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OR 2.0 2019 Preface

Surgical robotic tools and digitally enhanced operating theaters have been giving
surgeons a helping hand for years. While they provide great control, precision, and
flexibility to the surgeons, they do not yet address the cognitive assistance needs in the
operating theater. We are on the verge of a new wave of innovations of
artificial-intelligence-powered, context-aware operating theaters. We envision future
operating theaters that are holistic and seamlessly integrated in the surgery process.
They will monitor their environment by gathering multi-modal data from sources such
as cameras, sensors, monitoring devices, patient profile and history, and they will
respond accordingly. Although this could be realized by following pre-established
rules, a better and more holistic way would be to develop context-aware systems that
are able to perceive and reason, make sense of ongoing processes, project outcomes of
a number of possible actions that could be taken within this context, provide
quantitative support to aid the decision making process, evaluate the outcomes of the
action taken, and use this information for the next steps. Advances in
context-awareness can answer these needs and complement the surgical team by
assisting the surgical procedures, providing real-time guidance during complex tasks
and unexpected events.

This workshop aims to highlight the potential use of, with a particular focus but not
limited to, machine vision and perception, robotics, surgical simulation and modeling,
multi-modal data fusion and visualization, image analysis, advanced imaging,
advanced display technologies, human-computer interfaces, sensors, wearable and
implantable electronics and robots, visual attention models, cognitive models, decision
support networks to enhance surgical procedural assistance, context-awareness and
team communication in the operating theater, human-robot collaborative systems, and
surgical training and assessment.

OR 2.0 2019 was the Second International Workshop on Context-Aware Surgical
Theaters, organized as a satellite event of the Medical Image Computing and Computer
Assisted Intervention (MICCAI 2019) conference in Shenzhen, China. The first
International OR 2.0 Context-Aware Operating Theaters Workshop was held in
September 2018, in Granada, Spain in conjunction with MICCAI 2018. As we received
quite positive feedback from our participants, especially from early career researchers
both from academia and industry, and we also received submissions from research labs
all over the world, we decided to organize a second workshop. Our workshop is highly
correlated with MICCAI 2019’s focus on implementation of, and training for,
computer-assisted intervention approaches. This year, we expanded our board with an
Industrial Board from various companies that work on related topics. We also
introduced bench to OR awards along with our best paper awards, which are given to
works that bring novel concepts to operating theaters that will increase
context-awareness, and have potential to be easily translated into clinical applications.
With our workshop, we aim to define the future technologies of the operating theater.



We wish to thank all the OR 2.0 2019 authors for their participation and our board
for their feedback and commitment to the workshop. We are very grateful to our
sponsor Intuitive Surgery for their support since the beginning of our workshop series.

The proceedings of the workshop are published as a joint LNCS volume of satellite
events organized in conjunction with MICCAI 2019. The OR 2.0 2019 proceedings
contain six high-quality papers that were selected through a double-blind peer-review
process. All submissions were peer reviewed by at least three reviewers who are
experts on related topics. Awards were based on the nominations made by the
reviewers, and the votes of the Industrial Board. In addition to the papers presented in
this LNCS volume, the workshop featured three keynote talks from Dr. Qi Dou
(Imperial College London, UK), Dr. Murilo M. Marinho (University of Tokyo, Japan),
and Dr. Guangzhi Wang (Tsinghua University, China), who also served as the vice
president of the Chinese Society of Biomedical Engineering and the Chinese
Association of Medical Imaging Technology.

This volume features accepted papers on topics of a laparoscopic scene
segmentation model with modified Xception as encoder, and a decoder for feature
aggregation, an automatic trajectory planning method for endovascular procedures
using shape regularized U-Net and statistical optimization, a surgical image desmoking
method that does not require the use of synthetic data generation, and utilizes cycle-
GAN and atrous convolutions, an unsupervised temporal video segmentation method
as an auxiliary task to improve the performance of remaining surgery duration pre-
diction, an end-to-end deep learning pipeline for multi-spectral image analysis to obtain
intra-operative functional information in real-time, and cyber-physical system concepts
for the intelligent operating theater. More details on our workshop program are
available on our website: https://or20.univ-rennes1.fr/.

October 2019 Duygu Sarikaya
Stefanie Speidel
Anand Malpani

Daniel Hashimoto
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MLCN 2019 Preface

Recent advances in neuroimaging and machine learning provide an exceptional
opportunity for researchers to discover complex relationships between the brain,
behaviors, and mental disorders. Neuroimaging techniques such as structural and
functional magnetic resonance imaging (s/fMRI) can measure non-invasively the
morphology as well as the resting state or task-induced neural correlates from different
brain regions in a limited period. While classical univariate statistics are unable to
exploit complex multivariate patterns in neuroimaging data, advanced machine
learning approaches can be employed to benefit from this wealth of information to
provide a deeper understanding of the underlying neurobiological mechanisms and
improve clinical decision making. Although machine learning techniques were first
successfully applied to clinical neuroimaging data a decade ago, to date, there has been
limited translation to the clinic. Reasons for this include the lack of available labeled
clinical data, a reduction in quality for clinical imaging set-ups, and a lack of
harmonization for related clinical data sets acquired from different sites.

The Second International Workshop on Machine Learning in Clinical Neuroimaging
(MLCN 2019) was held in conjunction with MICCAI 2019, with a special focus on
addressing the problems of applying machine learning to large and multi-site clinical
neuroimaging datasets. The workshop aimed to bring together experts in both machine
learning and clinical neuroimaging to discuss and hopefully bridge the existing
challenges of applied machine learning in clinical neuroscience.

The call for papers for the MLCN 2019 workshop was released on April 14, 2019,
with the manuscript submission deadline set to July 14, 2019. The received
manuscripts went through a double-blind review process by MLCN 2019 Program
Committee members. Each paper was thoroughly reviewed by at least four reviewers
and the top six papers were qualified for publication. The accepted contributions
addressed the application of machine learning to generally small sample size
neuroimaging data through novel methodologies for data harmonization and transfer
learning.

In the end, we would like to thank the MLCN 2019 Steering Committee for their
enlightening guidance in organizing this event. We wish to also thank all authors for
their valuable contributions and the MLCN 2019 Program Committee for their precious
effort in evaluating the submissions.

October 2019 Mohamad Habes
Seyed Mostafa Kia
Tommy Löfstedt

Kerstin Ritter
Hongzhi Wang
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Feature Aggregation Decoder
for Segmenting Laparoscopic Scenes

Abdolrahim Kadkhodamohammadi1(B), Imanol Luengo1, Santiago Barbarisi1,
Hinde Taleb1, Evangello Flouty1, and Danail Stoyanov1,2

1 Digital Surgery Ltd., 230 City Road, London EC1V 2QY, UK
rahim.mohammadi@touchsurgery.com

2 Wellcome/EPSRC Centre for Interventional and Surgical Sciences,

University College London, London, UK

Abstract. Laparoscopic scene segmentation is one of the key building
blocks required for developing advanced computer assisted interventions
and robotic automation. Scene segmentation approaches often rely on
encoder-decoder architectures that encode a representation of the input
to be decoded to semantic pixel labels. In this paper, we propose to
use the deep Xception model for the encoder and a simple yet effec-
tive decoder that relies on a feature aggregation module. Our feature
aggregation module constructs a mapping function that reuses and trans-
fers encoder features and combines information across all feature scales
to build a richer representation that keeps both high-level context and
low-level boundary information. We argue that this aggregation module
enables us to simplify the decoder and reduce the number of parameters
in the decoder. We have evaluated our approach on two datasets and our
experimental results show that our model outperforms state-of-the-art
models on the same experimental setup and significantly improves the
previous results, 98.44% vs 89.00%, on the EndoVis'15 dataset.

Keywords: Semantic segmentation · Minimally invasive surgery ·
Surgical vision

1 Introduction

Laparoscopic techniques have become a paradigm in modern interventions due
to the numerous benefits over laparotomy such as shorter hospital stay, less
scars, reduced postsurgical pain and faster recovery. Visualising the anatomy in
high definition with bright illumination through the laparoscope also provides a
magnified, detailed view of the surgical site that can be seen in 3D. However,
minimally invasive surgery comes at the cost of restricting surgeon’s range of
motion and imposing altered hand-eye coordination [16]. As a result, significant
efforts in computer assisted interventions (CAI) have been directed at tools to
enhance surgeons’ capabilities through robotics, image guidance and surgical

c© Springer Nature Switzerland AG 2019
L. Zhou et al. (Eds.): OR 2.0 2019/MLCN 2019, LNCS 11796, pp. 3–11, 2019.
https://doi.org/10.1007/978-3-030-32695-1_1
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4 A. Kadkhodamohammadi et al.

Fig. 1. Sample color and label images from LapSleeve and EndoVis'15 datasets, respec-
tively. (Color figure online)

data science [5,10,13,14]. Laparoscopic scene segmentation is an essential build-
ing block in vision based CAI and is required to enable applications needing full
surgical scene understanding [2,6].

Scene segmentation is a fundamental vision problem that is now tackled using
deep Convolutional Neural Networks (CNNs). Features driving segmentation
learned using deep CNN outperform handcrafted features like SIFT and HOG
[8]. Fully Convolutional Networks (FCNs) can construct segmentation models
that are learned in an end-to-end manner [12] using AlexNet [11] as the feature
encoder and relying on transposed convolutions as the decoder to predict pixel-
level labels. The FCN model can be extended by improving either the encoder
or the decoder to achieve better performance [3,7]. U-Net is one of the popular
architectures adopting FCN for segmenting biomedical images [15]. The U-net
encoder consists of a sequence of convolutional blocks that map and downsample
the input by a factor of two and the decoder applies a sequence of similar blocks,
but upsamples the output at the end of each block. ToolNet [7] follows a similar
architecture, but simplifies the decoder to reduce the computation burden. The
decoder concatenates the output of each encoder blocks and computes a segmen-
tation loss on the output of each block to provide stage-wise supervision. While
powerful, these architectures are relatively shallow and have a limited feature
receptive field, which limits performance in complex surgical scenes.

In this paper, we introduce a novel decoder architecture that reuses the rich
representations extracted by the Xception model [4]. This builds deep, rich rep-
resentations while it reduces the number of parameters by using depthwise sep-
arable convolutions as shown by DeepLabv3+ [3], the top performer on Pascal
segmentation challenge at the moment [1]. Our decoder relies on a feature aggre-
gation module to incorporate information across all feature channels and con-
struct a mapping function that selects and combines the most informative chan-
nels. This aggregation module allows reuse of the multi-scale features extracted
at different Xception modules and construction of a representation that pre-
serves semantic information along with detailed object boundaries. Previous
works [3,7,12] have also explored the idea of reusing multi-scale features com-
puted by the encoder but only with a decoder that reuses features in-between
a series of convolutions and upsampling blocks. This introduces more parame-
ters to the decoder and hence requires more training data. Instead, our feature
aggregation decoder constructs a channel-wise mixing function and removes the



Feature Aggregation Decoder for Segmenting Laparoscopic Scenes 5

Fig. 2. The core modules of our decoder: left, a block to resize the output of Xception
modules to the same size; right, feature aggregation module to learn a mapping function
for transferring and combining feature channels.

need for multi-layer convolutions. We evaluate our approach on two datasets:
EndoVis'15 and Laparoscopic Sleeve gastrectomy, hereafter called LapSleeve.
Figure 1 shows sample images. Our experimental results show that the proposed
decoder outperforms the more complex segmentation network of [3] on the same
experimental setup. Our model also significantly advances the state of the art
results on EndoVis'15 dataset.

2 Method

Most recent scene segmentation approaches are based on FCN [3,12]. These
approaches are following the encoder-decoder design where sequences of convo-
lutional blocks are used as both encoder and decoder. We argue that deep CNN
encoders can encode both low-level and high-level information and a decoder
can reuse this information without the need for deep multi-stage decoders. We
therefore propose to use a deep CNN encoder and propose a simple feature
aggregation encoder to perform scene segmentation, which are explained next.

2.1 Xception Encoder

The Xception network has been originally proposed for image classification and
has achieved promising results on ImageNet [4]. This network benefits from
depthwise separable convolutions to reduce the number parameters. Chollet in
[4] shows that separable convolutions also allow using the model parameters
more efficiently. The Xception architecture consists of entry, middle and exit
flows, which are built by using sequences of Xception modules with different
numbers of output channels, stride sizes and residual connection types. In this
paper, we use the modified aligned Xception model of [3], which was adapted for
image segmentation. The modifications are: (1) doubling the number modules in
the middle flow; (2) replacing max pooling operations with separable convolu-
tion with stride; (3) adding batch normalisation and ReLU activation after each
3×3 convolution; (4) extracting multi-resolution feature maps using atrous con-
volution. From the modified Xception module, we do not use atrous convolution.
We instead build a multi-scale feature map by reusing the features computed
by Xception modules at different scales. More specifically, we reuse the output
of all Xception modules in the entry flow and the last module in the middle as
well as exit flows. The entry flow modules have narrow receptive fields and are
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therefore more likely to capture low-level features such as texture and bound-
ary information [15]. Meanwhile modules close to the output of the network
benefit from larger receptive fields, hence wider context, that can theoretically
enable constructing high-level representations for discriminating semantic cate-
gories [3]. We use our feature aggregation module to predict image pixel labels
by assembling this low and high-level information.

2.2 Feature Aggregation Decoder

Our decoder utilises two modules to map representations into image pixel labels,
shown in Fig. 2. We use the resize module at the output of the selected Xception
modules for first resizing all the feature channels to be 1/16 of the input size and
for fixing the number of output channels to 256. Bilinear interpolation is used
to scale feature channels. The second module is the feature aggregation module.
This module is designed to first capture global information and second construct
a mapping function across all scales.

We aggregate information per channel by using global average pooling as a
way of summarising global image information captured by each feature channel.
We use these concise channel representations to learn a function for mapping
information across channels. A similar idea has also been explored in [9] to
model interdependency between channels inside a module. However, we argue
that this operation can be used to learn dependency among features coming
from different modules and recalibrate them to build a better representation. In
our case, the benefit is not only aggregating information across scales, but also
reducing the number of parameters and the computation burden at the decoder
by effectively reusing extracted features. More formally, we can define the output
of global average pooling as X and write the aggregation function as:

f(X) = σ(ρ(X ∗ W1 + β1) ∗ W2 + β2), (1)

where σ is the standard logistic sigmoid function, ρ is the ReLU function, Wi

and βi are representing weight and bias vectors, respectively. This allows us to
learn a nonlinear function, which incorporates channel-wise dependencies and
relationships. This function can therefore put more emphases on some channels
and learn a mapping function to calibrate feature channels. As function param-
eters are learned by optimising a segmentation loss, it learns to assemble the
multi-scale features extracted at different parts of the encoder, which enables
combining context and boundaries information. Finally, we apply a 1× 1 convo-
lution layer to the output of the feature aggregation module to refine and reduce
the number of feature channels to 256. Our experiments show that this extra
layer makes the training easier.
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Table 1. EndoVis'15 results. The evaluation results are presented as per the splits
provided with the dataset.

[2] DeepLabv3+ [3] Feature Aggregation Decoder

Metric DSC DSC mean DSC mean IOU DSC mean DSC mean IOU

OP1 - 98.41 95.15 91.02 98.83 95.85 92.22

OP2 - 98.36 94.89 90.58 98.01 95.03 90.78

OP3 - 98.42 95.22 91.15 98.76 96.08 92.63

OP4 - 98.18 94.41 90.01 98.31 95.2 91.09

OP5-OP6 - 98.0 94.66 90.17 98.3 94.73 90.32

Average 89.00 98.27 94.87 90.59 98.44 95.38 91.41

3 Experimental Results and Discussions

We implemented our approach using TensorFlow and perform all experiments on
a Linux machine equipped with two NVIDIA GTX 1080 Ti GPUs. We optimise
our networks using stochastic gradient decent. We use poly policy as learning
rate scheduler [3] with the start learning rate of 0.0005 and finetune batch nor-
malisation parameters. For the Xception backbone, we initialise the weight from
a model trained on PASCAL VOC 2012 segmentation benchmark. Our resize
module always scales the images to be 1/16 of the original image size.

For evaluation of our approach, we rely on two datasets: EndoVis'15 segmen-
tation challenge and a laparoscopic sleeve gastrectomy dataset (LapSleeve). We
use the EndoVis'15 rigid instrument dataset [2]. This dataset is generated from
six laparoscopic colorectal surgeries. From each surgery, 50 frames are annotated.
The train set includes the first 40 frames from OP1 to OP4 and the rest of the
frames constructs the test set. A sample frame is shown in Fig. 1.

The LapSleeve dataset is generated from recordings of five laparoscopic sleeve
gastrectomy procedures. We have randomly selected 600 to 900 frames from each
video during the stomach dissection phase. In total, we have chosen 3600 frames.
All these frames are annotated to provide full pixel-level segmentation masks.
The dataset contains 14 class labels, namely stapler tip, stapler handle, sta-
pler trigger, atraumatic grasper handle, atraumatic grasper tip, liver retractor,
ligasure tip, ligasure handle, marylands tip, marylands handle, bandage, liver,
stomach and background. We used all 750 frames from one of the videos as the
test set and the rest as the training set.

We assessed the performance of our model by computing pixel intersection
over union averaged across all classes (mean IOU). In case of EndoVis'15, we
also compute the Dice Similarity Coefficient (DSC) as in [2], which is computed
among prediction and ground-truth. As this is biased towards classes with high
number of instances, we report average DSC across all classes (mean DSC).
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Table 2. LapSleeve results. The mean IOU metric is used to compare the performance
of our Feature Aggregation Decoder (FAD) with DeepLabv3+ on the same experimen-
tal. Different variants of our FAD are also evaluated. See the text for explanation.

DeepLabv3+ FAD FAD[-1CNN] FAD[+1CNN] FAD[-Add] FAD[1/8]

mean IOU 42.76 47.81 45.74 46.88 46.16 41.54

EndoVis'15. We evaluate our model on the EndoVis'15 dataset following the
experimental setup suggested in [2]. In other words, we follow a leave-one-
surgery-out fashion, where frames from the test surgery are not used during
training. We thus train five different models to evaluate on the different subsets
provided in the test set. Table 1 presents the evaluation results in comparison to
results of two other methods. Bodenstedt et al. [2] summarised the performance
of the approaches participated in the EndoVis'15 challenge on instrument seg-
mentation and tracking challenge. They obtained the best results by merging
prediction results from several approaches using the STAPLE algorithm. In [2],
the DSC metric is used to evaluate the performance of models in discriminat-
ing tools vs background1. As the DSC is however sensitive to the number of
instances per class and the dataset is extremely unbalanced, where ∼ 70%–90%
is the background class, we report mean DSC and also mean IOU that tends
to penalise more wrong detections. In addition, we have reported the results of
finetuned DeepLabv3+ initialised from a model trained on PASCAL VOC 2012.
Our feature aggregation decoder preforms similarly to the DeepLabv3+, but
always better, on the same experimental setup. This indicates that our decoder
is capable of effectively aggregating information across different scales. Further-
more, our model achieves the DSC of 98.44%, which significantly outperforms
the best model in [2].

Laparoscopic Sleeve. We use LapSleeve to train and evaluate our feature
aggregation decoder and DeepLabv3+. All weights are initialised from models
trained on PASCAL VOC 2012. The evaluation results on the LapSleeve dataset
are presented in Table 2. Because of the higher complexity of LapSleeve that
includes more classes and body organ segmentation classes, the performance of
both models has dropped on this dataset compared to EndoVis'15 results. How-
ever, our model improves the performance by 5% over DeepLabv3+ on the same
experimental setup. While DeepLabv3+ performs slightly better in segmenting
body organs (80.01 vs 79.83), we found that our model is better in discriminating
tool tips and tool handles. We should note that a handle and a tip of tool are
in the same semantic group and only low-level edge information can help to dis-
tinguish these classes. Even though, given enough training data one can expect
to retrieve this information from the presentation built at the end of encoder,

1 Even though this dataset has been annotated for shaft, manipulator and background
classes, the author of [2] confirms that shaft and manipulator are merged. We also
merge these classes during our experiments.
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Fig. 3. Qualitative results: input image, label, DeepLabv3+ and our model. The pre-
dicted pixel-wise semantic labels are color coded. (Color figure online)

this information is often better captured at shallower layers of the encoder. Our
higher precision in discriminating tool tips from handles underlines the benefits
of our aggregation decoder in reusing multi-scale features across the encoder as
opposed to DeepLabv3+, which tries to obtain all this information at the end of
the encoder.

Figure 3 shows two sample frames along with corresponding labels and pre-
dictions. Our model is better in distinguishing grasper shaft from tip. The sam-
ple frame in the first row shows an example, where our model has successfully
used low-level information to detect the stapler trigger. We have also used this
dataset to evaluate different parameters of our model presented in Table 2. The
performance of our model degrades dramatically when the resize module scales
feature channels to 1/8 of the original image (FAD[1/8]). We believe that it
is due to noise introduced by upsampling deep feature representations at the
middle and the exit flows of Xception. Excluding the residual connection (FAD[-
ADD]) also decreases the performance, which agrees with the findings in [9]. We
remove (FAD[-1CNN]) and add (FAD[+1CNN]) a convolution layer after the
feature aggregation module. The performance drops in both cases. Removing
the convolution layer degrades the performance more, indicating that this layer
is needed for reducing the number of channels in the representation built by the
aggregation module and for converging to a better model.

4 Conclusions

In this paper, we proposed a simple yet effective decoder to perform laparoscopic
scene segmentation. We use the modified aligned Xception model as our encoder.
Our decoder relies on an aggregation module to reuse and calibrate representa-
tions extracted by the encoder at different scales. This aggregation module allows
us to select the most informative feature channels and reuse them effectively for
predicting pixel-level semantic labels. Our experiments on two different datasets
highlights the effectiveness of our decoder. Our model significantly advances the
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state-of-the-art results on EndoVis'15 and achieves 98.44% DSC. We believe
that the forward nature of our decoder enables systematic study of features at
different modules that would boost the explainablility of our model and it would
be interesting to look at this aspect in future work.
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Abstract. Upcoming robotic interventions for endovascular procedures
can significantly reduce the high radiation exposure currently endured
by surgeons. Robotically driven guidewires replace manual insertion and
leave the surgeon the task of planning optimal trajectories based on seg-
mentation of associated risk structures. However, such a pipeline brings
new challenges. While Deep learning based segmentation such as U-Net
can achieve outstanding Dice scores, it fails to provide suitable results
for trajectory planning in annotation scarce environments. We propose a
preoperative pipeline featuring a shape regularized U-Net that extracts
coherent anatomies from pixelwise predictions. It uses Rapidly-exploring
Random Trees together with convex optimization for locally optimal
planning. Our experiments on two publicly available data sets evalu-
ate the complete pipeline. We show the benefits of our approach in a
functional evaluation including both segmentation and planning metrics:
While we achieve comparable Dice, Hausdorff distances and planning
metrics such as success rate of motion planning algorithms are signifi-
cantly better than U-Net.

Keywords: Preoperative planning · Shape regularization ·
Functional evaluation · Endovascular procedures

1 Introduction

Minimally-invasive procedures for stenting or treatment of aneurysms use guide-
wires [1,2] to provide easier access through complex vascular structures. With
these tools, and a combination of both fluoroscopy and CT-images as visual
guidance, a surgeon navigates a catheter to difficult-to-reach anatomical sites
such as side branches of the aorta or pulmonary arteries. However, regular use
of CT or x-ray acquisition exposes clinicians over time to accumulated high doses
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of radiation. Upcoming robotically driven guidewires [3] have the potential to
significantly reduce this exposure but require complex preoperative planning.

An efficient preoperative pipeline that transfers the burden of segmentation
and trajectory planning to automated algorithms while keeping the surgeon in
control of crucial parts is vital for the success of these new robotic approaches.

