annotated training datasets are often scarce. In addi-
tion, training and test data are drawn from different distributions. For example,
the images were obtained using different scanners at different sites or the demo-
graphics of the subjects differ. This violation of the i.i.d. assumption (i.e., that
training and test data are drawn independently from the same distribution) typ-
ically has the effect that the performance on the test data is significantly worse
than on the training data.

Domain adaptation (DA) approaches try to alleviate the problem of apply-
ing models in new domains with different characteristics. In particular, semi-
supervised DA methods provide a way to learn structure from unlabeled data in
new domains. Among the several semi-supervised DA (SSL-DA) methods pro-
posed, the most popular one is adversarial training based domain adaptation
(ADA). ADA relies on generating features that are invariant with respect to a
domain discriminator. ADA requires extensive parameter optimization due to
the necessity of a robust discriminator. And a recent study pointed out the flaws
in the evaluation of SSL-DA methods [1].

In this paper, we evaluate a modified knowledge distillation (KD) [2,3]
method for generalizing DNNs to new domains with a common clinical prob-
lem in contrast to using ADA methods. The datasets chosen for evaluation not
only involve different magnetic resonance images (MRIs), but also were acquired
on subjects with different demographic makeup. Through our evaluation, we
show that the proposed KD is generally able to achieve better dice scores in seg-
menting white matter hyperintensities (WMH) on datasets that are not a part
of the training data and do not share any attributes when compared to baseline
and ADA.

2 Related Work

Among the recent works on DA, several methods rely on using a small amount
of data (annotated) to fine-tune a baseline model [4,5]. The performance of this
approach not only relies on a new – albeit small – set of annotations but also on
the choice of the set. In contrast, SSL-DA do not use data annotations on new
target domains. Adversarial training is a popular SSL-DA method [6–8]. Here,
networks are trained in such a way that the generated features are agnostic to
the data domain with respect to a domain discriminator. A similar solution,
ADA, was employed by [9] to adapt networks to be agnostic to domain changes.

Another class of DA method use KD to transfer representations between data
domains. For instance, [10] proposed using KD to transfer knowledge between
different modalities of the same scene. Closely related to our work is [11], where
the authors propose to use omni-supervised learning (OSL) to include unla-
belled data in the learning process. Here, data distillation is used to generate an
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ensemble of predictions from multiple transformations of unlabeled data, using a
teacher model, to generate new training annotations. The proposed method dif-
fers from this method on two accounts: (a) Only soft labels are used to train the
single student network, where the idea is to improve segmentation by learning
label similarities from unannotated data (b) the data included in the training
of the student involves data from new domains in small amounts in contrast to
OSL.

3 Methods

In SSL-DA methods, we assume the source domain images and their annotations,
(xs, ys) ∈ Xs, are drawn from a distribution ps(xs, y). The target domain images
xt ∈ Xt, are drawn from a distribution pt(xt, y) where there are no annotations
available. We consider classification into K classes. In an ideal scenario, where
ps and pt are sufficiently similar, the goal is to find a feature representation
mapping f that maps an input to K scores, where the ith score models (up to
a constant) the logarithm of the probability that the input belongs to class K.
These scores can then be mapped by σ : RK → R

K to probability maps over
the classes. SSL-DA first finds a function fs performing well on a source domain
and then finds a new ft based on fs that performs well on the target domain.
Vanilla supervised learning methods rely on including annotations from both Xs

and Xt.
In the popular ADA method, the goal is to minimize the distance between

the empirical distributions of ps(fs(Xs)|y) and pt(ft(Xt)|y). Here, a discrimina-
tor D is a neural network that distinguishes between the two domains. There-
fore, the discriminator acts as a discrepancy measure that brings the two dis-
tributions together. Overall, adversarial training involves train a network that
generates f in a standard supervised manner that is indistinguishable by a
discriminator [6,9].

3.1 Knowledge Distillation for Domain Adaptation

KD [2] was originally intended to compress neural networks with high number of
parameters with networks of lower complexity. The objective is to teach a simpler
student network to imitate a more complex trained teacher network, through a
loss function called the distillation loss. To perform unsupervised domain adap-
tation, we proposed to use the teacher/student learning strategy. Specifically,
the data from the source domain is used to train a teacher model in a supervised
fashion. Then, the trained teacher is used to generate posterior probability maps
or soft labels on the union of source and target data. These posterior probabilities
are used instead of usual hard labels to train the student or target model. Note,
this approach can take advantage of large amounts of unlabeled data acquired
from any number of domains. An attractive feature of distillation loss is the
soft representation of one-hot encoded label vectors which allow the student to
be optimized over a smoother optimization landscape. Moreover, the smooth
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representation of labels also allows the learning of label similarities, which is
particularly useful in learning boundaries in semantic segmentation tasks. The
proposed semi-supervised learning method is formulated below.

