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Abstract. Upcoming robotic interventions for endovascular procedures
can significantly reduce the high radiation exposure currently endured
by surgeons. Robotically driven guidewires replace manual insertion and
leave the surgeon the task of planning optimal trajectories based on seg-
mentation of associated risk structures. However, such a pipeline brings
new challenges. While Deep learning based segmentation such as U-Net
can achieve outstanding Dice scores, it fails to provide suitable results
for trajectory planning in annotation scarce environments. We propose a
preoperative pipeline featuring a shape regularized U-Net that extracts
coherent anatomies from pixelwise predictions. It uses Rapidly-exploring
Random Trees together with convex optimization for locally optimal
planning. Our experiments on two publicly available data sets evalu-
ate the complete pipeline. We show the benefits of our approach in a
functional evaluation including both segmentation and planning metrics:
While we achieve comparable Dice, Hausdorff distances and planning
metrics such as success rate of motion planning algorithms are signifi-
cantly better than U-Net.
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1 Introduction

Minimally-invasive procedures for stenting or treatment of aneurysms use guide-
wires [1,2] to provide easier access through complex vascular structures. With
these tools, and a combination of both fluoroscopy and CT-images as visual
guidance, a surgeon navigates a catheter to difficult-to-reach anatomical sites
such as side branches of the aorta or pulmonary arteries. However, regular use
of CT or x-ray acquisition exposes clinicians over time to accumulated high doses
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of radiation. Upcoming robotically driven guidewires [3] have the potential to
significantly reduce this exposure but require complex preoperative planning.

An efficient preoperative pipeline that transfers the burden of segmentation
and trajectory planning to automated algorithms while keeping the surgeon in
control of crucial parts is vital for the success of these new robotic approaches.

We consider two example anatomies for endovascular procedures, aorta and
pulmonary arteries (Fig. 1), to evaluate a preoperative pipeline including seg-
mentation of risk structures and nonlinear trajectory planning. To the best of
our knowledge, no complete pipeline of preoperative planning for endovascular
procedures has been proposed so far. Azizi et al. [4] exploited centerline extrac-
tion to search for collision-free piecewise linear trajectories serving as a guidance
for tools. They evaluated their segmentation on five cases for arteries and a 3D
model of a porcine portal artery. Chi et al. introduced reinforcement learning to
further optimize paths on centerline extraction [3]. Their evaluation on three aor-
tic arch phantoms considered navigation along trajectories only. Most recently,
Fauser et al. [5] investigated sequential convex optimization for trajectory opti-
mization in guidewire procedures. Their method was evaluated on the SegThor
data set [6] but uses ground truth segmentation as a basis for computation.

In this paper, we investigate a full preoperative pipeline including both seg-
mentation and trajectory planning. We identify three key challenges for complete
evaluation:

1. Guaranteeing coherent shapes after segmentation, i.e. without fragmentation
or isolated regions, because these interfere with collision detection.

2. Interactive definition of the motion planning problem. This includes place-
ment of start and goal regions. But also correction of surface meshes, if neigh-
boring labels (e.g. right ventricle and atrium) result in boundaries between
structures where naturally there are transitions.

3. Providing a clinically optimal solution if motion planning algorithms do not
guarantee optimality.

To address the first issue, we adapt the shape-regularized U-Net approach of
[7,8]: In data-scarce environments with only few annotated training images, deep
learning architectures like U-Net [9] fail to guarantee coherent boundaries due to
pixelwise prediction. Active Shape Models (ASM) [10] on the other hand intrinsi-
cally provide strong topological assumptions in terms of shapes but need proper
initialization. A combination of both, where U-Net initializes ASMs [8], provides
the best of both worlds: high accuracy and anatomically realistic shapes. For the
second issue, we rely on the 3D environment provided by the resulting surface
models. Here, a surgeon can efficiently define start and goal regions for trajectory
planning as well as cutting holes into the existing surface meshes using adequate
interaction. We tackle the last issue by using Bi-directional Rapidly-exploring
Random Trees [11] with Bézier-Splines as steering functions [12] to compute mul-
tiple feasible trajectories. An iteration of sequential convex optimization [5,13]
improves clearance to obstacles for these paths. We then rely on the surgeon to
identify the clinically optimal solution.
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In our experiments we conduct a functional evaluation of the pipeline com-
bining metrics on downstream tasks (trajectory planning) along with Dice and
Hausdorff distances as segmentation metrics. Our results show that with shape
regularized obstacles successful preoperative planning is possible.