We consider two example anatomies for endovascular procedures, aorta and
pulmonary arteries (Fig. 1), to evaluate a preoperative pipeline including seg-
mentation of risk structures and nonlinear trajectory planning. To the best of
our knowledge, no complete pipeline of preoperative planning for endovascular
procedures has been proposed so far. Azizi et al. [4] exploited centerline extrac-
tion to search for collision-free piecewise linear trajectories serving as a guidance
for tools. They evaluated their segmentation on five cases for arteries and a 3D
model of a porcine portal artery. Chi et al. introduced reinforcement learning to
further optimize paths on centerline extraction [3]. Their evaluation on three aor-
tic arch phantoms considered navigation along trajectories only. Most recently,
Fauser et al. [5] investigated sequential convex optimization for trajectory opti-
mization in guidewire procedures. Their method was evaluated on the SegThor
data set [6] but uses ground truth segmentation as a basis for computation.

In this paper, we investigate a full preoperative pipeline including both seg-
mentation and trajectory planning. We identify three key challenges for complete
evaluation:

1. Guaranteeing coherent shapes after segmentation, i.e. without fragmentation
or isolated regions, because these interfere with collision detection.

2. Interactive definition of the motion planning problem. This includes place-
ment of start and goal regions. But also correction of surface meshes, if neigh-
boring labels (e.g. right ventricle and atrium) result in boundaries between
structures where naturally there are transitions.

3. Providing a clinically optimal solution if motion planning algorithms do not
guarantee optimality.

To address the first issue, we adapt the shape-regularized U-Net approach of
[7,8]: In data-scarce environments with only few annotated training images, deep
learning architectures like U-Net [9] fail to guarantee coherent boundaries due to
pixelwise prediction. Active Shape Models (ASM) [10] on the other hand intrinsi-
cally provide strong topological assumptions in terms of shapes but need proper
initialization. A combination of both, where U-Net initializes ASMs [8], provides
the best of both worlds: high accuracy and anatomically realistic shapes. For the
second issue, we rely on the 3D environment provided by the resulting surface
models. Here, a surgeon can efficiently define start and goal regions for trajectory
planning as well as cutting holes into the existing surface meshes using adequate
interaction. We tackle the last issue by using Bi-directional Rapidly-exploring
Random Trees [11] with Bézier-Splines as steering functions [12] to compute mul-
tiple feasible trajectories. An iteration of sequential convex optimization [5,13]
improves clearance to obstacles for these paths. We then rely on the surgeon to
identify the clinically optimal solution.
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In our experiments we conduct a functional evaluation of the pipeline com-
bining metrics on downstream tasks (trajectory planning) along with Dice and
Hausdorff distances as segmentation metrics. Our results show that with shape
regularized obstacles successful preoperative planning is possible.

Aorta Heart Esophagus Trachea PulmonaryArtery LeftVentricle
RightVentricle LeftAtrium RightAtrium Myocardium

Fig. 1. A trajectory through left: the aorta to the heart for a SegThor sample and
right: the right atrium and ventricle to the pulmonary arteries for a MMWHS sample.

2 Materials and Methods

Data: We evaluate our proposed framework on two publicly available data sets.
First, using the 40 3D-CT thorax scans of this year’s SegTHOR challenge [6]
with corresponding label images identifying heart, aorta, esophagus and trachea.
Secondly, using partial data of 2017’s MMWHS challenge [14], specifically the
two CT training sets offering a total of 20 3D-CT scans with corresponding
label images discriminating between left ventricle, atrium and myocardium, right
ventricle and atrium as well as ascending aorta and pulmonary artery (Fig. 1).

General Procedure: Both anatomies offer the possibility of evaluating the preop-
erative pipeline shown in Fig. 2: Based on a CT scan, a segmentation algorithm
automatically extracts organs at risk while guaranteeing realistic shaped bound-
aries. In the resulting 3D anatomy the surgeon defines start and target states for
the designated procedure. A motion planning algorithm then computes feasible
trajectories for the instrument which are optimized regarding clearance to obsta-
cles. This procedure automates laborious tasks, while at the same time giving
the surgeon control over crucial parts of the pipeline.

Segmentation: Similar to [7], we rely on Deep Learning to properly initialize
Active Shape Models (ASM).

U-Net: Taking a slice-by-slice approach, we first predict axial, sagittal and coro-
nal slices using three individual 2D U-Nets UA,US ,UC , respectively, and apply
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majority voting on these three results to receive an initial 3D segmentation image
IU . For trajectory planning, however, we need surface meshes of the detected
structures’ boundaries. Using the Marching Cubes algorithm on IU , surface
meshes MU

i , 0 ≤ i ≤ N, for each of the N organs are extracted (N = 4 for
SegThor, N = 7 for MMWHS). All three U-Nets consist of 5 levels, each imple-
menting one separable 3 × 3 convolution layer followed by ReLU activation and
doubling the number of feature channels starting with 16 channels. A reverted
sequence of 5 levels combining up-convolutions and skip connections finishes
with a soft-max activation for a final segmentation output. We use RMSProp as
optimizer with a learning rate of 0.0001 and train for 30 epochs.

ASM: For each of the risk structures we create a statistical shape model (SSM)
Si, 0 ≤ i ≤ N . For correspondence search, we extract ground truth meshes MGT

i

using first Marching Cubes on label images and then coarsening these shapes
to 5000 landmarks [15]. For initialization of an individual active shape model
(ASM), we nonrigidly register the mean shape of its SSM to U-Net’s mesh result
MU

i . In particular, we use a Probabilistic ASM (PASM) which iteratively adapts
its shape using an energy function that weighs between the projection into shape
space and image information [16]. This results in a final segmentation mask IP

and corresponding meshes MP
i , 0 ≤ i ≤ N .

Trajectory Planning: We rely on the surgeon to interactively define start and goal
for the guidewire. We use Bi-directional Rapidly-exploring Trees (Bi-RRT) to
find initial solutions and sequential convex optimization (SCO) for enhancement
of clearance to risk structures.

Interactive Setup: Given the 3D environment of risk structures, a surgeon ini-
tializes the motion planning problem. For guidewire planning in endovascular
procedures, we specifically consider

– a start state qS ∈ C = R
3 × SO(2) to enforce strict position and direction,

– a goal state qG ∈ C to enforce the same at the target,
– an upper curvature constraint κmax ≥ 0, representing the maximum bending

capability of the guidewire,
– a safety distance dmin, combining the guidewires size and a safety margin to

account for navigation and segmentation errors. We model the guidewire’s tip
as a ball in R

3 with radius rg > 0 and enforce a safety margin dm > 0 from
obstacles, resulting in dmin = rg + dm.

This step requires interactive placement of a suitable start configuration qS for
the instrument as well as a specific goal state qG. Moreover, it includes the
creation of transitions between neighboring labels: at the tricuspid valve between
right atrium and ventricle, at the pulmonary valve between right ventricle and
pulmonary artery and finally for SegThor at the aortic valve between aorta and
left ventricle.

Motion Planning: We use a Bi-RRT with Bézier Splines as steering function
[12] to search for collision-free trajectories. Computed paths interpolate between
qS and qG while satisfying both constraints on distance and curvature. First, we
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Fig. 2. Preoperative pipeline: a CT scan serves as input for 2D U-Nets to predict
an initial segmentation (A). Probabilistic ASMs regularize the shapes of fragmented
structures (B). A surgeon then interactively defines start and goal states (pink circles)
and creates openings (yellow circles) (C). Bi-RRTs find feasible trajectories (D, search
graphs in pink & cyan). Computed paths can be locally optimized using SCO (E).
(Color figure online)

compute multiple solutions in a fixed time interval Tmax > 0. Finally we perform
SCO on each of these solutions to optimize with respect to a cost function
weighing between clearance to obstacles and trajectory length [5].

3 Experiments

Source Code: C++ code of methods and experiments is publicly available on
https://github.com/MECLabTUDA for the benefit of the research community.

Segmentation: We divided the two data sets (MMWHS, SegThor) into two sub-
sets (first & second half) for twofold cross validation. U-Nets and PASMs were
trained on one subset. Prediction and planning was performed on the other. For
the two outputs IU and IP we computed Dice scores and Hausdorff distances.

Planning: We used all three sets MGT ,MU ,MP of surfaces meshes. First, the
interactive setup of the preoperative pipeline (Step (C) in Fig. 2) was performed

https://github.com/MECLabTUDA
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Fig. 3. Qualitative results on a SegThor sample (ground truth, U-Net & ours). Con-
trary to U-Net, our shape regularized approach provided shapes for feasible planning.

manually based on ground truth structures MGT . For SegThor, start and goal
states qI , qG were placed within the lower part of the descending and inferior
to the ascending aorta (Fig. 1). For MMWHS, qI , qG were placed within the
right atrium and the pulmonary artery. After setting up the motion planning
definition, we computed access paths using the Bi-RRT three times in a row:
Once using obstacles based on MGT , once on MU and once on MP , resulting
in three sets of trajectories TGT , TU , TP . We then measured the success rate
for planning on both U-Net and PASM results, i.e. the percentage of data sets
where at least one path was found for TGT , TU and TP . We then computed the
distances to risk structures for TGT , TU , TP using only shapes MGT as obstacles.
This resulted in computing the true distance to risk structures when planning
on U-Net and PASM, respectively. We then measured the mean distance of the
minimum distances along each trajectory as well as the failure rate, i.e. the
number of data sets were a path computed on segmentation results was actually
below the critical safety distance dmin.

4 Results

SegTHOR: A functional evaluation of a preoperative pipeline evaluates both
segmentation and planning metrics. Table 1 shows Dice and Hausdorff distances
(HD) for esophagus, heart, trachea and aorta. While dice is comparable, our
approach achieves for most anatomies significant improvement on Hausdorff dis-
tance. The qualitative example in Fig. 3 shows that a combination of fragmen-
tation and isolated regions is often responsible for bad quality in the U-Net
approach whereas our shape regularized solution provides realistic and accurate
segmentation for planning. A downstream analysis on trajectory planning eval-
uates the overall quality and usefulness of the segmentation results by adding
metrics on motion planning. Table 2 shows the success rate of the motion plan-
ning algorithm from Sect. 2. The fragmented structures from U-Net do not pro-
vide suitable obstacles for planning, whereas shape regularized meshes lead to
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almost equal rates compared to ground truth planning. In successful cases, both
U-Net and our approach achieve slightly lower but still acceptable mean minimal
distances to risk structures due to the optimization step. The failure rate of 22%
should be addressed in future work.

Table 1. Results on Dice and HD with mean(SD) for SegTHOR and MMWHS.

Dice Hausdorff

U-Net Ours U-Net Ours

Esophagus 0.46 (0.18) 0.55 (0.18) 23.91 (11.08) 21.92 (8.97)

Heart 0.90 (0.03) 0.91 (0.03) 37.05 (32.82) 16.33 (5.18)

Trachea 0.84 (0.09) 0.87 (0.09) 23.08 (11.62) 19.19 (9.61)

Aorta 0.80 (0.09) 0.86 (0.08) 26.46 (9.86) 20.86 (9.68)

Left ventricle 0.89 (0.07) 0.90 (0.07) 14.63 (10.99) 8.56 (3.03)

Right ventricle 0.86 (0.05) 0.86 (0.08) 23.05 (15.01) 12.07 (5.80)

Left atrium 0.91 (0.05) 0.90 (0.08) 17.67 (14.07) 11.55 (6.26)

Right atrium 0.86 (0.05) 0.88 (0.05) 23.30 (14.85) 10.98 (3.16)

Left myocardium 0.86 (0.05) 0.88 (0.03) 19.35 (15.96) 9.62 (3.05)

Ascending aorta 0.90 (0.20) 0.92 (0.16) 17.22 (12.31) 14.82 (17.51)

Pulmonary artery 0.83 (0.09) 0.83 (0.08) 32.80 (15.80) 29.42 (15.52)

Table 2. Quantitative results on planning metrics for SegThor and MMWHS.

Success rate (%) Mean safety distance (mm) Failure rate (%)

SegThor MMWHS SegThor MMWHS SegThor MMWHS

Ground-truth 98 100 4.70 4.39 – –

U-Net 43 70 4.44 4.20 17 0

Ours 90 90 3.59 3.75 22 6

MMWHS: The evaluation on the MMWHS data set shows similar results. Table 1
again shows comparable Dice and Hausdorff scores clearly outperforming the
U-Net approach. Having the same success rate of 90% (Table 2) but an even
lower failure rate of 6% we conclude that shape regularization on deep learning
solutions provides a promising approach for future endovascular procedures.

5 Discussion and Conclusion

We propose a complete preoperative planning pipeline for endovascular pro-
cedures, performing successive steps of segmentation, interactive problem
definition and trajectory planning. Three key challenges - coherent boundaries
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extraction, interactive setup and optimal trajectory planning- are addressed by
shape regularization for segmentation, minimal interaction and finally RRTs fol-
lowed by convex optimization. Our experiments use twofold cross validation on
two publicly available data sets. Here, we show in a functional evaluation that
uses both segmentation (Dice, Hausdorff) and planning metrics (success & fail-
ure rate) that in data-scarce environments this shape regularization provides
adequate preoperative planning for endovascular procedures.

Future endovascular interventions should automatize complex procedures
whereas key parts of the surgery remain in full control of the clinician. To reach
this goal, we aim to further reduce the violation rate by improving on both seg-
mentation and trajectory quality. Hybrid loss guided networks [6] might boost
the performance of our U-Nets. The initialization of ASMs could then better cap-
ture the inferior part of the descending aorta (Fig. 3) or the transitions of the
right ventricle to pulmonary artery and right atrium. For planning, we believe
that trajectory optimization in a RRT*-like fashion [11] might be more robust
leading to higher clearance and thus also to lower failure rates.

This paper takes a critical first step toward an extensive preoperative pipeline
which would eventually save the surgeon from high accumulated radiation dose.
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Abstract. The generation of smoke in laparoscopic surgery due to laser
ablation and cauterization causes deterioration in the visual quality of
the operative field. In order to reduce the effect of smoke, the present
paper proposes an end-to-end network, called Cycle-Desmoke. The net-
work enhances the CycleGAN framework by adoption of a new genera-
tor architecture and addition of new Guided-Unsharp Upsample loss in
combination to adversarial and cycle-consistency loss. The Atrous Con-
volution Feature Extraction Module present in the encoder blocks of the
generator helps distinguishing smoke by capturing features at multiple
scales by the use of kernels with different receptive fields. Further, the use
of Guided-Unsharp Upsample loss supervises the upsampling process of
the feature maps and helps improve the contrast of the desmoked image.
The network performs robust unsupervised Image-to-Image Translation
from smoke domain to smoke-free domain. The public Cholec80 dataset
is used to evaluate the performance of the proposed method. Quantita-
tive and qualitative comparative analysis of the proposed method over
the state-of-the-methods reveals the effectiveness of the method at the
task of smoke removal and enhancement of the image.

Keywords: Smoke removal · Image enhancement · Laparoscopic
surgery

1 Introduction

In laparoscopic surgery, the visualization of the operative field is of great utility
for the surgeon as well as for the computer-assistive algorithms such as segmenta-
tion and detection of different tissues and surgical instruments. The generation of
several artefacts such as noise, abrupt illumination changes, specular reflections
and smoke in laparoscopic surgery degrades the quality of the visualization and
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hampers the efficiency of the surgeons and image-guided navigational systems.
In this proposed work, we focus on the task of smoke removal in laparoscopy
images using a computational, data driven approach. There exist several smoke
evacuation techniques [1] that help to remove smoke but they rely on additional
hardware instalments and have constraints. Our method directly works on the
image data and helps improve the visualization by removing the smoke compo-
nent and leads to enhancement of the image.

There exist several methods for the task of desmoking in laparoscopic
images. Conventional methods represented the problem to be similar to dehaz-
ing, defogging and adopted the atmospheric scattering model to represent the
phenomenon. He et al. [2] proposed a single image dehazing method using dark
channel prior. The prior information utilized was based on the occurrence of
some pixels in the local patches whose intensity are to be very low in at least
one colour channel. In [3], Wang et al. assumed smoke to have low inter-channel
and low contrast and proposed a variational method to estimate the smoke veil
for desmoking. Although these methods led to enhancement of the image, they
still lacked the ability to semantically distinguish and remove the smoke compo-
nent in an image robustly. In recent times,several Deep learning methods have
been proposed [5–8] for desmoking. Kotwal et al. [4] proposed a deep learning
approach for desmoking on a synthetically generated dataset by transfer learn-
ing the task of smoke removal by using the AOD-Net. Wang et al. [7] performed
desmoking by proposing a new Laplacian image pyramid decomposition input
strategy on a synthetic dataset and evaluated the performance of the method
on real smoke dataset. These new methods have outperformed the conventional
methods by adopting the data-driven approach.

The proposed work focuses on translating a laparoscopy image from smoke
domain to smoke-free domain. The method enhances the CycleGAN [9] frame-
work used for unsupervised Image-to-Image Translation. The main contributions
of the work are:

1. A new generator architecture that consists of Atrous Convolution Feature
Extraction Module (ACFEM) at each encoder block, that helps to capture
features at multiple scales by the use of kernels of different receptive fields.
The upsampling operation is performed by means of pixel shuffle, leading to
efficient transfer of the features in the network.

2. The use of unsharp images of the smoke images in the Guided-Unsharp
Upsample loss in addition to the adversarial and cycle-consistency loss helps
supervise the upsampling operation and also helps in contrast enhancement
of the desmoked image.

3. The proposed end-to-end network performs unsupervised Image-to-Image
translation from smoke to smoke-free domain in an unpaired manner with-
out the need for synthetic ground truth data, hence removing the need for
simulation to real-world domain adaptation.
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2 Method

This section explains the loss function and network architectures of the gener-
ator and the discriminator. The Cycle-Desmoke framework is derived from the
CycleGAN [9] framework. It consists of two generator networks GS , GDS

that
generate synthetic smoke and desmoke images respectively and two discrimi-
nator network DS and DDS

that help to distinguish the synthetic smoke and
desmoked images from the real smoke and smoke-free images respectively.

2.1 Guided-Unsharp Upsample Loss

The CycleGAN architecture utilizes the adversarial and cycle-consistency losses
to perform unpaired image-to-image translation. The adversarial loss helps pro-
duce images of high perceptual quality by adopting a min-max optimization
between the generator and discriminator networks. While, the cycle-consistency
loss employs a L1-norm between the input and the reconstructed images to con-
strain the generated synthetic images to match the desired domain. Although
these losses bring about image translation, they do not utilize the features infor-
mation in the network. Hence, to guide the features in the network we introduce
the Guided-Unsharp Upsample loss.

The upsampling operation helps realise desired dimensions for a feature map
after the feature map has undergone reduction in spatial dimension after certain
number of downsampling operations. In the proposed work, we utilize pixel shuf-
fle to upsample the feature maps. A supervision for the upsampling operation
is of great utility as it helps guide the network to accurately predict the desired
image. This also helps in refinement of features in the upsampling operations.
The unsharp masking technique helps increase the high frequency components
and sharpens the images, highlighting fine details and edges. As smoke reduces
the contrast of the image, unsharp masking works as a local contrast enhance-
ment technique. The formulation of the technique is given as:

g(x, y) = f(x, y) − fsmooth(x, y) (1)

fsharp(x, y) = f(x, y) + k × g(x, y) (2)

Where f(x, y) is the image, fsmooth(x, y) is the image obtained after smooth-
ing/blurring by convolution operation and g(x, y) is the image that contains
high frequency information. The fsharp(x, y) image is realised on adding original
image with weighted g(x, y) with amount k. The enhancement of contrast during
the process desmoking helps reduce the low contrast smoke component. Hence,
the comparison of unsharp images with the prediction from different decoder lev-
els, help guide the upsampling process. This loss is applicable to the generator
network responsible for desmoking. The loss is given as:

LGUU (GDS) =
∑

j

||Yd − Yus|| (3)

where, Yd and Yus are the prediction and unsharp images at particular decoder
block j.
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Fig. 1. Representation of Atrous Convolution Feature Extraction Module. The rate
denotes the dilation rate of the convolution operation.

2.2 Aggregate Loss Function

The Cycle-Desmoke has an additional loss to the loss function in
CycleGAN architecture. The loss function of CycleGAN is denoted as
LCycleGAN (GS , GDS ,DS ,DDS).

The complete loss function for training the framework is given as:

L(GS , GDS ,DS ,DDS) = LCycleGAN (GS , GDS ,DS ,DDS)+
α × LGUU (GDS)

(4)

The term α controls the effect of the Guided-Unsharp Upsample loss.

2.3 Atrous Convolution Feature Extraction Module

The use of atrous convolutions to control the receptive field has resulted in
remarkable results at tasks like semantic segmentation [10] and object detection
[11]. The atrous convolutions allows to vary the dimension of the receptive field of
the kernel without increasing the number of parameters as it pads zeros between
kernel values. In context of the smoke removal problem, the occurrence of smoke
can be either heterogeneous or homogeneous in the image, hence a robust feature
extraction to capture features at multiple scales is essential. The Atrous Convo-
lution Feature Extraction Module (ACFEM) employs a convolution 3× 3 kernel
with three different rates of dilation, i.e 1,2 and 3 and the receptive field of the
atrous kernels match the dimension of 3×3, 5×5 and 7×7 kernels respectively.
Figure 1, pictorially represents the flow of the feature maps across the different
atrous convolutions. The flow of features across two branches, one with reducing
receptive field and the other with increasing receptive field, helps in capturing a
diverse set of features and the Favg, average of the input feature maps helps to
obtain the optimal features from both the branches. Convolution 1× 1 kernel is



Guided Unsupervised Desmoking of Laparoscopic Images Using Cycle-Desmoke 25

Fig. 2. The representation of the Generator network GDS responsible for desmoking.
GS is similar to GDS with the exception of the Guided-Unsharp Upsample loss setup

used to control the dimension of the output feature map. If the channel dimen-
sion of the input feature map is M, the atrous convolutions and convolution
1 × 1 kernel maintain the same channel depth and the output feature map has
channel dimension of M. Hence, ACFEM helps in capturing features effective at
distinguishing the smoke component in the image and performs efficient feature
extraction.

2.4 Generator and Discriminator Networks

The generator network is represented in Fig. 2. It consists of an encoder-decoder
structure. Each encoder block consists of Atrous Convolution Feature Extrac-
tion Module (ACFEM) and a 3 × 3 convolution with stride 2 to downsample
the feature map by a factor of two. There exists four encoder blocks and a
deep representation bottleneck followed by four decoder blocks. Corresponding
encoder and decoder blocks are connected via skip connections. The feature map
at a decoder block after convolution operation proceeds to pixel shuffle [12] for
upsampling and convolution operation that outputs a prediction image that gets
compared with the unsharp image at each decoder block except the last one.

The discriminator in CycleGAN [9] is utilized as the discriminator network
for Cycle-Desmoke. The network utilizes 70 × 70 overlapping image patches to
distinguish smoke images from smoke-free images.

3 Experimentation and Results

3.1 Dataset and Implementation Details

The dataset [13] used for the present study consists of 100K smoke/non-smoke
images extracted from the Cholec80 dataset [14]. The training and test set con-
sists of 1200 and 200 unpaired set of smoke and smoke-free images. The dimen-
sion of the image is maintained as 240× 320 in order to remove the black corner
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Fig. 3. Qualitative evaluation of smoke removal on randomly selected images from test
set. First column: smoke images, second column: Non-Local Dehaze, third column:
DCP, fourth column: DehazeNet, fifth column: Proposed method

details and enable the network to learn only the information in the operative
field. The images in the smoke domain contains smoke of varying levels and
depth and this ensures the network learns on different smoke levels.

The network is end-to-end trained with a learning rate of 0.0001 for the first
100 epochs and then the learning rate is linearly decayed to zero till 200 epochs.
ADAM optimizer is used to optimize the generator and discriminator networks.
The term α is set to 0.5 in the loss function. The convolution kernel dimension
used for obtaining the unsharp images is 9× 9 and the amount of sharpening i.e
term k is set to 1.5. The tensorflow framework was used to train the network on
a single NVidia Tesla T4 GPU.