Training the Teacher or Source Domain Model: Consider a set of N
manually annotate images from a source domain Xs = {(xi, yi), i = 1 . . . N},
where xi ∈ R

d represent a d-dimensional MR scan, with v = 1 . . . V voxels, and
yi ∈ [0, 1]K with ‖yi‖1 = 1 its correspondent label. Assuming there is a set Fs

that holds functions f : Rd → R
K we aim to learn a feature representation fs

(teacher model) which follows the optimization of a loss function, l, according
to Eq. (1)

arg min
f∈Fs

1
N

∑

xi∈Xs

l(yi, σ(fs(xi))) (1)

[σ(z)]k =
e[z]k

∑K
l=1 e[z]l

(2)

In a standard supervised learning way, the teacher network is optimized using
the cross-entropy loss function (or any differentiable loss function of choice).

Training the Student or Target Model: Even though fs is suitable to seg-
ment the images from the source domain Xs, it may not be suitable for data
coming from a different data distribution Xt. Our goal is find a function ft ∈ Ft,
which is suitable to segment data from Xt. Assuming, we have access to a lim-
ited set of unlabeled scans in the target domain Xt = {xi, i = 1 . . . M}, we can
then create a set

XU = {(xi, yi) |xi ∈ Xs, yi = fs(xi), 1 ≤ i ≤ N}∪
{(xi, yi) |xi ∈ Xt, yi = fs(xi), 1 ≤ i ≤ M}

that may be used to optimize a student using the distillation loss. Through soft-
representations of this union dataset, the student is expected to learn a better
mapping to the labels than the teacher network. When training the student
network, we consider probability distributions over the labels as targets, not
single classes. This representation reflects the uncertainty of the prediction by
the teacher network. The function ft is found by (approximately) solving,

arg min
f∈Ft

1
(N + M)

∑

xi∈XU

l(σ(T−1fs(xi)), σ(ft(xi))) , (3)

Here, T > 1 is the temperature parameter which controls the softness of the
class probability prediction given by fs.

4 Experiments and Results

4.1 Databases

The WMH segmentation challenge (https://wmh.isi.uu.nl/) dataset is a
public database that contains T1-weighted and FLAIR scans for 60 subjects

https://wmh.isi.uu.nl/
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from three different clinics. The data also consists of manual annotations of
WMH from presumed vascular origin. T1-weighted images have been registered
to FLAIR since annotations were performed in this space. The images were also
corrected for bias field inhomogenities using SPM12. An important feature of
this dataset is that the scanners and demographics have variance as show in the
Table 1.

Table 1. Summary of data characteristics in the WMH challenge database

Clinic Scanner name Voxel size(m3) Size # of images

Utrech 3T Philips Achieva 0.96 × 0.95 × 3.00 240 × 240 × 48 20

Singapore 3T Siemens TrioTim 1.00 × 1.00 × 3.00 252 × 232 × 48 20

Amsterdam 3T GE Signa HDxt 1.20 × 0.98 × 3.00 132 × 256 × 83 20

4.2 Experimental Setup

One of the main objectives of the paper is to use semi-supervised learning to
perform domain adaptation. We use the WMH challenge dataset to perform
cross-clinical experiments in segmenting WMH on FLAIR images. We consider
several scenarios to establish the performances of ADA and KD. The scenarios
are described below. Note that, to evaluate the performance of the algorithms,
dice overlap measures are used throughout.

– Lower bound baseline, L-bound: Here a baseline DNN model is trained on the
source dataset to establish a lower bound performance. The DNN is trained
on the source domain images henceforth referred to as S, and tested on 20
subjects from a target dataset T.

– Upper bound baseline, U-bound: Here, a baseline DNN model is trained like
L-Bound, however, the training dataset is a union of images from both S and
a subset of T (10 subjects, with annotations). The network is evaluated on
the remaining 10 subjects in T.

– Adversarial domain adaptation, ADA: Following [9], we attempt at training
a DNN model that is invariant to data domains. In this paper, to be consistent
with KD, we train the domain discriminator based on the final layer of the
baseline, in contrast to what was proposed in [9]. We use a discriminator
composed of 4 convolutional layers with 8, 16 32, 64 number of filters, followed
by 3 fully connected layers with 64, 128 and 2 neurons. For this experiment,
like U-bound, the training dataset is a union of images from both S and a
subset of T (10 subjects, without annotations). The network is evaluated on
the remaining 10 subjects in T.

– Knowledge distillation, KD: The experimental setup for KD is the same as
ADA. A temperature of 2 is used in the softmax for the distillation loss. The
student network trained is identical to the teacher network whose architecture
is a standard UNet (like L-bound, U-bound, and ADA) optimized with an
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ADAM loss function and a learning rate of 10−4 with is gradual decrease after
epoch 150. The network is trained for 400 epochs.

– Adaptation on-the-fly: A clinically relevant scenario is adapting to a small set
of test images on the fly by keeping the teacher/baseline model constant. To
validate this scenario, we apply ADA and KD on the same 10 unannotated T
that are included in the training, but subject-wise. In other words, separate
adaptation is performed on each instance of T, instead of including them
together.