B Aorta Heart Esophagus m Trachea ® Pulmonary Artery m Left Ventricle
B Right Ventricle m Left Atrium ® Right Atrium = Myocardium

Fig. 1. A trajectory through left: the aorta to the heart for a SegThor sample and
right: the right atrium and ventricle to the pulmonary arteries for a MMWHS sample.

2 Materials and Methods

Data: We evaluate our proposed framework on two publicly available data sets.
First, using the 40 3D-CT thorax scans of this year’s SegTHOR challenge [6]
with corresponding label images identifying heart, aorta, esophagus and trachea.
Secondly, using partial data of 2017’s MMWHS challenge [14], specifically the
two CT training sets offering a total of 20 3D-CT scans with corresponding
label images discriminating between left ventricle, atrium and myocardium, right
ventricle and atrium as well as ascending aorta and pulmonary artery (Fig.1).

General Procedure: Both anatomies offer the possibility of evaluating the preop-
erative pipeline shown in Fig. 2: Based on a CT scan, a segmentation algorithm
automatically extracts organs at risk while guaranteeing realistic shaped bound-
aries. In the resulting 3D anatomy the surgeon defines start and target states for
the designated procedure. A motion planning algorithm then computes feasible
trajectories for the instrument which are optimized regarding clearance to obsta-
cles. This procedure automates laborious tasks, while at the same time giving
the surgeon control over crucial parts of the pipeline.

Segmentation: Similar to [7], we rely on Deep Learning to properly initialize
Active Shape Models (ASM).

U-Net: Taking a slice-by-slice approach, we first predict axial, sagittal and coro-
nal slices using three individual 2D U-Nets Ua,Us, U, respectively, and apply
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majority voting on these three results to receive an initial 3D segmentation image
IY. For trajectory planning, however, we need surface meshes of the detected
structures’ boundaries. Using the Marching Cubes algorithm on I¥, surface
meshes MY 0 < i < N, for each of the N organs are extracted (N = 4 for
SegThor, N =7 for MMWHS). All three U-Nets consist of 5 levels, each imple-
menting one separable 3 x 3 convolution layer followed by ReLLU activation and
doubling the number of feature channels starting with 16 channels. A reverted
sequence of 5 levels combining up-convolutions and skip connections finishes
with a soft-max activation for a final segmentation output. We use RMSProp as
optimizer with a learning rate of 0.0001 and train for 30 epochs.

ASM: For each of the risk structures we create a statistical shape model (SSM)
S;,0 < ¢ < N. For correspondence search, we extract ground truth meshes MZ-GT
using first Marching Cubes on label images and then coarsening these shapes
to 5000 landmarks [15]. For initialization of an individual active shape model
(ASM), we nonrigidly register the mean shape of its SSM to U-Net’s mesh result
MH . In particular, we use a Probabilistic ASM (PASM) which iteratively adapts
its shape using an energy function that weighs between the projection into shape
space and image information [16]. This results in a final segmentation mask 17
and corresponding meshes M, 0 <i < N.

Trajectory Planning: We rely on the surgeon to interactively define start and goal
for the guidewire. We use Bi-directional Rapidly-exploring Trees (Bi-RRT) to
find initial solutions and sequential convex optimization (SCO) for enhancement
of clearance to risk structures.