3.2 Results

The qualitative and quantitative comparative analysis of the proposed Cycel-
Desmoke is performed with state-of-the-art methods like Non-Local Dehaze [15],
Dark channel prior (DCP) [2] and DehazeNet [16]. It is observed that the state-of-
the-art methods although remove smoke to a certain extent, they lack the ability
to maintain the colour consistency with respect to the smoke-free domain. The
Non-Local Dehaze over saturates the color, causing difficulty in accurate differ-
entiation of tissues. On the other hand, DCP seems to produce lower contrast
images compared to the proposed method, while DehazeNet fails at removing
smoke that is heterogeneous in nature. Hence, the lacking capabilities of other
methods is efficiently handled by the proposed Cycle-Desmoke, that generates
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images with good contrast, colour consistency and robust smoke removal for both
heterogeneous and homogeneous smoke (Fig. 3). The quantitative metrics used to
denote the performance of smoke removal are, BRISQE [17]: Blind/Referenceless
Image Spatial Quality Evaluator, PIQUE [18]: Perception-based Image QUality
Evaluator, and CEIQ [19]: Quality Assessment of Contrast-Distorted Images.
Lower values of BRISQE and PIQUE, higher values of CEIQ denote better
image quality. It is evident from Table 1, that the proposed method obtains the
best metric values and outperforms the other methods.

Table 1. Quantitative evaluation of smoke removal of other methods and the pro-
posed method. The analysis has been performed on the test set. SD denotes Standard
deviation

Method Nonlocal Dehaze DCP DehazeNet Proposed

Image quality BRISQE PIQUE CEIQ BRISQE PIQUE CEIQ BRISQE PIQUE CEIQ BRISQE PIQUE CEIQ

Mean 19.06 36.18 3.15 20.95 32.54 2.95 21.07 33.78 3.15 17.71 25.71 3.29

SD 5.64 4.63 0.14 5.40 5.25 0.14 5.26 5.67 0.16 5.64 4.09 0.11

4 Conclusion

In this work, we proposed an end-to-end network called Cycle-Desmoke that
relies on a new generator architecture that consists of Atrous Convolution Fea-
ture Extraction Module (ACFEM) that helped in alleviating the smoke com-
ponent at multiple scales and ensures the performance is analogous for both
heterogeneous and homogeneous smoke. The use of Guide-Unsharp Upsample
loss in addition to the cycle-consistency and adversarial loss helped to enhance
the contrast of the desmoked image and also recover fine details. The quanti-
tative and qualitative analysis of proposed method with other state-of-the-art
methods depicts considerable improvement in terms of smoke removal and image
quality as well. This work focuses primarily on single-image desmoking, it would
be advantageous to utilize the spatial-temporal relationship between each frame
in the video sequence to supervise the network to perform smoke removal. Hence,
having a digital solution to remove surgical smoke in laparoscopic surgery would
not only prove beneficial for practitioners, surgeons but also help improve the
efficiency of computer-assistive algorithms.
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Abstract. Estimating the remaining surgery duration (RSD) during
surgical procedures can be useful for OR planning and anesthesia dose
estimation. With the recent success of deep learning-based methods in
computer vision, several neural network approaches have been proposed
for fully automatic RSD prediction based solely on visual data from
the endoscopic camera. We investigate whether RSD prediction can be
improved using unsupervised temporal video segmentation as an auxil-
iary learning task. As opposed to previous work, which presented super-
vised surgical phase recognition as auxiliary task, we avoid the need for
manual annotations by proposing a similar but unsupervised learning
objective which clusters video sequences into temporally coherent seg-
ments. In multiple experimental setups, results obtained by learning the
auxiliary task are incorporated into a deep RSD model through feature
extraction, pretraining or regularization. Further, we propose a novel
loss function for RSD training which attempts to counteract unfavor-
able characteristics of the RSD ground truth. Using our unsupervised
method as an auxiliary task for RSD training, we outperform other
self-supervised methods and are comparable to the supervised state-of-
the-art. Combined with the novel RSD loss, we slightly outperform the
supervised approach.
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1 Introduction

Resources in the operating room (OR) are among the most expensive in a hos-
pital and careful OR planning is crucial in order to minimize waiting times and
idle phases. Estimating the remaining surgery duration (RSD) at specified points
during an intervention can facilitate more efficient utilization of OR resources.

This work builds on deep learning-based methods for fully automated RSD
prediction based solely on endoscopic video data [1,2,10]. Since the remaining
time for each frame can be inferred automatically from a given videos, RSD
prediction is a self-supervised task. This property is especially useful in medical
applications, where manually annotating data is expensive.

However, RSD prediction is an extremely challenging task due to the com-
plexity and uniqueness of a surgical procedure. It appears to require a high-level
understanding of the workflow and progress of the surgery. These factors prob-
ably contribute to RSD models tending to overfit without proper regularization
or pretraining [10]. To alleviate this problem, Twinanda et al. propose an RSD
prediction network which is encouraged to learn progress-related features and
utilizes the elapsed time in addition to visual features [10]. Bodenstedt et al.
use multimodal sensor data from the OR including visual data and tool signals
for their prediction [2]. State-of-the-art results are obtained by Aksamentov et
al. who suggest to pretrain the RSD model on surgical phase recognition as an
auxiliary task [1]. However, surgical phase recognition is a supervised task and
therefore reduces the advantages of self-supervised RSD training.

Our contributions consist of proposing an unsupervised auxiliary task to
improve RSD prediction, namely unsupervised temporal video segmentation. To
solve the auxiliary task, we present a method for finding segmentations that
capture the progress of a surgery similar to surgical phases but without the need
for manual annotations. As indicated in [1,10], progress-related features can be
beneficial for RSD prediction. Using an unsupervised auxiliary task makes this
approach widely applicable to different datasets. Several image-based unsuper-
vised temporal video segmentation methods have been proposed [6–8]. We adopt
the method from [7] since its iterative procedure allows us to learn task-related
image features. The other approaches extract or learn features prior to segmen-
tation, making them unsuitable as an auxiliary task. Finally, we propose a novel
loss function that targets undesirable characteristics of the RSD ground truth.

2 Methods

Our approach combines models for RSD prediction and unsupervised tempo-
ral video segmentation. A model consisting of a Convolutional Neural Network
(CNN) for visual feature extraction and a Long Short-Term Memory network



Unsupervised Temporal Video Segmentation for RSD Prediction 31

Fig. 1. Summary of the proposed learning pipelines. Step 1: train the unsupervised
temporal segmentation model for n iterations. Step 2: either use the learned weights
for feature extraction or pretraining or the learned segmentation labels for regulariza-
tion. Note that FC4 only exists in the regularization pipeline. Network layer notation:
convolutional layers Conv* (filter size, kernel size, stride), max-pooling layers MaxPool
(kernel size, stride), dropout layers Dropout (drop probability) and fully-connected and
recurrent layers FC*/LSTM (size).

(LSTM) for propagating information through time is trained to perform our main
task, RSD prediction, similar to [1,2,10]. For the temporal segmentation task, we
use an unsupervised approach to train a discriminative-generative model alter-
nating between learning segmentation labels through a generative model and
learning visual features in a discriminative CNN-LSTM network. The results
obtained by solving the temporal segmentation task can be leveraged for RSD
prediction in several ways. First, we assume that the temporal segmentation
training encourages the CNN-LSTM model to learn features relevant for RSD
prediction. Thus, we investigate reusing the learned feature representations by
initializing the CNN-LSTM model for RSD prediction with the learned network
weights. We then pursue two different strategies for further training the RSD
model: we either finetune only the upper layers or none of the layers in the CNN.
In a complementary approach, we use the obtained segment labels to formulate
an additional objective to regularize the RSD model during training.

2.1 RSD Model

For our RSD model (Fig. 1, right), we use an AlexNet-style CNN [5] to extract
visual features from the video frames of a recorded surgical procedure. The fea-
ture representations are concatenated with the elapsed time tel of the procedure
and fed into an LSTM, similar to [10]. The LSTM can consider features from the
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current and previous frames and produces an RSD estimate for each frame of
the video. The network predicts the remaining duration in minutes, scaled by a
factor of 0.05 due to high values of up to 100 min. RSD prediction is formulated
as a regression task and optimized according to the SmoothL1 loss [10]. We use
a simpler model instead of RSDNet [10], since the latter showed no empirical
improvement in combination with our auxiliary task.

2.2 Unsupervised Temporal Video Segmentation Model

We extend a method from [7] for recognition and segmentation of complex activ-
ities in videos, i.e. activities consisting of several subactivities. The author’s
definiton of a complex activity can be applied to surgeries, where subactivities
could represent surgical phases or similar steps.

The unsupervised learning algorithm alternates between learning frame fea-
tures and subactivity labels (Fig. 2). Given the current subactivity labels, a dis-
criminative appearance model learns frame features in a supervised manner. A
generative temporal model is then estimated, which models the distribution of
subactivity lengths and subactivity orders, given the distribution of frames in the
learned appearance space. The subactivity lengths and order determine the seg-
mentation of a video. After sampling new lengths and orders and subsequently
updating subactivity labels, the algorithm continues to learn new frame features.

The discriminative appearance model is a CNN-LSTM model (Fig. 1, left)
optimized via the cross-entropy loss. An extensive hyperparameter search sug-
gested the use of ten subactivities. Opposed to our deep learning approach, the
appearance model in the original paper [7] learns a simple linear embedding of
image features. When replacing this simple model by a complex CNN-LSTM
model, care must be taken to avoid overfitting on unrefined segmentations from
early iterations. To this end, only the top two layers of the network are opti-
mized in the first iteration and layers are added incrementally after each iteration
(Fig. 1, left). In turn, the incremental depth increase requires an initialization of
the fixed layers. We pretrain the CNN using the 2nd-order temporal coherence
objective [4], which has shown promising results on a similar task [3].

The generative temporal model estimates the joint distribution of frame
features and subactivity segmentations. The distribution over segmentations is
modeled by distributions over the length of each subactivity (Multinomial) and
over the order of subactivities (Generalized Mallows Model). Sampling-based
approximations are used to infer segmentations. The generative temporal model
is almost identical to the one proposed in [7]. We only drop background model.

The method produces new models after each iteration. Hence, we need to
evaluate and select a model to use as a support for the RSD model. Since the
ground truth segmentation labels are unknown, we require a surrogate quality
measure. We define a measure TC which quantifies the temporal coherence of
subacitivty predictions by the appearance model. More precisely, we measure the
prediction’s accuracy with respect to the best match of coherent segmentations
with the same subacitivity lengths. This measure intends to capture how well
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Fig. 2. The unsupervised temporal segmentation
method adopted from [7]. We alternate between
learning frame features and subactivity labels.

Fig. 3. Ground truth gt(t), cor-
ridor border c(t) and median-
based prediction n(t) for one
surgery.

a model has learned progress-related features. Preliminary experiments showed
that the measure selects models which are beneficial for RSD prediction.

2.3 Combined Learning Pipelines

Figure 1 shows three strategies for combining models.

Feature Extraction: The unsupervised temporal segmentation method is used
to train the CNN-LSTM network of the discriminative appearance model. The
weights learned from layers Conv1 to FC1 are then re-used for the RSD model.
While training the RSD model, the initialized layers are fixed. Only layers FC2,
LSTM and FC3 are optimized. This method is equivalent to feature extraction,
where layers Conv1 to FC1 serve as a feature extractor for a shallow RSD model.

Pretraining: Pretraining is almost identical to feature extraction, except that
the layers Conv5 and FC1 are optimized during RSD training after being initial-
ized by the temporal segmentation method. In order to prevent the previously
learned information from being overwritten too quickly, a lower learning rate is
applied to pretrained layers. To summarize, layers Conv1 to Conv4 are fixed,
Conv5 and FC1 are optimized with a low learning rate, and FC2, LSTM and
FC3 are optimized using the regular learning rate.

Regularization: The resulting subactivity labels of a learned temporal segmen-
tation model are re-used for supervision during RSD training. First, segmen-
tations are learned for each video by the unsupervised temporal segmentation
model. Then, the RSD model is jointly trained on RSD prediction and predicting
the current subactivity according to the previously found segmentations.
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2.4 Corridor-Based RSD Loss Function

In the early stages of a procedure it is extremely challenging to correctly pre-
dict the remaining duration since later occurring events are not yet known. To
account for this, we propose an alternative RSD loss function which reduces the
influence of early errors. Intuitively, we do not want to penalize the best guess at
the beginning of a procedure, which is the average length of the given procedure
type. For each video, we therefore define an area between the ground truth gt(t)
over time and a näıve median-based prediction n(t) = max(tmedian−t, 0), where
tmedian is the median duration of all procedures in the training set. Errors within
this corridor are decreased by a weighting function π (Fig. 3). The corridor bor-
der c(t) = αtg(t)+ (1−αt)n(t) is a linear combination of the ground truth gt(t)
and the median-based prediction n(t).

Here αt = 1 − 2
1+e5·prog(t) is a time-dependent linear factor similar to the

tanh function, where prog(t) = t
gt(t)+t is the progress of the surgery in percent.

Intuitively, c(t) is closer to the median-based prediction n(t) at early time points,
when little information is available, and approaches the ground truth gt(t) as
the procedure progresses. The weight π(y, t) for a prediction y at time t is given
by

π(y, t) =

⎧
⎨

⎩

(
|y−gt(t)|

|c(t)−gt(t)|
)2

, if c(t) ≤ y ≤ gt(t) or gt(t) ≤ y ≤ c(t)

1, otherwise
(1)

π realizes a smooth weighting distribution along the y-axis inside the corridor
from y = gt(t) to y = c(t) (with π(gt(t), t) = 0 to π(c(t), t) = 1). For predictions
y outside the corridor, π(y, t) = 1. The corridor-weighted loss is finally given by

CorrSmoothL1(y, t) = π(y, t) · SmoothL1(y, gt(t)) (2)

3 Evaluation

We evaluate our proposed models on the publicly available Cholec80 dataset [9].
We use 50 videos for training, 10 for validation and 20 for testing. Video frames
are extracted at 1fps. We train the RSD models using the Adam optimizer (200
epochs, learning rate 10−5, batch size 384, L2-weight 10−5). For the pretraining
pipelines, we use SGD, run 250 epochs and update pretrained layers with a
learning rate of 10−6 since these settings empirically perform better. The other
settings are kept. For the segmentation model, Adam, learning rate 10−5, batch
size 384, 5 epochs per iteration, 8 iterations, L2-weight 10−4 are used. We select
the best model from iterations 6 to 8 according to our TC measure (Sect. 2.2).

3.1 Baselines

We consider four baselines for RSD prediction: The simplest baseline is the RSD
model from Sect. 2.1 trained only on single-task RSD prediction with no aux-
iliary task (None). The other baselines are supported by auxiliary tasks each
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using all three proposed pipelines from Sect. 2.3. The first auxiliary task is tem-
poral segmentation into 10 uniform segments (Uniform). This is an interesting
baseline that can provide insight into how much RSD-relevant information is
gained by learning more refined segmentations. The other two auxiliary tasks
are state-of-the-art approaches, namely supervised surgical phase recognition
(Phase) [1] and self-supervised prediction of progress prog(t) (Progress) reim-
plemented from [11], which is an updated version of the RSDNet from [10]. For
the phase approach, we use the regularized RSD model from Fig. 1 in order pre-
serve compariability to our methods. The main differences to the architecture
from [1] are that we use an AlexNet-style CNN like in [11] and that we incorpo-
rate the elapsed time into the prediction like in [10,11]. Hyperparameters of the
optimization are identical to the proposed methods.

3.2 Results

Table 1 shows the mean average error (MAE) in minutes for each of our proposed
models as well as all baselines using the SmoothL1 loss. All experiments involving
our proposed method are performed four times, averaged and indicated by a
standard deviation. Baseline experiments for settings which were effective for
our method are repeated four times, in order to obtain more significant results.

Comparing our proposed methods, feature extraction achieves the best
results (9.0 ± 0.1 min. MAE), while pretraining performs worst (9.3 ± 0.2) and
high variances were observed during regularization (9.2 ± 0.5). The high expres-
sivity of RSD models likely causes overfitting in the two latter setups. In the
pretraining setting, the RSD model is the least expressive, as only the top layers
are optimized after initialization by the segmentation method. Hence, it is sup-
posedly less prone to overfitting. We also observe that our approach outperforms
or matches the self-supervised approaches (single-task RSD, uniform segmenta-
tion and progress) for all learning pipelines. Using feature extraction, we even
achieve results comparable to the supervised phase-based approach (9.0 vs. 8.9).

Next, we compare the CorrSmoothL1 loss to SmoothL1 on the previously
most successful feature extraction and the regularization pipeline (Table 2), since
the high variance in regularization experiments indicates potential for improve-
ment. The first two result columns show RSD errors for both loss functions
on the feature extraction pipeline. No clear difference can be observed. The
single-task RSD model as well as most regularized models, however, improve
drastically. Since CorrSmoothL1 aims to reduce overfitting, it is more effective
on very expressive deep models such as the regularization models or the single-
task model. In the feature extraction setup, which has significantly fewer trained
parameters during RSD training, the model’s low expressivity probably prevents
further improvement. Using regularization, our approach improves from 9.2 to
8.7 min MAE and therefore exceeds our previously best result as well as all base-
lines. We even outperform all supervised phase-based setups. It is not clear how
significant this difference is, since the supervised approach performed slightly
better than ours in the SmoothL1 setup. However, even comparable results are
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Table 1. Mean average error (MAE) in minutes for our proposed RSD models as well
as state-of-the-art baselines.

Auxiliary task Feature extraction Pretraining Regularization

Unsup. temp. seg. (ours) 9.0 (±0.1) 9.3 (±0.2) 9.2 (±0.5)

None 9.7 (±0.1)

Uniform 9.4 9.4 9.4

Progress 9.0 (±0.1) 9.5 9.6

Phase (supervised) 8.9 (±0.1) 8.9 9.1

Table 2. Comparison of RSD loss functions on the feature extraction and regularization
pipelines. ∗In None, columns 2 and 4 as well as 3 and 5 refer to the same experiments.

Feature extraction Regularization

Auxiliary task SmoothL1 CorrSmoothL1 SmoothL1 CorrSmoothL1

Unsup. temp. seg. (ours) 9.0 (±0.1) 9.1 (±0.2) 9.2 (±0.5) 8.7 (±0.2)

None* 9.7 (±0.1) 9.1 (±0.5) 9.7 (±0.1) 9.1 (±0.5)

Uniform 9.4 9.3 9.4 9.4

Progress 9.0 (±0.1) 9.1 9.6 9.2 (±0.4)

Phase (supervised) 8.9 (±0.1) 9.0 9.1 8.9 (±0.1)

very promising and our approach performs at least on a similar level as super-
vised methods. Figure 4 shows that subactivity labels corresponds fairly well to
surgical phases but are more fine grained due to the higher number of segments.
Using a hand-picked mapping from subactivities to phases, we achieve an accu-
racy of 71% and 72% on the training and test set for surgical phase recognition.
A limitation of our proposed method remains the complexity of the whole model
and achieving stable results poses a challenge.

Fig. 4. Ground truth of surgical phases and learned subactivities of exemplary training
videos. Different shades illustrate how several subactivities correlate with one phase or
vice versa. Our method does not provide a mapping from subactivities to phases.

4 Conclusion

We present unsupervised temporal video segmentation as a novel auxiliary task
for video-based RSD prediction and propose three different learning pipelines to
utilize unsupervised temporal segmentation learning for RSD modeling. In our
experiments on the Cholec80 dataset, our approach compares favorably with
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self-supervised auxiliary tasks and performs comparably to the state of the art,
which utilizes supervised surgical phase recognition as auxiliary task. This is
very promising since the method does not require any manual annotations and
therefore has potential for improvement by utilizing larger, unlabeled datasets.
Further, we specifically target the problem that RSD ground truth labels can be
misleading in early stages of a procedure. Our novel corridor-based loss shows
clear improvements on deep RSD models. Using the corridor-based loss, we even
outperform the state of the art when we regularize the RSD model with the unsu-
pervised temporal segmentation task. Future work could evaluate our method on
procedure types with higher variance in duration and therefore lower correlation
between RSD and progress. Analyzing how our method transfers to these pro-
cedures is interesting since temporal segmentations can potentially model more
complex temporal structures than progress. Also, the similarity of unsupervised
segmentations and surgical phases induces interesting new research directions.
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Abstract. State-of-the-art concepts in the field of computer assisted
medical interventions are typically based on registering pre-operative
imaging data to the patient. While this approach has many relevant clini-
cal applications, it suffers from one core bottleneck: it cannot account for
tissue dynamics because it works with “offline” data. To overcome this
issue, we propose a new approach to surgical imaging that combines the
power of multispectral imaging with the speed and robustness of deep
learning based image analysis. Core innovation is an end-to-end deep
learning architecture that integrates all preprocessing steps as well as
the actual regression task in a single network. According to a quantita-
tive in silico validation, our approach is well-suited for solving the inverse
problem of relating multispectral image pixels to underlying functional
tissue properties in real time. A porcine study further suggests that our
method is capable of monitoring haemodynamic changes in vivo. Deep
learning based multispectral imaging could thus become a valuable tool
for imaging tissue dynamics.

1 Introduction

A modality suitable for surgical imaging should provide real-time discrimination
of local tissue with a high contrast-to-noise-ratio (CNR) and spatio-temporal
context for global orientation and instrument guidance. It should ideally be
radiation-free and facilitate integration into the clinical workflow, in addition
to featuring a compact design at a low cost for a wide range of applicability
and acceptance. Unfortunately, none of the imaging modalities widely used at
a clinical level meet all of these requirements. The field of computer assisted
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interventions addresses this bottleneck by registering 3D medical image data sets
to the current patient anatomy for augmented reality visualization of subsurface
anatomical details overlaid onto endoscopic video data, for example. One of the
major bottlenecks of this approach, however, is that it is not well-suited for
handling tissue dynamics. In particular, important information related to tissue
perfusion or oxygenation (e.g. to detect ischemia) cannot be extracted from
images acquired before the procedure.

The field of biophotonics refers to techniques that analyze light tissue inter-
actions. In particular, multispectral (optical) imaging (MSI) has recently been
used in biomedical engineering applications [1,6,14,15]. It takes advantage of
the fact that different tissue components feature unique optical properties for
each wavelength. As a consequence, the spectral profile contains information
about the molecular composition of tissue, such as concentration of oxygenated
and deoxygenated hemoglobin. Although recent research results are extremely
encouraging, existing methods including recently emerging commercial solutions
still suffer from two main drawbacks. (1) Speed: Most methods are not able to
provide “live” augmented images, capable of giving immediate feedback to the
surgeon. (2) Accuracy: Many methods have a lack of accuracy in the functional
information conveyed by the images. This can be attributed to the fact that
most systems for interventional in vivo multispectral imaging use linear estima-
tion approaches based on the modified Beer-Lambert law, as described in [10].
While these methods are typically fast, they require small multispectral band-
widths, and they also rely on a number of unrealistic assumptions regarding
tissue composition that potentially lead to imprecise results.

In this work, we build upon prior work of Wirkert et al. [14,15]. Here, the
hypothesis was that machine learning based regression may address the issues
currently faced by the community. The absence of a quantitative reference for the
functional parameters (a requirement for training machine learning techniques)
is overcome by a Monte Carlo simulation-based approach to regressor training.
While the authors achieved high accuracy in silico in their previous work, their
random forest (RF) implementation did not achieve real-time performance. One
reason for this was that the image processing pipeline was relatively complex
with several preprocessing steps before the RF regression. The purpose of this
work was therefore to explore the use of deep learning for real-time estimation
of functional parameters. The primary contributions are:

1. We present a deep learning based approach to real-time functional tissue
parameter estimation with multispectral imaging. Core innovation is an end-
to-end deep learning architecture that elegantly integrates all preprocessing
steps as well as the actual regression task in a single network.

