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Abstract. Estimating the remaining surgery duration (RSD) during
surgical procedures can be useful for OR planning and anesthesia dose
estimation. With the recent success of deep learning-based methods in
computer vision, several neural network approaches have been proposed
for fully automatic RSD prediction based solely on visual data from
the endoscopic camera. We investigate whether RSD prediction can be
improved using unsupervised temporal video segmentation as an auxil-
iary learning task. As opposed to previous work, which presented super-
vised surgical phase recognition as auxiliary task, we avoid the need for
manual annotations by proposing a similar but unsupervised learning
objective which clusters video sequences into temporally coherent seg-
ments. In multiple experimental setups, results obtained by learning the
auxiliary task are incorporated into a deep RSD model through feature
extraction, pretraining or regularization. Further, we propose a novel
loss function for RSD training which attempts to counteract unfavor-
able characteristics of the RSD ground truth. Using our unsupervised
method as an auxiliary task for RSD training, we outperform other
self-supervised methods and are comparable to the supervised state-of-
the-art. Combined with the novel RSD loss, we slightly outperform the
supervised approach.
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1 Introduction

Resources in the operating room (OR) are among the most expensive in a hos-
pital and careful OR planning is crucial in order to minimize waiting times and
idle phases. Estimating the remaining surgery duration (RSD) at specified points
during an intervention can facilitate more efficient utilization of OR resources.

This work builds on deep learning-based methods for fully automated RSD
prediction based solely on endoscopic video data [1,2,10]. Since the remaining
time for each frame can be inferred automatically from a given videos, RSD
prediction is a self-supervised task. This property is especially useful in medical
applications, where manually annotating data is expensive.

However, RSD prediction is an extremely challenging task due to the com-
plexity and uniqueness of a surgical procedure. It appears to require a high-level
understanding of the workflow and progress of the surgery. These factors prob-
ably contribute to RSD models tending to overfit without proper regularization
or pretraining [10]. To alleviate this problem, Twinanda et al. propose an RSD
prediction network which is encouraged to learn progress-related features and
utilizes the elapsed time in addition to visual features [10]. Bodenstedt et al.
use multimodal sensor data from the OR including visual data and tool signals
for their prediction [2]. State-of-the-art results are obtained by Aksamentov et
al. who suggest to pretrain the RSD model on surgical phase recognition as an
auxiliary task [1]. However, surgical phase recognition is a supervised task and
therefore reduces the advantages of self-supervised RSD training.

Our contributions consist of proposing an unsupervised auxiliary task to
improve RSD prediction, namely unsupervised temporal video segmentation. To
solve the auxiliary task, we present a method for finding segmentations that
capture the progress of a surgery similar to surgical phases but without the need
for manual annotations. As indicated in [1,10], progress-related features can be
beneficial for RSD prediction. Using an unsupervised auxiliary task makes this
approach widely applicable to different datasets. Several image-based unsuper-
vised temporal video segmentation methods have been proposed [6–8]. We adopt
the method from [7] since its iterative procedure allows us to learn task-related
image features. The other approaches extract or learn features prior to segmen-
tation, making them unsuitable as an auxiliary task. Finally, we propose a novel
loss function that targets undesirable characteristics of the RSD ground truth.

2 Methods

Our approach combines models for RSD prediction and unsupervised tempo-
ral video segmentation. A model consisting of a Convolutional Neural Network
(CNN) for visual feature extraction and a Long Short-Term Memory network
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Fig. 1. Summary of the proposed learning pipelines. Step 1: train the unsupervised
temporal segmentation model for n iterations. Step 2: either use the learned weights
for feature extraction or pretraining or the learned segmentation labels for regulariza-
tion. Note that FC4 only exists in the regularization pipeline. Network layer notation:
convolutional layers Conv* (filter size, kernel size, stride), max-pooling layers MaxPool
(kernel size, stride), dropout layers Dropout (drop probability) and fully-connected and
recurrent layers FC*/LSTM (size).

(LSTM) for propagating information through time is trained to perform our main
task, RSD prediction, similar to [1,2,10]. For the temporal segmentation task, we
use an unsupervised approach to train a discriminative-generative model alter-
nating between learning segmentation labels through a generative model and
learning visual features in a discriminative CNN-LSTM network. The results
obtained by solving the temporal segmentation task can be leveraged for RSD
prediction in several ways. First, we assume that the temporal segmentation
training encourages the CNN-LSTM model to learn features relevant for RSD
prediction. Thus, we investigate reusing the learned feature representations by
initializing the CNN-LSTM model for RSD prediction with the learned network
weights. We then pursue two different strategies for further training the RSD
model: we either finetune only the upper layers or none of the layers in the CNN.
In a complementary approach, we use the obtained segment labels to formulate
an additional objective to regularize the RSD model during training.