4.3 Results

Various combinations of mismatched (in terms of clinics) training and testing
data were used. For instance, if the training data is from clinic 1 (Utrecth), the
testing data is from either clinic 2 (Singapore), or clinic3 (Amsterdam). We did
not test on two different clinics even though this scenario is practical. Table 2
illustrates mean dice coefficients (two folds) for each of the scenarios mentioned
in Sect. 4.2 except for adaptation on the fly which is illustrated in Table 3. KD
outperformed ADA in nearly all scenarios except for domain adaptation from
Singapore clinic to Utrecht clinic and vice versa. For domain adaptation from
Utrecht clinic to Singapore clinic, ADA was significantly better than KD. In
the vice-versa situation, KD achieved a better mean which is statistically not
significant. In all other scenarios, KD yielded statistically better dice overlaps
compared to ADA. Note that the statistical comparison are made only between

Table 2. Illustrates dice overlaps (with variance). Bold fond indicates statistical signif-
icance at 5%, p-values (paired-sample t-test at was used to computed p-values, which
were 0.0002 < p < 0.02). Only ADA and KD methods are considered in the statistical
comparison.

Training Test

Method Utrech Singapore Amsterdam

Utrech L-bound 0.6126 (0.1092) 0.7207 (0.0793)

ADA 0.7004 (0.1057) 0.7144 (0.0968)

KD 0.6456 (0.0905) 0.7548 (0.0755)

U-bound 0.8031 (0.1148) 0.7704 (0.0787)

Singapore L-bound 0.6693 (0.2271) 0.7368 (0.0931)

ADA 0.6859 (0.2036) 0.7337 (0.0912)

KD 0.6924 (0.2103) 0.7499 (0.0877)

U-bound 0.7063 (0.2016) 0.7699 (0.0851)

Amsterdam L-bound 0.6471 (0.2086) 0.6811 (0.1172)

ADA 0.6800 (0.2128) 0.7202 (0.1154)

KD 0.6909 (0.2135) 0.7482 (0.0975)

U-bound 0.7208 (0.1851) 0.7988 (0.0869)
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Table 3. Mean dice overlaps from the adaptation-on-the-fly scenario. Bold fond indi-
cates statistical significance at 5%, p-values (paired-sample t-test at was used to com-
puted p-values, which were 0.0003 < p < 0.04). Only ADA and KD methods are
considered in the statistical comparison.

Training Test

Method Utrech Singapore Amsterdam

Utrech KD 0.6285 (0.097 0.7465 (0.0855)

ADA 0.7075 (0.095) 0.7220 (0.0995)

Singapore KD 0.6945 (0.1825) 0.7425 (0.0805)

ADA 0.6680 (0.1945) 0.7370 (0.0880)

Amsterdam KD 0.6745 (0.2005) 0.7395 (0.1165)

ADA 0.6625 (0.1890) 0.7100 (0.1125)

ADA and KD. In the adaptation-on-the-fly scenario, KD yields significantly
better dice overlaps on a majority of the scenarios, the superior performance of
ADA remains in the experiment that involves domain adaptation from Utrecht
clinic to Singapore clinic. However, in the vice-versa scenario, KD performance
better than ADA. To illustrate the differences in segmentations between KD and
ADA, we plot the segmentations (scenario, Utrecht clinic to Amsterdam clinic)
in Fig. 1. As illustrated, both the methods perform quite well in segmenting
lesions with relatively larger volume, however, the main difference is evident
in segmenting smaller lesions, specially in the deep white matter regions. It is
interesting to note that the adaptation-on-the-fly and the classical scenarios yield
nearly the same dice indicating a good generalisability and less dependency on
the choice of the small dataset coming from the target domain.

Fig. 1. Illustration of the segmentation’s obtained with different methods trained on
the Utrecht dataset and tested on the Amsterdam dataset. The top and bottom row
illustrate segmentations on two different subjects.
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5 Discussion

The main objective of this paper was to present domain adaptation from a
semi-supervised learning perspective. We have evaluated a modified knowledge
distillation approach and compared it to the popular adversarial approach under
different clinical scenarios. Overall, the knowledge distillation approach gave
better results and is relatively simpler to design when compared to the more
architecture-dependent adversarial approaches. Adversarial approaches require
extensive tuning of DNN architectures, especially for the discriminator, in order
to achieve reasonable performances. In contrast, KD only involves choosing the
temperature parameter which can be chosen only based on the performances on
the source domain. One of the interesting outcomes is the inferior performance of
KD on domain adaptation in scenario, Utrecht clinic to Singapore clinic. One of
the reasons may be attributed to not just scanner differences but also differences
in demographics. This may have led to an inferior teacher performance that the
student network relies on. To verify this, we used the improved network from
domain adaptation using ADA as a teacher and then trained a student based on
it. We observed that the mean dice overlap improved from 0.65 → 0.69.

In future work, we will consider combining the adversarial approaches with
knowledge distillation to improve the generalisability of DNNs across domains
without the need for large annotated datasets.
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