2. We demonstrate in vivo that our method is capable of monitoring haemody-
namic changes in the brain. More specifically, we show that the changes in
tissue oxygenation resulting from a phenomenon called spreading depolariza-
tion can be detected with our approach.
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2 Methods

In this section we present our hardware setup (Sect. 2.1) as well as the computa-
tional methods for monitoring functional tissue parameters with an MSI camera
(Sect. 2.2).

2.1 Multispectral Imaging Hardware

We use a Pixelteq camera (Largo, FL, USA) 5MPix Spectrocam which records
multispectral images at a frame rate of 2 Hz. The central wavelengths of the eight
filters were determined with the method described by Wirkert et. al. [13] and
set to 470, 480, 511, 560, 580, 600, 660 and 700 nm. All bands have a full witdth
at half maximum (FWHM) of 20 nm except for the 480 nm band which has a
FWHM of 25 nm (by camera design). Recording of one MSI image at resolution
2058 × 2456 takes 400 ms. For illumination we use a standard surgical Xenon
(Storz D-light P) light source.

2.2 End-to-End Deep Learning Pipeline for Multispectral Image
Analysis

Our approach is based on the following hypotheses: (1) When applied to MSI
data, machine learning based algorithms are better suited for solving the inverse
problem of relating spectra to underlying tissue parameters than competing
model-based approaches. (2) It is beneficial to train on individual pixels rather
than whole images to facilitate the generation of realistic training data. (3) Com-
pared to competing machine learning based approaches, deep learning based
methods have higher potential to maximize both accuracy and speed. As shown
in Fig. 1, our method involves two different networks with fully convolutional
architectures. The training network learns the functional property estimation
based on the simulated training data. Its weights and biases are transferred into
the live validation network, which runs in a highly accelerated environment. One
of the main advantages of our live validation network over other state-of-the-art
methods is that the necessary data preprocessing steps are integrated into the
network and can efficiently be performed on the Graphics Processing Unit (GPU,
cf. Fig. 1).

Training Data Simulation. To simulate reflectance spectra as training data
we use a generalized multi-layered tissue model as presented in [14,15]. For
simulation of light transport we use the GPU accelerated Monte Carlo Multi
Layer (GPU-MCML) software [2]. By default, we use 106 photons per simulation
in the wavelenth range from 300–1000 nm with a stepsize of 2 nm and simulate
a total of 500, 000 samples for training and 50, 000 samples for testing. Each
layer comprises distinct values for blood volume fraction vhb, reduced scattering
coefficient at 500 nm amie, scattering power bmie, anisotropy g, refractive index n
and layer thickness d. In contrast to this, blood oxygenation sO2 is kept constant
across layers. The values for these parameters are uniformly drawn from the
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(a) Training network (b) Live validation network

Fig. 1. Deep learning architecture for multispectral image analysis. (a) The net-
work used for training, whose model parameters are re-used for the live validation
network. (b) The live validation network used during the intervention, yielding the
physiological parameters and RGB estimates. The estimated RGB image is only used
for visualization.

ranges detailed in [15]. From these values we calculate the wavelength dependent
optical absorption μa and scattering μs as μa(λ) = vhb(sO2 ·μaHbO2 +(1− sO2) ·
μaHb) and μs(λ) = amie

1−g ( λ
500 nm )−bmie . Where μaHbO2 and μaHb are the absorption

coefficients of oxygenated and deoxygenated blood with the assumption of 150 g
hemoglobin per liter blood and amie, bmie are the scattering coefficient and
scattering power respectively.

Preprocessing of Training Data. The spectral reflectance is an intrinsic
property of tissue, independent of the imaging system employed. Nonetheless,
recorded reflectances are heavily influenced by imaging system parts such as cam-
era filter responses, camera quantum efficiency, and relative irradiance of light
source. Hence, an important step in our processing pipeline is to transform sim-
ulated spectra into data that resembles measurements from our hardware setup
as closely as possible. To achieve this, quantum efficiency provided by the man-
ufacturer is used. We further acquired spectrometer (Ocean Optics HR2000+,
Largo, Florida, USA) measurements of the camera filter transmission and light
source relative irradiance. We use these measurements to transform our simu-
lated spectra into a camera specific normalized reflectance space as described in
[15] and referred to as “Camera Adaptation” in Fig. 1.
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In a real scenario, recordings can be affected by changes in illumination such
as illumination intensity and distance of light source to the imaged region. In
order to reduce this effect, a light normalization step is introduced in the net-
work, as depicted in Fig. 1. This step is computed on the GPU and comprises
normalizing the spectra with its L1 norm, the same normalization is then imple-
mented in the in vivo network. In order to take into account possible tissue
homogeneities that can arise in a real scenario, every reflectance training sample
is augmented to match a region of 3× 3 pixels and multiplicative noise model of
20% signal to noise ratio (SNR) is added to each pixel.

We then trained the network depicted in Fig. 1a, where the parameter esti-
mation block consists of 5 convolutional layers. The first two convolutional layer
are composed of 50 learnable filters with kernel size 2 and in place Rectified
Linear Unit (ReLU) activation functions, the third and fourth convolutions have
the same structure but with kernel size 1 and the last convolution has the same
structure as the third and fourth but with 2 learnable filters.

Real-Time Application. In a real-time application, the optical system domain
adaptation described in the previous section is not needed. Instead, measure-
ments of a white reference standard and a dark field measurement are required
for the light source normalization. This step is required only once at the begin-
ning of the recordings. As these preprocessing steps potentially slow down the
regression process, they are incorporated directly into the real-time deep learning
network and implemented on the GPU (cf. Fig. 1b).

To apply our method, we copy the weights and biases of our trained net-
work into the corresponding module of the real-time validation network. White
(W ) and dark (D) recordings of a standard reference (Spectralon) are included
directly into the network, as illustrated in Fig. 1. Each MSI recording is then
normalized as follows: R = I−D

W−D where I represents the raw MSI image and R
the normalized image. Furthermore, the L1 normalization described in Sect. 2.2
is implemented as part of the deep learning framework.

3 Experiments and Results

Our validation of the proposed method for functional tissue parameter estimation
from MSI comprised two studies: a quantitative in silico study and an in vivo
feasibility experiment. The purpose of the in silico validation was to compare
the performance of our approach to state-of-the-art RF regression by estimating
blood oxygenation on a held out test set. Here, we used the median absolute error
of sO2, which we calculate as esO2

abs =
∣
∣
∣ ˆsO2 − sOGT

2

∣
∣
∣, the interquartile range of

the sO2 absolute error and regression speed as our target metrics. The purpose of
the in vivo experiment was to investigate whether we can detect haemodynamic
changes on porcine brain images when we apply the network on data recorded
with the multispectral imaging hardware described in Sect. 2.1.
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3.1 In Silico Quantitative Validation

We compared our method to RF-based inference [14,15] as a reference method on
the exact same data set used previously [15] (500,000 training cases and 50,000
test cases) and using the same computer (Nvidia TITAN Xp 12 Gb GPU, Intel
Xeon CPU E5-1620 v4 @ 3.50 GHz). The network was trained for 1000 epochs,
using 1000 batches per epoch with a batch size of 500 spectra. We used Adam as
our optimizer, set the base learning rate to be 0.005 and used an Euclidean loss
function. The RF was trained on the entire dataset using 100 estimators and a
maximum depth of 9. The distributions in Fig. 2a show that the absolute sO2

estimation error of our proposed deep learning approach is considerably lower
than the shallow RF network. The results (cf. Table 1) demostrate that our deep
learning method can process up to 5.2 × 106 spectra per second with a median
absolute sO2 estimation error of 5.8% while the shallow RF regressor described
in [13] processes spectra at a speed of 2.7×106 spectra per second with a median
absolute sO2 estimation error of 9.1% (cf. Table 1).

(a) Absolute sO2 estimation error (b) Principal component analysis

Fig. 2. (a) Absolute sO2 estimation error distribution of our method (orange) compared
to the RF reference method (blue). Values are capped at 30%. (b) In vivo brain MSI
data (100 samples, randomly chosen) projected onto the first two principal components
of the simulated data. (Color figure online)

Table 1. Performance of different parameter estimation methods on the in silico test
data set. Given are the median absolute estimation error for sO2, the interquartile
range, as well as the regression speed in single spectrum inversions per second.

Method esO2
abs [%] esO2

abs [%] IQR Speed [ inv
s

]

Reference method 9.1 (3.1, 11.8) 2.7 × 106

Our method 5.8 (1.8, 6.7) 5.2× 106
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3.2 In Vivo Qualitative Validation

To investigate whether our method is capable of detecting haemodynamic
changes, we chose the monitoring of spreading depolarization (SD) in porcine
brains as our target application. SD is a phenomenon in the brain related to
the abrupt depolarization of neurons in gray matter which propagates in form
of a wave [4]. It is well known to be coupled to haemodynamic responses with
hypoxic components [12], making it a prime target for the qualitative validation
of our method for functional MSI.

Induction of SDs. All experiments were performed in accordance with the rel-
evant guidelines and regulations. Protocols for all experiments were approved
by the institutional animal care and use committee in Karlsruhe, Baden-
Wurttemberg, Germany (Protocol No. 35-9185.81/G-174/16). The procedure for
inducing and measuring SDs was as follows: As shown in Fig. 3a, a craniotomy
exposed the parietal cortex, and spreading depolarizations were induced using 2–
5µL Potassium Chloride (KCl) drops placed with a hamilton syringe in regions
selected by visual inspection in the parietal cortex [8,9].

MSI Data Acquisition and Processing. For the MSI recordings, we applied
the hardware described in Sect. 2.1. Our network was trained with the simulated
data described in Sect. 2.2. As our camera performs sequential measurements,
tissue motion caused by respiration, heart beat or surgical manipulation, for
example, potentially lead to misalignments between the recorded images. This

Fig. 3. SDs induced by KCl stimulation in the left hemisphere of a porcine brain. Here
(a) shows the setup for monitoring spreading depolarizations with an MSI camera.
Adapted from [5] published under creative commons. (b) shows time evolution of mean
estimated tissue oxygenation %sO2 in two ROIs. The KCl injection time is indicated
by a star. (c) shows estimated tissue oxygenation (%sO2) for the three time points
(T1)–(T3). An animated video of the data can be found in the supplementary material
of this paper.
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is an effect currently not explicitly simulated in the training data. In order to
tackle this problem, we performed elastic registration as preprocessing step to the
recorded data: To compensate for intra-frame motion, the images corresponding
to individual bands of a whole MSI image were registered with the algorithm
bUnwarpJ [3] incorporated in the software FIJI [7], which is based on elastic
deformations. The band with highest contrast (560 nm) was used as reference.
Registration with this method of one complete MSI image takes 12 s. The imple-
mentation of such an elastic transformation to compensate brain movement was
inspired by recent work of Scholl et al. [11]. It should be noted that such registra-
tion was implemented only with the purpose of obtaining a better visualization
of haemodynamic changes; it is not a requirement of our proposed network model
and intra-frame motion compensation is not necessary when applying a snapshot
camera for image acquisition.

Results. According to a principal component analysis (PCA) similar to that
performed in [15], the in vivo spectra recorded resemble the training data that
we simulate (cf. Fig. 2b). Note that the first two components accounted for 96%
of the variance of the training data. As demonstrated in Fig. 3, our method is
capable of real-time visualization of blood oxygenation in the porcine cortex:
After induction of KCl, SDs can be clearly visualized, as illustrated by the mean
value of two regions of interest (ROIs) (cf. Fig. 3b).

4 Discussion

In this work, we presented a new approach to oxygenation estimation based
on MSI and successfully applied it to visualize the phenomenon of SD in the
gyrencephalic brain.

In the conducted in silico analysis, the RF performed worse than the pro-
posed neural network both in terms of accuracy and speed. While the RF has
to make a trade off between inference speed and accuracy, neural networks can
be highly parallelized and run entirely on the GPU. However, it should be noted
that the time needed to train a RF is significantly lower than for neural networks.
It is worth mentioning that for big training data sets, a deeper RF might have
to be trained, lowering the speed to significantly lower values. For instance, on
our data set it was 3.6 × 105 spectra per second when using a maximum depth
of 500 compared to 2.7 × 106 spectra per second when using a depth of 9.

In conclusion, the proposed method achieves high spatio-temporal resolution,
outperforms state-of-the-art methods and can be adapted to any hardware setup.
This makes it a potential powerful tool to examine haemodynamics not only in
animals but also in humans.
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Abstract. Modern operating rooms require medical specialists to han-
dle complex surgeries so that effective and yet safe treatment can be
delivered. The development of a medical cyber-physical system is a highly
multidisciplinary and challenging endeavour. In this paper, an intelligent
surgical theatre (aka surgical theatre of the future) architecture was pro-
posed based on Cyber-Physical System (CPS) concepts. The proposed
architecture, which comprises of intelligence components, cyber compo-
nents, cyber-physical interfaces and physical components, is specially
designed to facilitate effective data/information exchanges among these
components. The proposed architecture also accounts for three various
stages of a typical surgical operation (i.e. pre-operation, intra-operation
and post operation), which are all essential for the development of a
complete CPS-based Operating Room of the Future (ORF). As higher
levels of teamwork, communication and coordination can now be achieved
with a system based on the proposed architecture, it has the potential
to enhance safety, increase efficiency and reduce costs in the ORF.

Keywords: Operating theater · Cyberphysical systems · Management

1 Introduction

The operating room (OR) of today requires medical specialists to handle complex
surgeries so that effective and yet safe treatment can be delivered. Hence, it is
a high-risk, dynamic and stressful environment [1]. Despite attempts to reduce
these negative factors by introducing advanced technologies and more specialists
in the OR, the current ORs remain overcrowded and inefficient. For instance, the
scans and data of patients are currently not well integrated or presented within
a reasonable time frame in the OR. These inefficiencies can lead to a potential
negative impact on the safety of the patient and costs [6]. According to statistics,
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around 40% of surgery-related errors occur in the operating room. Because of
increasing importance of safety, quality and efficiency in the healthcare industry,
there is a need to gear towards the Operating Room of the Future (ORF) [1].

It is crucial to promote better integration of advanced technologies, and
to improve teamwork, communication and coordination within the ORF [6].
It is also crucial to consider an information-based architecture that facilitates
dataflow when developing the ORF; this promotes a more systematic approach
for surgical procedures [1]. One solution to develop an ORF that will fulfil
the stated requirements is to adopt Cyber-Physical System (CPS) technolo-
gies. CPSs generally involve an optimal mix of enabling advanced technologies
with an aim to facilitate dataflow among physical and cyber components, and
this leads to higher levels of communication and coordination within the OR
[9,12,14]. For instance, collaboration between the physical and cyber compo-
nents can be leveraged and the quality of process can be further improved with
the introduction of intelligence components within the CPS [2]. Such systems
that involve surgical processes have been an ongoing area of development and
have been labeled as Medical CPS (MCPS) in the literature [7].

The development of a MCPS is a highly multidisciplinary and challenging
endeavour with abundant literature describing implementations for a wide range
of medical applications. Haque et al. [4] reviewed and categorized a multitude
of such systems based on eight different elements. Six challenges for MCPS have
been identified by Lee et al. [7]: high assurance software, interoperability, con-
text awareness, autonomy, security and privacy, and certifiability. A number of
recent works attempt to answer these challenges - Okamoto et al. [11] described
the use of industrial middleware Open Robot/Resource interface for the Net-
work (ORiN) proposed by the Japan Robot Association for the integration of
medical devices in an operating room. Their work illustrated that the proposed
MCPS can not only be constructed flexibly, but also effectively aids in the device
exchange procedures. Similarly, Joerger et al. [5] has reported a successful proof
of concept MCPS for management of a large suite of ORs at Houston Methodist
Hospital. Their work illustrated the usefulness of the proposed MCPS to pro-
mote better communication, implementation efficiency and teamwork. Lastly, in
the work of Li et al. [8], a MCPS was proposed specifically for the handling and
monitoring of surgical instruments in the OR. It was concluded that the amount
of human errors made in the OR can be eliminated when their MCPS was pro-
posed, as the human involvement in these tasks is significantly reduced. Their
proposed MCPS can potentially result in a safer and more accurate surgery
process. Overall, these works illustrated the usefulness of MCPS to improve
teamwork, efficiency, flexibility, communication and coordination during surgi-
cal procedures.
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2 Methods

2.1 Intelligent Surgical Theatre Architecture

The future surgical theatre will compose of intelligence components, cyber com-
ponents, cyber-physical interfaces and physical components (Fig. 1). There are
four types of data/information exchange among the components. Reports are
compiled and organized data as summaries to be interpreted by the sink. Anal-
ysis are processed data which information could provide insights to the sink to
solve problems. Raw data are unprocessed data from the physical environment.
Lastly, controls are input to cause corresponding responses in a control system.

Fig. 1. Architecture of a operating room of the future

Each operation workflow could be sectioned into pre-operation, intra-
operation and post operation. In pre-operation, assuming a pre-operation plan
has been defined, organization and requisition of the required equipment, entry
and preparation of patient based on the surgical plan is performed. The moment
a medical practitioner lay a medical resource onto the patient, for example, the
action of anesthetizing the patient, the surgery enters the intra-operation phase.
Here, the surgical plan is executed, with surgeons adapting to complications
based on SOPs and experience. Immediately after the surgical site of the patient
is closed and the patient has stabilized enough to exit the operating theatre, the
surgery enters the post-operation phase. In the post-operation phase, the process
flow is reviewed and equipment is marked for sterilization and/or dispensed for
other operations.
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2.2 Cyber-Twin

The cyber components also include resource management and process manage-
ment. The management systems utilizes analysis from the cognitive engine and
the information of available options to select resource and procedure to be taken
during the pre-operation and intra-operation phases. These management sys-
tems function mainly based on simple logics to make decisions. They are used
to control the actions of the monitoring system.

During the pre-operation phase, analysis from the cognitive engine sug-
gests the list of surgical instruments required. The resource management system
commands the monitoring system at the entrance of the operation theatre to
itinerary check on instruments that were brought into the operation theatre. At
the same time, the resource management system also commands the monitor-
ing system in the operation theatre to check the set-up of equipment that are
already in the room. On the other hand, based on the inputs from the cognitive
engine, the process management system will attempt to recommend a list of
suitable tasks that is specific to the given application; the medical practitioner
can choose to utilize the recommended process or customize his own process
based on his expertise and experience.

During the intra-operative phase, if an emergency has occurred and there
is a need of a new resource that is not in the operation theatre, the medical
practitioner could request for it from inside the room. The resource management
will notify the resource monitoring system to look out for the delivery status of
that resource until it arrives. On the other hand, the process management system
controls the process monitoring system to identify the current operation status.
The process monitoring system can be made up of various sensory systems to
collect relevant data, which will be sent to the intelligence system for sense-
making. Moreover, the process management system is able to better execute the
task monitoring process over time, due to the learning and analytical capabilities
of the supporting intelligence system (made up of cognitive engine, machine
learning and blockchain components).

The cyber-physical interface forms a communication bridge between the
cyber programs and the physical environment. During the intra-operative phase,
the medical practitioners interacts with the cyber components using this inter-
face. Typically a user interface panel can be located in the operation theatre to
enable the medical practitioner to request for resources. To avoid the repeated
need for disinfection of such physical interfaces, alternate methodologies like
gesture based methods can be utilized to reduce the risk of contamination [15].
For added security, the use of biometric recognition in [10] can be integrated to
improve gesture-based interfaces by automatically identifying the operators who
are wearing gloves. The resource request and delivery system are connected to
the resource storage outside of operation theatre. The request will be managed
in a central system to allocate available resources. From the other end, any avail-
able staff could deliver the resource and send it into the theatre via a delivery
tunnel that automatically logs reports to the resource management and sterilizes
the resource.
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The resource monitoring system compiles the resource data and sends them to
the process monitoring system which mainly consists of cameras that tracks the
on-going surgery procedure. During the pre-operation phase, the medical prac-
titioner could set-up a simulation of the discussed procedure to confirm their
decisions. The monitoring systems provide real-time update to the simulation
on the resource available and the past processes that had happened. Simulation
could also be played during the intra-operation phase if desired either via aug-
mented reality or on monitor screen. Although the system is capable of making
its own intelligent decisions, a field expert is still required to make the final deci-
sion as a precaution to system inaccuracy and/or error. The system is specially
designed to recommend decision options, rather than to decide on behalf of the
medical practitioner.

2.3 Cognitive Engine and Machine Learning

The intelligence components are made up of a cognitive engine that plays the
role of inferencing and monitoring the resources and processes involved for the
surgical operation. For context awareness, semantic approaches for cognitive
engines have been explored for improving intelligence CPS. The key motivation
is to enable the CPS to infer and adapt to new information or uncertainty,
catching errors and mitigating risks before they occur. Typically, these methods
utilize an expert knowledge base through the design of an ontology accessible by
both humans and computers. During the pre-operation phase, the ontology is
first designed by the medical practitioners as part of the planning process of the
surgery. The cognitive engine will infer the resources required for the surgery as
part of the checking process with the medical practitioner’s decision. Detailed
implementation of such a cognitive engine is described in [13]. Inference results
from the cognitive engine will be sent to the resource and process management
which stores the planned sequence and information of the matching resources
to be used. The release of analysis to the management system depends on the
reported context from the monitoring system. The analysis may also suggest
alternatives to the medical practitioners based on the updated context. This
augmented decision cross-checks with the surgeons’ situational awareness via
the cyber-physical interface, in case the surgeon misses some information due
to information overload. After the operation, the knowledge can be directly
updated by the results from the machine learning unit to improve on the planned
surgery; this is only applicable for straightforward knowledge types. However,
if the knowledge type(s) is too complicated and require significant additional
problem solving, it is necessary for the medical practitioners to get involved in
the knowledge updating process; they could utilize the results from the machine
learning unit to aid them in this process.

During the post-operation phase, the machine learning unit ingests data from
report generated by the block chain system that is part of the cyber component.
The block chain system records the whole surgical processes and provides inspec-
tion logic on the quality of the operation. For example, the block chain could
calculate the failing rate of performing a cut by a specific surgeon. The process
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can be reviewed on demand, meaning that the results could only be accessed if
the authorized individual gives permission. Since the information stored in block
chain is posted and mined with unique encryption, this provides added security
to the patient and the medical practitioners’ private and confidential records.
The block chain component can also be further utilized to perform peer-to-peer
validation of the surgical procedure. This will help enhance the process man-
agement system. By feeding the block chains into the machine learning unit,
the system could provide adapted suggestions to the medical practitioners on
the next operation on resource distribution and surgical procedure which can
potentially lead to higher success rate.

3 RadioFrequency Ablation Needle Insertion Robot

Fig. 2. Simulated layout of a RFA ablation system

In this section, the application of our proposed architecture for Radiofre-
quency Ablation (RFA) of liver tumors is described. The main aim of this case
study is to illustrate the potential feasibility of the proposed architecture for
surgical procedures. Hence, the chosen equipment and methods as mentioned in
this case study example are meant for illustration purposes.

For this case study, a cognitive engine for the surgical process [13] and a
robotic system for minimally invasive percutaneous RFA ablation [3] are adopted
and integrated together with medical image processing, surgery pre-planning
and Kinect-based vision registration to enable large and multiple RFA needle
insertions to be performed with high accuracy, consistency and efficiency.



Towards a Cyber-Physical Systems Based Operating Room of the Future 53

Figure 2 depicts a simulation of the OR with the resources required for the
surgery. The constructed virtual, intelligent surgical theatre’s physical compo-
nents include various depth cameras, display monitors, resource delivery tubes,
anaesthetic machine, and the needle insertion robot. Its cyber components, which
are not visible in the figure itself, include the resource and process management
systems and the blockchain inspection system. Interfacing between the physi-
cal and cyber components are its cyber-physical components, which include the
cyber-twin modules for each of the physical components (e.g. patient, medical
practitioners), resource request interface, and system interface.