2.1 RSD Model

For our RSD model (Fig. 1, right), we use an AlexNet-style CNN [5] to extract
visual features from the video frames of a recorded surgical procedure. The fea-
ture representations are concatenated with the elapsed time tel of the procedure
and fed into an LSTM, similar to [10]. The LSTM can consider features from the
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current and previous frames and produces an RSD estimate for each frame of
the video. The network predicts the remaining duration in minutes, scaled by a
factor of 0.05 due to high values of up to 100 min. RSD prediction is formulated
as a regression task and optimized according to the SmoothL1 loss [10]. We use
a simpler model instead of RSDNet [10], since the latter showed no empirical
improvement in combination with our auxiliary task.

2.2 Unsupervised Temporal Video Segmentation Model

We extend a method from [7] for recognition and segmentation of complex activ-
ities in videos, i.e. activities consisting of several subactivities. The author’s
definiton of a complex activity can be applied to surgeries, where subactivities
could represent surgical phases or similar steps.

The unsupervised learning algorithm alternates between learning frame fea-
tures and subactivity labels (Fig. 2). Given the current subactivity labels, a dis-
criminative appearance model learns frame features in a supervised manner. A
generative temporal model is then estimated, which models the distribution of
subactivity lengths and subactivity orders, given the distribution of frames in the
learned appearance space. The subactivity lengths and order determine the seg-
mentation of a video. After sampling new lengths and orders and subsequently
updating subactivity labels, the algorithm continues to learn new frame features.

The discriminative appearance model is a CNN-LSTM model (Fig. 1, left)
optimized via the cross-entropy loss. An extensive hyperparameter search sug-
gested the use of ten subactivities. Opposed to our deep learning approach, the
appearance model in the original paper [7] learns a simple linear embedding of
image features. When replacing this simple model by a complex CNN-LSTM
model, care must be taken to avoid overfitting on unrefined segmentations from
early iterations. To this end, only the top two layers of the network are opti-
mized in the first iteration and layers are added incrementally after each iteration
(Fig. 1, left). In turn, the incremental depth increase requires an initialization of
the fixed layers. We pretrain the CNN using the 2nd-order temporal coherence
objective [4], which has shown promising results on a similar task [3].

The generative temporal model estimates the joint distribution of frame
features and subactivity segmentations. The distribution over segmentations is
modeled by distributions over the length of each subactivity (Multinomial) and
over the order of subactivities (Generalized Mallows Model). Sampling-based
approximations are used to infer segmentations. The generative temporal model
is almost identical to the one proposed in [7]. We only drop background model.

The method produces new models after each iteration. Hence, we need to
evaluate and select a model to use as a support for the RSD model. Since the
ground truth segmentation labels are unknown, we require a surrogate quality
measure. We define a measure TC which quantifies the temporal coherence of
subacitivty predictions by the appearance model. More precisely, we measure the
prediction’s accuracy with respect to the best match of coherent segmentations
with the same subacitivity lengths. This measure intends to capture how well
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Fig. 2. The unsupervised temporal segmentation
method adopted from [7]. We alternate between
learning frame features and subactivity labels.

Fig. 3. Ground truth gt(t), cor-
ridor border c(t) and median-
based prediction n(t) for one
surgery.

a model has learned progress-related features. Preliminary experiments showed
that the measure selects models which are beneficial for RSD prediction.

2.3 Combined Learning Pipelines

Figure 1 shows three strategies for combining models.

Feature Extraction: The unsupervised temporal segmentation method is used
to train the CNN-LSTM network of the discriminative appearance model. The
weights learned from layers Conv1 to FC1 are then re-used for the RSD model.
While training the RSD model, the initialized layers are fixed. Only layers FC2,
LSTM and FC3 are optimized. This method is equivalent to feature extraction,
where layers Conv1 to FC1 serve as a feature extractor for a shallow RSD model.

Pretraining: Pretraining is almost identical to feature extraction, except that
the layers Conv5 and FC1 are optimized during RSD training after being initial-
ized by the temporal segmentation method. In order to prevent the previously
learned information from being overwritten too quickly, a lower learning rate is
applied to pretrained layers. To summarize, layers Conv1 to Conv4 are fixed,
Conv5 and FC1 are optimized with a low learning rate, and FC2, LSTM and
FC3 are optimized using the regular learning rate.