Interactive Setup: Given the 3D environment of risk structures, a surgeon ini-
tializes the motion planning problem. For guidewire planning in endovascular
procedures, we specifically consider

— a start state gg € C = R3 x SO(2) to enforce strict position and direction,

— a goal state g € C to enforce the same at the target,

— an upper curvature constraint K4, > 0, representing the maximum bending
capability of the guidewire,

— a safety distance d,;,, combining the guidewires size and a safety margin to
account for navigation and segmentation errors. We model the guidewire’s tip
as a ball in R?® with radius r, > 0 and enforce a safety margin d,, > 0 from
obstacles, resulting in d,ip, = rg + dp,.

This step requires interactive placement of a suitable start configuration gg for
the instrument as well as a specific goal state gg. Moreover, it includes the
creation of transitions between neighboring labels: at the tricuspid valve between
right atrium and ventricle, at the pulmonary valve between right ventricle and
pulmonary artery and finally for SegThor at the aortic valve between aorta and
left ventricle.

Motion Planning: We use a Bi-RRT with Bézier Splines as steering function
[12] to search for collision-free trajectories. Computed paths interpolate between
qs and g¢ while satisfying both constraints on distance and curvature. First, we
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Fig. 2. Preoperative pipeline: a CT scan serves as input for 2D U-Nets to predict
an initial segmentation (A). Probabilistic ASMs regularize the shapes of fragmented
structures (B). A surgeon then interactively defines start and goal states (pink circles)
and creates openings (yellow circles) (C). Bi-RRTs find feasible trajectories (D, search
graphs in pink & cyan). Computed paths can be locally optimized using SCO (E).
(Color figure online)

compute multiple solutions in a fixed time interval T;,,,, > 0. Finally we perform
SCO on each of these solutions to optimize with respect to a cost function
weighing between clearance to obstacles and trajectory length [5].

3 Experiments

Source Code: C++ code of methods and experiments is publicly available on
https://github.com/MECLabTUDA for the benefit of the research community.

Segmentation: We divided the two data sets (MMWHS, SegThor) into two sub-
sets (first & second half) for twofold cross validation. U-Nets and PASMs were
trained on one subset. Prediction and planning was performed on the other. For
the two outputs I¥ and I” we computed Dice scores and Hausdorff distances.

Planning: We used all three sets MCGT, MY M7 of surfaces meshes. First, the
interactive setup of the preoperative pipeline (Step (C) in Fig. 2) was performed
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Fig. 3. Qualitative results on a SegThor sample (ground truth, U-Net & ours). Con-
trary to U-Net, our shape regularized approach provided shapes for feasible planning.

manually based on ground truth structures M7 . For SegThor, start and goal
states qr, qg were placed within the lower part of the descending and inferior
to the ascending aorta (Fig.1). For MMWHS, ¢;,qc were placed within the
right atrium and the pulmonary artery. After setting up the motion planning
definition, we computed access paths using the Bi-RRT three times in a row:
Once using obstacles based on M%7 once on MY and once on MP, resulting
in three sets of trajectories T¢T, T, TP. We then measured the success rate
for planning on both U-Net and PASM results, i.e. the percentage of data sets
where at least one path was found for 767, T and T7. We then computed the
distances to risk structures for 7¢T, TY TP using only shapes M7 as obstacles.
This resulted in computing the true distance to risk structures when planning
on U-Net and PASM, respectively. We then measured the mean distance of the
minimum distances along each trajectory as well as the failure rate, i.e. the
number of data sets were a path computed on segmentation results was actually
below the critical safety distance d,,;p.

4 Results

SegTHOR: A functional evaluation of a preoperative pipeline evaluates both
segmentation and planning metrics. Table 1 shows Dice and Hausdorff distances
(HD) for esophagus, heart, trachea and aorta. While dice is comparable, our
approach achieves for most anatomies significant improvement on Hausdorff dis-
tance. The qualitative example in Fig.3 shows that a combination of fragmen-
tation and isolated regions is often responsible for bad quality in the U-Net
approach whereas our shape regularized solution provides realistic and accurate
segmentation for planning. A downstream analysis on trajectory planning eval-
uates the overall quality and usefulness of the segmentation results by adding
metrics on motion planning. Table 2 shows the success rate of the motion plan-
ning algorithm from Sect. 2. The fragmented structures from U-Net do not pro-
vide suitable obstacles for planning, whereas shape regularized meshes lead to



18 J. Fauser et al.

almost equal rates compared to ground truth planning. In successful cases, both
U-Net and our approach achieve slightly lower but still acceptable mean minimal
distances to risk structures due to the optimization step. The failure rate of 22%
should be addressed in future work.