Figure 3 depicts the data flow within the MCPS architecture. The needle
insertion system utilizes an AR application, which is monitored by the Human
Cyber-Twin, to dispense instructions to the human operator. The RFA system
also involves a deep reinforcement learning algorithm, where data is retrieved
by the Robot Cyber-Twin. The optimal policy from the learning algorithm will
then determine the actions of the surgical robots based on the received data.
Next, the RFA system involves calibration algorithms that are dependent on
information (i.e. 3D imagery data of depth and colour measurements) received
from the depth cameras. These calibration algorithms will process the data and
send the results to the intelligence component via the Depth Camera Cyber-
Twin and Blockchain System sub-components for phase recognition analysis and
other forms of data analysis. Lastly, the role of the cloud is to facilitate data
flow among the various components.

Fig. 3. Dataflow of the RFA ablation system within the MCPS architecture

4 Discussion and Conclusion

In this paper, an intelligent surgical theatre architecture was proposed based on
CPS concepts. As higher levels of teamwork, communication and coordination
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can be potentially achieved with a system based on the proposed architecture,
it has the potential to enhance safety, increase efficiency and reduce costs in
the ORF. Moreover, the proposed system has the potential to overcome the
various challenges (i.e. high assurance software, interoperability, autonomy, con-
text awareness intelligence, device certifiability, security and privacy), which are
mentioned by Lee et al. [7], in designing successful MCPS.

The RFA case study illustrates the potential of the proposed system to
improve accuracy, consistency and efficiency for surgical processes, even when
large and multiple surgical procedures are performed. As surgeries are generally
complex procedures, the introduction of CPS utilizing intelligent subsystem and
cyber-twins could help in the decision-making processes and facilitate effective
and efficient data flow. However, the challenges, that may be faced in developing
a successful CPS based on the proposed architecture, include requiring (a) to
manage and maintain many subsystems at the same time, (b) heavy computing
capabilities because of its intelligence and cyber-twin components, and (c) the
involvement of the medical practitioner during the various operation phases.

For future works, we will first consult experienced surgeons to verify the
challenges that are commonly faced in the OR and to verify the feasibility of
the proposed architecture. To further develop our existing architecture, we will
consider developing a model with an ontology that represents time explicitly for
surgical processes. We will also conduct preliminary investigation of the proposed
architecture via computer simulations to prove its feasibility. Future works will
primarily include the physical development of the intelligent surgical theatre
based on the proposed architecture. Experiments will be conducted based on a
case study example to evaluate the developed system as a whole.
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Abstract. The application of deep learning (DL) models to the decod-
ing of cognitive states from whole-brain functional Magnetic Resonance
Imaging (fMRI) data is often hindered by the small sample size and high
dimensionality of these datasets. Especially, in clinical settings, where
patient data are scarce. In this work, we demonstrate that transfer learn-
ing represents a solution to this problem. Particularly, we show that a
DL model, which has been previously trained on a large openly available
fMRI dataset of the Human Connectome Project, outperforms a model
variant with the same architecture, but which is trained from scratch,
when both are applied to the data of a new, unrelated fMRI task. The
pre-trained DL model variant is able to correctly decode 67.51% of the
cognitive states from a test dataset with 100 individuals, when fine-tuned
on a dataset of the size of only three subjects.

Keywords: fMRI · Decoding · Deep learning · Transfer learning

1 Introduction

Over the recent years, deep learning (DL) methods have been shown to out-
perform more conventional machine learning techniques in a variety of decoding
tasks (for a review, see [8]). The success of DL methods is often attributed to
their ability to autonomously learn highly abstracted representations of the raw
input data, through a hierarchical sequence of non-linear transforms.

While researchers have started exploring the application of DL methods to
the analysis of functional Magnetic Resonance Imaging (fMRI) data (e.g., [12]),
their application to whole-brain fMRI data is still limited (e.g., [5] and [6]).
Mainly, due to the small sample sizes and high dimensionality of fMRI datasets
(and a lack of interpretability of DL models [7]). Particularly, in clinical settings,
where fMRI datasets often only contain 10–20 patients and several hundred fMRI
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samples (i.e., volumes) per patient. Yet, each fMRI volume can easily contain
several hundred thousand dimensions (i.e., voxels). In such classification settings,
in which the number of data dimensions far exceeds the number of data samples,
DL methods, as well as traditional machine learning approaches, are prone to
overfitting (for a review, see [10]).

This problem has been similarly encountered in other research domains (e.g.,
[11]). Here, researchers have discovered that the successful application of DL
models to small datasets can strongly benefit from transfer learning. Transfer
learning describes a process in which a model is trained on one dataset and
subsequently applied to another [11]. Thereby, the knowledge about the first
dataset, contained in the parameter estimates of the trained model, is utilized
to benefit the application of the model to the second dataset. This procedure
often drastically improves the classification performance of the model, while also
reducing the amount of time and data required to train it.

In this work, we explore whether transfer learning is similarly beneficial for
the application of DL models to the decoding of cognitive states (e.g., viewing
the image of a face vs the image of a house) from fMRI data. In particular, we
show that a DL model that has been trained on the data of six out of seven
task-fMRI datasets of the Human Connectome Project database [1] performs
better in decoding the cognitive states underlying a seventh, unrelated task,
when compared to a model variant that is trained entirely from scratch on the
data of this task. For this comparison, we utilize the DeepLight framework [13],
which decodes a cognitive state from whole-brain fMRI data, by combining con-
volutional and recurrent DL elements (see Fig. 1 and Sect. 2.2).

2 Methods

2.1 Data

Experiment Tasks. We analyzed the fMRI data of 400 unrelated participants
in the following seven experiment tasks (for further details, see Table 1 and [1]):

– Working Memory (WM): Participants are asked to decide whether a cur-
rently presented image (of body parts, faces, places or tools) is the same as
a previously presented target image.

– Gambling: Participants are asked to guess whether the value of a card (with
values between 1–9) is below or above 5. Participants win or loose if they
guess correctly/incorrectly. Trials are neutral if the value of the card is 5.

– Motor: Participants are presented with visual cues asking them to tap their
left or right fingers, squeeze their left or right toes, or move their tongue.

– Language: Participants either hear a brief fable (story trials) or an arith-
metic problem (math trials) and are subsequently given a two-alternative
forced choice question about the story / arithmetic problem.

– Social: Participants are presented with short video clips of objects that either
interact in some way or move randomly. Subsequently, participants are asked
to decide whether the objects interacted with one another, did not have an
interaction, or if they are not sure.
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– Relational: Participants are presented with different shapes, filled with dif-
ferent textures. In relational trials, participants see a pair of objects at the
top of the screen and a pair at the bottom. They are then asked to decide
whether the bottom pair differs along the same dimension (shape or texture)
as the top pair. In match trials, participants see one object at the top and
bottom and are asked to decide whether the objects match on a specified
dimension.

– Emotion: Participants are asked to decide which of two faces presented on
the bottom of the screen matches the face at the top of the screen. The faces
have an either angry or fearful expression.

Table 1. Overview of the fMRI Data. For each experiment task, the decoding targets
(i.e., cognitive states), the number of decoding targets, the duration of the fMRI data,
and the fraction of the entire dataset that the task’s data make up are presented.

Task Decoding targets Target
count

Duration (s)(%)

WM Body, face, place, tool 4 400 s (19.19%)

Gambling Win, loss, neutral 3 224 s (10.75%)

Motor Left/right finger, left/right toe, tongue 5 312 s (14.97%)

Language Story, math 2 480 s (23.03%)

Social Interaction, no interaction 2 200 s (9.6%)

Relational Relational, matching 2 216 s (10.36%)

Emotion Fear, neutral 2 252 s (12.1%)

Total 20 2,084 s (100%)

FMRI Data. All analyzed fMRI data were provided in a preprocessed format
by the Human Connectome Project (HCP), WU Minn Consortium (Principal
Investigators: David VanEssen and Kamil Ugurbil; 1U54MH091657) funded by
the 16 NIH Institutes and Centers that support the NIH Blueprint for Neu-
roscience Research; and by the McDonnell Center for Systems Neuroscience
at Washington University. Whole-brain EPI acquisitions were acquired with a
32 channel head coil on a modified 3T Siemens Skyra with TR = 720 ms and
TE = 33.1 ms (for further details on fMRI acquisition, see [14]).

FMRI Data Preprocessing. The HCP preprocessing pipeline for fMRI data
[2] includes the following steps: gradient unwarping, motion correction, fieldmap-
based EPI distortion correction, brain-boundary based registration of EPI to
structural T1-weighted scan, non-linear registration into MNI152 space, and
grand-mean intensity normalization (for further details, see [14] and [2]). In
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Fig. 1. Illustration of the DeepLight framework [13]. DeepLight first separates a whole-
brain fMRI volume into a sequence of axial slices. Each axial slice is then processed
by a convolutional feature extractor. The resulting sequence of higher-level axial slice
representations is processed by a bi-directional LSTM unit, before a decoding prediction
is made through a fully connected softmax output layer.

addition, we applied the following preprocessing: volume-based smoothing with
a 3 mm Gaussian kernel, linear detrending and standardization of the single voxel
signal time-series (resulting in a zero-centered voxel time-series with unit vari-
ance) and temporal filtering of the single voxel time-series with a butterworth
highpass filter and a cutoff of 128 s. We further excluded the first two TRs of
every fMRI experiment block (for experiment details, see [1]) from all analyses,
as we did not expect any task-related hemodynamic response within this time
period. Each fMRI volume contained 91 × 109 × 91 voxels (X×Y × Z).

Data Splitting. We further divided the fMRI data into a distinct pre-training
and test dataset, by assigning the data of the working memory task to the test
data and all other experiment tasks to the pre-training data.

2.2 DeepLight

DeepLight [13] consists of three distinct computational modules (see Fig. 1).
Namely, a feature extractor, an LSTM unit and output layer. To decode a cog-
nitive state, DeepLight first separates a whole-brain fMRI volume into a sequence
of axial slices. These slices are then sequentially processed by a convoltional fea-
ture extractor. The feature extractor used here consists of the following 12 con-
volution layers [9]: conv3-16(1), conv3-16(1), conv3-16(2), conv3-16(1), conv3-
32(2), conv3-32(1), conv3-32(2). conv3-32(1), conv3-64(2), conv3-64(1), conv3-
64(2), conv3-64(1) (notation: conv(kernel size) - (number of kernels)(stride size).
All convolution kernels were activated through a rectified linear unit function.
This sequence of convolution layers resulted in a 768-dimensional representation
of each axial volume slice. To integrate the information provided by the resulting
sequence of higher-level slice representations into a higher-level representation
of the observed whole-brain activity, DeepLight applies a bi-directional LSTM
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Fig. 2. DeepLight pre-training statistics. A-B: Mean decoding accuracy in the train-
ing (A) and validation (B) data, as a function of training epochs. C: Mean decoding
accuracy in the validation data after 40 training epochs. Lines represent grand means,
surrounded by standard error bands. Bar heights indicate grand means, while scatter
points indicate subject means. Colors indicate tasks. Dashed lines indicate chance level.
(Color figure online)

[4], containing two independent LSTM units. Each of the two LSTM units con-
tains 64 neurons and iterates through the entire sequence of input slices, but
in reverse order (one from bottom-to-top and the other from top-to-bottom).
Lastly, to make a decoding decision, DeepLight applies a fully-connected soft-
max output layer, containing one output neuron per decoding target in the data.

Training. All DeepLight variants that were used in this study were trained as
follows (if not reported otherwise): We iteratively trained DeepLight through
backpropagation, by the use of the ADAM optimization algorithm, as imple-
mented in tensorflow 1.13. During parameter estimation, we applied dropout
regularization to all network layers as follows: We set the dropout probability
to 50% for the LSTM unit and softmax output layer, For the convolution lay-
ers, however, we set the dropout probability to 0% for the first four convolution
layers, 20% for the next four convolution layers, and 40% for the last four con-
volution layers (in line with [13]). We further used a learning rate of 1e−4 and a
batch size of 24 fMRI volumes. DeepLight’s weights were initialized by the use
of a normal-distributed random initialization scheme [3].

3 Results

3.1 Pre-training Data

The goal of the first analysis was to pre-train DeepLight on the data of the
six tasks contained in the pre-training dataset (see Sect. 2.1). To this end, we
divided the data within each task into a distinct training and validation dataset,
by assigning the data of 300 randomly selected subjects to the training data
and the data of the remaining 100 subjects to the validation data. During pre-
training, DeepLight’s output layer contained 16 neurons, one for each cognitive
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Fig. 3. Comparison of a “pre-trained” DeepLight variant with a “not pre-trained”
variant that is trained entirely from scratch, when both are applied to subsets of 1%,
5%, 10%, 20%, 40%, 60%, and 100% of the full training dataset (N = 300) of the
test task (the working memory task). A, B, D, E: Decoding accuracy as a function of
training epochs in the training (A-B) and validation (D-E) data. C, F: Difference in
decoding accuracy between the pre-trained and not pre-trained DeepLight variant after
50 training epochs. Stars indicate a statistically meaningful difference in a t-test using
Bonferroni adjusted alpha levels of 0.05/7. Colors indicate the fraction of training data
that is used. Lines show grand means with standard error bands surrounding them.
Bar heights indicate grand means. Scatter points indicate subject means. (Color figure
online)

state of each task in the pre-training dataset (for an overview, see Table 1).
Thereby, DeepLight has no knowledge of the underlying tasks and is able to
identify an individual’s cognitive state without knowing which task the individual
performed. Overall, we trained DeepLight for a period of 40 epochs (Fig. 2). Each
epoch was defined as an iteration over the entire training data.

After 40 training epochs, DeepLight achieved an average decoding accuracy
of 76.04% in the training dataset (Fig. 2A) and a decoding accuracy of 70.55% in
the left-out validation data (Fig. 2B, C). DeepLight’s average decoding accuracy
was between 70.00–86.12% for five out of the six tasks in the validation data,
while the decoding accuracy for the sixth task (the gambling task) was only
28.18%. When excluding the data of the gambling task from the decoding anal-
ysis, DeepLight’s average decoding accuracy increased to 84.56% in the training
dataset and 79.02% in the validation data.

3.2 Test Data

The goal of the second analysis was to explore the benefits of transfer learning for
the application of DL models to fMRI data. To this end, we compared the per-
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formance of the pre-trained DeepLight variant (see Sect. 3.1) to that of a variant
that was trained entirely from scratch, when both are applied to the data of the
left-out test task (the working memory task, see Sect. 2.1). We again divided the
data of the test task into a separate training and validation dataset, by randomly
assigning 300 distinct subjects to the training data and the remaining 100 to the
validation data. We then trained a DeepLight variant with transfer learning,
and one without, on the training data of the test task. The output layer of both
variants was set to contain four neurons (one per decoding target in the working
memory task, see Table 1). Otherwise, the architecture and training procedures
(see Sect. 2.2) of both variants were identical.

The first variant (“not pre-trained”) does not apply transfer learning and
was trained entirely from scratch, with weights initialized according to the
normal-distributed random initialization scheme [3]. After 50 training epochs,
this variant achieved an average decoding accuracy of 88.57% in the training
data of the test task (Fig. 3A) and 81.91% in the validation data (Fig. 3D).
The second variant (“pre-trained”) applies transfer learning and is based on
the DeepLight variant that we previously trained on the pre-training dataset
(see Sects. 2.1 and 3.1). Particularly, we initialized the parameters of all network
layers, except for the output layer (Fig. 1), to those weights obtained by the pre-
trained DeepLight variant and only initialized the weights of the output layer
according to the normal-distributed random initialization scheme [3]. After 50
training epochs, the pre-trained variant achieved an average decoding accuracy
of 92.43% in the training data of the test task (Fig. 3B) and 83.83% in the val-
idation data (Fig. 3E) and thereby performed meaningfully better in decoding
the cognitive states from the validation data than the not pre-trained variant
(t(99) = 8.42, p < 0.0001), Fig. 3F).

We were further interested in exploring how both DeepLight variants per-
formed, when trained on smaller fractions of the original training dataset of the
test task. Therefore, we repeatedly trained both variants on 1%, 5%, 10%, 20%,
40% and 60% of the full training dataset of the test task (N = 300), while eval-
uating their performance on the full validation data of the test task (N = 100).
Overall, the pre-trained variant consistently achieved higher decoding accura-
cies in the training (Fig. 3C) and validation (Fig. 3F) data, and required less
training time, when compared to the not pre-trained variant. Importantly, the
pre-trained DeepLight variant already achieved an average decoding accuracy of
67.51% (Fig. 3E) in the validation data, when being trained on only 1% of the
training dataset (equal to the data of three subjects). The not pre-trained vari-
ant, on the other hand, achieved a decoding accuracy of only 32.49% (Fig. 3D),
when being trained on 1% of the training data and thereby performed meaning-
fully worse (the pre-trained DeepLight variant outperformed the not pre-trained
variant by 35.02% (t(99) = 49.68, p < 0.0001)). Lastly, we also tested how much
of the training data the pre-trained DeepLight variant requires to performs as
well as (or better than) the not pre-trained variant that has been trained on the
full training data. Interestingly, the pre-trained variant already achieved a mean-
ingfully better decoding accuracy than the not pre-trained variant (which was
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trained on the full training dataset), when trained on only 40% of the training
data (t(99) = 2.82, p = 0.0057).

4 Conclusion

The broad application of DL models to fMRI data is often hindered by the
small sample size, and high dimensionality, of typical fMRI datasets. Here, we
have demonstrated that transfer learning is beneficial for the application of DL
models to small fMRI datasets. A DL model that has been pre-trained on a
large, openly available fMRI dataset, generally requires less training data and
time, and achieves higher decoding accuracies, when compared to a model variant
with the same architecture that is trained entirely from scratch. The pre-trained
model variant already performs well in decoding the cognitive states of 100
individuals in an unrelated fMRI task, when fine-tuned on a dataset of the size
of only three subjects. However, future research is needed to explore how well
the presented transfer learning approach generalizes to datasets outside of the
Human Connectome Project [1].
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Abstract. In the absence of sufficient data variation (e.g., scanner and
protocol variability) in annotated data, deep neural networks (DNNs)
tend to overfit during training. As a result, their performance is signifi-
cantly lower on data from unseen sources compared to the performance
on data from the same source as the training data. Semi-supervised
domain adaptation methods can alleviate this problem by tuning net-
works to new target domains without the need for annotated data from
these domains. Adversarial domain adaptation (ADA) methods are a
popular choice that aim to train networks in such a way that the features
generated are domain agnostic. However, these methods require careful
dataset-specific selection of hyperparameters such as the complexity of
the discriminator in order to achieve a reasonable performance. We pro-
pose to use knowledge distillation (KD) – an efficient way of transferring
knowledge between different DNNs – for semi-supervised domain adap-
tion of DNNs. It does not require dataset-specific hyperparameter tun-
ing, making it generally applicable. The proposed method is compared to
ADA for segmentation of white matter hyperintensities (WMH) in mag-
netic resonance imaging (MRI) scans generated by scanners that are not
a part of the training set. Compared with both the baseline DNN (trained
on source domain only and without any adaption to target domain) and
with using ADA for semi-supervised domain adaptation, the proposed
method achieves significantly higher WMH dice scores.
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1 Introduction

In the presence of a large training dataset that covers all possible data varia-
tions, deep neural networks (DNNs) can achieve super-human performance in
image recognition and semantic segmentation tasks. However, in medical image
segmentation tasks large annotated training datasets are often scarce. In addi-
tion, training and test data are drawn from different distributions. For example,
the images were obtained using different scanners at different sites or the demo-
graphics of the subjects differ. This violation of the i.i.d. assumption (i.e., that
training and test data are drawn independently from the same distribution) typ-
ically has the effect that the performance on the test data is significantly worse
than on the training data.

Domain adaptation (DA) approaches try to alleviate the problem of apply-
ing models in new domains with different characteristics. In particular, semi-
supervised DA methods provide a way to learn structure from unlabeled data in
new domains. Among the several semi-supervised DA (SSL-DA) methods pro-
posed, the most popular one is adversarial training based domain adaptation
(ADA). ADA relies on generating features that are invariant with respect to a
domain discriminator. ADA requires extensive parameter optimization due to
the necessity of a robust discriminator. And a recent study pointed out the flaws
in the evaluation of SSL-DA methods [1].

In this paper, we evaluate a modified knowledge distillation (KD) [2,3]
method for generalizing DNNs to new domains with a common clinical prob-
lem in contrast to using ADA methods. The datasets chosen for evaluation not
only involve different magnetic resonance images (MRIs), but also were acquired
on subjects with different demographic makeup. Through our evaluation, we
show that the proposed KD is generally able to achieve better dice scores in seg-
menting white matter hyperintensities (WMH) on datasets that are not a part
of the training data and do not share any attributes when compared to baseline
and ADA.

2 Related Work

Among the recent works on DA, several methods rely on using a small amount
of data (annotated) to fine-tune a baseline model [4,5]. The performance of this
approach not only relies on a new – albeit small – set of annotations but also on
the choice of the set. In contrast, SSL-DA do not use data annotations on new
target domains. Adversarial training is a popular SSL-DA method [6–8]. Here,
networks are trained in such a way that the generated features are agnostic to
the data domain with respect to a domain discriminator. A similar solution,
ADA, was employed by [9] to adapt networks to be agnostic to domain changes.

Another class of DA method use KD to transfer representations between data
domains. For instance, [10] proposed using KD to transfer knowledge between
different modalities of the same scene. Closely related to our work is [11], where
the authors propose to use omni-supervised learning (OSL) to include unla-
belled data in the learning process. Here, data distillation is used to generate an
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ensemble of predictions from multiple transformations of unlabeled data, using a
teacher model, to generate new training annotations. The proposed method dif-
fers from this method on two accounts: (a) Only soft labels are used to train the
single student network, where the idea is to improve segmentation by learning
label similarities from unannotated data (b) the data included in the training
of the student involves data from new domains in small amounts in contrast to
OSL.

3 Methods

In SSL-DA methods, we assume the source domain images and their annotations,
(xs, ys) ∈ Xs, are drawn from a distribution ps(xs, y). The target domain images
xt ∈ Xt, are drawn from a distribution pt(xt, y) where there are no annotations
available. We consider classification into K classes. In an ideal scenario, where
ps and pt are sufficiently similar, the goal is to find a feature representation
mapping f that maps an input to K scores, where the ith score models (up to
a constant) the logarithm of the probability that the input belongs to class K.
These scores can then be mapped by σ : RK → R

K to probability maps over
the classes. SSL-DA first finds a function fs performing well on a source domain
and then finds a new ft based on fs that performs well on the target domain.
Vanilla supervised learning methods rely on including annotations from both Xs

and Xt.
In the popular ADA method, the goal is to minimize the distance between

the empirical distributions of ps(fs(Xs)|y) and pt(ft(Xt)|y). Here, a discrimina-
tor D is a neural network that distinguishes between the two domains. There-
fore, the discriminator acts as a discrepancy measure that brings the two dis-
tributions together. Overall, adversarial training involves train a network that
generates f in a standard supervised manner that is indistinguishable by a
discriminator [6,9].

3.1 Knowledge Distillation for Domain Adaptation

KD [2] was originally intended to compress neural networks with high number of
parameters with networks of lower complexity. The objective is to teach a simpler
student network to imitate a more complex trained teacher network, through a
loss function called the distillation loss. To perform unsupervised domain adap-
tation, we proposed to use the teacher/student learning strategy. Specifically,
the data from the source domain is used to train a teacher model in a supervised
fashion. Then, the trained teacher is used to generate posterior probability maps
or soft labels on the union of source and target data. These posterior probabilities
are used instead of usual hard labels to train the student or target model. Note,
this approach can take advantage of large amounts of unlabeled data acquired
from any number of domains. An attractive feature of distillation loss is the
soft representation of one-hot encoded label vectors which allow the student to
be optimized over a smoother optimization landscape. Moreover, the smooth
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representation of labels also allows the learning of label similarities, which is
particularly useful in learning boundaries in semantic segmentation tasks. The
proposed semi-supervised learning method is formulated below.