Regularization: The resulting subactivity labels of a learned temporal segmen-
tation model are re-used for supervision during RSD training. First, segmen-
tations are learned for each video by the unsupervised temporal segmentation
model. Then, the RSD model is jointly trained on RSD prediction and predicting
the current subactivity according to the previously found segmentations.
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2.4 Corridor-Based RSD Loss Function

In the early stages of a procedure it is extremely challenging to correctly pre-
dict the remaining duration since later occurring events are not yet known. To
account for this, we propose an alternative RSD loss function which reduces the
influence of early errors. Intuitively, we do not want to penalize the best guess at
the beginning of a procedure, which is the average length of the given procedure
type. For each video, we therefore define an area between the ground truth gt(t)
over time and a näıve median-based prediction n(t) = max(tmedian−t, 0), where
tmedian is the median duration of all procedures in the training set. Errors within
this corridor are decreased by a weighting function π (Fig. 3). The corridor bor-
der c(t) = αtg(t)+ (1−αt)n(t) is a linear combination of the ground truth gt(t)
and the median-based prediction n(t).

Here αt = 1 − 2
1+e5·prog(t) is a time-dependent linear factor similar to the

tanh function, where prog(t) = t
gt(t)+t is the progress of the surgery in percent.

Intuitively, c(t) is closer to the median-based prediction n(t) at early time points,
when little information is available, and approaches the ground truth gt(t) as
the procedure progresses. The weight π(y, t) for a prediction y at time t is given
by

π(y, t) =

⎧
⎨

⎩

(
|y−gt(t)|

|c(t)−gt(t)|
)2

, if c(t) ≤ y ≤ gt(t) or gt(t) ≤ y ≤ c(t)

1, otherwise
(1)

π realizes a smooth weighting distribution along the y-axis inside the corridor
from y = gt(t) to y = c(t) (with π(gt(t), t) = 0 to π(c(t), t) = 1). For predictions
y outside the corridor, π(y, t) = 1. The corridor-weighted loss is finally given by

CorrSmoothL1(y, t) = π(y, t) · SmoothL1(y, gt(t)) (2)

3 Evaluation

We evaluate our proposed models on the publicly available Cholec80 dataset [9].
We use 50 videos for training, 10 for validation and 20 for testing. Video frames
are extracted at 1fps. We train the RSD models using the Adam optimizer (200
epochs, learning rate 10−5, batch size 384, L2-weight 10−5). For the pretraining
pipelines, we use SGD, run 250 epochs and update pretrained layers with a
learning rate of 10−6 since these settings empirically perform better. The other
settings are kept. For the segmentation model, Adam, learning rate 10−5, batch
size 384, 5 epochs per iteration, 8 iterations, L2-weight 10−4 are used. We select
the best model from iterations 6 to 8 according to our TC measure (Sect. 2.2).

3.1 Baselines

We consider four baselines for RSD prediction: The simplest baseline is the RSD
model from Sect. 2.1 trained only on single-task RSD prediction with no aux-
iliary task (None). The other baselines are supported by auxiliary tasks each
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using all three proposed pipelines from Sect. 2.3. The first auxiliary task is tem-
poral segmentation into 10 uniform segments (Uniform). This is an interesting
baseline that can provide insight into how much RSD-relevant information is
gained by learning more refined segmentations. The other two auxiliary tasks
are state-of-the-art approaches, namely supervised surgical phase recognition
(Phase) [1] and self-supervised prediction of progress prog(t) (Progress) reim-
plemented from [11], which is an updated version of the RSDNet from [10]. For
the phase approach, we use the regularized RSD model from Fig. 1 in order pre-
serve compariability to our methods. The main differences to the architecture
from [1] are that we use an AlexNet-style CNN like in [11] and that we incorpo-
rate the elapsed time into the prediction like in [10,11]. Hyperparameters of the
optimization are identical to the proposed methods.

3.2 Results

Table 1 shows the mean average error (MAE) in minutes for each of our proposed
models as well as all baselines using the SmoothL1 loss. All experiments involving
our proposed method are performed four times, averaged and indicated by a
standard deviation. Baseline experiments for settings which were effective for
our method are repeated four times, in order to obtain more significant results.