Table 1. Results on Dice and HD with mean(SD) for SegTHOR and MMWHS.

Dice Hausdorff

U-Net Ours U-Net Ours
Esophagus 0.46 (0.18) | 0.55 (0.18) 23.91 (11.08) 21.92 (8.97)
Heart 0.90 (0.03) | 0.91 (0.03) | 37.05 (32.82) 16.33 (5.18)
Trachea 0.84 (0.09) 0.87 (0.09) | 23.08 (11.62) |19.19 (9.61)
Aorta 0.80 (0.09) | 0.86 (0.08) |26.46 (9.86) |20.86 (9.68)
Left ventricle 0.89 (0.07) | 0.90 (0.07) |14.63 (10.99) | 8.56 (3.03)
Right ventricle 0.86 (0.05) | 0.86 (0.08) |23.05 (15.01) | 12.07 (5.80)
Left atrium 0.91 (0.05) | 0.90 (0.08) | 17.67 (14.07) 11.55 (6.26)
Right atrium 0.86 (0.05) | 0.88 (0.05) | 23.30 (14.85)  10.98 (3.16)
Left myocardium | 0.86 (0.05)  0.88 (0.03) | 19.35 (15.96) | 9.62 (3.05)
Ascending aorta | 0.90 (0.20) | 0.92 (0.16)  17.22 (12.31) 14.82 (17.51)
Pulmonary artery | 0.83 (0.09) | 0.83 (0.08) |32.80 (15.80) | 29.42 (15.52)

Table 2. Quantitative results on planning metrics for SegThor and MMWHS.

Success rate (%) |Mean safety distance (mm) |Failure rate (%)
SegThor MMWHS | SegThor MMWHS SegThor MMWHS
Ground-truth |98 100 4.70 4.39 - -
U-Net 43 70 4.44 4.20 17
Ours 90 90 3.99 3.75 22

MMWHS: The evaluation on the MMWHS data set shows similar results. Table 1
again shows comparable Dice and Hausdorff scores clearly outperforming the
U-Net approach. Having the same success rate of 90% (Table2) but an even
lower failure rate of 6% we conclude that shape regularization on deep learning
solutions provides a promising approach for future endovascular procedures.

5 Discussion and Conclusion

We propose a complete preoperative planning pipeline for endovascular pro-
cedures, performing successive steps of segmentation, interactive problem
definition and trajectory planning. Three key challenges - coherent boundaries
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extraction, interactive setup and optimal trajectory planning- are addressed by
shape regularization for segmentation, minimal interaction and finally RRT's fol-
lowed by convex optimization. Our experiments use twofold cross validation on
two publicly available data sets. Here, we show in a functional evaluation that
uses both segmentation (Dice, Hausdorff) and planning metrics (success & fail-
ure rate) that in data-scarce environments this shape regularization provides
adequate preoperative planning for endovascular procedures.

Future endovascular interventions should automatize complex procedures
whereas key parts of the surgery remain in full control of the clinician. To reach
this goal, we aim to further reduce the violation rate by improving on both seg-
mentation and trajectory quality. Hybrid loss guided networks [6] might boost
the performance of our U-Nets. The initialization of ASMs could then better cap-
ture the inferior part of the descending aorta (Fig.3) or the transitions of the
right ventricle to pulmonary artery and right atrium. For planning, we believe
that trajectory optimization in a RRT*-like fashion [11] might be more robust
leading to higher clearance and thus also to lower failure rates.

This paper takes a critical first step toward an extensive preoperative pipeline
which would eventually save the surgeon from high accumulated radiation dose.
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