Training the Teacher or Source Domain Model: Consider a set of N
manually annotate images from a source domain Xs = {(xi, yi), i = 1 . . . N},
where xi ∈ R

d represent a d-dimensional MR scan, with v = 1 . . . V voxels, and
yi ∈ [0, 1]K with ‖yi‖1 = 1 its correspondent label. Assuming there is a set Fs

that holds functions f : Rd → R
K we aim to learn a feature representation fs

(teacher model) which follows the optimization of a loss function, l, according
to Eq. (1)

arg min
f∈Fs

1
N

∑

xi∈Xs

l(yi, σ(fs(xi))) (1)

[σ(z)]k =
e[z]k

∑K
l=1 e[z]l

(2)

In a standard supervised learning way, the teacher network is optimized using
the cross-entropy loss function (or any differentiable loss function of choice).

Training the Student or Target Model: Even though fs is suitable to seg-
ment the images from the source domain Xs, it may not be suitable for data
coming from a different data distribution Xt. Our goal is find a function ft ∈ Ft,
which is suitable to segment data from Xt. Assuming, we have access to a lim-
ited set of unlabeled scans in the target domain Xt = {xi, i = 1 . . . M}, we can
then create a set

XU = {(xi, yi) |xi ∈ Xs, yi = fs(xi), 1 ≤ i ≤ N}∪
{(xi, yi) |xi ∈ Xt, yi = fs(xi), 1 ≤ i ≤ M}

that may be used to optimize a student using the distillation loss. Through soft-
representations of this union dataset, the student is expected to learn a better
mapping to the labels than the teacher network. When training the student
network, we consider probability distributions over the labels as targets, not
single classes. This representation reflects the uncertainty of the prediction by
the teacher network. The function ft is found by (approximately) solving,

arg min
f∈Ft

1
(N + M)

∑

xi∈XU

l(σ(T−1fs(xi)), σ(ft(xi))) , (3)

Here, T > 1 is the temperature parameter which controls the softness of the
class probability prediction given by fs.

4 Experiments and Results

4.1 Databases

The WMH segmentation challenge (https://wmh.isi.uu.nl/) dataset is a
public database that contains T1-weighted and FLAIR scans for 60 subjects

https://wmh.isi.uu.nl/
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from three different clinics. The data also consists of manual annotations of
WMH from presumed vascular origin. T1-weighted images have been registered
to FLAIR since annotations were performed in this space. The images were also
corrected for bias field inhomogenities using SPM12. An important feature of
this dataset is that the scanners and demographics have variance as show in the
Table 1.

Table 1. Summary of data characteristics in the WMH challenge database

Clinic Scanner name Voxel size(m3) Size # of images

Utrech 3T Philips Achieva 0.96 × 0.95 × 3.00 240 × 240 × 48 20

Singapore 3T Siemens TrioTim 1.00 × 1.00 × 3.00 252 × 232 × 48 20

Amsterdam 3T GE Signa HDxt 1.20 × 0.98 × 3.00 132 × 256 × 83 20

4.2 Experimental Setup

One of the main objectives of the paper is to use semi-supervised learning to
perform domain adaptation. We use the WMH challenge dataset to perform
cross-clinical experiments in segmenting WMH on FLAIR images. We consider
several scenarios to establish the performances of ADA and KD. The scenarios
are described below. Note that, to evaluate the performance of the algorithms,
dice overlap measures are used throughout.

– Lower bound baseline, L-bound: Here a baseline DNN model is trained on the
source dataset to establish a lower bound performance. The DNN is trained
on the source domain images henceforth referred to as S, and tested on 20
subjects from a target dataset T.

– Upper bound baseline, U-bound: Here, a baseline DNN model is trained like
L-Bound, however, the training dataset is a union of images from both S and
a subset of T (10 subjects, with annotations). The network is evaluated on
the remaining 10 subjects in T.

– Adversarial domain adaptation, ADA: Following [9], we attempt at training
a DNN model that is invariant to data domains. In this paper, to be consistent
with KD, we train the domain discriminator based on the final layer of the
baseline, in contrast to what was proposed in [9]. We use a discriminator
composed of 4 convolutional layers with 8, 16 32, 64 number of filters, followed
by 3 fully connected layers with 64, 128 and 2 neurons. For this experiment,
like U-bound, the training dataset is a union of images from both S and a
subset of T (10 subjects, without annotations). The network is evaluated on
the remaining 10 subjects in T.

– Knowledge distillation, KD: The experimental setup for KD is the same as
ADA. A temperature of 2 is used in the softmax for the distillation loss. The
student network trained is identical to the teacher network whose architecture
is a standard UNet (like L-bound, U-bound, and ADA) optimized with an
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ADAM loss function and a learning rate of 10−4 with is gradual decrease after
epoch 150. The network is trained for 400 epochs.

– Adaptation on-the-fly: A clinically relevant scenario is adapting to a small set
of test images on the fly by keeping the teacher/baseline model constant. To
validate this scenario, we apply ADA and KD on the same 10 unannotated T
that are included in the training, but subject-wise. In other words, separate
adaptation is performed on each instance of T, instead of including them
together.

4.3 Results

Various combinations of mismatched (in terms of clinics) training and testing
data were used. For instance, if the training data is from clinic 1 (Utrecth), the
testing data is from either clinic 2 (Singapore), or clinic3 (Amsterdam). We did
not test on two different clinics even though this scenario is practical. Table 2
illustrates mean dice coefficients (two folds) for each of the scenarios mentioned
in Sect. 4.2 except for adaptation on the fly which is illustrated in Table 3. KD
outperformed ADA in nearly all scenarios except for domain adaptation from
Singapore clinic to Utrecht clinic and vice versa. For domain adaptation from
Utrecht clinic to Singapore clinic, ADA was significantly better than KD. In
the vice-versa situation, KD achieved a better mean which is statistically not
significant. In all other scenarios, KD yielded statistically better dice overlaps
compared to ADA. Note that the statistical comparison are made only between

Table 2. Illustrates dice overlaps (with variance). Bold fond indicates statistical signif-
icance at 5%, p-values (paired-sample t-test at was used to computed p-values, which
were 0.0002 < p < 0.02). Only ADA and KD methods are considered in the statistical
comparison.

Training Test

Method Utrech Singapore Amsterdam

Utrech L-bound 0.6126 (0.1092) 0.7207 (0.0793)

ADA 0.7004 (0.1057) 0.7144 (0.0968)

KD 0.6456 (0.0905) 0.7548 (0.0755)

U-bound 0.8031 (0.1148) 0.7704 (0.0787)

Singapore L-bound 0.6693 (0.2271) 0.7368 (0.0931)

ADA 0.6859 (0.2036) 0.7337 (0.0912)

KD 0.6924 (0.2103) 0.7499 (0.0877)

U-bound 0.7063 (0.2016) 0.7699 (0.0851)

Amsterdam L-bound 0.6471 (0.2086) 0.6811 (0.1172)

ADA 0.6800 (0.2128) 0.7202 (0.1154)

KD 0.6909 (0.2135) 0.7482 (0.0975)

U-bound 0.7208 (0.1851) 0.7988 (0.0869)
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Table 3. Mean dice overlaps from the adaptation-on-the-fly scenario. Bold fond indi-
cates statistical significance at 5%, p-values (paired-sample t-test at was used to com-
puted p-values, which were 0.0003 < p < 0.04). Only ADA and KD methods are
considered in the statistical comparison.

Training Test

Method Utrech Singapore Amsterdam

Utrech KD 0.6285 (0.097 0.7465 (0.0855)

ADA 0.7075 (0.095) 0.7220 (0.0995)

Singapore KD 0.6945 (0.1825) 0.7425 (0.0805)

ADA 0.6680 (0.1945) 0.7370 (0.0880)

Amsterdam KD 0.6745 (0.2005) 0.7395 (0.1165)

ADA 0.6625 (0.1890) 0.7100 (0.1125)

ADA and KD. In the adaptation-on-the-fly scenario, KD yields significantly
better dice overlaps on a majority of the scenarios, the superior performance of
ADA remains in the experiment that involves domain adaptation from Utrecht
clinic to Singapore clinic. However, in the vice-versa scenario, KD performance
better than ADA. To illustrate the differences in segmentations between KD and
ADA, we plot the segmentations (scenario, Utrecht clinic to Amsterdam clinic)
in Fig. 1. As illustrated, both the methods perform quite well in segmenting
lesions with relatively larger volume, however, the main difference is evident
in segmenting smaller lesions, specially in the deep white matter regions. It is
interesting to note that the adaptation-on-the-fly and the classical scenarios yield
nearly the same dice indicating a good generalisability and less dependency on
the choice of the small dataset coming from the target domain.

Fig. 1. Illustration of the segmentation’s obtained with different methods trained on
the Utrecht dataset and tested on the Amsterdam dataset. The top and bottom row
illustrate segmentations on two different subjects.
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5 Discussion

The main objective of this paper was to present domain adaptation from a
semi-supervised learning perspective. We have evaluated a modified knowledge
distillation approach and compared it to the popular adversarial approach under
different clinical scenarios. Overall, the knowledge distillation approach gave
better results and is relatively simpler to design when compared to the more
architecture-dependent adversarial approaches. Adversarial approaches require
extensive tuning of DNN architectures, especially for the discriminator, in order
to achieve reasonable performances. In contrast, KD only involves choosing the
temperature parameter which can be chosen only based on the performances on
the source domain. One of the interesting outcomes is the inferior performance of
KD on domain adaptation in scenario, Utrecht clinic to Singapore clinic. One of
the reasons may be attributed to not just scanner differences but also differences
in demographics. This may have led to an inferior teacher performance that the
student network relies on. To verify this, we used the improved network from
domain adaptation using ADA as a teacher and then trained a student based on
it. We observed that the mean dice overlap improved from 0.65 → 0.69.

In future work, we will consider combining the adversarial approaches with
knowledge distillation to improve the generalisability of DNNs across domains
without the need for large annotated datasets.
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Abstract. With the increased need for multi-center magnetic resonance
imaging studies, problems arise related to differences in hardware and
software between centers. Namely, current algorithms for brain volume
quantification are unreliable for the longitudinal assessment of volume
changes in this type of setting. Currently most methods attempt to
decrease this issue by regressing the scanner- and/or center-effects from
the original data. In this work, we explore a novel approach to harmo-
nize brain volume measurements by using only image descriptors. First,
we explore the relationships between volumes and image descriptors.
Then, we train a Relevance Vector Machine (RVM) model over a large
multi-site dataset of healthy subjects to perform volume harmonization.
Finally, we validate the method over two different datasets: (i) a sub-
set of unseen healthy controls; and (ii) a test-retest dataset of multiple
sclerosis (MS) patients. The method decreases scanner and center vari-
ability while preserving measurements that did not require correction in
MS patient data. We show that image descriptors can be used as input
to a machine learning algorithm to improve the reliability of longitudinal
volumetric studies.

Keywords: RVM · Harmonization · MRI · Brain volumes

1 Introduction

Large scale multi-site studies are of extreme importance in neuroimaging, both
for research purposes and in clinical practice. Such studies face several challenges
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Philips Achieva Siemens Skyra GE Discovery MR750wSiemens Skyra GE Discovery MR750wPhilips Achieva

Fig. 1. MR images from same patient in different scanners. Left side: T1-weighted
images. Right side: white matter segmentations obtained using the same method

due to hardware- or center-related variability. It is well known that scanner-
factors such as manufacturer, magnetic field and gradient non-linearly influence
volume measurements [4,14] obtained from structural Magnetic Resonance Imag-
ing (MRI). At the image level, these factors are coupled with a high variability of
intensities across patients and scanners, which can affect tasks like the segmen-
tation of brain structures [16]. This effect is exemplified in Fig. 1, where three
T1-weighted MR images from the same patient obtained on different scanners
and their corresponding segmentations are represented.

The need to address multi-scanner and -center data harmonization is evi-
denced in the follow-up of Multiple Sclerosis (MS) patients. These patients
exhibit an increased rate of brain atrophy when compared to healthy subjects,
which has been linked to impairment [1]. However, it has been suggested that
brain atrophy can only be reliably estimated over periods of at least five years
[2], due to the variability caused by scanner and center factors.

Besides image processing approaches that aim at matching image intensity
distributions to provide a more consistent input to the segmentation method
[11,12], recent studies have focused on statistical harmonization of volumetric
measurements based on scanner- or center-specific information. This type of
methods generally apply regression techniques to correct measurements. Linear
mixed-effects models using patient- and scanner-specific information as random
effects were explored by [5] and [8]. Recently, [6] used an algorithm devised for
genomics that extends the same type of model to account for site-specific factors.
A data-driven approach based on independent component analysis was explored
by [4], where correction was performed by selecting independent components
related to scanning parameters. However, since these methods rely on scanner-
or acquisition-specific information, they do not generalize and need to be adapted
when used in new settings. Additionally, such information can be incomplete,
especially in historical data. As such, it would be of interest to use information
that is encoded in the images themselves, or that can be extracted from the
volume quantification method to build more robust and adaptive techniques.

To address these issues, in this paper we present a novel statistical harmo-
nization approach based on image descriptors and a machine learning algorithm.
We first explore the relations between image-extracted properties and brain vol-
ume measurements that we could further exploit for harmonization. We then
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train a machine learning algorithm based on Automatic Relevance Determina-
tion on healthy data to perform volumetric corrections. We validate the method
on a set of unseen healthy controls, and finally test it on a test-retest dataset of
MS patients.

2 Data

Healthy Subjects. This dataset comprises 1996 T1-weighted (T1w) MRI scans
from healthy subjects. The data is a compilation of several public datasets, such
as [3,10], and some proprietary data. The overall set comprises data from several
different centers and scanner types from the major vendors (Siemens, Philips,
GE). Magnetic field strengths (1.5T or 3T) and T1w sequence types also vary.
For most of the data we have information regarding age and sex of the subject,
scanner type, magnetic field strength and additional acquisition parameters like
echo time (TE) and repetition time (TR). For building and testing our model,
we randomly divided the data into training (70%) and test sets (30%).

Patient Data. To further validate the approach we test it in a dataset contain-
ing data from 10 MS patients as detailed in [7]. Each patient was scanned twice
in three different 3 T scanners: Philips Achieva, Siemens Skyra and GE Discov-
ery MR450w. An example is depicted in Fig. 1. We observed that one of the
patients was an extreme case, showing very enlarged ventricles. Given that the
volumetric measurements in such a case are prone to errors and are considered
unreliable, this patient’s data was discarded from further analysis.

2.1 Data Pre-processing and Feature Extraction

For each image we compute gray matter (GM) and white matter (WM) volumes
using the well established atlas-based method described in [7]. Whole brain (WB)
volume is then defined as the sum of WM and GM volumes.

We are interested in descriptors related to the T1w images that encode infor-
mation about errors and bias in brain segmentations. Since the quality of a seg-
mentation depends on a good registration to the atlas and is influenced by the
contrast and noise present in an image, it is valuable to explore features that
convey such information. We extract a total of 16 features of two main types:
(i) Alignment information regarding the registration of the T1w image to the
MNI atlas space, which includes decomposing the affine transformation (rotation
angles, scale and shear factors in three directions), and measuring the similarity
between the registered images using Normalized Mutual Information (NMI); and
(ii) Contrast to Noise Ratio (CNR) between tissue types and between different
brain structures (e.g., lobes and cerebellum). CNR is given by:

CNRt1,t2 =
√

2
|Īt1 − Īt2 |√
σ2
t1 + σ2

t2

,
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where Īt represents the mean intensity of some tissue or structure t and σ2
t is the

variance of the image intensities across this structure. We compute CNRt1,t2 by
taking t1 as the tissue or structure with higher average image intensity than t2.

The brain volumes and some of the computed descriptors (e.g., CNR and
NMI) are known to be age dependent [13]. As such, age is used as a feature at
training time, but not at test time. For analysis and comparison, we age-detrend
the volumes by subtracting an age-matched estimated median value. CNR and
NMI are corrected by fitting a linear regressor to the data.

3 The Relevance Vector Machine for Data Harmonization

To harmonize brain volumes, we subtract correction terms based on estimated
variability trends from the original volumes. To determine the variation in the
volumetric data that can be explained by the aforementioned image descriptors,
we fit a linear model using the extracted features as independent variables. When
choosing the model, we take a few important considerations into account: (i)
we have 16 image-extracted features plus age; (ii) some of these are related
only to one of the brain volumes; (iii) the features are not always unrelated;
and (iv) we are interested in a probabilistic model, to capture uncertainty in
our predictions. Given that standard generalized linear models do not address
all these considerations, we investigate using a probabilistic machine learning
technique.

The Relevance Vector Machine (RVM) is defined within a fully probabilistic
framework and includes a mechanism of automatic relevance determination [9].
As described in [15], the model defines a conditional distribution for real-valued
input-target vector pairs {xn, tn}Nn=1, of the type: p(tn|xn) = N (tn|y(xn), β−1),
which specifies a Gaussian distribution over tn with mean y(xn) and precision
(inverse variance) β. Here {xn}Nn=1 are the set of extracted features and {tn}Nn=1

the corresponding volume measurement for each image n in a training dataset
of size N . The function y(x) is given by a linear combination of basis functions
Φ(x) = (Φ1(x), . . . , ΦN (x)) with weights w = (w0, . . . , wN )T:

y(x) =
∑N

i=1
wiΦi(x) + w0 = Φ(x)w,

where the ith basis function Φi(x) ≡ K(x,xi) is a kernel centered around the ith

training sample. In order to avoid over-fitting due to the large numbers of param-
eters in the model, a zero-mean Gaussian prior probability distribution is defined
over the weights w. Moreover, a separate hyperparameter αi is introduced for
each individual weight wi, representing the precision of the corresponding weight:

p(w|α) =
∏N

i=0
N (wi|0, α−1

i ),

where α = (α0, . . . , αN )T. Using the resulting model, relevance vector learning
searches for the hyperparameters α and β that maximize the marginal likelihood
p(t|α, β) of the training data, where t = (t1, . . . , tN )T. Defining Φ as the N ×N
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Fig. 2. Left: Cross-correlations between age-detrended brain volumes (mL) and
extracted features. We represent angle, shear and scale as the result of multiplying
the three directions. Right: a zoomed-in view of the relationship between volumes and
image descriptors: top WM vs. NMI and bottom GM vs. CNR

matrix with Φ(xn) in nth row, the learning algorithm proceeds by iteratively
updating α and β as follows [15]:

αnew
i =

γi
μ2
i

and (βnew)−1 =
‖t − Φμ‖2
N − ∑

i γi
with γi ≡ 1 − αiΣii,

where Σ =
(
βΦTΦ + diag(α)

)−1

and μ = βΣΦTt are the posterior covariance
and mean for the weights, respectively. In practice, during re-estimation, many
αi’s tend to infinity, which causes the posterior distributions of the corresponding
weights to peak around zero. The basis functions associated with these do not
influence the predictions and can be pruned out, resulting in a sparse model. The
remaining training samples with non-zero weights are called relevance vectors.

Once the model is trained, we can take a set of descriptors x∗ of an unseen
image, and try to predict the corresponding volume based on these descriptors
alone using the posterior mean μ: y∗ = φ(x∗)μ. Finally, we can obtain a corrected
volume ycorr by subtracting the estimated contribution of the image descriptors
from the original volume y: ycorr = y − φ(x∗)μ.

4 Results

4.1 Verification of Observable Correlations in Data

To verify whether there are correlations between image descriptors and the mea-
sured volumes, we built a cross-correlation map between these variables (see
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Table 1. Median and standard deviation of age-detrended volumes (mL) before and
after applying the RVM-based correction with different kernels (linear and RBF). Data
pertains to the scanner-wise distribution of the test set (as in Fig. 3).

WM GM WB

Kernel Median STD Median STD Kernel Median STD

Original 10.9 30.4 −0.3 32.5 Original 1.2 47.9

Linear −3.2 26.9 −0.3 29.0 Linear −3.4 38.2

RBF 11.0 27.6 −7.5 33.5 WM+GM (linear) −0.8 37.3

Fig. 3. Distribution of the validation set volumes (mL) before (top) and after (bottom)
RVM-based correction using a linear kernel. (N.S.: Not Specified)

Fig. 2). Analysing these correlations reveals that image descriptors like NMI
and CNR are related to scanner/acquisition specific features. These same image
descriptors are in turn correlated to the brain volumes, as well as scale.

4.2 Harmonization of Healthy Population Data Based on RVM

We trained and tested the RVM method described in Sect. 3 for linear regres-
sion on the data set of healthy subjects (Sect. 2). We used different kernel types
(linear and Gaussian - RBF) and searched for the model that best preserved bio-
logical information - namely age - while decreasing the scanner/center-specific
variability. Thus, the model should decrease global variance in the data but
maintain the original median of the population defined by the training set, given
that we build on the assumption that this sample contains enough variability to
represent the heterogeneity of scanner and center effects. To evaluate the per-
formance, we produced boxplots to represent the distribution of the measured
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Fig. 4. Difference between same patient brain volumes (mL) acquired in different
scanner types. Left: Absolute volumes for each patient before and after correction.
Right: Distribution of differences between the Intra-SE and Inter-SE volumes from
same patient before and after correction

volumes in each scanner in the test set with at least ten subjects (see Fig. 3). We
first removed the age dependency as estimated from the training set, such that
the variability due to age is not accounted for. We compare median and stan-
dard deviation, preferring values closer to zero, since they represent a decrease
in variability while preserving the global trend. Table 1 presents the median val-
ues of these same age-detrended values. After correction the distributions from
different scanners become more similar. For both GM and WM the linear kernel
produced lower or comparable mean and decreased standard deviation. For WB
we compared applying a linear kernel to summing the previously corrected WM
and GM volumes and verified that the last option performed better.

4.3 Harmonization of Test-Retest Data

To further validate the method, we applied it to the test-retest dataset of MS
patients described in Sect. 2. The results are summarized in Fig. 4. On the left
side, the absolute volumes before and after correction are represented. First we
computed for each tissue type the differences between the volumes from images
acquired in the same scanner, which provides a measure of the intra-scanner error
(Intra-SE). There is no significant difference between the original and corrected
volumes for all the tissue types (p > 0.05, paired t-test). Then we computed
the difference between the averaged volumes of each scanner type against all
the other scanner types. For WM there is a statistically significant difference
(p = 2e−3, paired t-test) between the original and corrected volumes. For GM,
the inter-scanner error (Inter-SE) for the original volumes was very small, being
comparable to the Intra-SE. After applying the correction, there is no statistical
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difference between these volumes and the original ones, even if visually there is
an increase in the variability which is propagated for the WB.

5 Conclusions and Future Work

In this work we applied a relevance vector machine approach to find the amount
of variability in the data that can be explained by variations in image descrip-
tors. We observe that there is a large dependency of brain volumes with the
atlas-registered NMI metric, which was initially not expected. NMI measures
the goodness of a non-rigid registration step between the image and an atlas,
necessary for the methodology we used. The final volumes depend on the good-
ness of this registration, and in such a way we are correcting for suboptimal
segmentation results that derive from a poor registration step.

We demonstrate that it is possible to achieve a certain degree of harmo-
nization of the data based only on image descriptors. To our knowledge, this
is the first approach that does not rely on scanner-specific information to per-
form harmonization. We expect the current method to perform less efficiently
than more tailored methods, but to generalize better. A thorough comparison
to such methods still needs to be performed, but it is out of the scope of the
current paper. This type of solution is interesting for large scale statistics, and
could potentially have a positive impact in longitudinal studies. Moreover, the
proposed approach allows dealing with missing scanner/center information, a
problem not addressed in previous works and very frequent in practice. Never-
theless, in the test-retest setting inter-scanner error is still high when compared
to the measured intra-scanner error, which implies that the method does not
provide a completely satisfactory correction for patient specific use, and should
be further investigated.