Comparing our proposed methods, feature extraction achieves the best
results (9.0 ± 0.1 min. MAE), while pretraining performs worst (9.3 ± 0.2) and
high variances were observed during regularization (9.2 ± 0.5). The high expres-
sivity of RSD models likely causes overfitting in the two latter setups. In the
pretraining setting, the RSD model is the least expressive, as only the top layers
are optimized after initialization by the segmentation method. Hence, it is sup-
posedly less prone to overfitting. We also observe that our approach outperforms
or matches the self-supervised approaches (single-task RSD, uniform segmenta-
tion and progress) for all learning pipelines. Using feature extraction, we even
achieve results comparable to the supervised phase-based approach (9.0 vs. 8.9).

Next, we compare the CorrSmoothL1 loss to SmoothL1 on the previously
most successful feature extraction and the regularization pipeline (Table 2), since
the high variance in regularization experiments indicates potential for improve-
ment. The first two result columns show RSD errors for both loss functions
on the feature extraction pipeline. No clear difference can be observed. The
single-task RSD model as well as most regularized models, however, improve
drastically. Since CorrSmoothL1 aims to reduce overfitting, it is more effective
on very expressive deep models such as the regularization models or the single-
task model. In the feature extraction setup, which has significantly fewer trained
parameters during RSD training, the model’s low expressivity probably prevents
further improvement. Using regularization, our approach improves from 9.2 to
8.7 min MAE and therefore exceeds our previously best result as well as all base-
lines. We even outperform all supervised phase-based setups. It is not clear how
significant this difference is, since the supervised approach performed slightly
better than ours in the SmoothL1 setup. However, even comparable results are
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Table 1. Mean average error (MAE) in minutes for our proposed RSD models as well
as state-of-the-art baselines.

Auxiliary task Feature extraction Pretraining Regularization

Unsup. temp. seg. (ours) 9.0 (±0.1) 9.3 (±0.2) 9.2 (±0.5)

None 9.7 (±0.1)

Uniform 9.4 9.4 9.4

Progress 9.0 (±0.1) 9.5 9.6

Phase (supervised) 8.9 (±0.1) 8.9 9.1

Table 2. Comparison of RSD loss functions on the feature extraction and regularization
pipelines. ∗In None, columns 2 and 4 as well as 3 and 5 refer to the same experiments.

Feature extraction Regularization

Auxiliary task SmoothL1 CorrSmoothL1 SmoothL1 CorrSmoothL1

Unsup. temp. seg. (ours) 9.0 (±0.1) 9.1 (±0.2) 9.2 (±0.5) 8.7 (±0.2)

None* 9.7 (±0.1) 9.1 (±0.5) 9.7 (±0.1) 9.1 (±0.5)

Uniform 9.4 9.3 9.4 9.4

Progress 9.0 (±0.1) 9.1 9.6 9.2 (±0.4)

Phase (supervised) 8.9 (±0.1) 9.0 9.1 8.9 (±0.1)

very promising and our approach performs at least on a similar level as super-
vised methods. Figure 4 shows that subactivity labels corresponds fairly well to
surgical phases but are more fine grained due to the higher number of segments.
Using a hand-picked mapping from subactivities to phases, we achieve an accu-
racy of 71% and 72% on the training and test set for surgical phase recognition.
A limitation of our proposed method remains the complexity of the whole model
and achieving stable results poses a challenge.

Fig. 4. Ground truth of surgical phases and learned subactivities of exemplary training
videos. Different shades illustrate how several subactivities correlate with one phase or
vice versa. Our method does not provide a mapping from subactivities to phases.

4 Conclusion

We present unsupervised temporal video segmentation as a novel auxiliary task
for video-based RSD prediction and propose three different learning pipelines to
utilize unsupervised temporal segmentation learning for RSD modeling. In our
experiments on the Cholec80 dataset, our approach compares favorably with
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self-supervised auxiliary tasks and performs comparably to the state of the art,
which utilizes supervised surgical phase recognition as auxiliary task. This is
very promising since the method does not require any manual annotations and
therefore has potential for improvement by utilizing larger, unlabeled datasets.
Further, we specifically target the problem that RSD ground truth labels can be
misleading in early stages of a procedure. Our novel corridor-based loss shows
clear improvements on deep RSD models. Using the corridor-based loss, we even
outperform the state of the art when we regularize the RSD model with the unsu-
pervised temporal segmentation task. Future work could evaluate our method on
procedure types with higher variance in duration and therefore lower correlation
between RSD and progress. Analyzing how our method transfers to these pro-
cedures is interesting since temporal segmentations can potentially model more
complex temporal structures than progress. Also, the similarity of unsupervised
segmentations and surgical phases induces interesting new research directions.
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