Future steps include exploring more image descriptive features that are inde-
pendent from the segmentation method used and that can encode the presence
of geometrical distortions and artifacts. For controlled environments it could be
useful to couple general scanner-dependent information with the image descrip-
tors. Additionally, we aim to extend the method to other brain structures of
interest and to compare its performance on a controlled dataset to scanner-
specific state-of-the art methods. Finally, it is important to keep in mind that
in a cross-sectional setting this type of correction does not replace the need for
an improved standardization at the image level.
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Abstract. White Matter Hyperintensities (WMH) are imaging biomar-
kers which indicate cerebral microangiopathy, a risk factor for stroke
and vascular dementia. When training Deep Neural Networks (DNN) to
segment WMH, data pooling may be used to increase the training dataset
size. However, it is not yet fully understood how pooling of heterogeneous
data influences the segmentation performance. In this contribution, we
investigate the impact of sampling ratios between different datasets with
varying data quality and lesion volumes. We observe systematic changes
in DNN performance and segmented lesion volume depending on the
sampling ratio. If properly chosen, a single DNN can accurately segment
and quantify both large and small lesions on different quality test data
without loss of performance compared with a specialized DNN.

Keywords: White matter hyperintensity · Segmentation · Data
pooling

1 Introduction

Cerebral microangiopathy is a risk factor for several common diseases. It is
related to 20% of strokes and is the most common cause for vascular demen-
tia [8]. Adequate treatment can reduce the risk, therefore early detection and
systematic quantification are important for prevention. White Matter Hyperin-
tensities (WMH) are an imaging biomarker closely linked to microangiopathy
[3]. As the manual segmentation of brain lesions is both time-consuming and
subject to high inter-observer variability, automatic segmentation methods are
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highly desirable [2]. Automated reader-independent and ideally data quality-
independent quantification of WMH could also contribute to a more standard-
ized assessment of microangiopathy, improving cross-study comparability and
accelerating the clinical applicability of research [11].

The use of Deep Neural Networks (DNN) has become a powerful tool for
automatic segmentation also in the neuro domain [1,4]. Yet, as MRI is used
for WMH imaging, the training data contrast and quality can vary significantly
depending on MR scanner and sequence. Furthermore, depending on the study
population, the mean lesion volume can vary significantly. While pooling of data
is a common technique especially in the case of small individual datasets, the
impact of data heterogeneity on the data-driven DNN training is not yet fully
understood.

Data pooling from multiple imaging systems and studies is a challenge, not
only for WMH segmentation. Notably, Li et al. [5] have investigated the pooling
of data from three MR scanners for WMH segmentation. They found that pooling
can improve the segmentation performance compared with training on a single
dataset. In their work, each of the datasets contained only 20 cases which may
have contributed to the improvement by pooling in addition to the increased
training data heterogeneity.

Concerning test data heterogeneity, Moeskops et al. [7] showed that a DNN
can accurately and reliably segment WMH and brain tissues in the presence
of artifacts and anatomical abnormalities. The algorithm was evaluated on two
different cohorts: elderly patients with low expected WMH volume and patients
from a memory clinic with comparably larger WMH volume.

In this contribution, we propose to also explore the impact of sampling het-
erogeneous data during the DNN training on different cohorts. Specifically, we
investigate the pooling of heterogeneous data with large WMH lesions from
multiple sites and data of healthy subjects with small WMH lesions from an
epidemiological study with homogeneous imaging settings. To the best of our
knowledge, we are the first to systematically vary the sampling of pooled data
from different studies during training for WMH segmentation. We aim to deter-
mine whether a single DNN can be used to segment and quantify lesions from
different datasets without loss of performance compared with a DNN specialized
for each dataset.

2 Methods

2.1 Datasets

Fluid-attenuated inversion recovery (FLAIR) MRI data from three studies was
used to build two training and test sets (see supplementary material for an assess-
ment of the data heterogeneity). For all image volumes, reference segmentations
of WMH were created by 3 neurological readers trained in the evaluation of
MR imaging data of patients with cerebrovascular diseases. In summary, WMH
were first detected by a semi-automated procedure based on signal intensities
in FLAIR and subsequently refined by visual inspection and manual correction.
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All lesion masks were checked by two raters independently and consent achieved
consulting a third investigator in cases of severe disagreement.

The Hamburg City Health Study (HCHS)1 is a large ongoing epidemiological
study aiming to investigate risk factors of 26 common diseases including stroke
and dementia. Reference WMH segmentations were available for 88 subjects,
all scanned on a 3T Siemens scanner with a 3D FLAIR sequence. The axial
resolution was 0.75 × 0.9 mm2 and slice thickness was 0.75 mm. The median
WMH reference volume was 0.55 ml (IQR 1.87 ml).

The CONNECT study was a single center, cross-sectional study of patients
with significant cerebral small vessel disease to investigate the association
between cerebral macro- and microperfusion and cognitive impairment. Patients
with age over 50 and moderate or severe degree of WMH detected by FLAIR
MRI were included. Reference WMH segmentations were available for 18 sub-
jects, all scanned on a 3T Siemens scanner with a 2D FLAIR sequence. The
axial resolution was 0.72× 0.72 mm2 and slice thickness was 5 mm. The median
WMH reference volume was 27.97 ml (IQR 31.15 ml).

WAKE-UP [10] was a multi-center trial including subjects with an unknown
time of onset of stroke. Reference WMH segmentations were available for 68
subjects, scanned on different scanner types from Siemens (36 subjects), Philips
(30 subjects) and GE (2 subjects) using different 2D FLAIR sequences. Field
strengths were 3T (51 subjects) or 1.5T (17 subjects). The axial resolution
ranged from 0.43 × 0.43 mm2 to 0.94 × 0.94 mm2 and slice thickness from 3 mm
to 5 mm. The median WMH reference volume was 16.21 ml (IQR 13.65 ml).

2.2 Training and Test Set Composition

A homogeneous training dataset denoted Dho was created using 64 cases of
the HCHS study. The remaining 24 HCHS cases were part of the homogeneous
test set Tho. The only two subjects with lesion volumes larger than 15 ml were
assigned to Tho. The remainder was assigned randomly within two discrete lesion
volume classes (0–5 ml, 5–15 ml).

A heterogeneous training dataset denoted Dhe and a test set The were created
mainly from WAKE-UP and CONNECT. The training set Dhe contained 55
cases from both studies and The contained the remaining 31 cases. To increase the
variability of The with respect to small lesions, 9 random cases of Tho were added
to The to reach a total of 40 heterogeneous test cases. The split into The and Dhe

was not completely random but was based on scanner types, hyper-intense image
artifacts and discrete lesion volume classes to achieve a high heterogeneity of the
test set. As a general rule, outliers in the data (e.g. acquired on a scanner with
less than 4 available subjects) were assigned to the test set in order to increase its
heterogeneity and ability to measure robustness of the trained DNNs to unseen
data.

1 http://hchs.hamburg/.

http://hchs.hamburg/
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2.3 Data Pre-processing

To homogenize the data from different scanners, gray values were normalized
by mapping the 5th and 95th gray value percentiles to 0 and 1. Quantiles were
computed only within the brain because of varying contrast to surrounding tissue
for different MR sequences. Due to large differences in slice thickness, images
were resampled only in the transverse plane to 1 mm2 but not between slices, so
that distortions of the fine lesion reference contours were reduced. Consequently,
a 2D network architecture was used (see Sect. 2.4).

2.4 Deep Neural Network

As the focus of this work is the impact of training data and sampling rather than
architecture optimization, we chose the well-known U-Net architecture [9] with
4 resolution levels for all experiments. The 2D variant was chosen over 3D based
on the properties of the training, see Sect. 2.3. All U-Nets were trained to conver-
gence using the Dice loss [6]. The best performing state of the trained weights
was chosen based on the Jaccard coefficient computed during each validation
step.

2.5 Sampling Scheme

The sampling scheme described in this section is the basis for all results presented
in Sect. 3. Let X denote the random variable which describes a sampled training
patch and DL ⊂ Dho ∪ Dhe the set of all training patches containing true
positive lesion voxels. Training patches were sampled so that

P (X ∈ Dho) = pho and P (X ∈ DL) = 0.5, (1)

where pho ∈ [0, 1] is the probability of sampling patches from the homogeneous
dataset Dho. The probability of sampling a patch with at least one lesion voxel
was 50%. Our aim is to evaluate the impact of pho on the trade-off between DNN
specificity versus generalizability to various data qualities and lesion volumes.

3 Results

3.1 Segmentation Performance

A boxplot of the Dice scores between reference and segmentation result per
sampling ratio pho is shown in Fig. 1. On the heterogeneous test set The, the
median Dice scores are within 0.68 ± 0.02 for all pho ≤ 0.9. The median Dice
scores decrease when less patches are sampled from Dhe. For pho ≤ 0.8, the
inter-quartile range (IQR) varies less than 0.05 Dice, with a steep increase for
larger pho. This suggests that the DNN remains robust on The, even if only 20%
of the training patches reflect the high heterogeneity and lesion volume. For
larger pho, the segmentation becomes unreliable (lower mean Dice and larger
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IQR). On the homogeneous test set Tho, the median Dice scores increase up to
pho = 0.6. For any higher sampling rates from Dho, the median Dice scores are
within 0.66 ± 0.02 with the maximum at pho = 0.9. The lowest IQR is reached
for pho ∈ [0.6, 0.8], where it varies by only 0.01 Dice. This suggests that a DNN
can segment small lesions on a homogeneous test set even if up to 40% of the
training set are of different data and lesion quality. The most stable performance
(lowest IQR), is reached for pho ∈ [0.6, 0.8]. In summary, our results suggest
that using a sampling rate of pho ∈ [0.6, 0.8] (lower/upper bound derived from
Tho/The), a DNN can robustly segment large and small lesions on homogeneous
and heterogeneous test data without loss of (Dice) performance compared with
a specialized network (pho ∈ {0, 1}) and with good stability of the performance
(low IQR of Dice scores). Qualitative segmentation results are shown in Fig. 2.

Fig. 1. Dice scores depending on the probability pho of sampling patches from the
homogeneous dataset Dho. Note that the lesions in the homogeneous test set Tho are
small (see Sect. 3.2), therefore a single misclassified voxel on average leads to a higher
decrease of the Dice score than on the heterogeneous test set The.

Fig. 2. Reference annotation (yellow overlay) and DNN segmentation (white contour)
for pho = 0.7 for test cases of varying lesion volume. (Color figure online)

The Dice score does not reveal whether too many or too few voxels are
labeled as lesions. Therefore, we plot the median voxel-wise precision and recall
per pho in Fig. 3. On The, the increase in precision (P) is approximately linear
with the decrease in recall (R), with the two extremes (P,R, pho) = (0.64, 0.78, 0)
and (P,R, pho) = (0.90, 0.33, 1). However, the change in recall and precision is
non-linear with the sampling rate pho: sampling only 2.5% of patches from Dhe
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accounts for roughly half of the difference in recall and precision between the
two extremes ((P,R, pho) = (0.76, 0.55, 0.975)).

On Tho, median precision and recall follow a non-linear relationship. For
pho ≤ 0.1, precision increases and recall decreases with increasing pho with their
minimum and maximum respectively at (P,R, pho) = (0.11, 0.89, 0). This sug-
gests a strong overestimation of lesions when no data from Dho is sampled dur-
ing training. For increasing pho ≥ 0.1, precision and recall both tend to increase,
although there is no clear optimum for pho ≥ 0.5. The expectation of improving
on Tho by sampling more data from Dho is only true as long as pho ≤ 0.5. This
means that up to 50% of training patches can be sampled from independent data
with different quality and lesion volume statistics without lowering precision and
recall. On both test sets, median precision and recall are clustered together for
the previously identified range of pho ∈ [0.6, 0.8]. This supports the observation
based on the Dice score, that the exact sampling ratio within this range is not
crucial to the overall performance of the DNN.

Fig. 3. Median voxel precision versus recall depending on the sampling rate pho. On
The, precision and recall are linearly correlated. On Tho, precision and recall values are
clustered for all pho ≥ 0.5. By adjusting pho, one can adjust the DNN performance.

3.2 Lesion Volume Measurement

The total lesion volume is a quantitative measurement which can directly be
computed from the predicted lesion mask. To compare the predicted against
the reference lesion volume per test case, we compute the relative volume error
Er = (

∑
i ri − ∑

i pi)/
∑

i ri, where ri and pi denote the voxels of the binary
reference and predicted lesion masks. Figure 4 plots the quartiles of all volume
errors per test set against the sampling rate pho. Note, that the median reference
lesion volumes are 14.20 ml on The and 0.56 ml on Tho. Hence, a large relative
error on Tho still is a small absolute error.

On The, the median predicted volume deviates less than 10% from the refer-
ence volume for pho ∈ [0.4, 0.95] and by more than 12% for values of pho close or
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equal to 0 or 1. For values pho ∈ [0.6, 0.8], the median error amounts to 1–4%.
On Tho, all median errors are negative which means that the predicted volume
tends to be too high. An explanation might be that typical small hyper-intense
false positives have a higher impact due to the low total lesion volume. It also
cannot be ruled out that especially tiny lesions are missed during the annotation.

We also compute Spearman’s rank-order correlation coefficient ρ between
reference and predicted lesion volume. A value of 1 indicates a monotonic rela-
tionship between the measurements. This is relevant, as monotony means that
an increase in volume can be measured using a DNN even if the predicted vol-
ume differs from the true volume. The resulting correlations with confidence
intervals are shown in Fig. 4. On The, the correlation and confidence are similar
(ρ = 0.95 ± 0.01) for all pho ∈ [0.05, 0.9]. On Tho, the correlation increases up to
ρ = 0.98 for pho ≥ 0.8. This shows that the lesion volume measurements are
accurate and highly correlated with the reference when using suitable sampling
rates. Including the results on The, this shows that a single DNN trained with
pho ∈ [0.8, 0.9] (lower/upper bound derived from Tho/The) can quantify large
and small WMH on heterogeneous data.

Fig. 4. Top row: Quartiles of the relative lesion volume error on both test sets. Four
data points on Tho are cut off for better visualization. Bottom row: Spearman’s corre-
lation coefficient between reference and predicted lesion volumes. Error bars indicate
a 95% confidence interval of the correlation computed via bootstrapping. Low relative
errors and high correlation indicate an accurate lesion volume measurement for suitable
values of pho.
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4 Discussion

Overall, our results suggest that a single DNN can segment large and small WMH
without loss of performance compared with a specialized DNN (pho ∈ {0, 1}).
However, the sampling ratio needs to be chosen appropriately. While on our
data, sampling 60–80% of homogeneous patches seemed optimal with respect to
Dice scores, these numbers may differ significantly for other datasets. Still, we
could observe systematic changes in performance with the sampling rate, which
indicates that non-random sampling of pooled data may be superior to random
sampling, which is often done in practice. Our results confirm the expectation
that a training set which is more similar to the test set will generally lead
to better results, but we did not expect the performance (especially on the
heterogeneous test set) to be as robust against a large variation of the training
set introduced by the sampling. Moreover, we could quantify lesion volumes with
high accuracy. Because of the high Spearman correlation indicating monotony,
the trained DNNs might also be suitable for processing of follow-up data.

The reported Dice scores do not yet reach the best results (on other test data)
of the WMH Segmentation challenge [4]. This may be because we put the focus
on data and sampling and did not yet fully optimize the architecture nor made
use of ensembles nor used T1 data. The reason for using a fixed architecture
and training procedure was to preserve comparability across experiments. For
future work, verification of our results with a more advanced architecture would
be interesting. However, we would still expect a similar influence of the sampling
ratio on the predicted lesion volumes.

A limitation of our work is that two factors may impact the results: the
data heterogeneity with respect to quality and acquisition parameters on the
one hand and with respect to lesion volumes on the other hand. It is unclear
how much of the changes in performance can be attributed to one or the other.
Changes in segmented lesion volume depending on the sampling rate indicate
an influence of the training sets’ lesion volumes. Moreover, despite best efforts
to build heterogeneous training and test sets, sample sizes were still too small
to investigate the impact of data parameters such as field strength or scanner
type in detail. In this work, we chose to include any outliers into the test set to
increase its heterogeneity. An alternative would be to use a random split and to
perform cross-validation to test on all available cases.

Finally, in this work we looked at sampling rates between pooled datasets
when training a new DNN. For future work, it would be interesting to combine
this with other techniques such as Transfer Learning to improve existing DNNs.
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Abstract. Functional Magnetic Resonance Imaging (fMRI) captures
the temporal dynamics of neural activity as a function of spatial location
in the brain. Thus, fMRI scans are represented as 4-Dimensional (3-space
+ 1-time) tensors. And it is widely believed that the spatio-temporal pat-
terns in fMRI manifests as behaviour and clinical symptoms. Because of
the high dimensionality (∼1 Million) of fMRI, and the added constraints
of limited cardinality of data sets, extracting such patterns are challeng-
ing. A standard approach to overcome these hurdles is to reduce the
dimensionality of the data by either summarizing activation over time
or space at the expense of possible loss of useful information. Here, we
introduce an end-to-end algorithm capable of extracting spatiotempo-
ral features from the full 4-D data using 3-D CNNs and 3-D Convolu-
tional LSTMs. We evaluate our proposed model on the publicly available
ABIDE dataset to demonstrate the capability of our model to classify
Autism Spectrum Disorder (ASD) from resting-state fMRI data. Our
results show that the proposed model achieves state of the art results
on single sites with F1-scores of 0.78 and 0.7 on NYU and UM sites,
respectively.

Keywords: Deep learning · ASD · 3D convolutions · 3D
convolutional-LSTM · rs-fMRI

1 Introduction

Unlike other fields of medicine, psychiatry lacks diagnostic criteria based on val-
idated biomarkers. Finding these biomarkers is critical for (i) understanding the
underlying neural causes, (ii) improving diagnosis and (iii) predicting treatment
outcome. Functional magnetic resonance imaging (fMRI)—a well-established
proxy for neural activity—is often taunted as a promising non-invasive technique
c© Springer Nature Switzerland AG 2019
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that has enough information in them to design a robust biomarker. This informa-
tion, often present as spatio-temporal patterns in fMRI is challenging to extract
given its dimensionality (∼1 Million) and typical data volumes (typically <200
samples/subjects at any given center). In this paper we focus on Autism Spec-
trum Disorder (ASD). ASD represents a heterogeneous group of developmental
brain disorders characterized by lifelong social deficits and repetitive behaviour.

Deep learning, because of its recent success in a multitude of tasks, is being
currently explored in neuroimaging. For example in classifying Alzheimer, and
predicting disease conversion [11]. The key advantage of deep learning is its
ability to learn useful features from raw data; eliminating the need for subjec-
tive feature design as required by “classical” machine learning techniques. But
applying deep learning to fMRI has been problematic because of the issue of
dimensionality and data volume.

To overcome these issues fMRI data are often reduced in dimension either by
summarizing brain activity spatially or temporally. In the classification of ASD
versus controls for example, several studies convert the full 4-D resting-state
fMRI (rs-fMRI) signal in to a correlation matrix. These matrices are based on
the average time course within regions-of-interest (ROI) given by an atlas [1,8,9].
Instead of averaging over time, Dvornek et al. [6] used long short-term memory
(LSTM) cells on the timeseries of 200 selected brain regions for the same task.
Similarly, [7] applied 1D convolutions on extracted timeseries of different atlases.
Alternatively, Li et al. [10] directly learned spatial features from the 3D fMRI
images, but reduced the temporal information by taking the mean and standard
deviation of fixed time windows. These subjective feature selection methods
could drastically reduce the ability to detect complex patterns in neural activity
and may lead to suboptimal results.

Instead, we propose to learn end-to-end from the full 4D fMRI sequences
using a framework that takes advantage of both spatial and temporal information
in the data to achieve the objective. On the ABIDE dataset, we show that our
approach can surpass subjective methods that rely on feature engineering and
we also avoid any procedure to summarize data.

2 Method

In this work we present a novel architecture for 4D rs-fMRI data with appli-
cation to ASD classification. We utilize the strength of convolutional LSTMs
(C-LSTM) in spatio-temporal feature extraction by employing a 3D variant in
our proposed pipeline. Further, we demonstrate another variation of architec-
ture that does not use convolutional LSTMs. Since LSTMs are computationally
expensive, we propose a computationally cheaper alternative with a 1D convolu-
tion for spatio-temporal processing. The idea of this variant was inspired by [7]
that demonstrated the capability of 1D convolutions to extract useful features
from time courses of rs-fMRI for the diagnosis of ASD. In addition, the compar-
ison of these two models helps to identify the contribution of the convolutional
LSTMs.
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Fig. 1. Overview of the proposed deep architecture. 3DCNN and bidirectional C-LSTM
are used to learn the spatial and long-term spatiotemporal features, following which a
3DCNN is used to learn higher-level spatiotemporal features based on the learnt 3D
long-term spatiotemporal feature maps for the final classification layer.

2.1 3DCNN C-LSTM

The main challenge in employing recurrent neural networks (RNN) in fMRI is
the high dimensionality of the data. The spatial dimension of a 4 mm down-
sampled volume in MNI space is 45 × 54 × 45, where the size of the time-series
depends on the duration of the scan and the TR, and usually ranges from 100 to
400 time points. Together with the limited sample sizes, classical RNNs fail to
train efficiently on the raw 4D volumes. One alternative is to reduce the spatial
dimensions first, but that is likely to remove informative local/temporal features.
To overcome this issue, we design an end-to-end pipeline that enables efficient
training of RNNs in high dimensional environments. Our pipeline consists of
three components:
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3D CNN for Spatial Feature Learning: The 3D CNN component in the proposed
architecture is a shallow CNN with 4 convolutional layers. The purpose of this
component is: (1) to reduce the spatial dimension of the original volume for
efficient training of the recurrent layers. (2) extract lower level spatial feature
maps necessary for spatio-temporal feature learning at the next stage. We use a
3D CNN with tied weights at all the input time steps for coherent spatial feature
extraction and efficient training.

The kernel size of each CNN layer is 3 × 3 × 3 with stride 2 × 2 × 2 to down-
sample the input feature vector. We add dropout with a rate of 0.2 to the output
of every convolution to regularize the network.

3D C-LSTM for Spatio-Temporal Feature Learning: One of the most common
choices to model temporal sequences is the LSTM. Unfortunately, LSTMs take
a sequence of vectors as inputs. This would require us to flatten our spatial
dimensions, and thus ignore spatial patterns. Moreover, the LSTM applies fully
connected transformations to these vectors, leading to very large weight matrices,
unless the spatial dimensions are strongly reduced. The C-LSTM [12] solves both
problems: it replaces the fully connected vector-transformations by convolutions,
allowing us to model the temporal information in a memory efficient way, without
flattening the spatial dimensions.

The inputs X1, . . . , Xt, the cell states C1, . . . , Ct, the hidden states
H1, . . . , Ht and the gates it, ft, ot of C-LSTM are all 4D tensors. Let ∗ denote the
convolution operator, and let ⊗ denote the Hadamard product. The C-LSTM
can be formulated as:

it = σ(Wxi ∗ Xt + Whi ∗ Ht−1 + bi)
ft = σ(Wxf ∗ Xt + Whf ∗ Ht−1 + bf )
ot = σ(Wxo ∗ Xt + Who ∗ Ht−1 + bo)
Ct = ft ⊗ Ct−1 + ittanh(Wxc ∗ Xt + Whc ∗ Ht−1 + bc)
Ht = ot ⊗ tanh(Ct)

Where σ is the sigmoid function, and all weight matrices W are 3D con-
volution kernels. The convolutions in the C-LSTM have kernel size 3 × 3 with
stride 1 × 1. “Same-Padding” is used to ensure that the spatiotemporal feature
maps in each C-LSTM layer have the same spatial size. A two-layer bidirec-
tional C-LSTM is constructed as illustrated in Fig. 1 to encode global temporal
information and local spatial information into 3D spatio-temporal feature maps.

3D CNN for Higher Level Spatio-Temporal Feature Learning: Since the 3D spa-
tiotemporal feature maps still have large spatial size, dimensionality reduction is
necessary for the final classification. Another simple 3DCNN with tied weights
is employed to reduce the dimensionality further and to learn the higher-level
spatiotemporal features, based on the learnt 3D spatiotemporal feature maps at
each recurrent step of C-LSTM. Only a shallow 3DCNN is constructed in this
implementation. Nevertheless, deeper 3DCNNs can also be used for different
configurations or applications.
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2.2 3DCNN 1D

1D convolutions offer a simpler alternative to LSTMs with longer effective mem-
ory [2]. They have been successfully applied to capture the temporal dynam-
ics of the fMRI signal for ASD classification [7]. Therefore, this alternative
model applies a 1D convolution for spatio-temporal feature learning after the
3D CNN component. The first layers for spatial feature learning are similar to
the 3DCNN C-LSTM model. After the 3D convolutional layers, a global aver-
age pooling layer is added to yield a 1D vector with the length of the input
time-series. One 1D Convolution is applied on this vector with the learned spa-
tial features as input channels. Hereafter, a temporal pooling layer as in the
C-LSTM model is conducted to summarize the temporal information followed
by a fully connected layer to output the classification probabilities.

3 Experiments and Results

3.1 Datasets

We use the publicly available ABIDE dataset to evaluate our proposed pipeline.
We preprocessed the data with the Configurable Pipeline for the Analysis of
Connectomes (C-PAC) and the fMRI volumes are downsampled to 4 mm in
MNI. We use single sites to evaluate the network capacity to learn the spatio-
temporal features with a small sample size but uniform scanning parameters. We
also experiment with the multi-site data provided from ABIDE-I dataset to test
the network performance in a heterogeneous environment but a larger sample
size. For single sites experiments, we use the NYU and UM sites from ABIDE-I.
Those provide the highest number of balanced (ASD/typically developing (TD))
subjects with 184 and 110 subjects respectively. For the multi-site experiment
we used ABIDE-I with 19 sites and 1100 subjects.

3.2 Network Training

The proposed architectures are trained in an end-to-end fashion from scratch. To
speed up training and to increase the diversity of samples seen by the model, we
select a random contiguous sub-sequence of 20 time points for each instance (re-
sampling every epoch). For validation and testing, the full time-series per subject
are used by feeding subsequent crops to the model and average the predictions
over all crops. We train our models for 500 epochs with a batch size of 8. For
optimization of the cross entropy loss function, we employ the Adam optimizer
with a learning rate of 0.0001. During training, we evaluate the performance on
the validation set every 10 epochs and use the best model for evaluation.

3.3 Results and Comparison with State-of-the-Art

We compare our models to previous deep learning ABIDE classification models
that handled the temporal and spatial dimensions in different ways and achieved
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the best results reported thus far. We report the results for the models in Table 1
on the respective dataset. We reran the best reported experiments from [8] and
using the recommended settings and available code on our dataset and report
the results. For [7] we used the full time-series for single-site experiments and
selected for and cropped to 100 timepoints for the ABIDE-I dataset. For [3] we
report the results for the models on the NYU site from their paper. We provide
a short description of the models and input data type.

– AE MLP [8]: uses correlation matrices of the extracted time-courses from
the Craddock atlas [4] to pre-train a stacked fully-connected autoencoder and
fine tune it for classification.

– SVM [5]: uses the same input features as AE MLP to train a support vector
machine with an rbf kernel.

– 1DConv [7]: uses extracted time courses from the Harvard Oxford atlas as
input to a 1D convolutional neural network.

– CNN3D TC [3]: 3D spatial data is used in a 3D convolutional network
where the temporal information is stacked as channels.

– CNN3D MD [3]: same approach as CNN TC but only mean and standard
deviation of the temporal dimension are stacked as channels.

– convGRU CNN3D [3]: uses the 4D volume where spatio-temporal infor-
mation are processed by a 3D convolutional GRU followed by a 3D CNN.

– CNN4D [3]: uses 4D convolutions on the 4D volumetric data.

We report 5-fold cross validation mean F1-score and accuracy for the experiments
in Table 1. The results show that the proposed architecture 3DCNN C-LSTM
outperforms other models on single site experiments by achieving mean test
accuracies and F1 scores of 0.77 and 0.78 respectively for the NYU site and 0.71
and 0.7 on the UM site. This surpasses previous methods by 10% and 8% for
NYU and UM sites respectively.

3DCNN C-LSTM however also shows a degraded performance in multi-site
environment as evidenced by the results on ABIDE-1 data that features 19 sites.
We attribute the loss of performance of our model to the heterogeneity of the
data acquired from different scanners with different scanning parameters. This
effect does not show in other methods that do not use the full 4D volumes where
data preprocessing and summarization play an important role in input signal
consistency and hence model generalization.

Our results for the 3DCNN 1D shows inferior performance compared to using
C-LSTMs in all three datasets. This supports the vital role of a recurrent module
in the network for spatio-temporal feature processing. However, the competitive
performance of this architecture with the 1DConv model shows the ability of our
first 3DCNN to extract useful spatial features in an end-to-end fashion compared
to using pre-computed atlases.
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Table 1. 5-fold cross validation mean accuracies and F1-scores of trained models on
NYU, UM and ABIDE-I data

Data Model Accuracy F1-score

NYU AE MLP [8] 0.64± 0.1 0.67

SVM [5] 0.6± 0.13 0.59

1D Conv [7] 0.64± 0.11 0.62

CNN3D TC∗ [3] 0.57 0.61

CNN3D MS∗ [3] 0.60 0.65

convGRU-CNN3D∗ [3] 0.67 0.71

CNN4D∗ [3] 0.60 0.68

3DCNN 1D (ours) 0.59± 0.07 0.58

3DCNN C-LSTM (ours) 0.77±0.05 0.78

UM AE MLP [8] 0.56± 0.11 0.59

SVM [5] 0.54± 0.11 0.56

1D Conv [7] 0.63± 0.1 0.62

3DCNN 1D (ours) 0.66± 0.09 0.58

3DCNN C-LSTM (ours) 0.71±0.06 0.70

ABIDE-I AE MLP [8] 0.63± 0.02 0.64

SVM [5] 0.58± 0.04 0.6

1D Conv [7] 0.64±0.06 0.64

3DCNN 1D (ours) 0.54± 0.02 0.50

3DCNN C-LSTM (ours) 0.58± 0.03 0.53
∗Results as reported by Bengs et al. [3] on NYU data.

4 Discussion

We have introduced a deep architecture that extracts information from fMRI sig-
nals for the classification of ASD, using 3DCNN and bidirectional 3DC-LSTMs;
allowing the network to exploit local and global spatio-temporal structures.
The proposed deep architecture provides an alternative method to hard-coded
features or summary measures to reduce the dimensionality. The paper only
presents the preliminary version of the deep architecture. The 3DCNN and C-
LSTM networks can be further improved in order to obtain higher classification
accuracy. This architecture can also be used as a starting point for domain adap-
tion techniques that can be deployed to boost the performance on multi-site data
by compensating for data heterogeneity when using the full 4D volumes.
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Abstract. Enlarged perivascular spaces (PVS) are structural brain
changes visible in MRI, and are a marker of cerebral small vessel dis-
ease. Most studies use time-consuming and subjective visual scoring
to assess these structures. Recently, automated methods to quantify
enlarged perivascular spaces have been proposed. Most of these methods
have been evaluated only in high resolution scans acquired in controlled
research settings. We evaluate and compare two recently published auto-
mated methods for the quantification of enlarged perivascular spaces in
76 clinical scans acquired from 9 different scanners. Both methods are
neural networks trained on high resolution research scans and are applied
without fine-tuning the networks’ parameters. By adapting the prepro-
cessing of clinical scans, regions of interest similar to those computed
from research scans can be processed. The first method estimates only the
number of PVS, while the second method estimates simultaneously also
a high resolution attention map that can be used to detect and segment
PVS. The Pearson correlations between visual and automated scores of
enlarged perivascular spaces were higher with the second method. With
this method, in the centrum semiovale, the correlation was similar to
theinter-rater agreement, and also similar to the performance in high res-
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olution research scans. Results were slightly lower than the inter-rater
agreement for the hippocampi, and noticeably lower in the basal gan-
glia. By computing attention maps, we show that the neural networks
focus on the enlarged perivascular spaces. Assessing the burden of said
structures in the centrum semiovale with the automated scores reached
a satisfying performance, could be implemented in the clinic and, e.g.,
help predict the bleeding risk related to cerebral amyloid angiopathy.

Keywords: Perivascular spaces · Deep learning · Clinical MRI

1 Introduction

Enlarged perivascular spaces (PVS) are structural brain changes visible on MRI.
They can be identified as thin hyperintense tubular structures on T2-weighted
MRI scans. PVS are increasingly thought to reflect the presence of cerebral
small vessel disease, which represents a leading cause of cognitive decline and
functional loss in elderly patients. In most studies, enlarged perivascular spaces
are quantified using visual scores that either classify the burden of PVS in sev-
eral categories [8], or count PVS [1]. These quantification methods are tedious
and observer-dependent. Recently, several methods have been proposed to auto-
matically quantify PVS burden [2,4–6,10,13]. None of these methods have been
evaluated in clinical scans, which present multiple challenges for the quantifi-
cation of PVS. While in research studies, the scanning is highly standardized
(same machine, same protocol, same scanning parameters, same investigators,
etc.) to yield comparable results, this is not the case in clinical routine. The
lower resolution of clinical scans also results in the computation of less accu-
rate shape features, the most discriminative feature for the detection of PVS.
Moreover, other MRI markers related to cerebral small vessel disease – such as
white matter hyperintensities – are more prevalent in clinical scans than in pop-
ulation studies [2,4–6] and could be confused with PVS because of their similar
appearance.

In most studies, PVS are quantified separately in one or several clinically and
epidemiologically relevant brain regions: midbrain, hippocampi, thalamus, basal
ganglia, and centrum semiovale. In PVS research, the centrum semiovale is the
most studied region, as PVS burden there has been most strongly associated to
potential determinants of PVS and outcomes thereof. The centrum semiovale is
also often the region with highest inter-observer agreement in the visual scoring
of PVS [1]. In this study, we quantified PVS in the hippocampi, basal ganglia,
and centrum semiovale.

Zhang et al. [13] automatically quantified PVS on 7T MRI scans. Boespflug
et al. [2] proposed an automated quantification method combining image inten-
sities and morphologic features from several MRI sequences. They evaluated
their method in the centrum semiovale in research scans. Sudre et al. [10] pro-
posed to use recurrent neural networks to detect PVS and lacunar infarcts in 16
subjects of a longitudinal study investigating the relationship between cardio-
vascular risk factors and brain health. van Wijnen et al. [11] regressed intensity
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distance maps of PVS in the centrum semiovale using neural networks. Recently,
Dubost et al. [4] proposed to quantify PVS burden in four brain regions – mid-
brain, hippocampi, basal ganglia, and centrum semiovale – with neural network
regressors trained with image level labels: the count of PVS in the target brain
region. In research scans, the authors showed that they could reach a correlation
between visual scores and automated scores similar to that of the inter-observer
agreement in each region. They also found that associations between 20 deter-
minants of PVS and visual PVS scores, and between the same determinants and
automated PVS scores, were similar. The same authors [5] proposed to use a
more advanced model (GP-Unet) for weakly supervised detection of enlarged
perivascular spaces. This method estimates simultaneously the number of PVS
and a high resolution attention map that can be used to detect and segment
PVS. We decided to study the methods of Dubost et al. [4,5] as the validation
experiments with associations with clinical variables already brought them one
step ahead of other methods for the application to clinical practice.

In this article, we applied and compared the two methods of Dubost et al.
[4,5] on 76 clinical MRI scans with a varying, low resolution acquired in the
clinical routine of a hospital using nine different scanners and different protocols,
while using models’ weights learned from high-resolution population study MRI
scans acquired at another hospital in a highly controlled and standardized setting
using a single scanner and protocol. The networks were not fine-tuned to the
clinical data. For preprocessing, we used FSL packages instead of FreeSurfer
parcellations of [4,5] to segment the regions of interest. Finally, we show examples
of attention maps of GP-Unet.

2 Datasets

Training Data. The training data consists of 1600 T2-weighted MRI scans from
1600 elderly participants in a population study: the Rotterdam Study [7]. Scans
were acquired on a single 1.5T GE scanner, in a highly controlled and stan-
dardized setting. The scan resolution was 0.5×0.5×0.8mm3. PVS were visually
scored by a single rater in all scans in the hippocampi, basal ganglia and centrum
semiovale, following the guidelines of Adams et al. [1].

Table 1. Characteristics of the clinical dataset (minimum, maximum, mean and stan-
dard deviation)

Min Max Mean Std

Patient age (years) 35 89 71.39 9.32

In-plane (axial) resolution (mm2) 0.39 0.68 0.45 0.04

Resolution in z (mm) 3.30 7 4.94 0.89

Spacing between slices (mm) 0.60 6.60 4.73 1.04
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Evaluation Data. The MRI data used for evaluation were gathered retrospec-
tively from the Picture Archiving and Communication System (PACS) of Uni-
versity Hospital Magdeburg. MRI scans with visible signs of cerebral small vessel
disease were selected. All selected patients had cerebral microangiopathy, and
were diagnosed with at least one of the following: ischemic (i.e. lacunar) stroke or
transient ischemic attack, spontaneous intracerebral hemorrhage, dementia (i.e.
Alzheimer’s disease or vascular dementia), and epileptic seizures. Initially, 100
acquisitions from 100 different patients were collected. 24 Scans were excluded
from the experiments either because FSL segmentation of the brain structures
failed or because scans could not be rated visually, e.g. due to insufficient image
quality caused by motion artifacts or presence of other pathologies such as
extremely large lesions. This leaves a total of 76 scans for the study. Since the
acquisitions have been obtained during the clinical routine, they present a con-
siderable variance with respect to various image properties such as artifacts or
image resolution. T1-weighted and T2-weighted MRI scans have been acquired
with 9 different scanners. Two of these scanners, a 3T and a 1.5T from Philips,
make up 66 of the 76 images. In total, there are three 3T-, four 1.5T- and two 1T-
scanners. Three of them were Siemens (two 3T, one 1.5T), the rest were Philips
machines. The time frame in which the data was acquired is almost 15 years and
ranges from August 2004 until March 2019. The majority of the scans (43) has
been acquired within the last 5 years of this period. The number of male and
female patients was 46 and 30, respectively. Table 1 provides additional infor-
mation about the data set. PVS were scored visually in the hippocampi, basal
ganglia and centrum semiovale following the guidelines of Adams et al. [1]. Two
raters scored PVS, the inter-rater agreement is reported in Table 2.

3 Methods

The target brain regions (hippocampi, basal ganglia, and centrum semiovale) are
first segmented, masked and cropped. The result is then processed by trained
convolutional neural networks that predict the count of PVS in each region. The
neural networks were trained with high resolution MRI scans of a population
study, but were used to predict PVS count in routine clinical scans of a hospital.
The study was approved by the local ethics committee (No 28/16).

3.1 Preprocessing

To match the resolution of scans in the training set, all clinical scans were linearly
interpolated to a resolution of 0.5 × 0.5 × 0.8mm3.

Dubost et al. [4] used FreeSurfer parcellations to segment brain regions.
FreeSurfer brain parcellation lasts usually several hours, which may prevent its
use in clinical routine. In this study, we used instead FIRST and FAST algo-
rithms from the FSL package [9] to segment brain regions from the T1 sequence
in a matter of minutes. FIRST could compute segmentation of the basal ganglia
and hippocampi. FAST was used to segment the white matter for the centrum
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R1 GP-Unet R1 CNN R1 R2 CNN GP-Unet

Fig. 1. Comparison between visual and automated PVS scores. The different colors
represent different scanners. The visual PVS scores of the first rater (R1), on the x-
axis, are compared with the predictions of GP-Unet, CNN, and with the visual scores
of the second rater (R2), on the y-axis. In the right column we plotted the automated
PVS scores of GP-Unet versus those of CNN.

semiovale region. Dubost et al. [4] also evaluated their method in the midbrain.
As midbrain segmentation is not implemented in FSL, this region was excluded
from the study. The T1 sequence was then rigidly registered to the T2 sequence
using FSL FLIRT, and the segmentation labels were propagated from the T1
space to the T2 space.

Following the guidelines of Adams et al. [1] for visual scoring of PVS, Dubost
et al. [4] quantified PVS in the centrum semiovale in the neighborhood of the slice
located 1 cm above the top of the lateral ventricles. As FSL does not compute
ventricle segmentation, we used instead the segmentation of the basal ganglia as
approximation, and selected the slice 1 cm above the top of the caudate nucleus.

The following preprocessing steps were computed exactly as described by
Dubost et al. [4]. Namely, the segmentation masks were dilated, convolved with
a gaussian kernel to smooth the border of the mask, and multiplied pixelwise with
the T2 intensities. The masked regions were then cropped, normalized between
0 and 1 using the minimum and maximum intensity values in the masked region,
and given as input to the neural networks.

3.2 Neural Networks

The preprocessed images were given as input to two different types of neural
networks proposed for automated PVS quantification: (1) a neural network with
four convolutional layers and a max-pooling layer which outputs the number of
PVS in a region [4] and that we call CNN, and (2) GP-Unet, a similar neural
network proposed by the same authors [5], in which the downsampling path is
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followed by an upsampling path to enable weakly supervised detection of PVS.
Networks of both methods were trained with only image-level labels.

Attention maps of GP-Unet were computed to visualize the focus of the
networks using a linear combination of the feature maps of the last convolutional
layer, as described by Dubost et al. [5].

4 Results and Discussion

Table 2 shows the Pearson correlation, and Table 3 the mean absolute error,
between visual and automated PVS scores for each region and for each method,
and the corresponding inter-rater agreement. Scatter-plots are shown in Fig. 1.
Attention maps of GP-Unet are displayed for each region in Fig. 2.

There was no noticeable difference in the computation of the regions of inter-
est when using FSL masks instead FreeSurfer masks, but the interpolation to
0.5× 0.5× 0.8mm3 was needed to reuse the networks optimized on high resolu-
tion scans. The visual PVS scores were highly correlated to the automated PVS
scores of GP-Unet in the centrum semiovale (0.78 Pearson correlation), were
moderately correlated in the hippocampi (0.52), and a lower correlation in the
basal ganglia (0.28). Attention maps of GP-Unet (Fig. 2) show that, as expected,
the method focuses on perivascular spaces.

While on research scans, CNN and GP-Unet reached a similar performance in
all regions, our experiments on clinical scans show that the correlation between
visual PVS scores and automated PVS scores of GP-Unet was significantly higher
than that of visual PVS scores and automated scores of CNN in the centrum
semiovale (Williams’ test, p-value < 0.0001) and in the hippocampi (p-value <
0.05). Contrary to CNN, GP-Unet combines features of different scales via skip
connections, which may have assisted the computation of discriminative shape
features, and improved the detection of single PVS, as opposed to detecting –
or missing because of their too large size – a cluster of PVS without being able
to individually count them.

The correlation in the basal ganglia (0.31 for GP-Unet) is lower than in
the other regions and is notably lower than the inter-rater agreement (0.56).
Attention maps (Fig. 2) show that the network only detects the largest PVS in
the basal ganglia, and misses less enlarged PVS. The scatter-plots (Fig. 1) seem

Table 2. Correlation between visual and automated PVS scores. Pearson correlations
between the first rater and GP-Unet, CNN, and the second rater for each region. Cor-
relations were all significant (p-value < 0.01). Significant correlations after Bonferroni
correction are in bold.

GP-Unet CNN R2

Centrum Semiovale 0.78 0.52 0.75

Basal Ganglia 0.31 0.25 0.56

Hippocampi 0.51 0.33 0.64
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Fig. 2. Attention Maps of GP-Unet in an axial view. Attention maps for the centrum
semiovale are displayed on the left, for the basal ganglia on the top right, and for hip-
pocampi, on the bottom right. Visual scores are indicated below each region. For each
selected image, from left to right, we show the original image, the attention map with
drawn contours of the region, and the overlay of both. The colormaps of the attention
maps were manually adjusted for each image. Highlighted structures are considered as
PVS by the networks. The redder a structure is, the higher is its weight in the com-
putation of the automated PVS scores by the network. For the centrum semiovale, we
selected two images that correspond to an average agreement between automated and
visual score (human rater R1). For the basal ganglia and hippocampi, we selected one
image with poor agreement (top), and another image with good agreement (bottom).

to confirm this observation: in the basal ganglia, the networks underestimate the
number of PVS, and predict similarly low numbers of PVS for all scans.

Table 2 shows lower inter-rater agreement for the basal ganglia than for the
other regions. This might be a consequence of PVS being visually rated only in
a single slice in this region [1]. The low resolution of clinical scans in z direction
might cause a large variability in the selection of this slice, which might nega-
tively influence the reproducibility of the visual rating. The automated methods
quantify PVS in the complete volume of the basal ganglia, which was previously
shown to be more reproducible than the visual PVS scores [6]. Interestingly, the
automated PVS scores of both methods – CNN and GP-Unet – are highly cor-
related in the basal ganglia (0.73 Pearson correlation). The correlation between
their scores was higher in the basal ganglia than in other regions.

Results in the centrum semiovale (0.78 Pearson correlation) are similar to
the inter-rater agreement (0.75). This is also close to the inter-rater agreement
(0.80 intraclass correlation coefficient) as reported in earlier studies in high res-
olution research scans [1]. Demonstrated quantification of PVS burden in the
centrum semiovale could aid in the better stratification of cerebral small vessel
disease subtypes, i.e. hypertensive arteriopathy and cerebral amyloid angiopa-
thy, especially in large and hospital-based cohorts. This would presumably have
important therapeutic and prognostic implications in terms of prescribing oral
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Table 3. Mean absolute errors between visual and automated PVS scores. Mean abso-
lute error between the first rater and GP-Unet, CNN, and the second rater for each
region.

GP-Unet CNN R2

Centrum Semiovale 5.58 6.39 4.67

Basal Ganglia 5.67 5.49 3.78

Hippocampi 2.58 3.0 2.08

anticoagulants and preventing intracerebral hemorrhage. This is of particular
importance in cerebral amyloid angiopathy, that has not only been related to
severe PVS burden in the centrum semiovale [3], but also to a significantly higher
risk for intracerebral bleeding in face of oral anticoagulant treatment [12].

In future work, the results in the basal ganglia and the hippocampi may
be improved by fine-tuning the neural networks using the clinical dataset, and
by adding data augmentation during training with research scans to imitate
the resolution of clinical scans and contrast variations between different scan
protocols or scanners. The results presented are already promising considering
the large differences between training and test sets.

The complete computation of the automated PVS scores lasts only a few
minutes on CPU. Most of the computation time is spent on FSL brain structures
segmentation and registration from the T1-weighted scans to the T2-weighted
scans. After this preprocessing, the computation of the automated PVS scores
took only about 6 s per brain region on CPU. This low computation time can
facilitate the implementation of such a method in clinical practice.

5 Conclusion

We showed that PVS burden could be automatically quantified in the centrum
semiovale in clinical scans, with an agreement with visual scores that was similar
to the inter-observer agreement. Automated PVS scores were computed with a
neural network that was trained high-quality research scans and with only global
labels of PVS burden. These results could contribute to bringing automated PVS
quantification to the clinic and guide the administration of anti-coagulant drugs.
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